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Why do we need to know about 
stars to study galaxies?

We can’t see the vast majority of the mass in galaxies

dark matter!

We only see the “baryons” in galaxies

stars

gas

To understand the properties of galaxies, we need to 
study these components
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Stellar atmospheres
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When we look at galaxies in the UV, visible, and NIR, 
we see (mostly) the atmospheres of their stars

their continua: blackbody curves

their absorption lines

...and sometimes the emission lines of the gas, if 
there is star formation or an active galactic nucleus
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Stellar spectra depend mainly on three variables:

Effective temperature, where

To first order, the emitted continuum of a star is a 
blackbody curve with

and a peak at

T � Te�

�max = [2.9/T (K)]mm

L � 4�R2�T 4
e�
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Composition: more-or-less the mean abundance of 
elements heavier than He

where ε(Fe/H) is the number of Fe atoms relative 
to the number of H atoms

causes absorption lines where atoms “intercept” 
continuum light of star

also “line blanketing”: when absorption lines 
“pile up”, like below 4000 Å (not to be 
confused with Balmer decrement...)

[Fe/H] � log10[�(Fe/H)�]� log10[�(Fe/H)�]
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Cooler

Hotter
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Surface gravity:

set gas pressure

ionization balance (e.g., singly- vs. doubly-ionized 
Fe)

pressure broadened lines (like H lines)

abundances of certain molecules (in cool stars: 
CN, CO, etc.)

g � GM

R2
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log g~0

log g~2

log g~4
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Stellar classification (quickly)
Morgan-Keenan spectral classes

based on ratios of strong absorption lines

OBAFGKM(LT) ⇒ Teff

Luminosity class I-V ⇒ log g

Sun is G2V star

Only works within ~2x of solar abundance; 
qualitative; discrete steps; no abundance calibration
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Magnitudes and colors

Unfortunately, spectra are expensive in telescope time

need to spread photons out into lots of pixels – takes 
a lot of time to do!

Need faster way to get stellar properties
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Consider two objects with fluxes f1 and f2

Then the magnitude difference between these objects 
is 

where               means that                        when 

so 

or

m1 �m2 = �k log10

�
f1

f2

�

k = 2.5 m1 �m2 = 5
f2/f1 = 100

m1 �m2 = �2.5 log10

�
f1
f2

�

f1

f2
= 10�0.4(m1�m2)

note: from here on, I 
mean log-base-10 for 
“log” and log-base-e for 
“ln”
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This defines the apparent magnitude, the magnitude 
of the flux received by the detector at the telescope, 
where

here

    is the flux of the object (in frequency units)

    is the transmission of any filter used to isolate 
the (frequency) region of interest

    is the transmission of the telescope, optics, and 
detector

    is the transmission of the atmosphere (if any)

f �
� �

0
f�F�R�T�d�

f�

F�

R�

T�
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Most (but not all) magnitude systems are based on 
taking a magnitude with respect to a star with a known 
(or predefined) magnitude

the “Vega” system defines a set of A0V stars as 
having apparent magnitude 0 in all bands of a 
system (see below)

So to get a “magnitude on system X”, one observes 
stars with known magnitudes and calibrates the 
“instrumental magnitudes” onto the “standard 
system”
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Some useful properties and “factoids” about 
magnitudes...

The magnitude system is roughly based on natural 
logarithms:

If             , then 

so the magnitude difference between two objects 
of nearly-equal brightness is equal to the fractional 
difference in their brightnesses – i.e., a difference 
of 0.1 magnitudes is ~10% in brightness

A factor of 2 difference in brightness is a difference of 
0.75 magnitudes

m1 �m2 = 0.921 ln(f1/f2)

�f � 1 �m = m2 �m1 � 1.086�f
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We define the color of an object as the magnitude 
difference of the object in two different filters 
(“bandpasses”)

if the filters are X and Y, then the color (X–Y) is

where     is the combined telescope-detector-filter 
sensitivity

S�

(X � Y ) � mX �mY = const.� 2.5 log
��
0 d�S�(X)f���
0 d�S�(Y )f�

= const.� 2.5 log
fX

fY
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204 L. Girardi et al.: Isochrones in several photometric systems

Fig. 3. The filter sets used in the present work. From top to bottom, we show the filter+detector transmission curves S λ for the systems: (1)
HST/NICMOS, (2) HST/WFPC2, (3) Washington, (4) ESO/EMMI, (5) ESO/WFI UBVRIZ + ESO/SOFI JHK, and (6) Johnson-Cousins-
Glass. All references are given in Sect. 4. To allow a good visualisation of the filter curves, they have been re-normalized to their maximum
value of S λ. For the sake of comparison, the bottom panel presents the spectra of Vega (A0V), the Sun (G2V), and a M5 giant, in arbitrary
scales of Fλ.

4.3.1. WFI

The Wide Field Imager (WFI) at the MPG/ESO 2.2 m La Silla
telescope provides imaging of excellent quality over a 34′ ×33′

field of view. It contains a peculiar set of broad-band filters,
very different from the “standard” Johnson-Cousins ones. This
can be appreciated in Fig. 3; notice in particular the particular
shapes of the WFI B and I filters. Moreover, EIS makes use of
the WFI Z filter which does not have a correspondency in the
Johnson-Cousins system.

Given the very unusual set of filters, the importance of com-
puting isochrones specific for WFI is evident. This has benn
done so for the broad WFI filters U (ESO#841), B (ESO#842),

V (ESO#843), R (ESO#844), I (ESO#845), and Z (ESO#846),
that – here and in Fig. 3 – are referred to as UBVRIZ for short.

Bolometric corrections have been computed in the
VEGAmag system assuming all Vega apparent magnitudes to
be 0.03, and in the ABmag system, which is adopted by the EIS
group. The photometric calibration of EIS data is discussed in
Arnouts et al. (2001).

It is very important to notice that any photometric observa-
tion performed with WFI that makes use of standard stars (e.g.
Landolt 1992) to convert WFI instrumental magnitudes to the
standard Johnson-Cousins UBVRI system, will not be in the
WFI VEGAmag system we are dealing with here. Instead, in

L. Girardi et al.: Isochrones in the SDSS system 207

Fig. 1. The SDSS filter+detector transmission curves Sλ adopted in this work. They refer to the filter and detector throughputs as seen through
airmasses of 1.3 (dashed lines) at Apache Point Observatory. For the sake of comparison, the curves for a null airmass (solid lines) are also
presented. All curves are re-normalized to their maximum value of Sλ. The bottom panel presents the spectra of Vega (A0V), the Sun (G2V),
and a M 5 giant, in arbitrary scales of Fλ. The λ scale here adopted is the same as in Fig. 3 of Paper I.

(where m is a magnitude, m0 is a zero-point, and f is the pho-
ton flux as integrated over a filter pass-band) is replaced by an
inverse hyperbolic sine function

µ( f ) = (m0 − 2.5 log b′) − a sinh−1( f /2b′) (3)

where a = 2.5 log e, and b′ is the constant (in photon flux units)
that gives µ(0) = m0−2.5 log b′ for a null flux. In practice, b′ is
related to the limiting magnitude of a given photometric sur-
vey, and has to be furnished together with the apparent µ in
any of its data releases. This magnitude definition reproduces
the traditional definition for objects measured with a signal-to-
noise >5, avoids problems with negative fluxes for very faint
objects, and retains a well-behaved error distribution for fluxes
approaching zero. Hence it is primarily of importance for ob-
jects near the detection limit.

It is clear that this definition of magnitude is not compatible
with the formalism we adopt to derive bolometric corrections.
Actually, basic quantities like bolometric corrections, absolute
magnitudes, and distance modulus, cannot be defined in any
simple way if we use the Lupton et al. scale, because it is a
non-logarithmic one. As a corollary, we can say that such a
scale represents a convenient way to express apparent magni-
tudes and colours near the survey limit (as demonstrated by
Lupton et al. 1999), but represents a complication if we want
to represent absolute magnitudes.

Considering this, we do not even try to express our theoret-
ical models by means of Lupton et al. (1999) modified magni-
tude scale. We do, however, provide a prescription of how to
convert absolute magnitudes MSλ – given by our models in the
AB system – into an apparent µSλ – as given in the SDSS data
releases. This can be done in the following way:

1. convert from absolute to apparent magnitudes using the
usual definitions of distance modulus and absorption, i.e.,
mSλ = MSλ,0 + (m − M)0 + ASλ ;

2. convert from classical apparent magnitudes to a photon
flux, i.e. f =

∫
(λ/hc)dλ in the case of ABmags; this

requires knowledge of the effective throughputs in each
pass-band Sλ, referring to the complete instrumental con-
figuration (pratical hints on this step, regarding SDSS DR1
data, can be found in the URL http://www.sdss.org/
dr1/algorithms/fluxcal.html);

3. convert the photon flux to Lupton et al. (1999) modified
magnitude scale by means of Eq. (3), using the b′ constant
typical of the observational campaign under consideration.

Of course, the procedure is not as simple as one would like.
Since at good signal-to-noise ratios ( f > b′) the Lupton et al.
scale coincides with the classical definition of magnitudes, the
question arises whether it is necessary at all to convert models
to Lupton et al. (1999) scale. In fact, for most analyses of stellar
data it will not be worthwhile, since one is rarely tempted to
derive astropysical quantities from stars measured with large
photometric errors.

For diffuse and faint objects like distant galaxies, how-
ever, the situation might well be the opposite one: even rela-
tively noisy data may contain precious astrophysical informa-
tion. Useful hints about the dominant stellar populations may
result, for instance, from a comparison between the integrated
magnitudes and colours of single-burst stellar populations (pro-
vided in this paper in the usual magnitude scale) to those of
faint galaxy structures from SDSS (given in the Lupton et al.
scale). If this is the case, the conversion problem has to be
faced.

2.3. Extinction coefficients

The basic formalism of synthetic photometry as introduced in
Paper I, allows an easy assessment of the effect of interstellar
extinction on the output data. As can be readily seen in Eq. (1),
each stellar spectrum Fλ in our database can be reddened by
applying a given extinction curve Aλ, and hence the bolometric
corrections computed as usual. The difference between the BCs
derived from reddened spectra and the original (unreddened)

Some filter systems in common use.  From Girardi et al. 2002, 2004

Two common magnitude 
systems
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Notice that stars of different temperatures have very 
different spectra, so they have different fluxes through 
the filters

therefore they have different colors

and therefore well-chosen colors can be good 
temperature indicators

problems: calibration is tricky – requires good 
stellar radii; line blanketing makes bands bluer than 
~V sensitive to [Fe/H] and log g
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At fixed effective temperature, stars with lower log g 
must be bigger, since              

so they must have higher luminosity, since

But we measure the flux, not the luminosity:

so we need the distance D to the stars

Apparent to absolute 
magnitudes

g � GM
R2

L � 4�R2�T 4
e�

F =
L

4�D2

strictly true only if M is 
constant, but this is 
almost true on the giant 
branch.

19



We will come back to how to determine distances in 
the next lecture.  In the meantime...

We receive flux f at our telescopes from an object at 
distance d.  If we wanted instead to know what the flux 
F is of that object if it were at distance D, then

The difference in magnitudes m of f at d and M of F at 
D is then

f =
�

D

d

�2

F

m�M = �2.5 log
�

f

F

�
= 5 log

�
d

D

�
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Now, we always pick D to be 10 parsecs (10 pc), so if 
d is measured in parsecs, then

If d is measured in 106 pc=1 Mpc, then

m–M is called the distance modulus and is 
sometimes written µ=m–M

...and M is called the absolute magnitude

m�M = 5 log(d[Mpc]) + 25

m�M = 5 log(d[pc])� 5
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By combining precisely-
measured distances with 
apparent magnitudes and 
colors, we can plot a 
color-magnitude 
diagram (CMD) of stars

This CMD is for stars 
within 100 pc of the 
Sun with accurate 
distances and colors

Color-magnitude diagrams
bright

faint

blue red

B0 A0 F0 G0K0 M0

22



By combining precisely-
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Note!
A Hertzsprung-Russell diagram is a plot of 
luminosity as a function of effective temperature 
A color-magnitude diagram is a plot of magnitude 
as a function of color
They are not the same!

The conversion from color to temperature depends 
on knowing the radii of stars, which (as mentioned) 
are difficult to measure!
Magnitude ≠ luminosity unless you know the 
distance and the bolometric correction, which 
depends on stellar type (or color)
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The local CMD is made 
up of stars of many ages 
(we’ll return to this point!)

When we look at an 
object like a globular 
cluster, we see a very 
distinct pattern

G. Piotto et al.: Globular cluster HST color-magnitude diagrams 953

Fig. 4. The F555W vs. F439W−F555W (flight system) color magnitude diagrams from the combination of the 4 WFPC2 cameras of 2 clusters
of the database. Note that the magnitude and color ranges covered by each figure are always of the same size (though magnitude and color
intervals start at different values). Heavier dots correspond to stars with an internal total error less than 0.1 mag.
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The local CMD is made 
up of stars of many ages 
(we’ll return to this point!)

When we look at an 
object like a globular 
cluster, we see a very 
distinct pattern
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Fig. 4. The F555W vs. F439W−F555W (flight system) color magnitude diagrams from the combination of the 4 WFPC2 cameras of 2 clusters
of the database. Note that the magnitude and color ranges covered by each figure are always of the same size (though magnitude and color
intervals start at different values). Heavier dots correspond to stars with an internal total error less than 0.1 mag.

MS

TO SGB

RGB

AGB

HB
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Stars burn hydrogen into helium for most of their 
lifetimes, until they exhaust the H in their cores

How long does this take?

Let’s call E the amount of energy released by H 
burning during its main-sequence lifetime 

If the star’s luminosity on the main sequence is L, 
then 

So if we can determine E, we can determine 

�MS

E = L�MS

�MS

Evolutionary timescales
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Now, the amount of energy released by converting a 
mass dM of H into He is dE=0.007c2dM

So if a fraction α of the total mass of the star M is 
burned into He before core H-exhaustion, then 
E=0.007c2 αM

so the main-sequence lifetime is 

Typically, α=0.1, so 

�MS = 0.007�Mc2/L

�MS = 10M/M�(L/L�)�1 Gyr
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It is straightforward to work out from the equations of 
stellar structure that               over a good chunk of 
the main sequence (for stars near the solar 
composition; this is also true observationally!)

Then finally we have the main-sequence lifetime as a 
function of mass: 

where A is a constant of ~1

So a star ten times the mass of the sun lives for 
1/1000 of the time: 10 Myr!

L �M4

�MS = 10A(M/M�)�3 Gyr
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The main-sequence lifetime is a crucial timescale: it is a 
clock 

By measuring the magnitude and color of the main 
sequence turnoff (MSTO or just TO) we can 
determine the age of a stellar population – and 
therefore something about its evolution

The brighter and bluer the MSTO, the younger the 
population

brighter, bluer MS stars are more massive
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Open or Galactic Clusters
“Open” or Galactic clusters 
are low mass, relatively small 
(~10 pc diameter) clusters of 
stars in the Galactic disk 
containing <103 stars

The Pleiades cluster is a 
good example of an open 
cluster

the “fuzziness” is 
starlight reflected from 
interstellar dust
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Because open clusters live in the disk of our Milky Way, 
they are subject to strong tides and shearing motions

Because they are so small and contain few stars, they 
also evaporate quickly

Therefore they do not live very long unless they are very 
massive — so most of them are quite young
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All stars in an open cluster
are at the same distance
formed at the same time
have the same 
composition

Very useful for testing stellar 
evolution models!

16 Myr

100 Myr
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They are also very useful for 
studying the evolution of the 
properties of the MW’s disk

Which of these clusters is 
the youngest?
Which is the oldest?
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Globular clusters
Globular clusters are 
named for their spherical 
shape and contain 
~104-106 stars and are 
bigger than open clusters, 
with diameters of 20-100 
pc

In the Milky Way, all 
globular clusters are old: 
>10 Gyr! M15 imaged with JKT at 

La Palma
core of M15 observed 
with HST
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Globular cluster CMDs
As all MW GCs are old, their 
CMDs are very similar.  They 
vary primarily due to 
composition differences

“metallicity” [Fe/H]

He content

variations of other elements

Age is an important but 
secondary consideration

Examples of globular clusters

Similar sequences

The exact location of the features in 
the HR diagram depends 

• age 
• metallicity, 
• a quantity related to He or other 

element abundances.
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Isochrones: “single burst” 
stellar populations

Take a set of stellar 
models all with the same 
age and same 
composition but 
different masses

the resulting track in an 
HR diagram or a CMD 
is called an isochrone

age ➔
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Isochrones: “single burst” 
stellar populations

Take a set of stellar 
models all with the same 
age and same 
composition but 
different masses

the resulting track in an 
HR diagram or a CMD 
is called an isochrone

4.5 Myr

14 Gyr

age ➔

main-sequence
turnoff
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When populations get old, 
the isochrones “pile up” at 
very similar luminosities 
and temperatures

It is easy to determine 
ages for young 
populations

...but not for old 
populations!

“Age dating” GCs is 
difficult!

The effect of age in CMDs

• Isochrones:
– theoretical distribution of group of stars with the 

same age
– example: from 4 Myr to 10.6 Gyr

(the labels give the log(age)).

• "Old" isochrones are much closer together than the 
"younger" isochrones

-> Easy to measure the age of a young population but 
difficult for an old pop

lo
g(

ag
e)

lo
g(

ag
e)
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The effect of metallicity
Stellar temperatures and 
luminosities also depend 
on composition at fixed 
age

This is an opacity 
effect: more metals 
mean more absorption, 
especially in the blue 
(it’s reradiated into the 
IR), so stars become 
cooler (redder) and 
dimmer

[Fe/H]=-2

[Fe/H]=+0.5

[Fe/H]=0

12 Gyr
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The effect of metallicity
At fixed L, Δ[Fe/H]=–1.7 
shifts the unevolved MS 
(“zero-age MS” or ZAMS) to 
the blue by ΔTeff=+0.06

Δ(V–K)=–0.32 mag

At fixed color, Δ[Fe/H]=–1.7 
shifts the ZAMS fainter by 
~1 magnitude

low-metallicity ZAMS 
stars are thus called 
“subdwarfs”, because 
they’re fainter at the 
same mass

[Fe/H]=-2

[Fe/H]=+0.5

[Fe/H]=0

12 Gyr
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Putting all of this together, the absolute V magnitude of 
the MSTO varies as

Uncertainties:
Difficult to measure the location of the MSTO, as the 
isochrones are ~vertical
Distance errors cause big age errors:

10% distance error ➔ 0.2 mag error in distance 
modulus ➔ 0.2 mag uncertainty in MSTO 
magnitude ➔ 20% error in age

MV (MSTO) = 2.7 log(t/Gyr) + 0.3[Fe/H] + 1.4
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Globular clusters in the 
Milky Way are generally 
very old (>10 Gyr), with 
only a few younger, metal-
rich globular clusters

M. Salaris and A. Weiss: Ages of a large sample of Galactic globular clusters 497

Fig. 3. Distribution of the absolute ages (in Gyr) as function
of [Fe/H] (upper panel) and Rgc (lower panel). Filled circles
correspond to clusters in the R99 sample, while open squares
denote the remaining ones.

Fig. 4. As in Fig. 3, but assuming the ZW84 [Fe/H] scale for
the clusters instead of the CG97 one in the previous figure.

in our sample. When deriving errors in age differences
within the same metallicity group, we have just to take
into account the error coming from the use of ∆(V − I) as
the relative age indicator, without adding the contribution
of the error in the absolute age of the template cluster (as
is done in Table 1), because for typical absolute age errors

of ±1 Gyr, the differential properties of ∆(V − I) as a
function of metallicity and age are negligibly affected.

For the pair NGC 288-NGC 362 we obtain an age dif-
ference of 2.6 ± 1.5 Gyr (NGC 288 being older), in good
agreement with the results by Bellazzini et al. (2001), but
in contrast to SW97, where the two clusters appeared to
be coeval. The reason for this change lies in the new pho-
tometric data. According to the simulations by Catelan
et al. (2001), this age difference, coupled with the abso-
lute ages we obtain and the use of the CG97 [Fe/H] scale,
can explain the overall different HB morphology; however,
canonical HB models appear unable to reproduce the de-
tailed morphology of the red end of NGC 288 HB (Catelan
et al. 2001).

In case of M 3-M 13 we obtain a difference of 0.6 ±
1.0 Gyr (M13 older), much less significant than the 1.7±
0.7 Gyr as obtained by Rey et al. (2001) from their BV
photometry. M 13 was not contained in our previous work.
The same negligible age difference we obtain from the ∆V
values derived by R99; it seems therefore that the discrep-
ancy between our and Rey et al. (2001) result is due to
real differences in the photometric data, and not to the
use of different passbands for the TO-RGB colour differ-
ences and inconsistency in the colours of the theoretical
isochrones. Problems with the calibration of the photom-
etry may possibly lead to this kind of discrepancy. Rey
et al. (2001) noticed, for example, that their derived fidu-
cial line for M 13 agrees well with those obtained by Richer
& Fahlman (1986) and Yim et al. (2000), but differs in the
main sequence and subgiant branch region from the fidu-
cial by Paltrinieri et al. (1998).

It is also interesting to notice that Arp 2 and Rup 106
do not appear much younger than the bulk of the clusters
at their metallicity; the reason why Buonanno et al. (1998)
found higher age differences is mainly the fact that their
adopted clusters’ absolute ages are higher. As discussed
in detail in, e.g., Pulone et al. (1998), lower absolute ages
imply smaller age differences for a given observed distribu-
tion of ∆V , ∆(B−V ) or ∆(V −I) values. As discussed in
SW98 there are preliminary indications that Rup 106 and
also Pal 12 may not show α-element enhancement. In this
case, their ages displayed in Table 1 should be increased
by about 1 Gyr.

To highlight the effect of the present uncertainties in
the [Fe/H] scale, we have also derived ages, as a test, by
using the [Fe/H] values given by Rutledge et al. (1997) on
the ZW84 scale (internal accuracy again of the order of
0.10 dex), complemented, if needed, by data in the origi-
nal ZW84 paper or coming from other spectral indices cal-
ibrated on the ZW84 scale. In this case the [Fe/H] range
spanned by our sample is larger than the CG97 scale.
We have therefore divided the sample into 5 groups, hav-
ing as template clusters M 15 (−2.3 ≤ [Fe/H] ≤ −2.0),
NGC 6656 (−1.99 ≤ [Fe/H] ≤ −1.7), M 3 (−1.69 ≤
[Fe/H] ≤ −1.4), NGC 6171 (−1.39 ≤ [Fe/H] ≤ −0.9) and
47 Tuc (−0.89 ≤ [Fe/H] ≤ −0.5). Figure 4 shows the age
distribution resulting from the AM-method as a function
of [Fe/H] and Rgc, when using the ZW84 [Fe/H] scale.

Same age

age=f([Fe/H])
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The age–metallicity 
degeneracy

Because both age and 
metallicity affect isochrones, it 
can be very difficult to 
separate their effects on 
single-burst stellar 
populations

Because the colors of an 
unresolved stellar population 
come from both the giant 
branch and the MS, colors 
are not useful to determine 
the ages of “old” populations 
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The age–metallicity 
degeneracy

Because both age and 
metallicity affect isochrones, it 
can be very difficult to 
separate their effects on 
single-burst stellar 
populations

Because the colors of an 
unresolved stellar population 
come from both the giant 
branch and the MS, colors 
are not useful to determine 
the ages of “old” populations 

Only MS turnoff 
changes!

3x lower age
2x higher [Fe/H]
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The luminosity function

At a given point in the galaxy, the number of stars will 
vary, with both luminous and faint stars

Consider a number dN of stars with absolute 
magnitudes in the range (M, M+dM) in the volume 
element d3x around the point x:

dN = �(M,x) dM d3x
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Now let’s assume that the mix of stars of different 
luminosities is independent of location (not always 
true...):

Then we can separate              into two functions,     
and        :

We call          the luminosity function, the relative 
fraction of stars of different luminosities, while        is 
the total number density of stars at x.

�(M,x) �(M)
�(x) dN = [�(M) dM ][�(x) d3x]

�(M)
�(x)
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Note that we will encounter and use the concept of 
luminosity functions even when we talk about galaxies

In this case we generalize           to mean the relative 
fraction of galaxies with different luminosities and         
to be the number of density of galaxies

�(M)
�(x)
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Let’s consider again the local stars 
observed by Hipparcos within 100 
pc

Hipparcos was targeted on 
stars with mV<8

So we can construct an LF by 
writing

where Vmax is the volume over 
which stars with MV could be 
seen

�(MV )dM =
dN

Vmax
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This is the result (in black).  Note the following:
Most of the stars are faint: peak is at MV~14
If we weight by the luminosity of the stars, nearly all of the 
light is in bright stars: peak is at MV~1
If we weight by the mass of the stars, most of the stellar 
mass is in low-mass stars: over range 3<MV<15

Hipparcos limit

dots: light from MS 
stars only
solid: light from all stars
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Another interesting result is the mass-to-light ratio of 
stars in the Solar Neighborhood:

the V-band luminosity density is 

the mass density is (including white dwarfs)

combining, the mass-to-light ratio in solar units is

this is a lower limit to the total mass per unit 
luminosity (in a given band), because we haven’t 
included the dark matter – which we must do in a 
different way...

0.053L� pc�3

0.039M� pc�3

M/LV � 0.67 M�/L�
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Note that what we’ve defined here is the present-day 
luminosity function (PDLF)

this is the LF we see after the high-mass stars have 
evolved away
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A critical input for stellar population models crucial to 
understand the formation and evolution of galaxies is 
the initial mass function

specifies the distribution of mass in stars immediately 
after a star formation event: the number of stars dN 
with masses between M and M+dM is

We normalize ξ(M) such that N0 is the total number 
of solar masses formed in the event:

The initial mass function: 
IMF

dN = N0�(M)dM

�
M�(M)dM = M�
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To determine ξ(M), we need to determine dN immediately 
after a star-formation event to get the initial luminosity function 
Φ0: remember that

if all the stars just formed in one burst: no correction
dN = �(M) dM
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If that’s not the case, but the system has been forming stars 
at a constant rate (roughly true for the MW disk), then

The factor           corrects for the fact that we only see 
stars of magnitude M that formed in the last fraction                    
of the population’s life

Now we can determine ξ(M):

�0(M) = �(M)�
�

t/�MS for �MS(M) < t
1 otherwise

t/�MS

�MS/t

�(M) =
dM

dM�0[M(M)]
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The function         
specifies the relation 
between stellar mass and 
absolute magnitude

unfortunately, you also 
need the derivative of 
this function...

M(M)
19
93
MN
RA
S.
26
2.
.5
45
K
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The simplest (and still commonly used) IMF is that 
inferred by Salpeter (1955), which is a power-law:

note that you often see the exponent as –1.35, but 
this is a different definition of the IMF, in log M 
instead of (linear) M 

In reality, we know that the low-mass IMF must be flat 
or even decline with decreasing mass, at least in the 
Solar Neighborhood

�(M) �M�2.35
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This has led to a number 
of different 
parameterizations of the 
IMF...

Salpeter, Kroupa, and 
Chabrier are the most 
commonly-used IMFs 
today
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The big question: is the IMF universal?

Nearly everyone assumes so... but this may not be 
true....
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Stars with masses <1.5 M⊙ live for >2.5 Gyr (at solar 
abundance) and put out most of their energy after the 
MSTO

for instance, a 1 M⊙ star puts out EMS~10.8 L⊙ Gyr 
on the MS and EGB~24 L⊙ Gyr in the post-MS (RGB, 
HB, AGB) phases

The evolution of stellar 
populations
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If stars of mass M emit a total energy of EGB on the 
giant branch, then the luminosity of the population will 
be

For these low-mass stars, the MS lifetimes are

or

and so

L �
�

EGB
dN

dM

�

MGB

����
dMGB

dt

����

�MS

10 Gyr
�

�
M
M�

��3

dM
dt

� �1
3

�
MGB

M�

�4 �
M�

10 Gyr

�

MGB

M�
�

�
�MS

10 Gyr

��1/3

Note that GB lifetimes are ~10% of 
MS lifetimes, so the range of 
masses on the GB is small --- roughly 
that of the MSTO plus a very small 
amount

this is the energy 
released on the giant 
branch per star times 
the change in the 
number of stars per 
unit time
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Now, if we take the IMF to be a power-law with 
α≤-2.35 around MGB, then

And the luminosity is then

Finally, we can differentiate L to find

This is strikingly close to the expression found by 
Tinsley & Gunn (1976):

dN/dM � K(M/M�)��

L � KM�EGB(MGB)
30 Gyr

�
MGB

M�

�4��

d lnL

dt
�

�
d lnEGB

d lnMGB
+ (4� �)

�
d lnMGB

dt

� 0.3��
�
1.3 + 0.3

d lnEGB

d lnMGB

�

(d lnL/dt) � 0.3�� 1.3

take the log of the 2nd eq. 
on the previous page...
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So as long as α<4, then the luminosity of a coeval 
population decreases with time

in other words, in the absence of star formation, 
galaxies (and star clusters) get fainter with time!
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Stellar population models 
support this (using 
Salpeter IMFs)

note also that 
populations get redder 
with age, as expected!

20
03
MN
RA
S.
34
4.
10
00
B
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Spectra do the same 
thing, of course...

19
93
Ap
J.
..
40
5.
.5
38
B
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But watch out for the 
dreaded age–metallicity 
degeneracy!

Two spectra with

5 Gyr, [Fe/H]=-0.4

15 Gyr, [Fe/H]=-0.7

Can you tell the 
difference?

Vazdekis MILES models
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But watch out for the 
dreaded age–metallicity 
degeneracy!

Two spectra with

5 Gyr, [Fe/H]=-0.4

15 Gyr, [Fe/H]=-0.7

Can you tell the 
difference?

Hβ Mgb

Fe5270
Fe5335

Vazdekis MILES models
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