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History

Our Galaxy can
be seen on the sky
as the Milky Way,
a band of faint
light.
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The earliest attempts to study the structure of the Milky Way
Galaxy (the Sidereal System; really the whole universe) on a global
scale were based on star counts.

William Herschel (1738 – 1822) performed such “star gauges” and
assumed that (1) all stars have equal intrinsic luminostities and (2)
he could see stars out ot the edges of the system.
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Then the distance to the edge of the system in any direction is
proportional to the square-root of the number of stars per square
degree.

It can be shown by comparing to current star counts that Herschel
counted stars down to about visual magnitude 14.51.

1P.C. van der Kruit, A.&A. 157, 244 (1986)
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Jacobus C. Kapteyn (1851 – 1922) improved upon this by
determining locally the luminosity function Φ(M), that is the
frequency distribution of stars as a function of their absolute
magnitudes.

The observed distribution of stars Nm in a given direction as a
function of apparent magnitude m relates to the space density of
stars ∆(ρ) at distance ρ as

dNm

dm
= 0.9696

∫ ∞

0
ρ2∆(ρ)Φ(m − 5 log ρ)dρ

Kapteyn proceeded to investigate (numerical) methods to invert
this integral equation in order to solve it.
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Kapteyn suspected that interstellar absorption was present and
even predicted that it would give rise to reddening2.

But he found that the reddening was small (0.031 ± 0.006 mag
per kpc in modern units) and chose to ignore it.

Under Kapteyn’s leadership an international project on Selected
Areas over the whole sky to determine star counts (and eventually
spectral types and velocities) in a systematic way was started.

2J.C. Kapteyn, Ap.J. 29, 46 & 30, 284/398 (1909)
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Towards the end of his life he used star counts to construct what
became known as the Kapteyn Universe3:

The Sun is near the center. That was suspicious.

Indeed the work of Harlow Shapley (1885 – 1972) on the distances
of Globular Clusters showed that the Sidereal System really was
much larger.

3J.C Kapteyn & P.J. van Rhijn, Ap.J. 52, 23 (1920); J.C. Kapteyn, o.J. 55,
302 (1922)
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Astronomers like Jan H. Oort (1900 – 1992) found that absorption
reconciled the two models.
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All-sky pictures

Here is a composite picture4 covering the full sky at 36′′pixel−1.

4A. Mellinger, P.A.S.P. 121, 1180 (2009); also Astronomy Picture of the
Day for 2009 November 25: antwrp.gsfc.nasa.gov/apod/ap091125.html
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Here is a plot of all stars in the Guide Star Catalogue of the
Hubble Space Telescope down to about magnitude 16.
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The Cosmic Background Explorer (COBE) satellite did see the
Milky Way in the near-infrared as follows:
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Differential rotation

The Galaxy does not rotate like a solid wheel. The period of
revolution varies with distance from the center. This is called
differential rotation.

Each part moves with respect to those parts that do not happen to
be at the same galactocentric distance.

Piet van der Kruit, Kapteyn Astronomical Institute Structure, kinematics and dynamics of the Galaxy
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Say, the rotation speed is
V (R) and in the solar
neighborhood it is V◦.

If the Sun Z is at a distance
R◦ from the center C,
then an object at distance r
from the Sun at Galactic
longitude l
has a radial velocity w.r.t. the
Sun Vrad and a tangential
velocity T .
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Vrad = Vr(R)−Vr(0) = V (R) sin(l + θ)−V◦ sin l

T = T (R)− T (0) = V (R) cos(l + θ)− V◦ cos l

R sin(l + θ) = R◦ sin l

R cos(l + θ) = R◦ cos l − r

Piet van der Kruit, Kapteyn Astronomical Institute Structure, kinematics and dynamics of the Galaxy
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Substitute this and we get

Vrad = R◦

(
V (R)

R
− V◦

R◦

)
sin l (1)

T = R◦

(
V (R)

R
− V◦

R◦

)
cos l − r

R
V (R) (2)

So, if we would know the rotation curve V (R) we can calculate the
distance R from observations of Vrad. From this follows r with an
ambiguity symmetric with the sub-central point.

The latter is that point along the line-of-sight that is closest to the
Galactic Center.

V (R) can be deduced in each direction l by taking the largest
observed radial velocity. This will be the rotation velocity at the
sub-central point.
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With the 21-cm line of HI, the distribution of hydrogen in the
Galaxy has been mapped5. This was the first indication that the
Galaxy is a spiral galaxy.

5K.K. Kwee, C.A. Muller & G. Westerhout, Bull. Astron. Inst. Neth. 12,
211 (1954); J.H. Oort, F.J. Kerr & G. Westerhout, Mon.Not.R.A.S. 118, 379
(1958) and J.H. Oort, I.A.U. Symp. 8, 409 (1959)
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Local approximations and Oort constants

We now make local approximations; that is r � R◦.

Change to angular velocities ω(R) = V (R)/R and ω◦ = V◦/R◦
and make a Tayler expansion

f (a + x) = f (a) + x
df (a)

da
+

1

2
x2 d2f (a)

d2a
+ ....

for the angular rotation velocity

ω(R) = ω◦ + (R − R◦)

(
dω

dR

)
R◦

+ 1
2(R − R◦)

2

(
d2ω

dR2

)
R◦
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The cosine-rule gives

R = R◦

[
1 +

(
r

R◦

)2

− 2r

R◦
cos l

]1/2

Make a Tayler expansion for this expression and ignore terms of
higher order than (r/R◦)

3.

R = R◦

[
1− r

R◦
cos l +

1

2

(
r

R◦

)2

(1− cos2 l)

]

R − R◦ = −r cos l +
1

2

r2

R◦
(1− cos2 l)

(R − R◦)
2 = r2 cos2 l
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Substitute this in the equation for ω

ω(R) = ω◦ +

(
dω

dR

)
R◦

R◦

[
− r

R◦
cos l +

1

2

(
r

R◦

)2

(1− cos2 l)

]

+
1

2

(
d2ω

dR2

)
R◦

R2
◦

(
r

R◦

)2

cos2 l

or in linear velocity

Vrad =

(
r

R◦

)2 (
dω

dR

)
R◦

R2
◦
2

sin l − r

R◦

(
dω

dR

)
R◦

R2
◦ sin l cos l

+
1

2

(
r

R◦

)2
[
−

(
dω

dR

)
R◦

R2
◦ +

(
d2ω

dR2

)
R◦

R3
◦

]
sin l cos2 l
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Use 2 sin l cos l = sin 2l and ignore terms with (r/R◦)
2 and higher

orders. Then

Vrad = −1
2R◦

(
dω

dR

)
R◦

r sin 2l ≡ Ar sin 2l

So, stars at the same distance r will show a systematic pattern in
the magnitude of their radial velocities accross the sky with
Galactic longitude.

For stars at Galactic latitude b we have to use the projection of the
velocities onto the Galactic plane:

Vrad = Ar sin 2l cos b

Piet van der Kruit, Kapteyn Astronomical Institute Structure, kinematics and dynamics of the Galaxy
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For the tangential velocities we make a change to proper motions
µ. In equivalent way we then find

T

r
= 4.74µ = −ω◦ +

3

2

(
dω

dR

)
R◦

r cos l −
(

dω

dR

)
R◦

R◦ cos2 l

+
r

2R

[
−

(
dω

dR

)
R◦

+

(
d2ω

dR2

)
R◦

R2
◦

]
cos3 l

Now use cos2 l = 1
2 + 1

2 cos 2l and ignore all terms (r/R◦) and
higher order.

4.74µ = −ω◦ − 1
2

(
dω

dR

)
R◦

R◦ − 1
2R◦

(
dω

dR

)
R◦

cos 2l

≡ B + A cos 2l
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Now the distance dependence has of course disappeared. Agian for
higher Galactic latitude the right-hand side will have to be
multiplied by cos b.

The constants A and B are the Oort constants. Oort first made
the derivation above (in 1927) and used this to deduce the rotation
of the Galaxy from observations of the proper motions of stars.

The Oort constanten can also be written as

A =
1

2

[
V◦
R◦

−
(

dV

dR

)
R◦

]

B = −1

2

[
V◦
R◦

+

(
dV

dR

)
R◦

]
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Furthermore

A + B = −
(

dV

dR

)
R◦

; A− B =
V◦
R◦

Current best values are

R◦ ∼8.5 kpc A ∼13 km s−1 kpc−1

V◦ ∼ 220 km s−1 B ∼-13 km s−1 kpc−1

Piet van der Kruit, Kapteyn Astronomical Institute Structure, kinematics and dynamics of the Galaxy
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Rotation curves and mass distributions

The rotation curve V (R) is difficult to derive beyond R◦ and this
can only be done with objects of known distance such as HII
regions).

In a circular orbit around a point mass M we have M = V 2R/G
(as in the Solar System). This is called a Keplerian rotation curve.

One expects that the rotation curve of the Galaxy tends to such a
behavior as one moves beyond the boundaries of the disk.
However, we do see a flat rotation curve.

Piet van der Kruit, Kapteyn Astronomical Institute Structure, kinematics and dynamics of the Galaxy
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One determination of the Galactic rotation curve:
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We see that up to large distances from the center the rotation
velocity does not drop.

We also see this in other galaxies. It shows that more matter must
be present than what we observe in stars, gas and dust and this is
called dark matter.

With the formula estimate the mass within R◦ as ∼ 9.6× 1010M�.

At the end of the measured rotation curve this enclosed mass
becomes ∼ 1012M�.

Piet van der Kruit, Kapteyn Astronomical Institute Structure, kinematics and dynamics of the Galaxy
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Fundamental equations

There are two fundamental equations.

The first is the continuity equation, also called the Liouville or
collisionless Boltzman equation.

It states that in any element of phase space the time derivative of
the distribution function equals the number of stars entering it
minus that leaving it, if no stars are created or destroyed.

Write the distribution function in phase space as
f (x , y , z , u, v ,w , t) and the potential as Φ(x , y , z , t).

Piet van der Kruit, Kapteyn Astronomical Institute Structure, kinematics and dynamics of the Galaxy
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Now look first for the one-dimensional case at a position x , u.
After a time interval dt the stars at x − dx have taken the place of
the stars at x , where dx = udt.

So the change in the distribution function is

df (x , u) = f (x − udt, u)− f (x , u)

df

dt
=

f (x − udt, u)− f (x , u)

dt
=

f (x − dx , u)− f (x , u)

dx
u = −df (x , u)

dx
u

For the velocity replace the positional coordinate with the velocity
x with u and the velocity u with the acceleration du/dt. But
according to Newton’s law we can relate that to the force or the
potential.

Piet van der Kruit, Kapteyn Astronomical Institute Structure, kinematics and dynamics of the Galaxy
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So we get
df

dt
= −df (x , u)

du

du

dt
=

df (u, x)

du

dΦ

dx

The total derivative of the distribution function then is

∂f (x , u)

∂t
+

∂f (x , u)

∂x
u − ∂f (x , u)

∂u

∂Φ

∂x
= 0

In three dimensions this becomes

∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z
− ∂Φ

∂x

∂f

∂u
− ∂Φ

∂y

∂f

∂v
− ∂Φ

∂z

∂f

∂w
= 0

Piet van der Kruit, Kapteyn Astronomical Institute Structure, kinematics and dynamics of the Galaxy
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If the system is in equilibrium, f (x , y , z , u, v ,w) is independent of
time and

∂f

∂t
= 0.

In cylindrical coordinates the distribution function is
f (R, θ, z ,VR,Vθ,Vz) and the Liouville equation becomes

VR
∂f

∂R
+

Vθ

R

∂f

∂θ
+ Vz

∂f

∂z
+

(
V 2

θ

R
− ∂Φ

∂R

)
∂f

∂VR
−(

VRVθ

R
+

1

R

∂Φ

∂θ

)
∂f

∂Vθ
− ∂Φ

∂z

∂f

∂Vz
= 0.

Piet van der Kruit, Kapteyn Astronomical Institute Structure, kinematics and dynamics of the Galaxy
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The second fundamental equation is Poisson’s equation, which says
that the gravitational potential derives from the combined
gravitational forces of all the matter. It can be written as

∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
≡ ∇2Φ = 4πGρ(x , y , z),

or in cylindrical coordinates

∂2Φ

∂R2
+

1

R

∂Φ

∂R
+

1

R2

∂2Φ

∂θ2
+

∂2Φ

∂z2
= 4πGρ(R, θ, z).

For an axisymmetric case this reduces to

∂KR

∂R
+

KR

R
+

∂Kz

∂z
= −4πGρ(R, z).

Piet van der Kruit, Kapteyn Astronomical Institute Structure, kinematics and dynamics of the Galaxy
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Here

KR = −∂Φ

∂R
Kz = −∂Φ

∂z

From the collisionless Boltzman equation follow the moment or
hydrodynamic equations.

These are obtained by multiplying the Liouville equation by a
velocity-component (e.g. VR) and then integrating over all
velocities.

For the radial direction we then find:

∂

∂R
(ν〈V 2

R〉) +
ν

R
{〈V 2

R〉 − V 2
t − 〈(Vθ − Vt)

2〉}+

∂

∂z
(ν〈VRVz〉) = νKR.

Piet van der Kruit, Kapteyn Astronomical Institute Structure, kinematics and dynamics of the Galaxy
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By assumption we have taken here Vt = 〈Vθ〉 and
〈VR〉 = 〈Vz〉 = 0.
This can be rewritten as:

−KR =
V 2

t

R
− 〈V 2

R〉
[

∂

∂R
(ln ν〈V 2

R〉) +

1

R

{
1− 〈(Vθ − Vt)

2〉
〈V 2

R〉

}]
+ 〈VRVz〉

∂

∂z
(ln ν〈VRVz〉).

The last term reduces in the symmetry plane to

〈VRVz〉
∂

∂z
(ln ν〈VRVz〉) =

∂

∂z
〈VRVz〉

and may then be assumed zero.

Piet van der Kruit, Kapteyn Astronomical Institute Structure, kinematics and dynamics of the Galaxy
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In the vertical direction the hydrodynamic equation becomes

∂

∂z
(ν〈V 2

z 〉) +
ν〈VRVz〉

R
+

∂

∂R
(ν〈VRVz〉) = νKz.

If the radial and vertical motions are not coupled (as in a
plane-parallel potential) the cross-terms with 〈UW 〉 vanish and we
are left with

∂

∂z
(ν〈V 2

z 〉) = νKz.

Piet van der Kruit, Kapteyn Astronomical Institute Structure, kinematics and dynamics of the Galaxy
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Epicycle orbits

For small deviation from
the circular rotation, the
orbits of stars can be
described as epicyclic
orbits.

If R◦ is a fudicial distance from the center and if the deviation
R − R◦ is small compared to R◦, then we have in the radial
direction

d2

dt2
(R − R◦) =

V 2(R)

R
− V 2

◦
R◦

= 4B(A− B)(R − R◦),

where the last approximation results from making a Taylor
expansion of V (R) at R◦ and ignoring higher order terms.

Piet van der Kruit, Kapteyn Astronomical Institute Structure, kinematics and dynamics of the Galaxy
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Similarly we get for the tangential direction

dθ

dt
=

V (R)

R
− V◦

R◦
= −2

A− B

R◦
(R − R◦),

where θ is the angular tangential deviation seen from the Galactic
center.

These equations are easily integrated and it is then found that the
orbit is described by

R − Rcirc =
VR,◦
κ

sin κt,

θR◦ = −
VR,◦
2B

cos κt

Piet van der Kruit, Kapteyn Astronomical Institute Structure, kinematics and dynamics of the Galaxy
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and the orbital velocities by

VR = VR,◦ cos κt,

Vθ − V◦ =
VR,◦κ

−2B
sin κt.

The period in the epicycle equals 2π/κ and the epicyclic frequency
κ is

κ = 2{−B(A− B)}1/2.

In the solar neighborhood κ ∼36 km s−1 kpc−1.

Piet van der Kruit, Kapteyn Astronomical Institute Structure, kinematics and dynamics of the Galaxy
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For a flat rotation curve we have

κ =
√

2
V◦(R)

R
.

Through the Oort constants and the epicyclic frequency, the
parameters of the epicycle depend on the local forcefield, because
these are all derived from the rotation velocity and its radial
derivative.

The direction of motion in the epicycle is opposite to that of
galactic rotation.

Piet van der Kruit, Kapteyn Astronomical Institute Structure, kinematics and dynamics of the Galaxy
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The ratio of the velocity dispersions or the axis ratio of the velocity
ellipsoid in the plane for the stars can be calculated as

〈V 2
θ 〉1/2

〈V 2
R〉1/2

=

√
−B

A− B
.

For a flat rotation curve this equals 0.71.

With this result the hydrodynamic equation can then be reduced to
the so-called asymmetric drift equation:

V 2
rot − V 2

t =

−〈V 2
R〉

{
R

∂

∂R
ln ν + R

∂

∂R
ln〈V 2

R〉+

[
1− B

B − A

]}
.

Piet van der Kruit, Kapteyn Astronomical Institute Structure, kinematics and dynamics of the Galaxy
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If the asymmetric drift (Vrot − Vt) is small, the left-hand term can
be approximated by

V 2
rot − V 2

t ∼ 2Vrot(Vrot − Vt).

The term asymmetric drift comes from the observation that
objects in the Galaxy with larger and larger velocity dispersion lag
more and more behind in the direction of Galactic rotation.
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Vertical motion

For the vertical motion the equivalent approximation is also that of
a harmonic oscillator.

For a constant density the hydrodynamic equation reduces to

Kz =
d2z

dt2
= −4πGρ◦z .

Integration gives

z =
Vz,◦
λ

sin λt ; Vz = Vz,◦ cos λt.

The period equals 2π/λ and the vertical frequency λ is

λ = (4πGρ◦)
1/2.
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For the solar neighbourhood we have ρ◦ ∼0.1 M� pc−3.

With the values above for R◦, V◦, A and B, the epicyclic period
κ−1 ∼ 1.7× 108 yrs and the vertical period λ−1 ∼ 8× 107 yrs.
The period of rotation is 2.4 ×108 yrs.

The Sun moves with ∼20 km s−1 towards the Solar Apex at
Galactic longitude ∼ 57◦ and latitude ∼ +27◦.

From the curvature of the ridge of the Milky Way the distance of
the Sun from the Galactic Plane is estimated as 12 pc.

The axes of the solar epicycle are about ∼0.34 kpc in the radial
direction and ∼0.48 kpc in the tangential direction.

The amplitude of the vertical motion is ∼85 pc.
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