### The Local Group

A detailed view of the closest galaxies Examples of near-field cosmology

#### References:

- Freeman & Bland-Hawthorn (2002, ARA&A 40, 487)
- Helmi et al. (2008, A&ARv 15, 145)
- Tolstoy, Hill & Tosi (2009, ARA&A 47, 371)

### The Milky Way and the Local Group Near-field cosmology

- Are detailed observations of the Local Group compatible with the cosmology?
- Studying stars to understand galaxy formation
- The **two** big **spirals**: The Milky Way & Andromeda
  - Structure (stellar halo, thick disk ⇔ history of formation)
    [break]
- The dwarf galaxies
  - The faint end of galaxy formation
  - As a population: test of the cosmology

# Cosmology on galaxy scales

 Large scale cosmology is now largely understood

• A Cold Dark Matter universe

• How do baryons condense at the center of dark matter halos?

the new frontier is bd Dark energy Niverse bark of the new frontier bark of the new frontier 5% Dark matter 72%



Springel et al. (2009)

# Cosmology on galaxy scales

- Large scale cosmology is now largely understood
  - A Cold Dark Matter universe
- How do baryons condense at the center of dark matter halos?
- Clear discrepancy between dark matter and stellar distributions
  - "missing satellite crisis"
  - hierarchical build-up?



Springel et al. (2009)

# Cosmology on galaxy scales

- Large scale cosmology is now largely understood
  - A Cold Dark Matter universe
- How do baryons condense at the center of dark matter halos?
- Clear discrepancy between dark matter and stellar distributions
  - "missing satellite crisis"
  - hierarchical build-up?



### Cosmology on galaxy scales "observed" halo

 Large scale cosmology is now largely understood

- A Cold Dark Matter universe
- How do baryons condense at the center of dark matter halos?
- Clear discrepancy between dark matter and stellar distributions
  - "missing satellite crisis"
  - hierarchical build-up?



### Different causes produce different halos

Johnston et al. (2008)

### Luminosity



Highest luminosity accretion events



Lowest luminosity accretion events

### The Local Group as a cosmological laboratory

• Need to resolve stars  $\rightarrow$  100x fainter than with integrated light

Mainly in Local Group. Large use of large sky-surveys



## The Spiral galaxies

The Milky Way & Andromeda

William Herschel's model of the Milky Way (18th century)



## The Spiral galaxies

The Milky Way & Andromeda



# The advent of large-sky surveys

Sloan Digital Sky Survey



Modest 2.5m-telescope
 Redshift spectroscopic survey

### • But...

- also large photometric survey
- quarter of the sky
- systematic coverage
- 5 filters from u (UV) to z (IR)

#### A detour via Color-Magnitude Diagrams Photometric surveys rely on CMD analyses to isolate tracers • isochrone: stellar population of a given metallicity, age, distance [Fe/H] dependence Age dependence 0.5 [Fe/H] 14 age (Gyr) Age=15 Gyr [Fe/H]=-2.0 ° Red Giant Branch 12 (Horizontal Branch) -0.5 9 $\bigcirc$ Sub-Giant Branch DSS 150 kpc ī ø $\sum^{\cdot}$ $\sum^{\cdot}$ Age Main Sequence nce ဖ SDSS 60 kpc Turn-Off Sta Ю ß 2 SDSS 25 kpc Main Sequence 3 2 2 3 0 0

g—i

g—i

# A tomography of the Milky Way



## A tomography of the Milky Way



## The Thick disk

Kinematics as a diagnostic of the MW past history

• Origin?

accretion of dwarf galaxy?

heating from DM sub-halos

• migration of stars in disk?





### The stellar halo



## The stellar halo

A view from inside



Belokurov et al. (2006)

### Are structures consistent with ACDM?

Bell et al. (2008)



Sub-structure is important and far from being produced only by the Sgr stream.



### Streams as gravitational probes



60

0

0

20

-300

-80

-60

-40 - 20

φ1. [deg]

-60

-80

-40 - 20

φ1. [deg]

0

20

20

• Halo stracers can also be used in a similar way (BHB stars, Xue et al. 2008)

### The stellar halo

A view from inside



Belokurov et al. (2006)

#### 2MASS (2003) SDSS (2000–2010) Pan-STARRS (2010–2014)



### Andromeda

### The Panoramic Andromeda Archaeological Survey

- M31 @ ~800 kpc
  - Reachable
  - Not as detailed as MW
  - But a panoramic view
- PAndAS
  - 45-minute observations/deg<sup>2</sup>
  - 4m telescope (CFHT)
  - 2 bands (g and i)











 Using detailed obs of galaxy structure to test cosmology/galaxy formation
 amount of structure in qualitative agreement with simulations

 Panoramic view from large surveys (2MASS, SDSS, Pan-STARRS, PAndAS...)
 using CMD tracers (MSTO stars, BHB stars, RGB stars)

accurate mapping of disk, halo,...



# Why study the faintest galaxies?

- Massive galaxies contain the majority of the universe's stellar mass
- Is there a faint end to galaxy formation?
  - sensitive to star formation suppression mechanisms
  - "missing satellite crisis"?
- Which dark matter halos contain stars?
  - What sets their numbers? their properties (luminosity, size, shape)?

### Contribution of galaxies of mass M to the universe's stellar content



## Dwarf galaxies

### Interesting in their own right

• Is there a faint limit to galaxy formation?

### Interesting as a population

• Do they follow cosmology predictions?





### Where the Local Group comes into play

- ~20 dwarf galaxies known until 2003
- Many new discoveries
  - 12–15 around the MW (SDSS)
  - ~20 around M31 (mainly PAndAS)



The Hercules dwarf galaxy view by the LBT (Coleman et al. 2007)



The Hercules dwarf galaxy view by the LBT (Coleman et al. 2007)

### The Milky Way satellite system



## Dwarf galaxies vs. Globular Clusters

Dwarf galaxies: extended dark matter halos



Globular Cluster: no dark matter





Gilmore et al. (2007)

# Estimating masses



- Velocity dispersion → instantaneous mass estimate of the system
  - Jeans equation for a collisionless, spherical system, in equilibrium vel. disp.

$$M(r) = -\frac{r^2}{G} \left( \frac{1}{\nu} \frac{d\nu \sigma_r^2}{dr} + 2 \frac{\beta \sigma_r^2}{r} \right),$$
  
stellar density orbit anisotropy  
distribution

 $\beta = 1 - \frac{\langle v_t^2 \rangle}{\langle v_r^2 \rangle}$ 

### The mass of spheroidal systems



### The Milky Way satellite system



### They have complex stellar populations

de Jong et al. (2008)

15

10

age (Gyr)

5

Automatically fitting distance, metallicity, age from the CMD



• Spread in [Fe/H]

### The Milky Way satellite system



### Testing the cosmology with dwarf galaxies



Koposov et al. (2009) Macciò et al. (2009) Cooper et al. (2010)

 Observed galaxies are broadly reproduced

- galaxies with a few 100s of stars are expected
- Will we be able to find them?



### A solution to the "missing satellite crisis"

Koposov et al. (2009)

- "Semi-Analytic Models"
- Based on dark matter subhalos as predicted
- Postulated star formation suppression:
  - if v<sub>circ</sub><10 km/s (H<sub>2</sub> cooling limit)
  - if v<sub>circ</sub><35 km/s after z<sub>rei</sub>
    (photo-heating)
  - after system becomes a satellite
- Adding selection effects



## What are the faintest galaxies?

- The 'realm of galaxies' has expanded by  $\sim 100$  since 2003
  - A few 100 stars at the bottom of dark matter potential wells
- Census still incomplete, even around the Milky Way
  - Current searches find objects at the surface brightness limit
- Galaxy formation' becomes extremely inefficient in low-mass dark matter halos
  - It is plausible that many low-mass DM sub-halos are 'empty'



## Summary

- Looking at stars to understand galaxy formation
- Large surveys have revolutionized the field
  - structured stellar halos resulting from history of formation
  - dwarf galaxies can be very faint
- Limits of star-formation in galaxies?
  - presence of "galaxies" without stars is likely!

![](_page_42_Picture_8.jpeg)