Stellar Populations Physics of Galaxies 2012 part 3

faculty of mathematics and natural sciences

Why do we need to know about stars to study galaxies?

- We can't see the vast majority of the mass in galaxies
 - dark matter!
- We only see the "baryons" in galaxies
 - stars
 - gas
- To understand the properties of galaxies, we need to study these components

faculty of mathematics and natural sciences

Stellar atmospheres

- When we look at galaxies in the UV, visible, and NIR, we see (mostly) the atmospheres of their stars
 - their continua: blackbody curves
 - their absorption lines
 - ...and sometimes the emission lines of the gas, if there is star formation or an active galactic nucleus

- Stellar spectra depend mainly on three variables:
 - Effective temperature, where $L \equiv 4\pi R^2 \sigma T_{eff}^4$
 - To first order, the emitted continuum of a star is a blackbody curve with $~T\sim T_{\rm eff}$
 - and a peak at $\lambda_{\max} = [2.9/T \,(\mathrm{K})] \,\mathrm{mm}$

Composition: more-or-less the mean abundance of elements heavier than He

 $[Fe/H] \equiv \log_{10}[\epsilon(Fe/H)_*] - \log_{10}[\epsilon(Fe/H)_{\odot}]$

where ϵ (Fe/H) is the number of Fe atoms relative to the number of H atoms

- causes absorption lines where atoms "intercept" continuum light of star
 - also "line blanketing": when absorption lines "pile up", like below 4000 Å (not to be confused with Balmer decrement...)

flux F_A (arbitrary units)

flux F_A (arbitrary units)

- Surface gravity: $g \equiv \frac{GM}{R^2}$
 - set gas pressure
 - ionization balance (e.g., singly- vs. doubly-ionized Fe)
 - pressure broadened lines (like H lines)
 - abundances of certain molecules (in cool stars: CN, CO, etc.)

Stellar classification (quickly)

- Morgan-Keenan spectral classes
 - based on ratios of strong absorption lines
 - OBAFGKM(LT) \Rightarrow T_{eff}
 - Luminosity class I-V $\Rightarrow \log g$
 - Sun is G2V star
 - Only works within ~2x of solar abundance; qualitative; discrete steps; no abundance calibration

 faculty of mathematics and natural sciences

Magnitudes and colors

- Unfortunately, spectra are expensive in telescope time
 - need to spread photons out into lots of pixels takes a lot of time to do!
- Need faster way to get stellar properties

- Consider two objects with fluxes f_1 and f_2
- Then the magnitude difference between these objects is $m_1 - m_2 = -k \log_{10} \left(\frac{f_1}{f_2} \right)$ • where k = 2.5 means that $m_1 - m_2 = 5$ when
 - where k = 2.5 means that $m_1 m_2 = 5$ when $f_2/f_1 = 100$

• SO
$$m_1 - m_2 = -2.5 \log_{10} \left(\frac{f_1}{f_2} \right)$$

• Or $\frac{f_1}{f_2} = 10^{-0.4(m_1 - m_2)}$

faculty of mathematics and natural sciences

- This defines the **apparent magnitude**, the magnitude of the flux received by the detector at the telescope, where $f \equiv \int_0^\infty f_\nu F_\nu R_\nu T_\nu d\nu$
 - here
 - f_{ν} is the flux of the object (in frequency units)
 - F_{ν} is the transmission of any filter used to isolate the (frequency) region of interest
 - ${}^{\bullet} R_{\nu}$ is the transmission of the telescope, optics, and detector
 - T_{ν} is the transmission of the atmosphere (if any)

university of groningen faculty of mathematics and natural sciences

- Most (but not all) magnitude systems are based on taking a magnitude with respect to a star with a known (or predefined) magnitude
 - the "Vega" system defines a set of AOV stars as having apparent magnitude 0 in *all* bands of a system (see below)
 - So to get a "magnitude on system X", one observes stars with known magnitudes and *calibrates* the "instrumental magnitudes" onto the "standard system"

- Some useful properties and "factoids" about magnitudes...
 - The magnitude system is roughly based on *natural* logarithms: $m_1 - m_2 = 0.921 \ln(f_1/f_2)$
 - If $\Delta f \ll 1$, then $\Delta m = m_2 m_1 \approx 1.086 \Delta f$
 - so the magnitude difference between two objects of nearly-equal brightness is equal to the fractional difference in their brightnesses – i.e., a difference of 0.1 magnitudes is ~10% in brightness
 - A factor of 2 difference in brightness is a difference of 0.75 magnitudes

faculty of mathematics and natural sciences

- We define the color of an object as the magnitude difference of the object in two different filters ("bandpasses")
 - if the filters are X and Y, then the color (X-Y) is

$$(X - Y) \equiv m_X - m_Y = \text{const.} - 2.5 \log \frac{\int_0^\infty d\lambda S_\lambda(X) f_\lambda}{\int_0^\infty d\lambda S_\lambda(Y) f_\lambda}$$
$$= \text{const.} - 2.5 \log \frac{f_X}{f_Y}$$

• where S_{λ} is the combined telescope-detector-filter sensitivity

astronomy

16

Two common magnitude systems

- Notice that stars of different temperatures have very different spectra, so they have different fluxes through the filters
 - therefore they have different colors
 - and therefore well-chosen colors can be good
 temperature indicators
 - problems: calibration is tricky requires good stellar radii; line blanketing makes bands bluer than ~V sensitive to [Fe/H] and log g

Apparent to absolute magnitudes

strictly true only if M is constant, but this is almost true on the giant branch.

- At fixed effective temperature, stars with lower log g must be bigger, since $g\equiv \frac{GM}{R^2}$
 - so they must have higher luminosity, since $L \equiv 4\pi R^2 \sigma T_{\rm eff}^4$
- But we measure the flux, not the luminosity: $F = \frac{L}{4\pi D^2}$
- so we need the distance D to the stars

- We will come back to how to determine distances in the next lecture. In the meantime...
- We receive flux *f* at our telescopes from an object at distance *d*. If we wanted instead to know what the flux *F* is of that object if it were at distance *D*, then

$$f = \left(\frac{D}{d}\right)^2 F$$

The difference in magnitudes m of f at d and M of F at
 D is then

$$m - M = -2.5 \log\left(\frac{f}{F}\right) = 5 \log\left(\frac{d}{D}\right)$$

faculty of mathematics and natural sciences

Now, we always pick D to be 10 parsecs (10 pc), so if d is measured in parsecs, then

$$m - M = 5\log(d[\mathrm{pc}]) - 5$$

• If d is measured in 10^6 pc=1 Mpc, then

$$m - M = 5\log(d[Mpc]) + 25$$

- m-M is called the **distance modulus** and is sometimes written $\mu=m-M$
- ...and M is called the absolute magnitude

Color-magnitude diagrams

- By combining preciselymeasured distances with apparent magnitudes and colors, we can plot a
 color-magnitude diagram (CMD) of stars
 - This CMD is for stars within 100 pc of the Sun with accurate distances and colors

Color-magnitude diagrams

- By combining preciselymeasured distances with apparent magnitudes and colors, we can plot a color-magnitude diagram (CMD) of stars
 - This CMD is for stars within 100 pc of the Sun with accurate distances and colors

- Note!
 - A Hertzsprung-Russell diagram is a plot of luminosity as a function of effective temperature
 - A color-magnitude diagram is a plot of magnitude as a function of color
 - They are not the same!
 - The conversion from color to temperature depends on knowing the *radii* of stars, which (as mentioned) are difficult to measure!
 - Magnitude ≠ luminosity unless you know the distance and the *bolometric correction*, which depends on stellar type (or color)

faculty of mathematics and natural sciences

- The local CMD is made up of stars of many ages (we'll return to this point!)
- When we look at an object like a globular cluster, we see a very distinct pattern

- The local CMD is made up of stars of many ages (we'll return to this point!)
- When we look at an object like a globular cluster, we see a very distinct pattern

Evolutionary timescales

- Stars burn hydrogen into helium for most of their lifetimes, until they exhaust the H in their cores
 - How long does this take?
 - Let's call *E* the amount of energy released by H burning during its *main-sequence lifetime* $\tau_{\rm MS}$
 - If the star's luminosity on the main sequence is L, then $E=L\tau_{\rm MS}$
 - So if we can determine *E*, we can determine $\tau_{\rm MS}$

 faculty of mathematics and natural sciences

- Now, the amount of energy released by converting a mass dM of H into He is $dE=0.007c^2dM$
- So if a fraction α of the total mass of the star M is burned into He before core H-exhaustion, then $E=0.007c^2 \alpha M$
- so the main-sequence lifetime is $\tau_{\rm MS} = 0.007 \alpha M c^2 / L$
- Typically, $\alpha = 0.1$, so $\tau_{\rm MS} = 10M/M_{\odot}(L/L_{\odot})^{-1}$ Gyr

- It is straightforward to work out from the equations of stellar structure that $L \propto M^4$ over a good chunk of the main sequence (for stars near the solar composition; this is also true observationally!)
- Then finally we have the main-sequence lifetime as a function of mass: $\tau_{\rm MS} = 10 A (M/M_{\odot})^{-3} \, {\rm Gyr}$
 - where A is a constant of ~1
- So a star ten times the mass of the sun lives for 1/1000 of the time: 10 Myr!

- The main-sequence lifetime is a crucial timescale: it is a clock
 - By measuring the magnitude and color of the main sequence turnoff (MSTO or just TO) we can determine the age of a stellar population – and therefore something about its evolution
 - The brighter and bluer the MSTO, the younger the population
 - brighter, bluer MS stars are more massive

Open or Galactic Clusters

- "Open" or Galactic clusters are low mass, relatively small (~10 pc diameter) clusters of stars in the Galactic disk containing <10³ stars
 - The Pleiades cluster is a good example of an open cluster
 - the "fuzziness" is starlight reflected from interstellar dust

faculty of mathematics and natural sciences

- Because open clusters live in the disk of our Milky Way, they are subject to strong tides and shearing motions
- Because they are so small and contain few stars, they also evaporate quickly
- Therefore they do not live very long unless they are very massive — so most of them are quite *young*

30

- All stars in an open cluster
 - are at the same distance
 - formed at the same time
 - have the same composition
- Very useful for testing stellar evolution models!

- They are also very useful for studying the evolution of the properties of the MW's disk
 - Which of these clusters is the youngest?
 - Which is the oldest?

Globular clusters

Globular clusters are named for their spherical shape and contain $\sim 10^4$ - 10^6 stars and are bigger than open clusters, with diameters of 20-100 pc

In the Milky Way, *all* globular clusters are **old**: >10 Gyr!

M15 imaged with JKT at La Palma core of M15 observed with HST

Globular clusters

Globular clusters are named for their spherical shape and contain ~10⁴-10⁶ stars and are bigger than open clusters, with diameters of 20-100 pc

In the Milky Way, *all* globular clusters are **old**: >10 Gyr!

M15 imaged with JKT at La Palma core of M15 observed with HST

Globular cluster CMDs

- As all MW GCs are old, their CMDs are very similar. They vary primarily due to composition differences
 - "metallicity" [Fe/H]
 - He content
 - variations of other elements
- Age is an important but secondary consideration

Isochrones: "single burst" stellar populations

- Take a set of stellar
 models all with the same
 age and same
 composition but
 different masses
 - the resulting track in an HR diagram or a CMD is called an *isochrone*

Isochrones: "single burst" stellar populations

- Take a set of stellar
 models all with the same
 age and same
 composition but
 different masses
 - the resulting track in an HR diagram or a CMD is called an *isochrone*

- When populations get old, the isochrones "pile up" at very similar luminosities and temperatures
 - It is easy to determine ages for **young** populations
 - ...but not for old populations!
 - "Age dating" GCs is difficult!

The effect of metallicity

- Stellar temperatures and luminosities also depend on composition at fixed age
 - This is an *opacity* effect: more metals mean more absorption, especially in the blue (it's reradiated into the IR), so stars become cooler (redder) and dimmer

The effect of metallicity

 Putting all of this together, the absolute V magnitude of the MSTO varies as

 $M_V(MSTO) = 2.7 \log(t/Gyr) + 0.3 [Fe/H] + 1.4$

- Uncertainties:
 - Difficult to measure the location of the MSTO, as the isochrones are ~vertical
 - Distance errors cause big age errors:
 - 10% distance error → 0.2 mag error in distance modulus → 0.2 mag uncertainty in MSTO magnitude → 20% error in age

 faculty of mathematics and natural sciences Globular clusters in the Milky Way are generally very old (>10 Gyr), with only a few younger, metalrich globular clusters

The age-metallicity degeneracy

- Because both age and metallicity affect isochrones, it can be very difficult to separate their effects on single-burst stellar populations
- Because the *colors* of an unresolved stellar population come from <u>both</u> the giant branch and the MS, colors are **not useful** to determine the ages of "old" populations

The age-metallicity degeneracy

- Because both age and metallicity affect isochrones, it can be very difficult to separate their effects on single-burst stellar populations
- Because the *colors* of an unresolved stellar population come from <u>both</u> the giant branch and the MS, colors are **not useful** to determine the ages of "old" populations

The luminosity function

- At a given point in the galaxy, the number of stars will vary, with both luminous and faint stars
 - Consider a number dN of stars with absolute magnitudes in the range (M, M+dM) in the volume element $d^3\mathbf{x}$ around the point **x**:

$$dN = \Phi(M, \mathbf{x}) \, dM \, d^3 \mathbf{x}$$

faculty of mathematics and natural sciences

- Now let's assume that the *mix* of stars of different luminosities is independent of location (not always true...):
 - Then we can separate $\Phi(M, \mathbf{x})$ into two functions, $\Phi(M)$ and $\nu(\mathbf{x})$: $dN = [\Phi(M) dM][\nu(\mathbf{x}) d^3\mathbf{x}]$
 - We call $\Phi(M)$ the **luminosity function**, the relative fraction of stars of different luminosities, while $\nu(\mathbf{x})$ is the total number density of stars at \mathbf{x} .

- Note that we will encounter and use the concept of luminosity functions even when we talk about galaxies
 - In this case we generalize $\Phi(M)$ to mean the relative fraction of galaxies with different luminosities and $\nu(\mathbf{x})$ to be the number of density of galaxies

- Let's consider again the local stars observed by Hipparcos within 100 рс
 - Hipparcos was *targeted* on stars with $m_V < 8$
 - So we can construct an LF by writing

$$\Phi(M_V)dM = \frac{dN}{V_{\text{max}}}$$

where V_{max} is the volume over which stars with M_V could be seen

45

university of

groningen

- This is the result (in black). Note the following:
 - Most of the stars are **faint**: peak is at M_V~14
 - If we weight by the *luminosity* of the stars, nearly all of the light is in **bright** stars: peak is at M_V~1
 - If we weight by the mass of the stars, most of the stellar mass is in **low-mass** stars: over range 3<M_V<15

astronomy

faculty of mathematics

and natural sciences

- Another interesting result is the mass-to-light ratio of stars in the Solar Neighborhood:
 - the V-band luminosity density is $0.053 L_{\odot} \, \mathrm{pc}^{-3}$
 - the mass density is (including white dwarfs) $0.039 M_{\odot}\,{
 m pc}^{-3}$
 - combining, the mass-to-light ratio in solar units is

 $M/L_V \sim 0.67\,M_\odot/L_\odot$

this is a *lower limit* to the total mass per unit luminosity (in a given band), because we haven't included the dark matter – which we must do in a different way...

- Note that what we've defined here is the present-day luminosity function (PDLF)
 - this is the LF we see after the high-mass stars have evolved away

faculty of mathematics and natural sciences

The initial mass function: IMF

- A critical input for stellar population models crucial to understand the formation and evolution of galaxies is the initial mass function
 - specifies the distribution of mass in stars *immediately* after a star formation event: the number of stars dN with masses between \mathcal{M} and $\mathcal{M}+d\mathcal{M}$ is

 $dN = N_0 \xi(\mathcal{M}) d\mathcal{M}$

• We normalize $\xi(\mathcal{M})$ such that N_0 is the total number of solar masses formed in the event:

faculty of mathematics and natural sciences

- To determine $\xi(\mathcal{M})$, we need to determine dN immediately after a star-formation event to get the *initial luminosity function* Φ_0 : remember that $dN = \Phi(M) dM$
 - if all the stars *just* formed in one burst: no correction

- If that's not the case, but the system has been forming stars at a *constant* rate (roughly true for the MW disk), then $\Phi_0(M) = \Phi(M) \times \begin{cases} t/\tau_{\rm MS} & \text{for } \tau_{\rm MS}(M) < t \\ 1 & \text{otherwise} \end{cases}$
 - The factor $t/\tau_{\rm MS}$ corrects for the fact that we only see stars of magnitude *M* that formed in the last fraction $\tau_{\rm MS}/t$ of the population's life
- Now we can determine $\xi(\mathcal{M})$:

$$\xi(\mathcal{M}) = \frac{dM}{d\mathcal{M}} \Phi_0[M(\mathcal{M})]$$

- The function $M(\mathcal{M})$ specifies the relation between stellar mass and absolute magnitude
 - unfortunately, you also need the derivative of this function...

The simplest (and still commonly used) IMF is that inferred by Salpeter (1955), which is a *power-law*:

 $\xi(\mathcal{M}) \propto \mathcal{M}^{-2.35}$

- note that you often see the exponent as –1.35, but this is a different definition of the IMF, in log $\mathcal M$ instead of (linear) $\mathcal M$
- In reality, we know that the low-mass IMF must be *flat* or even *decline* with decreasing mass, at least in the Solar Neighborhood

- This has led to a number of different parameterizations of the IMF...
 - Salpeter, Kroupa, and Chabrier are the most commonly-used IMFs today

- The big question: is the IMF universal?
 - Nearly everyone assumes so... but this may not be true....

faculty of mathematics and natural sciences

The evolution of stellar populations

- Stars with masses $<1.5 M_{\odot}$ live for >2.5 Gyr (at solar) abundance) and put out most of their energy after the **MSTO**
 - for instance, a 1 M_{\odot} star puts out E_{MS} ~10.8 L_{\odot} Gyr on the MS and E_{GB} ~24 L_o Gyr in the post-MS (RGB, HB, AGB) phases

faculty of mathematics and natural sciences

 If stars of mass M emit a total energy of E_{GB} on the giant branch, then the luminosity of the population will be

$$L \approx \left(E_{\rm GB} \frac{dN}{d\mathcal{M}} \right)_{\mathcal{M}_{\rm GB}} \left| \frac{d\mathcal{M}_{\rm GB}}{dt} \right|$$

this is the energy released on the giant branch per star times the change in the number of stars per unit time

For these low-mass stars, the MS lifetimes are

$$\frac{\tau_{\rm MS}}{10 \,{\rm Gyr}} \approx \left(\frac{\mathcal{M}}{M_{\odot}}\right)^{-3}$$
Note that 6F lifetimes are 10% of MS lifetimes, so the range of masses on the 6F is small ---- roughly that of the MSTO plus a very small amount
or
$$\frac{\mathcal{M}_{\rm GB}}{M_{\odot}} \approx \left(\frac{\tau_{\rm MS}}{10 \,{\rm Gyr}}\right)^{-1/3}$$
and so
$$\frac{d\mathcal{M}}{dt} \approx -\frac{1}{3} \left(\frac{\mathcal{M}_{\rm GB}}{M_{\odot}}\right)^4 \left(\frac{M_{\odot}}{10 \,{\rm Gyr}}\right)$$
university of groningen for the definition of the matter sectors of the definition of the matter sectors of the definition of the matter sectors of the definition of

- Now, if we take the IMF to be a power-law with $\alpha \leq -2.35$ around \mathcal{M}_{GB} , then $dN/d\mathcal{M} \approx K(\mathcal{M}/M_{\odot})^{-\alpha}$
- And the luminosity is then

$$L \approx \frac{KM_{\odot}E_{\rm GB}(\mathcal{M}_{\rm GB})}{30\,{\rm Gyr}} \left(\frac{\mathcal{M}_{\rm GB}}{M_{\odot}}\right)^{4-\alpha}$$

Finally, we can differentiate L to find

$$\frac{d\ln L}{dt} \approx \left[\frac{d\ln E_{\rm GB}}{d\ln \mathcal{M}_{\rm GB}} + (4-\alpha)\right] \frac{d\ln \mathcal{M}_{\rm GB}}{dt}$$

$$\approx 0.3\alpha - \left[1.3 + 0.3\frac{d\ln E_{\rm GB}}{d\ln \mathcal{M}_{\rm GB}}\right] \qquad \text{take the log of the 2nd eq.}$$
is strikting the space to the expression for upd by (

This is strikingly close to the expression found by Tinsley & Gunn (1976): $(d \ln L/dt) \approx 0.3\alpha - 1.3$

/ university of groningen
faculty of mathematics and natural sciences

- So as long as α<4, then the luminosity of a coeval population decreases with time</p>
 - in other words, in the absence of star formation, galaxies (and star clusters) get fainter with time!

faculty of mathematics and natural sciences

- Stellar population models support this (using Salpeter IMFs)
 - note also that populations get redder with age, as expected!

Spectra do the same thing, of course...

- But watch out for the dreaded age-metallicity degeneracy!
- Two spectra with
 - 5 Gyr, [Fe/H]=-0.4
 - 15 Gyr, [Fe/H]=-0.7
- Can you tell the difference?

- But watch out for the dreaded age-metallicity degeneracy!
- Two spectra with
 - 5 Gyr, [Fe/H]=-0.4
 - 15 Gyr, [Fe/H]=-0.7
- Can you tell the difference?

faculty of mathematics

and natural sciences

university of

groningen