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3. The World of Galaxies
The insight that our Milky Way is just one of many gal-
axies in the Universe is less than 100 years old, despite
the fact that many had already been known for a long
time. The catalog by Charles Messier (1730–1817), for
instance, lists 103 diffuse objects. Among them M31,
the Andromeda galaxy, is listed as the 31st entry in
the Messier catalog. Later, this catalog was extended
to 110 objects. John Dreyer (1852–1926) published
the New General Catalog (NGC) that contains nearly
8000 objects, most of them galaxies. In 1912, Vesto
Slipher found that the spiral nebulae are rotating, using
spectroscopic analysis. But the nature of these extended
sources, then called nebulae, was still unknown at that
time; it was unclear whether they are part of our Milky
Way or outside it.

The year 1920 saw a public debate (the Great Debate)
between Harlow Shapley and Heber Curtis. Shapley
believed that the nebulae are part of our Milky Way,
whereas Curtis was convinced that the nebulae must
be objects located outside the Galaxy. The arguments

Fig. 3.1. Galaxies occur in differ-
ent shapes and sizes, and often they
are grouped together in groups or
clusters. This cluster, ACO 3341, at
a redshift of z = 0.037, contains nu-
merous galaxies of different types
and luminosities

which the two opponents brought forward were partly
based on assumptions which later turned out to be in-
valid, as well as on incorrect data. We will not go into the
details of their arguments which were partially linked
to the assumed size of the Milky Way since, only a few
years later, the question of the nature of the nebulae was
resolved.

In 1925, Edwin Hubble discovered Cepheids in An-
dromeda (M31). Using the period-luminosity relation
for these pulsating stars (see Sect. 2.2.7) he derived
a distance of 285 kpc. This value is a factor of ∼ 3
smaller than the distance of M31 known today, but it
provided clear evidence that M31, and thus also other
spiral nebulae, must be extragalactic. This then imme-
diately implied that they consist of innumerable stars,
like our Milky Way. Hubble’s results were considered
conclusive by his contemporaries and marked the begin-
ning of extragalactic astronomy. It is not coincidental
that at this time George Hale began to arrange the fund-
ing for an ambitious project. In 1928 he obtained six
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million dollars for the construction of the 5-m telescope
on Mt. Palomar which was completed in 1949.

This chapter is about galaxies. We will confine the
consideration here to “normal” galaxies in the local
Universe; galaxies at large distances, some of which are
in a very early evolutionary state, will be discussed in
Chap. 9, and active galaxies, like quasars for example,
will be discussed later in Chap. 5.

3.1 Classification

The classification of objects depends on the type of ob-
servation according to which this classification is made.
This is also the case for galaxies. Historically, optical
photometry was the method used to observe galaxies.
Thus, the morphological classification defined by Hub-
ble is still the best-known today. Besides morphological
criteria, color indices, spectroscopic parameters (based
on emission or absorption lines), the broad-band spec-
tral distribution (galaxies with/without radio- and/or
X-ray emission), as well as other features may also be
used.

3.1.1 Morphological Classification:
The Hubble Sequence

Figure 3.2 shows the classification scheme defined by
Hubble. According to this, three main types of galaxies
exist:

• Elliptical galaxies (E’s) are galaxies that have nearly
elliptical isophotes1 without any clearly defined

1Isophotes are contours along which the surface brightness of
a sources is constant. If the light profile of a galaxy is elliptical,
then its isophotes are ellipses.

Fig. 3.2. Hubble’s “tuning fork” for galaxy
classification

structure. They are subdivided according to their
ellipticity ε ≡ 1−b/a, where a and b denote the
semimajor and the semiminor axes, respectively. El-
lipticals are found over a relatively broad range in
ellipticity, 0 ≤ ε� 0.7. The notation En is commonly
used to classify the ellipticals with respect to ε,
with n = 10ε; i.e., an E4 galaxy has an axis ratio
of b/a = 0.6, and E0’s have circular isophotes.

• Spiral galaxies consist of a disk with spiral arm struc-
ture and a central bulge. They are divided into two
subclasses: normal spirals (S’s) and barred spirals
(SB’s). In each of these subclasses, a sequence is de-
fined that is ordered according to the brightness ratio
of bulge and disk, and that is denoted by a, ab, b,
bc, c, cd, d. Objects along this sequence are often re-
ferred to as being either an early-type or a late-type;
hence, an Sa galaxy is an early-type spiral, and an
SBc galaxy is a late-type barred spiral. We stress ex-
plicitly that this nomenclature is not a statement of
the evolutionary stage of the objects but is merely
a nomenclature of purely historical origin.

• Irregular galaxies (Irr’s) are galaxies with only weak
(Irr I) or no (Irr II) regular structure. The classi-
fication of Irr’s is often refined. In particular, the
sequence of spirals is extended to the classes Sdm,
Sm, Im, and Ir (m stands for Magellanic; the Large
Magellanic Cloud is of type SBm).

• S0 galaxies are a transition between ellipticals and
spirals. They are also called lenticulars as they are
lentil-shaped galaxies which are likewise subdivided
into S0 and SB0, depending on whether or not they
show a bar. They contain a bulge and a large en-
veloping region of relatively unstructured brightness
which often appears like a disk without spiral arms.
Ellipticals and S0 galaxies are referred to as early-
type galaxies, spirals as late-type galaxies. As before,



3.1 Classification

89

these names are only historical and are not meant to
describe an evolutionary track!

Obviously, the morphological classification is at least
partially affected by projection effects. If, for instance,
the spatial shape of an elliptical galaxy is a triaxial
ellipsoid, then the observed ellipticity ε will depend on
its orientation with respect to the line-of-sight. Also,
it will be difficult to identify a bar in a spiral that is
observed from its side (“edge-on”).

Besides the aforementioned main types of galaxy
morphologies, others exist which do not fit into the
Hubble scheme. Many of these are presumably caused
by interaction between galaxies (see below). Further-
more, we observe galaxies with radiation characteristics
that differ significantly from the spectral behavior of
“normal” galaxies. These galaxies will be discussed
next.

3.1.2 Other Types of Galaxies

The light from “normal” galaxies is emitted mainly by
stars. Therefore, the spectral distribution of the radiation
from such galaxies is in principle a superposition of
the spectra of their stellar population. The spectrum of
stars is, to a first approximation, described by a Planck
function (see Appendix A) that depends only on the
star’s surface temperature. A typical stellar population
covers a temperature range from a few thousand Kelvin
up to a few tens of thousand Kelvin. Since the Planck
function has a well-localized maximum and from there
steeply declines to both sides, most of the energy of
such “normal” galaxies is emitted in a relatively narrow

Fig. 3.3. The spectrum of a quasar (3C273)
in comparison to that of an elliptical gal-
axy. While the radiation from the elliptical
is concentrated in a narrow range span-
ning less than two decades in frequency,
the emission from the quasar is observed
over the full range of the electromagnetic
spectrum, and the energy per logarithmic
frequency interval is roughly constant. This
demonstrates that the light from the quasar
cannot be interpreted as a superposition of
stellar spectra, but instead has to be gener-
ated by completely different sources and by
different radiation mechanisms

frequency interval that is located in the optical and NIR
sections of the spectrum.

In addition to these, other galaxies exist whose spec-
tral distribution cannot be described by a superposition
of stellar spectra. One example is the class of active
galaxies which generate a significant fraction of their
luminosity from gravitational energy that is released in
the infall of matter onto a supermassive black hole, as
was mentioned in Sect. 1.2.4. The activity of such ob-
jects can be recognized in various ways. For example,
some of them are very luminous in the radio and/or
in the X-ray portion of the spectrum (see Fig. 3.3), or
they show strong emission lines with a width of several
thousand km/s if the line width is interpreted as due
to Doppler broadening, i.e., Δλ/λ = Δv/c. In many
cases, by far the largest fraction of luminosity is pro-
duced in a very small central region: the active galactic
nucleus (AGN) that gave this class of galaxies its name.
In quasars, the central luminosity can be of the order of
∼ 1013L�, about a thousand times as luminous as the to-
tal luminosity of our Milky Way. We will discuss active
galaxies, their phenomena, and their physical properties
in detail in Chap. 5.

Another type of galaxy also has spectral properties
that differ significantly from those of “normal” galaxies,
namely the starburst galaxies. Normal spiral galaxies
like our Milky Way form new stars at a star-formation
rate of ∼ 3M�/yr which can be derived, for instance,
from the Balmer lines of hydrogen generated in the
HII regions around young, hot stars. By contrast, el-
liptical galaxies show only marginal star formation or
none at all. However, there are galaxies which have
a much higher star-formation rate, reaching values of
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100M�/yr and more. If many young stars are formed we
would expect these starburst galaxies to radiate strongly
in the blue or in the UV part of the spectrum, corre-
sponding to the maximum of the Planck function for
the most massive and most luminous stars. This ex-
pectation is not fully met though: star formation takes
place in the interior of dense molecular clouds which
often also contain large amounts of dust. If the major
part of star formation is hidden from our direct view
by layers of absorbing dust, these galaxies will not be
very prominent in blue light. However, the strong ra-
diation from the young, luminous stars heats the dust;
the absorbed stellar light is then emitted in the form of
thermal dust emission in the infrared and submillimeter
regions of the electromagnetic spectrum – these gal-
axies can thus be extremely luminous in the IR. They
are called ultra-luminous infrared galaxies (ULIRGs).
We will describe the phenomena of starburst galaxies
in more detail in Sect. 9.2.1. Of special interest is the
discovery that the star-formation rate of galaxies seems
to be closely related to interactions between galaxies
– many ULIRGs are strongly interacting galaxies (see
Fig. 3.4).

Fig. 3.4. This mosaic of nine HST images shows differ-
ent ULIRGs in collisional interaction between two or more
galaxies

3.2 Elliptical Galaxies

3.2.1 Classification

The general term “elliptical galaxies” (or ellipticals, for
short) covers a broad class of galaxies which differ in
their luminosities and sizes – some of them are displayed
in Fig. 3.5. A rough subdivision is as follows:

• Normal ellipticals. This class includes giant ellipti-
cals (gE’s), those of intermediate luminosity (E’s),
and compact ellipticals (cE’s), covering a range in
absolute magnitudes from MB ∼ −23 to MB ∼ −15.
In addition, S0 galaxies are often assigned to this
class of early-type galaxies.

• Dwarf ellipticals (dE’s). These differ from the cE’s
in that they have a significantly smaller surface
brightness and a lower metallicity.

• cD galaxies. These are extremely luminous (up to
MB ∼ −25) and large (up to R � 1 Mpc) galaxies
that are only found near the centers of dense clusters
of galaxies. Their surface brightness is very high
close to the center, they have an extended diffuse
envelope, and they have a very high M/L ratio.

• Blue compact dwarf galaxies. These “blue compact
dwarfs” (BCD’s) are clearly bluer (with 〈B − V 〉 be-
tween 0.0 and 0.3) than the other ellipticals, and
contain an appreciable amount of gas in comparison.

• Dwarf spheroidals (dSph’s) exhibit a very low lu-
minosity and surface brightness. They have been
observed down to MB ∼ −8. Due to these proper-
ties, they have thus far only been observed in the
Local Group.

Thus elliptical galaxies span an enormous range (more
than 106) in luminosity and mass, as is shown by the
compilation in Table 3.1.

3.2.2 Brightness Profile

The brightness profiles of normal E’s and cD’s follow
a de Vaucouleurs profile (see (2.39) or (2.41), respec-
tively) over a wide range in radius, as is demonstrated
in Fig. 3.6. The effective radius Re is strongly corre-
lated with the absolute magnitude MB, as can be seen
in Fig. 3.7, with rather little scatter. In comparison, the
dE’s and the dSph’s clearly follow a different distribu-
tion. Owing to the relation (2.42) between luminosity,
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Fig. 3.5. Different types of elliptical galaxies. Upper left: the
cD galaxy M87 in the center of the Virgo galaxy cluster;
upper right: Centaurus A, a giant elliptical galaxy with a very
distinct dust disk and an active galactic nucleus; lower left:

the galaxy Leo I belongs to the nine known dwarf spheroidals
in the Local Group; lower right: NGC 1705, a dwarf irregular,
shows indications of massive star formation – a super star
cluster and strong galactic winds
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Table 3.1. Characteristic values for elliptical galaxies. D25
denotes the diameter at which the surface brightness has de-
creased to 25 B-mag/arcsec2, SN is the “specific frequency”,
a measure for the number of globular clusters in relation to the

visual luminosity (see (3.13)), and M/L is the mass-to-light
ratio in Solar units (the values of this table are taken from the
book by Carroll & Ostlie, 1996)

S0 cD E dE dSph BCD

MB −17 to −22 −22 to −25 −15 to −23 −13 to −19 −8 to −15 −14 to −17

M(M�) 1010 to 1012 1013 to 1014 108 to 1013 107 to 109 107 to 108 ∼ 109

D25 (kpc) 10–100 300–1000 1–200 1–10 0.1–0.5 < 3

〈M/LB〉 ∼ 10 > 100 10–100 1–10 5–100 0.1–10

〈SN〉 ∼ 5 ∼ 15 ∼ 5 4.8±1.0 – –

Fig. 3.6. Surface brightness profile of the galaxy NGC 4472,
fitted by a de Vaucouleurs profile. The de Vaucouleurs pro-
file describes a linear relation between the logarithm of the
intensity (i.e., linear on a magnitude scale) and r1/4; for this
reason, it is also called an r1/4-law

effective radius and central surface brightness, an anal-
ogous relation exists for the average surface brightness
μave (unit: B−mag/arcsec2) within Re as a function of
MB. In particular, the surface brightness in normal E’s
decreases with increasing luminosity, while it increases
for dE’s and dSph’s.

Yet another way of expressing this correlation is
by eliminating the absolute luminosity, thus obtain-
ing a relation between effective radius Re and surface
brightness μave. This form is then called the Kormendy
relation.

The de Vaucouleurs profile provides the best fits for
normal E’s, whereas for E’s with exceptionally high (or
low) luminosity the profile decreases more slowly (or

rapidly) for larger radii. The profile of cD’s extends
much farther out and is not properly described by a de
Vaucouleurs profile (Fig. 3.8), except in its innermost
part. It appears that cD’s are similar to E’s but embed-
ded in a very extended, luminous halo. Since cD’s are
only found in the centers of massive clusters of galax-
ies, a connection must exist between this morphology
and the environment of these galaxies. In contrast to
these classes of ellipticals, diffuse dE’s are often better
described by an exponential profile.

3.2.3 Composition of Elliptical Galaxies

Except for the BCD’s, elliptical galaxies appear red
when observed in the optical, which suggests an old
stellar population. It was once believed that ellipticals
contain neither gas nor dust, but these components have
now been found, though at a much lower mass-fraction
than in spirals. For example, in some ellipticals hot
gas (∼ 107 K) has been detected by its X-ray emission.
Furthermore, Hα emission lines of warm gas (∼ 104 K)
have been observed, as well as cold gas (∼ 100 K) in the
HI (21-cm) and CO molecular lines. Many of the nor-
mal ellipticals contain visible amounts of dust, partially
manifested as a dust disk. The metallicity of ellipticals
and S0 galaxies increases towards the galaxy center, as
derived from color gradients. Also in S0 galaxies the
bulge appears redder than the disk. The Spitzer Space
Telescope, launched in 2003, has detected a spatially
extended distribution of warm dust in S0 galaxies, or-
ganized in some sort of spiral structure. Cold dust has
also been found in ellipticals and S0 galaxies.

This composition of ellipticals clearly differs from
that of spiral galaxies and needs to be explained by mod-
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Fig. 3.7. Left panel: effective radius Re versus absolute mag-
nitude MB; the correlation for normal ellipticals is different
from that of dwarfs. Right panel: average surface brightness

μave versus MB ; for normal ellipticals, the surface bright-
ness decreases with increasing luminosity while for dwarfs it
increases

Fig. 3.8. Comparison of the brightness profile of a cD galaxy,
the central galaxy of the cluster of galaxies Abell 2670, with
a de Vaucouleurs profile. The light excess for large radii is
clearly visible

els of the formation and evolution of galaxies. We will
see later that the cosmic evolution of elliptical galaxies
is also observed to be different from that of spirals.

3.2.4 Dynamics of Elliptical Galaxies

Analyzing the morphology of elliptical galaxies raises
a simple question: Why are ellipticals not round? A sim-
ple explanation would be rotational flattening, i.e., as in
a rotating self-gravitating gas ball, the stellar distribu-

tion bulges outwards at the equator due to centrifugal
forces, as is also the case for the Earth. If this explana-
tion were correct, the rotational velocity vrot, which is
measurable in the relative Doppler shift of absorption
lines, would have to be of about the same magnitude
as the velocity dispersion of the stars σv that is mea-
surable through the Doppler broadening of lines. More
precisely, by means of stellar dynamics one can show
that for the rotational flattening of an axially symmetric,
oblate2 galaxy, the relation(

vrot

σv

)
iso

≈
√

ε

1− ε
(3.1)

has to be satisfied, where “iso” indicates the assumption
of an isotropic velocity distribution of the stars. How-
ever, for luminous ellipticals one finds that, in general,
vrot 	 σv, so that rotation cannot be the major cause of
their ellipticity (see Fig. 3.9). In addition, many ellip-
ticals are presumably triaxial, so that no unambiguous
rotation axis is defined. Thus, luminous ellipticals are
in general not rotationally flattened. For less luminous
ellipticals and for the bulges of disk galaxies, however,
rotational flattening can play an important role. The
question remains of how to explain a stable elliptical
distribution of stars without rotation.

2If a ≥ b ≥ c denote the lengths of the major axes of an ellipsoid, then
it is called an oblate spheroid (= rotational ellipsoid) if a = b > c,
whereas a prolate spheroid is specified by a > b = c. If all three axes
are different, it is called triaxial ellipsoid.
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Fig. 3.9. The rotation parameter
(

vrot
σv

)
/
(

vrot
σv

)
iso

of elliptical

galaxies, here denoted by (V/σ)∗, plotted as a function of
absolute magnitude. Dots denote elliptical galaxies, crosses
the bulges of disk galaxies

The brightness profile of an elliptical galaxy is de-
fined by the distribution of its stellar orbits. Let us
assume that the gravitational potential is given. The stars
are then placed into this potential, with the initial posi-
tions and velocities following a specified distribution. If
this distribution is not isotropic in velocity space, the re-
sulting light distribution will in general not be spherical.
For instance, one could imagine that the orbital planes
of the stars have a preferred direction, but that an equal
number of stars exists with positive and negative angu-
lar momentum Lz , so that the total stellar distribution
has no angular momentum and therefore does not rotate.
Each star moves along its orbit in the gravitational po-
tential, where the orbits are in general not closed. If an
initial distribution of stellar orbits is chosen such that the
statistical properties of the distribution of the orbits are
invariant in time, then one will obtain a stationary sys-
tem. If, in addition, the distribution is chosen such that
the respective mass distribution of the stars will generate
exactly the originally chosen gravitational potential, one

arrives at a self-gravitating equilibrium system. In gen-
eral, it is a difficult mathematical problem to construct
such self-gravitating equilibrium systems.

Relaxation Time-Scale. The question now arises
whether such an equilibrium system can also be sta-
ble in time. One might expect that close encounters of
pairs of stars would cause a noticeable disturbance in the
distribution of orbits. These pair-wise collisions could
then lead to a “thermalization” of the stellar orbits.3

To examine this question we need to estimate the time-
scale for such collisions and the changes in direction
they cause.

For this purpose, we consider the relaxation time-
scale by pair collisions in a system of N stars of mass m,
total mass M = Nm, extent R, and a mean stellar density
of n = 3N/(4πR3). We define the relaxation time trelax

as the characteristic time in which a star changes its
velocity direction by ∼ 90◦ due to pair collisions with
other stars. By simple calculation (see below), we find
that

trelax ≈ R

v

N

ln N
, (3.2)

or

trelax = tcross
N

ln N
, (3.3)

where tcross = R/v is the crossing time-scale, i.e., the
time it takes a star to cross the stellar system. If we now
consider a typical galaxy, with tcross ∼ 108 yr, N ∼ 1012

(thus ln N ∼ 30), then we find that the relaxation time is
much longer than the age of the Universe. This means
that pair collisions do not play any role in the evolution
of stellar orbits. The dynamics of the orbits are deter-
mined solely by the large-scale gravitational field of the
galaxy. In Sect. 7.5.1, we will describe a process called
violent relaxation which most likely plays a central
role in the formation of galaxies and which is proba-
bly also responsible for the stellar orbits establishing an
equilibrium configuration.

The stars behave like a collisionless gas: elliptical
galaxies are stabilized by (dynamical) pressure, and
they are elliptical because the stellar distribution is

3Note that in a gas like air, scattering between molecules occurs
frequently, which drives the velocity distribution of the molecules
towards an isotropic Maxwellian, i.e., the thermal, distribution.
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anisotropic in velocity space. This corresponds to an
anisotropic pressure – where we recall that the pressure
of a gas is nothing but the momentum transport of gas
particles due to their thermal motions.

Derivation of the Collisional Relaxation Time-Scale.
We consider a star passing by another one, with the im-
pact parameter b being the minimum distance between
the two. From gravitational deflection, the star attains
a velocity component perpendicular to the incoming
direction of

v
(1)
⊥ ≈ a Δt ≈

(
Gm

b2

)(
2b

v

)
= 2Gm

bv
, (3.4)

where a is the acceleration at closest separation and Δt
the “duration of the collision”, estimated as Δt = 2b/v

(see Fig. 3.10). Equation (3.4) can be derived more
rigorously by integrating the perpendicular accelera-
tion along the orbit. A star undergoes many collisions,
through which the perpendicular velocity components
will accumulate; these form two-dimensional vectors
perpendicular to the original direction. After a time t we
have v⊥(t) = ∑

i v
(i)
⊥ . The expectation value of this vec-

tor is 〈v⊥(t)〉 = ∑
i

〈
v

(i)
⊥
〉
= 0 since the directions of the

individual v(i)
⊥ are random. But the mean square velocity

perpendicular to the incoming direction does not vanish,

〈|v⊥|2(t)〉 =∑
ij

〈
v

(i)
⊥ ·v( j)

⊥
〉
=
∑

i

〈∣∣∣v(i)
⊥
∣∣∣2〉 �= 0 , (3.5)

where we set
〈
v

(i)
⊥ ·v( j)

⊥
〉
= 0 for i �= j because the

directions of different collisions are assumed to be un-
correlated. The velocity v⊥ performs a so-called random
walk. To compute the sum, we convert it into an integral
where we have to integrate over all collision parame-
ters b. During time t, all collision partners with impact

Fig. 3.10. Sketch related to the derivation of the dynamical
time-scale

parameters within db of b are located in a cylindrical
shell of volume (2πb db) (vt), so that〈|v⊥|2(t)〉 = ∫

2π b db v t n
∣∣∣v(1)

⊥
∣∣∣2

= 2π

(
2Gm

v

)2

v t n
∫

db

b
. (3.6)

The integral cannot be performed from 0 to ∞. Thus,
it has to be cut off at bmin and bmax and then yields
ln(bmax/bmin). Due to the finite size of the stellar distri-
bution, bmax = R is a natural choice. Furthermore, our
approximation which led to (3.4) will certainly break
down if v

(1)
⊥ is of the same order of magnitude as v;

hence we choose bmin = 2Gm/v2. With this, we obtain
bmax/bmin = Rv2/(2Gm). The exact choice of the in-
tegration limits is not important, since bmin and bmax

appear only logarithmically. Next, using the virial theo-
rem, |Epot| = 2Ekin, and thus G M/R = v2 for a typical
star, we get bmax/bmin ≈ N . Thus,

〈|v⊥|2(t)〉 = 2π

(
2Gm

v

)2

v t n ln N . (3.7)

We define the relaxation time trelax by
〈|v⊥|2(trelax)

〉= v2,
i.e., the time after which the perpendicular velocity
roughly equals the infall velocity:

trelax = 1

2πnv

(
v2

2Gm

)2
1

ln N

= 1

2πnv

(
M

2Rm

)2 1

ln N
≈ R

v

N

ln N
, (3.8)

from which we finally obtain (3.3).

3.2.5 Indicators of a Complex Evolution

The isophotes (that is, the curves of constant surface
brightness) of many of the normal elliptical galax-
ies are well approximated by ellipses. These elliptical
isophotes with different surface brightnesses are con-
centric to high accuracy, with the deviation of the
isophote’s center from the center of the galaxy being
typically � 1% of its extent. However, in many cases
the ellipticity varies with radius, so that the value for
ε is not a constant. In addition, many ellipticals show
a so-called isophote twist: the orientation of the semi-
major axis of the isophotes changes with the radius.
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This indicates that elliptical galaxies are not spheroidal,
but triaxial systems (or that there is some intrinsic twist
of their axes).

Although the light distribution of ellipticals appears
rather simple at first glance, a more thorough analysis
reveals that the kinematics can be quite complicated. For
example, dust disks are not necessarily perpendicular to
any of the principal axes, and the dust disk may rotate in
a direction opposite to the galactic rotation. In addition,
ellipticals may also contain (weak) stellar disks.

Boxiness and Diskiness. The so-called boxiness par-
ameter describes the deviation of the isophotes’ shape
from that of an ellipse. Consider the shape of an
isophote. If it is described by an ellipse, then after
a suitable choice of the coordinate system, θ1 = a cos t,
θ2 = b sin t, where a and b are the two semi-axes of
the ellipse and t ∈ [0, 2π] parametrizes the curve. The
distance r(t) of a point from the center is

r(t) =
√

θ2
1 + θ2

2 =
√

a2 +b2

2
+ a2 −b2

2
cos(2t) .

Deviations of the isophote shape from this ellipse
are now expanded in a Taylor series, where the term
∝ cos(4t) describes the lowest-order correction that
preserves the symmetry of the ellipse with respect to re-
flection in the two coordinate axes. The modified curve
is then described by

θ(t) =
(

1+ a4 cos(4t)

r(t)

)(
a cos t

b sin t

)
, (3.9)

with r(t) as defined above. The parameter a4 thus
describes a deviation from an ellipse: if a4 > 0, the
isophote appears more disk-like, and if a4 < 0, it be-
comes rather boxy (see Fig. 3.11). In elliptical galaxies
we typically find |a4/a| ∼ 0.01, thus only a small
deviation from the elliptical form.

Correlations of a4 with Other Properties of Ellip-
ticals. Surprisingly, we find that the parameter a4/a is
strongly correlated with other properties of ellipticals

(see Fig. 3.12). The ratio
(

vrot
σv

)/(
vrot
σv

)
iso

(upper left

in Fig. 3.12) is of order unity for disky ellipses (a4 > 0)
and, in general, significantly smaller than 1 for boxy
ellipticals. From this we conclude that “diskies” are
in part rotationally supported, whereas the flattening

Fig. 3.11. Sketch to illustrate boxiness and diskiness. The solid
red curve shows an ellipse (a4 = 0), the green dashed curve
a disky ellipse (a4 > 0), and the blue dotted curve a boxy
ellipse (a4 < 0). In elliptical galaxies, the deviations in the
shape of the isophotes from an ellipse are considerably smaller
than in this sketch

of “boxies” is mainly caused by the anisotropic dis-
tribution of their stellar orbits in velocity space. The
mass-to-light ratio is also correlated with a4: boxies
(diskies) have a value of M/L in their core which
is larger (smaller) than the mean elliptical of com-
parable luminosity. A very strong correlation exists
between a4/a and the radio luminosity of ellipticals:
while diskies are weak radio emitters, boxies show
a broad distribution in L radio. These correlations are
also seen in the X-ray luminosity, since diskies are
weak X-ray emitters and boxies have a broad distribu-
tion in Lx. This bimodality becomes even more obvious
if the radiation contributed by compact sources (e.g.,
X-ray binary stars) is subtracted from the total X-ray
luminosity, thus considering only the diffuse X-ray
emission. Ellipticals with a different sign of a4 also dif-
fer in the kinematics of their stars: boxies often have
cores spinning against the general direction of rota-
tion (counter-rotating cores), which is rarely observed
in diskies.

About 70% of the ellipticals are diskies. The transi-
tion between diskies and S0 galaxies may be continuous
along a sequence of varying disk-to-bulge ratio.

Shells and Ripples. In about 40% of the early-type
galaxies that are not member galaxies of a cluster,
sharp discontinuities in the surface brightness are found,
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Fig. 3.12. Correlations of a4/a with some
other properties of elliptical galaxies.
100a(4)/a (corresponding to a4/a) de-
scribes the deviation of the isophote shape
from an ellipse in percent. Negative val-
ues denote boxy ellipticals, positive values
disky ellipticals. The upper left panel
shows the rotation parameter discussed
in Sect. 3.2.4; at the lower left, the devi-
ation from the average mass-to-light ratio is
shown. The upper right panel shows the el-
lipticity, and the lower right panel displays
the radio luminosity at 1.4 GHz. Obviously,
there is a correlation of all these parameters
with the boxiness parameter

a kind of shell structure (“shells” or “ripples”). They
are visible as elliptical arcs curving around the center
of the galaxy (see Fig. 3.13). Such sharp edges can only
be formed if the corresponding distribution of stars is
“cold”, i.e., they must have a very small velocity dis-
persion, since otherwise such coherent structures would
smear out on a very short time-scale. As a compari-
son, we can consider disk galaxies that likewise contain

Fig. 3.13. In the galaxy NGC 474, here
shown in two images of different contrast,
a number of sharp-edged elliptical arcs are
visible around the center of the galaxy, the
so-called ripples or shells. The displayed
image corresponds to a linear scale of about
90 kpc

sharp structures, namely the thin stellar disk. Indeed,
the stars in the disk have a very small velocity disper-
sion, ∼ 20 km/s, compared to the rotational velocity of
typically 200 km/s.

These peculiarities in ellipticals are not uncommon.
Indicators for shells can be found in about half of the
early-type galaxies, and about a third of them show boxy
isophotes.
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Boxiness, counter-rotating cores, and shells and
ripples are all indicators of a complex evolution
that is probably caused by past mergers with other
galaxies.

We will proceed with a discussion of this interpre-
tation in Chap. 9.

3.3 Spiral Galaxies

3.3.1 Trends in the Sequence of Spirals

Looking at the sequence of early-type spirals (i.e., Sa’s
or SBa’s) to late-type spirals, we find a number of dif-
ferences that can be used for classification (see also
Fig. 3.14):

• a decreasing luminosity ratio of bulge and disk, with
Lbulge/Ldisk ∼ 0.3 for Sa’s and ∼ 0.05 for Sc’s;

• an increasing opening angle of the spiral arms, from
∼ 6◦ for Sa’s to ∼ 18◦ for Sc’s;

• and an increasing brightness structure along the spiral
arms: Sa’s have a “smooth” distribution of stars along
the spiral arms, whereas the light distribution in the
spiral arms of Sc’s is resolved into bright knots of
stars and HII regions.

Compared to ellipticals, the spirals cover a distinctly
smaller range in absolute magnitude (and mass). They
are limited to −16� MB �−23 and 109 M� � M �

Table 3.2. Characteristic values for spiral galaxies. Vmax is the
maximum rotation velocity, thus characterizing the flat part
of the rotation curve. The opening angle is the angle under
which the spiral arms branch off, i.e., the angle between the

tangent to the spiral arms and the circle around the center of the
galaxy running through this tangential point. SN is the specific
abundance of globular clusters as defined in (3.13). The values
in this table are taken from the book by Carroll & Ostlie (1996)

Sa Sb Sc Sd/Sm Im/Ir

MB −17 to −23 −17 to −23 −16 to −22 −15 to −20 −13 to −18
M (M�) 109 –1012 109 –1012 109 –1012 108 –1010 108 –1010

〈Lbulge/L tot〉B 0.3 0.13 0.05 – –

Diam. (D25, kpc) 5–100 5–100 5–100 0.5–50 0.5–50
〈M/LB〉 (M�/L�) 6.2±0.6 4.5±0.4 2.6±0.2 ∼ 1 ∼ 1
〈Vmax〉(km s−1) 299 222 175 – –
Vmaxrange (km s−1) 163–367 144–330 99–304 – 50–70
Opening angle ∼ 6◦ ∼ 12◦ ∼ 18◦ – –
μ0,B (mag arcsec−2) 21.52±0.39 21.52±0.39 21.52±0.39 22.61±0.47 22.61±0.47
〈B − V 〉 0.75 0.64 0.52 0.47 0.37
〈Mgas/Mtot〉 0.04 0.08 0.16 0.25 (Scd) –
〈MH2 /MHI〉 2.2±0.6 (Sab) 1.8±0.3 0.73±0.13 0.19±0.10 –

〈SN〉 1.2±0.2 1.2±0.2 0.5±0.2 0.5±0.2 –

1012 M�, respectively. Characteristic parameters of the
various types of spirals are compiled in Table 3.2.

Bars are common in spiral galaxies, with ∼ 70%
of all disk galaxies containing a large-scale stellar bar.
Such a bar perturbs the axial symmetry of the gravita-
tional potential in a galaxy, which may have a number
of consequences. One of them is that this perturbation
can lead to a redistribution of angular momentum of
the stars, gas, and dark matter. In addition, by perturb-
ing the orbits, gas can be driven towards the center of
the galaxy which may have important consequences for
triggering nuclear activity (see Chap. 5).

3.3.2 Brightness Profile

The light profile of the bulge of spirals is described by
a de Vaucouleurs profile to a good approximation – see
(2.39) and (2.41) – while the disk follows an exponential
brightness profile, as is the case for our Milky Way. Ex-
pressing these distributions of the surface brightness in
μ ∝ −2.5 log(I), measured in mag/arcsec2, we obtain

μbulge(R) = μe +8.3268

[(
R

Re

)1/4

−1

]
(3.10)

and

μdisk(R) = μ0 +1.09

(
R

hr

)
. (3.11)
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Fig. 3.14. Types of spiral galaxies. Top left: M94, an Sab
galaxy. Top middle: M51, an Sbc galaxy. Top right: M101, an

Sc galaxy. Lower left: M83, an SBa galaxy. Lower middle:
NGC 1365, an SBb galaxy. Lower right: M58, an SBc galaxy

Here, μe is the surface brightness at the effective ra-
dius Re which is defined such that half of the luminosity
is emitted within Re (see (2.40)). The central surface
brightness and the scale-length of the disk are denoted
by μ0 and hr , respectively. It has to be noted that μ0

is not directly measurable since μ0 is not the central
surface brightness of the galaxy, only that of its disk
component. To determine μ0, the exponential law (3.11)
is extrapolated from large R inwards to R = 0.

When Ken Freeman analyzed a sample of spiral gal-
axies, he found the remarkable result that the central
surface brightness μ0 of disks has a very low spread,
i.e., it is very similar for different galaxies (Freeman’s
law, 1970). For Sa’s to Sc’s, a value of μ0 = 21.52±
0.39 B-mag/arcsec2 is observed, and for Sd spirals and
later types, μ0 = 22.61±0.47 B-mag/arcsec2. This re-
sult was critically discussed, for example with regard to

its possible dependence on selection effects. Their im-
portance is not implausible since the determination of
precise photometry of galaxies is definitely a lot eas-
ier for objects with a high surface brightness. After
accounting for such selection effects in the statistical
analysis of galaxy samples, Freeman’s law was con-
firmed for “normal” spiral galaxies. However, galaxies
exist which have a significantly lower surface bright-
ness, the low surface brightness galaxies (LSBs). They
seem to form a separate class of galaxies whose study
is substantially more difficult compared to normal spi-
rals because of their low surface brightness. In fact,
the central surface brightness of LSBs is much lower
than the brightness of the night sky, so that search-
ing for these LSBs is problematic and requires very
accurate data reduction and subtraction of the sky
background.
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Whereas the bulge and the disk can be studied in
spirals even at fairly large distances, the stellar halo
has too low a surface brightness to be seen in distant
galaxies. However, our neighboring galaxy M31, the
Andromeda galaxy, can be studied in quite some detail.
In particular, the brightness profile of its stellar halo can
be studied more easily than that of the Milky Way, taking
advantage of our “outside” view. This galaxy should
be quite similar to our Galaxy in many respects; for
example, tidal streams from disrupted accreted galaxies
were also clearly detected in M31.

A stellar halo of red giant branch stars was detected
in M31, which extends out to more than 150 kpc from
its center. The brightness profile of this stellar distri-
bution indicates that for radii r � 20 kpc it follows the
extrapolation from the brightness profile of the bulge,
i.e., a de Vaucouleurs profile. However, for larger radii it
exceeds this extrapolation, showing a power-law profile
which corresponds to a radial density profile of approx-
imately ρ ∝ r−3, not unlike that observed in our Milky
Way. It thus seems that stellar halos form a generic prop-
erty of spirals. Unfortunately, the corresponding surface
brightness is so small that there is little hope of detect-
ing such a halo in other spirals for which individual stars
can no longer be resolved and classified.

The thick disk in other spirals can only be studied if
they are oriented edge-on. In these cases, a thick disk
can indeed be observed as a stellar population outside
the plane of the disk and well beyond the scale-height
of the thin disk. As is the case for the Milky Way,
the scale-height of a stellar population increases with
its age, increasing from young main-sequence stars to
old asymptotic giant branch stars. For luminous disk
galaxies, the thick disk does not contribute substantially
to the total luminosity; however, in lower-mass disk
galaxies with rotational velocities� 120 km/s, the thick
disk stars can contribute nearly half the luminosity and
may actually dominate the stellar mass. In this case,
the dominant stellar population of these galaxies is old,
despite the fact that they appear blue.

3.3.3 Rotation Curves and Dark Matter

The rotation curves of other spiral galaxies are easier to
measure than that of the Milky Way because we are able
to observe them “from outside”. These measurements

are achieved by utilizing the Doppler effect, where the
inclination of the disk, i.e., its orientation with respect
to the line-of-sight, has to be accounted for. The in-
clination angle is determined from the observed axis
ratio of the disk, assuming that disks are intrinsically
axially symmetric (except for the spiral arms). Mainly
the stars and HI gas in the galaxies are used as lumi-
nous tracers, where the observable HI disk is in general
significantly more extended than the stellar disk. There-
fore, the rotation curves measured from the 21-cm line
typically extend to much larger radii than those from
optical stellar spectroscopy.

Like our Milky Way, other spirals also rotate con-
siderably faster in their outer regions than one would
expect from Kepler’s law and the distribution of visible
matter (see Fig. 3.15).

The rotation curves of spirals do not decrease for
R ≥ hr , as one would expect from the light distri-
bution, but are basically flat. We therefore conclude
that spirals are surrounded by a halo of dark mat-
ter. The density distribution of this dark halo can be
derived from the rotation curves.

Indeed, the density distribution of the dark matter can
be derived from the rotation curves. The force balance
between gravitation and centrifugal acceleration yields
the Kepler rotation law,

v2(R) = G M(R)/R ,

from which one directly obtains the mass M(R) within
a radius R. The rotation curve expected from the visible
matter distribution is4

v2
lum(R) = G Mlum(R)/R .

Mlum(R) can be determined by assuming a constant,
plausible value for the mass-to-light ratio of the lu-
minous matter. This value is obtained either from the
spectral light distribution of the stars, together with
knowledge of the properties of stellar populations, or by
fitting the innermost part of the rotation curve (where

4This consideration is strongly simplified insofar as the given rela-
tions are only valid in this form for spherical mass distributions. The
rotational velocity produced by an oblate (disk-shaped) mass distribu-
tion is more complicated to calculate; for instance, for an exponential
mass distribution in a disk, the maximum of vlum occurs at ∼ 2.2hr ,
with a Kepler decrease, vlum ∝ R−1/2, at larger radii.
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Fig. 3.15. Examples of rotation curves of spiral galaxies. They
are all flat in the outer region and do not behave as expected
from Kepler’s law if the galaxy consisted only of luminous
matter. Also striking is the fact that the amplitude of the
rotation curve is higher for early types than for late types.

the mass contribution of dark matter can presumably
be neglected), assuming that M/L is independent of
radius for the stellar population. From this estimate
of the mass-to-light ratio, the discrepancy between
v2

lum and v2 yields the distribution of the dark matter,
v2

dark = v2 −v2
lum = G Mdark/R, or

Mdark(R) = R

G

[
v2(R)−v2

lum(R)
]

. (3.12)

An example of this decomposition of the mass contri-
butions is shown in Fig. 3.16.

The corresponding density profiles of the dark matter
halos seem to be flat in the inner region, and decreas-
ing as R−2 at large radii. It is remarkable that ρ ∝ R−2

implies a mass profile M ∝ R, i.e., the mass of the halo
increases linearly with the radius for large R. As long as
the extent of the halo is undetermined the total mass of
a galaxy will be unknown. Since the observed rotation
curves are flat out to the largest radius for which 21-cm
emission can still be observed, a lower limit for the ra-
dius of the dark halo can be obtained, Rhalo � 30h−1 kpc.

To derive the density profile out to even larger radii,
other observable objects in an orbit around the galax-
ies are needed. Potential candidates for such luminous
tracers are satellite galaxies – companions of other spi-
rals, like the Magellanic Clouds are for the Milky Way.

Fig. 3.16. The flat rotation curves of spiral galaxies cannot be
explained by visible matter alone. The example of NGC 3198
demonstrates the rotation curve which would be expected from
the visible matter alone (curve labeled “disk”). To explain the
observed rotation curve, a dark matter component has to be
present (curve labeled “halo”). However, the decomposition
into disk and halo mass is not unambiguous because for it to
be so it would be necessary to know the mass-to-light ratio of
the disk. In the case considered here, a “maximum disk” was
assumed, i.e., it was assumed that the innermost part of the ro-
tation curve is produced solely by the visible matter in the disk

Because we cannot presume that these satellite galaxies
move on circular orbits around their parent galaxy, con-
clusions can be drawn based only on a statistical sample
of satellites. These analyses of the relative velocities of
satellite galaxies around spirals still give no indication
of an “edge” to the halo, leading to a lower limit for the
radius of Rhalo � 100 h−1 kpc.

For elliptical galaxies the mass estimate, and thus the
detection of a possible dark matter component, is sig-
nificantly more complicated, since the orbits of stars are
substantially more complex than in spirals. In particular,
the mass estimate from measuring the stellar velocity
dispersion via line widths depends on the anisotropy of
the stellar orbits, which is a priori unknown. Neverthe-
less, in recent years it has been unambiguously proven
that dark matter also exists in ellipticals. First, the
degeneracy between the anisotropy of the orbits and
the mass determination was broken by detailed kine-
matic analysis. Second, in some ellipticals hot gas was
detected from its X-ray emission. As we will see in
Sect. 6.3 in the context of clusters of galaxies, the tem-
perature of the gas allows an estimate of the depth of
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the potential well, and therefore the mass. Both methods
reveal that ellipticals are also surrounded by a dark halo.

The weak gravitational lens effect, which we will dis-
cuss in Sect. 6.5.2 in a different context, offers another
way to determine the masses of galaxies up to very large
radii. With this method we cannot study individual gal-
axies but only the mean mass properties of a galaxy
population. The results of these measurements confirm
the large size of dark halos in spirals and in ellipticals.

Correlations of Rotation Curves with Galaxy Prop-
erties. The form and amplitude of the rotation curves
of spirals are correlated with their luminosity and their
Hubble type. The larger the luminosity of a spiral, the
steeper the rise of v(R) in the central region, and the
larger the maximum rotation velocity vmax. This latter
fact indicates that the mass of a galaxy increases with
luminosity, as expected. For the characteristic values of
the various Hubble types, one finds vmax ∼ 300 km/s
for Sa’s, vmax ∼ 175 km/s for Sc’s, whereas Irr’s have
a much lower vmax ∼ 70 km/s. For equal luminosity,
vmax is higher for earlier types of spirals. However,
the shape (not the amplitude) of the rotation curves
of different Hubble types is similar, despite the fact that
they have a different brightness profile as seen, for in-
stance, from the varying bulge-to-disk ratio. This point
is another indicator that the rotation curves cannot be
explained by visible matter alone.

These results leave us with a number of obvious ques-
tions. What is the nature of the dark matter? What are
the density profiles of dark halos, how are they deter-
mined, and where is the “boundary” of a halo? Does the
fact that galaxies with vrot � 100 km/s have no promi-
nent spiral structure mean that a minimum halo mass
needs to be exceeded in order for spiral arms to form?

Some of these questions will be examined later, but
here we point out that the major fraction of the mass of
(spiral) galaxies consists of non-luminous matter. The
fact that we do not know what this matter consists of
leaves us with the question of whether this invisible
matter is a new, yet unknown, form of matter. Or is the
dark matter less exotic, normal (baryonic) matter that
is just not luminous for some reason (for example, be-
cause it did not form any stars)? We will see in Chap. 4
that the problem of dark matter is not limited to galax-
ies, but is also clearly present on a cosmological scale;
furthermore, the dark matter cannot be baryonic. A cur-

rently unknown form of matter is, therefore, revealing
itself in the rotation curves of spirals.

3.3.4 Stellar Populations and Gas Fraction

The color of spiral galaxies depends on their Hubble
type, with later types being bluer; e.g., one finds B −
V ∼ 0.75 for Sa’s, 0.64 for Sb’s, 0.52 for Sc’s, and 0.4
for Irr’s. This means that the fraction of massive young
stars increases along the Hubble sequence towards later
spiral types. This conclusion is also in agreement with
the findings for the light distribution along spiral arms
where we clearly observe active star-formation regions
in the bright knots in the spiral arms of Sc’s. Further-
more, this color sequence is also in agreement with the
decreasing bulge fraction towards later types.

The formation of stars requires gas, and the mass
fraction of gas is larger for later types, as can be mea-
sured, for instance, from the 21-cm emission of HI, from
Hα and from CO emission. Characteristic values for the
ratio

〈
Mgas/Mtot

〉
are about 0.04 for Sa’s, 0.08 for Sb’s,

0.16 for Sc’s, and 0.25 for Irr’s. In addition, the fraction
of molecular gas relative to the total gas mass is smaller
for later Hubble types. The dust mass is less than 1% of
the gas mass.

Dust, in combination with hot stars, is the main
source of far-infrared (FIR) emission from galaxies.
Sc galaxies emit a larger fraction of FIR radiation than
Sa’s, and barred spirals have stronger FIR emission than
normal spirals. The FIR emission arises due to dust be-
ing heated by the UV radiation of hot stars and then
reradiating this energy in the form of thermal emission.

A prominent color gradient is observed in spirals:
they are red in the center and bluer in the outer regions.
We can identify at least two reasons for this trend. The
first is a metallicity effect, as the metallicity is increasing
inwards and metal-rich stars are redder than metal-poor
ones, due to their higher opacity. Second, the color gra-
dient can be explained by star formation. Since the gas
fraction in the bulge is lower than in the disk, less star
formation takes place in the bulge, resulting in a stellar
population that is older and redder in general. Further-
more, it is found that the metallicity of spirals increases
with luminosity.

Abundance of Globular Clusters. The number of
globular clusters is higher in early types and in more
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luminous galaxies. The specific abundance of globular
clusters in a galaxy is defined as their number, nor-
malized to a galaxy of absolute magnitude MV = −15.
This can be done by scaling the observed number Nt

of globular clusters in a galaxy of visual luminosity
LV or absolute magnitude MV , respectively, to that of
a hypothetical galaxy with MV = −15:

SN = Nt
L15

LV
= Nt 100.4(MV +15) . (3.13)

If the number of globular clusters were proportional to
the luminosity (and thus roughly to the stellar mass) of
a galaxy, then this would imply SN = const. However,
this is not the case: For Sa’s and Sb’s we find SN ∼ 1.2,
whereas SN ∼ 0.5 for Sc’s. SN is larger for ellipticals
and largest for cD galaxies.

3.3.5 Spiral Structure

The spiral arms are the bluest regions in spirals and they
contain young stars and HII regions. For this reason,
the brightness contrast of spiral arms increases as the
wavelength of the (optical) observation decreases. In
particular, the spiral structure is very prominent in a blue
filter, as is shown impressively in Fig. 3.17.

Naturally, the question arises as to the nature of the
spiral arms. Probably the most obvious answer would be
that they are material structures of stars and gas, rotating
around the galaxy’s center together with the rest of the

Fig. 3.17. The galaxy NGC 1300 in the B
filter (left panel) and in the I filter (right
panel). The spiral arms are much more
prominent in the blue than in the red. Also,
the tips of the bar are more pronounced
in the blue – an indicator of an enhanced
star-formation rate

disk. However, this scenario cannot explain spiral arm
structure since, owing to the differential rotation, they
would wind up much more tightly than observed within
only a few rotation periods.

Rather, it is suspected that spiral arms are a wave
structure, the velocity of which does not coincide with
the physical velocity of the stars. Spiral arms are quasi-
stationary density waves, regions of higher density (pos-
sibly 10–20% higher than the local disk environment).
If the gas, on its orbit around the center of the galaxy,
enters a region of higher density, it is compressed, and
this compression of molecular clouds results in an en-
hanced star-formation rate. This accounts for the blue
color of spiral arms. Since low-mass (thus red) stars live
longer, the brightness contrast of spiral arms is lower in
red light, whereas massive blue stars are born in the spi-
ral arms and soon after explode there as SNe. Indeed,
only few blue stars are found outside spiral arms.

In order to better understand density waves we may
consider, for example, the waves on the surface of a lake.
Peaks at different times consist of different water parti-
cles, and the velocity of the waves is by no means the
bulk velocity of the water.

3.3.6 Corona in Spirals?

Hot gas resulting from the evolution of supernova rem-
nants may expand out of the disk and thereby be ejected
to form a gaseous halo of a spiral galaxy. We might
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Fig. 3.18. The spiral galaxy NGC 4631. The optical (HST)
image of the galaxy is shown in red; the many luminous areas
are regions of very active star formation. The SN explosions
of massive stars eject hot gas into the halo of the galaxy. This
gas (at a temperature of T ∼ 106 K) emits X-ray radiation,
shown as the blue diffuse emission as observed by the Chandra
satellite. The image has a size of 2.′5

therefore suspect that such a “coronal” gas exists out-
side the galactic disk. While the existence of this coronal
gas has long been suspected, the detection of its X-ray
emission was first made possible with the ROSAT satel-
lite in the early 1990s. However, the limited angular
resolution of ROSAT rendered the distinction between
diffuse emission and clusters of discrete sources diffi-
cult. Finally, the Chandra observatory unambiguously
detected the coronal gas in a number of spiral galax-
ies. As an example, Fig. 3.18 shows the spiral galaxy
NGC 4631.

3.4 Scaling Relations

The kinematic properties of spirals and ellipticals
are closely related to their luminosity. As we shall
discuss below, spirals follow the Tully–Fisher rela-
tion (Sect. 3.4.1), whereas elliptical galaxies obey the
Faber–Jackson relation (Sect. 3.4.2) and are located in
the fundamental plane (Sect. 3.4.3). These scaling rela-

tions are a very important tool for distance estimations,
as will be discussed in Sect. 3.6. Furthermore, these
scaling relations express relations between galaxy prop-
erties which any successful model of galaxy evolution
must be able to explain. Here we will describe these
scaling relations and discuss their physical origin.

3.4.1 The Tully–Fisher Relation

Using 21-cm observations of spiral galaxies, in 1977
R. Brent Tully and J. Richard Fisher found that the
maximum rotation velocity of spirals is closely related
to their luminosity, following the relation

L ∝ vα
max , (3.14)

where the slope of the Tully–Fisher relation is about
α ∼ 4. The larger the wavelength of the filter in which
the luminosity is measured, the smaller the dispersion
of the Tully–Fisher relation (see Fig. 3.19). This is to
be expected because radiation at larger wavelengths
is less affected by dust absorption and by the current
star-formation rate, which may vary to some extent be-
tween individual spirals. Furthermore, it is found that
the value of α increases with the wavelength of the fil-
ter; the Tully–Fisher relation is steeper in the red. The
dispersion of galaxies around the relation (3.14) in the
near infrared (e.g., in the H-band) is about 10%.

Because of this close correlation, the luminosity of
spirals can be estimated quite precisely by measur-
ing the rotational velocity. The determination of the
(maximum) rotational velocity is independent of the
galaxy’s distance. By comparing the luminosity, as
determined from the Tully–Fisher relation, with the
measured flux one can then estimate the distance of
the galaxy – without utilizing the Hubble relation!

The measurement of vmax is obtained either from
a spatially resolved rotation curve, by measuring vrot(θ),
which is possible for relatively nearby galaxies, or by
observing an integrated spectrum of the 21-cm line of
HI that has a Doppler width corresponding to about
2vmax (see Fig. 3.20). The Tully–Fisher relation shown
in Fig. 3.19 was determined by measuring the width of
the 21-cm line.

Explaining the Tully–Fisher Relation. The shapes of
the rotation curves of spirals are very similar to each
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Fig. 3.19. The Tully–Fisher relation for galaxies in the Lo-
cal Group (dots), in the Sculptor group (triangles), and in the
M81 group (squares). The absolute magnitude is plotted as
a function of the width of the 21-cm profile which indicates
the maximum rotation velocity (see Fig. 3.20). Filled symbols
represent galaxies for which independent distance estimates
were obtained, either from RR Lyrae stars, Cepheids, or plan-
etary nebulae. For galaxies represented by open symbols, the
average distance of the respective group is used. The solid line
is a fit to similar data for the Ursa-Major cluster, together with
data of those galaxies for which individual distance estimates
are available (filled symbols). The larger dispersion around
the mean relation for the Sculptor group galaxies is due to the
group’s extent along the line-of-sight

other, in particular with regard to their flat behavior in
the outer part. The flat rotation curve implies

M = v2
max R

G
, (3.15)

Fig. 3.20. 21 cm profile of the galaxy NGC 7331. The bold
dots indicate 20% and 50% of the maximum flux; these are of
relevance for the determination of the line width from which
the rotational velocity is derived

where the distance R from the center of the galaxy
refers to the flat part of the rotation curve. The exact
value is not important, though, if only v(R) ≈ const. By
re-writing (3.15),

L =
(

M

L

)−1
v2

max R

G
, (3.16)

and replacing R by the mean surface brightness 〈I〉 =
L/R2, we obtain

L =
(

M

L

)−2 ( 1

G2 〈I〉
)

v4
max . (3.17)

This is the Tully–Fisher relation if M/L and 〈I〉 are the
same for all spirals. The latter is in fact suggested by
Freeman’s law (Sect. 3.3.2). Since the shapes of rota-
tion curves for spirals seem to be very similar, the radial
dependence of the ratio of luminous to dark matter may
also be quite similar among spirals. Furthermore, since
the red or infrared mass-to-light ratios of a stellar pop-
ulation do not depend strongly on its age, the constancy
of M/L could also be valid if dark matter is included.

Although the line of argument presented above is far
from a proper derivation of the Tully–Fisher-relation,
it nevertheless makes the existence of such a scaling
relation plausible.
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Fig. 3.21. Left panel: the mass contained in stars as a func-
tion of the rotational velocity Vc for spirals. This stellar mass
is computed from the luminosity by multiplying it with a suit-
able stellar mass-to-light ratio which depends on the chosen
filter and which can be calculated from stellar population mod-
els. This is the “classical” Tully–Fisher relation. Squares and
circles denote galaxies for which Vc was determined from the
21-cm line width or from a spatially resolved rotation curve,

respectively. The colors of the symbols indicate the filter band
in which the luminosity was measured: H (red), K′ (black), I
(green), B (blue). Right panel: instead of the stellar mass, here
the sum of the stellar and gaseous mass is plotted. The gas mass
was derived from the flux in the 21-cm line, Mgas = 1.4MHI,
corrected for helium and metals. Molecular gas has no signif-
icant contribution to the baryonic mass. The line in both plots
is the Tully–Fisher relation with a slope of α = 4

Mass-to-Light Ratio of Spirals. We are unable to de-
termine the total mass of a spiral because the extent of
the dark halo is unknown. Thus we can measure M/L
only within a fixed radius. We shall define this radius as
R25, the radius at which the surface brightness attains
the value of 25 mag/arcsec2 in the B-band;5 then spirals
follow the relation

log

(
R25

kpc

)
= −0.249MB −4.00 , (3.18)

independently of their Hubble type. Within R25 one
finds M/L B = 6.2 for Sa’s, 4.5 for Sb’s, and 2.6 for Sc’s.
This trend does not come as a surprise because late types
of spirals contain more young, blue and luminous stars.

5We point out explicitly once more that the surface brightness does
not depend on the distance of a source.

The Baryonic Tully–Fisher Relation. The above
“derivation” of the Tully–Fisher relation is based on the
assumption of a constant M/L value, where M is the to-
tal mass (i.e., including dark matter). Let us assume that
(i) the ratio of baryons to dark matter is constant, and
furthermore that (ii) the stellar populations in spirals are
similar, so that the ratio of stellar mass to luminosity is
a constant. Even under these assumptions we would ex-
pect the Tully–Fisher relation to be valid only if the gas
does not, or only marginally, contribute to the baryonic
mass. However, low-mass spirals contain a significant
fraction of gas, so we should expect that the Tully–
Fisher relation does not apply to these galaxies. Indeed,
it is found that spirals with a small vmax � 100 km/s de-
viate significantly from the Tully–Fisher relation – see
Fig. 3.21(a).

Since the luminosity is approximately proportional
to the stellar mass, L ∝ M∗, the Tully–Fisher relation is
a relation between vmax and M∗. Adding the mass of the
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gas, which can be determined from the strength of the
21-cm line, to the stellar mass a much tighter correlation
is obtained, see Fig. 3.21(b). It reads

Mdisk = 2×109 h−2 M�
( vmax

100 km/s

)4
, (3.19)

and is valid over five orders of magnitude in disk mass
Mdisk = M∗ + Mgas. If no further baryons exist in spirals
(such as, e.g., MACHOs), this close relation means that
the ratio of baryons and dark matter in spirals is constant
over a very wide mass range.

3.4.2 The Faber–Jackson Relation

A relation for elliptical galaxies, analogous to the Tully–
Fisher relation, was found by Sandra Faber and Roger
Jackson. They discovered that the velocity dispersion in
the center of ellipticals, σ0, scales with luminosity (see
Fig. 3.22),

L ∝ σ4
0 ,

or

log(σ0) = −0.1MB + const . (3.20)

“Deriving” the Faber–Jackson scaling relation is pos-
sible under the same assumptions as the Tully–Fisher
relation. However, the dispersion of ellipticals about
this relation is larger than that of spirals about the
Tully–Fisher relation.

Fig. 3.22. The Faber–Jackson relation expresses a relation be-
tween the velocity dispersion and the luminosity of elliptical
galaxies. It can be derived from the virial theorem

3.4.3 The Fundamental Plane

The Tully–Fisher and Faber–Jackson relations specify
a connection between the luminosity and a kinematic
property of galaxies. As we discussed previously, vari-
ous relations exist between the parameters of elliptical
galaxies. Thus one might wonder whether a relation ex-
ists between observables of elliptical galaxies for which
the dispersion is smaller than that of the Faber–Jackson
relation. Such a relation was indeed found and is known
as the fundamental plane.

To explain this relation, we will consider the vari-
ous relations between the parameters of ellipticals. In
Sect. 3.2.2 we saw that the effective radius of normal el-
lipticals is related to the luminosity (see Fig. 3.7). This
implies a relation between the surface brightness and
the effective radius,

Re ∝ 〈I〉−0.83
e , (3.21)

where 〈I〉e is the average surface brightness within the
effective radius, so that

L = 2πR2
e 〈I〉e . (3.22)

From this, a relation between the luminosity and 〈I〉e
results,

L ∝ R2
e 〈I〉e ∝ 〈I〉−0.66

e

or

〈I〉e ∝ L−1.5 . (3.23)

Hence, more luminous ellipticals have smaller surface
brightnesses, as is also shown in Fig. 3.7. By means
of the Faber–Jackson relation, L is related to σ0, the
central velocity dispersion, and therefore, σ0, 〈I〉e, and
Re are related to each other. The distribution of elliptical
galaxies in the three-dimensional parameter space (Re,
〈I〉e, σ0) is located close to a plane defined by

Re ∝ σ1.4
0 〈I〉−0.85

e . (3.24)

Writing this relation in logarithmic form, we obtain

log Re = 0.34 〈μ〉e +1.4 log σ0 + const , (3.25)



108

3. The World of Galaxies

where 〈μ〉e is the average surface brightness within
Re, measured in mag/arcsec2. Equation (3.25) defines
a plane in this three-dimensional parameter space that
is known as the fundamental plane (FP). Different
projections of the fundamental plane are displayed in
Fig. 3.23.

How can this be Explained? The mass within Re can be
derived from the virial theorem, M ∝ σ2

0 Re. Combining
this with (3.22) yields

Re ∝ L

M

σ2
0

〈I〉e
, (3.26)

which agrees with the FP in the form of (3.24) if

L

M

σ2
0

〈I〉e
∝ σ1.4

0

〈I〉0.85
e

,

or

M

L
∝ σ0.6

0

〈I〉0.15
e

∝ M0.3

R0.3
e

R0.3
e

L0.15
.

Fig. 3.23. Projections of the fundamental
plane onto different two-parameter planes.
Upper left: the relation between radius and
mean surface brightness within the effective
radius. Upper right: Faber–Jackson rela-
tion. Lower left: the relation between mean
surface brightness and velocity dispersion
shows the fundamental plane viewed from
above. Lower right: the fundamental plane
viewed from the side – the linear relation be-
tween radius and a combination of surface
brightness and velocity dispersion

Hence, the FP follows from the virial theorem provided(
M

L

)
∝ M0.2 or(

M

L

)
∝ L0.25 , respectively , (3.27)

i.e., if the mass-to-light ratio of galaxies increases
slightly with mass. Like the Tully–Fisher relation, the
fundamental plane is an important tool for distance
estimations. It will be discussed more thoroughly later.

3.4.4 The Dn–σ Relation

Another scaling relation for ellipticals which is of sub-
stantial importance in practical applications is the Dn–σ

relation. Dn is defined as that diameter of an ellipse
within which the average surface brightness In corre-
sponds to a value of 20.75 mag/arcsec2 in the B-band.
If we now assume that all ellipticals have a self-similar
brightness profile, I(R) = Ie f(R/Re), with f(1) = 1,
then the luminosity within Dn can be written as
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In

(
Dn

2

)2

π = 2πIe

Dn/2∫
0

dR R f(R/Re)

= 2πIe R2
e

Dn/(2Re)∫
0

dx x f(x) .

For a de Vaucouleurs profile we have approximately
f(x) ∝ x−1.2 in the relevant range of radius. Computing
the integral with this expression, we obtain

Dn ∝ Re I0.8
e . (3.28)

Replacing Re by the fundamental plane (3.24) then re-
sults in

Dn ∝ σ1.4
0 〈I〉−0.85

e I0.8
e .

Since 〈I〉e ∝ Ie due to the assumed self-similar bright-
ness profile, we finally find

Dn ∝ σ1.4
0 I0.05

e . (3.29)

This implies that Dn is nearly independent of Ie and
only depends on σ0. The Dn–σ relation (3.29) de-
scribes the properties of ellipticals considerably better
than the Faber–Jackson relation and, in contrast to the
fundamental plane, it is a relation between only two
observables. Empirically, we find that ellipticals follow
the normalized Dn–σ relation

Dn

kpc
= 2.05

( σ0

100 km/s

)1.33
, (3.30)

and they scatter around this relation with a relative width
of about 15%.

3.5 Black Holes in the Centers
of Galaxies

As we have seen in Sect. 2.6.3, the Milky Way harbors
a black hole in its center. Furthermore, it is generally
accepted that the energy for the activity of AGNs is
generated by accretion onto a black hole (see Sect. 5.3).
Thus, the question arises as to whether all (or most)
galaxies contain a supermassive black hole (SMBH) in
their nuclei. We will pursue this question in this sec-
tion and show that SMBHs are very abundant indeed.

This result then instigates further questions: what dis-
tinguishes a “normal” galaxy from an AGN if both have
a SMBH in the nucleus? Is it the mass of the black
hole, the rate at which material is accreted onto it, or
the efficiency of the mechanism which is generating the
energy?

We will start with a concise discussion of how to
search for SMBHs in galaxies, then present some ex-
amples for the discovery of such SMBHs. Finally, we
will discuss the very tight relationship between the mass
of the SMBH and the properties of the stellar component
of a galaxy.

3.5.1 The Search for Supermassive Black Holes

We will start with the question of what a black hole
actually is. A technical answer is that a black hole
is the simplest solution of Einstein’s theory of Gen-
eral Relativity which describes the gravitational field of
a point mass. Less technically – though sufficient for
our needs – we may say that a black hole is a point
mass, or a compact mass concentration, with an extent
smaller than its Schwarzschild radius rS (see below).

The Schwarzschild Radius. The first discussion of
black holes can be traced back to Laplace in 1795, who
considered the following: if one reduces the radius r of
a celestial body of mass M, the escape velocity vesc at
its surface will change,

vesc =
√

2G M

r
.

As a thought experiment, one can now see that for a suf-
ficiently small radius vesc will be equal to the speed of
light, c. This happens when the radius decreases to

rS := 2G M

c2
= 2.95×105 cm

(
M

M�

)
. (3.31)

The radius rS is named the Schwarzschild radius, af-
ter Karl Schwarzschild who, in 1916, discovered the
point-mass solution for Einstein’s field equations. For
our purpose we will define a black hole as a mass con-
centration with a radius smaller than rS. As we can
see, rS is very small: about 3 km for the Sun, and
rS ∼ 1012 cm for the SMBH in the Galactic center. At
a distance of D = R0 ≈ 8 kpc, this corresponds to an
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angular radius of ∼ 6×10−6 arcsec. Current observing
capabilities are still far from resolving scales of order
rS, but in the near future VLBI observations at very
short radio wavelengths may achieve sufficient angular
resolution to resolve the Schwarzschild radius for the
Galactic black hole. The largest observed velocities of
stars in the Galactic center, ∼ 5000 km/s 	 c, indicate
that they are still well away from the Schwarzschild ra-
dius. However, in the case of the SMBH in our Galactic
center we can “look” much closer to the Schwarzschild
radius: with VLBI observations at wavelengths of 3 mm
the angular size of the compact radio source Sgr A∗ can
be constrained to be less than 0.3 mas, corresponding to
about 20rS. We will show in Sect. 5.3.3 that relativistic
effects are directly observed in AGNs and that veloci-
ties close to c do in fact occur there – which again is
a very direct indication of the existence of a SMBH.

If even for the closest SMBH, the one in the GC,
the Schwarzschild radius is significantly smaller than
the achievable angular resolution, how can we hope to
prove that SMBHs exist in other galaxies? Like in the
GC, this proof has to be found indirectly by detecting
a compact mass concentration incompatible with the
mass concentration of the stars observed.

The Radius of Influence. We consider a mass con-
centration of mass M• in the center of a galaxy where
the characteristic velocity dispersion of stars (or gas)
is σ . We compare this velocity dispersion with the char-
acteristic velocity (e.g., the Kepler rotational velocity)
around a SMBH at a distance r, given by

√
G M•/r.

From this it follows that, for distances smaller than

rBH = G M•
σ2

∼ 0.4

(
M•

106 M�

)( σ

100 km/s

)−2
pc ,

(3.32)

the SMBH will significantly affect the kinematics of
stars and gas in the galaxy. The corresponding angular
scale is

θBH = rBH

D

∼ 0′′. 1

(
M•

106 M�

)( σ

100 km/s

)−2
(

D

1 Mpc

)−1

,

(3.33)

where D is the distance of the galaxy. From this we im-
mediately conclude that our success in finding SMBHs

will depend heavily on the achievable angular resolu-
tion. The HST enabled scientists to make huge progress
in this field. The search for SMBHs promises to be suc-
cessful only in relatively nearby galaxies. In addition,
from (3.33) we can see that for increasing distance D the
mass M• has to increase for a SMBH to be detectable
at a given angular resolution.

Kinematic Evidence. The presence of a SMBH inside
rBH is revealed by an increase in the velocity dispersion
for r � rBH, which should then behave as σ ∝ r−1/2

for r � rBH. If the inner region of the galaxy rotates,
one expects, in addition, that the rotational velocity vrot

should also increase inwards ∝ r−1/2.

Problems in Detecting These Signatures. The practi-
cal problems in observing a SMBH have already been
mentioned above. One problem is the angular resolu-
tion. To measure an increase in the velocities for small
radii, the angular resolution needs to be better than
θBH. Furthermore, projection effects play a role because
only the velocity dispersion of the projected stellar dis-
tribution, weighted by the luminosity of the stars, is
measured. Added to this, the kinematics of stars can be
rather complicated, so that the observed values for σ

and vrot depend on the distribution of orbits and on the
geometry of the distribution.

Despite these difficulties, the detection of SMBHs
has been achieved in recent years, largely due to the
much improved angular resolution of optical telescopes
(like the HST) and to improved kinematic models.

3.5.2 Examples for SMBHs in Galaxies

Figure 3.24 shows an example for the kinematical
method discussed in the previous section. A long-slit
spectrum across the nucleus of the galaxy M84 clearly
shows that, near the nucleus, both the rotational velocity
and the velocity dispersion change; both increase dra-
matically towards the center. Figure 3.25 illustrates how
strongly the measurability of the kinematical evidence
for a SMBH depends on the achievable angular resolu-
tion of the observation. For this example of NGC 3115,
observing with the resolution offered by space-based
spectroscopy yields much higher measured velocities
than is possible from the ground. Particularly interest-



3.5 Black Holes in the Centers of Galaxies

111

ing is the observation of the rotation curve very close
to the center. Another impressive example is the central
region of M87, the central galaxy of the Virgo Cluster.
The increase of the rotation curve and the broadening
of the [OII]-line (a spectral line of singly-ionized oxy-
gen) at λ = 3727 Å towards the center are displayed in
Fig. 3.26 and argue very convincingly for a SMBH with
M• ≈ 3×109 M�.

The mapping of the Kepler rotation in the center of
the Seyfert galaxy NGC 4258 is especially spectacu-
lar. This galaxy contains water masers – very compact
sources whose position can be observed with very high
precision using VLBI techniques (Fig. 3.27). In this
case, the deviation from a Kepler rotation in the grav-
itational field of a point mass of M• ∼ 3.5×107 M� is
much less than 1%. The maser sources are embedded in
an accretion disk having a thickness of less than 0.3% of
its radius, of which also a warping is detected. Changes
in the radial velocities and the proper motions of these
maser sources have already been measured, so that the
model of a Kepler accretion disk has been confirmed in
detail.

All these observations are of course no proof of the
existence of a SMBH in these galaxies because the

Fig. 3.24. An HST image of the nucleus of the galaxy M84 is
shown in the left-hand panel. M84 is a member of the Virgo
Cluster, about 15 Mpc away from us. The small rectangle de-
picts the position of the slit used by the STIS (Space Telescope
Imaging Spectrograph) instrument on-board the HST to ob-
tain a spectrum of the central region. This long-slit spectrum
is shown in the right-hand panel; the position along the slit

is plotted vertically, the wavelength of the light horizontally,
also illustrated by colors. Near the center of the galaxy the
wavelength suddenly changes because the rotational velocity
steeply increases inwards and then changes sign on the other
side of the center. This shows the Kepler rotation in the central
gravitational field of a SMBH, whose mass can be estimated
as M• ∼ 3×108 M�

sources from which we obtain the kinematic evidence
are still too far away from the Schwarzschild radius. The
conclusion of the presence of SMBHs is rather that of
a missing alternative, as was already explained for the
case of the GC (Sect. 2.6.3). We have no other plausible
model for the mass concentrations detected. As for the
case of the SMBH in the Milky Way, an ultra-compact
star cluster might be postulated, but such a cluster would
not be stable over a long period of time. Based on the
existence of a SMBH in our Galaxy and in AGNs, the
SMBH hypothesis is the only plausible explanation for
these mass concentrations.

3.5.3 Correlation Between SMBH Mass
and Galaxy Properties

Currently, strong indications of SMBHs have been
found in about 35 normal galaxies, and their masses
have been estimated. This permits us to examine
whether, and in what way, M• is related to the properties
of the host galaxy. This leads us to the discovery of a re-
markable correlation; it is found that M• is correlated
with the absolute magnitude of the bulge component
(or the spheroidal component) of the galaxy in which
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Fig. 3.25. Rotational velocity (bottom) and velocity disper-
sion (top), as functions of the distance from the center along
the major axis of the galaxy NGC 3115. Colors of the sym-
bols mark observations with different instruments. Results
from CFHT data which have an angular resolution of 0′′. 44 are
shown in blue. The SIS instrument at the CFHT uses active
optics to achieve roughly twice this angular resolution; corre-
sponding results are plotted in green. Finally, the red symbols
show the result from HST observations using the Faint Object
Spectrograph (FOS). As expected, with improved angular res-
olution an increase in the velocity dispersion is seen towards
the center. Even more dramatic is the impact of resolution on
measurements of the rotational velocity. Due to projection ef-
fects, the measured central velocity dispersion is smaller than
the real one; this effect can be corrected for. After correc-
tion, a central value of σ ∼ 600 km/s is found. This value is
much higher than the escape velocity from the central star
cluster if it were to consist solely of stars – it would dissolve
within ∼ 2×104 years. Therefore, an additional compact
mass component of M• ∼ 109 M� must exist

Fig. 3.26. M87 has long been one of the
most promising candidates for harboring an
SMBH in its center. In this figure, the po-
sition of the slit is shown superimposed on
an Hα image of the galaxy (lower left) to-
gether with the spectrum of the [OII] line
along this slit (bottom, center), and six spec-
tra corresponding to six different positions
along the slit, separated by 0′′. 14 each (lower
right). In the upper right panel the rotation
curve extracted from the data using a kine-
matical model is displayed. These results
show that a central mass concentration with
∼ 3×109 M� must be present, confined
to a region less than 3 pc across – indeed
leaving basically no alternative but a SMBH
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Fig. 3.27. The Seyfert galaxy NGC 4258 contains an accretion
disk in its center in which several water masers are embed-
ded. In the top image, an artist’s impression of the hidden disk
and the jet is displayed, together with the line spectrum of the
maser sources. Their positions (center image) and velocities
have been mapped by VLBI observations. From these mea-
surements, the Kepler law for rotation in the gravitational field
of a point mass of M• = 25×106 M� in the center of this gal-
axy was verified. The best-fitting model of the central disk is
also plotted. The bottom image is a 20-cm map showing the
large-scale radio structure of the Seyfert galaxy

the SMBH is located (see Fig. 3.28, left). Here, the
bulge component is either the bulge of a spiral gal-
axy or an elliptical galaxy as a whole. This correlation
is described by

M• = 0.93×108 M�
(

LB,bulge

1010 LB�

)1.11

; (3.34)

it is statistically highly significant, but the deviations
of the data points from this power law are considerably
larger than their error bars. An alternative way to express
this correlation is provided by the relation M/L ∝ L0.25

found previously – see (3.27) – by which we can also
write M• ∝ M0.9

bulge.
An even better correlation exists between M• and the

velocity dispersion in the bulge component, as can be
seen in the right-hand panel of Fig. 3.28. This relation
is best described by

M• = 1.35×108 M�
( σe

200 km/s

)4
, (3.35)

where the exact value of the exponent is still subject to
discussion, and where a slightly higher value M• ∝ σ4.5

might better describe the data. The difference in the re-
sults obtained by different groups can partially be traced
back to different definitions of the velocity dispersion,
especially concerning the choice of the spatial region
across which it is measured. It is remarkable that the
deviations of the data points from the correlation (3.35)
are compatible with the error bars for the measurements
of M•. Thus, we have at present no indication of an
intrinsic dispersion of the M•-σ relation.

In fact, there have been claims in the literature that
even globular clusters contain a black hole; however,
these claims are not undisputed. In addition, there may
be objects that appear like globular clusters, but are in
fact the stripped nucleus of a former dwarf galaxy. In
this case, the presence of a central black hole is not
unexpected, provided the scaling relation (3.35) holds
down to very low velocity dispersion.

To date, the physical origin of this very close relation
has not been understood in detail. The most obvious
apparent explanation – that in the vicinity of a SMBH
with a very large mass the stars are moving faster than
around a smaller-mass SMBH – is not conclusive: the
mass of the SMBH is significantly less than one percent
of the mass of the bulge component. We can therefore
disregard its contribution to the gravitational field in
which the stars are orbiting. Instead, this correlation has
to be linked to the fact that the spheroidal component
of a galaxy evolves together with the SMBH. A better
understanding of this relation can only be found from
models of galaxy evolution. We will continue with this
topic in Sect. 9.6.
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Fig. 3.28. Correlation of SMBH mass M•
with the absolute magnitude MB,bulge (left)
and the velocity dispersion σe (right) in the
bulge component of the host galaxy. Circles
(squares, triangles) indicate measurements
that are based on stellar kinematics (gas
kinematics, maser disks)

3.6 Extragalactic Distance
Determination

In Sect. 2.2 we discussed methods for distance deter-
mination within our own Galaxy. We will now proceed
with the determination of distances to other galaxies.
It should be noted that the Hubble law (1.2) specifies
a relation between the redshift of an extragalactic ob-
ject and its distance. The redshift z is easily measured
from the shift in spectral lines. For this reason, the
Hubble law (and its generalization – see Sect. 4.3.3)
provides a simple method for determining distance.
However, to apply this law, the Hubble constant H0

must first be known, i.e., the Hubble law must be cal-
ibrated. Therefore, in order to determine the Hubble
constant, distances have to be measured independently
from redshift.

Furthermore, it has to be kept in mind that besides
the general cosmic expansion, which is expressed in the
Hubble law, objects also show peculiar motion, like the
velocities of galaxies in clusters of galaxies or the mo-
tion of the Magellanic Clouds around our Milky Way.
These peculiar velocities are induced by gravitational
acceleration resulting from the locally inhomogeneous
mass distribution in the Universe. For instance, our
Galaxy is moving towards the Virgo Cluster of gal-
axies, a dense accumulation of galaxies, due to the
gravitational attraction caused by the cluster mass. The
measured redshift, and therefore the Doppler shift, is al-
ways a superposition of the cosmic expansion velocity
and peculiar velocities.

CMB Dipole Anisotropy. The peculiar velocity of
the Galaxy is very precisely known. The radiation of
the cosmic microwave background is not completely
isotropic but instead shows a dipole component. This
component originates in the velocity of the Solar Sys-
tem relative to the rest-frame in which the CMB appears
isotropic (see Fig. 1.17). Due to the Doppler effect, the
CMB appears hotter than average in the direction of our
motion and cooler in the opposite direction. Analyzing
this CMB dipole allows us to determine our peculiar
velocity, which yields the result that the Sun moves at
a velocity of (368±2) km/s relative to the CMB rest-
frame. Furthermore, the Local Group of galaxies (see
Sect. 6.1) is moving at vLG ≈ 600 km/s relative to the
CMB rest-frame.

Distance Ladder. For the redshift of a source to be
dominated by the Hubble expansion, the cosmic ex-
pansion velocity v = cz = H0 D has to be much larger
than typical peculiar velocities. This means that in order
to determine H0 we have to consider sources at large
distances for the peculiar velocities to be negligible
compared to H0 D.

Making a direct estimate of the distances of dis-
tant galaxies is very difficult. Traditionally one uses
a distance ladder: at first, the absolute distances to
nearby galaxies are measured directly. If methods to
measure relative distances (that is, distance ratios) with
sufficient precision are utilized, the distances to galax-
ies further away are then determined relative to those
nearby. In this way, by means of relative methods, dis-
tances are estimated for galaxies that are sufficiently far
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away for their redshift to be dominated by the Hubble
flow.

3.6.1 Distance of the LMC

The distance of the Large Magellanic Cloud (LMC) can
be estimated using various methods. For example, we
can resolve and observe individual stars in the LMC,
which forms the basis of the MACHO experiments (see
Sect. 2.5.2). Because the metallicity of the LMC is sig-
nificantly lower than that of the Milky Way, some of
the methods discussed in Sect. 2.2 are only applicable
after correcting for metallicity effects, e.g., the photo-
metric distance determination or the period–luminosity
relation for pulsating stars.

Perhaps the most precise method of determining
the distance to the LMC is a purely geometrical one.
The supernova SN 1987A that exploded in 1987 in the
LMC illuminates a nearly perfectly elliptical ring (see
Fig. 3.29). This ring consists of material that was once
ejected by the stellar winds of the progenitor star of
the supernova and that is now radiatively excited by
energetic photons from the supernova explosion. The
corresponding recombination radiation is thus emitted
only when photons from the SN hit this gas. Because
the observed ring is almost certainly intrinsically cir-
cular and the observed ellipticity is caused only by its
inclination with respect to the line-of-sight, the distance
to SN 1987A can be derived from observations of the
ring. First, the inclination angle is determined from its
observed ellipticity. The gas in the ring is excited by
photons from the SN a time R/c after the original ex-
plosion, where R is the radius of the ring. We do not
observe the illumination of the ring instantaneously be-
cause light from the section of the ring closer to us
reaches us earlier than light from the more distant part.
Thus, its illumination was seen sequentially along the
ring. Combining the time delay in the illumination be-
tween the nearest and farthest part of the ring with its
inclination angle, we then obtain the physical diameter
of the ring. When this is compared to the measured an-
gular diameter of ∼ 1′′. 7, the ratio yields the distance to
SN 1987A,

DSN1987A ≈ 51.8 kpc±6% .

If we now assume the extent of the LMC along the line-
of-sight to be small, this distance can be identified with

Fig. 3.29. The ring around supernova 1987A in the LMC is
illuminated by photons from the explosion which induce the
radiation from the gas in the ring. It is inclined towards the
line-of-sight; thus it appears to be elliptical. Lighting up of
the ring was not instantaneous, due to the finite speed of light:
those sections of the ring closer to us lit up earlier than the
more distant parts. From the time shift in the onset of radia-
tion across the ring, its diameter can be derived. Combining
this with the measured angular diameter of the ring, the dis-
tance to SN 1987A – and thus the distance to the LMC – can
be determined

the distance to the LMC. The value is also compatible
with other distance estimates (e.g., as derived by using
photometric methods based on the properties of main-
sequence stars – see Sect. 2.2.4).

3.6.2 The Cepheid Distance

In Sect. 2.2.7, we discussed the period–luminosity re-
lation of pulsating stars. Due to their high luminosity,
Cepheids turn out to be particularly useful since they
can be observed out to large distances.

For the period–luminosity relation of the Cepheids to
be a good distance measure, it must first be calibrated.
This calibration has to be done with as large a sample
of Cepheids as possible at a known distance. Cepheids
in the LMC are well-suited for this purpose because
we believe we know the distance to the LMC quite pre-
cisely, see above. Also, due to the relatively small extent
of the LMC along the line-of-sight, all Cepheids in the
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LMC should be located at approximately the same dis-
tance. For this reason, the period–luminosity relation
is calibrated in the LMC. Due to the large number of
Cepheids available for this purpose (many of them have
been found in the microlensing surveys), the resulting
statistical errors are small. Uncertainties remain in the
form of systematic errors related to the metallicity de-
pendence of the period–luminosity relation; however,
these can be corrected for since the color of Cepheids
depends on the metallicity as well.

With the high angular resolution of the HST, individ-
ual Cepheids in galaxies are visible at distances up to
that of the Virgo cluster of galaxies. In fact, determining
the distance to Virgo as a central step in the determi-
nation of the Hubble constant was one of the major
scientific aims of the HST. In the Hubble Key Project,
the distances to numerous spiral galaxies in the Virgo
Cluster were determined by identifying Cepheids and
measuring their periods.

3.6.3 Secondary Distance Indicators

The Virgo Cluster, at a measured distance of about
16 Mpc, is not sufficiently far away from us to directly
determine the Hubble constant from its distance and
redshift, because peculiar velocities still contribute con-
siderably to the measured redshift at this distance. To
get to larger distances, a number of relative distance
indicators are used. They are all based on measuring
the distance ratio of galaxies. If the distance to one of
the two is known, the distance to the other is then ob-
tained from the ratio. By this procedure, distances to
more remote galaxies can be measured. Below, we will
review some of the most important secondary distance
indicators.

SN Ia. Supernovae of Type Ia are to good approximation
standard candles, as will be discussed more thoroughly
in Sect. 8.3.1. This means that the absolute magnitudes
of SNe Ia are all within a very narrow range. To mea-
sure the value of this absolute magnitude, distances must
be known for galaxies in which SN Ia explosions have
been observed and accurately measured. Therefore, the
Cepheid method was applied especially to such galax-
ies, in this way calibrating the brightness of SNe Ia.
SNe Ia are visible over very large distances, so that they

also permit distance estimates at such large redshifts
that the simple Hubble law (1.6) is no longer valid,
but needs to be generalized based on a cosmological
model (Sect. 4.3.3). As we will see later, these measure-
ments belong to the most important pillars on which our
standard model of cosmology rests.

Surface Brightness Fluctuations of Galaxies. Another
method of estimating distance ratios is surface bright-
ness fluctuations. It is based on the fact that the number
of bright stars per area element in a galaxy fluctuates –
purely by Poisson noise: If N stars are expected in an
area element, relative fluctuations of

√
N/N = 1/

√
N

of the number of stars will occur. These are observed in
fluctuations of the local surface brightness. To demon-
strate that this effect can be used to estimate distances,
we consider a solid angle dω. The corresponding area
element d A = D2 dω depends quadratically on the dis-
tance D of the galaxy; the larger the distance, the larger
the number of stars N in this solid angle, and the smaller
the relative fluctuations of the surface brightness. By
comparing the surface brightness fluctuations of differ-
ent galaxies, one can then estimate relative distances.
This method also has to be calibrated on the galaxies
for which Cepheid distances are available.

Planetary Nebulae. The brightness distribution of plan-
etary nebulae in a galaxy seems to have an upper limit
which is the nearly the same for each galaxy (see
Fig. 3.30). If a sufficient number of planetary nebulae
are observed and their brightnesses measured, it enables
us to determine their luminosity function from which
the maximum apparent magnitude is then derived. By
calibration on galaxies of known Cepheid distance, the
corresponding maximum absolute magnitude can be de-
termined, which then allows the determination of the
distance modulus for other galaxies, thus their distances.

Scaling Relations. The scaling relations for galaxies –
fundamental plane for ellipticals, Tully–Fisher relation
for spirals (see Sect. 3.4) – can be calibrated on local
groups of galaxies or on the Virgo Cluster, the dis-
tances of which have been determined from Cepheids.
Although the scatter of these scaling relations can be
15% for individual galaxies, the statistical fluctuations
are reduced when observing several galaxies at about
the same distance (such as in clusters and groups). This
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Fig. 3.30. Brightness distribution of planetary nebulae in An-
dromeda (M31), M81, three galaxies in the Leo I group, and
six galaxies in the Virgo Cluster. The plotted absolute mag-
nitude was measured in the emission line of double-ionized
oxygen at λ = 5007 Å in which a large fraction of the lu-
minosity of a planetary nebula is emitted. This characteristic
property is also used in the identification of such objects in
other galaxies. In all cases, the distribution is described by
a nearly identical luminosity function; it seems to be a univer-
sal function in galaxies. Therefore, the brightness distribution
of planetary nebulae can be used to estimate the distance
of a galaxy. In the fits shown, the data points marked by
open symbols were disregarded: at these magnitudes, the
distribution function is probably not complete

enables us to estimate the distance ratio of two clusters
of galaxies.

The Hubble Constant. In particular, the ratio of dis-
tances to the Virgo and the Coma clusters of galaxies is
estimated by means of these various secondary distance
measures. Together with the distance to the Virgo Clus-
ter as determined from Cepheids, we can then derive
the distance to Coma. Its redshift (z ≈ 0.023) is large
enough for its peculiar velocity to make no significant
contribution to its redshift, so that it is dominated by
the Hubble expansion. By combining the various meth-
ods we obtain a distance to the Coma cluster of about
90 Mpc, resulting in a Hubble constant of

H0 = 72±8 km/s/Mpc . (3.36)

The error given here denotes the statistical uncertainty
in the determination of H0. Besides this uncertainty,
possible systematic errors of the same order of magni-
tude may exist. In particular, the distance to the LMC
plays a crucial role. As the lowest rung in the distance
latter, it has an effect on all further distance estimates.
We will see later (Sect. 8.7.1) that the Hubble constant
can also be measured by a completely different method,
based on tiny small-scale anisotropies of the cosmic
microwave background, and that this method results in
a value which is in impressively good agreement with
the one in (3.36).

3.7 Luminosity Function of Galaxies

Definition of the Luminosity Function. The luminos-
ity function specifies the way in which the members of
a class of objects are distributed with respect to their lu-
minosity. More precisely, the luminosity function is the
number density of objects (here galaxies) of a specific
luminosity. Φ(M) dM is defined as the number den-
sity of galaxies with absolute magnitude in the interval
[M, M +dM]. The total density of galaxies is then

ν =
∞∫

−∞
dM Φ(M) . (3.37)

Accordingly, Φ(L) dL is defined as the number density
of galaxies with a luminosity between L and L +dL. It
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should be noted here explicitly that both definitions of
the luminosity function are denoted by the same symbol,
although they represent different mathematical func-
tions, i.e., they describe different functional relations. It
is therefore important (and in most cases not difficult)
to deduce from the context which of these two functions
is being referred to.

Problems in Determining the Luminosity Function.
At first sight, the task of determining the luminosity
function of galaxies does not seem very difficult. The
history of this topic shows, however, that we encounter
a number of problems in practice. As a first step, the
determination of galaxy luminosities is required, for
which, besides measuring the flux, distance estimates
are also necessary. For very distant galaxies redshift is
a sufficiently reliable measure of distance, whereas for
nearby galaxies the methods discussed in Sect. 3.6 have
to be applied.

Another problem occurs for nearby galaxies, namely
the large-scale structure of the galaxy distribution. To
obtain a representative sample of galaxies, a suffi-
ciently large volume has to be surveyed because the
galaxy distribution is heavily structured on scales of
∼ 100 h−1 Mpc. On the other hand, galaxies of partic-
ularly low luminosity can only be observed locally, so
the determination of Φ(L) for small L always needs
to refer to local galaxies. Finally, one has to deal with
the so-called Malmquist bias; in a flux-limited sample
luminous galaxies will always be overrepresented be-
cause they are visible at larger distances (and therefore
are selected from a larger volume). A correction for this
effect is always necessary.

3.7.1 The Schechter Luminosity Function

The global galaxy distribution is well approximated by
the Schechter luminosity function

Φ(L) =
(

Φ∗

L∗

) (
L

L∗

)α

exp
(−L/L∗) , (3.38)

where L∗ is a characteristic luminosity above which the
distribution decreases exponentially, α is the slope of
the luminosity function for small L, and Φ∗ specifies
the normalization of the distribution. A schematic plot
of this function is shown in Fig. 3.31.

Expressed in magnitudes, this function appears much
more complicated. Considering that an interval dL in
luminosity corresponds to an interval dM in abso-
lute magnitude, with dL/L = −0.4 ln 10 dM, and using
Φ(L) dL = Φ(M) dM, i.e., the number of sources in
these intervals are of course the same, we obtain

Φ(M) = Φ(L)

∣∣∣∣ dL

dM

∣∣∣∣ = Φ(L) 0.4 ln 10 L (3.39)

= (0.4 ln 10)Φ∗100.4(α+1)(M∗−M)

× exp
(
−100.4(M∗−M)

)
. (3.40)

As mentioned above, the determination of the parame-
ters entering the Schechter function is difficult; a set of
parameters in the blue band is

Φ∗ = 1.6×10−2 h3 Mpc−3 ,

M∗
B = −19.7+5 log h , or

L∗
B = 1.2×1010 h−2 L� , (3.41)

α = −1.07 .

While the blue light of galaxies is strongly affected by
star formation, the luminosity function in the red bands
measures the typical stellar distribution. In the K-band,
we have

Φ∗ = 1.6×10−2 h3 Mpc−3 ,

M∗
K = −23.1+5 log h , (3.42)

α = −0.9 .

The total number density of galaxies is formally infinite
if α ≤ −1, but the validity of the Schechter function
does of course not extend to arbitrarily small L. The
luminosity density

ltot =
∞∫

0

dL L Φ(L) = Φ∗ L∗ Γ(2+α) (3.43)

is finite for α ≥ −2.6 The integral in (3.43), for α ∼ −1,
is dominated by L ∼ L∗, and n = Φ∗ is thus a good
estimate for the mean density of L∗-galaxies.

6Γ(x) is the Gamma function, defined by

Γ(x) =
∞∫

0

dy y(x−1) e−y . (3.44)

For positive integers, Γ(n +1) = n!. We have Γ(0.7) ≈ 1.30, Γ(1) = 1,
Γ(1.3) ≈ 0.90. Since these values are all close to unity, ltot ∼ Φ∗L∗
is a good approximation for the luminosity density.
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Deviations of the galaxy luminosity function from
the Schechter form are common. There is also no obvi-
ous reason why such a simple relation for describing
the luminosity distribution of galaxies should exist.
Although the Schechter function seems to be a good
representation of the total distribution, each type of
galaxy has its own luminosity function, with each func-
tion having a form that strongly deviates from the
Schechter function – see Fig. 3.32. For instance, spi-
rals are relatively narrowly distributed in L, whereas
the distribution of ellipticals is much broader if we
account for the full L-range, from giant ellipticals to
dwarf ellipticals. E’s dominate in particular at large L;
the low end of the luminosity function is likewise
dominated by dwarf ellipticals and Irr’s. In addition,
the luminosity distribution of cluster and group gal-
axies differs from that of field galaxies. The fact that
the total luminosity function can be described by an
equation as simple as (3.38) is, at least partly, a coin-
cidence (“cosmic conspiracy”) and cannot be modeled
easily.

Fig. 3.31. Left panel: galaxy luminosity function as obtained
from 13 clusters of galaxies. For the solid circles, cD galaxies
have also been included. Upper panel: a schematic plot of
the Schechter function

3.7.2 The Bimodal Color Distribution of Galaxies

The classification of galaxies by morphology, given by
the Hubble classification scheme (Fig. 3.2), has the dis-
advantage that morphologies of galaxies are not easy to
quantify. Traditionally, this was done by visual inspec-
tion but of course this method bears some subjectivity of
the researcher doing it. Furthermore, this visual inspec-
tion is time consuming and cannot be performed on large
samples of galaxies. Various techniques were developed
to perform such a classification automatically, includ-
ing brightness profile fitting – a de Vaucouleurs profile
indicates an elliptical galaxy whereas an exponential
brightness profile corresponds to a spiral.

Even these methods cannot be applied to galaxy sam-
ples for which the angular resolution of the imaging is
not much better than the angular size of galaxies – since
then, no brightness profiles can be fitted. An alternative
to classify galaxies is provided by their color. We ex-
pect that early-type galaxies are red, whereas late-type
galaxies are considerably bluer. Colors are much eas-



120

3. The World of Galaxies

Fig. 3.32. The luminosity function for different Hubble types
of field galaxies (top) and galaxies in the Virgo Cluster of
galaxies (bottom). Dashed curves denote extrapolations. In
contrast to Fig. 3.31, the more luminous galaxies are plot-
ted towards the left. The Schechter luminosity function of the
total galaxy distribution is compiled from the sum of the lumi-
nosity distributions of individual galaxy types that all deviate
significantly from the Schechter function. One can see that
in clusters the major contribution at faint magnitudes comes
from the dwarf ellipticals (dEs), and that at the bright end
ellipticals and S0’s contribute much more strongly to the lu-
minosity function than they do in the field. This trend is even
more prominent in regular clusters of galaxies

ier to measure than morphology, in particular for very
small galaxies. Therefore, one can study the luminosity
function of galaxies, classifying them by their color.

Using photometric measurements and spectroscopy
from the Sloan Digital Sky Survey (see Sect. 8.1.2), the
colors and absolute magnitudes of ∼ 70 000 low-red-
shift galaxies has been studied; their density distribution

in a color–magnitude diagram are plotted in the left-
hand side of Fig. 3.33. From this figure we see imme-
diately that there are two density peaks of the galaxy
distribution in this diagram: one at high luminosities
and red color, the other at significantly fainter absolute
magnitudes and much bluer color. It appears that the
galaxies are distributed at and around these two den-
sity peaks, hence galaxies tend to be either luminous
and red, or less luminous and blue. We can also easily
see from this diagram that the luminosity function of
red galaxies is quite different from that of blue galaxies,
which is another indication for the fact that the sim-
ple Schechter luminosity function (3.38) for the whole
galaxy population most likely is a coincidence.

We can next consider the color distribution of galax-
ies at a fixed absolute magnitude Mr . This is obtained
by plotting the galaxy number density along vertical
cuts through the left-hand side of Fig. 3.33. When this
is done for different Mr , it turns out that the color dis-
tribution of galaxies is bimodal: over a broad range
in absolute magnitude, the color distribution has two
peaks, one at red, the other at blue u − r. Again, this
fact can be seen directly from Fig. 3.33. For each value
of Mr , the color distribution of galaxies can be very well
fitted by the sum of two Gaussian functions. The cen-
tral colors of the two Gaussians is shown by the two
dashed curves in the left panel of Fig. 3.33. They be-
come redder the more luminous the galaxies are. This
luminosity-dependent reddening is considerably more
pronounced for the blue population than for the red
galaxies.

To see how good this fit indeed is, the right-hand
side of Fig. 3.33 shows the galaxy density as obtained
from the two-Gaussian fits, with solid contours corre-
sponding to the red galaxies and dashed contours to
the blue ones. We thus conclude that the local galaxy
population can be described as a bimodal distribution
in u − r color, where the characteristic color depends
slightly on absolute magnitude. The galaxy distribu-
tion at bright absolute magnitudes is dominated by red
galaxies, whereas for less luminous galaxies the blue
population dominates. The luminosity function of both
populations can be described by Schechter functions;
however these two are quite different. The characteris-
tic luminosity is about one magnitude brighter for the
red galaxies than for the blue ones, whereas the faint-end
slope α is significantly steeper for the blue galaxies. This
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Fig. 3.33. The density of galaxies in color–magnitude space.
The color of ∼ 70 000 galaxies with redshifts 0.01 ≤ z ≤ 0.08
from the Sloan Digital Sky Survey is measured by the rest-
frame u −r, i.e., after a (small) correction for their redshift
was applied. The density contours, which were corrected for
selection effects like the Malmquist bias, are logarithmically
spaced, with a factor of

√
2 between consecutive contours. In

the left-hand panel, the measured distribution is shown. Ob-
viously, two peaks of the galaxy density are clearly visible,
one at a red color of u − r ∼ 2.5 and an absolute magnitude
of Mr ∼ −21, the other at a bluer color of u − r ∼ 1.3 and
significantly fainter magnitudes. The right-hand panel corre-
sponds to the modeled galaxy density, as is described in the
text

again is in agreement of what we just learned: for high
luminosities, the red galaxies clearly dominate, whereas
at small luminosities, the blue galaxies are much more
abundant.

The mass-to-light ratio of a red stellar population is
larger than that of a blue population, since the former no
longer contains massive luminous stars. The difference
in the peak absolute magnitude between the red and blue
galaxies therefore corresponds to an even larger differ-
ence in the stellar mass of these two populations. Red
galaxies in the local Universe have on average a much
higher stellar mass than blue galaxies. This fact is il-
lustrated by the two dotted lines in the right-hand panel
of Fig. 3.33 which correspond to lines of constant stel-
lar mass of ∼ 2–3×1010 M�. This seems to indicate
a very characteristic mass scale for the galaxy distribu-
tion: most galaxies with a stellar mass larger than this
characteristic mass scale are red, whereas most of those
with a lower stellar mass are blue.

Obviously, these statistical properties of the galaxy
distribution must have an explanation in terms of the
evolution of galaxies; we will come back to this issue
in Chap. 9.

3.8 Galaxies as Gravitational Lenses

In Sect. 2.5 the gravitational lens effect was discussed,
where we concentrated on the deflection of light by
point masses. The lensing effect by stars leads to im-
age separations too small to be resolved by any existing
telescope. Since the separation angle is proportional to
the square root of the lens mass (2.79), the angular sepa-
ration of the images will be about a million times larger
if a galaxy acts as a gravitational lens. In this case it
should be observable, as was predicted in 1937 by Fritz
Zwicky. Indeed, multiple images of very distant sources
have been found, together with the galaxy responsible
for the image splitting. In this section we will first de-
scribe this effect by continuing the discussion we began
in Sect. 2.5.1. Examples of the lens effect and its various
applications will then be discussed.

3.8.1 The Gravitational Lensing Effect – Part II

The geometry of a typical gravitational lens system is
sketched in Fig. 2.21 and again in Fig. 3.34. The phys-
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Fig. 3.34. As a reminder, another sketch of the lens geometry

ical description of such a lens system for an arbitrary
mass distribution of the deflector is obtained from the
following considerations.

If the gravitational field is weak (which is the case
in all situations considered here), the gravitational ef-
fects can be linearized.7 Hence, the deflection angle of
a lens that consists of several mass components can
be described by a linear superposition of the deflection
angles of the individual components,

α̂ =
∑

i

α̂i . (3.45)

We assume that the deflecting mass has a small extent
along the line-of-sight, as compared to the distances be-
tween observer and lens (Dd) and between lens and
source (Dds), L 	 Dd and L 	 Dds. All mass ele-
ments can then be assumed to be located at the same
distance Dd. This physical situation is called a geometri-
cally thin lens. If a galaxy acts as the lens, this condition
is certainly fulfilled – the extent of galaxies is typically
∼ 100 h−1 kpc while the distances of lens and source
are typically ∼ Gpc. We can therefore write (3.45) as
a superposition of Einstein angles of the form (2.71),

α̂(ξ) =
∑

i

4Gmi

c2

ξ − ξi

|ξ − ξi |2 , (3.46)

7To characterize the strength of a gravitational field, we refer to
the gravitational potential Φ. The ratio Φ/c2 is dimensionless and
therefore well suited to distinguishing between strong and weak grav-
itational fields. For weak fields, Φ/c2 	 1. Another possible way to
quantify the field strength is to apply the virial theorem: if a mass
distribution is in virial equilibrium, then v2 ∼ Φ, and weak fields are
therefore characterized by v2/c2 	 1. Because the typical velocities
in galaxies are ∼ 200 km/s, for galaxies Φ/c2 � 10−6. The typical
velocities of galaxies in a cluster of galaxies are ∼ 1000 km/s, so that
in clusters Φ/c2 � 10−5. Thus the gravitational fields occurring are
weak in both cases.

where ξi is the projected position vector of the mass
element mi , and ξ describes the position of the light ray
in the lens plane, also called the impact vector.

For a continuous mass distribution we can imag-
ine subdividing the lens into mass elements of mass
dm = Σ(ξ)d2ξ , where Σ(ξ) describes the surface mass
density of the lens at the position ξ , obtained by pro-
jecting the spatial (three-dimensional) mass density ρ

along the line-of-sight to the lens. With this definition
the deflection angle (3.46) can be transformed into an
integral,

α̂(ξ) = 4G

c2

∫
d2ξ ′ Σ(ξ ′)

ξ − ξ ′

|ξ − ξ ′|2 . (3.47)

This deflection angle is then inserted into the lens
equation (2.75),

β = θ − Dds

Ds
α̂(Ddθ) , (3.48)

where ξ = Ddθ describes the relation between the posi-
tion ξ of the light ray in the lens plane and its apparent
direction θ. We define the scaled deflection angle as in
(2.76),

α(θ) = Dds

Ds
α̂(Ddθ) ,

so that the lens equation (3.48) can be written in the
simple form (see Fig. 3.34)

β = θ −α(θ) . (3.49)

A more convenient way to write the scaled deflection is
as follows,

α(θ) = 1

π

∫
d2θ ′ κ(θ ′)

θ − θ ′

|θ − θ ′|2 , (3.50)

where

κ(θ) = Σ(Ddθ)

Σcr
(3.51)

is the dimensionless surface mass density, and the so-
called critical surface mass density

Σcr = c2 Ds

4πG Dd Dds
(3.52)
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depends only on the distances to the lens and to the
source. Although Σcr incorporates a combination of cos-
mological distances, it is of a rather “human” order of
magnitude,

Σcr ≈ 0.35

(
Dd Dds

Ds 1 Gpc

)−1

g cm−2 .

A source is visible at several positions θ on the sphere,
or multiply imaged, if the lens equation (3.49) has sev-
eral solutions θ for a given source position β. A more
detailed analysis of the properties of this lens equation
yields the following general result:

If Σ ≥ Σcr in at least one point of the lens, then
source positions β exist such that a source at β has
multiple images. It immediately follows that κ is
a good measure for the strength of the lens. A mass
distribution with κ 	 1 at all points is a weak lens,
unable to produce multiple images, whereas one
with κ � 1 for certain regions of θ is a strong lens.

For sources that are small compared to the character-
istic scales of the lens, the magnification μ of an image,
caused by the differential light deflection, is given by
(2.83), i.e.,

μ =
∣∣∣∣det

(
∂β

∂θ

)∣∣∣∣
−1

. (3.53)

The importance of the gravitational lens effect for extra-
galactic astronomy stems from the fact that gravitational
light deflection is independent of the nature and the state
of the deflecting matter. Therefore, it is equally sensi-
tive to both dark and baryonic matter and independent
of whether or not the matter distribution is in a state
of equilibrium. The lens effect is thus particularly suit-
able for probing matter distributions, without requiring
any further assumptions about the state of equilibrium
or the relation between dark and luminous matter.

3.8.2 Simple Models

Axially Symmetric Mass Distributions. The simplest
models for gravitational lenses are those which are axi-
ally symmetric, for which Σ(ξ) = Σ(ξ), where ξ = |ξ |

denotes the distance of a point from the center of the
lens. In this case, the deflection angle is directed radially
inwards, and we obtain

α̂ = 4G M(ξ)

c2 ξ
, (3.54)

where M(ξ) is the mass within radius ξ . Accordingly,
for the scaled deflection angle we have

α(θ) = m(θ)

θ
:= 1

θ
2

θ∫
0

dθ ′ θ ′ κ(θ ′) , (3.55)

where, in the last step, m(θ) was defined as the dimen-
sionless mass within θ. Since α and θ are collinear, the
lens equation becomes one-dimensional because only
the radial coordinate needs to be considered,

β = θ −α(θ) = θ − m(θ)

θ
. (3.56)

An illustration of this one-dimensional lens mapping is
shown in Fig. 3.35.

Example: Point-Mass Lens. For a point mass M, the
dimensionless mass becomes

m(θ) = 4G M

c2

Dds

Dd Ds
,

reproducing the lens equation from Sect. 2.5.1 for
a point-mass lens.

Example: Isothermal Sphere. We saw in Sect. 2.4.2
that the rotation curve of our Milky Way is flat for large
radii, and we know from Sect. 3.3.3 that the rotation
curves of other spiral galaxies are flat as well. This in-
dicates that the mass of a galaxy increases proportional
to r, thus ρ(r) ∝ r−2, or more precisely,

ρ(r) = σ2
v

2πGr2
. (3.57)

Here, σv is the one-dimensional velocity dispersion of
stars in the potential of the mass distribution if the
distribution of stellar orbits is isotropic. In principle,
σv is therefore measurable spectroscopically from the
line width. The mass distribution described by (3.57) is
called a singular isothermal sphere (SIS). Because this
mass model is of significant importance not only for the
analysis of the lens effect, we will discuss its properties
in a bit more detail.
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The density (3.57) diverges for r → 0 as ρ ∝ r−2,
so that the mass model cannot be applied up to the
very center of a galaxy. However, the steep central in-

Fig. 3.35. Sketch of an axially symmetric lens. In the top panel,
θ −α(θ) is plotted as a function of the angular separation θ

from the center of the lens, together with the straight line
β = θ. The three intersection points of the horizontal line at
fixed β with the curve θ −α(θ) are the three solutions of
the lens equation. The bottom image indicates the positions
and sizes of the images on the observer’s sky. Here, Q is the
unlensed source (which is not visible itself in the case of light
deflection, of course!), and A, B1, B2 are the observed images
of the source. The sizes of the images, and thus their fluxes,
differ considerably; the inner image B2 is particularly weak in
the case depicted here. The flux of B2 relative to that of image
A depends strongly on the core radius of the lens; it can be so
low as to render the third image unobservable. In the special
case of a singular isothermal sphere, the innermost image is
in fact absent

crease of the rotation curve shows that the core region
of the mass distribution, in which the density function
will deviate considerably from the r−2-law, must be
small for galaxies. Furthermore, the mass diverges for
large r such that M(r) ∝ r. The mass profile thus has
to be cut off at some radius in order to get a finite
total mass. This cut-off radius is probably very large
(� 100 kpc for L∗-galaxies) because the rotation curves
are flat to at least the outermost point at which they are
observable.

The SIS is an appropriate simple model for gravita-
tional lenses over a wide range in radius since it seems
to reproduce the basic properties of lens systems (such
as image separation) quite well. The surface mass den-
sity is obtained from the projection of (3.57) along the
line-of-sight,

Σ(ξ) = σ2
v

2Gξ
, (3.58)

which yields the projected mass M(ξ) within radius ξ

M(ξ) = 2π

ξ∫
0

dξ ′ ξ ′ Σ(ξ ′) = πσ2
v ξ

G
. (3.59)

With (3.54) the deflection angle can be obtained,

α̂(ξ) = 4π
(σv

c

)2
,

α(θ) = 4π
(σv

c

)2
(

Dds

Ds

)
≡ θE . (3.60)

Thus the deflection angle for an SIS is constant and
equals θE, and it depends quadratically on σv. θE is
called the Einstein angle of the SIS. The characteristic
scale of the Einstein angle is

θE = 1′′. 15
( σv

200 km/s

)2
(

Dds

Ds

)
, (3.61)

from which we conclude that the angular scale of the
lens effect in galaxies is about an arcsecond for massive
galaxies. The lens equation (3.56) for an SIS is
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β = θ − θE
θ

|θ| , (3.62)

where we took into account the fact that the deflection
angle is negative for θ < 0 since it is always directed
inwards.

Solution of the Lens Equation for the Singular Iso-
thermal Sphere. If |β| < θE, two solutions of the lens
equation exist,

θ1 = β + θE , θ2 = β − θE . (3.63)

Without loss of generality, we assume β ≥ 0; then
θ1 > θE > 0 and 0 > θ2 > −θE: one image of the source
is located on either side of the lens center, and the
separation of the images is

Δθ = θ1 − θ2 = 2θE = 2′′. 3
( σv

200 km/s

)2
(

Dds

Ds

)
.

(3.64)

Thus, the angular separation of the images does not de-
pend on the position of the source. For massive galaxies
acting as lenses it is of the order of somewhat more than
one arcsecond. For β > θE only one image of the source
exists, at θ1, meaning that it is located on the same side
of the center of the lens as the unlensed source.

For the magnification, we find

μ(θ) = |θ/θE|
||θ/θE|−1| . (3.65)

If θ ≈ θE, μ is very large. Such solutions of the lens
equation exist for |β| 	 θE, so that sources close to the
center of the source plane may be highly magnified. If
β = 0, the image of the source will be a ring of radius
θ = θE, a so-called Einstein ring.

More Realistic Models. Mass distributions occurring
in nature are not expected to be truly symmetric. The
ellipticity of the mass distribution or external shear
forces (caused, for example, by the tidal gravitational
field of neighboring galaxies) will disturb the symme-
try. The lensing properties of the galaxy will change
by this symmetry breaking. For example, more than
two images may be generated. Figure 3.36 illustrates

the lens properties of such elliptical mass distribu-
tions. One can see, for example, that pairs of images,
which are both heavily magnified, may be observed with
a separation significantly smaller than the Einstein ra-
dius of the lens. Nevertheless, the characteristic image
separation is still of the order of magnitude given by
(3.64).

3.8.3 Examples for Gravitational Lenses

Currently, about 70 gravitational lens systems are
known in which a galaxy acts as the lens. Some of them
were discovered serendipitously, but most were found
in systematic searches for lens systems. Amongst the
most important lens surveys are: (1) The HST Snapshot
Survey. The ∼ 500 most luminous quasars have been
imaged with the HST, and six lens systems have been
identified. (2) JVAS. About 2000 bright radio sources
with a flat radio spectrum (these often contain com-
pact radio components, see Sect. 5.1.3) were scanned
for multiple components with the VLA. Six lens sys-
tems have been found. (3) CLASS. Like in JVAS, radio
sources with a flat spectrum were searched with the
VLA for multiple components, but the flux limit was
lower than in JVAS, which form a subset of the CLASS
sources. The survey contains 15 000 sources, of which,
to data, 22 have been identified as lenses. In this sec-
tion we will discuss some examples of identified lens
systems.

QSO 0957+561: The First Double Quasar. The first
lens system was discovered in 1979 by Walsh, Carswell
& Weymann when the optical identification of a ra-
dio source showed two point-like optical sources (see
Fig. 3.37). Both could be identified as quasars located
at the same redshift of zs = 1.41 and having very sim-
ilar spectra (see Fig. 3.38). Deep optical images of the
field show an elliptical galaxy situated between the two
quasar images, at a redshift of zd = 0.36. The galaxy
is so massive and so close to image B of the source
that it has to produce a lens effect. However, the ob-
served image separation of Δθ = 6′′. 1 is considerably
larger than expected from the lens effect by a single
galaxy (3.64). The explanation for this is that the lens
galaxy is located in a cluster of galaxies; the additional
lens effect of the cluster adds to that of the galaxy,
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Fig. 3.36. Geometry of an “elliptical” lens, whereby it is of lit-
tle importance whether the surface mass density Σ is constant
on ellipses (i.e., the mass distribution has elliptical isodensity
contours) or whether an originally spherical mass distribution
is distorted by an external tidal field. On the right-hand side
in both panels, several different source positions in the source
plane are displayed, each corresponding to a different color.
The origin in the source plane is chosen as the intersection
point of the line connecting the center of symmetry in the lens
and the observer with the source plane (see also Fig. 2.22).
Depending on the position of the source, one, three, or five

images may appear in the lens plane (i.e., the observer’s sky);
they are shown on the left-hand side of each panel. The curves
in the lens plane are the critical curves, the location of all
points for which μ → ∞. The curves in the source plane (i.e.,
on the right-hand side of each panel) are caustics, obtained
by mapping the critical curves onto the source plane using the
lens equation. Obviously, the number of images of a source
depends on the source location relative to the location of the
caustics. Strongly elongated images of a source occur close
to the critical curves

boosting the image separation to a large value. The lens
system QSO 0957+561 was observed in all wavelength
ranges, from the radio to the X-ray. The two images
of the quasar are very similar at all λ, including the
VLBI structure (Fig. 3.38) – as would be expected since
the lens effect is independent of the wavelength, i.e.,
achromatic.

QSO PG1115+080. In 1980, the so-called triple quasar
was discovered, composed of three optical quasars at
a maximum angular separation of just below 3′′. Com-
ponent (A) is significantly brighter than the other two
images (B, C; see Fig. 3.39, left). In high-resolution im-
ages it was found that the brightest image is in fact
a double image: A is split into A1 and A2. The angu-
lar separation of the two roughly equally bright images
is ∼ 0′′. 5, which is considerably smaller than all other
angular separations in this system. The four quasar im-
ages have a redshift of zs = 1.72, and the lens is located
at zd = 0.31. The image configuration is one of those
that are expected for an elliptical lens, see Fig. 3.36.

With the NIR camera NICMOS on-board HST,
not only were the quasar images and the lens gal-
axy observed, but also a nearly complete Einstein ring

(Fig. 3.39, right). The source of this ring is the host gal-
axy of the quasar (see Sect. 5.4.5) which is substantially
redder than the active galactic nucleus itself.

From the image configuration in such a quadruple
system, the mass of the lens within the images can be
estimated very accurately. The four images of the lens
system trace a circle around the center of the lens galaxy,
the radius of which can be identified with the Einstein
radius of the lens. From this, the mass of the lens within
the Einstein radius follows immediately because the
Einstein radius is obtained from the lens equation (3.56)
by setting β = 0. Therefore, the Einstein radius is the
solution of the equation

θ = α(θ) = m(θ)

θ
,

or

m(θE) = 4G M(θE)

c2

Dds

Dd Ds
= θ2

E .

This equation is best written as

M(θE) = π(DdθE)2 Σcr , (3.66)

which is readily interpreted:
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Fig. 3.37. Top: optical images of the double quasar QSO
0957+561. The image on the left has a short exposure time;
here, the two point-like images A,B of the quasar are clearly
visible. In contrast, the image on the right has a longer expo-
sure time, showing the lens galaxy G1 between the two quasar
images. Several other galaxies (G2-G5) are visible as well. The
lens galaxy is a member of a cluster of galaxies at zd = 0.36.
Bottom: two radio maps of QSO 0957+561, observed with
the VLA at 6 cm (left) and 3.6 cm (right), respectively. The

two images of the quasar are denoted by A,B; G is the radio
emission of the lens galaxy. The quasar has a radio jet, which
is a common property of many quasars (see Sect. 5.3.1). On
small angular scales, the jet can be observed by VLBI tech-
niques in both images (see Fig. 3.38). On large scales only
a single image of the jet exists, seen in image A; this property
should be compared with Fig. 3.36 where it was demonstrated
that the number of images of a source (component) depends
on its position in the source plane
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Fig. 3.38. Left: milliarcsecond structure of the two im-
ages of the quasar QSO 0957+561, a VLBI map at 13 cm
wavelength by Gorenstein et al. Both quasar images show
a core-jet structure, and it is clearly seen that they are mirror-
symmetric, as predicted by lens models. right: spectra of
the two quasar images QSO 0957+561A,B, observed by the

Faint Object Camera (FOC) on-board HST. The similarity
of the spectra, in particular the identical redshift, is a clear
indicator of a common source of the two quasar images.
The broad Lyα line, in the wings of which an NV line is
visible, is virtually always the strongest emission line in
quasars

The mass within θE of a lens follows from the fact
that the mean surface mass density within θE equals
the critical surface mass density Σcr. A more ac-
curate determination of lens masses is possible by
means of detailed lens models. For quadruple image
systems, the masses can be derived with a precision
of a few percent – these are the most precise mass
determinations in (extragalactic) astronomy.

QSO 2237+0305: The Einstein Cross. A spectroscopic
survey of galaxies found several unusual emission lines
in the nucleus of a nearby spiral galaxy which can-
not originate from this galaxy itself. Instead, they are
emitted by a background quasar at redshift zs = 1.7 situ-

ated exactly behind this spiral. High-resolution images
show four point sources situated around the nucleus
of this galaxy, with an image separation of Δθ ≈ 1′′. 8
(Fig. 3.40). The spectroscopic analysis of these point
sources revealed that all four are images of the same
quasar (Fig. 3.41).

The images in this system are positioned nearly sym-
metrically around the lens center; this is also a typical
lens configuration which may be caused by an ellipti-
cal lens (see Fig. 3.36). The Einstein radius of this lens
is θE ≈ 0′′. 9, and we can determine the mass within this
radius with a precision of ∼ 3%.

Einstein Rings. More examples of Einstein rings are
displayed in Figs. 3.42 and 3.43. The first of these
is a radio galaxy, with its two radio components be-
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Fig. 3.39. A NIR image of QSO 1115+080
is shown on the left, as observed with the
NICMOS camera on-board HST. The dou-
ble structure of image A (the left of the QSO
images) is clearly visible, although the im-
age separation of the two A components
is less than 0′′. 5. The lens galaxy, located
in the “middle” of the QSO images, has
a much redder spectral energy distribution
than the quasar images. In the right-hand
panel, the quasar images and the lens gal-
axy have been subtracted. What remains is
a nearly closed ring; the light of the galaxy
which hosts the active galactic nucleus is
imaged into an Einstein ring

Fig. 3.40. Left: in the center of a nearby spiral galaxy, four
point-like sources were found whose spectra show strong
emission lines. This image from the CFHT clearly shows the
bar structure in the core of the lens galaxy. An HST/NICMOS

image of the center of QSO 2237+0305 is shown on the right.
The central source is not a fifth quasar image but rather the
bright nucleus of the lens galaxy

ing multiply imaged by a lens galaxy – one of the
two radio sources is imaged into four components, the
other mapped into a double image. In the NIR the ra-
dio galaxy is visible as a complete Einstein ring. This
example shows very clearly that the appearance of the
images of a source depends on the source size: to ob-
tain an Einstein ring a sufficiently extended source is
needed.

At radio wavelengths, the quasar MG 1654+13 con-
sists of a compact central source and two radio lobes.

As we will discuss in Sect. 5.1.3, this is a very typical
radio morphology for quasars. One of the two lobes has
a ring-shaped structure, which prior to this observation
had never been observed before. An optical image of the
field shows the optical quasar at the position of the com-
pact radio component and, in addition, a bright elliptical
galaxy right in the center of the ring-shaped radio lobe.
This galaxy has a significantly lower redshift than the
quasar and hence is the gravitational lens responsible
for imaging the lobe into an Einstein ring.
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Fig. 3.41. Spectra of the four images of the quasar 2237+0305,
observed with the CFHT. As is clearly visible, the spectral
properties of these four images are very similar; this is the
final proof that we are dealing with a lens system here. Mea-
suring the individual spectra of these four very closely spaced
sources is extremely difficult and can only be performed under
optimum observing conditions

3.8.4 Applications of the Lens Effect

Mass Determination. As mentioned previously, the
mass within a system of multiple images can be de-
termined directly, sometimes very precisely. Since the
length-scale in the lens plane (at given angular scale)
and Σcr depend on H0, these mass estimates scale
with H0. For instance, for QSO 2237+0305, a mass
within 0′′. 9 of (1.08±0.02)h−1 ×1010 M� is derived.

Fig. 3.42. The radio source 1938+666 is
seen to be multiply imaged (contours in the
right-hand figure); here, the radio source
consists of two components, one of which is
imaged four-fold, the other two-fold. A NIR
image taken with the NICMOS camera on-
board the HST (left-hand figure, also shown
on the right in gray-scale) shows the lens
galaxy in the center of an Einstein ring that
originates from the stellar light of the host
galaxy of the active galactic nucleus

An even more precise determination of the mass was
obtained for the lens galaxy of the Einstein ring in
the system MG 1654+13 (Fig. 3.43). The dependence
on the other cosmological parameters is comparatively
weak, especially at low redshifts of the source and the
lens. Most lens galaxies are early-type galaxies (el-
lipticals), and from the determination of their mass
it can be concluded that ellipticals also contain dark
matter.

Environmental Effects. Detailed lens models show
that the light deflection of most gravitational lenses
is affected by an external tidal field. This is due to
the fact that lens galaxies are often members of gal-
axy groups which contribute to the light deflection as
well. In some cases the members of the group have
been identified. Mass properties of the corresponding
group can be derived from the strength of this external
influence.

Determination of the Hubble Constant. The light
travel times along the different paths (according to the
multiple images) are not the same. On the one hand
the paths have different geometrical lengths, and on the
other hand the light rays traverse different depths of the
gravitational potential of the lens, resulting in a (gen-
eral relativistic) time dilation effect. The difference in
the light travel times Δt is measurable because lumi-
nosity variations of the source are observed at different
times in the individual images. Δt can be measured
from this difference in arrival time, called the time
delay.
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Fig. 3.43. The quasar MG1654+13 shows, in addition to the
compact radio core (Q), two radio lobes; the northern lobe is
denoted by C, whereas the southern lobe is imaged into a ring.
An optical image is displayed in gray-scales, showing not
only the quasar at Q (zs = 1.72) but also a massive foreground
galaxy at zd = 0.25 that is responsible for the lensing of the
lobe into an Einstein ring. The mass of this galaxy within the
ring can be derived with a precision of ∼ 1%

It is easy to see that Δt depends on the Hubble con-
stant, or in other words, on the size of the Universe. If
a universe is twice the size of our own, Δt would be
twice as large as well – see Fig. 3.44. Thus if the mass
distribution of the lens can be modeled sufficiently well,
by modeling the geometry of the image configuration,
then the Hubble constant can be derived from measur-
ing the difference in the light travel time. To date, Δt has
been measured in about 10 lens systems (see Fig. 3.45
for an example). Based on “plausible” lens models we
can derive values for the Hubble constant that are com-
patible with other measurements (see Sect. 3.6), but
which tend towards slightly smaller values of H0 than
that determined from the HST Key Project (3.36). The
main difficulty here is that the mass distribution in lens

Fig. 3.44. Lens geometry in two universes with different Hub-
ble constant. All observables are dimensionless – angular
separations, flux ratios, redshifts – except for the difference in
the light travel time. This is larger in the universe at the bot-
tom than in the one at the top; hence, Δt ∝ H−1

0 . If the time
delay Δt can be measured, and if one has a good model for
the mass distribution of the lens, then the Hubble constant can
be derived from measuring Δt

galaxies cannot unambiguously be derived from the
positions of the multiple images. Therefore, these de-
terminations of H0 are currently not considered to be
precision measurements. On the other hand, we can
draw interesting conclusions about the radial mass pro-
file of lens galaxies from Δt if we assume H0 is known.
In Sect. 6.3.4 we will discuss the value of H0 deter-
minations from lens time delays in a slightly different
context.

The ISM in Lens Galaxies. Since the same source is
seen along different sight lines passing through the lens
galaxy, the comparison of the colors and spectra of the
individual images provides information on reddening
and on dust extinction in the ISM of the lens galaxy.
From such investigations it was shown that the extinc-
tion in ellipticals is in fact very low, as is to be expected
from the small amount of interstellar medium they con-
tain, whereas the extinction is considerably higher for
spirals. These analyses also enable us to study the re-
lation between extinction and reddening, and from this
to search for deviations from the Galactic reddening
law (2.21). In fact, the constant of proportionality RV is
different in other galaxies, indicating a different compo-
sition of the dust, e.g., with respect to the chemical com-
position and to the size distribution of the dust grains.
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Fig. 3.45. Left: optical light curves of the double quasar
0957+561 in two broad-band filters. The light curve of im-
age A is displayed in red and that of image B in blue, where
the latter is shifted in time by 417 days. With this shift, the two
light curves are made to coincide – this light travel time dif-

ference of 417 days is determined with an accuracy of ∼ ±3
days. Right: radio light curves of QSO 0957+561A,B at 6 cm.
From these radio measurements Δt can also be measured, and
the corresponding value is compatible with that obtained from
optical data

3.9 Population Synthesis

The light of normal galaxies originates from stars. Stel-
lar evolution is largely understood, and the spectral radi-
ation of stars can be calculated from the theory of stellar
atmospheres. If the distribution of the number density
of stars is known as a function of their mass, chemical
composition, and evolutionary stage, we can compute
the light emitted by them. The theory of population syn-
thesis aims at interpreting the spectrum of galaxies as
a superposition of stellar spectra. We have to take into
account the fact that the distribution of stars changes
over time; e.g., massive stars leave the main sequence af-
ter several 106 years, the number of luminous blue stars
thus decreases, which means that the spectral distribu-
tion of the population also changes in time. The spectral
energy distribution of a galaxy thus reflects its history of
star formation and stellar evolution. For this reason, sim-
ulating different star-formation histories and comparing
them with observed galaxy spectra provides important
clues to understanding the evolution of galaxies. In this
section, we will discuss some aspects of the theory

of population synthesis; this subject is of tremendous
importance for our understanding of galaxy spectra.

3.9.1 Model Assumptions

The processes of star formation are not understood in
detail; for instance, it is currently impossible to compute
the mass spectrum of a group of stars that jointly formed
in a molecular cloud. Obviously, high-mass and low-
mass stars are born together and form young (open) star
clusters. The mass spectra of these stars are determined
empirically from observations.

The initial mass function (IMF) is defined as the ini-
tial mass distribution at the time of birth of the stars, such
that φ(m) dm specifies the fraction of stars in the mass
interval of width dm around m, where the distribution
is normalized,

mU∫
mL

dm m φ(m) = 1M� .
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The integration limits are not well defined. Typically,
one puts mL ∼ 0.1M� because less massive stars do
not ignite their hydrogen (and are thus brown dwarfs),
and mU ∼ 100M�, because more massive stars have not
been observed. Such very massive stars would be dif-
ficult to observe because of their very short lifetime;
furthermore, the theory of stellar structure tells us that
more massive stars can probably not form a stable con-
figuration due to excessive radiation pressure. The shape
of the IMF is also subject to uncertainties; in most cases,
the Salpeter-IMF is used,

φ(m) ∝ m−2.35 , (3.67)

as obtained from investigating the stellar mass spectrum
in young star clusters. It is by no means clear whether
a universal IMF exists, or whether it depends on specific
conditions like metallicity, the mass of the galaxy, or
other parameters. The Salpeter IMF seems to be a good
description for stars with M � 1M�, whereas the IMF
for less massive stars is less steep.

The star-formation rate is the gas mass that is
converted into stars per unit time,

ψ(t) = −dMgas

dt
.

The metallicity Z of the ISM defines the metallicity
of the newborn stars, and the stellar properties in turn
depend on Z. During stellar evolution, metal-enriched
matter is ejected into the ISM by stellar winds, plan-
etary nebulae, and SNe, so that Z(t) is an increasing
function of time. This chemical enrichment must be
taken into account in population synthesis studies in
a self-consistent form.

Let Sλ,Z(t ′) be the emitted energy per wavelength and
time interval, normalized to an initial total mass of 1M�,
emitted by a group of stars of initial metallicity Z and
age t ′. The function Sλ,Z(t−t′)(t ′), which describes this
emission at any point t in time, accounts for the different
evolutionary tracks of the stars in the Hertzsprung–
Russell diagram (HRD) – see Appendix B.2. It also
accounts for their initial metallicity (i.e., at time t − t ′),
where the latter follows from the chemical evolution
of the ISM of the corresponding galaxy. Then the total
spectral luminosity of this galaxy at a time t is given by

Fλ(t) =
t∫

0

dt ′ ψ(t − t ′) Sλ,Z(t−t′)(t
′) , (3.68)

thus by the convolution of the star-formation rate with
the spectral energy distribution of the stellar popula-
tion. In particular, Fλ(t) depends on the star-formation
history.

3.9.2 Evolutionary Tracks in the HRD;
Integrated Spectrum

In order to compute Sλ,Z(t−t′)(t ′), models for stellar
evolution and stellar atmospheres are needed. As a re-
minder, Fig. 3.46(a) displays the evolutionary tracks
in the HRD. Each track shows the position of a star
with specified mass in the HRD and is parametrized
by the time since its formation. Positions of equal time
in the HRD are called isochrones and are shown in
Fig. 3.46(b). As time proceeds, fewer and fewer massive
stars exist because they quickly leave the main sequence
and end up as supernovae or white dwarfs. The num-
ber density of stars along the isochrones depends on the
IMF. The spectrum Sλ,Z(t−t′)(t ′) is then the sum over all
spectra of the stars on an isochrone – see Fig. 3.47(b).

In the beginning, the spectrum and luminosity of
a stellar population are dominated by the most massive
stars, which emit intense UV radiation. But after ∼ 107

years, the flux below 1000 Å is diminished significantly,
and after ∼ 108 years, it hardly exists any more. At the
same time, the flux in the NIR increases because the
massive stars evolve into red supergiants.

For 108 yr� t � 109 yr, the emission in the NIR re-
mains high, whereas short-wavelength radiation is more
and more diminished. After ∼ 109 yr, red giant stars
(RGB stars) account for most of the NIR production.
After ∼ 3×109 yr, the UV radiation increases again
due to blue stars on the horizontal branch into which
stars evolve after the AGB phase, and due to white
dwarfs which are hot when they are born. Between an
age of 4 and 13 billion years, the spectrum of a stellar
population evolves fairly little.

Of particular importance is the spectral break located
at about 4000 Å which becomes visible in the spectrum
after a few 107 years. This break is caused by a strongly
changing opacity of stellar atmospheres at this wave-
length, mainly due to strong transitions of singly ionized
calcium and the Balmer lines of hydrogen. This 4000 Å-
break is one of the most important spectral properties of
galaxies; as we will discuss in Sect. 9.1.2, it allows us to
estimate the redshifts of early-type galaxies from their
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Fig. 3.46. a) Evolutionary tracks in the HRD for stars of dif-
ferent masses, as indicated by the numbers near the tracks (in
units of M�). The ZAMS (zero age main sequence) is the
place of birth in the HRD; evolution moves stars away from
the main sequence. Depending on the mass, they explode as
a core-collapse SN (for M ≥ 8M�) or end as a white dwarf

(WD). Prior to this, they move along the red giant branch
(RGB) and the asymptotic giant branch (AGB). b) Isochrones
at different times, indicated in units of 109 years. The upper
main sequence is quickly depopulated by the rapid evolution
of massive stars, whereas the red giant branch is populated
over time

Fig. 3.47. a) Comparison of the spectrum of a main-sequence
star with a blackbody spectrum of equal effective temperature.
The opacity of the stellar atmosphere causes clear deviations
from the Planck spectrum in the UV/optical. b) Spectrum

of a stellar population with solar metallicity that was in-
stantaneously born a time t ago; t is given in units of 109

years
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photometric properties – so-called photometric redshift
estimates.

3.9.3 Color Evolution

Detailed spectra of galaxies are often not available.
Instead we have photometric images in different broad-
band filters, since the observing time required for spec-
troscopy is substantially larger than for photometry. In
addition, modern wide-field cameras can obtain photo-
metric data of numerous galaxies simultaneously. From
the theory of population synthesis we can derive pho-
tometric magnitudes by multiplying model spectra with
the filter functions, i.e., the transmission curves of the
color filters used in observations, and then integrating
over wavelength (A.25). Hence the spectral evolution
implies a color evolution, as is illustrated in Fig. 3.48(a).

For a young stellar population the color evolution is
rapid and the population becomes redder, again because
the hot blue stars have a higher mass and thus evolve

Fig. 3.48. a) For the same stellar population as in Fig. 3.47(b),
the upper two graphs show the colors B − V and V − K as
a function of age. The lower two graphs show the mass-to-
light ratio M/L in two color bands in Solar units. The solid
curves show the total M/L (i.e., including the mass that is

later returned into the ISM), whereas the dashed curves show
the M/L of the stars itself. b) The fraction of B- (top) and
K -luminosity (bottom) contributed by stars in their different
phases of stellar evolution (CHeB: core helium burning stars;
SGB: subgiant branch)

quickly in the HRD. For the same reason, the evolution
is faster in B − V than in V − K . It should be mentioned
that this color evolution is also observed in star clusters
of different ages. The mass-to-light ratio M/L also in-
creases with time because M remains constant while L
decreases.

As shown in Fig. 3.48(b), the blue light of a stel-
lar population is always dominated by main-sequence
stars, although at later stages a noticeable contribution
also comes from horizontal branch stars. The NIR ra-
diation is first dominated by stars burning helium in
their center (this class includes the supergiant phase of
massive stars), later by AGB stars, and after ∼ 109 yr
by red giants. Main sequence stars never contribute
more than 20% of the light in the K-band. The fact
that M/L K varies only little with time implies that the
NIR luminosity is a good indicator for the total stellar
mass: the NIR mass-to-light ratio is much less depen-
dent on the age of the stellar population than that for
bluer filters.
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3.9.4 Star Formation History and Galaxy Colors

Up to now, we have considered the evolution of a stellar
population of a common age (called an instantaneous
burst of star formation). However, star formation in
a galaxy takes place over a finite period of time.
We expect that the star-formation rate decreases over
time because more and more matter is bound in stars
and thus no longer available to form new stars. Since
the star-formation history of a galaxy is a priori un-
known, it needs to be parametrized in a suitable manner.
A “standard model” of an exponentially decreasing
star-formation rate was established for this,

ψ(t) = τ−1 exp [−(t − tf)/τ] H(t − tf) , (3.69)

where τ is the characteristic duration and tf the onset
of star formation. The last factor in (3.69) is the Heav-
iside step function, H(x) = 1 for x ≥ 0, H(x) = 0 for
x < 0. This Heaviside step function accounts for the fact
that ψ(t) = 0 for t < tf. We may hope that this simple
model describes the basic aspects of a stellar popula-
tion. Results of this model are plotted in Fig. 3.49(a) in
a color–color diagram.

From the diagram we find that the colors of the pop-
ulation depend strongly on τ . Specifically, galaxies do
not become very red if τ is large because their star-
formation rate, and thus the fraction of massive blue
stars, does not decrease sufficiently. The colors of Sc
spirals, for example, are not compatible with a constant
star-formation rate – except if the total light of spirals is
strongly reddened by dust absorption (but there are good
reasons why this is not the case). To explain the colors
of early-type galaxies we need τ � 4×109 yr. In gen-
eral, one deduces from these models that a substantial
evolution to redder colors occurs for t � τ . Since the
luminosity of a stellar population in the blue spectral
range decreases quickly with the age of the population,
whereas increasing age affects the red luminosity much
less, we conclude:

The spectral distribution of galaxies is mainly de-
termined by the ratio of the star-formation rate
today to the mean star-formation rate in the past,
ψ(today)/ 〈ψ〉.

One of the achievements of this standard model is
that it explains the colors of present day galaxies, which
have an age of � 10 billion years. However, this model
is not unambiguous because other star-formation histo-
ries ψ(t) can be constructed with which the colors of
galaxies can be modeled as well.

3.9.5 Metallicity, Dust, and HII Regions

Predictions of the model depend on the metallicity Z –
see Fig. 3.49(b). A small value of Z results in a bluer
color and a smaller M/L ratio. The age and metallicity
of a stellar population are degenerate in the sense that
an increase in the age by a factor X is nearly equivalent
to an increase of the metallicity by a factor 0.65X with
respect to the color of a population. The age estimate of
a population from color will therefore strongly depend
on the assumed value for Z. However, this degeneracy
can be broken by taking several colors, or information
from spectroscopy, into account.

Intrinsic dust absorption will also change the colors
of a population. This effect cannot be easily accounted
for in the models because it depends not only on the
properties of the dust but also on the geometric distribu-
tion of dust and stars. For example, it makes a difference
whether the dust in a galaxy is homogeneously dis-
tributed or concentrated in a thin disk. Empirically, it is
found that galaxies show strong extinction during their
active phase of star formation, whereas normal galaxies
are presumably not much affected by extinction, with
early-type galaxies (E/S0) affected the least.

Besides stellar light, the emission by HII regions also
contributes to the light of galaxies. It is found, though,
that after ∼ 107 yr the emission from gas nebulae only
marginally contributes to the broad-band colors of gal-
axies. However, this nebular radiation is the origin of
emission lines in the spectra of galaxies. Therefore,
emission lines are used as diagnostics for the star-
formation rate and the metallicity in a stellar population.

3.9.6 Summary

After this somewhat lengthy section, we shall summa-
rize the most important results of population synthesis
here:
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Fig. 3.49. a) Evolution of colors between 0 ≤ t ≤ 17×109 yr
for a stellar population with star-formation rate given by
(3.69), for five different values of the characteristic time-scale
τ (τ = ∞ is the limiting case for a constant star-formation
rate) –Galactic center see solid curves. The typical colors for
four different morphological types of galaxies are plotted. For
each τ , the evolution begins at the lower left, i.e., as a blue
population in both color indices. In the case of constant star
formation, the population never becomes redder than Irr’s; to

achieve redder colors, τ has to be smaller. The dashed line
connects points of t = 1010 yr on the different curves. Here,
a Salpeter IMF and Solar metallicity was assumed. The shift
in color obtained by doubling the metallicity is indicated by
an arrow, as well as that due to an extinction coefficient of
E(B − V ) = 0.1; both effects will make galaxies appear red-
der. b) The dependence of colors and M/L on the metallicity
of the population

• A simple model of star-formation history reproduces
the colors of today’s galaxies fairly well.

• (Most of) the stars in elliptical and S0 galaxies are
old – the earlier the Hubble type, the older the stellar
population.

• Detailed models of population synthesis provide
information about the star-formation history, and
predictions by the models can be compared with
observations of galaxies at high redshift (and thus
smaller age).

We will frequently refer to results from population
synthesis in the following chapters. For example, we
will use them to interpret the colors of galaxies at
high redshifts and the different spatial distributions of
early-type and late-type galaxies (see Chap. 6). Also,
we will present a method of estimating the redshift of
galaxies from their broad-band colors (photometric red-
shifts). As a special case of this method, we will discuss
the efficient selection of galaxies at very high redshift
(Lyman-break galaxies, LBGs, see Chap. 9). Because
the color and luminosity of a galaxy are changing even

when no star formation is taking place, tracing back
such a passive evolution allows us to distinguish this
passive aging process from episodes of star formation
and other processes.

3.9.7 The Spectra of Galaxies

At the end of this section we shall consider the typical
spectra of different galaxy types. They are displayed
for six galaxies of different Hubble types in Fig. 3.50.
To make it easier to compare them, they are all plotted
in a single diagram where the logarithmic flux scale
is arbitrarily normalized (since this normalization does
not affect the shape of the spectra).

It is easy to recognize the general trends in these spec-
tra: the later the Hubble type, (1) the bluer the overall
spectral distribution, (2) the stronger the emission lines,
(3) the weaker the absorption lines, and (4) the smaller
the 4000-Å break in the spectra. From the above discus-
sion, we would also expect these trends if the Hubble
sequence is considered an ordering of galaxy types



138

3. The World of Galaxies

Fig. 3.50. Spectra of gal-
axies of different types,
where the spectral flux is
plotted logarithmically in
arbitrary units. The spec-
tra are ordered according
to the Hubble sequence,
with early types at the bot-
tom and late-type spectra
at the top

according to the characteristic age of their stellar popu-
lation or according to their star-formation rate. Elliptical
and S0 galaxies essentially have no star-formation ac-
tivity, which renders their spectral energy distribution
dominated by red stars. Furthermore, in these galaxies
there are no HII regions where emission lines could be
generated. The old stellar population produces a pro-
nounced 4000-Å break, which corresponds to a jump
by a factor of ∼ 2 in the spectra of early-type galaxies.
It should be noted that the spectra of ellipticals and S0
galaxies are quite similar.

By contrast, Sc spirals and irregular galaxies have
a spectrum which is dominated by emission lines, where
the Balmer lines of hydrogen as well as nitrogen and
oxygen lines are most pronounced. The relative strength
of these emission lines are characteristic for HII regions,
implying that most of this line emission is produced in
the ionized regions surrounding young stars. For irregu-
lar galaxies, the spectrum is nearly totally dominated by
the stellar continuum light of hot stars and the emission
lines from HII regions, whereas clear contributions by
cooler stars can be identified in the spectra of Sc spiral
galaxies.

The spectra of Sa and Sb galaxies form a kind of
transition between those of early-type galaxies and Sc

galaxies. Their spectra can be described as a super-
position of an old stellar population generating a red
continuum and a young population with its blue con-
tinuum and its emission lines. This can be seen in
connection with the decreasing contribution of the
bulge to the galaxy luminosity towards later spiral
types.

The properties of the spectral light distribution of
different galaxy types, as briefly discussed here, is de-
scribed and interpreted in the framework of population
synthesis. This gives us a detailed understanding of
stellar populations as a function of the galaxy type. Ex-
tending these studies to spectra of high-redshift galaxies
allows us to draw conclusions about the evolutionary
history of their stellar populations.

3.10 Chemical Evolution of Galaxies

During its evolution, the chemical composition of a gal-
axy changes. Thus the observed metallicity yields
information about the galaxy’s star-formation history.
We expect the metallicity Z to increase with star-
formation rate, integrated over the lifetime of the galaxy.
We will now discuss a simple model of the chemical evo-
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lution of a galaxy, which will provide insight into some
of the principal aspects.

We assume that at the formation epoch of the stellar
population of a galaxy, at time t = 0, no metals were
present; hence Z(0) = 0. Furthermore, the galaxy did
not contain any stars at the time of its birth, so that all
baryonic matter was in the form of gas. In addition, we
consider the galaxy as a closed system out of which no
matter can escape or be added later on by processes of
accretion or merger. Finally, we assume that the time-
scales of the stellar evolution processes that lead to the
metal enrichment of the galaxy are small compared to
the evolutionary time-scale of the galaxy. Under these
assumptions, we can now derive a relation between the
metallicity and the gas content of a galaxy.

Of the total mass of a newly formed stellar popu-
lation, part of it is returned to the ISM by supernova
explosions and stellar winds. We define this fraction as
R, so that the fraction α = (1− R) of a newly-formed
stellar population remains enclosed in stars, i.e., it no
longer takes part in the further chemical evolution of the
ISM. The value of α depends on the IMF of the stellar
population and can be computed from models of pop-
ulation synthesis. Furthermore, let q be the ratio of the
mass in metals, which is produced by a stellar popula-
tion and then returned into the ISM, and the initial total
mass of the population. The yield y = q/α is defined
as the ratio of the mass in metals that is produced by
a stellar population and returned into the ISM, and the
mass that stays enclosed in the stellar population. The
yield can also be calculated from population synthesis
models. If ψ(t) is the star-formation rate as a function
of time, then the mass of all stars formed in the history
of the galaxy is given by

S(t) =
t∫

0

dt ′ ψ(t ′) ,

and the total mass that remains enclosed in stars is s(t) =
αS(t). Since we have assumed a closed system for the
baryons, the sum of gas mass g(t) and stellar mass s(t)
is a constant, namely the baryon mass of the galaxy,

g(t)+ s(t) = Mb ⇒ dg

dt
+ ds

dt
= 0 . (3.70)

The mass of the metals in the ISM is gZ; it changes
when stars are formed. Through this formation, the mass

of the ISM and thus also that of its metals decreases.
On the other hand, metals are also returned into the
ISM by processes of stellar evolution. Under the above
assumption that the time-scales of stellar evolution are
small, this return occurs virtually instantaneously. The
metals returned to the ISM are composed of metals
that were already present at the formation of the stellar
population – a fraction R of these will be returned – and
newly formed metals. Together, the total mass of the
metals in the ISM obeys the evolution equation

d(gZ)

dt
= ψ (RZ +q)− Zψ ,

where the last term specifies the rate of the metals ex-
tracted from the ISM in the process of star formation
and the first term describes the return of metals to the
ISM by stellar evolution processes. Since dS/dt = ψ,
this can also be written as

d(gZ)

dS
= (R −1)Z +q = q −αZ .

Dividing this equation by α and using s = αS and the
definition of the yield, y = q/α, we obtain

d(gZ)

ds
= dg

ds
Z + g

dZ

ds
= y − Z . (3.71)

From (3.70) it follows that dg/ds = −1 and dZ/ds =
−dZ/dg, and so we obtain a simple equation for the
metallicity,

g
dZ

dg
= dZ

d ln g
= −y

⇒ Z(t) = −y ln

(
g(t)

Mb

)
= −y ln(μg) , (3.72)

where μg = g/Mb is the fraction of baryons in the ISM,
and where we chose the integration constant such that at
the beginning, when μg = 1, the metallicity was Z = 0.
From this relation, we can now see that with decreasing
gas content in a galaxy, the metallicity will increase; in
our simple model this increase depends only on the
yield y. Since y can be calculated from population
synthesis models, (3.72) is a well-defined relation.

If (3.72) is compared with observations of galax-
ies, rather strong deviations from this relation are found
which are particularly prominent for low-mass galaxies.
While the assumption of an instantaneous evolution of
the ISM is fairly well justified, we know from structure
formation in the Universe (Chap. 7) that galaxies are
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by no means isolated systems: their mass continuously
changes through accretion and merging processes. In
addition, the kinetic energy transferred to the ISM by
supernova explosions causes an outflow of the ISM,
in particular in low-mass galaxies where the gas is
not strongly gravitationally bound. Therefore, the ob-
served deviations from relation (3.72) allow us to draw
conclusions about these processes.

Also, from observations in our Milky Way we find
indications that the model of the chemical evolution
sketched above is too simplified. This is known as the
G-dwarf problem. The model described above predicts

that about half of the F- and G-main-sequence stars
should have a metallicity of less than a quarter of the
Solar value. These stars have a long lifetime on the
main sequence, so that many of those observed today
should have been formed in the early stages of the Gal-
axy. Thus, in accordance with our model they should
have very low metallicity. However, a low metallicity
is in fact observed in only very few of these stars. The
discrepancy is far too large to be explained by selec-
tion effects. Rather, observations show that the chemical
evolution of our Galaxy must have been substantially
more complicated than described by our simple model.




