
Peter Schneider, The Milky Way as a Galaxy.
In: Peter Schneider, Extragalactic Astronomy and Cosmology. pp. 35–85 (2006)
DOI: 10.1007/11614371_2 © Springer-Verlag Berlin Heidelberg 2006

35

2. The Milky Way as a Galaxy
The Earth is orbiting around the Sun, which itself is
orbiting around the center of the Milky Way. Our Milky
Way, the Galaxy, is the only galaxy in which we are able
to study astrophysical processes in detail. Therefore, our
journey through extragalactic astronomy will begin in
our home Galaxy, with which we first need to become
familiar before we are ready to take off into the depths
of the Universe. Knowing the properties of the Milky
Way is indispensable for understanding other galaxies.

2.1 Galactic Coordinates

On a clear night, and sufficiently far away from cities,
one can see the magnificent band of the Milky Way
on the sky (Fig. 2.1). This observation suggests that the
distribution of light, i.e., that of the stars in the Galaxy,
is predominantly that of a thin disk. A detailed analy-
sis of the geometry of the distribution of stars and gas
confirms this impression. This geometry of the Galaxy
suggests the introduction of two specially adapted co-
ordinate systems which are particularly convenient for
quantitative descriptions.

Spherical Galactic Coordinates (�, b). We consider
a spherical coordinate system, with its center being
“here”, at the location of the Sun (see Fig. 2.2). The
Galactic plane is the plane of the Galactic disk, i.e., it
is parallel to the band of the Milky Way. The two Gal-
actic coordinates � and b are angular coordinates on
the sphere. Here, b denotes the Galactic latitude, the

Fig. 2.1. An unusual op-
tical image of the Milky
Way. This total view of
the Galaxy is composed
of a large number of
individual images

angular distance of a source from the Galactic plane,
with b ∈ [−90◦,+90◦]. The great circle b = 0◦ is then
located in the plane of the Galactic disk. The direc-
tion b = 90◦ is perpendicular to the disk and denotes
the North Galactic Pole (NGP), while b = −90◦ marks
the direction to the South Galactic Pole (SGP). The
second angular coordinate is the Galactic longitude �,
with � ∈ [0◦, 360◦]. It measures the angular separation
between the position of a source, projected perpendic-
ularly onto the Galactic disk (see Fig. 2.2), and the
Galactic center, which itself has angular coordinates
b = 0◦ and � = 0◦. Given � and b for a source, its loca-
tion on the sky is fully specified. In order to specify its
three-dimensional location, the distance of that source
from us is also needed.

The conversion of the positions of sources given in
Galactic coordinates (b, �) to that in equatorial coordi-
nates (α, δ) and vice versa is obtained from the rotation
between these two coordinate systems, and is described
by spherical trigonometry.1 The necessary formulae can
be found in numerous standard texts. We will not re-
produce them here, since nowadays this transformation
is done nearly exclusively using computer programs.
Instead, we will give some examples. The following
figures refer to the Epoch 2000: due to the precession

1The equatorial coordinates are defined by the direction of the Earth’s
rotation axis and by the rotation of the Earth. The intersections of the
Earth’s axis and the sphere define the northern and southern poles. The
great circles on the sphere through these two poles, the meridians, are
curves of constant right ascension α. Curves perpendicular to them
and parallel to the projection of the Earth’s equator onto the sky are
curves of constant declination δ, with the poles located at δ = ±90◦.
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Fig. 2.2. The Sun is at the origin of the Galactic coordinate
system. The directions to the Galactic center and to the North
Galactic Pole (NGP) are indicated and are located at � = 0◦
and b = 0◦, and at b = 90◦, respectively

of the rotation axis of the Earth, the equatorial coor-
dinate system changes with time, and is updated from
time to time. The position of the Galactic center (at
� = 0◦ = b) is α = 17h45.6m, δ = −28◦56.′2 in equato-
rial coordinates. This immediately implies that at the La
Silla Observatory, located at geographic latitude −29◦,
the Galactic center is found near the zenith at local
midnight in May/June. Because of the high stellar den-
sity in the Galactic disk and the large extinction due
to dust this is therefore not a good season for extra-
galactic observations from La Silla. The North Galactic
Pole has coordinates αNGP = 192.859 48◦ ≈ 12h51m,
δNGP = 27.128 25◦ ≈ 27◦7.′7.

Zone of Avoidance. As already mentioned, the absorp-
tion by dust and the presence of numerous bright stars
render optical observations of extragalactic sources in
the direction of the disk difficult. The best observing
conditions are found at large |b|, while it is very hard
to do extragalactic astronomy in the optical regime at
|b|� 10◦; this region is therefore often called the “Zone
of Avoidance”. An illustrative example is the galaxy
Dwingeloo 1, which was already mentioned in Sect. 1.1
(see Fig. 1.6). This galaxy was only discovered in the
1990s despite being in our immediate vicinity: it is
located at low |b|, right in the Zone of Avoidance.

Cylindrical Galactic Coordinates (R,θ, z). The an-
gular coordinates introduced above are well suited to
describing the angular position of a source relative to the

Galactic disk. However, we will now introduce another
three-dimensional coordinate system for the descrip-
tion of the Milky Way geometry that will prove very
convenient in the study of the kinematic and dynamic
properties of the Milky Way. It is a cylindrical coor-
dinate system, with the Galactic center at the origin
(see also Fig. 2.13). The radial coordinate R measures
the distance of an object from the Galactic center in
the disk, and z specifies the height above the disk (ob-
jects with negative z are thus located below the Galactic
disk, i.e., south of it). For instance, the Sun has a dis-
tance from the Galactic center of R ≈ 8 kpc. The angle
θ specifies the angular separation of an object in the disk
relative to the position of the Sun, seen from the Gal-
actic center. The distance of an object with coordinates
R, θ, z from the Galactic center is then

√
R2 + z2, inde-

pendent of θ. If the matter distribution in the Milky Way
were axially symmetric, the density would then depend
only on R and z, but not on θ. Since this assumption
is a good approximation, this coordinate system is very
well suited for the physical description of the Galaxy.

2.2 Determination of Distances
Within Our Galaxy

A central problem in astronomy is the estimation of dis-
tances. The position of sources on the sphere gives us
a two-dimensional picture. To obtain three-dimensional
information, measurements of distances are required.
Furthermore, we need to know the distance to a source
if we want to draw conclusions about its physical param-
eters. For example, we can directly observe the angular
diameter of an object, but to derive the physical size we
need to know its distance. Another example is the de-
termination of the luminosity L of a source, which can
be derived from the observed flux S only by means of
its distance D, using

L = 4πS D2 . (2.1)

It is useful to consider the dimensions of the physical
parameters in this equation. The unit of the luminosity
is [L] = erg s−1, and that of the flux [S] = erg s−1 cm−2.
The flux is the energy passing through a unit area per
unit time (see Appendix A). Of course, the physical
properties of a source are characterized by the lumi-
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nosity L and not by the flux S, which depends on its
distance from the Sun.

In the following section we will review various meth-
ods for the estimation of distances in our Milky Way,
postponing the discussion of methods for estimating
extragalactic distances to Sect. 3.6.

2.2.1 Trigonometric Parallax

The most important method of distance determination
is the trigonometric parallax, and not only from a his-
torical point-of-view. This method is based on a purely
geometric effect and is therefore independent of any
physical assumptions. Due to the motion of the Earth
around the Sun the positions of nearby stars on the
sphere change relative to those of very distant sources
(e.g., extragalactic objects such as quasars). The latter
therefore define a fixed reference frame on the sphere
(see Fig. 2.3). In the course of a year the apparent po-
sition of a nearby star follows an ellipse on the sphere,
the semimajor axis of which is called the parallax p.
The axis ratio of this ellipse depends on the direc-
tion of the star relative to the ecliptic (the plane that
is defined by the orbits of the planets) and is of no
further interest. The parallax depends on the radius r
of the Earth’s orbit, hence on the Earth–Sun distance
which is, by definition, one astronomical unit.2 Further-
more, the parallax depends on the distance D of the
star,

r

D
= tan p ≈ p , (2.2)

where we used p 	 1 in the last step, and p is measured
in radians as usual. The trigonometric parallax is also
used to define the common unit of distance in astron-
omy: one parsec (pc) is the distance of a hypothetical
source for which the parallax is exactly p = 1′′. With
the conversion of arcseconds to radians (1′′ ≈ 4.848×
10−6 radians) one gets p/1′′ = 206 265 p, which for
a parsec yields

1 pc = 206 265 AU = 3.086×1018 cm . (2.3)

2To be precise, the Earth’s orbit is an ellipse and one astronomical
unit is its semimajor axis, being 1 AU = 1.496×1013 cm.

Fig. 2.3. Illustration of the parallax effect: in the course of the
Earth’s orbit around the Sun the apparent positions of nearby
stars on the sky seem to change relative to those of very distant
background sources

The distance corresponding to a measured parallax is
then calculated as

D =
( p

1′′
)−1

pc . (2.4)

To determine the parallax p, precise measurements of
the position of an object at different times are needed,
spread over a year, allowing us to measure the ellipse
drawn on the sphere by the object’s apparent posi-
tion. For ground-based observation the accuracy of this
method is limited by the atmosphere. The seeing causes
a blurring of the images of astronomical sources and
thus limits the accuracy of position measurements. From
the ground this method is therefore limited to parallaxes
larger than ≈ 0′′. 01, implying that the trigonometric
parallax yields distances to stars only within ∼ 30 pc.

An extension of this method towards smaller p, and
thus larger distances, became possible with the as-
trometric satellite HIPPARCOS. It operated between
November 1989 and March 1993 and measured the po-
sitions and trigonometric parallaxes of about 120 000
bright stars, with a precision of ∼ 0′′. 001 for the brighter
targets. With HIPPARCOS the method of trigonomet-
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ric parallax could be extended to stars up to distances
of ∼ 300 pc. The satellite GAIA, the successor mis-
sion to HIPPARCOS, is scheduled to be launched in
2012. GAIA will compile a catalog of ∼ 109 stars up
to V ≈ 20 in four broad-band and eleven narrow-band
filters. It will measure parallaxes for these stars with
an accuracy of ∼ 2×10−4 arcsec, with the accuracy
for brighter stars even being considerably better. GAIA
will thus determine the distances for ∼ 2×108 stars
with a precision of 10%, and tangential velocities (see
next section) with a precision of better than 3 km/s.

The trigonometric parallax method forms the basis
of nearly all distance determinations owing to its purely
geometrical nature. For example, using this method the
distances to nearby stars have been determined, allow-
ing the production of the Hertzsprung–Russell diagram
(see Appendix B.2). Hence, all distance measures that
are based on the properties of stars, such as will be
described below, are calibrated by the trigonometric
parallax.

2.2.2 Proper Motions

Stars are moving relative to us or, more precisely, rel-
ative to the Sun. To study the kinematics of the Milky
Way we need to be able to measure the velocities of
stars. The radial component vr of the velocity is easily
obtained from the Doppler shift of spectral lines,

vr = Δλ

λ0
c , (2.5)

where λ0 is the rest-frame wavelength of an atomic
transition and Δλ = λobs −λ0 the Doppler shift of the
wavelength due to the radial velocity of the source. The
sign of the radial velocity is defined such that vr > 0
corresponds to a motion away from us, i.e., to a redshift
of spectral lines.

In contrast, the determination of the other two veloc-
ity components is much more difficult. The tangential
component, vt, of the velocity can be obtained from the
proper motion of an object. In addition to the motion
caused by the parallax, stars also change their posi-
tions on the sphere as a function of time because of
the transverse component of their velocity relative to
the Sun. The proper motion μ is thus an angular veloc-
ity, e.g., measured in milliarcseconds per year (mas/yr).

This angular velocity is linked to the tangential velocity
component via

vt = Dμ or
vt

km/s
= 4.74

(
D

1 pc

)(
μ

1′′/yr

)
.

(2.6)

Therefore, one can calculate the tangential velocity from
the proper motion and the distance. If the latter is derived
from the trigonometric parallax, (2.6) and (2.4) can be
combined to yield

vt

km/s
= 4.74

(
μ

1′′/yr

)( p

1′′
)−1

. (2.7)

HIPPARCOS measured proper motions for ∼ 105 stars
with an accuracy of up to a few mas/yr; however, they
can be translated into physical velocities only if their
distance is known.

Of course, the proper motion has two components,
corresponding to the absolute value of the angular ve-
locity and its direction on the sphere. Together with vr

this determines the three-dimensional velocity vector.
Correcting for the known velocity of the Earth around
the Sun, one can then compute the velocity vector v

of the star relative to the Sun, called the heliocentric
velocity.

2.2.3 Moving Cluster Parallax

The stars in an (open) star cluster all have a very similar
spatial velocity. This implies that their proper motion
vectors should be similar. To what extent the proper
motions are aligned depends on the angular extent of the
star cluster on the sphere. Like two railway tracks that
run parallel but do not appear parallel to us, the vectors
of proper motions in a star cluster also do not appear
parallel. They are directed towards a convergence point,
as depicted in Fig. 2.4. We shall demonstrate next how
to use this effect to determine the distance to a star
cluster.

We consider a star cluster and assume that all stars
have the same spatial velocity v. The position of the i-th
star as a function of time is then described by

ri(t) = ri +vt , (2.8)

where ri is the current position if we identify the origin
of time, t = 0, with “today”. The direction of a star
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Fig. 2.4. The moving cluster parallax is a projection effect,
similar to that known from viewing railway tracks. The di-
rections of velocity vectors pointing away from us seem to
converge and intersect at the convergence point. The connect-
ing line from the observer to the convergence point is parallel
to the velocity vector of the star cluster

relative to us is described by the unit vector

ni(t) := ri(t)

|ri(t)| . (2.9)

From this, one infers that for large times, t → ∞, the
direction vectors are identical for all stars in the cluster,

ni(t) → v

|v| =: nconv . (2.10)

Hence for large times all stars will appear at the same
point nconv: the convergence point. This only depends
on the direction of the velocity vector of the star cluster.
In other words, the direction vector of the stars is such
that they are all moving towards the convergence point.
Thus, nconv (and hence v/|v|) can be measured from
the direction of the proper motions of the stars in the
cluster, and so can v/|v|. On the other hand, one compo-
nent of v can be determined from the (easily measured)
radial velocity vr. With these two observables the three-
dimensional velocity vector v is completely determined,
as is easily demonstrated: let ψ be the angle between the
line-of-sight n towards a star in the cluster and v. The
angle ψ is directly read off from the direction vector n
and the convergence point, cos ψ = n ·v/|v| = nconv ·n.
With v ≡ |v| one then obtains

vr = v cos ψ , vt = v sin ψ ,

and so

vt = vr tan ψ . (2.11)

This means that the tangential velocity vt can be mea-
sured without determining the distance to the stars in
the cluster. On the other hand, (2.6) defines a relation
between the proper motion, the distance, and vt. Hence,
a distance determination for the star is now possible with

μ = vt

D
= vr tan ψ

D
→ D = vr tan ψ

μ
. (2.12)

This method yields accurate distance estimates of star
clusters within ∼ 200 pc. The accuracy depends on the
measurability of the proper motions. Furthermore, the
cluster should cover a sufficiently large area on the sky
for the convergence point to be well defined. For the
distance estimate, one can then take the average over
a large number of stars in the cluster if one assumes that
the spatial extent of the cluster is much smaller than its
distance to us. Targets for applying this method are the
Hyades, a cluster of about 200 stars at a mean distance
of D ≈ 45 pc, the Ursa-Major group of about 60 stars
at D ≈ 24 pc, and the Pleiades with about 600 stars at
D ≈ 130 pc.

Historically the distance determination to the
Hyades, using the moving cluster parallax, was ex-
tremely important because it defined the scale to all
other, larger distances. Its constituent stars of known
distance are used to construct a calibrated Hertzsprung–
Russell diagram which forms the basis for determining
the distance to other star clusters, as will be discussed in
Sect. 2.2.4. In other words, it is the lowest rung of the so-
called distance ladder that we will discuss in Sect. 3.6.
With HIPPARCOS, however, the distance to the Hyades
stars could also be measured using the trigonometric
parallax, yielding more accurate values. HIPPARCOS
was even able to differentiate the “near” from the “far”
side of the cluster – this star cluster is too close for the
assumption of an approximately equal distance of all
its stars to be still valid. A recent value for the mean
distance of the Hyades is

DHyades = 46.3±0.3 pc . (2.13)

2.2.4 Photometric Distance;
Extinction and Reddening

Most stars in the color–magnitude diagram are located
along the main sequence. This enables us to com-
pile a calibrated main sequence of those stars whose



40

2. The Milky Way as a Galaxy

trigonometric parallaxes are measured, thus with known
distances. Utilizing photometric methods, it is then pos-
sible to derive the distance to a star cluster, as we will
demonstrate in the following.

The stars of a star cluster define their own main
sequence (color–magnitude diagrams for some star
clusters are displayed in Fig. 2.5); since they are all
located at the same distance, their main sequence is al-
ready defined in a color–magnitude diagram in which
only apparent magnitudes are plotted. This cluster
main sequence can then be fitted to a calibrated main
sequence3 by a suitable choice of the distance, i.e., by
adjusting the distance modulus m − M,

m − M = 5 log (D/pc)−5 ,

where m and M denote the apparent and absolute
magnitude, respectively.

In reality this method cannot be applied so easily
since the position of a star on the main sequence does
not only depend on its mass but also on its age and
metallicity. Furthermore, only stars of luminosity class
V (i.e., dwarf stars) define the main sequence, but with-
out spectroscopic data it is not possible to determine the
luminosity class.

Extinction and Reddening. Another major problem is
extinction. Absorption and scattering of light by dust af-
fect the relation of absolute to apparent magnitude: for
a given M, the apparent magnitude m becomes larger
(fainter) in the case of absorption, making the source
appear dimmer. Also, since extinction depends on wave-
length, the spectrum of the source is modified and the
observed color of the star changes. Because extinction
by dust is always associated with such a change in color,
one can estimate the absorption – provided one has suf-
ficient information on the intrinsic color of a source or
of an ensemble of sources. We will now demonstrate
how this method can be used to estimate the distance to
a star cluster.

We consider the equation of radiative transfer for
pure absorption or scattering (see Appendix A),

d Iν
ds

= −κν Iν , (2.14)

3i.e., to the main sequence in a color–magnitude diagram in which
absolute magnitudes are plotted

Fig. 2.5. Color–magnitude diagram (CMD) for different star
clusters. Such a diagram can be used for the distance deter-
mination of star clusters because the absolute magnitudes of
main-sequence stars are known (by calibration with nearby
clusters, especially the Hyades). One can thus determine the
distance modulus by vertically “shifting” the main sequence.
Also, the age of a star cluster can be estimated from a CMD:
luminous main-sequence stars have a shorter lifetime on the
main sequence than less luminous ones. The turn-off point in
the stellar sequence away from the main sequence therefore
corresponds to that stellar mass for which the lifetime on the
main sequence equals the age of the star cluster. Accordingly,
the age is specified on the right axis as a function of the posi-
tion of the turn-off point; the Sun will leave the main sequence
after about 10×109 years

where Iν denotes the specific intensity at frequency ν, κν

the absorption coefficient, and s the distance coordinate
along the light beam. The absorption coefficient has the
dimension of an inverse length. Equation (2.14) says
that the amount by which the intensity of a light beam
is diminished on a path of length ds is proportional to
the original intensity and to the path length ds. The
absorption coefficient is thus defined as the constant of
proportionality. In other words, on the distance interval
ds, a fraction κν ds of all photons at frequency ν is
absorbed or scattered out of the beam. The solution of
the transport equation (2.14) is obtained by writing it
in the form d ln Iν = d Iν/Iν = −κν ds and integrating
from 0 to s,
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ln Iν(s)− ln Iν(0) = −
s∫

0

ds′ κν(s
′) ≡ −τν(s) ,

where in the last step we defined the optical depth, τν,
which depends on frequency. This yields

Iν(s) = Iν(0) e−τν(s) . (2.15)

The specific intensity is thus reduced by a factor e−τ

compared to the case of no absorption taking place.
Accordingly, for the flux we obtain

Sν = Sν(0) e−τν(s) , (2.16)

where Sν is the flux measured by the observer at a dis-
tance s from the source, and Sν(0) is the flux of the
source without absorption. Because of the relation be-
tween flux and magnitude m = −2.5 log S + const, or
S ∝ 10−0.4m , one has

Sν

Sν,0
= 10−0.4(m−m0) = e−τν = 10− log(e)τν ,

or

Aν := m −m0 = −2.5 log(Sν/Sν,0)

= 2.5 log(e) τν = 1.086τν . (2.17)

Here, Aν is the extinction coefficient describing the
change of apparent magnitude m compared to that with-
out absorption, m0. Since the absorption coefficient κν

depends on frequency, absorption is always linked to
a change in color. This is described by the color excess
which is defined as follows:

E(X −Y ) := AX − AY = (X − X0)− (Y −Y0)

= (X −Y )− (X −Y )0 . (2.18)

The color excess describes the change of the color index
(X −Y), measured in two filters X and Y that define the
corresponding spectral windows by their transmission
curves. The ratio AX/AY = τν(X)/τν(Y) depends only on
the optical properties of the dust or, more specifically,
on the ratio of the absorption coefficients in the two
frequency bands X and Y considered here. Thus, the
color excess is proportional to the extinction coefficient,

E(X −Y ) = AX − AY = AX

(
1− AY

AX

)
≡ AX R−1

X ,

(2.19)

where in the last step we introduced the factor of pro-
portionality RX between the extinction coefficient and
the color excess, which depends only on the properties
of the dust and the choice of the filters. Usually, one
uses a blue and a visual filter (see Appendix A.4.2 for
a description of the filters commonly used) and writes

AV = RV E(B − V ) . (2.20)

For example, for dust in our Milky Way we have the
characteristic relation

AV = (3.1±0.1)E(B − V ) . (2.21)

This relation is not a universal law, but the factor of pro-
portionality depends on the properties of the dust. They
are determined, e.g., by the chemical composition and
the size distribution of the dust grains. Fig. 2.6 shows the
wavelength dependence of the extinction coefficient for
different kinds of dust, corresponding to different val-
ues of RV . In the optical part of the spectrum we have

Fig. 2.6. Wavelength dependence of the extinction coefficient
Aν , normalized to the extinction coefficient AI at λ = 9000 Å.
Different kinds of clouds, characterized by the value of RV ,
i.e., by the reddening law, are shown. On the x-axis we
have plotted the inverse wavelength, so that the frequency
increases to the right. The solid line specifies the mean Galac-
tic extinction curve. The extinction coefficient, as determined
from the observation of an individual star, is also shown;
clearly the observed law deviates from the model in some
details. The figure insert shows a detailed plot at relatively
large wavelengths in the NIR range of the spectrum; at these
wavelengths the extinction depends only weakly on the value
of RV
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Fig. 2.7. These images of the molecular cloud Barnard 68
show the effects of extinction and reddening: the left im-
age is a composite of exposures in the filters B, V, and I.
At the center of the cloud essentially all the light from the
background stars is absorbed. Near the edge it is dimmed

and visibly shifted to the red. In the right-hand image ob-
servations in the filters B, I, and K have been combined
(red is assigned here to the near-infrared K-band filter); we
can clearly see that the cloud is more transparent at longer
wavelengths

approximately τν ∝ ν, i.e., blue light is absorbed (or
scattered) more strongly than red light. The extinction
therefore always causes a reddening.4

In the Solar neighborhood the extinction coefficient
for sources in the disk is about

AV ≈ 1mag
D

1 kpc
, (2.22)

but this relation is at best a rough approximation, since
the absorption coefficient can show strong local devi-
ations from this law, for instance in the direction of
molecular clouds (see, e.g., Fig. 2.7).

Color–color diagram. We now return to the distance
determination for a star cluster. As a first step in this
measurement, it is necessary to determine the degree
of extinction, which can only be done by analyzing
the reddening. The stars of the cluster are plotted in
a color–color diagram, for example by plotting the col-
ors (U − B) and (B − V ) on the two axes (see Fig. 2.8).
A color–color diagram also shows a main sequence
along which the majority of the stars are aligned. The
wavelength–dependent extinction causes a reddening in
both colors. This shifts the positions of the stars in the

4With what we have just learned we can readily answer the question
of why the sky is blue and the setting Sun red.

diagram. The direction of the reddening vector depends
only on the properties of the dust and is here assumed
to be known, whereas the amplitude of the shift de-
pends on the extinction coefficient. In a similar way to
the CMD, this amplitude can now be determined if one
has access to a calibrated, unreddened main sequence
for the color–color diagram which can be obtained from
the examination of nearby stars. From the relative shift
of the main sequence in the two diagrams one can then
derive the reddening and thus the extinction. The essen-
tial point here is the fact that the color–color diagram is
independent of the distance.

This then defines the procedure for the distance deter-
mination of a star cluster using photometry: in the first
step we determine the reddening E(B − V ), and thus
with (2.21) also AV , by shifting the main sequence in
a color–color diagram along the reddening vector until it
matches a calibrated main sequence. In the second step
the distance modulus is then determined by vertically
(i.e., in the direction of M) shifting the main sequence
in the color–magnitude diagram until it matches a cal-
ibrated main sequence. From this, the distance is then
obtained according to

m − M = 5 log(D/1 pc)−5+ A . (2.23)
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Fig. 2.8. Color–color diagram for main-sequence stars. Spec-
tral types and absolute magnitudes are specified. Black bodies
(T/103 K) would be located along the upper line. Interstellar
reddening shifts the measured stellar locations parallel to the
reddening vector indicated by the arrow

2.2.5 Spectroscopic Distance

From the spectrum of a star, the spectral type as well
as the luminosity class can be determined. The former
is determined from the strength of various absorption
lines in the spectrum, while the latter is obtained from
the width of the lines. From the line width the surface
gravity of the star can be derived, and from that its ra-
dius (more precisely, M/R2). From the spectral type and
the luminosity class the position of the star in the HRD
follows unambiguously. By means of stellar evolution
models, the absolute magnitude MV can then be de-
termined. Furthermore, the comparison of the observed
color with that expected from theory yields the color ex-
cess E(B − V ), and from that we obtain AV . With this
information we are then able to determine the distance
using

V − AV − MV = 5 log (D/pc)−5 . (2.24)

2.2.6 Distances of Visual Binary Stars

Kepler’s third law for a two-body problem,

P2 = 4π2

G(m1 +m2)
a3 , (2.25)

specifies the relation between the orbital period P of
a binary star, the masses mi of the two components,
and the semimajor axis a of the ellipse. The latter is
defined by the distance vector between the two stars
in the course of one period. This law can be used to
determine the distance to a visual binary star. For such
a system, the period P and the angular diameter 2θ

of the orbit are direct observables. If one additionally
knows the mass of the two stars, for instance from their
spectral classification, a can be determined according to
(2.25), and from this the distance follows with D = a/θ.

2.2.7 Distances of Pulsating Stars

Several types of pulsating stars show periodic changes in
their brightnesses, where the period of a star is related
to its mass, and thus to its luminosity. This period–
luminosity (PL) relation is ideally suited for distance
measurements: since the determination of the period is
independent of distance, one can obtain the luminosity
directly from the period. The distance is thus directly de-
rived from the measured magnitude using (2.24), if the
extinction can be determined from color measurements.

The existence of a relation between the luminosity
and the pulsation period can be expected from simple
physical considerations. Pulsations are essentially ra-
dial density waves inside a star that propagate with the
speed of sound, cs. Thus, one can expect that the pe-
riod is comparable to the sound crossing time through
the star, P ∼ R/cs. The speed of sound cs in a gas is of
the same order of magnitude as the thermal velocity of
the gas particles, so that kBT ∼ mpc2

s , where mp is the
proton mass (and thus a characteristic mass of particles
in the stellar plasma) and kB is Boltzmann’s constant.
According to the virial theorem, one expects that the
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gravitational binding energy of the star is about twice
the kinetic (i.e., thermal) energy, so that for a proton

G Mmp

R
∼ kBT .

Combining these relations, for the pulsation period we
obtain

P ∼ R

cs
∼ R

√
mp√

kBT
∼ R3/2

√
G M

∝ ρ−1/2 , (2.26)

where ρ is the mean density of the star. This is a remark-
able result – the pulsation period depends only on the
mean density. Furthermore, the stellar luminosity is re-
lated to its mass by approximately L ∝ M3. If we now
consider stars of equal effective temperature Teff (where
L ∝ R2T 4

eff), we find that

P ∝ R3/2

√
M

∝ L7/12 , (2.27)

which is the relation between period and luminosity that
we were aiming for.

One finds that a well-defined period–luminosity
relation exists for three types of pulsating stars:

• δ Cepheid stars (classical Cepheids). These are young
stars found in the disk population (close to the Gal-
actic plane) and in young star clusters. Owing to
their position in or near the disk, extinction always
plays a role in the determination of their lumi-
nosity. To minimize the effect of extinction it is
particularly useful to look at the period–luminosity
relation in the near-IR (e.g., in the K-band at
λ ∼ 2.4 μm). Furthermore, the scatter around the
period–luminosity relation is smaller for longer
wavelengths of the applied filter, as is also shown
in Fig. 2.9. The period–luminosity relation is also
steeper for longer wavelengths, resulting in a more
accurate determination of the absolute magnitude.

• W Virginis stars, also called Population II Cepheids
(we will explain the term of stellar populations in
Sect. 2.3.2). These are low-mass, metal-poor stars
located in the halo of the Galaxy, in globular clusters,
and near the Galactic center.

• RR Lyrae stars. These are likewise Population II stars
and thus metal-poor. They are found in the halo, in
globular clusters, and in the Galactic bulge. Their ab-
solute magnitudes are confined to a narrow interval,
MV ∈ [0.5, 1.0], with a mean value of about 0.6. This

obviously makes them very good distance indicators.
More precise predictions of their magnitudes are pos-
sible with the following dependence on metallicity
and period:

〈MK 〉 = − (2.0±0.3) log(P/1d)

+ (0.06±0.04)[Fe/H]−0.7±0.1 .

(2.28)

Metallicity. In the last equation, the metallicity of a star
was introduced, which needs to be defined. In astro-
physics, all chemical elements heavier than helium are
called metals. These elements, with the exception of
some traces of lithium, were not produced in the early
Universe but rather later in the interior of stars. The
metallicity is thus also a measure of the chemical evolu-
tion and enrichment of matter in a star or gas cloud. For
an element X, the metallicity index of a star is defined as

[X/H] ≡ log

(
n(X)

n(H)

)
∗
− log

(
n(X)

n(H)

)
�

, (2.29)

thus it is the logarithm of the ratio of the fraction of X
relative to hydrogen in the star and in the Sun, where
n is the number density of the species considered. For
example, [Fe/H] = −1 means that iron has only a tenth
of its Solar abundance. The metallicity Z is the total
mass fraction of all elements heavier than helium; the
Sun has Z ≈ 0.02, meaning that about 98% of the Solar
mass are contributed by hydrogen and helium.

The period–luminosity relations are not only of sig-
nificant importance for distance determination within
our Galaxy. They also play an important role in ex-
tragalactic astronomy, since by far the most luminous
of the three types of pulsating stars listed above, the
Cepheids, are also found and observed in other gal-
axies; they therefore enable us to directly determine
the distances of other galaxies, which is essential for
measuring the Hubble constant. These aspects will be
discussed in detail in Sect. 3.6.

2.3 The Structure of the Galaxy

Roughly speaking, the Galaxy consists of the disk, the
central bulge, and the Galactic halo – a roughly spherical
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Fig. 2.9. Period–luminosity relation for Gal-
actic Cepheids, measured in three different
filters bands (B, V, and I, from top to
bottom). The absolute magnitudes were
corrected for extinction by using colors.
The period is given in days. Open and
solid circles denote data for those Cepheids
for which distances were estimated us-
ing different methods; the three objects
marked by triangles have a variable pe-
riod and are discarded in the derivation
of the period–luminosity relation. The lat-
ter is indicated by the solid line, with its
parametrisation specified in the plots. The
broken lines indicate the uncertainty range
of the period–luminosity relation. The slope
of the period–luminosity relation increases
if one moves to redder filters

distribution of stars and globular clusters that surrounds
the disk. The disk, whose stars form the visible band
of the Milky Way, contains spiral arms similar to those
observed in other galaxies. The Sun, together with its
planets, orbits around the Galactic center on an approx-
imately circular orbit. The distance R0 to the Galactic
center is not very well known, as we will discuss later.
To have a reference value, the International Astronom-

ical Union (IAU) officially defined the value of R0 in
1985,

R0 = 8.5 kpc official value, IAU 1985 . (2.30)

More recent examinations have, however, found that
the real value is slightly smaller, R0 ≈ 8.0 kpc. The di-
ameter of the disk of stars, gas, and dust is ∼ 40 kpc.
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A schematic depiction of our Galaxy is shown in
Fig. 1.3. Its most important structural parameters are
listed in Table 2.1.

2.3.1 The Galactic Disk: Distribution of Stars

By measuring the distances of stars in the Solar neigh-
borhood one can determine the three-dimensional stellar
distribution. From these investigations, one finds that
there are different stellar components, as we will discuss
below. For each of them, the number density in the direc-
tion perpendicular to the Galactic disk is approximately
described by an exponential law,

n(z) ∝ exp

(
−|z|

h

)
, (2.31)

where the scale-height h specifies the thickness of the
respective component. One finds that h varies between
different populations of stars, motivating the definition
of different components of the Galactic disk. In princi-
ple, three components need to be distinguished: (1) The
young thin disk contains the largest fraction of gas and
dust in the Galaxy, and in this region star formation is
still taking place today. The youngest stars are found in
the young thin disk, which has a scale-height of about
hytd ∼ 100 pc. (2) The old thin disk is thicker and has
a scale-height of about hotd ∼ 325 pc. (3) The thick disk
has a scale-height of hthick ∼ 1.5 kpc. The thick disk
contributes only about 2% to the total mass density in the
Galactic plane at z = 0. This separation into three disk
components is rather coarse and can be further refined
if one uses a finer classification of stellar populations.

Table 2.1. Parameters and characteristic values for the compo-
nents of the Milky Way. The scale-height denotes the distance
from the Galactic plane at which the density has decreased

to 1/e of its central value. σz is the velocity dispersion in the
direction perpendicular to the disk

Neutral Thin Thick Stellar Dm
gas disk disk bulge halo halo

M (1010M�) 0.5 6 0.2 to 0.4 1 0.1 55

LB (1010L�) – 1.8 0.02 0.3 0.1 0

M/LB (M�/L�) – 3 – 3 ∼ 1 –

diam. (kpc) 50 50 50 2 100 > 200

form e−hz/z e−hz/z e−hz/z bar? r−3.5 (a2 +r2)−1

scale-height (kpc) 0.13 0.325 1.5 0.4 3 2.8

σz (km s−1) 7 20 40 120 100 –

[Fe/H] > 0.1 −0.5 to +0.3 −1.6 to −0.4 −1 to +1 −4.5 to −0.5 –

Molecular gas, out of which new stars are born, has
the smallest scale-height, hmol ∼ 65 pc, followed by the
atomic gas. This can be clearly seen by comparing
the distributions of atomic and molecular hydrogen in
Fig. 1.5. The younger a stellar population is, the smaller
its scale-height. Another characterization of the differ-
ent stellar populations can be made with respect to the
velocity dispersion of the stars, i.e., the amplitude of
the components of their random motions. As a first
approximation, the stars in the disk move around the
Galactic center on circular orbits. However, these orbits
are not perfectly circular: besides the orbital velocity
(which is about 220 km/s in the Solar vicinity), they
have additional random velocity components.

The formal definition of the components of the veloc-
ity dispersion is as follows: let f(v)d3v be the number
density of stars (of a given population) at a fixed loca-
tion, with velocities in a volume element d3v around v

in the vector space of velocities. If we use Cartesian co-
ordinates, for example v = (v1, v2, v3), then f(v)d3v is
the number of stars with the i-th velocity component
in the interval [vi, vi +dvi], and d3v = dv1dv2dv3. The
mean velocity 〈v〉 of the population then follows from
this distribution via

〈v〉 = n−1
∫
R 3

d3v f(v) v , where n =
∫
R 3

d3v f(v)

(2.32)

denotes the total number density of stars in the pop-
ulation. The velocity dispersion σ then describes the
mean squared deviations of the velocities from 〈v〉. For
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a component i of the velocity vector, the dispersion σi

is defined as

σ2
i = 〈

(vi −〈vi〉)2〉 = 〈
v2

i −〈vi〉2〉
= n−1

∫
R 3

d3v f(v)
(
v2

i −〈vi〉2) . (2.33)

The larger σi is, the broader the distribution of the
stochastic motions. We note that the same concept ap-
plies to the velocity distribution of molecules in a gas.
The mean velocity 〈v〉 at each point defines the bulk
velocity of the gas, e.g., the wind speed in the atmo-
sphere, whereas the velocity dispersion is caused by
thermal motion of the molecules and is determined by
the temperature of the gas.

The random motion of the stars in the direction
perpendicular to the disk is the reason for the finite
thickness of the population; it is similar to a thermal
distribution. Accordingly, it has the effect of a pressure,
the so-called dynamical pressure of the distribution.
This pressure determines the scale-height of the dis-
tribution, which corresponds to the law of atmospheres.
The larger the dynamical pressure, i.e., the larger the
velocity dispersion σz perpendicular to the disk, the
larger the scale-height h will be. The analysis of stars
in the Solar neighborhood yields σz ∼ 16 km/s for stars
younger than ∼ 3 Gyr, corresponding to a scale-height
of h ∼ 250 pc, whereas stars older than ∼ 6 Gyr have
a scale-height of ∼ 350 pc and a velocity dispersion of
σz ∼ 25 km/s.

The density distribution of the total star population,
obtained from counts and distance determinations of
stars, is to a good approximation described by

n(R, z) = n0
(
e−|z|/hthin +0.02e−|z|/hthick

)
e−R/h R ;

(2.34)

here, R and z are the cylinder coordinates introduced
above (see Sect. 2.1), with the origin at the Galactic
center, and hthin ≈ hotd ≈ 325 pc is the scale-height of
the thin disk. The distribution in the radial direction can
also be well described by an exponential law, where
hR ≈ 3.5 kpc denotes the scale-length of the Galactic
disk. The normalization of the distribution is determined
by the density n ≈ 0.2 stars/pc3 in the Solar neighbor-
hood, for stars in the range of absolute magnitudes of
4.5 ≤ MV ≤ 9.5. The distribution described by (2.34) is

not smooth at z = 0; it has a kink at this point and it is
therefore unphysical. To get a smooth distribution which
follows the exponential law for large z and is smooth in
the plane of the disk, the distribution is slightly modi-
fied. As an example, for the luminosity density of the
old thin disk (that is proportional to the number density
of the stars), we can write:

L(R, z) = L0e−R/h R

cosh2(z/hz)
, (2.35)

with hz = 2hthin and L0 ≈ 0.05L�/pc3. The Sun is
a member of the young thin disk and is located above
the plane of the disk, at z = 30 pc.

2.3.2 The Galactic Disk:
Chemical Composition and Age

Stellar Populations. The chemical composition of stars
in the thin and the thick disks differs: we observe the
clear tendency that stars in the thin disk have a higher
metallicity than those in the thick disk. In contrast, the
metallicity of stars in the Galactic halo and in the bulge
is smaller. To paraphrase these trends, one distinguishes
between stars of Population I (Pop I) which have a Solar-
like metallicity (Z ∼ 0.02) and are mainly located in
the thin disk, and stars of Population II (Pop II) that
are metal-poor (Z ∼ 0.001) and predominantly found
in the thick disk, in the halo, and in the bulge. In reality,
stars cover a wide range in Z, and the figures above
are only characteristic values. For stellar populations
a somewhat finer separation was also introduced, such
as “extreme Population I”, “intermediate Population II”,
and so on. The populations also differ in age (stars of
Pop I are younger than those of Pop II), in scale-height
(as mentioned above), and in the velocity dispersion
perpendicular to the disk (σz is larger for Pop II stars
than for Pop I stars).

We shall now attempt to understand the origin of
these different metallicities and their relation to the
scale-height and to age. We start with a brief discus-
sion of the phenomenon that is the main reason for the
metal enrichment of the interstellar medium.

Metallicity and Supernovae. Supernovae (SNe) are
explosive events. Within a few days, a SN can reach
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a luminosity of 109 L�, which is a considerable fraction
of the total luminosity of a galaxy; after that the lumi-
nosity decreases again with a time-scale of weeks. In the
explosion, a star is disrupted and (most of) the matter of
the star is driven into the interstellar medium, enriching
it with metals that were produced in the course of stellar
evolution or in the process of the supernova explosion.

Classification of Supernovae. Depending on their
spectral properties, SNe are divided into several classes.
SNe of Type I do not show any Balmer lines of hydro-
gen in their spectrum, in contrast to those of Type II.
A further subdivision of Type I SNe is based on spec-
tral properties: SNe Ia show strong emission of SiII λ

6150 Å whereas no SiII at all is visible in spectra of
Type Ib,c. Our current understanding of the supernova
phenomenon differs from this spectral classification.5

Following various observational results and also the-
oretical analyses, we are confident today that SNe Ia
are a phenomenon which is intrinsically different from
the other supernova types. For this interpretation, it is
of particular importance that SNe Ia are found in all
types of galaxies, whereas we observe SNe II and SNe
Ib,c only in spiral and irregular galaxies, and here only
in those regions in which blue stars predominate. As
we will see in Chap. 3, the stellar population in ellip-
tical galaxies consists almost exclusively of old stars,
while spirals also contain young stars. From this ob-
servational fact it is concluded that the phenomenon of
SNe II and SNe Ib,c is linked to a young stellar popula-
tion, whereas SNe Ia occur in older stellar populations.
We shall discuss the two classes of supernovae next.

Core-Collapse Supernovae. SNe II and SNe Ib,c are
the final stages in the evolution of massive (� 8M�)
stars. Inside these stars, ever heavier elements are gener-
ated by fusion: once all the hydrogen is used up, helium
will be burned, then carbon, oxygen, etc. This chain
comes to an end when the iron nucleus is reached, the
atomic nucleus with the highest binding energy per nu-

5This notation scheme (Type Ia, Type II, and so on) is characteristic for
phenomena that one wishes to classify upon discovery, but for which
no physical interpretation is available at that time. Other examples are
the spectral classes of stars, which are not named in alphabetical order
according to their mass on the main sequence, or the division of Seyfert
galaxies into Type 1 and Type 2. Once such a notation is established,
it often becomes permanent even if a later physical understanding of
the phenomenon suggests a more meaningful classification.

cleon. After this no more energy can be gained from
fusion to heavier elements so that the pressure, which
is normally balancing the gravitational force in the star,
can no longer be maintained. The star will thus collapse
under its own gravity. This gravitational collapse will
proceed until the innermost region reaches a density
about three times the density of an atomic nucleus. At
this point the so-called rebounce occurs: a shock wave
runs towards the surface, thereby heating the infalling
material, and the star explodes. In the center, a compact
object probably remains – a neutron star or, possibly,
depending on the mass of the iron core, a black hole.
Such neutron stars are visible as pulsars6 at the location
of some historically observed SNe, the most famous of
which is the Crab pulsar which has been identified with
a supernovae explosion seen by Chinese astronomers in
1054. Presumably all neutron stars have been formed in
such core-collapse supernovae.

The major fraction of the binding energy released
in the formation of the compact object is emitted in
the form of neutrinos: about 3×1053 erg. Underground
neutrino detectors were able to trace about 10 neutrinos
originating from SN 1987A in the Large Magellanic
Cloud. Due to the high density inside the star after
the collapse, even neutrinos, despite their very small
cross-section, are absorbed and scattered, so that part
of their outward-directed momentum contributes to the
explosion of the stellar envelope. This shell expands at
v ∼ 10 000 km/s, corresponding to a kinetic energy of
Ekin ∼ 1051 erg. Of this, only about 1049 erg is converted
into photons in the hot envelope and then emitted – the
energy of a SN that is visible in photons is thus only
a small fraction of the total energy produced.

Owing to the various stages of nuclear fusion in the
progenitor star, the chemical elements are arranged in
shells: the light elements (H, He) in the outer shells, and
the heavier elements (C, O, Ne, Mg, Si, Ar, Ca, Fe, Ni) in
the inner ones – see Fig. 2.10. The explosion ejects them
into the interstellar medium which is thus chemically
enriched. It is important to note that mainly nuclei with
an even number of protons and neutrons are formed.
This is a consequence of the nuclear reaction chains
6Pulsars are sources which show a very regular periodic radiation,
most often seen at radio frequencies. Their periods lie in the range
from ∼ 10−3 s (millisecond pulsars) to ∼ 5 s. Their pulse period is
identified as the rotational period of the neutron star – an object with
about one Solar mass and a radius of ∼ 10 km. The matter density in
neutron stars is about the same as that in atomic nuclei.
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Fig. 2.10. Chemical shell structure of a mas-
sive star at the end of its life. The elements
that have been formed in the various stages
of the nuclear burning are ordered in a struc-
ture resembling that of an onion. This is the
initial condition for a supernova explosion

involved, where successive nuclei in this chain are ob-
tained by adding an α-particle (or 4He-nucleus), i.e.,
two protons and two neutrons. Such elements are there-
fore called α-elements. The dominance of α-elements
in the chemical abundance of the interstellar medium
is thus a clear indication of nuclear fusion occurring in
the He-rich zones of stars where the hydrogen has been
burnt.

Supernovae Type Ia. SNe Ia are most likely the ex-
plosions of white dwarfs (WDs). These compact stars
which form the final evolutionary stages of less mas-
sive stars no longer maintain their internal pressure by
nuclear fusion. Rather, they are stabilized by the degen-
eracy pressure of the electrons – a quantum mechanical
phenomenon. Such a white dwarf can only be stable
if its mass does not exceed a limiting mass, the Chan-
drasekhar mass; it has a value of MCh ≈ 1.44M�. For
M > MCh, the degeneracy pressure can no longer bal-
ance the gravitational force. If matter falls onto a WD
with mass below MCh, as may happen by accretion
in close binary systems, its mass will slowly increase
and approach the limiting mass. At about M ≈ 1.3M�,
carbon burning will ignite in its interior, transforming
about half of the star into iron-group elements, i.e.,
iron, cobalt, and nickel. The resulting explosion of the
star will enrich the ISM with ∼ 0.6M� of Fe, while
the WD itself will be torn apart completely, leaving no
remnant star.

Since the initial conditions are probably very homo-
geneous for the class of SNe Ia (defined by the limiting
mass prior to the trigger of the explosion), they are good
candidates for standard candles: all SNe Ia have approx-
imately the same luminosity. As we will discuss later
(see Sect. 8.3.1), this is not really the case, but neverthe-
less SNe Ia play an important role in the cosmological

distance determination, and thus in the determination of
cosmological parameters.

This interpretation of the different types of SNe ex-
plains why one finds core-collapse SNe only in galaxies
in which star formation occurs. They are the final stages
of massive, i.e., young, stars which have a lifetime of
not more than 2×107 yr. By contrast, SNe Ia can occur
in all types of galaxies.

In addition to SNe, metal enrichment of the interstel-
lar medium (ISM) also takes place in other stages of
stellar evolution, by stellar winds or during phases in
which stars eject part of their envelope which is then
visible, e.g., as a planetary nebula. If the matter in the
star has been mixed by convection prior to such a phase,
so that the metals newly formed by nuclear fusion in the
interior have been transported towards the surface of the
star, these metals will then be released into the ISM.

Age–Metallicity Relation. Assuming that at the begin-
ning of its evolution the Milky Way had a chemical
composition with only low metal content, the metal-
licity should be strongly related to the age of a stellar
population. With each new generation of stars, more
metals are produced and ejected into the ISM, partially
by stellar winds, but mainly by SN explosions. Stars that
are formed later should therefore have a higher metal
content than those that were formed in the early phase
of the Galaxy. One would therefore expect that a re-
lation should exists between the age of a star and its
metallicity.

For instance, under this assumption [Fe/H] can be
used as an age indicator for a stellar population, with the
iron predominantly being produced and ejected in SNe
of type Ia. Therefore, newly formed stars have a higher
fraction of iron when they are born than their prede-
cessors, and the youngest stars should have the highest
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iron abundance. Indeed one finds [Fe/H] = −4.5 for
extremely old stars (i.e., 3×10−5 of the Solar iron abun-
dance), whereas very young stars have [Fe/H] = 1, so
their metallicity can significantly exceed that of the Sun.

However, this age–metallicity relation is not very
tight. On the one hand, SNe Ia occur only � 109 years
after the formation of a stellar population. The exact
time-span is not known because even if one accepts the
scenario for SN Ia described above, it is unclear in what
form and in what systems the accretion of material onto
the white dwarf takes place and how long it typically
takes until the limiting mass is reached. On the other
hand, the mixing of the SN ejecta in the ISM occurs only
locally, so that large inhomogeneities of the [Fe/H] ra-
tio may be present in the ISM, and thus even for stars
of the same age. An alternative measure for metallic-
ity is [O/H], because oxygen, which is an α-element,
is produced and ejected mainly in supernova explo-
sions of massive stars. These begin only ∼ 107 yr after
the formation of a stellar population, which is virtually
instantaneous.

Characteristic values for the metallicity are −0.5
� [Fe/H]� 0.3 in the thin disk, while for the thick disk
−1.0� [Fe/H]�−0.4 is typical. From this, one can
deduce that stars in the thin disk must be significantly
younger on average than those in the thick disk. This
result can now be interpreted using the age–metallicity
relation. Either star formation has started earlier, or
ceased earlier, in the thick disk than in the thin disk,
or stars that originally belonged to the thin disk have
migrated into the thick disk. The second alternative is
favored for various reasons. It would be hard to under-
stand why molecular gas, out of which stars are formed,
was much more broadly distributed in earlier times than
it is today, where we find it well concentrated near the
Galactic plane. In addition, the widening of an initially
narrow stellar distribution in time is also expected. The
matter distribution in the disk is not homogeneous and,
along their orbits around the Galactic center, stars expe-
rience this inhomogeneous gravitational field caused by
other stars, spiral arms, and massive molecular clouds.
Stellar orbits are perturbed by such fluctuations, i.e.,
they gain a random velocity component perpendicular
to the disk from local inhomogeneities of the gravita-
tional field. In other words, the velocity dispersion σz of
a stellar population grows in time, and the scale-height
of a population increases. In contrast to stars, the gas

keeps its narrow distribution around the Galactic plane
due to internal friction.

This interpretation is, however, not unambiguous.
Another scenario for the formation of the thick disk
is also possible, where the stars of the thick disk were
formed outside the Milky Way and only became con-
stituents of the disk later, through accretion of satellite
galaxies. This model is supported, among other reasons,
by the fact that the rotational velocity of the thick disk
around the Galactic center is smaller by ∼ 50 km/s than
that of the thin disk. In other spirals, in which a thick
disk component was found and kinematically analyzed,
the discrepancy between the rotation curves of the thick
and thin disks is sometimes even stronger. In one case,
the thick disk has been observed to rotate around the
center of the galaxy in the opposite direction to the gas
disk. In such a case, the aforementioned model of the
evolution of the thick disk by kinematic heating of stars
would definitely not apply.

Mass-to-Light Ratio. The total stellar mass of the thin
disk is ∼ 6×1010 M�, to which ∼ 0.5×1010 M� in the
form of dust and gas has to be added. The luminosity of
the stars in the thin disk is L B ≈ 1.8×1010 L�. Together,
this yields a mass-to-light ratio of

M

L B
≈ 3

M�
L�

in thin disk . (2.36)

The M/L ratio in the thick disk is higher. For this com-
ponent, one has M ∼ 3×109 M� and L B ≈ 2×108 L�,
so that M/L B ∼ 15 in Solar units. The thick disk thus
does not play any significant role for the total mass
budget of the Galactic disk, and even less for its total
luminosity. On the other hand, the thick disk is invalu-
able for the diagnosis of the dynamical evolution of the
disk. If the Milky Way were to be observed from the
outside, one would find a M/L value for the disk of
about 4 in Solar units; this is a characteristic value for
spiral galaxies.

2.3.3 The Galactic Disk: Dust and Gas

The spiral structure of the Milky Way and other spiral
galaxies is delineated by very young objects like O- and
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B-stars and HII regions.7 This is the reason why spi-
ral arms appear blue. Obviously, star formation in our
Milky Way takes place mainly in the spiral arms. Here,
the molecular clouds – gas clouds which are sufficiently
dense and cool for molecules to form in large abun-
dance – contract under their own gravity and form new
stars. The spiral arms are much less prominent in red
light. Emission in the red is dominated by an older stel-
lar population, and these old stars have had time to move
away from the spiral arms. The Sun is located close to,
but not in, a spiral arm – the so-called Orion arm.

Observing the gas in the Galaxy is made possible
mainly by the 21-cm line emission of HI (neutral atomic
hydrogen) and by the emission of CO, the second-most
abundant molecule after H2 (molecular hydrogen). H2

is a symmetric molecule and thus has no electric dipole
moment, which is the reason why it does not radiate
strongly. In most cases it is assumed that the ratio of
CO to H2 is a universal constant (called the “X-factor”).
Under this assumption, the distribution of CO can be
converted into that of the molecular gas. The Milky Way
is optically thin at 21 cm, i.e., 21-cm radiation is not
absorbed along its path from the source to the observer.
With radio-astronomical methods it is thus possible to
observe atomic gas throughout the entire Galaxy.

To examine the distribution of dust, two options are
available. First, dust is detected by the extinction it
causes. This effect can be analyzed quantitatively, for in-
stance by star counts or by investigating the reddening of
stars (an example of this can be seen in Fig. 2.7). Second,
dust emits thermal radiation observable in the FIR part
of the spectrum, which was mapped by several satellites
such as IRAS and COBE. By combining the sky maps of
these two satellites at different frequencies the Galactic
distribution of dust was determined. The dust tempera-
ture varies in a relatively narrow range between ∼ 17 K
and ∼ 21 K, but even across this small range, the dust
emission varies, for fixed column density, by a factor
∼ 5 at a wavelength of 100 μm. Therefore, one needs
to combine maps at different frequencies in order to de-
termine column densities and temperatures. In addition,
the zodiacal light caused by the reflection of solar radia-
tion by dust inside our Solar system has to be subtracted

7HII regions are nearly spherical regions of fully ionized hydrogen
(thus the name HII region) surrounding a young hot star which pho-
toionizes the gas. They emit strong emission lines of which the Balmer
lines of hydrogen are strongest.

before the Galactic FIR emission can be analyzed. This
is possible with multifrequency data because of the dif-
ferent spectral shapes. The resulting distribution of dust
is displayed in Fig. 2.11. It shows the concentration of
dust around the Galactic plane, as well as large-scale
anisotropies at high Galactic latitudes. The dust map
shown here is routinely used for extinction correction
when observing extragalactic sources.

Besides a strong concentration towards the Galac-
tic plane, gas and dust are preferentially found in spiral
arms where they serve as raw material for star formation.
Molecular hydrogen (H2) and dust are generally found
at 3 kpc� R� 8 kpc, within |z|� 90 pc of both sides of
the Galactic plane. In contrast, the distribution of atomic
hydrogen (HI) is observed out to much larger distances
from the Galactic center (R � 25 kpc), with a scale-
height of ∼ 160 pc inside the Solar orbit, R � R0. At
larger distances from the Galactic center, R � 12 kpc,
the scale-height increases substantially to ∼ 1 kpc. The
gaseous disk is warped at these large radii though the
origin of this warp is unclear. For example, it may
be caused by the gravitational field of the Magellanic
Clouds. The total mass in the two components of hydro-
gen is about M(HI) ≈ 4×109 M� and M(H2) ≈ 109 M�,
respectively, i.e., the gas mass in our Galaxy is less than
∼ 10% of the stellar mass. The density of the gas in the
Solar neighborhood is about ρ(gas) ∼ 0.04M�/pc3.

2.3.4 Cosmic Rays

The Magnetic Field of the Galaxy. Like many other
cosmic objects, the Milky Way has a magnetic field. The
properties of this field can be analyzed using a variety
of methods and we list some of them in the following.

• Polarization of stellar light. The light of distant stars
is partially polarized, with the degree of polarization
being strongly related to the extinction, or reddening,
of the star. This hints at the polarization being linked
to the dust causing the extinction. The light scat-
tered by dust particles is partially linearly polarized,
with the direction of polarization depending on the
alignment of the dust grains. If their orientation were
random, the superposition of the scattered radiation
from different dust particles would add up to a van-
ishing net polarization. However, a net polarization
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Fig. 2.11. Distribution of dust in the Galaxy, derived from
a combination of IRAS and COBE sky maps. The northern
Galactic sky in Galactic coordinates is displayed on the left,
the southern on the right. We can clearly see the concentra-

tion of dust towards the Galactic plane, as well as regions
with a very low column density of dust; these regions in the
sky are particularly well suited for very deep extragalactic
observations

is measured, so the orientation of dust particles can-
not be random, rather it must be coherent on large
scales. Such a coherent alignment is provided by
a large-scale magnetic field, whereby the orientation
of dust particles, measurable from the polarization
direction, indicates the (projected) direction of the
magnetic field.

• The Zeeman effect. The energy levels in an atom
change if the atom is placed in a magnetic field. Of
particular importance in the present context is the fact
that the 21-cm transition line of neutral hydrogen is
split in a magnetic field. Because the amplitude of
the line split is proportional to the strength of the
magnetic field, the field strength can be determined
from observations of this Zeeman effect.

• Synchrotron radiation. When relativistic electrons
move in a magnetic field they are subject to the
Lorentz force. The corresponding acceleration is per-
pendicular both to the velocity vector of the particles
and to the magnetic field vector. As a result, the elec-
trons follow a helical (i.e., corkscrew) track, which is
a superposition of circular orbits perpendicular to the
field lines and a linear motion along the field. Since
accelerated charges emit electromagnetic radiation,
this helical movement is the source of the so-called
synchrotron radiation (which will be discussed in

more detail in Sect. 5.1.2). This radiation, which is
observable at radio frequencies, is linearly polarized,
with the direction of the polarization depending on
the direction of the magnetic field.

• Faraday rotation. If polarized radiation passes
through a magnetized plasma, the direction of the
polarization rotates. The rotation angle depends
quadratically on the wavelength of the radiation,

Δθ = RM λ2 . (2.37)

The rotation measure RM is the integral along the
line-of-sight towards the source over the electron
density and the component B‖ of the magnetic field
in direction of the line-of-sight,

RM = 81
rad

cm2

D∫
0

d�

pc

ne

cm−3

B‖
G

. (2.38)

The dependence of the rotation angle (2.37) on λ al-
lows us to determine the rotation measure RM, and
thus to estimate the product of electron density and
magnetic field. If the former is known, one imme-
diately gets information about B. By measuring the
RM for sources in different directions and at differ-
ent distances the magnetic field of the Galaxy can be
mapped.
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From applying the methods discussed above, we know
that a magnetic field exists in the disk of our Milky Way.
This field has a strength of about 4×10−6 G and mainly
follows the spiral arms.

Cosmic Rays. We obtain most of the information about
our Universe from the electromagnetic radiation that
we observe. However, we receive an additional radia-
tion component, the energetic cosmic rays. They consist
primarily of electrically charged particles, mainly elec-
trons and nuclei. In addition to the particle radiation that
is produced in energetic processes at the Solar surface,
a much more energetic cosmic ray component exists that
can only originate in sources outside the Solar system.

The energy spectrum of the cosmic rays is, to
a good approximation, a power law: the flux of par-
ticles with energy larger than E can be written as
S(> E) ∝ E−q , with q ≈ 1.7. However, the slope of
the spectrum changes slightly, but significantly, at some
energy scales: at E ∼ 1015 eV the spectrum becomes
steeper, and at E � 1018 eV it flattens again.8 Measure-
ments of the spectrum at these high energies are rather
uncertain, however, because of the strongly decreasing
flux with increasing energy. This implies that only very
few particles are detected.

Cosmic Ray Acceleration and Confinement. To ac-
celerate particles to such high energies, highly energetic
processes are necessary. For energies below 1015 eV,
very convincing arguments suggest SN remnants as
the sites of the acceleration. The SN explosion drives
a shock front9 into the ISM with an initial velocity of
∼ 10 000 km/s. Plasma processes in a shock front can
accelerate some particles to very high energies. The
theory of this diffuse shock acceleration predicts that

8These energies should be compared with those reached in par-
ticle accelerators: LEP at CERN reached ∼ 100 GeV = 1011 eV.
Hence, cosmic accelerators are much more efficient than man-made
machines.
9Shock fronts are surfaces in a gas flow where the parameters of
state for the gas, such as pressure, density, and temperature, change
discontinuously. The standard example for a shock front is the bang in
an explosion, where a spherical shock wave propagates outwards from
the point of explosion. Another example is the sonic boom caused, for
example, by airplanes that move at a speed exceeding the velocity of
sound. Such shock fronts are solutions of the hydrodynamic equations.
They occur frequently in astrophysics, e.g., in explosion phenomena
such as supernovae or in rapid (i.e., supersonic) flows such as those
we will discuss in the context of AGNs.

the resulting energy spectrum of the particles follows
a power law, the slope of which depends only on the
strength of the shock (i.e., the ratio of the densities on
both sides of the shock front). This power law agrees
very well with the slope of the observed cosmic ray spec-
trum, if additional propagation processes in the Milky
Way are taken into account. The presence of very en-
ergetic electrons in SN remnants is observed directly
by their synchrotron emission, so that the slope of the
produced spectrum is also directly observable.

Accelerated particles then propagate through the
Galaxy where, due to the magnetic field, they move
along complicated helical tracks. Therefore, the direc-
tion from which a particle arrives at Earth cannot be
identified with the direction to its source of origin.
The magnetic field is also the reason why particles do
not leave the Milky Way along a straight path, but in-
stead are stored for a long time (∼ 107 yr) before they
eventually diffuse out, an effect also called confinement.

The sources of the particles with energy between
∼ 1015 eV and ∼ 1018 eV are likewise presumed to be
located inside our Milky Way, because the magnetic
field is sufficiently strong to confine them in the Gal-
axy. However, SN remnants are not likely sources for
particles at these energies; in fact, the origin of these
rays is largely unknown. Particles with energies larger
than ∼ 1018 eV are probably of extragalactic origin. The
radius of the helical tracks in the magnetic field of the
Galaxy, i.e., their Larmor radius, is larger than the ra-
dius of the Milky Way itself, so they cannot be confined.
Their origin is also unknown, but AGNs are the most
probable source of these particles. Finally, one of the
largest puzzles of high-energy astrophysics is the ori-
gin of cosmic rays with E � 1019 eV. The energy of
these particles is so large that they are able to inter-
act with the cosmic microwave background to produce
pions and other particles, losing much of their energy
in this process. These particles cannot propagate much
further than ∼ 10 Mpc through the Universe before they
lose most of their energy. This implies that their accel-
eration sites should be located in the close vicinity of
the Milky Way. Since the curvature of the orbits of such
highly energetic particles is very small, it should, in
principle, be possible to identify their origin: there are
not many AGNs within 10 Mpc that are promising can-
didates for the origin of these ultra-high-energy cosmic
rays. However, the observed number of these particles



54

2. The Milky Way as a Galaxy

is so small that no reliable information on these sources
has thus far been obtained.

Energy Density. It is interesting to realize that the en-
ergy densities of cosmic rays, the magnetic field, the
turbulent energy of the ISM, and the electromagnetic
radiation of the stars are about the same – as if an equi-
librium between these different components has been
established. Since these components interact with each
other – e.g., the turbulent motions of the ISM can am-
plify the magnetic field, and vice versa, the magnetic
field affects the velocity of the ISM and of cosmic rays –
it is not improbable that these interaction processes can
establish an equipartition of the energy densities.

Gamma Radiation from the Milky Way. The Milky
Way emits γ -radiation, as can be seen in Fig. 1.5. There
is diffuse γ -ray emission which can be traced back to
the cosmic rays in the Galaxy. When these energetic
particles collide with nuclei in the interstellar medium,
radiation is released. This gives rise to a continuum ra-
diation which closely follows a power-law spectrum,
such that the observed flux Sν is ∝ ν−α, with α ∼ 2. The
quantitative analysis of the distribution of this emis-
sion provides the most important information about the
spatial distribution of cosmic rays in the Milky Way.

Gamma-Ray Lines. In addition to the continuum ra-
diation, one also observes line radiation in γ -rays, at
energies below ∼ 10 MeV. The first detected and most
prominent line has an energy of 1.809 MeV and corre-
sponds to a radioactive decay of the Al26 nucleus. The
spatial distribution of this emission is strongly concen-
trated towards the Galactic disk and thus follows the
young stellar population in the Milky Way. Since the
lifetime of the Al26 nucleus is short (∼ 106 yr), it must
be produced near the emission site, which then implies
that it is produced by the young stellar population. It
is formed in hot stars and released to the interstellar
medium either through stellar winds or core-collapse
supernovae. Gamma lines from other radioactive nuclei
have been detected as well.

Annihilation Radiation from the Galaxy. Further-
more, line radiation with an energy of 511 keV has been
detected in the Galaxy. This line is produced when an
electron and a positron annihilate into two photons, each

with an energy corresponding to the rest-mass energy of
an electron, i.e., 511 keV.10 This annihilation radiation
was identified first in the 1970s. With the Integral satel-
lite, its emission morphology has been mapped with an
angular resolution of ∼ 3◦. The 511 keV line emission
is detected both from the Galactic disk and the bulge.
The angular resolution is not sufficient to tell whether
the annihilation line traces the young stellar popula-
tion (i.e., the thin disk) or the older population in the
thick disk. However, one can compare the distribution
of the annihilation radiation with that of Al26 and other
radioactive species. In about 85% of all decays Al26

emits a positron. If this positron annihilates close to its
production site one can predict the expected annihila-
tion radiation from the distribution of the 1.809 MeV
line. In fact, the intensity and angular distribution of
the 511 keV line from the disk is compatible with this
scenario for the generation of positrons.

The origin of the annihilation radiation from the
bulge, which has a luminosity larger than that from
the disk by a factor ∼ 5, is unknown. One needs to find
a plausible source for the production of positrons in
the bulge. There is no unique answer to this problem at
present, but Type Ia supernovae and energetic processes
near low-mass X-ray binaries are prime candidates for
this source.

2.3.5 The Galactic Bulge

The Galactic bulge is the central thickening of our Gal-
axy. Figure 1.2 shows another spiral galaxy from its
side, with its bulge clearly visible. The characteristic
scale-length of the bulge is ∼ 1 kpc. Owing to the strong
extinction in the disk, the bulge is best observed in the
IR, for instance with the IRAS and COBE satellites.
The extinction to the Galactic Center in the visual is
AV ∼ 28 mag. However, some lines-of-sight close to the
Galactic center exist where AV is significantly smaller,
so that observations in optical and near IR light are pos-
sible, e.g., in Baade’s window, located about 4◦ below
the Galactic center at � ∼ 1◦, for which AV ∼ 2 mag
(also see Sect. 2.6).

From the observations by COBE, and also from Gal-
actic microlensing experiments (see Sect. 2.5), we know
10 In addition to the two-photon annihilation, there is also an annihila-
tion channel in which three photons are produced; the corresponding
radiation forms a continuum spectrum, i.e., no spectral lines.
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that our bulge has the shape of a bar, with the major axis
pointing away from us by about 30◦. The scale-height
of the bulge is ∼ 400 pc, with an axis ratio of ∼ 0.6.

As is the case for the exponential profiles that de-
scribe the light distribution in the disk, the functional
form of the brightness distribution in the bulge is also
suggested from observations of other spiral galaxies.
The profiles of their bulges, observed from the outside,
are much better determined than in our Galaxy where
we are located amid its stars.

The de Vaucouleurs Profile. The brightness profile
of our bulge can be approximated by the de Vau-
couleurs law which describes the surface brightness I
as a function of the distance R from the center,

log

(
I(R)

Ie

)
= −3.3307

[(
R

Re

)1/4

−1

]
,

(2.39)

with I(R) being the measured surface brightness, e.g.,
in [I] = L�/pc2. Re is the effective radius, defined such
that half of the luminosity is emitted from within Re,

Re∫
0

dR R I(R) = 1

2

∞∫
0

dR R I(R) . (2.40)

This definition of Re also leads to the numerical fac-
tor on the right-hand side of (2.39). As one can easily
see from (2.39), Ie = I(Re) is the surface brightness
at the effective radius. An alternative form of the de
Vaucouleurs law is

I(R) = Ie exp
(−7.669

[
(R/Re)

1/4 −1
])

. (2.41)

Because of its mathematical form, it is also called an r1/4

law. The r1/4 law falls off significantly more slowly than
an exponential law for large R. For the Galactic bulge,
one finds an effective radius of Re ≈ 0.7 kpc. With the
de Vaucouleurs profile, a relation between luminosity,
effective radius, and surface brightness is obtained by
integrating over the surface brightness,

L =
∞∫

0

dR 2πR I(R) = 7.215πIe R2
e . (2.42)

Stellar Age Distribution in the Bulge. The stars in
the bulge cover a large range in metallicity, −1 �
[Fe/H]�+1, with a mean of about 0.3, i.e., the mean
metallicity is about twice that of the Sun. This high
metallicity hints at a contribution by a rather young
population, whereas the color of the bulge stars points
towards a predominantly old stellar population. The
bulge also contains about 108 M� in molecular gas. On
the other hand, one finds very metal-poor RR Lyrae
stars, i.e., old stars. However, the distinction in mem-
bership between bulge and disk stars is not easy, so it
is possible that the young component may actually be
part of the inner disk.

The mass of the bulge is about Mbulge ∼ 1010 M� and
its luminosity is L B,bulge ∼ 3×109 L�, which results in
a mass-to-light ratio of

M

L
≈ 3

M�
L�

in the bulge , (2.43)

very similar to that of the thin disk.

2.3.6 The Visible Halo

The visible halo of our Galaxy consists of about 150
globular clusters and field stars with a high velocity
component perpendicular to the Galactic plane. A glob-
ular cluster is a collection of typically several hundred
thousand stars, contained within a spherical region of ra-
dius ∼ 20 pc. The stars in the cluster are gravitationally
bound and orbit in the common gravitational field. The
old globular clusters with [Fe/H] < −0.8 have an ap-
proximately spherical distribution around the Galactic
center. A second population of globular clusters exists
that contains younger stars with a higher metallicity,
[Fe/H] > −0.8. They have a more oblate geometri-
cal distribution and are possibly part of the thick disk
because they show roughly the same scale-height.

Most globular clusters are at a distance of r � 35 kpc
(with r = √

R2 + z2) from the Galactic center, but some
are also found at r > 60 kpc. At these distances it is hard
to judge whether these objects are part of the Galaxy
or whether they have been captured from a neighboring
galaxy, such as the Magellanic Clouds. Also, field stars
have been found at distances out to r ∼ 50 kpc, which
is the reason why one assumes a characteristic value of
rhalo ∼ 50 kpc for the extent of the visible halo.
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The density distribution of metal-poor globular
clusters and field stars in the halo is described by

n(r) ∝ r−3.5 . (2.44)

Alternatively, one can fit a de Vaucouleurs profile to the
density distribution, which results in an effective radius
of re ∼ 2.7 kpc.

At large distances from the disk, neutral hydrogen
is also found, in the form of clouds. Most of these
clouds, visible in 21-cm line emission, have a nega-
tive radial velocity, i.e., they are moving towards us,
with velocities of up to vr ∼ −400 km/s. These high-
velocity clouds (HVCs) cannot be following the general
Galactic rotation. We have virtually no means of de-
termining the distances of these clouds, and thus their
origin and nature are still subject to discussion. There is
one exception, however: the Magellanic Stream is a nar-
row band of HI emission which follows the Magellanic
Clouds along their orbit around the Galaxy (also see
Fig. 6.6). This gas stream may be the result of a close
encounter of the Magellanic Clouds with the Milky Way
in the past. The (tidal) gravitational force that the Milky
Way had imposed on our neighboring galaxies in such
an encounter could strip away part of the interstellar gas
from them.

2.3.7 The Distance to the Galactic Center

As already mentioned, our distance from the Galactic
center is rather difficult to measure and thus not very
precisely known. The general problem with such a mea-
surement is the high extinction in the disk, prohibiting
measurements of the distance of individual stars close
to the Galactic center. Thus, one has to rely on more
indirect methods, and the most important ones will be
outlined here.

The visible halo of our Milky Way is populated by
globular clusters and also by field stars. They have
a spherical, or, more generally, a spheroidal distribution.
The center of this distribution is obviously the center of
gravity of the Milky Way, around which the halo objects
are moving. If one measures the three-dimensional dis-
tribution of the halo population, the geometrical center
of this distribution should correspond to the Galactic
center.

This method can indeed be applied because, due to
their extended distribution, halo objects can be observed

at relatively large Galactic latitudes where they are not
too strongly affected by extinction. As was discussed
in Sect. 2.2, the distance determination of globular clus-
ters is possible using photometric methods. On the other
hand, one also finds RR Lyrae stars in globular clusters
to which the period–luminosity relation can be applied.
Therefore, the spatial distribution of the globular clus-
ters can be determined. However, at about 150, the
number of known globular clusters is relatively small,
resulting in a fairly large statistical error for the deter-
mination of the common center. Much more numerous
are the RR Lyrae field stars in the halo, for which dis-
tances can be measured using the period–luminosity
relation. The statistical error in determining the cen-
ter of their distribution is therefore much smaller. On
the other hand, this distance to the Galactic center is
based only on the calibration of the period–luminosity
relation, and any uncertainty in this will propagate into
a systematic error on R0. Effects of the extinction add
to this. However, such effects can be minimized by ob-
serving the RR Lyrae stars in the NIR, which in addition
benefits from the narrower luminosity distribution of RR
Lyrae stars in this wavelength regime. These analyses
yield a value of R0 ≈ 8.0 kpc (see Fig. 2.12).

Fig. 2.12. The number of RR Lyrae stars as a function of dis-
tance, measured in a direction that closely passes the Galactic
center, at � = 0◦ and b = −8◦. If we assume a spherically
symmetric distribution of the RR Lyrae stars, concentrated to-
wards the center, the distance to the Galactic center can be
identified with the maximum of this distribution
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2.4 Kinematics of the Galaxy

Unlike a solid body, the Galaxy rotates differentially.
This means that the angular velocity is a function of the
distance R from the Galactic center. Seen from above,
i.e., from the NGP, the rotation is clockwise. To de-
scribe the velocity field quantitatively we will in the
following introduce velocity components in the coordi-
nate system (R, θ, z), as shown in Fig. 2.13. An object
following a track [R(t), θ(t), z(t)] then has the velocity
components

U := dR

dt
, V := R

dθ

dt
, W := dz

dt
. (2.45)

For example, the Sun is not moving on a simple circular
orbit around the Galactic center, but currently inwards,
U < 0, and with W > 0, so that it is moving away from
the Galactic plane.

In this section we will examine the rotation of the
Milky Way. We start with the determination of the ve-
locity components of the Sun. Then we will consider
the rotation curve of the Galaxy, which describes the
rotational velocity V(R) as a function of the distance
R from the Galactic center. We will find the intrigu-
ing result that the velocity V does not decline towards
large distances, but that it virtually remains constant.
Because this result is of extraordinary importance, we
will discuss the methods needed to derive it in some
detail.

Fig. 2.13. Cylindrical coordinate system (R, θ, z) with the
Galactic center at its origin. Note that θ increases in the
clockwise direction if the disk is viewed from above. The
corresponding velocity components (U, V, W) of a star are
indicated

2.4.1 Determination of the Velocity of the Sun

Local Standard of Rest. To link local measurements
to the Galactic coordinate system (R, θ, z), the local
standard of rest is defined. It is a fictitious rest-frame
in which velocities are measured. For this purpose, we
consider a point that is located today at the position of
the Sun and that moves along a perfectly circular orbit in
the plane of the Galactic disk. The velocity components
in the LSR are then by definition,

ULSR ≡ 0 , VLSR ≡ V0 , WLSR ≡ 0 , (2.46)

with V0 ≡ V(R0) being the orbital velocity at the loca-
tion of the Sun. Although the LSR changes over time,
the time-scale of this change is so large (the orbital
period is ∼ 230×106 yr) that this effect is negligible.

Peculiar Velocity. The velocity of an object relative to
the LSR is called its peculiar velocity. It is denoted by
v, and its components are given as

v ≡ (u, v,w) = (U −ULSR, V − VLSR, W − WLSR)

= (U, V − V0, W) .

(2.47)

The velocity of the Sun relative to the LSR is denoted by
v�. If v� is known, any velocity measured relative to the
Sun can be converted into a velocity relative to the LSR:
let Δv be the velocity of a star relative to the Sun, which
is directly measurable using the methods discussed in
Sect. 2.2, then the peculiar velocity of this star is

v = v� +Δv . (2.48)

Peculiar Velocity of the Sun. We consider now an en-
semble of stars in the immediate vicinity of the Sun, and
assume the Galaxy to be axially symmetric and station-
ary. Under these assumptions, the number of stars that
move outwards to larger radii R equals the number of
stars moving inwards. Likewise, as many stars move up-
wards through the Galactic plane as downwards. If these
conditions are not satisfied, the assumption of a station-
ary distribution would be violated. The mean values of
the corresponding peculiar velocity components must
therefore vanish,

〈u〉 = 0 , 〈w〉 = 0 , (2.49)
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where the brackets denote an average over the ensemble
considered. The analog argument is not valid for the v

component because the mean value of v depends on the
distribution of the orbits: if only circular orbits in the
disk existed, we would also have 〈v〉 = 0 (this is trivial,
since then all stars would have v = 0), but this is not
the case. From a statistical consideration of the orbits in
the framework of stellar dynamics, one deduces that 〈v〉
is closely linked to the radial velocity dispersion of the
stars: the larger it is, the more 〈v〉 deviates from zero.
One finds that

〈v〉 = −C
〈
u2〉 , (2.50)

where C is a positive constant that depends on the den-
sity distribution and on the local velocity distribution
of the stars. The sign in (2.50) follows from noting that
a circular orbit has a higher tangential velocity than el-
liptical orbits, which in addition have a non-zero radial
component. Equation (2.50) expresses the fact that the
mean rotational velocity of a stellar population around
the Galactic center deviates from the corresponding cir-
cular orbit velocity, and that the deviation is stronger for
a larger radial velocity dispersion. This phenomenon is
also known as asymmetric drift. From the mean of (2.48)
over the ensemble considered and by using (2.49) and
(2.50), one obtains

v� = (−〈Δu〉 ,−C
〈
u2〉−〈Δv〉 ,−〈Δw〉) .

(2.51)

One still needs to determine the constant C in order
to make use of this relation. This is done by consider-
ing different stellar populations and measuring

〈
u2

〉
and

〈Δv〉 separately for each of them. If these two quanti-
ties are then plotted in a diagram (see Fig. 2.14), a linear
relation is obtained, as expected from (2.50). The slope
C can be determined directly from this diagram. Fur-
thermore, from the intersection with the 〈Δv〉-axis, v�
is readily read off. The other velocity components in
(2.51) follow by simply averaging, yielding the result:

v� = (−10, 5, 7) km/s . (2.52)

Hence, the Sun is currently moving inwards, upwards,
and faster than it would on a circular orbit at its location.
We have therefore determined v�, so we are now able
to analyze any measured stellar velocities relative to the

LSR. However, we have not yet discussed how V0, the
rotational velocity of the LSR itself, is determined.

Velocity Dispersion of Stars. The dispersion of the stel-
lar velocities relative to the LSR can now be determined,
i.e., the mean square deviation of their velocities from
the velocity of the LSR. For young stars (A stars, for
example), this dispersion happens to be small. For older
K giants it is larger, and is larger still for old, metal-
poor red dwarf stars. We observe a very well-defined
velocity-metallicity relation. When this is combined
with the age–metallicity relation it appears that the
oldest stars have the highest peculiar velocities. This
effect is observed in all three coordinates. This re-
sult is in agreement with the relation between the age
of a stellar population and its scale-height (discussed
in Sect. 2.3.1), the latter being linked to the velocity
dispersion via σz .

Asymmetric Drift. If one considers high-velocity stars,
only a few are found that have v > 65 km/s and which
are thus moving much faster around the Galactic center
than the LSR. However, quite a few stars are found that
have v < −250 km/s, so their orbital velocity is oppo-
site to the direction of rotation of the LSR. Plotted in
a (u −v)-diagram, a distribution is found which is nar-
rowly concentrated around u = 0 km/s = v for young
stars, as already mentioned above, and which gets in-
creasingly wider for older stars. For the oldest stars,

Fig. 2.14. The velocity components 〈Δv〉 = 〈v〉−v� are plot-
ted against

〈
u2

〉
for stars in the Solar neighborhood. Because

of the linear relation, v� can be read off from the intersection
with the x-axis, and C from the slope



2.4 Kinematics of the Galaxy

59

which belong to the halo population, one obtains a cir-
cular envelope with its center located at u = 0 km/s and
v ≈ −220 km/s (see Fig. 2.15). If we assume that the
Galactic halo, to which these high-velocity stars belong,
does not rotate (or only very slowly), this asymmetry in
the v-distribution can only be caused by the rotation of
the LSR. The center of the envelope then has to be at
−V0. This yields the orbital velocity of the LSR

V0 ≡ V(R0) = 220 km/s . (2.53)

Knowing this velocity, we can then compute the mass
of the Galaxy inside the Solar orbit. A circular orbit
is characterized by an equilibrium between centrifugal
and gravitational acceleration, V 2/R = G M(< R)/R2,
so that

M(< R0) = V 2
0 R0

G
= 8.8×1010 M� . (2.54)

Furthermore, for the orbital period of the LSR, which is
similar to that of the Sun, one obtains

P = 2πR0

V0
= 230×106 yr . (2.55)

Hence, during the lifetime of the Solar System, esti-
mated to be ∼ 4.6×109 yr, it has completed about 20
orbits around the Galactic center.

Fig. 2.15. The motion of the Sun around the
Galactic center is reflected in the asymmetric
drift: while young stars in the Solar vicinity
have velocities very similar to the Solar ve-
locity, i.e., small relative velocities, members
of other populations (and of other Milky Way
components) have different velocities – e.g.,
for halo objects v = −220 km/s on average.
Thus, different velocity ellipses show up in a
(u −v)-diagram

2.4.2 The Rotation Curve of the Galaxy

From observations of the velocity of stars or gas around
the Galactic center, the rotational velocity V can be
determined as a function of the distance R from the
Galactic center. In this section, we will describe methods
to determine this rotation curve and discuss the result.

We consider an object at distance R from the Galactic
center which moves along a circular orbit in the Galactic
plane, has a distance D from the Sun, and is located at
a Galactic longitude � (see Fig. 2.16). In a Cartesian
coordinate system with the Galactic center at the origin,
the positional and velocity vectors (we only consider
the two components in the Galactic plane because we
assume a motion in the plane) are given by

r = R

(
sin θ

cos θ

)
, V = ṙ = V(R)

(
cos θ

− sin θ

)
,

where θ denotes the angle between the Sun and the ob-
ject as seen from the Galactic center. From the geometry
shown in Fig. 2.16 it follows that

r =
(

D sin �

R0 − D cos �

)
.

If we now identify the two expressions for the com-
ponents of r, we obtain

sin θ = (D/R) sin � ,

cos θ = (R0/R)− (D/R) cos � .
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If we disregard the difference between the velocities of
the Sun and the LSR we get V� ≈ VLSR = (V0, 0) in this
coordinate system. Thus the relative velocity between
the object and the Sun is, in Cartesian coordinates,

Fig. 2.16. Geometric derivation of the formalism of differen-
tial rotation:

vr = v∗
r −v�

r = v∗ sin �∗ −v� sin � ,

vt = v∗
t −v�

t = v∗ cos �∗ −v� cos � .

One has:

R sin θ = D sin � ,

R cos θ + D cos � = R0 ,

which implies

vr = R0

(
v∗
R

− v�
R0

)
sin �

= (Ω −Ω0)R0 sin � ,

vt = R0

(
v∗
R

− v�
R0

)
cos �− D

v∗
R

= (Ω −Ω0)R0 cos �−ΩD .

ΔV = V − V�

=
(

V (R0/R)− V (D/R) cos �− V0

−V (D/R) sin �

)
.

With the angular velocity defined as

Ω(R) = V(R)

R
, (2.56)

we obtain for the relative velocity

ΔV =
(

R0(Ω −Ω0)−Ω D cos �

−D Ω sin �

)
,

where Ω0 = V0/R0 is the angular velocity of the Sun.
The radial and tangential velocities of this relative mo-
tion then follow by projection of ΔV along the direction
parallel or perpendicular, respectively, to the separation
vector,

vr = ΔV ·
(

sin �

− cos �

)
= (Ω −Ω0)R0 sin � ,

(2.57)

vt = ΔV ·
(

cos �

sin �

)
= (Ω −Ω0)R0 cos �−Ω D .

(2.58)

A purely geometric derivation of these relations is given
in Fig. 2.16.

Rotation Curve near R0; Oort Constants. Using
(2.57) one can derive the angular velocity by means
of measuring vr, but not the radius R to which it cor-
responds. Therefore, by measuring the radial velocity
alone Ω(R) cannot be determined. If one measures
vr and, in addition, the proper motion μ = vt/D of
stars, then Ω and D can be determined from the
equations above, and from D and � one obtains

R =
√

R2
0 + D2 −2R0 D cos �. The effects of extinction

prohibits the use of this method for large distances
D, since we have considered objects in the Galac-
tic disk. For small distances D 	 R0, which implies
|R − R0| 	 R0, we can make a local approximation by
evaluating the expressions above only up to first order
in (R − R0)/R0. In this linear approximation we get

Ω −Ω0 ≈
(

dΩ

dR

)
|R0

(R − R0) , (2.59)
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where the derivative has to be evaluated at R = R0.
Hence

vr = (R − R0)

(
dΩ

dR

)
|R0

R0 sin � ,

and furthermore, with (2.56),

R0

(
dΩ

dR

)
|R0

= R0

R

[(
dV

dR

)
|R0

− V

R

]

≈
(

dV

dR

)
|R0

− V0

R0
,

in zeroth order in (R − R0)/R0. Combining the last two
equations yields

vr =
[(

dV

dR

)
|R0

− V0

R0

]
(R − R0) sin � ; (2.60)

in analogy to this, we obtain for the tangential velocity

vt =
[(

dV

dR

)
|R0

− V0

R0

]
(R − R0) cos �−Ω0 D .

(2.61)

For |R − R0| 	 R0 it follows that R0 − R ≈ D cos �; if
we insert this into (2.60) and (2.61) we get

vr ≈ A D sin 2� , vt ≈ A D cos 2�+ B D ,

(2.62)

where A and B are the Oort constants

A := −1

2

[(
dV

dR

)
|R0

− V0

R0

]
,

B := −1

2

[(
dV

dR

)
|R0

+ V0

R0

]
. (2.63)

The radial and tangential velocity fields relative to the
Sun show a sine curve with period π, where vt and vr

are phase-shifted by π/4. This behavior of the velocity
field in the Solar neighborhood is indeed observed (see
Fig. 2.17). By fitting the data for vr(�) and vt(�) for stars
of equal distance D one can determine A and B, and
thus

Ω0 = V0

R0
= A − B,

(
dV

dR

)
|R0

= −(A + B) .

(2.64)

Fig. 2.17. The radial velocity vr of stars at a fixed distance
D is proportional to sin 2�; the tangential velocity vt is a lin-
ear function of cos 2�. From the amplitude of the oscillating
curves and from the mean value of vt the Oort constants A
and B can be derived, respectively (see (2.62))

The Oort constants thus yield the angular velocity of
the Solar orbit and its derivative, and therefore the
local kinematical information. If our Galaxy was ro-
tating rigidly so that Ω was independent of the radius,
A = 0 would follow. But the Milky Way rotates differ-
entially, i.e., the angular velocity depends on the radius.
Measurements yield the following values for A and B,

A = (14.8±0.8) km s−1 kpc−1 ,

B = (−12.4±0.6) km s−1 kpc−1 . (2.65)

Galactic Rotation Curve forR<R0; Tangent Point
Method. To measure the rotation curve for radii that are
significantly smaller than R0, one has to turn to large
wavelengths due to extinction in the disk. Usually the
21-cm emission line of neutral hydrogen is used, which
can be observed over large distances, or the emission of
CO in molecular gas. These gas components are found
throughout the disk and are strongly concentrated to-
wards the plane. Furthermore, the radial velocity can
easily be measured from the Doppler effect. However,
since the distance to a hydrogen cloud cannot be deter-
mined directly, a method is needed to link the measured
radial velocities to the distance of the gas from the Gal-
actic center. For this purpose the tangent point method
is used.
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Consider a line-of-sight at fixed Galactic longitude �,
with cos � > 0 (thus “inwards”). The radial velocity vr

along this line-of-sight for objects moving on circu-
lar orbits is a function of the distance D, according to
(2.57). If Ω(R) is a monotonically decreasing function,
vr attains a maximum where the line-of-sight is tangent
to the local orbit, and thus its distance R from the Gal-
actic center attains the minimum value Rmin. This is the
case at

D = R0 cos �, Rmin = R0 sin � (2.66)

(see Fig. 2.18). The maximum radial velocity there,
according to (2.57), is

vr,max = [Ω(Rmin)−Ω0] R0 sin �

= V(Rmin)− V0 sin � , (2.67)

so that from the measured value of vr,max as a func-
tion of direction �, the rotation curve inside R0 can be
determined,

V(R) =
(

R

R0

)
V0 +vr,max(sin � = R/R0) . (2.68)

In the optical regime of the spectrum this method
can only be applied locally, i.e., for small D, due to
extinction. This is the case if one observes in a direc-
tion nearly tangential to the orbit of the Sun, i.e., if

Fig. 2.18. The ISM is optically thin for
21-cm radiation, and thus we receive the
21-cm emission of HI regions from every-
where in the Galaxy. Due to the motion of
an HI cloud relative to us, the wavelength
is shifted. This can be used to measure
the radial velocity of the cloud. With the
assumption that the gas is moving on a cir-
cular orbit around the Galactic center, one
expects that for the cloud in the tangent
point (cloud 4), the full velocity is pro-
jected along the line-of-sight so that this
cloud will therefore have the largest radial
velocity. If the distance of the Sun to the
Galactic center is known, the velocity of
a cloud and its distance from the Galactic
center can then be determined

0 < π/2−� 	 1 or 0 < �−3π/2 	 1, or | sin �| ≈ 1,
so that R0 − Rmin 	 R0. In this case we get, to first
order in (R0 − Rmin), using (2.66),

V(Rmin) ≈ V0 +
(

dV

dR

)
|R0

(Rmin − R0)

= V0 −
(

dV

dR

)
|R0

R0 (1− sin �) , (2.69)

so that with (2.67)

vr,max =
[

V0 −
(

dV

dR

)
|R0

R0

]
(1− sin �)

= 2 A R0 (1− sin �) , (2.70)

where (2.63) was used in the last step. This relation can
also be used for determining the Oort constant A.

To determine V(R) for smaller R by employing the
tangent point method, we have to observe in wavelength
regimes in which the Galactic plane is transparent, us-
ing radio emission lines of gas. In Fig. 2.18, a typical
intensity profile of the 21-cm line along a line-of-
sight is sketched; according to the Doppler effect this
can be converted directly into a velocity profile us-
ing vr = (λ−λ0)/λ0. It consists of several maxima that
originate in individual gas clouds. The radial velocity of
each cloud is defined by its distance R from the Galactic
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center (if the gas follows the Galactic rotation), so that
the largest radial velocity will occur for gas closest to
the tangent point, which will be identified with vr,max(�).
Figure 2.19 shows the observed intensity profile of the
12CO line as a function of the Galactic longitude, from
which the rotation curve for R < R0 can be read off.

With the tangent point method, applied to the 21-cm
line of neutral hydrogen or to radio emission lines
of molecular gas, the rotation curve of the Galaxy
inside the Solar orbit can be measured.

Rotation Curve for R>R0. The tangent point
method cannot be applied for R > R0 because for lines-
of-sight at π/2 < � < 3π/2, the radial velocity vr attains
no maximum. In this case, the line-of-sight is nowhere
parallel to a circular orbit.

Measuring V(R) for R > R0 requires measuring vr

for objects whose distance can be determined directly,
e.g., Cepheids, for which the period–luminosity relation
(Sect. 2.2.7) is used, or O- and B-stars in HII regions.
With � and D known, R can then be calculated, and
with (2.57) we obtain Ω(R) or V(R), respectively. Any
object with known D and vr thus contributes one data
point to the Galactic rotation curve. Since the distance
estimates of individual objects are always affected by

Fig. 2.19. 12CO emission of molecular gas
in the Galactic disk. For each �, the intensity
of the emission in the �−vr plane is plot-
ted, integrated over the range −2◦ ≤ b ≤ 2◦
(i.e., very close to the middle of the plane).
Since vr depends on the distance along each
line-of-sight, characterized by �, this dia-
gram contains information on the rotation
curve of the Galaxy as well as on the spa-
tial distribution of the gas. The maximum
velocity at each � is rather well defined and
forms the basis for the tangent point method

uncertainties, the rotation curve for large values of R is
less accurately known than that inside the Solar circle.

It turns out that the rotation curve for R > R0 does
not decline outwards (see Fig. 2.20) as we would ex-
pect from the distribution of visible matter in the Milky
Way. Both the stellar density and the gas density of
the Galaxy decline exponentially for large R – e.g., see
(2.34). This steep radial decline of the visible matter
density should imply that M(R), the mass inside R, is
nearly constant for R � R0, from which a velocity pro-
file like V ∝ R−1/2 would follow, according to Kepler’s
law. However, this is not the case: V(R) is virtually con-
stant for R > R0, indicating that M(R) ∝ R. Thus, to
get a constant rotational velocity of the Galaxy much
more matter has to be present than we observe in gas
and stars.

The Milky Way contains, besides stars and gas,
an additional component of matter that dominates
the mass at R � R0 but which has not yet been
observed directly. Its presence is known only by its
gravitational effect – hence, it is called dark matter.

In Sect. 3.3.3 we will see that this is a common phe-
nomenon. The rotation curves of spiral galaxies are flat
at large radii up to the maximum radius at which it can
be measured; spiral galaxies contain dark matter.
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Fig. 2.20. Rotation curve of the Milky
Way. Inside the “Solar circle”, that is at
R < R0, the radial velocity is determined
quite accurately using the tangent point
method; the measurements outside have
larger uncertainties

The nature of dark matter is thus far unknown; in
principle, we can distinguish two totally different kinds
of dark matter candidates:
• Astrophysical dark matter, consisting of compact

objects – e.g., faint stars like white dwarfs, brown
dwarfs, black holes, etc. Such objects were assigned
the name MACHOs, which stands for “MAssive
Compact Halo Objects”.

• Particle physics dark matter, consisting of elemen-
tary particles which have thus far escaped detection
in accelerator laboratories.

Although the origin of astrophysical dark matter would
be difficult to understand (not least because of the
baryon abundance in the Universe – see Sect. 4.4.4 – and
because of the metal abundance in the ISM), a direct
distinction between the two alternatives through ob-
servation would be of great interest. In the following
section we will describe a method which is able to
probe whether the dark matter in our Galaxy consists of
MACHOs.

2.5 The Galactic Microlensing Effect:
The Quest for Compact
Dark Matter

In 1986, Bohdan Paczyński proposed to test the possi-
ble presence of MACHOs by performing microlensing
experiments. As we will soon see, this was a daring idea

at that time, but since then such experiments have been
carried out. In this section we will mainly summarize
and discuss the results of these searches for MACHOs.
We will start with a description of the microlensing ef-
fect and then proceed with its specific application to the
search for MACHOs.

2.5.1 The Gravitational Lensing Effect I

Einstein’s Deflection Angle. Light, just like massive
particles, is deflected in a gravitational field. This is one
of the specific predictions by Einstein’s theory of grav-
ity, General Relativity. Quantitatively it predicts that
a light beam which passes a point mass M at a distance
ξ is deflected by an angle α̂, which amounts to

α̂ = 4 G M

c2 ξ
. (2.71)

The deflection law (2.71) is valid as long as α̂ 	 1,
which is the case for weak gravitational fields. If we
now set M = M�, R = R� in the foregoing equation,
we obtain

α̂� ≈ 1′′. 74

for the light deflection at the limb of the Sun. This de-
flection of light was measured during a Solar eclipse in
1919 from the shift of the apparent positions of stars
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close to the shaded Solar disk. Its agreement with the
value predicted by Einstein made him world-famous
over night, because this was the first real and challeng-
ing test of General Relativity. Although the precision
of the measured value back then was only ∼ 30%, it
was sufficient to confirm Einstein’s theory. By now the
law (2.71) has been measured in the Solar System with
a precision of about 0.1%, and Einstein’s prediction has
been confirmed.

Not long after the discovery of gravitational light
deflection at the Sun, the following scenario was con-
sidered. If the deflection of the light were sufficiently
strong, light from a very distant source could be vis-
ible at two positions in the sky: one light ray could
pass a mass concentration, located between us and the
source, “to the right”, and the second one “to the left”, as
sketched in Fig. 2.21. The astrophysical consequence of
this gravitational light deflection is also called the grav-
itational lens effect. We will discuss various aspects of

Fig. 2.21. Sketch of a gravitational lens system. If a sufficiently
massive mass concentration is located between us and a distant
source, it may happen that we observe this source at two
different positions on the sphere

the lens effect in the course of this book, and we will
review its astrophysical applications.

The Sun is not able to cause multiple images of dis-
tant sources. The maximum deflection angle α̂� is much
smaller than the angular radius of the Sun, so that two
beams of light that pass the Sun to the left and to the
right cannot converge by light deflection at the position
of the Earth. Given its radius, the Sun is too close to pro-
duce multiple images, since its angular radius is (far)
larger than the deflection angle α̂�. However, the light
deflection by more distant stars (or other massive ce-
lestial bodies) can produce multiple images of sources
located behind them.

Lens Geometry. The geometry of a gravitational lens
system is depicted in Fig. 2.22. We consider light rays
from a source at distance Ds from us that pass a mass
concentration (called a lens or deflector) at a separa-
tion ξ . The deflector is at a distance Dd from us. In Fig.
2.22 η denotes the true, two-dimensional position of the
source in the source plane, and β is the true angular po-
sition of the source, that is the angular position at which
it would be observed in the absence of light deflection,

β = η

Ds
. (2.72)

The position of the light ray in the lens plane is denoted
by ξ , and θ is the corresponding angular position,

θ = ξ

Dd
. (2.73)

Hence, θ is the observed position of the source on the
sphere relative to the position of the “center of the lens”
which we have chosen as the origin of the coordinate
system, ξ = 0. Dds is the distance of the source plane
from the lens plane. As long as the relevant distances are
much smaller than the “radius of the Universe” c/H0,
which is certainly the case within our Galaxy and in
the Local Group, we have Dds = Ds − Dd. However,
this relation is no longer valid for cosmologically dis-
tant sources and lenses; we will come back to this in
Sect. 4.3.3.

Lens Equation. From Fig. 2.22 we can deduce the con-
dition that a light ray from the source will reach us from
the direction θ (or ξ),

η = Ds

Dd
ξ − Ddsα̂(ξ) , (2.74)
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Fig. 2.22. Geometry of a gravitational lens system. Consider
a source to be located at a distance Ds from us and a mass
concentration at distance Dd. An optical axis is defined that
connects the observer and the center of the mass concentration;
its extension will intersect the so-called source plane, a plane
perpendicular to the optical axis at the distance of the source.
Accordingly, the lens plane is the plane perpendicular to the
line-of-sight to the mass concentration at distance Dd from
us. The intersections of the optical axis and the planes are
chosen as the origins of the respective coordinate systems.
Let the source be at the point η in the source plane; a light
beam that encloses an angle θ to the optical axis intersects the
lens plane at the point ξ and is deflected by an angle α̂(ξ). All
these quantities are two-dimensional vectors. The condition
that the source is observed in the direction θ is given by
the lens equation (2.74) which follows from the theorem of
intersecting lines

or, after dividing by Ds and using (2.72) and (2.73):

β = θ − Dds

Ds
α̂(Ddθ) . (2.75)

Due to the factor multiplying the deflection angle in
(2.75), it is convenient to define the reduced deflection
angle

α(θ) := Dds

Ds
α̂(Ddθ) , (2.76)

so that the lens equation (2.75) attains the simple form

β = θ −α(θ) . (2.77)

The deflection angle α(θ) depends on the mass distri-
bution of the deflector. We will discuss the deflection
angle for an arbitrary density distribution of a lens in
Sect. 3.8. Here we will first concentrate on point masses,
which is – in most cases – a good approximation for the
lensing effect on stars.

For a point mass, we get – see (2.71)

|α(θ)| = Dds

Ds

4 G M

c2 Dd |θ| ,

or, if we account for the direction of the deflection (the
deflection angle always points towards the point mass),

α(θ) = 4 G M

c2

Dds

Ds Dd

θ

|θ|2 . (2.78)

Multiple Images of a source occur if the lens equa-
tion (2.77) has multiple solutions θi for a (true) source
position β – in this case, the source is observed at the
positions θi on the sphere.

Explicit Solution of the Lens Equation for a Point
Mass. The lens equation for a point mass is simple
enough to be solved analytically which means that for
each source position β the respective image positions θi

can be determined. If we define the so-called Einstein
angle of the lens,

θE :=
√

4 G M

c2

Dds

Ds Dd
, (2.79)

then the lens equation (2.77) for the point-mass lens
with a deflection angle (2.78) can be written as

β = θ − θ2
E

θ

|θ|2 .

Obviously, θE is a characteristic angle in this equation,
so that for practical reasons we will use the scaling

y := β

θE
; x := θ

θE
.

Hence the lens equation simplifies to

y = x− x
|x|2 . (2.80)
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After multiplication with x, this becomes a quadratic
equation, whose solutions are

x = 1

2

(
|y|±

√
4+|y|2

) y
|y| . (2.81)

From this solution of the lens equation one can
immediately draw a number of conclusions:

• For each source position y, the lens equation for
a point-mass lens has two solutions – any source is
(formally, at least) imaged twice. The reason for this
is the divergence of the deflection angle for θ → 0.
This divergence does not occur in reality because of
the finite geometric extent of the lens (e.g., the radius
of the star), as the solutions are of course physically
relevant only if ξ = DdθE|x| is larger than the radius
of the star. We need to point out again that we ex-
plicitly exclude the case of strong gravitational fields
such as the light deflection near a black hole or a neu-
tron star, for which the equation for the deflection
angle has to be modified.

• The two images xi are collinear with the lens and the
source. In other words, the observer, lens, and source
define a plane, and light rays from the source that
reach the observer are located in this plane as well.
One of the two images is located on the same side of
the lens as the source (x · y > 0), the second image is
located on the other side – as is already indicated in
Fig. 2.21.

• If y = 0, so that the source is positioned exactly be-
hind the lens, the full circle |x| = 1, or |θ| = θE, is
a solution of the lens equation (2.80) – the source
is seen as a circular image. In this case, the source,
lens, and observer no longer define a plane, and the
problem becomes axially symmetric. Such a circular
image is called an Einstein ring. Ring-shaped im-
ages have indeed been observed, as we will discuss
in Sect. 3.8.3.

• The angular diameter of this ring is then 2θE.
From the solution (2.81), one can easily see that
the distance between the two images is about
Δx = |x1 − x2|� 2 (as long as |y|� 1), hence

Δθ � 2θE ;
the Einstein angle thus specifies the characteristic
image separation. Situations with |y| � 1, and hence
angular separations significantly larger than 2θE, are

astrophysically of only minor relevance, as will be
shown below.

Magnification: The Principle. Light beams are not
only deflected as a whole, but they are also subject
to differential deflection. For instance, those rays of
a light beam (also called light bundle) that are closer to
the lens are deflected more than rays at the other side of
the beam. The differential deflection is an effect of the
tidal component of the deflection angle; this is sketched
in Fig. 2.23. By differential deflection, the solid an-
gle which the image of the source subtends on the sky
changes. Let ωs be the solid angle the source would
subtend if no lens were present, and ω the observed
solid angle of the image of the source in the presence
of a deflector. Since gravitational light deflection is not
linked to emission or absorption of radiation, the sur-

Fig. 2.23. Light beams are deflected differentially, leading to
changes of the shape and the cross-sectional area of the beam.
As a consequence, the observed solid angle subtended by the
source, as seen by the observer, is modified by gravitational
light deflection. In the example shown, the observed solid an-
gle AI/D2

d is larger than the one subtended by the undeflected
source, AS/D2

s – the image of the source is thus magnified



68

2. The Milky Way as a Galaxy

face brightness (or specific intensity) is preserved. The
flux of a source is given as the product of surface bright-
ness and solid angle. Since the former of the two factors
is unchanged by light deflection, but the solid angle
changes, the observed flux of the source is modified. If
S0 is the flux of the unlensed source and S the flux of
an image of the source, then

μ := S

S0
= ω

ωs
(2.82)

describes the change in flux that is caused by a magnifi-
cation (or a diminution) of the image of a source. Obvi-
ously, the magnification is a purely geometrical effect.

Magnification for “Small” Sources. For sources and
images that are much smaller than the characteristic
scale of the lens, the magnification μ is given by the
differential area distortion of the lens mapping (2.77),

μ =
∣∣∣∣det

(
∂β

∂θ

)∣∣∣∣
−1

≡
∣∣∣∣det

(
∂βi

∂θ j

)∣∣∣∣
−1

. (2.83)

Hence for small sources, the ratio of solid angles of the
lensed image and the unlensed source is described by
the determinant of the local Jacobi matrix.11

The magnification can therefore be calculated for
each individual image of the source, and the total mag-
nification of a source, given by the ratio of the sum of
the fluxes of the individual images and the flux of the
unlensed source, is the sum of the magnifications for
the individual images.

Magnification for the Point-Mass Lens. For a point-
mass lens, the magnifications for the two images (2.81)
are

μ± = 1

4

(
y√

y2 +4
+

√
y2 +4

y
±2

)
. (2.84)

From this it follows that for the “+”-image μ+ > 1 for
all source positions y = |y|, whereas the “−”-image can

11The determinant in (2.83) is a generalization of the derivative in one
spatial dimension to higher dimensional mappings. Consider a scalar
mapping y = y(x); through this mapping, a “small” interval Δx is
mapped onto a small interval Δy, where Δy ≈ (dy/dx)Δx. The
Jacobian determinant occurring in (2.83) generalizes this result for
a two-dimensional mapping from the lens plane to the source plane.

have magnification either larger or less than unity, de-
pending on y. The magnification of the two images is
illustrated in Fig. 2.24, while Fig. 2.25 shows the mag-
nification for several different source positions y. For
y � 1, one has μ+ � 1 and μ− ∼ 0, from which we
draw the following conclusion: if the source and lens
are not sufficiently well aligned, the secondary image is
strongly demagnified and the primary image has mag-
nification very close to unity. For this reason, situations
with y � 1 are of little relevance since then essentially
only one image is observed which has about the same
flux as the unlensed source.

For y → 0, the two magnifications diverge,
μ± → ∞. The reason for this is purely geometric: in
this case, out of a zero-dimensional point source a one-
dimensional image, the Einstein ring, is formed. This
divergence is not physical, of course, since infinite mag-
nifications do not occur in reality. The magnifications
remain finite even for y = 0, for two reasons. First, real
sources have a finite extent, and for these the magnifi-

Fig. 2.24. Illustration of the lens mapping by a point mass M.
The unlensed source S and the two images I1 and I2 of the
lensed source are shown. We see that the two images have
a solid angle different from the unlensed source, and they also
have a different shape. The dashed circle shows the Einstein
radius of the lens
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Fig. 2.25. Image of a circular source with
a radial brightness profile – indicated by
colors – for different relative positions of
the lens and source. y decreases from left to
right; in the rightmost figure y = 0 and an
Einstein ring is formed

cation is finite. Second, even if one had a point source,
wave effects of the light (interference) would lead to
a finite value of μ. The total magnification of a point
source by a point-mass lens follows from the sum of the
magnifications (2.84),

μ(y) = μ+ +μ− = y2 +2

y
√

y2 +4
. (2.85)

2.5.2 Galactic Microlensing Effect

After these theoretical considerations we will now re-
turn to the starting point of our discussion, employing
the lensing effect as a potential diagnostic for dark mat-
ter in our Milky Way, if this dark matter were to consist
of compact mass concentrations, e.g., very faint stars.

Image Splitting. Considering a star in our Galaxy as
the lens, (2.79) yields the Einstein angle

θE = 0.902 mas

(
M

M�

)1/2

×
(

Dd

10 kpc

)−1/2 (
1− Dd

Ds

)1/2

. (2.86)

Since the angular separation Δθ of the two images is
about 2θE, the typical image splittings are about a mil-
liarcsecond (mas) for lens systems including Galactic
stars; such angular separations are as yet not observable
with optical telescopes. This insight made Einstein be-
lieve in 1936, after he conducted a detailed quantitative
analysis of gravitational lensing by point masses, that
the lens effect will not be observable.12

Magnification. Bohdan Paczyński pointed out in 1986
that, although image splitting was unobservable, the
magnification by the lens should nevertheless be mea-
surable. To do this, we have to realize that the absolute
magnification is observable only if the unlensed flux of
the source is known – which is not the case, of course
(for nearly all sources). However, the magnification,
and therefore also the observed flux, changes with time
by the relative motion of source, lens, and ourselves.
Therefore, the flux is a function of time, caused by the
time-dependent magnification.

Characteristic Time-Scale of the Variation. Let v be
a typical transverse velocity of the lens, then its angular
velocity is

θ̇ = v

Dd
= 4.22 mas yr−1

( v

200 km/s

)( Dd

10 kpc

)−1

,

(2.87)

if we consider the source and the observer to be at rest.
The characteristic time-scale of the variability is then
given by

tE := θE

θ̇
= 0.214 yr

(
M

M�

)1/2 ( Dd

10 kpc

)1/2

×
(

1− Dd

Ds

)1/2 ( v

200 km/s

)−1
.

(2.88)

This time-scale is of the order of a month for lenses
with M ∼ M� and typical Galactic velocities. Hence,

12 The expression “microlens” has its origin in the angular scale (2.86)
that was discussed in the context of the lens effect on quasars by stars
at cosmological distances, for which one obtains image splittings of
about one microarcsecond.
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the effect is measurable in principle. In the general case
that source, lens, and observer are all moving, v has
to be considered as an effective velocity. Alternatively,
the motion of the source in the source plane can be
considered.

Light Curves. In most cases, the relative motion can be
considered linear, so that the position of the source in
the source plane can be written as

β = β0 + β̇(t − t0) .

Using the scaled position y = β/θE, for y = |y| we
obtain

y(t) =
√

p2 +
(

t − tmax

tE

)2

, (2.89)

where p = ymin specifies the minimum distance from
the optical axis, and tmax is the time at which y = p
attains this minimum value, thus when the magnification
μ = μ(p) = μmax is maximized. From this, and using
(2.85), one obtains the light curve

S(t) = S0 μ(y(t)) = S0
y2(t)+2

y(t)
√

y2(t)+4
. (2.90)

Examples for such light curves are shown in Fig. 2.26.
They depend on only four parameters: the flux of the
unlensed source S0, the time of maximum magnifica-
tion tmax, the smallest distance of the source from the
optical axis p, and the characteristic time-scale tE. All
these values are directly observable in a light curve. One
obtains tmax from the time of the maximum of the light
curve, S0 is the flux that is measured for very large
and small times, S0 = S(t → ±∞), or S0 ≈ S(t) for
|t − tmax| � tE. Furthermore, p follows from the max-
imum magnification μmax = Smax/S0 by inversion of
(2.85), and tE from the width of the light curve.

Only tE contains information of astrophysical rele-
vance, because the time of the maximum, the unlensed
flux of the source, and the minimum separation p
provide no information about the lens. Since tE ∝√

M Dd/v, this time-scale contains the combined in-
formation on the lens mass, the distances to the lens and
the source, and the transverse velocity: Only the com-
bination tE ∝ √

M Dd/v can be derived from the light
curve, but not mass, distance, or velocity individually.

Paczyński’s idea can be expressed as follows: if the
halo of our Milky Way consists (partially) of compact
objects, a distant compact source should, from time to
time, be lensed by one of these MACHOs and thus show
characteristic changes in flux, corresponding to a light
curve similar to those in Fig. 2.26. The number density
of MACHOs is proportional to the probability or abun-
dance of lens events, and the characteristic mass of the
MACHOs is proportional to the square of the typical
variation time-scale tE. All one has to do is measure
the light curves of a sufficiently large number of back-
ground sources and extract all lens events from those
light curves to obtain information on the population of
potential MACHOs in the halo. A given halo model
predicts the spatial density distribution and the distribu-
tion of velocities of the MACHOs and can therefore be
compared to the observations in a statistical way. How-
ever, one faces the problem that the abundance of such
lensing events is very small.

Probability of a Lens Event. In practice, a system of
a foreground object and a background source is con-
sidered a lens system if p < 1 and hence μmax > 3/

√
5

≈ 1.34, i.e., if the relative trajectory of the source passes
within the Einstein circle of the lens.

If the dark halo of the Milky Way consisted solely of
MACHOs, the probability that a very distant source is
lensed (in the sense of |β| ≤ θE) would be ∼ 10−7, where
the exact value depends on the direction to the source.
At any one time, one of ∼ 107 distant sources would be
located within the Einstein radius of a MACHO in our
halo. The immediate consequence of this is that the light
curves of millions of sources have to be monitored to
detect this effect. Furthermore, these sources have to be
located within a relatively small region on the sphere to
keep the total solid angle that has to be photometrically
monitored relatively small. This condition is needed to
limit the required observing time, so that many such
sources should be present within the field-of-view of
the camera used. The stars of the Magellanic Clouds
are well suited for such an experiment: they are close
together on the sphere, but can still be resolved into
individual stars.

Problems, and their Solution. From this observational
strategy, a large number of problems arise immediately;
they were discussed in Paczyński’s original paper. First,
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Fig. 2.26. Illustration of a Galactic microlensing event: In the
upper left panel a source (depicted by the open circles) moves
behind a point-mass lens; for each source position two images
of the source are formed, which are indicated by the black
ellipses. The identification of the corresponding image pair
with the source position follows from the fact that, in pro-
jection, the source, the lens, and the two images are located
on a straight line, which is indicated for one source position.

The dashed circle represents the Einstein ring. In the lower left
panel, different trajectories of the source are shown, each char-
acterized by the smallest projected separation p to the lens.
The light curves resulting from these relative motions, which
can be calculated using equation (2.90), are then shown in the
right-hand panel for different values of p. The smaller p is,
the larger the maximum magnification will be, here measured
in magnitudes

the photometry of so many sources over many epochs
produces a huge amount of data that need to be handled;
they have to be stored and reduced. Second, one has the
problem of “crowding”: the stars in the Magellanic
Clouds are densely packed on the sky, which renders
the photometry of individual stars difficult. Third, stars
also show intrinsic variability – about 1% of all stars
are variable. This intrinsic variability has to be distin-
guished from that due to the lens effect. Due to the

small abundance of the latter, selecting the lens events
is comparable to searching for a needle in a haystack.
Finally, it should be mentioned that one has to ensure
that the experiment is indeed sensitive enough to detect
lens events. A “calibration experiment” would therefore
be desirable.

Faced with these problems, it seemed daring to seri-
ously think about the realization of such an observing
program. However, a fortunate event helped, in the mag-
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nificent time of the easing of tension between the US
and the Soviet Union, and their respective allies, at the
end of the 1980s. Physicists and astrophysicists, partly
occupied with issues concerning national security, then
saw an opportunity to meet new challenges. In addition,
scientists in national laboratories had much better ac-
cess to sufficient computing power and storage capacity
than those in other research institutes, attenuating some
of the aforementioned problems. While the expected
data volume was still a major problem in 1986, it could
be handled a few years later. Also, wide-field cameras
were constructed, with which large areas of the sky
could be observed simultaneously. Software was devel-
oped which specializes in the photometry of objects in
crowded fields, so that light curves could be measured
even if individual stars in the image were no longer
cleanly separated.

To distinguish between lensing events and intrin-
sic variablity of stars, we note that the microlensing
light curves have a characteristic shape that is described
by only four parameters. The light curves should be
symmetric and achromatic because gravitational light
deflection is independent of the frequency of the radia-
tion. Furthermore, due to the small lensing probability,
any source should experience at most one microlens-
ing event and show a constant flux before and after,
whereas intrinsic variations of stars are often periodic
and in nearly all cases chromatic.

And finally a control experiment could be performed:
the lensing probability in the direction of the Galactic
bulge is known, or at least, we can obtain a lower limit
for it from the observed density of stars in the disk. If
a microlens experiment is carried out in the direction
of the Galactic bulge, we have to find lens events if the
experiment is sufficiently sensitive.

2.5.3 Surveys and Results

In the early 1990s, two collaborations (MACHO and
EROS) began the search for microlensing events to-
wards the Magellanic clouds. Another group (OGLE)
started searching in an area of the Galactic bulge. Fields
in the respective survey regions were observed regu-
larly, typically once every night if weather conditions
permitted. From the photometry of the stars in the fields,
light curves for many millions of stars were generated
and then checked for microlensing events.

First Detections. In 1993, all three groups reported their
first results. The MACHO collaboration found one event
in the Large Magellanic Cloud (LMC), the EROS group
two events, and the OGLE group observed one event in
the bulge. The light curve of the first MACHO event
is plotted in Fig. 2.27. It was observed in two different
filters, and the fit to the data, which corresponds to
a standard light curve (2.90), is the same for both filters,
proving that the event is achromatic. Together with the
quality of the fit to the data, this is very strong evidence
for the microlensing nature of the event.

Statistical Results. In the years since 1993, all three
aforementioned teams have proceeded with their ob-

Fig. 2.27. Light curve of the first observed microlensing event
in the LMC, in two broad-band filters. The solid curve is
the best-fit microlens light curve as described by (2.90), with
μmax = 6.86. The ratio of the magnifications in both filters is
displayed at the bottom, and it is compatible with 1. Some of
the data points deviate significantly from the curve; this means
that either the errors in the measurements were underesti-
mated, or this event is more complicated than one described
by a point-mass lens – see Sect. 2.5.4
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servations and analysis (Fig. 2.28), and more groups
have begun the search for microlensing events, choos-
ing various lines-of-sight. The most important results
from these experiments can be summarized as follows:

About 20 events have been found in the direction
of the Magellanic Clouds, and of the order a thousand
in the direction of the bulge. The statistical analysis of
the data revealed the lensing probability towards the
bulge to be higher than originally expected. This can
be explained by the fact that our Galaxy features a bar
(see Chap. 3). This bar was also observed in IR maps
such as those made by the COBE satellite. The events
in the direction of the bulge are dominated by lenses
that are part of the bulge themselves, and their column
density is increased by the bar-like shape of the bulge.
On the other hand, the lens probability in the direction of
the Magellanic Clouds is smaller than expected for the
case where the dark halo consists solely of MACHOs.

Fig. 2.28. In this 8◦ ×8◦ image of the LMC, 30 fields are
marked in red which the MACHO group has searched for mi-
crolensing events during the ∼ 5.5 years of their experiment;
images were taken in two filters to test for achromaticity. The
positions of 17 microlens events are marked by yellow circles;
these have been subject to statistical analysis

Based on the analysis of the MACHO collaboration,
the observed statistics of lensing events towards the
Magellanic Clouds is best explained if about 20% of the
halo mass consists of MACHOs, with a characteristic
mass of about M ∼ 0.5M� (see Fig. 2.29).

Interpretation and Discussion. This latter result is not
easy to interpret and came as a real surprise. If a result
compatible with ∼ 100% had been found, it would have
been obvious to conclude that the dark matter in our
Milky Way consists of compact objects. Otherwise, if
very few lensing events had been found, it would have
been clear that MACHOs do not contribute significantly
to the dark matter. But a value of 20% does not allow
any unambiguous interpretation. Taken at face value,
the result from the MACHO group would imply that the
total mass of MACHOs in the Milky Way halo is about
the same as that in the stellar disk.

Furthermore, the estimated mass scale is hard to un-
derstand: what could be the nature of MACHOs with
M = 0.5M�? Normal stars can be excluded, because
they would be far too luminous not to be observed.
White dwarfs are also unsuitable candidates, because to

Fig. 2.29. Probability contours for a specific halo model as
a function of the characteristic MACHO mass M (here denoted
by m) and the mass fraction f of MACHOs in the halo. The
halo of the LMC was either taken into account as an additional
source for microlenses (lmc halo) or not (no lmc halo), and two
different selection criteria (A,B) for the statistically complete
microlensing sample have been used. In all cases, M ∼ 0.5M�
and f ∼ 0.2 are the best-fit values
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produce such a large number of white dwarfs as a fi-
nal stage of stellar evolution, the total star formation
in our Milky Way, integrated over its lifetime, needs
to be significantly larger than normally assumed. In
this case, many more massive stars would also have
formed, which would then have released the metals they
produced into the ISM, both by stellar winds and in su-
pernova explosions. In such a scenario, the metal content
of the ISM would therefore be distinctly higher than is
actually observed. The only possibility of escaping this
argument is with the hypothesis that the mass function
of newly formed stars (the initial mass function, IMF)
was different in the early phase of the Milky Way com-
pared to that observed today. The IMF that needs to be
assumed in this case is such that for each star of interme-
diate mass which evolves into a white dwarf, far fewer
high-mass stars, responsible for the metal enrichment
of the ISM, must have formed in the past compared
to today. However, we lack a plausible physical model
for such a scenario, and it is in conflict with the star-
formation history that we observe in the high-redshift
Universe (see Chap. 9).

Neutron stars can be excluded as well, because
they are too massive (typically > 1M�); in addition,
they are formed in supernova explosions, implying that
the aforementioned metallicity problem would be even
greater for neutron stars. Would stellar-mass black holes
be an alternative? The answer to this question depends
on how they are formed. They could not originate in SN
explosions, again because of the metallicity problem.
If they had formed in a very early phase of the Uni-
verse (they are then called primordial black holes), this
would be an imaginable, though perhaps quite exotic,
alternative.

However, we have strong indications that the
interpretation of the MACHO results is not as straight-
forward as described above. Some doubts have been
raised as to whether all events reported as being due to
microlensing are in fact caused by this effect. In fact,
one of the microlensing source stars identified by the
MACHO group showed another bump seven years after
the first event. Given the extremely small likelihood of
two microlensing events happening to a single source
this is almost certainly a star with unusual variability.

As argued previously, by means of tE we only mea-
sure a combination of lens mass, transverse velocity,
and distance. The result given in Fig. 2.29 is therefore

based on the statistical analysis of the lensing events
in the framework of a halo model that describes the
shape and the radial density profile of the halo. How-
ever, microlensing events have been observed for which
more than just tE can be determined – e.g., events in
which the lens is a binary star, or those for which tE
is larger than a few months. In this case, the orbit of
the Earth around the Sun, which is not a linear motion,
has a noticeable effect, causing deviations from the
standard curve. Such parallax events have indeed been
observed.13 Three events are known in the direction of
the Magellanic Clouds in which more than just tE could
be measured. In all three cases the lenses are most likely
located in the Magellanic Clouds themselves (an effect
called self-lensing) and not in the halo of the Milky
Way. If for those three cases, where the degeneracy be-
tween lens mass, distance, and transverse velocity can
be broken, the respective lenses are not MACHOs in the
Galactic halo, we might then suspect that in most of the
other microlensing events the lens is not a MACHO ei-
ther. Therefore, it is currently unclear how to interpret
the results of the microlensing surveys. In particular, it
is unclear to what extent self-lensing contributes to the
results. Furthermore, the quantitative results depend on
the halo model.

The EROS collaboration used an observation strategy
which was sightly different from that of the MACHO
group, by observing a number of fields in very short time
intervals. Since the duration of a lensing event depends
on the mass of the lens as Δt ∝ M1/2 – see (2.88) – they
were also able to probe very small MACHO masses.
The absence of lensing events of very short duration
then allowed them to derive limits for the mass fraction
of such low-mass MACHOs, as is shown in Fig. 2.30.

Despite this unsettled situation concerning the inter-
pretation of the MACHO results, we have to emphasize
that the microlensing surveys have been enormously
successful experiments because they accomplished
exactly what was expected at the beginning of the ob-
servations. They measured the lensing probability in
the direction of the Magellanic Clouds and the Galactic
bulge. The fact that the distribution of the lenses differs
from that expected by no means diminishes the success
of these surveys.

13 These parallax events in addition prove that the Earth is in fact
orbiting around the Sun – even though this is not really a new insight.
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Fig. 2.30. From observations by the EROS collaboration,
a large mass range for MACHO candidates can be excluded.
The maximum allowed fraction of the halo mass contained
in MACHOs is plotted as a function of the MACHO mass
M, as an upper limit with 95% confidence. A standard model
for the mass distribution in the Galactic halo was assumed
which describes the rotation curve of the Milky Way quite
well. The various curves show different phases of the EROS
experiment. They are plotted separately for observations in

the directions of the LMC and the SMC. The experiment
EROS 1 searched for microlensing events on short time-
scales but did not find any; this yields the upper limits at
small masses. Upper limits at larger masses were obtained
by the EROS 2 experiment. The thick solid curve represents
the upper limit derived from combining the individual ex-
periments. If not a single MACHO event had been found
the upper limit would have been described by the dotted
line

2.5.4 Variations and Extensions

Besides the search for MACHOs, microlensing surveys
have yielded other important results and will continue to
do so in the future. For instance, the distribution of stars
in the Galaxy can be measured by analyzing the lens-
ing probability as a function of direction. Thousands
of variable stars have been newly discovered and accu-
rately monitored; the extensive and publicly accessible
databases of the surveys form an invaluable resource
for stellar astrophysics. Furthermore, globular clusters
in the LMC have been identified from these photometric
observations.

For some lensing events, the radius and the surface
structure of distant stars can be measured with very high
precision. This is possible because the magnification μ

depends on the position of the source. Situations can oc-
cur, for example where a binary star acts as a lens (see
Fig. 2.31), in which the dependence of the magnifica-
tion on the position in the source plane is very sensitive.
Since the source – the star – is in motion relative to the
line-of-sight between Earth and the lens, its different

regions are subject to different magnification, depend-
ing on the time-dependent source position. A detailed
analysis of the light curve of such events then enables
us to reconstruct the light distribution on the surface of
the star. The light curve of one such event is shown in
Fig. 2.32.

For these lensing events the source can no longer
be assumed to be a point source. Rather, the details of
the light curve are determined by its light distribution.
Therefore, another length-scale appears in the system,
the radius of the star. This length-scale shows up in the
corresponding microlensing light curve, as can be seen
in Fig. 2.32, by the time-scale which characterizes the
width of the peaks in the light curve – it is directly re-
lated to the ratio of the stellar radius and the transverse
velocity of the lens. With this new scale, the degener-
acy between M, v, and Dd is partially broken, so that
these special events provide more information than the
“classical” ones.

In fact, the light curve in Fig. 2.27 is probably not
caused by a single lens star, but instead by additional
slight disturbances from a companion star. This would
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Fig. 2.31. If a binary star acts as a lens, significantly more com-
plicated light curves can be generated. In the left-hand panel
tracks are plotted for five different relative motions of a back-
ground source; the dashed curve is the so-called critical curve,
formally defined by det(∂β/∂θ) = 0, and the solid line is the
corresponding image of the critical curve in the source plane,
called a caustic. Light curves corresponding to these five

tracks are plotted in the right-hand panel. If the source crosses
the caustic, the magnification μ becomes very large – formally
infinite if the source was point-like. Since it has a finite extent,
μ has to be finite as well; from the maximum μ during caus-
tic crossing, the radius of the source can be determined, and
sometimes even the variation of the surface brightness across
the stellar disk, an effect known as limb darkening

explain the deviation of the observed light curve from
a simple model light curve. However, the sampling in
time of this particular light curve is not sufficient to
determine the parameters of the binary system.

By now, detailed light curves with very good time
coverage have been measured, which was made possi-
ble with an alarm system. The data from those groups
searching for microlensing events are analyzed imme-
diately after observations, and potential candidates for
interesting events are published on the Internet. Other
groups (such as the PLANET collaboration, for ex-
ample) then follow-up these systems with very good
time coverage by using several telescopes spread over
a large range in geographical longitude. This makes
around-the-clock observations of the event possible.
Using this method light curves of extremely high qual-
ity have been measured. These groups hope to detect
extra-solar planets by characteristic deviations in these
light curves. Indeed, these microlens observations may
be the most realistic (and cheapest) option for finding
low-mass planets. Other methods for finding extra-solar
planets, such as the search for small periodic changes
of the radial velocity of stars which is caused by the
gravitational pull of their orbiting planet, are mostly
sensitive to high-mass planets. Whereas such surveys

Fig. 2.32. Light curve of an event in which the lens was a bi-
nary star. The MACHO group discovered this “binary event”.
Members of the PLANET collaboration obtained this data us-
ing four different telescopes (in Chile, Tasmania, and South
Africa). The second caustic crossing is highly resolved (dis-
played in the small diagram) and allows us to draw conclusions
about the size and the brightness distribution of the source star.
The two curves show the fits of a binary lens to the data
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have been extremely successful in the past decade, hav-
ing detected far more than one hundred planets around
other stars, the characteristic mass of these planets is
that of Jupiter, i.e., ∼ 1000 times more massive than
the Earth. At least two planet-mass companions to lens
stars have already been discovered through microlens-
ing, one of them having a mass of only six times that of
the Earth.

Pixel Lensing. An extension to the microlensing search
was suggested in the form of the so-called pixel lensing
method. Instead of measuring the light curve of a sin-
gle star one records the brightness of groups of stars
that are positioned closely together on the sky. This
method is applicable in situations where the density of
source stars is very high, such as for the stars in the
Andromeda galaxy (M31), which cannot be resolved
individually. If one star is magnified by a microlens-
ing event, the brightness in the corresponding region
changes in a characteristic way, similar to that in the
lensing events discussed above. To identify such events,
the magnification needs to be relatively large, because
only then can the light of the lensed star dominate over
the local brightness in the region, so that the event can be
recognized. On the other hand, the number of photomet-
rically monitored stars (per solid angle) is larger than in
surveys where single stars are observed, so that events of
larger magnification are also more abundant. By now,
several groups have successfully started to search for
microlensing events in M31. The quantitative analy-
sis of these surveys is more complicated than for the
surveys targeting the Magellanic Clouds. However, the
M31 experiments are equally sensitive to both MA-
CHOs in the halo of our Milky Way and in that of M31.
Therefore, these surveys promise to finally resolve the
question of whether part of the dark matter consists of
MACHOs.

Annihilation Radiation due to Dark Matter? The
511 keV annihilation radiation from the Galactic bulge,
discussed in Sect. 2.3.4 above, has been suggested to
be related to dark matter particles. Depending on the
density of dark matter in the center of the Galaxy, as
well as on the cross-section of the constituent particles
of the dark matter (if it is indeed due to elementary
particles), these particles can annihilate. In this process,
positrons might be released which can then annihilate

with the electrons of the interstellar medium. However,
in order for this to be the source of the 511 keV line
radiation, the dark matter particles must have rather
“exotic” properties.

2.6 The Galactic Center

The Galactic center (GC, see Fig. 2.33) is not observable
at optical wavelengths, because the extinction in the V-
band is ∼ 28 mag. Our information about the GC has

Fig. 2.33. Optical image in the direction of the Galactic center.
Marked are some Messier objects: gas nebulae such as M8,
M16, M17, M20; open star clusters such as M6, M7, M18,
M21, M23, M24, and M25; globular clusters such as M9, M22,
M28, M54, M69, and M70. Also marked is the Galactic center,
as well as the Galactic plane, which is indicated by a line.
Baade’s Window can be easily recognized, a direction in which
the extinction is significantly lower than in nearby directions,
so that a clear increase in stellar density is visible there. This
is the reason why the microlensing observations towards the
Galactic center were preferably done in Baade’s Window
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been obtained from radio-, IR-, and X-ray radiation.
Since the GC is nearby, and thus serves as a prototype
of the central regions of galaxies, its observation is of
great interest for our understanding of the processes
taking place in the centers of galaxies.

2.6.1 Where is the Galactic Center?

The question of where the center of our Milky Way is
located is by no means trivial, because the term “center”
is in fact not well-defined. Is it the center of mass of the
Galaxy, or the point around which the stars and the gas
are orbiting? And how could we pinpoint this “center”
accurately? Fortunately, the center can nevertheless be
localized because, as we will see below, a distinct source
exists that is readily identified as the Galactic center.

Radio observations in the direction of the GC show
a relatively complex structure, as is displayed in Fig.
2.34.

A central disk of HI gas exists at radii from several
100 pc up to about 1 kpc. Its rotational velocity yields
a mass estimate M(R) for R � 100 pc. Furthermore,
radio filaments are observed which extend perpendicu-
larly to the Galactic plane, and also a large number of
supernova remnants are seen. Within about 2 kpc from
the center, roughly 3×107 M� of atomic hydrogen is
found. Optical images show regions close to the GC
towards which the extinction is significantly lower. The
best known of these is Baade’s window – most of the
microlensing surveys towards the bulge are conducted
in this region. In addition, a fairly large number of glob-
ular clusters and gas nebulae are observed towards the
central region. X-ray images (Fig. 2.35) show numerous
X-ray binaries, as well as diffuse emission by hot gas.

The innermost 8 pc contain the radio source Sgr A
(Sagittarius A), which itself consists of different
components:

• A circumnuclear molecular ring, shaped like a torus,
which extends between radii of 2 pc� R � 8 pc and
is inclined by about 20◦ relative to the Galactic
disk. The rotational velocity of this ring is about
∼ 110 km/s, nearly independent of R. This ring has
a sharp inner boundary; this cannot be the result of an
equilibrium flow, because internal turbulent motions
would quickly (on a time-scale of ∼ 105 yr) erase
this boundary. Probably, it is evidence of an ener-

getic event that occurred in the Galactic center within
the past ∼ 105 years. This interpretation is also sup-
ported by other observations, e.g., by a clumpiness
in density and temperature.

• Sgr A East, a non-thermal (synchrotron) source of
shell-like structure. Presumably this is a supernova
remnant (SNR), with an age between 100 and 5000
years.

• Sgr A West is located about 1.′5 away from Sgr
A East. It is a thermal source, an unusual HII region
with a spiral-like structure.

• Sgr A∗ is a strong compact radio source close to the
center of Sgr A West. Recent observations with mm-
VLBI show that its extent is smaller than 3 AU. The
radio luminosity is L rad ∼ 2×1034 erg/s. Except for
the emission in the mm and cm domain, Sgr A∗ is
a weak source. Since other galaxies often have a com-
pact radio source in their center, Sgr A∗ is an excellent
candidate for being the center of our Milky Way.

Through observations of stars which contain a radio
maser14 source, the astrometry of the GC in the radio
domain was matched to that in the IR, i.e., the position
of Sgr A∗ is also known in the IR.15 The uncertainty in
the relative positions between radio and IR observations
is only ∼ 30 mas – at a presumed distance of the GC of
8 kpc, one arcsecond corresponds to 0.0388 pc, or about
8000 AU.

2.6.2 The Central Star Cluster

Density Distribution. Observations in the K-band
(λ ∼ 2 μm) show a compact star cluster that is cen-
tered on Sgr A∗. Its density behaves like ∝ r−1.8 in the
distance range 0.1 pc� r � 1 pc. The number density

14 Masers are regions of stimulated non-thermal emission which show
a very high surface brightness. The maser phenomenon is similar to
that of lasers, except that the former radiate in the microwave regime
of the spectrum. Masers are sometimes found in the atmospheres of
active stars.
15 One problem in the combined analysis of data taken in different
wavelength bands is that astrometry in each individual wavelength
band can be performed with a very high precision – e.g., individu-
ally in the radio and the IR band – however, the relative astrometry
between these bands is less well known. To stack maps of different
wavelength precisely “on top of each other”, knowledge of exact rel-
ative astrometry is essential. This can be gained if a population of
compact sources exists that is observable in both wavelength domains
and for which accurate positions can be measured.
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Fig. 2.34. Left: A VLA wide-field image of the region around
the Galactic center, with a large number of sources identified.
Upper right: a 20 cm continuum VLA image of Sgr A East,

where the red dot marks Sgr A∗. Center right: Sgr A West,
as seen in a 6-cm continuum VLA image. Lower right: the
circumnuclear ring in HCN line emission

of stars in its inner region is so large that close stellar
encounters are common. It can be estimated that a star
has a close encounter about every ∼ 106 years. Thus, it
is expected that the distribution of the stars is “thermal-
ized”, which means that the local velocity distribution
of the stars is the same everywhere, i.e., it is close to
a Maxwellian distribution with a constant velocity dis-
persion. For such an isothermal distribution we expect

a density profile n ∝ r−2, which is in good agreement
with the observation.

However, another observational result yields a strik-
ing and interesting discrepancy with respect to the idea
of an isothermal distribution. Instead of the expected
constant dispersion σ of the radial velocities of the stars,
a strong radial dependence is observed: σ increases to-
wards smaller r. For example, one finds σ ∼ 55 km/s at
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Fig. 2.35. Mosaic of X-ray images of the Galactic center, taken
by the Chandra satellite. The image covers an area of about
130 pc×300 pc (48′ ×120′). The actual GC, in which a su-
permassive black hole is suspected to reside, is located in
the white region near the center of the image. Furthermore,
on this image hundreds of white dwarfs, neutron stars, and

black holes are visible that radiate in the X-ray regime due
to accretion phenomena (accreting X-ray binaries). Colors
code the photon energy, from low energy (red) to high energy
(blue). The diffuse emission, predominantly red in this im-
age, originates in diffuse hot gas with a temperature of about
T ∼ 107 K

r = 5 pc, but σ ∼ 180 km/s at r = 0.15 pc. This discrep-
ancy indicates that the gravitational potential in which
the stars are moving is generated not only by themselves.
According to the virial theorem, the strong increase of
σ for small r implies the presence of a central mass
concentration in the star cluster.

Proper Motions. Since the middle of the 1990s, proper
motions of stars in this star cluster have also been mea-
sured, using the methods of speckle interferometry and
adaptive optics. These produce images at diffraction-
limited angular resolution, about ∼ 0′′. 15 in the K-band
at the ESO/NTT (3.5 m) and about ∼ 0′′. 05 at the Keck
(10 m). Proper motions are currently known for about
1000 stars within ∼ 10′′ of Sgr A∗. This breakthrough
was achieved independently by two groups, whose re-
sults are in excellent agreement. For more than 20 stars
within ∼ 5′′ of Sgr A∗ both proper motions and radial ve-
locities, and therefore their three-dimensional velocities
are known. The radial and tangential velocity disper-
sions resulting from these measurements are in good
mutual agreement. Thus, it can be concluded that a ba-
sically isotropic distribution of the stellar orbits exists,
simplifying the study of the dynamics of this stellar
cluster.

The Origin of Very Massive Stars near the Galactic
Center. One of the unsolved problems is the presence
of these massive stars close to the Galactic center. One

finds that most of the innermost stars are main-sequence
B-stars. Their small lifetime of ∼ 108 yr probably im-
plies that these stars were born close to the Galactic
center. This, however, is very difficult to understand.
Both the strong tidal gravitational field of the central
black hole (see below) and the presumably strong mag-
netic field in this region will prevent the “standard”
star-formation picture of a collapsing molecular cloud:
the former effect tends to disrupt such a cloud while
the latter stabilizes it against gravitational contraction.
Several solutions to this problem have been suggested,
such as a scenario in which the stars are born at larger
distances from the Galactic center and then brought
there by dynamical processes, involving strong gravita-
tional scattering events. However, none of these models
appears satisfactory at present.

2.6.3 A Black Hole in the Center of the Milky Way

Some stars within 0′′. 6 of Sgr A∗ have a proper motion
of more than 1000 km/s, as shown in Fig. 2.36. For
instance, the star S1 has a separation of only 0′′. 1 from
Sgr A∗ and shows proper motion of 1470 km/s at the
epoch displayed in Fig. 2.36. Combining the velocity
dispersions in radial and tangential directions reveals
it to be increasing according to the Kepler law for the
presence of a point mass, σ ∝ r−1/2 down to r ∼ 0.01 pc.

By now, the acceleration of some stars in the star
cluster has also been measured, i.e., the change of proper
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Fig. 2.36. Proper motions of stars in the
central region of the GC. The differently
colored arrows denote different types of
stars. The small image shows the proper
motions in the Sgr A∗ star cluster within half
an arcsecond from Sgr A∗; the fastest star
(S1) has a proper motion of ∼ 1500 km/s
(from Genzel, 2000, astro-ph/0008119

motion with time. From these measurements Sgr A∗ in-
deed emerges as the focus of the orbits and thus as the
center of mass. Figure 2.37 shows the orbits of some
stars around Sgr A∗. The star S2 could be observed
during a major fraction of its orbit, where a maximum
velocity of more than 5000 km/s was found. The eccen-
tricity of the orbit of S2 is 0.87, and its orbital period
is ∼ 15.7 yr. The minimum separation of this star from
Sgr A∗ is only 6×10−4 pc, or about 100 AU.

From the observed kinematics, the enclosed mass
M(r) can be calculated, see Fig. 2.38. The correspond-
ing analysis yields that M(r) is basically constant over
the range 0.01 pc � r � 0.5 pc. This exciting result
clearly indicates the presence of a point mass, for which
a mass of

M = (3.6±0.4)×106 M� (2.91)

is determined. For larger radii, the mass of the star clus-
ter dominates; it nearly follows an isothermal density
distribution with a core radius of ∼ 0.34 pc and a central
density of 3.6×106 M�/pc3. This result is also compat-
ible with the kinematics of the gas in the center of the
Galaxy. However, stars are much better kinematic indi-
cators because gas can be affected by magnetic fields,
viscosity, and various other processes besides gravity.

The kinematics of stars in the central star cluster
of the Galaxy shows that our Milky Way contains
a mass concentration in which ∼ 3×106 M� are
concentrated within a region smaller than 0.01 pc.
This is most probably a black hole in the center
of our Galaxy at the position of the compact radio
source Sgr A∗.

Why a Black Hole? We have interpreted the central
mass concentration as a black hole; this requires some
further explanation:

• The energy for the central activity in quasars, radio
galaxies, and other AGNs is produced by accretion of
gas onto a supermassive black hole (SMBH); we will
discuss this in more detail in Sect. 5.3. Thus we know
that at least a subclass of galaxies contains a central
SMBH. Furthermore, we will see in Sect. 3.5 that
many “normal” galaxies, especially ellipticals, har-
bor a black hole in their center. The presence of
a black hole in the center of our own Galaxy would
therefore not be something unusual.

• To bring the radial mass profile M(r) into accordance
with an extended mass distribution, its density dis-
tribution must be very strongly concentrated, with
a density profile steeper than ∝ r−4; otherwise the
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Fig. 2.37. At left, the or-
bit of the star S2 around
Sgr A∗ is shown as de-
termined by two different
observing campaigns. The
position of Sgr A∗ is
indicated by the black cir-
cled cross. The individual
points along the orbit are
identified by the epoch
of the observation. The
right-hand image shows
the orbits of some other
stars for which accelera-
tions have already been
measured

mass profile M(r) would not be as flat as observed in
Fig. 2.38. Hence, this hypothetical mass distribution
must be vastly different from the expected isother-
mal distribution which has a mass profile ∝ r−2, as
discussed in Sect. 2.6.2. However, observations of
the stellar distribution provide no indication of an
inwardly increasing density of the star cluster with
such a steep profile.

• Even if such an ultra-dense star cluster (with a central
density of � 4×1012 M�/pc3) were present it could
not be stable, but instead would dissolve within ∼ 107

years through frequent stellar collisions.
• Sgr A∗ itself has a proper motion of less than

20 km/s. It is therefore the dynamic center of
the Milky Way. Due to the large velocities of its
surrounding stars, one would derive a mass of
M � 103 M� for the radio source, assuming equipar-
tition of energy (see also Sect. 2.6.5). Together with
the tight upper limits for its extent, a lower limit for
the density of 1018 M�/pc3 can then be obtained.

Following the stellar orbits in forthcoming years will
further complete our picture of the mass distribution in
the GC.

We have to emphasize at this point that the gravi-
tational effect of the black hole on the motion of stars
and gas is constrained to the innermost region of the

Milky Way. As one can see from Fig. 2.38, the gravita-
tional field of the SMBH dominates the rotation curve
of the Galaxy only for R� 2 pc – this is the very reason
why the detection of the SMBH is so difficult. At larger
radii, the presence of the SMBH is of no relevance for
the rotation curve of the Milky Way.

2.6.4 Flares from the Galactic Center

In 2000, the X-ray satellite Chandra discovered a power-
ful X-ray flare from Sgr A∗. This event lasted for about
three hours, and the X-ray flux increased by a factor
of 50 during this period. XMM-Newton confirmed the
existence of X-ray flares, recording one where the lu-
minosity increased by a factor of ∼ 200. Combining the
flare duration of a few hours with the short time-scale
of variability of a few minutes indicates that the emis-
sion must originate from a very small source, not larger
than ∼ 1013 cm in size.

Monitoring Sgr A∗ in the NIR, flare emission was
also found in this spectral regime. These NIR flares
are more frequent than in X-rays, occurring several
times per day. Furthermore, the NIR emission seems
to show some sort of periodicity of ∼ 17 min, which is
most likely to be identified with an orbital motion of
the emitting material around the SMBH. Indeed, a re-
analysis of the X-ray light curve shows some hint of
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Fig. 2.38. Determination of the mass M(r) within a radius r
from Sgr A∗, as measured by the radial velocities and proper
motions of stars in the central cluster. Mass estimates obtained
from individual stars (S14, S2, S12) are given by the points
with error bars for small r. The other data points were derived
from the kinematic analysis of the observed proper motions
of the stars, where different methods have been applied. As
can be seen, these methods produce results that are mutu-

ally compatible, so that the mass profile plotted here can be
regarded to be robust. The solid curve is the best-fit model,
representing a point mass of 2.9×106 M� plus a star cluster
with a central density of 3.6×106 M�/pc3 (the mass profile
of this star cluster is indicated by the dash-dotted curve). The
dashed curve shows the mass profile of a hypothetical clus-
ter with a very steep profile, n ∝ r−5, and a central density of
2.2×1017 M� pc−3

the same modulation time-scale. Observing the Galac-
tic center simultaneously in the NIR and the X-rays
revealed a clear correlation of the corresponding light
curves; for example, simultaneous flares were found in
these two wavelength regimes. These flares have sim-
ilar light profiles, indicating a similar origin of their
radiation. The consequences of these observations for
the nature of the central black hole will be discussed
in Sect. 5.4.6, after we have introduced the concept of
black holes in a bit more detail. Flares were also ob-
served at mm-wavelengths; their time-scale appears to
be longer than that at higher frequencies, as expected

if the emission comes from a more extended source
component.

2.6.5 The Proper Motion of Sgr A∗

From a series of VLBI observations of the position of
Sgr A∗, covering eight years, the proper motion of this
compact radio source was measured with very high pre-
cision. To do this, the position of Sgr A∗ was determined
relative to two compact extragalactic radio sources. Due
to their large distances these are not expected to show
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any proper motion, and the VLBI measurements show
that their separation vector is indeed constant over time.
The position of Sgr A∗ over the observing period is
plotted in Fig. 2.39.

From the plot, we can conclude that the observed
proper motion of Sgr A∗ is essentially parallel to the
Galactic plane. The proper motion perpendicular to the
Galactic plane is about 0.2 mas/yr, compared to the
proper motion in the Galactic plane of 6.4 mas/yr. If
R0 = (8.0±0.5) kpc is assumed for the distance to the
GC, this proper motion translates into an orbital velocity
of (241±15) km/s, where the uncertainty is dominated
by the exact value of R0 (the error in the measurement
alone would yield an uncertainty of only 1 km/s). This
proper motion is easily explained by the Solar orbital

Fig. 2.39. The position of Sgr A∗ at different epochs, relative
to the position in 1996. To a very good approximation the
motion is linear, as indicated by the dashed best-fit straight
line. In comparison, the solid line shows the orientation of the
Galactic plane

motion around the GC, i.e., this measurement contains
no hint of a non-zero velocity of the radio source Sgr A∗
itself. In fact, the small deviation of the proper mo-
tion from the orientation of the Galactic plane can be
explained by the peculiar velocity of the Sun relative
to the LSR (see Sect. 2.4.1). If this is taken into ac-
count, a velocity perpendicular to the Galactic disk of
v⊥ = (−0.4±0.9) km/s is obtained for Sgr A∗. The
component of the orbital velocity within the disk has
a much larger uncertainty because we know neither R0

nor the rotational velocity V0 of the LSR very precisely.
The small upper limit for v⊥ suggests, however, that the
motion in the disk should also be very small. Under the
(therefore plausible) assumption that Sgr A∗ has no pe-
culiar velocity, the ratio R0/V0 can be determined from
these measurements with an as yet unmatched precision.

What also makes this observation so impressive is
that from it we can directly derive a lower limit for the
mass of Sgr A∗. Since this radio source is surrounded
by ∼ 106 stars within a sphere of radius ∼ 1 pc, the net
acceleration towards the center is not vanishing, even in
the case of a statistically isotropic distribution of stars.
Rather, due to the discrete nature of the mass distribu-
tion, a stochastic force exists that changes with time
because of the orbital motion of the stars. The radio
source is accelerated by this force, causing a motion
of Sgr A∗ which becomes larger the smaller the mass
of the source. The very strong limits to the velocity of
Sgr A∗ enable us to derive a lower limit for its mass of
0.4×106 M�. This mass limit is significantly lower than
the mass of the SMBH that was derived from the stellar
orbits, but it is the mass of the radio source itself. Al-
though we have excellent reasons to assume that Sgr A∗
coincides with the SMBH, this new observation is the
first proof for a large mass of the radio source itself.

2.6.6 Hypervelocity Stars in the Galaxy

Discovery. In 2005, a Galactic star was discovered
which travels with a velocity of at least 700 km/s rela-
tive to the Galactic rest-frame. This B-star has a distance
of ∼ 110 kpc from the Galactic center, and its actual
space velocity depends on its transverse motion which
has not be yet been measured, due to the large distance of
the object from us. The velocity of this star is so large
that it exceeds the escape velocity from the Galaxy;
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hence, this star is gravitationally unbound to the Milky
Way. Within one year after this first discovery, four
more such hypervelocity stars have been discovered, all
of them early-type stars (O- or B-stars) with Galactic
rest-frame velocities in excess of 500 km/s. They will
all escape the gravitational potential of the Galaxy.

Acceleration of Hypervelocity Stars. The fact that the
hypervelocity stars are gravitationally unbound to the
Milky Way implies that they must have been accelerated
very recently, i.e., less than a crossing time through the
Galaxy ago. In addition, since they are early-type stars,
they must have been accelerated within the lifetime of
such stars. The acceleration mechanism must be of grav-
itational origin and is related to the dynamical instability
of N-body systems, with N > 2. A pair of objects will
orbit in their joint gravitational field, either on bound or-
bits (ellipses) or unbound ones (gravitational scattering
on hyperbolic orbits); in the former case, the system is
stable and the two masses will orbit around each other
literally forever. If more than two masses are involved
this is no longer the case – such a system is inherently
unstable. Consider three masses, initially bound to each
other, orbiting around their center-of-mass. In general,
their orbits will not be ellipses but are more compli-
cated; in particular, they are not periodic. Such a system
is, mathematically speaking, chaotic. A chaotic system
is characterized by the property that the state of a sys-
tem at time t depends very sensitively on the initial
conditions set at time ti < t. Whereas for a dynamically
stable system the positions and velocities of the masses
at time t are changed only a little if their initial con-
ditions are slightly varied (e.g., by giving one of the
masses a slightly larger velocity), in a chaotic, dynam-
ically unstable system even tiny changes in the initial
conditions can lead to completely different states at later
times. Any N-body system with N > 2 is dynamically
unstable.

Back to our three-body system. The three masses
may orbit around each other for an extended period of

time, but their gravitational interaction may then change
the state of the system suddenly, in that one of the three
masses attains a sufficiently high velocity relative to the
other two and may escape to infinity, whereas the other
two masses form a binary system. What was a bound
system initially may become an unbound system later
on. This behavior may appear unphysical at first sight –
where does the energy come from to eject one of the
stars? Is this process violating energy conservation?

Of course not! The trick lies in the properties of
gravity: a binary has negative binding energy, and the
more negative, the tighter the binary orbit. By three-
body interactions, the orbit of two masses can become
tighter (one says that the binary “hardens”), and the
corresponding excess energy is transferred to the third
mass which may then become gravitationally unbound.
In fact, a single binary of compact stars can in princi-
ple take up all the binding energy of a star cluster and
“evaporate” all other stars.

This discussion then leads to the explanation of hy-
pervelocity stars. The characteristic escape velocity of
the “third mass” will be the orbital velocity of the three-
body system before the escape. The only place in our
Milky Way where orbital velocities are as high as that
observed for the hypervelocity stars is the Galactic cen-
ter. In fact, the travel time of a star with current velocity
of ∼ 600 km/s from the Galactic center to Galactro-
centric distances of ∼ 80 kpc is of order 108 yr, slightly
shorter than the main-sequence lifetime of a B-star. Fur-
thermore, most of the bright stars in the central 1′′ of
the Galactic center region are B-stars. Therefore, the
immediate environment of the central black hole is the
natural origin for these hypervelocity stars. Indeed, long
before their discovery the existence of such stars was
predicted. When a binary star gets close to the black
hole, this three-body interaction can lead to the ejec-
tion of one of the two stars into an unbound orbit. Thus,
the existence of hypervelocity stars can be considered
as an additional piece of evidence for the presence of
a central black hole in our Galaxy.




