Polarization Effects Near Black Holes

Avery Broderick

Why Worry About Black Holes?

- Prodigious X-ray Output of Accreting Black Holes
- Data on Accreting Black Holes
- Tests Strong Field Relativity

Some Black Hole Candidates

• Stellar Mass Candidates with "Confirmed" Black Holes (HMXBs)

Object	Mass (M_{\odot})	F_X (μ Jy)	E _{max} (keV)
V518 Per	3.2 – 13.2	$3 imes 10^3$	$8 imes 10^2$
LMC X-3	5.9 – 9.2	60	50
LMC X-1	4.0 - 10.0	30	20
V616 Mon	8.7 - 12.9	$5 imes 10^4$	30
MM Vel	6.3 - 8.0	$8 imes 10^2$	$4 imes 10^2$
KV UMa	6.5 – 7.2	40	$1.5 imes10^2$
GU Mus	6.5 – 8.2	$3 imes 10^3$	$5 imes 10^2$
IL Lupi	7.4 - 11.4	$1.5 imes10^4$	$2 imes 10^2$
V381 Nor	8.4 - 10.8	$7 imes 10^3$	$2 imes 10^2$
V1033 Sco	6.0 - 6.6	$3.9 imes10^3$	$8 imes 10^2$
V821 Ara		$1.1 imes10^3$	$4.5 imes10^2$
V2107 Oph	5.6 - 8.3	$3.6 imes10^3$	10 ²
V4641 Sgr	6.8 - 7.4	$1.3 imes10^4$	20
V406 Vul	7.6 - 12	$1.5 imes10^3$	$2 imes 10^2$
V1487 Aql	10.0 - 18.0	$3.7 imes10^3$	$5 imes 10^2$
Cyg X-1	6.9 - 13.2	$2.3 imes10^3$	$2-5 imes10^3$
QZ Vul	7.1 - 7.8	$1.1 imes10^4$	$3 imes 10^2$
V404 Cyg	10.1 - 13.4	2×10^4	$4 imes 10^2$

(McClintock & Remillard, astro-ph/0306213)

• Super Massive Black Holes (AGN)

What Black Holes Can't Do

- Affect Distant Emission ($r \gtrsim 10M$)
- Create Polarization

 \longrightarrow Use Thomson Scattering

$$\Pi = \frac{1 - \cos^2 n_i}{1 + \cos^2 n_i}$$

What Black Holes Can Do

- Gravitational Redshift & Doppler Boost
- Gravitational Lensing
- Rotate Polarization via Parallel Propagation
- Rotate Polarization via Lorentz Boosts

\longrightarrow Depolarization & Rotation

Redshifts and Lensing

Keplerian Disk Around Non-Rotating BH

 Keplerian Disk Around Rotating BH (a = 0.98)

Parallel Propagation

• Definition:

 $f^{\mu}k_{\mu} = 0$ and $k^{\mu}\nabla_{\mu}f^{\nu} = 0$

Properties

$$- f^{\mu}k_{\mu} = \text{constant}$$

- $f^{\mu}f_{\mu} = \text{constant}$
- f^{μ} does not "rotate" about k^{μ}

Computational Methods

- Direct Integration (Stark & Connors, 1977, Nature, 266, 429)
- Penrose-Walker Constant (Connors & Stark, 1977, Nature, 269, 128)

$$K_{\mathsf{PW}} = (\alpha - i\beta)(r - ia\cos\theta)$$

$$\alpha = (k^t f^r - k^r f^t) + a\sin^2\theta(k^r f^\phi - k^\phi f^r)$$

$$\beta = (r^2 + a^2)\sin\theta(k^\phi f^\theta - k^\theta f^\phi) - a\sin\theta(k^t f^\theta - k^\theta f^t)$$

 Stoke's Parameters (Broderick & Blandford, 2003, MNRAS, in press)

$$\frac{d\phi}{d\tau} = \hat{e}_1^{\mu} k^{\nu} \nabla_{\nu} \hat{e}_{2\mu}$$
$$\frac{dN_Q}{d\tau} = -\frac{d\phi}{d\tau} N_U$$
$$\frac{dN_U}{d\tau} = \frac{d\phi}{d\tau} N_Q$$

Parallel Propagation cont.

a = 0.98

a = 0.98

Lorentz Boosts

Lorentz Boosts cont.

• $\Theta = 75^{\circ}$ a = 0

a = 0.98

6

X-ray Polarimetry 2004

Polarization Maps for $\Pi = 1$

a = 0.98

a = 0.98

Polarization Maps for Thomson Scattering

X-ray Polarimetry 2004

α Disk Models

(Connors, Piran & Stark, 1980, ApJ, 235, 224)

GR α **Disk Models of AGN**

(Laor, Nezter & Piran, 1990, MNRAS, 242, 560)

Black Body

Summary

- GR & SR Depolarize and Rotate LP
- Effects are Achromatic $\longrightarrow E$ Dependence from T(r)
- Requires an Intrinsic Polarization

Caveats

- Assumed Flat Disk
- Assumed Intrinsic Polarization Mechanism

Further Information

- Stark & Connors, 1977, Nature, 266, 429
- Connors & Stark, 1977, Nature, 269, 128
- Connors, Piran & Stark, 1979, ApJ, 235, 224
- Laor & Netzer, 1989, MNRAS, 238, 897
- Laor, Netzer & Piran, 1990, MNRAS, 242, 560
- Chen & Eardley, 1991, ApJ, 382, 125
- Agol, 1996, Thesis, UCSB
- Bao, Wiita, Hadrava, 1996, PRL, 77, 12
- Bao, Hadrava, Wiita, Xiong, ApJ, 1997, 487, 142
- Bao, Wiita, Hadrava, 1998, ApJ, 504, 58