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Abstract

Clusters of galaxies are the most recently assembled, massive, bound structures
in the Universe. As predicted by General Relativity, given their masses, clusters
strongly deform space-time in their vicinity. Clusters act as some of the most pow-
erful gravitational lenses in the Universe. Light rays traversing through clusters
from distant sources are hence deflected, and the resulting images of these dis-
tant objects therefore appear distorted and magnified. Lensing by clusters occurs
in two regimes, each with unique observational signatures. The strong lensing
regime is characterized by effects readily seen by eye, namely, the production of
giant arcs, multiple-images, and arclets. The weak lensing regime is characterized
by small deformations in the shapes of background galaxies only detectable statis-
tically. Cluster lenses have been exploited successfully to address several important
current questions in cosmology: (i) the study of the lens(es) - understanding clus-
ter mass distributions and issues pertaining to cluster formation and evolution, as
well as constraining the nature of dark matter; (ii) the study of the lensed objects
- probing the properties of the background lensed galaxy population – which is
statistically at higher redshifts and of lower intrinsic luminosity thus enabling the
probing of galaxy formation at the earliest times right up to the Dark Ages; and
(iii) the study of the geometry of the Universe - as the strength of lensing depends
on the ratios of angular diameter distances between the lens, source and observer,
lens deflections are sensitive to the value of cosmological parameters and offer a
powerful geometric tool to probe Dark Energy. In this review, we present the basics
of cluster lensing and provide a current status report of the field.
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1 Introduction and historical perspective

In the early days of modern cosmology, soon after it was realized that the
Universe was expanding (Hubble 1929; Lemâıtre 1931; Hubble 1931); Zwicky
(1933) suggested that some unseen matter was the likely dominant mass com-
ponent in clusters of galaxies. With remarkable prescience, Zwicky (1937)
further noted that gravitational lensing by clusters would be an invaluable
tool to: (i) trace and measure the amount of this unseen mass, now referred to
as dark matter and currently thought to pervade the cosmos; and (ii) study
magnified distant objects lying behind clusters. Zwicky’s bold predictions were
based on a profound and intuitive understanding of the properties of gravita-
tional lensing. However at that time, inadequate imaging technology coupled
with the lack of theoretical understanding of structure formation in the Uni-
verse hampered further observational progress and discoveries of gravitational
lensing effects.

Although the existence of clusters of galaxies has been recognized for nearly
two centuries - they were first recognized by Messier and Herschel as ”remark-
able concentrations of nebulae on the sky” (see the review of Biviano 2000
and references therein) the study of clusters began in earnest only really in
the 1950s. In particular, the publication of the first comprehensive cluster cat-
alog of the nearby Universe by Abell in 1958, can be considered as a milestone
that spurred the study of clusters of galaxies transforming it into an active
observational research area.

In comparison, gravitational lensing theory developed much later in the 1960s
with early theoretical studies demonstrating the usefulness of lensing for as-
tronomy. In particular, Sjur Refsdal derived the basic equations of gravita-
tional lens theory (Refsdal 1964a) and subsequently showed how the gravi-
tational lensing phenomenon can be used to determine Hubble’s constant by
measuring the time delay between two lensed images (Refsdal 1964b). Follow-
ing the discovery of quasars, Barnothy (1965) proposed gravitational lensing
as a tool for the study of quasars. With the discovery of the first double quasar
Q0957+561 by Walsh, Carswell & Weymann (1979) gravitational lensing re-
ally emerged in astronomy as an active observational field of study.

The study of clusters of galaxies as astronomical objects on the other hand,
came of age in the 1970s and early 1980s specially with the discovery of the
X-ray emitting intra-cluster medium (Lea et al. 1973; Gull & Northover 1976;
Bahcall & Sarazin 1977; Serlemistos et al. 1977; Cavaliere & Fusco-Femiano
1978) and the numerous studies of the stellar populations of galaxies in clusters
(Bautz & Morgan 1970; Sandage 1976; Leir & van den Bergh 1977; Hoessl,
Gunn & Thuan 1980; Dressler 1980). However, there was no discussion of
their lensing properties in theoretical papers till the 1980s. The paper by
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Narayan, Blandford & Nityananda (1984) is one of the earliest theoretical
papers that explored in detail the possibility that clusters can act as powerful
lenses. As an example, this paper explained large separation multiple quasars
as likely ”cluster-assisted” lensing systems. Although such a possibility had
been already proposed by Young et al. (1980), who discovered a cluster of
galaxies near the first double quasar Q0957+561, it was not so obvious for
most other systems.

The likely explanation for the lack of interest in cluster lensing research was
probably the belief that clusters were rather diffuse/extended systems and
therefore not dense enough to act as powerful light deflectors. Only with the
establishment of the role of cold dark matter in structure formation, did it
become clear that clusters are indeed repositories of vast amounts of dark
matter that enable them to act as efficient lenses in the Universe. The theory
of structure formation in the context of a cold dark matter dominated Universe
was developed in a seminal paper by Blumenthal et al. (1984). An attractive
feature of this cold dark matter hypothesis was its considerable predictive
power: the post-recombination fluctuation spectrum was calculable, and it
in turn governs the formation of galaxies and clusters. At that time, good
agreement with the data was obtained for a Zel’dovich spectrum of primordial
fluctuations. Several decades later, a version of this paradigm the Λ Cold Dark
Matter (ΛCDM hereafter) model which postulates the existence of a non-zero
cosmological constant ΩΛ is currently well established and is in remarkable
agreement with a wide range of current observations on cluster and galaxy-
scales.

Nevertheless, it still came as quite a surprise when in 1986, Lynds & Petrosian
(1986) and Soucail et al. (1987) independently discovered the first ”giant arcs”:
the strongly elongated images of distant background galaxies in the core of
massive clusters (see Figure 1). This new phenomenon was then immediately
identified by Paczynśki (1987) as the consequence of gravitational lensing by
the dense centers of clusters, and was soon confirmed by the measurement of
the redshift of the arc in Abell 370 (Soucail et al. 1988). The discovery of giant
arcs revealed the existence of the strong lensing regime, however as we know
now, it only represents the tip of the iceberg!

Coupled with the growing theoretical understanding of the structure and
assembly history of clusters, this observational discovery of cluster lensing
opened up an entire new vista to probe the detailed distribution of dark mat-
ter in these systems. In 1990, Antony Tyson while obtaining deep CCD imag-
ing of clusters, identified a ”systematic alignment” of faint galaxies around
cluster cores (Tyson, Wenk & Valdes 1990). He then suggested that this weak
alignment produced by the distortion due to lensing by clusters could be used
to map dark matter at larger radii in clusters than strong lensing afforded.
These two key discoveries of strong and weak lensing respectively opened up
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Fig. 1. The galaxy cluster Abell 370 as observed by CFHT in 1985 (left) with
one of the first CCD cameras (R-band), in which the first gravitationally lensed
arc was later identified (Lynds & Petrosian 1986; Soucail et al. 1987a, 1987b). For
comparison, the image on the right shows the Hubble Space Telescope image of the
same cluster Abell 370 taken with the WFPC-2 camera with the F675W filter in
December 1995 (Soucail et al 1999). Most of the bright galaxies seen are cluster
members at z = 0.375, whereas the arc, i.e. the highly elongated feature, is the
image of a background galaxy at redshift z = 0.724 (Soucail et al. 1988). The image
is oriented such that North is on top, East to the left and the field of view is roughly
40 x 60 arcsec2.

a rich, new field in astronomy, the study of ”cluster lenses”, which we discuss
further in this review.

These observational discoveries stoked the theoretical community to produce a
number of key papers in the first half of the 1990s that developed the theoret-
ical framework for strong and weak lensing techniques. Several of the seminal
papers date from this period, and theorists delved into quantifying this new
territory of gravitational lensing. Some of the significant early papers are:
Schneider (1984); Blandford & Narayan (1986); Blandford, Kochanek, Kovner
& Narayan (1989); Kochanek (1990); Miralda-Escude (1991); Kaiser (1992);
Kaiser & Squires (1993). It is important to underline that significant advances
in technology spurred the field dramatically during these years. The discov-
ery of the lensing phenomenon in clusters was made possible thanks to the
successful development of CCD imaging that allowed deeper and sharper op-
tical images of the sky, as well as deep spectroscopy - essential to measure the
spectrum and the redshifts of the faint lensed background galaxies. Another
technological revolution was in preparation at that time, a telescope above
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the atmosphere: the Hubble Space Telescope (HST). HST has dramatically
impacted cluster lensing studies, and, in particular, that of the strong lensing
regime. Although launched in 1991, HST did not make a strong impact at first,
as its unforeseen ”blurred vision” made the faint images of distant galaxies
inadequate for lensing work. Nevertheless, even with the first HST-WFPC1
(Wide Field Planetary Camera) images of Abell 370 and AC114 one could
already see the potential power of Hubble for lensing studies.

In December 1993, with the first successful servicing mission and the installa-
tion of the odd shaped WFPC2 camera, Hubble recovered its image sharpness,
and it is not surprising that one of the first image releases following the in-
stallation of WFPC2 was the astonishing view of the cluster lens Abell 2218
(Kneib et al. 1996), which is iconic and has been included in most recent
introductory astronomy textbooks.

Image sharpness is one of the key pre-requisites for studying lensing by clus-
ters (e.g. Smail & Dickinson 1995), and unsurprisingly another requirement is
a large image field of view. The strong lensing regime in clusters corresponds
to the inner one arc-minute region around the cluster center. Typically, cluster
virial radii are of the order of a few Mpc, which corresponds to∼ 15 arcminutes
for a cluster at z ∼ 0.2. Therefore, to go beyond the inner regions and to mea-
sure the weak lensing signal from cluster outskirts, cameras with a sufficiently
large field of view are required to ideally cover the full size of a cluster in one
shot (e.g. Kaiser et al 1998, Joffre et al 2000).

From the second half of the 1990s we have seen the rapid development of wide
field imaging cameras such as: the UH8k followed by CFHT12k at CFHT
(Canada France Hawaii Telescope); Suprime at the Subaru Telescope; WFI at
the 2.2m telescope at ESO (European Southern Observatory); the Megacam
camera at CFHT; the Gigacam of Pan-STARRS (PS-1); the OmegaCam of
the VST and soon the Dark Energy Camera at CTIO (Cerro Tololo Inter-
American Observatory). These cameras are composed of a mosaic of many
large format CCDs (4k×2k or larger) allowing coverage of a large field (rang-
ing from a quarter of a square degree up to a few square degrees). The making
of these instruments was strongly motivated by the detection of the weak
lensing distortion of faint galaxies produced by foreground clusters and in-
tervening large scale structure, the latter effect is commonly referred to as
”cosmic shear”.

In parallel, techniques to accurately measure the gravitational shear were also
developed. The most well documented is the “KSB” technique (Kaiser, Squires
& Broadhurst 1995) which is implemented in the commonly used imcat soft-
ware package, 2 which has been since improved by several groups. The accu-

2 IMCAT software is available at http://www.ifa.hawaii.edu/∼kaiser/imcat/

5

http://www.ifa.hawaii.edu/~kaiser/imcat/


racy of shape measurements for distorted background images is key to exploit-
ing lensing effects. The difficulty in the shear measurement arises as galaxy
ellipticities need to be measured extremely accurately given that there are
other confounding sources that generate distortions. Spurious distortions are
induced by the spatially and temporally variable PSF (Point Spread Function)
as well as by intrinsic shape correlations that are unrelated to lensing (Crit-
tenden et al. 2001; 2002). Corrections that carefully take into account these
additional and variable sources of image distortion have been incorporated
into shape measurement algorithms like lensfit 3 (Miller et al. 2007; Kitch-
ing et al. 2008). Although the “KSB” technique has been quite popular due to
its speed and efficiency, many new implementations for extracting the shear
signal with the rapid increase in the speed and processing power of computers
are currently available.

The first weak lensing measurements of clusters were reported with relatively
small field of view cameras (Fahlman et al. 1994; Bonnet et al. 1994) but
were soon extended to the larger field of view mosaic cameras (e.g. Dahle et
al. 2002; Clowe & Schneider 2001, 2002; Bardeau et al. 2005, 2007). Two-
dimensional dark matter mapping gets rapidly noisy as one extends over more
than ∼2 arcminutes from the cluster center due to a rapidly diminishing lens-
ing signal. However, radial averaging of the shear field provides an effective
way to probe the mass profile of clusters out to their virial radius and even be-
yond. This technique of inverting the measured shear profile to constrain the
mass distribution of clusters is currently widely used. Combining constraints
from the strong and weak lensing regime has enabled us to derive the dark
matter density profile over a wide range of physical scales. As a consequence,
gravitational lensing has become a powerful method to address fundamental
questions pertinent to cluster growth and assembly.

Theoretically, as it is known that clusters are dominated by dark matter,
enormous progress has been made in tracking their formation and evolution
using large cosmological N-body simulations since the 1980s. Gravitational
lensing is sensitive to the total mass of clusters, thereby enabling detailed
comparison of the mass distribution and properties inferred observationally
with simulated clusters. Lensing observations have therefore allowed important
tests of the standard structure formation paradigm.

At the turn of the second millennium the new role of lensing clusters is its grow-
ing use as natural telescopes to study very high-redshift galaxies that formed
during the infancy of the Universe (e.g. Franx et al. 1997; Pelló et al. 1999;
Ellis et al. 2001). This became possible with deep spectroscopy on 4 m and
then 8-10 m class telescopes that enable probing the high-redshift Universe,
primarily by exploiting the lensing amplification and magnification 4 produced

3 LENSFIT software is available at - http://www.physics.ox.ac.uk/lensfit/
4 the magnification refers to the spatial stretching of the images by the gravitational
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by these natural telescopes (Pello et al 2001). Capitalizing on the achromatic
nature of cluster lensing, various observatories functioning at different wave-
lengths of the electromagnetic spectrum have been deployed for these studies.
In particular, the discovery and study of the population of sub-millimeter
galaxies using SCUBA at the James Clerk Maxwell Telescope (JCMT here-
after; see the reviews by Blain et al. 2002; Smail et al. 2002; Kneib et al. 2004;
Knudsen et al. 2005; Borys et al. 2005, Knudsen et al. 2008), the Caltech in-
terferometer at Owens Valley (e.g. Frayer et al. 1998; Sheth et al. 2004), the
IRAM interferometer (e.g. Neri et al. 2003; Kneib et al. 2005), the Very Large
Array (VLA) (e.g. Smail et al. 2002; Ivison et al. 2002; Chapman et al. 2002)
and Sub-Millimeter Array (SMA) (e.g. Knudsen et al. 2010) greatly benefited
from the boost provided by the magnification effect of gravitational lensing
in cluster fields. Similarly, observation of lensed galaxies in the mid-infrared
with the ISOCAM mid-infrared camera on the Infra-red Space Observatory
(ISO) satellite (Altieri et al. 1999; Metcalfe et al. 2003), followed with the
Spitzer observatory (Egami et al. 2005) and now with the Herschel space ob-
servatory (Egami et al. 2010; Altieri et al. 2010) have pushed the limits of our
knowledge of distant galaxies further. Gravitational lensing is now recognized
as a powerful technique to count the faintest galaxies in their different classes:
Extremely Red Objects (Smith et al. 2001); Lyman-α emitters at z ∼ 4 − 6
(Hu et al. 2002; Santos et al. 2004, Stark et al. 2007); Lyman-break galaxies
at z ∼ 6 − 10 (Richard et al. 2008) as well as to study in detail the rare,
extremely magnified individual sources (Pettini et al. 2000; Kneib et al. 2004;
Egami et al. 2005, Smail et al. 2007, Swinbank et al. 2007, 2010) in the distant
Universe.

Since March 2002, the installation of the new ACS camera onboard HST has
provided further observational advances in the study and unprecedented use
of cluster lenses (see Figure 2). These are exemplified in the very deep and
spectacular ACS images of Abell 1689 (Broadhurst et al. 2005; Halkola, Seitz
& Pannella 2006). This color image reveals more than 40 multiple-image sys-
tems in the core of this cluster (Limousin et al. 2007) and well over a hundred
lensed images in total. The dramatic increase in the number of strong lensing
constraints that these observations provide in the cluster core has spurred im-
portant and significant new developments in mass reconstruction techniques
(e.g. Diego et al. 2005a,b; Jullo et al. 2007, 2009; Coe et al. 2008). With this
amount of high quality data the construction of extremely high-resolution
mass models of the cluster core are now possible. Mass models with high
precision have enabled the use of this cluster to constrain the cosmological

lensing effect, however the magnification cannot be recognized when the lensed
object is not resolved by the observations (if the object is compact or if the PSF is
broad) leading to an apparent amplification of the flux of the lensed object. In some
cases, a lensed object can be tangentially magnified but radially amplified, the use
of the terms magnification and amplification are thus sometimes mixed.
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mardi 23 mars 2010

Fig. 2. Color image of two cluster lenses observed by HST-ACS: Left panel - Abell
2218 at z = 0.175 and Right panel - Cl0024+1654 at z = 0.395.

parameters Ωm and ΩΛ (Link and Pierce 1998; Golse et al. 2004; Gilmore &
Natarajan 2009; Jullo et al. 2010; D’Aloisio & Natarajan 2011). First obser-
vational constraints were attempted by Soucail et al. (2004), and more recent
work by Jullo et al. (2010) has demonstrated the feasibility of this technique
involving detailed modeling of deep ACS images coupled with comprehensive
redshift determinations for the numerous multiple-image systems. Combining
these cosmological constraints from the cluster lens Abell 1689 with those ob-
tained from independent X-ray measurements and a flat Universe prior from
WMAP, Jullo et al. (2010) find results that are competitive with the other
more established methods like SuperNovae (Riess et al. 1998; Perlmutter et al.
1999) and Baryonic Acoustic Oscillations (Eisenstein et al. 2005). Therefore,
in the very near future cluster strong lensing is likely to provide us with a vi-
able complementary technique to constrain the geometry of the Universe and
probe the equation of state of Dark Energy, which is a key unsolved problem
in cosmology today.

This brief and non-exhaustive historical account of cluster lensing research
summarizes some of the important scientific results gathered up to now and
demonstrates the growing importance of cluster lensing in modern cosmol-
ogy. This review is organized as follows: we first describe the key features of
gravitational lensing in clusters of galaxies, starting with strong lensing, and
then summarize the various weak lensing techniques as well as some recent
developments in the intermediate lensing regime. We also dedicate a section
to the lensing effect and measurements of galaxy halos in clusters which has
provided new insights into the granularity of the dark matter distribution. The
potency here arises from the ability to directly compare lensing inferred prop-
erties for substructure directly with results from high-resolution cosmological
N-body simulations. We then present the different uses of cluster lenses in
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Fig. 3. Gravitational lensing in clusters: A simple schematic of how lensed images
are produced delineating the various regimes: strong, intermediate and weak lensing
(see text for a detailed description).

modern cosmology. We start with the study of the lens: its mass distribution,
and the relation of the lensing mass to other mass estimates for clusters. We
then discuss the use of cluster lenses as natural telescopes to study faint and
distant background galaxy populations. And lastly, we discuss the potential
use of clusters to constrain cosmological parameters. Finally, we recap the im-
portant developments that are keenly awaited in the field, and describe some
of the exciting science that will become possible in the next decade, focusing
on future facilities and instruments. Cluster lensing is today a rapidly evolving
and observationally driven field.

When necessary, we adopt a flat world model with a Hubble constant H0 =
70 km s−1 Mpc−1, a density parameter in matter Ωm = 0.3 and a cosmological
constant Ωλ = 0.7. Magnitudes are expressed in the AB system.

2 Lensing theory as applied to clusters of galaxies

2.1 General description

Clusters of galaxies are the largest and most massive bound structures in the
Universe. Due to their large mass, galaxy clusters (as do galaxies) locally de-
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form space-time (see Figure 3). Therefore, the wave front of light emitted by
a distant source traversing a foreground galaxy cluster will be distorted. This
distortion occurs regardless of the wavelength of light as the effect is purely
geometric. Moreover, for the most massive clusters the mass density in the
inner regions is high enough to break the wave front coming from a distant
source into several pieces, thereby occasionally producing multiple-images of
the same single background source. Background galaxies multiply imaged in
this fashion tend to form the observed extraordinary gravitational giant arcs
that characterize the so-called strong lensing domain. Strongly lensed dis-
tant galaxies will thus appear distorted and highly magnified. They are often
referred to as arclets due to their noticeably elongated shape and preferen-
tial tangential alignment around the cluster center. Note however that their
observed distorted shape is a combination of their intrinsic shape and the
distortion induced by the lensing effect of the cluster.

When the alignment between the observer, a cluster and distant background
galaxies is less perfect, then the distortion induced by the cluster will be less
important and cannot be recognized clearly. Statistical methods are required
to detect this change in shape of background galaxies seen in the weak regime.
In the weak lensing regime, the observed shapes of background galaxies in the
field of the cluster are typically dominated by their intrinsic ellipticities or
even worse by the distortion of the imaging camera optics and the imaging
point spread function (PSF) which is a function of position on the detector and
may also vary with time. Thus, only a careful statistical analysis correcting
the observed images for the various non-lensing induced distortion effects can
reveal the true weak lensing signal. The shape changes induced in the outskirts
of clusters in the weak regime are at the few percent level, while the strong
lensing distortions are often larger, and are typically at the 10% - 20% level.

2.2 Gravitational Lens Equation

Before proceeding to the elegant mathematics of lensing, we first recap the
assumptions needed to derive the basic lens equation. First, it is assumed that
the ”Cosmological Principle” (i.e. the Universe is homogeneous and isotropic)
holds on large scales. The scales under consideration here are the ones relevant
to the long-range gravitational force:

L ∼ c√
Gρ̄
∼ 2 Gpc, (1)

where c is the speed of light, G is the gravitational constant and ρ̄ is the mean
density of the Universe. The large scale distribution of galaxies as determined
by surveys like the 2 degree Field survey (2dF), the Sloan Digital Sky Survey
(SDSS) and the Cosmic Microwave Background (CMB) as revealed by the
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Fig. 4. A single deflector lensing configuration showing the relevant angles and
distances that appear in the lens equation.

Cosmic Background Explorer (COBE), and the Wilkinson Anisotropy Probe
(WMAP) satellites are in good agreement with the cosmological principle.
The assumption of homogeneity and isotropy imposes strong symmetries on
the metric that describes the Universe and allows solutions that correspond to
both expansion and contraction. Symmetries restrict the metric that describes
space-time to the following form:

ds2 = c2dt2 − a2(t)

 dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

, (2)

where a(t) is the scale factor, and k defines the curvature of the Universe.

This metric will be locally perturbed by the presence of any dense mass con-
centration, such as individual stars, black holes, galaxies or clusters of galaxies.
The Schwarzschild solution (e.g. Weinberg 1992) gives the form of the metric
near a point mass, and is easy to generalize for a continuous mass distribution
in the stationary weak field limit corresponding to Φ << c2:

ds2 = (1 +
2Φ

c2
)c2dt2 − (1− 2Φ

c2
)dr2, (3)

where Φ is the 3D gravitational potential of the mass distribution under con-
sideration.

If we consider a simple configuration of a single thin deflecting lens (Figure 4),
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the observer (O) will see the image (I) of the source (S) deflected by the lens

(L). The geometric equation relating the position of the source ~θS to the

position of the image ~θI depends on the deflection angle ~α and the relevant
intervening angular diameter distances Dij in this case between the lens and
source (denoted by DLS) and the observer and source (denoted by DOS):

~θI = ~θS +
DLS

DOS

~α(~θI). (4)

The value of ~α depends on the local perturbation of the mass on space-time
measured at the location of ~θI . The photon path follows a null geodesic that
is defined by ds2 = 0. Hence from Equation 3, one can determine the travel
time tT for a given path length which in turn, is a function of the angle ~α.
By applying Fermat’s principle, which states that light follows the path with
a stationary travel time, i.e. dtT/d~θI = ~0, we can derive the value of the
deflection ~α as a function of the local Newtonian gravitational potential:

~α(~θI) =
2

c2

DLS

DOS

~∇~θI
φ2D
N (~θI), (5)

where φ2D
N is the Newtonian gravitational potential projected in the lens plane.

Combining Equations 4 and 5 we derive the lens equation under the thin lens
approximation, which holds for a wide range of deflector masses, from stars to
galaxies to clusters of galaxies (see Schneider, Ehlers & Falco 1992 for a more
detailed derivation):

~θS = ~θI −
2E
c2
~∇φ2D

N (~θI) = ~θI − ~∇ϕ(~θI). (6)

The thin lens approximation is valid when the distances from the observer
to the lens and source are significantly larger than the physical extent of the
lens, an assumption that is strictly true for all galaxies and clusters. Above
we define ϕ as the lensing potential - a lensing normalized version of the
Newtonian projected potential, and the distance ratio E = DLS/DOS which
depends on the redshift of the cluster zL and the background source zS, as well
as - but only weakly - on the cosmological parameters Ωm and Ωλ. The distance
ratio E measures the efficiency of a given lens at redshift zL. The factor E is
an increasing function of the source redshift zS (Figure 5); therefore the larger
the background source redshift, the stronger the deflection and distortion. This
relation can be slightly more complex for sources located in the strong lensing
regions. Note also that E is independent of the Hubble constant, therefore
lensing deflection angles and deformations are independent of the value of H0.

It has also been shown that going beyond the thin lens approximation, the
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Fig. 5. Lensing efficiency E = DLS/DOS for a given lens as a function of source red-
shift zS for different cosmologies. The two sets of curves correspond to two different
lens redshifts zL = 0.3 and zL = 0.9 and the solid lines correspond to Ωm = 0.1,
ΩΛ = 0; the dashed line to Ωm = 1, ΩΛ = 0; and the dashed-dotted line to Ωm = 0.1,
ΩΛ = 0.9.

above lensing equation can be derived in the more general case (with Equa-
tion 4 being the limiting case for Einstein de-Sitter space-time) by simply
calculating the null geodesics intersecting an observer’s world-line without
partitioning light paths into near and far lens regions (see Pyne & Birkinshaw
1996 for a detailed derivation). The particularly interesting case is when more
than one lensing deflector is responsible for producing the observed magnifi-
cation and shear. Observations suggest that the lensing effect of most clusters
are likely further amplified due to the existence of multiple additional mass
concentrations aligned along the line of sight. Therefore, multiple lens planes
will ultimately need to be taken into account for accurate mass modeling of
cluster lenses. The precise coupling between the lensing effects of two adja-
cent masses depends on their transverse separation. Examining the two-screen
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gravitational lens, Kochanek & Apostolakis (1988) find, albeit for galaxy-scale
lenses, that their effects interact significantly for transverse separations less
than 4 × r0 where r0 is the radius of the outer critical line of the singular
potential. 5 Independent lenses that are close in redshift almost always inter-
act and these interactions can lead to either an increase or a decrease in the
total cross section relative to the cross section of two isolated lenses depending
on the system’s geometry. The resultant image geometries in such cases are
dominated by the effects of fold caustics. The deflection can be calculated for
the two-screen lens configuration numerically and most current lens equation
solvers are adapted to do so.

2.3 Gravitational Lens Mapping

The effect of gravitational lensing can be modeled as a mathematical transfor-
mation of source shapes into observed image shapes. The lensing transforma-
tion is thus a mapping from the source plane (S) to the image plane (I) [See
Figure 6]. In the case of a single lens plane, the Hessian of this transformation
(also called the magnification matrix) relates to first order a source element

of the image (d~θI) to the source plane (d~θS) in the following way, in Cartesian
and polar coordinates, respectively:

d~θS

d~θI
= A−1 =

1− ∂xxϕ −∂xyϕ

−∂xyϕ 1− ∂yyϕ

 =


1− ∂rrϕ −∂r

(
1
r
∂θϕ

)
−∂r

(
1
r
∂θϕ

)
1− 1

r
∂rϕ− 1

r2
∂θθϕ

.


(7)

This matrix is referred to as the magnification/amplification matrix and it is
conventionally written as:

A−1 =


1− κ− γ1 −γ2

−γ2 1− κ+ γ1

,

 (8)

where the convergence is defined as κ = ∆ϕ/2 = Σ/Σcrit and the shear vector
(also often denoted as a complex number) ~γ = (γ1, γ2) as:

γ1 = (∂xxϕ− ∂yyϕ)/2 γ2 = ∂xyϕ, (9)

and the norm is given by:

2γ =
√

(∂xxϕ− ∂yyϕ)2 + (2∂xyϕ)2. (10)

5 Critical lines and caustics are defined in the next subsection.
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Fig. 6. Illustration of the effect of lensing: local deformation of a regular grid and a
circle (left: source map) by a lens with constant value of the convergence κ and the
shear γ over the region (right: image map).

The term Σcrit is the critical lensing surface density defined as:

Σcrit =
c2

4πG

DOS

DLSDOL

=
cH0

4πG

DOS

DLS

c/H0

DOL

. (11)

It can be clearly seen that the critical surface mass density scales as:

Σcrit ' 0.162

(
H0

70kms−1Mpc−1

)(
DOS

DLS

)(
c/H0

DOL

)
g cm−2. (12)

For instance, given a cluster lens at zL = 0.3 and a source at redshift zS = 1.0,
DOS
DLS

= 1.567 and c/H0

DOL
= 4.661, yielding:

Σcrit ' 1.18

(
H0

70 kms−1Mpc−1

)
g cm−2 . (13)

Thus, for a cluster with a depth of ∼300 kpc, the 3D mass density needed
to reach the lensing critical surface mass density is about 10−24g/cm3, which
corresponds to a density that is ∼10,000 times the critical density of the Uni-
verse ρcrit. Background galaxies viewed via a cluster region where the surface
mass density is critical or higher are likely to be multiply imaged.

We can readily see that the magnification matrix is real and symmetric, there-
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fore, it can be diagonalized, and can be written in its principal axes as follows:

A−1 =

 1− κ+ γ 0

0 1− κ− γ

 = (1−κ)


 1 0

0 1

+
γ

1− κ

 1 0

0 −1


 . (14)

From this equation, we see that 1 − κ describes the isotropic deformation,
and the shear γ describes the anisotropic deformation. Note that the quantity
that is most directly measured from faint galaxy shapes is the reduced shear
g defined as: g = γ/(1− κ).

The direction of the deformation (or equivalently of the shear) can be written
as:

tan 2θshear =
2∂xyϕ

∂yyϕ− ∂xxϕ
. (15)

As the direction of the shear is a ratio of the components of the lensing po-
tential, the shear direction θshear will be independent (modulo 90 degrees) of
the distance ratio E = DLS/DOS and thus will be independent of the source
redshift zS. Only the intensity or magnitude of the shear will change with the
source redshift zS.

2.4 Critical and caustic lines

The magnification µ is defined as the determinant of the magnification matrix
and can be expressed as a function of κ and γ as:

µ−1 = det(A−1) = (1− κ)2 − γ2 = (1− κ)2(1− g2). (16)

The magnification is infinite if one of the principal values of the magnification
matrix is equal to zero, which implies that the reduced shear g is equal to
1 or −1. Thus, the locus in the image plane of infinite magnification defines
two closed lines that do not intersect (as g cannot be equal to 1 and −1 at
the same location) and these are called the ”critical lines”. The corresponding
lines in the source plane are called ”caustic lines”, they are also closed lines
but contrary to the critical lines, they can intersect each other. In general,
for a simple mass distribution, we can easily distinguish the two critical lines:
the external critical line where the deformations are tangential, and the in-
ternal critical line where the deformations are radial. Note that these simple
geometries for the critical and caustic lines do not hold strictly for more com-
plex mass distributions (Figure 7 for examples of critical and caustic lines for
different simple mass dsitributions).
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Fig. 7. Critical lines (dashed) and caustics (solid) for different classes of mass models:
(a) for a singular isothermal circular mass distribution, the radial critical line is
the central point, and the corresponding caustic line is at infinity, (b) a singular
isothermal elliptical mass distribution, the tangential caustic line is an astroid, (c)
a circular mass distribution with an inner slope shallower than isothermal mass
distribution, in this case a radial critical curve appears, and both caustics are circles.
(d) same as (c) but for an elliptical mass distribution, the relative size of both caustic
lines will depend on the mass profile and the ellipticity of the mass distribution, (e)
a bimodal mass distribution with two clumps of equal mass, similar to (d), and (f)
for a bimodal distribution with unequal masses.

For a circularly symmetric mass distribution, the equations for the critical
lines are simple. The magnification matrix in polar coordinates simplifies to:

A−1 =

1− ∂rrϕ 0

0 1− 1
r
∂rϕ

 . (17)

Thus both the critical and caustic lines (if they exist) are circles. In fact,
substituting the equation of the tangential critical line: r = ∂rϕ into the lensing
equation to compute the caustic line, we find that the tangential caustic line
is always restricted and reduces to a single point in the case of a circular mass
distribution. It is also relatively easy to demonstrate that for a well behaved
mass distribution the radial critical line is always located within the tangential
critical line (Kneib 1993).

It is important to notice that for a circularly symmetric mass distribution, the
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projected mass enclosed within the radius r can be written as:

M(r) =
c2

4G

DOSDOL

DLS

r∂rϕ(r) = πΣcrit r ∂rϕ(r). (18)

At the tangential critical radius we have: rct = ∂rϕ(rct), thus the mass within
the tangential critical radius (also referred to as the Einstein radius rE) is:

M(rE) = πΣcritr
2
E. (19)

The critical surface mass density Σcrit corresponds to the mean surface density
enclosed within the Einstein radius. Thus the higher the mass concentration,
the larger the Einstein radius. For a given surface mass density profile, the
size of the Einstein radius will depend on the redshift of the lens and the
source as well as the underlying cosmology. The variation of Σcrit for a given
source redshift as a function of the lens redshift shows that for a given lens
mass distribution the most effective lens is placed at roughly less than half
the source redshift.

Furthermore, the radial critical curve is defined as:

∂rrϕ(r) = ∂r

(
M(r)

πΣcritr

)
= 1, (20)

thus, the position of the radial critical line depends on the gradient of the
mass profile.

The above equations suggest that: i) from the tangential critical curve location,
the total mass enclosed within a circular aperture can be measured precisely,
and ii) from the radial critical curve, the slope of the mass profile near the
cluster center can be strongly constrained. However, for an accurate estimate
of the mass enclosed the redshifts of the cluster and the arc need to be known
precisely. Furthermore, note that only the mass normalization scales directly
with the value of H0, but not the derived mass profile slope.

For the general non-circular case, the determination of the critical lines cannot
be addressed analytically except for certain simple elliptical mass profiles (e.g.
Kneib 1993). The complexity of the shapes of critical lines can be seen for the
lens model of MACS0451-02 (Figure 8). Indeed, to solve for the critical line in
complex lens mass models, one has to resort to numerical methods. Iterative
methods are more economical in terms of CPU time. For example, Jullo et
al. (2007) have implemented the “Marching Square” technique for computing
critical lines (see illustration in Figure 9).

The above property linking the total mass within the critical line to the area
within the critical line does not hold exactly for the more general cases but it
is still a good approximation if the mass distribution is not too different from
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Fig. 8. HST/ACS color image of MACSJ0451+00. The red curve shows the location
of the critical line for a source at z = 2. A giant arc at z = 2.01, as well as different
sets of multiple images are identified (each system of images is marked with a
circle of the same color - the cyan and magenta identified multiple-image have no
spectroscopic redshift measurement yet) [Richard et al. private communication].

Fig. 9. Multi-scale marching square field splitting to map critical lines: the boxes
represent the splitting squares and the red lines chart the critical curve contour.
The imposed upper and lower limits for the box sizes are 10” (corresponding to
the largest box shown) and 1” respectively. The 1” boxes are not plotted here for
clarity. Figure adapted from Jullo et al. (2007) where more details may be found.
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the circularly symmetric case (Kassiola & Kovner 1993). Hence identifying
the characteristic sizes of the critical lines both radial and tangential in an
observed cluster is the first important step toward measuring the mass and its
degree of concentration in the inner regions.

2.5 Multiple-images

2.5.1 Definition

Critical lines are virtual lines, and thus cannot be directly mapped. However,
multiple-images that straddle critical lines can easily be identified in high
resolution images. For instance, tangentially distorted images are found near
tangential critical lines and radially distorted ones near the radial critical
lines. One often refers to tangential pairs or radial pairs, which are simple
configurations that are easily recognizable (e.g. Miralda-Escud & Fort 1993).
For example, one can have triplets, quadruplets, quintuplets or even larger
multiplicities of images of the same source depending on the complexity of the
mass distribution.

The number of multiple-images produced is simply the number of solutions
of Equation 6. It can be estimated easily using catastrophe theory (Thom
1989, Zeeman 1977, Erdl & Schneider 1993), according to which each time
one crosses a caustic line in the source plane two additional lensed images are
produced. For a non-singular mass distribution we expect to always have an
odd number of multiple-images (Burke 1981). However, some images are likely
to be less magnified, or in fact, demagnified so that they are not observable,
thereby complicating at first the task of counting the total number of multiple-
images produced. Often, the presence of a bright central galaxy in clusters
scuppers the detection of the central demagnified image.

2.5.2 Multiple-image symmetry

Multiple-images have different symmetries which can be summarized by the
signs of the eigenvalues of the magnification matrix, we can thus in principle
have three possibilities for the parities, which correspond to the symmetry
of the source, denoted as: (+,+), (+,-) and (-,-). For example we often talk
about “mirror” symmetry, when we recognize a counter image as the flipped
image of galaxy with a remarkably similar morphology. The image symmetry
property is generally used to identify multiple-images in what turns out to be
a secure way, as we see in the pair configuration of Figure 13.

Indeed, each time, one crosses a critical line (this corresponds to a change
in sign of one of the eigenvalues of the magnification matrix), the parity of
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(+,+)

(-,-)

(+,-)

(+,+)

(+,-)

(-,-)

(a) (b)

Fig. 10. Area in the image plane showing different image parities (indicated by the
signs in parentheses): (a) in the case of a simple elliptical mass distribution, (b) in
the case of a bimodal mass distribution. The dashed lines correspond to the critical
lines. The arrow is just an indication of the radial direction of the closest mass
clump. We note that while the deformations shown in this figure are completely
arbitrary, the orientation of the images is portrayed accurately.

the image changes (Blandford & Narayan 1986; Schneider, Ehlers & Falco
1992). For simple mass distributions, only three parities described above by
the notation (+,+), (-,-) and (+,-) can be observed as shown in Figure 10.
Since for a simple mass distribution the radial critical line is always inside the
tangential critical line, the parity (-,+) is not physically allowed.

2.5.3 Examples of multiple-image systems

Massive clusters frequently produce multiple-images, and this happens when
the surface mass density of the cluster core is close to or larger than the critical
surface mass density:

Σcrit =
c2

4πG

DOSDOL

DLS

,

for given lens and source redshifts. The detailed configuration of multiple-
images can be used to unravel the structure of the mass distribution.

A cluster with one dominant clump of mass will produce (for the range of
multiple-image configurations see Figure 11) fold, cusp or radial arcs (e.g
MS2137.3-2353: Fort et al. 1992, Mellier et al. 1993; AC114: Natarajan et al.
1998; A383: Smith et al. 2001, 2003); a bimodal cluster can produce straight
arcs (e.g A2390: Pello et al 1991, Cl2236-04: Kneib et al. 1994), triplets (A370:
Kneib et al. 1993, Bezecourt et al. 1999); a very complex structure with lots
of massive halos in the core can produce multiple-image systems with 7 or
more images of the same source (e.g A2218, see Figure 12). The presence of
every nearby perturbing mass can typically add two extra images to a simple
configuration if that mass is well positioned relative to the central core. Very
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Fig. 11. Multiple-image configurations produced by a simple elliptical mass distri-
bution. The panel (S) shows the caustic lines in the source plane and the positions
numbered 1 to 10 denote the source position relative to the caustic lines. The panel
(I) shows the image of the source without lensing. The panels (1) to (10) show the
resulting lensed images for the various source positions. Certain configurations are
very typical and are named as follows: (3) radial arc, (6) cusp arc, (8) Einstein cross,
(10) fold arc.
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Fig. 12. A spectacular set of multiple-images seen in the cluster Abell 2218 in the
composite B, R, and I-band HST image. A distant E/S0 galaxy at z=0.702 is lensed
into a 7-image configuration.

elongated/elliptical clusters with appropriate inner density profile slopes can
produce hyperbolic-umbilic catastrophes producing quintuple arc configura-
tions such as the one seen in Abell 1703 (Limousin et al. 2008). A thorough
description of exotic configurations has been discussed quite extensively in a
paper by Orban de Xivry & Marshall (2009).

2.5.4 Multiple-image identification

Multiple-images can be identified by their distinct properties. Traditionally,
multiple-images have been recognized as the images forming the giant arcs (3
images in the case of Abell 370, but only two images in the case of MS2137-17
or Cl2244-04). However, not every giant arc is composed of multiple-images,
for example it is most likely that the northern giant arc in Abell 963 is only a
single image, and that the southern arc in Abell 963 is composed of two or three
arclets (single images) from sources at different redshifts as revealed by their
different colors. Multiple-images can be recognized in terms of their (mirror)
symmetry, which is of course best visible with high-resolution HST data. One
of the classic examples is the “hook-pair” in AC114 (Figure 13) where the
image symmetry is readily identified. Furthermore, as lensing is achromatic,
multiple-images can be recognized by the similarity of their colors, or by their
extreme brightness at a specific wavelength like in the sub-mm or in mid-infra
red.

Finally, the secure way to identify and confirm the existence of a multiple-
image system, is through the detailed modeling of the cluster lens itself. This
allows one in principle to test if a set of images having similar morphology
and colors can actually be multiple images of the same source. Calibrated lens
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S2

S1

Fig. 13. The lensed pair S1-S2 in AC114. This galaxy at z = 1.867 displays the
surprising morphology of a hook, with an obvious change in parity (Smail et al
1995a, Campusano et al 2001).

Fig. 14. Diagram showing the regions wherein multiple-images are produced with
the location of critical lines marked, for the case of different mass models (a) cir-
cular mass distribution; (b) an elliptical mass distribution and (c) a bimodal mass
distribution. The grey scale areas indicate regions behind which we can expect a
single background galaxy to be imaged into three (light grey) or five (dark grey)
multiple-images.

models can predict the location of counter images and also predict the redshift
of the multiply lensed source (Kneib et al. 1993, 1996).

Ultimately, for studying a large sample of massive clusters, one would likely
need to develop automatic techniques to identify multiple-image systems based
on their morphology, color and more sophisticated lens modeling software.
Although such robotic processes are being developed (Sharon private com-
munication), further developments are needed to make them completely user
friendly.
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Fig. 15. Hubble ACS color image of Abell 1703 (image shown is from the combination
of the F450W, F606W and F850LP filters), showing the location of all the multiply
imaged systems. The white cross at the center of the image marks the location of
the brightest cluster galaxy, which has been subtracted from this image for clarity.
The red dashed line outlines the limit of the region where we expect multiple-images
from sources out to z = 6 (Figure from Richard et al. 2009).

2.5.5 Multiple-image regions

Multiple-images are located in the central regions of clusters where the surface
mass density is close to or higher than the lensing critical surface density. For
a given source redshift one can compute the region conducive to multiple-
imaging and the expected multiplicity. This is easily computed, as for any
given image position θI , we can determine the source position θS using the
lensing equation (Equation 4). Given a source position it is straightforward
to determine whether θS lies within a caustic curve or not. The expected
number of images is given by (1 + 2Nc) where Nc is the minimum number of
caustic curves that need to be crossed to reach the position θS (Figure 14). The
calculation of multiple-imaging regions can be useful to help observationally
identify multiple-image counterparts (Figure 15) particularly in the case of
complicated mass distributions.
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Fig. 16. A typical faint galaxy observed on a CCD image (left), and the equivalent
ellipse defined from the second order moments (right).

2.6 First order shape deformations - Shear

Distant sources are only multiply imaged in the central regions of cluster
where the surface mass density is sufficiently high. However, every observed
galaxy image in the field of the cluster is deformed by lensing, typically in the
weak regime. To first order, one can approximate the light distribution of a
galaxy as an object with elliptical isophotes. In this event, the shape and size
of galaxies can be defined in terms of the axis ratio and the area enclosed by
a defined boundary isophote.

However, the real shapes of faint galaxies can be quite irregular and not well
approximated by ellipses. We thus need to express the shape of a galaxy in
terms of its pixelized surface brightness as measured on a digital detector. For
this purpose, we use the moments of the light distribution to define shape
parameters. If I(~θ) is the surface brightness distribution of the galaxy under

consideration, we can define the center of the image ~θc=(θCi , θ
C
j ) using the first

moment of the I(~θ) distribution:

~θc =

∫
W (I(~θ)) ~θ d~θ∫
W (I(~θ))d~θ

. (21)

Note that W(I) is a weight/window function, that allows the integrals above
to be finite in the case of noisy data. The simplest choice for the function W(I)

is the heaviside step function H(I − Iiso) which is equal to 1 for I(~θ) > Iiso
where Iiso is the isophote limiting the detection of the object, and 0 oth-
erwise. The image center found is then taken as the center of the detec-
tion isophote. Another popular weight function that is frequently adopted
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is: W (I) = I×H(I− Iiso), where the window function is now weighted by the
light distribution within the isophote.

The second order moment matrix of the light distribution centered on ~θc:

Mij =

∫ ∫
W (I(~θ))(θi − θCi )(θj − θCj ) dθi dθj∫ ∫

W (I(~θ))dθiθj
, (22)

allows us to define the size, the axis ratio and the orientation of the cor-
responding approximated ellipse. Indeed the moment matrix M is positive
definite and can be written in its principal axes as:

Mij = Rθ

a2 0

0 b2

R−θ, (23)

where a and b are the semi-major and semi-minor axes respectively, and θ the
position angle of the equivalent ellipse, and Rθ is the rotation matrix of an
angle θ. Thus the moment matrix M contains three parameters: the size of
the galaxy, its ellipticity and its orientation (see illustration in Figure 16)

It is useful to define a complex ellipticity which encodes both the shape pa-
rameter and the orientation of an observed galaxy.

There are however a number of ways to define the norm of the complex ellip-
ticity, and the lensing community has experimented several notations:

|ε| = a2 − b2

a2 + b2
|δ| = a2 + b2

2ab
|τ | = a2 − b2

2ab
|ε| = a− b

a+ b
. (24)

With the complex ellipticity defined for example as:

ε = |ε|e2iθ. (25)

The notation ε was the first to be introduced, as it emerges naturally from the
moment calculation, then τ and δ were introduced in the context of cluster
lensing by Kneib (1993) and Natarajan & Kneib (1997). The advantage of this
form is that the lens mapping can be written as a simple linear transformation
from the image plane to the source plane which is mathematically convenient.
Subsequently ε was adopted, and it has now become the standard definition,
essentially because it is a direct estimator (modulo the PSF correction) of
the measured quantity, which is the reduced shear g as we show below. All
ellipticity parameters are of course linked to each other, and in particular we
have ε = 2ε/(1 + |ε|2).

With the various definitions in hand for the relevant parameters, we can now
explicitly express the transformation produced by gravitational lensing on the

27



shape of a background galaxy. First, it can be shown that the image of the
center of the source corresponds to the center of the image in the case where
the magnification matrix does not change significantly across the size of the
image (Kochanek 1990; Miralda-Escudé 1991). This is generally adopted as
the definition of the weak lensing regime as such a simplification does not hold
in the strong lensing regime. To demonstrate this explicitly, one has to use the
fact that the surface brightness is conserved by gravitational lensing as was
first demonstrated by Etherington (1933), namely, I(~θI) = I(~θS).

The lens mapping will transform the shape of the galaxy, by magnifying it and
stretching it along the shear direction. This transformation can be written in
terms of the moment matrix MS (for the galaxy in the source plane) and M I

(for the galaxy in the image plane that is, as observed) as follows:

MS = A−1 M I tA−1, (26)

or if the matrix A−1 is not singular:

M I = A MS tA. (27)

Note that tA is the transpose of matrix A.

These equations describe how the ellipse defining the source shape is mapped
onto the equivalent ellipse of the image or vice versa. If we consider the size
σ = πa× b of the equivalent ellipse, we can write:

σ2
S = detMS = detM I .(detA−1)2 = σ2

I .µ
−2. (28)

Thus the overall size σS of the source is enlarged by the magnification factor
µ. Similarly, it is possible to write the lensing transformation for the complex
ellipticity, which of course will depend on the ellipticity estimator chosen. For
the ellipticity ε, and using the complex notation, we have:

εS =
εI − g
1− gεI

, for |g| < 1, (29)

which corresponds to the region external to the critical lines, and

εS =
1− g∗ε∗I
ε∗I − g∗

, for |g| > 1, (30)

which corresponds to the region inside the critical lines (the notation ∗ denotes
the transpose of a complex number).

In the weak regime, where the distortions are small (|g| << 1) the lensing
equation simplifies to:

εI = εS + g. (31)
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Thus the ellipticity of the image is just a linear sum of the intrinsic source
ellipticity and the lensing distortion in this limit. Thus averaging the above
equation over a number of sources yields the convenient fact that image ellip-
ticities are a direct measure of the reduced shear g. Note, however that these
simplified equations mask observational limitations such as the PSF/seeing
convolution and pixelization, all effects that contribute to and contaminate
observed image shapes.

2.7 Mass-sheet degeneracy

The ”mass sheet degeneracy” problem was recognized as soon as mass distri-
butions began to be mapped using lensing observations (e.g. Falco et al. 1985)
and the issue has been discussed in detail in Schneider, Ehlers & Falco (1992)
and Schneider & Bartelmann (1997) and Bradac et al (2004) in the context
of weak lensing mass measurement. This degeneracy arises due to the lack of
information needed to calibrate the total mass of clusters in the absence of a
normalization scheme due to the simple fact that the addition of a constant
surface mass density sheet leaves the measured shear unaltered.

Expressed mathematically, the magnification and shear are invariant under
the following transformation:

κ′ = (1− λ)κ+ λ (32)

and

γ′ = (1− λ)γ, (33)

where λ is the mass-sheet (denoting a sheet of constant surface mass density)
added to the lens plane. Expressing the reduced shear with the above two
equations we can show that:

g′ = g, (34)

thus the reduced shear is conserved under this transformation. This means
that for a given observed reduced shear field, one can only extract the surface
mass density distribution κ up to a constant factor given by the unknown
value of λ.

There are several ways to break the mass sheet degeneracy, the obvious way
is to use lensed sources from different source redshift planes. Indeed with,
κ(z1) = E(z1)/E(z2)κ(z2), such a transformation is incompatible with the
above invariance. Other methods to break the mass-sheet degeneracy, such
as the inclusion of constraints from the strong lensing regime are discussed
further in Section 3.4.3 on lens modeling.

29



2.8 Higher order shape deformations - Flexion

The equations in the previous section assume that κ and γ and as a conse-
quence the reduced shear g are all constant across an image. This assumption
fails when an image is physically large and/or when it is close to critical re-
gions where the lensing distortion is changing rapidly. There are basically two
effects that lensing produces on a background elliptical source: a shift in the
peak flux at the center of the image compared to that of the fainter isophotes
(while still preserving the surface brightness from the source to the image),
and the distortion of the elliptical shape into an extended ”banana” shape.
Therefore, there is additional, valuable information that can be gleaned from
higher order lensing effects.

To determine these higher order effects numerically, one needs to use higher
orders of the lensing transformation using the Taylor expansion of the image
shape. This was first investigated by Goldberg & Natarajan (2002), and fol-
lowed up by Goldberg & Bacon (2005). A recent summary of the formalism
and applications is reviewed in Bacon et al. (2005). Flexion is the significant
third-order weak gravitational lensing effect responsible for the skewed and
arc-like appearance of lensed galaxies. Flexion has two components: the first
flexion, which is essentially the derivative of the shear field which contains local
information about the gradient of the matter density (Goldberg & Natarajan
2002) and the second flexion which contains non-local information (Bacon et
al. 2005 and Figure 17). Flexion measurements can be used to measure density
profiles and these reconstructions can be combined with those derived from
the shear alone. One key advantage of using the flexion estimator is that it is
not plagued by the mass sheet degeneracy as it is a higher order term, while
its dispersion measure is comparable to that of the shear. Recent successful
applications of flexion to map mass distributions can be found in Okura et al.
(2008); Leonard, King & Goldberg (2011) and Er, Li & Schneider (2011).

The shear and convergence vary within a galaxy image, flexion is the higher
order derivative and in order to derive it, expansion to the second order is
required:

θ′i ' Aijθj +
1

2
Dijkθjθk, (35)

with

Dijk = ∂kAij. (36)

Using results from Kaiser (1995), we find that
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Fig. 17. Decomposition of weak lensing distortions, illustrated for an unlensed Gaus-
sian galaxy with a radius of 1 arcsec. The source has been distorted with 10% con-
vergence/shear, and 0.28 arcsec−1 flexion. The convergence κ, and two components
of the first flexion (F1 and F2); shear (γ1, γ2); and second flexion G1 and G2 are
shown. As mentioned, flexion causes the arci-ness or elongation of weakly lensed
arcs once one combines F , G and γ (Figure from Bacon et al. 2005).

Dij1 =

−2γ1,1 − γ2,2 −γ2,1

−γ2,1 −γ2,2

 , (37)

Dij2 =

−γ2,1 −γ2,2

−γ2,2 2γ1,2 − γ2,1

 .

Using the equations above, the surface brightness of the imagecan be expanded
in a Taylor series. In the weak lensing regime we can approximate the bright-
ness to second order as follows:

f(θ) '
{

1 +
[
(A− I)ijθj +

1

2
Dijkθjθk

]
∂i

}
f ′(θ) . (38)

Therefore the expression for flexion can be written in terms of derivatives of
the shear field. Using the notation of Kaiser (1995) we can write flexion in
terms of the gradient of the convergence:
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F ≡ (γ1,1 + γ2,2)i + (γ2,1 − γ1,2)j (39)

=∇κ (40)

= |F|eiφ. (41)

We need to be able to measure the derivatives of the shear field γi,j with
a high degree of accuracy from images in order to measure flexion. This is
becoming γi,j with sufficient accuracy. This is becoming increasingly feasible
with the availability of high quality imaging data. The first flexion probes the
local density via the gradient of the shear field and quantifies the variation
of the center of the different isophotal contours. The second flexion probes
the nonlocal part of the gradient of the shear field and quantifies the shape
variation and departure from elliptical symmetry.

Flexion has been incorporated as an additional constraint in the cluster mass
reconstructions only recently as extremely high quality data is required to
extract the flexion field and this is very challenging (see Leonard, King &
Goldberg 2011 for the case of Abell 1689). This higher order shape estima-
tor however offers a powerful probe provided it can be measured accurately
from observations (Leonard & King 2010; Er, Li & Schneider 2011). As an
illustration, we present the calculation of the flexion for the SIS model in the
Appendix (A.4).

3 Constraining cluster mass distributions

In most cases, intermediate redshift z ∼ 0.2 − 0.5 massive clusters are the
most significant mass distribution along the line of sight, thus they can be
represented by a single lens plane in concordance with the thin lens approxi-
mation. In the ΛCDM model, the probability of finding two massive clusters
extremely well aligned along the line of sight (albeit separated in redshift) is
extremely unlikely as clusters are very rare objects. Lensing deflections and
distortions probe the two dimensional projected cluster mass along the line of
sight. This allows us to constrain the two dimensional Newtonian potential,
φ(x, y), resulting from the three-dimensional density distribution ρ(x, y, z) pro-
jected onto the lens plane. The related projected surface mass density Σ(x, y)
is then given by:

4πGΣ(x, y) = ∇2φ(x, y). (42)

Often we are interested in the two-dimensional projected mass inside an aper-
ture radius R (particularly when comparing different mass estimators), which
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is defined explicitly as follows:

Maper(R) = 2π
∫ R

0
Σ(x)xdx, (43)

and the mean surface density inside the radius R is given by:

Σ(R) =
1

πR2

R∫
0

2πxΣ(x)dx. (44)

The important quantities for lensing in clusters are primarily the deflection
angle ~α between the image and the source, the convergence κ, and the shear
γ, which can all be conveniently expressed in terms of the projected potential:

~α(~θ) = ~∇~θϕ(~θ)

κ(~θ) =
1

2

(
∂2ϕ

∂θ2
1

+
∂2ϕ

∂θ2
2

)

γ2(~θ) = ‖~γ(~θ)‖2 =
1

4

(
∂2ϕ

∂θ2
1

− ∂2ϕ

∂θ2
2

)2

+

(
∂2ϕ

∂θ1∂θ2

)2

.

(45)

For a radially symmetric mass distribution, these expressions can be written
as: 

κ(x) =
Σ(x)

Σcrit

γ(x) =
Σ(x)− Σ(x)

Σcrit

~α(x) = θ
Σ(x)

Σcrit

= θ (κ(x) + γ(x))

(46)

where x = DOLθ is the radial physical distance. From this equation, we note
that one can derive γ directly from α and κ. This formulation is particularly
useful when trying to compute an analytic expression of the lensing produced
by a given mass profile.

3.1 Strong lensing modeling

3.1.1 Modeling approaches

Traditionally, modeling of the cluster mass distribution in the strong lensing
regime is done using “parametric models” (e.g. Kneib et al. 1996; Natarajan
& Kneib 1997). In these schemes the mass distribution is described by a finite
number of mass clumps; some small scale (galaxy components) and some large
scale (to represent the dark matter, X-ray gas in the Intra-Cluster Medium),

33



Fig. 18. Relative aperture mass error as a function of the number of multiple-images
as measured in Richard et al. (2010). Open symbols: clusters observed with WFPC2.
Filled symbols: clusters observed with ACS. Symbols reflect the number of filters
used to image the cluster (circle: 1 filter, triangle: 2 filters, diamond: 3 or more
filters). One can see that with multi-band ACS data we can uncover more than
10 multiple-image systems for the most massive clusters, and thus achieve mass
accuracy within 10% or so in cluster cores.

each of which are described in turn by a finite number of parameters contingent
upon the choice of mass profile deployed. The simplest mass distribution that
is commonly employed is the circular Singular Isothermal Sphere (SIS), which
is described by three parameters. The parameters are the position of its center
(x, y) and the value of the velocity dispersion σ, which in this case is a constant.
Other mass distributions such as the PIEMD (Pseudo Isothermal Elliptical
Mass Distribution) or NFW (Navarro-Frenk-White) profiles are often used in
lensing analysis and their relevant parameters are described in the Appendix
(see A.1 - A.3).

Using a simple mass model makes sense when there are not many available
observational constraints indeed one needs to balance the number of model
parameters to the number of observational constraints available in order to
compute a sensible best-fit model. However, with recent deep images of cluster
cores from HST a very large number of multiple-images can readily be identi-
fied. For instance, more than 40 multiple-image systems have been identified
in the massive cluster Abell 1689 by Limousin et al. (2007). The discovery
and identification of such a large number of multiple-images has dramatically
increased the number of constraints available for mass modeling of massive
clusters in the last decade. With the availability of a larger number of multi-
ply imaged systems with redshift measurements, more accurate mass models
(Figure 18) are now possible.
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Therefore, the number of allowable parameters required to describe the mass
distribution of a cluster has also increased, leading obviously to a more ac-
curate description of the mass profile in the cluster core. This is for example
evident upon comparing the model of Kneib et al. (1993) with that of Richard
et al. (2010) for the cluster Abell 370. In the case of “parametric models”,
the increase in the number of constraints translates to the fact that cluster
mass distributions can now be described by a larger number of mass clumps
and each of these clumps can be more complex (e.g. having elliptical mass
distributions rather than circular, and a radial profile described by more pa-
rameters).

The increase in the number of available constraints has also lead to the de-
velopment of new “non-parametric” methods, where no (or few) external pri-
ors are required to describe the mass distribution of clusters (Diego et al.
2005a; Saha & Williams 1997; Coe et al. 2010). Generically, in most of these
non-parametric methods, the mass distribution is typically tessellated into a
regular grid of smaller mass elements. Further details of such methods are
discussed later on in this section.

3.1.2 From simple to more complex mass determinations

A particularly useful and popular mass estimate in the strong lensing regime
is the mass enclosed within the Einstein radius θE, given by:

M(< θE) = πΣcritD
2
OLθ

2
E, (47)

where θE is the location of the tangential critical line for a circular mass dis-
tribution, usually approximated by the tangential arc radius θarc. It is a very
handy expression that is independent of the mass profile for circularly symmet-
ric cases. However, caution needs to be exercised when using this expression
as often the arc used to derive the mass has an unknown redshift (thus Σcrit

is not well defined), or the arc is a single image and therefore does not trace
the Einstein radius or the mass distribution is very complex with a lot of sub-
structure. Note that, however, for a singular isothermal sphere model, a single
image cannot be closer than twice the Einstein radius since it will then have
a counter image. In conclusion, this estimator tends to typically overestimate
the mass in instances where the tangential arc is not multiply imaged or its
redshift is unknown.

The radial critical line can be constrained when a radial arc is observed in the
cluster core, this has now been done for a number of cluster lenses (e.g. Fort
et al. 1992; Smith et al. 2001; Sand et al. 2002; Gavazzi et al. 2003). These
features are important as they lie very close to the cluster core, and thus
provide a unique probe of the surface mass density in the very center. Baryons
are highly concentrated in the inner regions of clusters and they are expected
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to play an important role in possibly modifying the dark matter distribution
on the smallest scales. The scales on which these effects are expected are
accessible effectively with lensing data. Radial arcs have been used to probe
the dark matter slope in the inner most regions of clusters (Sand et al. 2005,
2008; Newman et al. 2011), the results of these studies will be discussed in
detail later on in this review.

The proper way to accurately constrain the mass in cluster cores is thus to use
multiple-images with preferably measured spectroscopic redshifts to absolutely
calibrate the mass. To do this, one generally defines a likelihood L for the
observed data D and parameters p of the model:

L = Pr(D|p) =
N∏
i=1

1∏ni
j=1 σij

√
2π

exp−
χ2
i
2 , (48)

where N is the number of systems, and ni the number of multiple-images for
the system i. The contribution from the multiple-image system i to the overall
χ2 can be simply given by:

χ2
i =

ni∑
j=1

[θjobs − θj(p)]2

σ2
ij

, (49)

where θj(p) is the position of image j predicted by the current model, whose
parameters are p and where σij is the error on the position of image j.

The accurate determination of σij depends on the signal-to-noise of the image
S/N ratio. For extended images, a pixellated approach is the only accurate
way to take the S/N ratio of each pixel into account (Dye & Warren 2005;
Suyu et al. 2006) but this is not optimal for cluster lenses with a large number
of multiple-image systems. However, to a first approximation, the positional
error of images can be determined by fitting a 2D Gaussian profile to the image
surface brightness, which assumes that the background galaxy is compact and
its surface brightness profile is smooth enough so that the brightest point in
the source plane can be reliably matched to the brightest point in the image
plane.

A major issue in the χ2 computation is how to match the predicted and
observed images one by one. In models producing different configurations of
multiple-images (e.g. a radial system instead of a tangential system), the χ2

computation will fail and the corresponding model will then be rejected. This
usually happens when the model is not yet well determined, and this can
slow down the convergence of the modeling significantly. To get around this
complexity, one often computes the χ2 in the source plane (by computing the
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difference in the source position for a given parameter sample p) instead of
doing so in the image plane. The source plane χ2 is written as:

χ2
Si

=
ni∑
j=1

[θjS(p)− < θjS(p) >]2

µ−2
j σ2

ij

, (50)

where θjS(p) is the corresponding source position of the observed image j,
< θjS(p) > is the barycenter position of all the ni source positions, and µj is
the magnification for image j. Written in this way, there is no need to solve
the lensing equation repeatedly and so the calculation of the χ2 is very fast.
However, in the case where only a small number of multiple-image systems
are used, source plane optimization may lead to a biased solution, typically
favoring mass models with large ellipticity.

It is important to use physically well motivated representations of the mass
distribution and adjust these in order to best reproduce the different families of
observed multiple images (e.g. Kneib et al. 1996; Smith et al. 2001) iteratively.
Indeed, once a set of multiple-images is securely identified, other multiple-
image systems can in turn be discovered using morphological/color/redshift-
photometric criteria, or on the basis of the lens model predictions. Better
data, or data at different wavelengths may also bring new information enabling
new multiple-images to be identified increasing the number of constraints for
modeling and hence the accuracy of mass models.

3.1.3 Modeling the various cluster mass components

In a cluster, the positions of multiple-images are known to great accuracy
and they are usually scattered at different locations within the cluster inner
regions. A simple mass model with one clump cannot usually successfully
reproduce observed image configurations.

We know that galaxies in general are more massive than represented by their
stellar content alone. In fact, the visible stellar-mass represents only a small
portion (likely 10 - 20%) of their total mass. The existence of an extended
dark matter halo around individual galaxies has been established for disk
galaxies with the measurement of their flat and spatially extended rotation
curves (e.g. van Albada et al. 1985). The existence of a dark matter halo has
been accepted for ellipticals only relatively recently (e.g. Kochanek et al. 1995;
Rix et al. 1997). These studies found that while the stellar content dominates
the central parts of galaxies, at distances larger than the effective radius the
dark matter halo dominates the total mass inventory. What is less obvious
in clusters of galaxies, given their dense environments, is how far the dark
halos of individual early-type galaxies extend. One expects tidal“stripping” of
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extended dark matter halos to occur as cluster galaxies fall in and traverse
through cluster cores during the assembly process. This is borne out qualita-
tively by the strong morphological evolution observed in cluster galaxies (e.g.
Lewis, Smail & Couch 2000; Kodama et al. 2002; Treu et al. 2003). In fact,
lensing offers a unique probe of the mass distribution on these smaller scales
within cluster environments.

The lensing effects of individual galaxies in clusters was first noted by Kassiola
et al. (1992) who detected that the lengths of the triple arc in Cl0024+1654
can only be explained if the galaxies near the ‘B’ image were massive enough.
Detailed treatment of the individual galaxy contribution to the overall cluster
mass distribution became critical with the refurbishment of the HST as first
shown by Kneib et al. (1996). It was found that cluster member galaxies and
their associated individual dark matter halos need to be taken into account
to accurately model the observed strong lensing features in the core of Abell
2218.

The theory of what is now referred to as galaxy-galaxy lensing in clusters was
first formulated and discussed in detail by Natarajan & Kneib (1997), and
its application to data followed shortly (Natarajan et al. 1998; and Geiger &
Schneider 1999). From their detailed analysis of the cluster AC 114, Natarajan
et al. (1998) concluded that dark matter distributed on galaxy-scales in the
form of halos of cluster members contributes about 10% of the total cluster
mass. Analysis of this effect in several cluster lenses at various redshifts seems
to indicate that tidal stripping does in fact severely truncate the dark matter
halos of infalling cluster galaxies. The dark matter halos of early-type galaxies
in clusters is found to be truncated compared to that of equivalent luminosity
field galaxies (Natarajan et al. 2002, 2004). More recent work finds that tidal
stripping is on average more efficient for late-type galaxies compared to early-
type galaxies (Natarajan et al. 2009) in the cluster environment.

Lens models need to include the contribution of small scale potentials in clus-
ters like those associated with individual cluster galaxies to reproduce the
observed image configurations and positions. As there are only a finite num-
ber of multiple-images, the number of constraints is limited. It is therefore
important to limit the number of free parameters of the model and keep it
physically motivated – as in the end – we are interested in deriving physical
properties that characterize the cluster fully.

Generally, in these parametric approaches, the cluster gravitational potential
is decomposed in the following manner:

φtot =
∑
i

φci +
∑
j

φpj , (51)

where we distinguish smooth, large-scale potentials φci , and the sub-halo po-
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tentials φpj that are associated with the halos of individual cluster galaxies as
providing small perturbations (Natarajan & Kneib 1997). The smooth cluster-
scale halos usually represent both the dark matter and the intra-cluster gas.
However, combining with X-ray observations, each of these two components
could in principle be modeled separately. For complex systems, more than one
cluster-scale halo is often needed to fit the data. In fact, this is the case for
many clusters: Abell 370, 1689, 2218 to name a few.

The galaxy-scale halos included in the model represent all the massive cluster
member galaxies that are roughly within two times the Einstein radius of
the cluster. This is generally achieved by selecting galaxies within the cluster
red sequence and picking the brighter ones such that their lensing deflection
is comparable to the spatial resolution of the lensing observation. Studies of
galaxy-galaxy lensing in the field have shown that a strong correlation exists
between the light and the mass profiles of elliptical galaxies (Mandelbaum
et al. 2006). Consequently, to a first approximation, in mass modeling the
location, ellipticity and orientation of the smaller galaxy halos are matched to
their luminous counterparts.

Except for a few galaxy-scale sub-halos that do perturb the locations of
multiple-images in their vicinity or alter the multiplicity of lensed images
in rare cases, the vast majority of galaxy-scale sub-halos act to merely in-
crease the total mass enclosed within the Einstein radius. In order to reduce
the number of parameters required to describe galaxy-scale halos, well moti-
vated scaling relations with luminosity are often adopted. Following the work
of Brainerd et al.(1996) for galaxy-galaxy lensing in the field, galaxy-scale
sub-halos within clusters are usually modeled with individual PIEMD poten-
tials. The mass profile parameters for this model are the core radius (rcore),
cut-off radius (rcut), and central velocity dispersion (σ0), which are scaled to
the galaxy luminosity L in the following way:


σ0 = σ?0( L

L?
)1/4 ,

rcore = r?core(
L
L?

)1/2 ,

rcut = r?cut(
L
L?

)α .

(52)

The total mass of a galaxy-scale sub-halo then scales as (Natarajan & Kneib
1997):

M = (π/G)(σ?0)2r?cut(L/L
?)1/2+α , (53)

where L? is the typical luminosity of a galaxy at the cluster redshift. When
r?core vanishes, the potential becomes a singular isothermal potential truncated
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at the cut-off radius.

In the above scaling relations (Equation 52), the velocity dispersion scales with
the total luminosity in agreement with the empirically derived Faber-Jackson
relations for elliptical galaxies (for spiral galaxies the Tully-Fisher should be
used instead, but those are not numerous in cluster cores). When α = 0.5, the
mass-to-light ratio is constant and is independent of the galaxy luminosity,
however, if α = 0.8, the mass-to-light ratio scales with L0.3 similar to the
scaling seen in the fundamental plane (Jorgensen et al. 1996; Halkola et al.
2006). Other scalings are of course permissible, and a particularly interesting
one that has been recently explored in field galaxy-galaxy lensing studies,
is to scale the sub-halo mass distribution directly with the stellar-mass (see
Leauthaud et al. 2011).

3.1.4 Bayesian modeling

State of the art parametric modeling is done in the context of a fully Bayesian
framework (Jullo et al. 2007), where the prior is well defined and the marginal-
ization is done over all the relevant model parameters that represent the cluster
mass distribution. Indeed, the Bayesian approach is better suited than regres-
sion techniques in situations where the data by themselves do not sufficiently
constrain the model. In this case, prior knowledge about the Probability Den-
sity Function (PDF) of parameters helps to reduce degeneracies in the model.
The Bayesian approach is well-suited to strong lens modeling given the few
constraints generally available to optimize a model. The Bayesian approach
provides two levels of inference rather efficiently: parameter space exploration,
and model comparison. Bayes Theorem can be written as:

Pr(p|D,M) =
Pr(D|p,M)Pr(p|M)

Pr(D|M)
, (54)

where Pr(p|D,M) is the posterior PDF, Pr(D|p,M) is the likelihood of get-
ting the observed data D given the parameters p of the model M , Pr(p|M)
is the prior PDF for the parameters, and Pr(D|M) is the evidence.

The value of the posterior PDF will be the highest for the set of parameters p
which gives the best-fit and that is consistent with the prior PDF, regardless
of the complexity of the model M . Meanwhile, the evidence Pr(D|M) is the
probability of getting the data D given the assumed model M . It measures the
complexity of model M , and, when used in model selection, it acts as Occam’s
razor. 6

6 “All things being equal, the simplest solution tends to be the best one.”
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Fig. 19. Example of radial arcs found in the 4 cluster AC118, RCS0224, A370 and
A383 (from Sand et al. 2005). The right side of each panel shows the BCG subtracted
images.

Jullo et al. (2007) have implemented in Lenstool 7 a model optimization
based on a Bayesian Markov Chain Monte Carlo (MCMC) approach, which
is currently widely used. Since this approach involves marginalizing over all
relevant parameters, it offers a clearer picture of all the model degeneracies.

3.2 Probing the radial profile of the mass in cluster cores

One important prediction from dark matter only numerical simulations of
structure formation and evolution in a ΛCDM Universe, is the value of the
slope β of the density profile ρdarkmatter ∝ r−β in the central part of relaxed
gravitational systems. Although there has been ongoing debate for the past
decade on the exact value of the inner slope (Navarro, Frenk & White 1997
(β = 1); Moore et al. 1998 (β = 1.5)), the real limitation of such predictions is
the lack of baryonic matter in these simulations. Baryons dominate the mass
budget and the gravitational potential in the inner most regions of clusters
and need to be taken into account while trying to constrain the inner slope
of the dark matter density profile. This is expected to change in the near fu-
ture with better numerical simulations. Even in dark matter only simulations,
it has been found that non-singular three-parameter models, e.g. the Einasto
profile has a better performance than the singular two-parameter NFW model
in the fitting of a wide range of dark matter halo structures (Navarro et al.
2010). Nevertheless, the radial slope of the total mass profile is a quantity

7 LENSTOOL is available at - http://lamwws.oamp.fr/lenstool/
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Fig. 20. Top: Projected mass for the dark matter and stellar components, as well as
the total mass distribution, with tangential reduced shear (g) data inset at the same
radial scale for the cluster Abell 383. Bottom: 3D Mass, with velocity dispersion data
inset and X-ray constraints overlaid. All bands show 68% confidence regions. The
models acceptably fit all constraints ranging from the smallest spatial scales ' 2 kpc
to ' 1.5 Mpc. This figure is taken from Newman et al. (2011).

that lensing observations can uniquely constrain (e.g. Miralda-Escud 1995).
This was first attempted for Abell 2218 by Natarajan & Kneib (1996) and
subsequently by Smith et al. (2001) for the cluster Abell 383, by modeling the
cluster center as the sum of a cD halo and a large-scale cluster component.
Abell 383 is an interesting and unique system wherein both a tangential and
a radial arc with similar redshift are observed. Such a configuration provides
a particularly good handle on the inner slope (here considered as the sum of
the stellar and Dark Matter component), which in the case of Abell 383 was
found to be steeper than the NFW prediction.

Once tangential and radial arcs have been identified from HST images (see Fig-
ure 19), the main observational limitation is the measurement of the redshift
of the multiply imaged arc to firmly constrain the radial mass profile. Large
telescopes (Keck/VLT/Gemini/Subaru) have been playing a key role in cluster
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lensing by measuring the redshifts of multiple-images. Furthermore, working
at high spectral resolution allows one to also probe the dynamics of cD galax-
ies in the core of clusters (Natarajan & Kneib 1996; Sand et al. 2002). Thus
combining constraints from stellar dynamics, in particular, measurements of
the velocity dispersion of stars and coupling that with lensing enables the de-
termination of the mass distribution in cluster cores. This combination is very
powerful as it weighs the different mass components individually: stellar-mass,
X-ray gas and dark matter in the cores of clusters. Sand et al. (2005) applied
this technique to the clusters MS2137-23 and Abell 383 and found that the
dark matter component is best described by a generalized NFW model with an
inner slope that is shallower than the theoretically predicted canonical NFW
profile. A similar analysis was also conducted by Gavazzi et al. (2003) with
the same result. It must be stressed that the comparison between numerical
simulations and observations is not direct as the stars in the cD galaxies domi-
nate the total mass budget in the very center and the additional contributions
of these baryons are not accounted for in the dark matter only simulations.
It is widely believed that the significant presence of baryons in cluster cores
likely modifies the inner density profile slope of dark matter, although there
is disagreement at present on how significant this adiabatic compression is
likely to be (Blumenthal et al. 1986; Gnedin et al. 2004; Zappacosta et al.
2006). Radial arcs offer a unique and possible only handle to probe the inner
slopes of density profiles. Several other clusters with radial arcs have been
discovered from HST archives recently, and are currently being followed up
spectroscopically (Sand et al. 2005, 2008).

In a recent paper, Newman et al. (2011) have obtained high accuracy velocity
dispersion measurements for the cD galaxy in Abell 383 out to a radius of
∼26 kpc for the first time in a lensing cluster. Adopting a triaxial dark mat-
ter distribution, an axisymmetric dynamical model and using the constraints
from both strong and weak lensing, they demonstrate that the logarithmic
slope of the dark matter density at small radii is β < 1.0 (95% confidence),
shallower than the NFW prediction (see Figure 20). Similar analysis of other
relaxed clusters, including constraints from small to large scales will help im-
prove our understanding of the mass distribution in cluster cores and help test
the assumptions used in numerical simulations where both dark matter and
baryonic matter (stars and X-ray-gas) are explicitly included.

3.3 Non-Parametric Strong Lensing modeling

In addition to the use of the parametric analytic mass models described above,
there has been considerable progress in developing non-parametric mass re-
construction techniques in the past decade (e.g. Abdelsalam et al. 1998; Saha
& Williams 1997; Diego et al. 2005a,b; Jullo & Kneib 2009; Coe et al. 2010;
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Zitrin et al. 2010). Non-parametric cluster mass reconstruction methods have
become more popular with the increase in available observational constraints
from the numerous multiple-images that are now more routinely found in deep
HST data (e.g. Broadhurst et al. 2005). Non-parametric models have increased
flexibility which allows a more comprehensive exploration of allowed mass dis-
tributions. These schemes are particularly useful to model extremely complex
mass distributions such as the Bullet Cluster (Bradač et al. 2005).

Contrary to the analytic profile driven“parametric” methods, in non-parametric
schemes, the mass distribution is generally tessellated into a regular grid of
small mass elements, referred often to as pixels (Saha & Williams 1997; Diego
et al. 2005a). Alternatively, instead of starting with mass elements, Bradač et
al. (2005) prefer tessellating the gravitational potential because its derivatives
directly yield the surface density and other important lensing quantities that
can be related more straightforwardly to measurements. Pixels can also be
replaced by radial basis functions (RBFs) that are real-valued functions with
radial symmetry. Several RBFs for density profiles have been tested so far.
Liesenborgs et al. (2007) use Plummer profiles, and Diego et al. (2007) use
RBFs with Gaussian profiles. The properties of power law profiles, isothermal
profiles as well as Legendre and Hermite polynomials have been explored as
RBFs. These studies find that the use of compact profiles such as the Gaus-
sian or Power law profiles are generally preferred as they are more accurate in
reproducing the surface mass density.

In more recent work, instead of using a regular grid, Coe et al. (2008, 2010)
and Deb et al. (2008) use the actual distribution of images as an irregular grid.
Then, they either place RBFs on this grid or directly estimate the derivatives
of the potential at the location of the images. Whatever their implementa-
tion, the reproduction of multiple-images is generally greatly improved with
respect to traditional parametric modeling with these techniques. However,
the robustness of these models is still a matter of debate given the current ob-
servational constraints available from data. Indeed, due to the large amount
of freedom that inevitably goes with the large degree of flexibility afforded
by a “non-parametric” approach, many models can fit perfectly the data and
discriminating between models is challenging. To identify the best physically
motivated model and eventually learn more about the dark matter distribu-
tion in galaxy clusters, additional external criteria (e.g. mass positivity) or
regularization terms (e.g. to avoid unwanted high spatial frequencies) are nec-
essary. Furthermore, galaxy mass scales are usually not taken into account
in these non-parametric schemes, despite the fact that successful parametric
modeling has clearly demonstrated that these smaller scale mass clumps do
significantly affect the positions of observed multiple-images. This is a key
limitation of most of the non-parametric models.

Jullo & Kneib (2009) [JK09 hereafter] have proposed a novel modeling scheme
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Fig. 21. Map of S/N ratio for the A1689 mass reconstruction using the JK09 “non–
parametric” mass reconstruction. Colored contours bound regions with S/N greater
than 300, 200, 100 and 10. The highest S/N region is at the center where there are
the most constraints. Red contours are mean iso-mass contours. Black boxes mark
the positions of the multiple-images used to constrain the mass distribution, and
the numbers indicate the different multiple-image systems (from JK09).

that includes both a multi-scale grid of RBFs and a sample of analytically
defined galaxy-scale dark matter halos, thus allowing combined modeling of
both complex large-scale mass components and galaxy-scale halos. In this
hybrid scheme, similar to the one adopted by Diego et al. (2005a), JK09 define
a coarse multi-scale grid from a pixelated input mass map and recursively
refine it in the densest regions. However, in contrast to previous work, they
start from a hexagonal grid (composed of triangles), on the grounds that it
better fits the generally roundish shapes of galaxy clusters. For their RBF,
they use truncated circular isothermal mass models, and truncated PIEMD
models to explicitly include galaxy-scale halos. Thus both components are
modeled with similar analytical functions which permits a simple combination
for ready incorporation into the Bayesian MCMC optimization scheme built
into LENSTOOL. Figure 21 shows the derived S/N convergence map for the
model of the cluster A1689. As the S/N of the mass reconstruction is found to
be larger than 10 everywhere inside the hexagon, the error in the convergence
derived mass is less than 10%, demonstrating the power of this hybrid scheme.
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3.4 Cluster Weak lensing modeling

As soon as we look a little bit further out radially from the cluster core, the
lensing distortion gets smaller (distortions in shape get to be of the order of a
few percent at most), and very quickly the shape of faint galaxies gets dom-
inated by their intrinsic ellipticities (the dispersion of the intrinsic ellipticity
distribution of observed galaxies σε ∼ 0.25). Thus the lensing distortion is
no longer visible in individual images and can only be probed in a statistical
fashion, characteristic of the weak lensing regime (e.g. Bartelmann 1995). The
nature of constraints provided by observations are fundamentally different in
the weak lensing regime compared to the strong lensing regime. In the strong
regime, as we shown above every set of observed multiple-images provides
strong constraints on the mass distribution. In the weak regime, however,
what is measured are the mean ellipticities and/or the mean number density
of faint galaxies in the frame. In order to relate these to the mean surface
mass density κ of the cluster, these data need to be used statistically. There
are two key sets of challenges in doing so:

• Observational : How to best determine the ‘true’ ellipticity of an observed
faint galaxy image which is smeared by a PSF of comparable size, and is not
circular (as a result of camera distortions, variable focus across the image,
tracking and guiding errors) and not stable in time? How best to estimate and
isolate the variation in the number density of faint galaxies due to lensing,
while taking into account the crowding effect due to the presence of cluster
members and the intrinsic spatial fluctuations in the distribution of galaxies;
and the unknown redshift distribution of background sources?
• Theoretical : what is the optimal method to reconstruct the surface mass
density distribution κ (as a mass map or a radial mass profile) using either
the ‘reduced shear field’ ~g and/or the amplification?

Various approaches have been proposed to solve these sets of problems, and
two distinct families of methods can be distinguished: direct and inverse
methods. We describe them in detail in what follows.

3.4.1 Weak lensing observations

For observers, before any data handling, the first step is to choose the telescope
(and instrument) that will minimize the sources of noise in the determination
of the ellipticity of faint galaxies. Although HST has the best characteristics
in terms of the PSF size, it has a very limited field of view ∼ 10 square
arcminutes for the ACS camera. Furthermore, Hubble is “breathing” as it is
orbiting around the Earth, which affects the focus of its instruments, and the
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Fig. 22. Simulated images demonstrating the various sources of noise in weak lensing
data: the galaxy model, the PSF model, the convolution of the two, and the final
image when noise is added. Simple simulations allow the production of model images
that include observational sources of noise and can therefore be compared directly
to the shapes of observed faint galaxies. The best galaxy model is then found by
taking into account the convolution effect of the measured PSF that best-fits the
data. (Bottom panels): the MCMC samples fitting the final image in terms of its
ellipticity vector - with coordinates [e+ = e1] and [e× = e2] - (on the left) and in
terms of the position (x,y) of the image center (right), from which the best-fit fiducial
models with errors can be extracted (black crosses). One of the first implementations
of this inverse technique was done in the Im2shape software (Bridle et al. 2002).
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most recent ACS imaging data appear to be suffering from Charge Transfer
Inefficiency (CTI) which needs special post-processing for removal of these
instrumental effects (Massey 2010). Although, as we have seen HST is ideal
for picking out strong lensing features (e.g. Gioia et al 1998), it is not the
most appropriate instrument to probe the large scale distribution of a cluster
extending out to and beyond the virial radius. Note however, this limitation
becomes less of a problem when observing high-redshift clusters (e.g. Hoekstra
et al 2002, Jee et al 2005, Lombardi et al 2005).

On the ground a number of wide-field imaging cameras have been used to
conduct weak lensing measurements in cluster fields. The most productive
ones in the last decades have been: the CFHT12k camera (e.g. Bardeau et
al. 2007, Hoekstra 2007) and the more recent Megacam camera (e.g. Gavazzi
& Soucail 2007, Shan et al. 2010) at CFHT, and the Suprimecam on Subaru
(e.g. Okabe et al. 2010). However a number of studies have also been done
with other instruments, in particular, the VLT/FORS (e.g. Cypriano et al.
2001, Clowe et al. 2004), 2.2m/WFI (e.g. Clowe & Schneider 2002), and more
recently with the LBT camera (Romano et al. 2010).

3.4.2 Galaxy shape measurement

Once the data have been carefully taken either from the ground or space with
utmost care to minimize contaminating distortions and hopefully under the
best seeing conditions, the next step is to convert the image of the cluster into
a catalog where the PSF corrected shapes of galaxies are computed.

Before measuring the galaxy shape a number of steps are usually undertaken:
1) masking of the data and identifying the regions in the image that suffer
from observational defects: bleeding stars, satellite tracks, hot pixels, spurious
reflections; 2) source identification and catalog production which is usually
done using the Sextractor software (Bertin & Arnouts 1996); 3) identi-
fication of the stellar objects in order to accurately compute the PSF as a
function of position in the image. Once this is done, the shapes of the stellar
objects and galaxies can be computed to derive the PSF corrected shapes of
galaxies which will then be used for weak lensing measurements. For accom-
plishing this crucial next step, a popular and direct approach is often used,
to convert galaxy shapes to shear measurements using the Imcat software
package. This implementation is based on the Kaiser, Squires and Broad-
hurst (1995) methodology, but has been subsequently improved by various
other groups (e.g. Luppino & Kaiser 1997; Rhodes et al. 2000; Hoekstra et
al. 2000), providing variants of the original KSB technique. To correct the
galaxy shape from the PSF anisotropy and circularization, the KSB technique
uses the weighted moment of the object’s surface brightness to find its center,
and shape to measure higher order components that can be used to improve
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the PSF correction. As a result the correction is fast and processing a large
amount of data can be done swiftly and efficiently.

Alternatively, one can use the inverse approach using maximum likelihood
methods or Bayesian techniques to find the optimal galaxy shape that when
convolved with the local PSF best reproduces the observed galaxy shape (e.g.
Kuijken, 1999; Im2Shape: Bridle et al. 2002). A recent implementation of this
inverse method is available in the Lensfit software package (Miller et al. 2007;
Kitching et al. 2008) and one of its key advantages is that it works directly on
the individual exposures of a given field. Lensfit has been developed in the
context of the CFHT-LS survey, but is flexible and can be easily adapted for
use with other observations.

These inverse approaches have the advantage that they provide a direct esti-
mate of the uncertainty in the parameter recovery as illustrated in Figure 22.
Further extension of these inverse techniques, has led to the use of Shapelets
(Refregier 2003; Refregier & Bacon 2003) that offer a more sophisticated basis
set to characterize the two-dimensional shapes of the PSF and faint galaxies.
The versatility of shapelets has made this technique quite popular for lens-
ing measurements. Nevertheless, it has been realized that these different shape
measurement recipes need to be tuned, compared and calibrated amongst each
other in order to obtain accurate, unbiased and robust shear measurements.
This calibration work has been done in the context of various numerical chal-
lenges, wherein different research groups measure the shapes of the same set of
simulated images as part of STEP (Heymans et al. 2006; Massey et al. 2007);
the GREAT08 and GREAT10 challenges (Bridle et al. 2010; Kitching et al.
2011). These challenges have proven to be very useful exercises for the com-
munity as they have enabled calibration of the several independent techniques
employed to derive shear from observed shapes.

3.4.3 From galaxy shapes to mass maps

From the catalog of shape measurements of faint galaxies, a mass map can
be derived. And here again direct and inverse methods have been explored.
The direct approaches are: (i) the Kaiser & Squires (1993) method - this is
an integral method, that expresses κ as the convolution of ~γ with a kernel
and subsequent refinements thereof (e.g. Seitz et al. 1995, 1996, Wilson et al
1996a); and (ii) a local inversion method (Kaiser 1995; Schneider 1995; Lom-
bardi & Bertin 1998) that involves the integration of the gradient of ~γ within
the boundary of the observed field to derive κ. This technique is particularly
relevant for datasets that are limited to a small field of view.

The inverse approach works for both the κ field and the lensing potential
ϕ and uses a maximum likelihood (e.g. Bartelmann et al. 1996; Schneider et
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Fig. 23. Maximum entropy mass reconstruction (Marshall et al. 2002, Marshall
2003) of the X-ray luminous cluster MS1054 at z = 0.83 using Hoekstra’s HST
dataset (Hoekstra et al. 2000). (Top Left) Distribution of the positions of galaxies
used in the mass reconstruction. (Top Right) Evidence values for different sizes
of the Intrinsic Correlation Function (ICF). (Bottom) Two mass reconstructions
illustrate the case of 2 different values for the ICF: (left) small ICF with a low
evidence value, (right) large ICF with the largest evidence.

al. 2000; King & Schneider 2001), maximum entropy method (e.g. Bridle et
al. 1998; Marshall et al. 2002) or atomic inference approaches coupled with
MCMC optimization techniques (Marshall 2006) to determine the most likely
mass distribution (as a 2D mass map or a 1D mass profile) that reproduces the
reduced shear field ~g and/or the variation in the faint galaxy number densities.
These inverse methods are of great interest as they enable quantifying the er-
rors in the resultant mass maps or mass estimates (e.g. Kneib et al. 2003), and
in principle, can cope with the addition of further external constraints from
strong lensing or X-ray data simultaneously. Wavelet approaches that use the
multi-scale entropy concept have also been extremely powerful in producing
multi-scale mass maps (Starck, Pires & Refregier 2006, Pires et al 2009).

An important issue for producing mass maps is the resolution at which the
2D lensing mass map can be reconstructed. Generally, mass maps are recon-
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structed on a fixed size grid, which then automatically defines the minimum
mass resolution that can be obtained. By comparing the likelihood of differ-
ent resolution mass maps, we can calculate the Bayesian evidence of each to
determine the optimal resolution (Figure 23). However, it is most likely that
the optimal scale to which a mass map can be reconstructed is adaptive, and
is determined by the strength of the lensing signal. As we are limited by the
width of the intrinsic ellipticity distribution, it is only by averaging over a large
number of galaxies that we can reach lower shear levels. Thus low shear levels
can only be probed on relatively large scales by averaging over a large number
of galaxies. Furthermore, as the projected surface mass density of clusters on
large scales falls off relatively quickly scaling as 1/R to 1/R2, respectively, for
an SIS or a NFW profile, mass maps may quickly lose spatial resolution.

Although lensing mass maps may quickly loose information content outside
the cluster core, they can be very useful in identifying possible (unexpected)
substructures on scales larger than the typical weak lensing smoothing scale
(∼ 1 arcminute). This has been the case for several cluster lenses such as
the cluster Cl0024+1654 (e.g. Kneib et al. 2003 and Figure 24; Okabe et al.
2009, 2010) and the“Bullet Cluster” (see Figure 25), and more recently in the
so-called “baby bullet” cluster (Bradač 2009).

3.4.4 Measuring total mass and mass profiles

Weak lensing mass maps are useful to determine mass peaks, but they are
of limited use for the extraction of physical information. If a cluster has a
relatively simple geometry (i.e. has a single mass clump in its 2D mass map)
one can easily extract the radial mass profile and compute the total mass
enclosed within a given radial aperture. Different approaches are currently
available to compute the mass profile and the total mass. The direct method
is just to sum up the tangential weak shear as expressed in the aperture mass
densitometry first introduced by Fahlman et al. (1994) and then revised by
Clowe et al. (1998). This statistic is quite popular and has been used in several
recent cluster modeling papers, including Hetterscheidt et al 2005, Hoekstra
(2007) and Okabe et al. (2010). Aperture mass densitometry measures the
mass interior to a given radius following the ζ statistic, defined as:

ζ(θ1) = κ(θ < θ1)−κ(θ1 < θ < θmax) = 2(1− θ2
1

θ2
max

)
∫ θmax

θ1
< γT > d ln θ, (55)

which provides a lower bound on the mean convergence κ interior to radius
θ1. The mass within θ is then just given by:

M(< θ) = πD2
OLθ

2Σcritζ(θ). (56)
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Fig. 24. The 39 WFPC2/F814W, and the 38 STIS/50CCD pointings sparsely cov-
ering the Cl0024+1654 cluster. The (red) dashed contours represent the number
density of cluster members as derived by Czoske et al. (2001). The blue solid con-
tour is the mass map built from the joint WFPC2/STIS analysis derived using the
LensEnt software (Bridle et al. 1998; Marshall et al. 2002).

This statistic assumes however that all background galaxies are at a similar
redshift, which can be a strong and severely limiting assumption, particularly
for high redshift clusters.

Another semi-direct approach is to build the projected surface density contrast
∆Σ estimator as introduced by Mandelbaum et al. (2005):

∆Σ(r) = Σ(< r)− Σ(r) = γT (r)Σcrit(zS). (57)

In practice, ∆Σ is measured by averaging over the galaxies at radius r from the
cluster center, and requires some information about the redshift distribution
of background galaxies zS. It can then be directly compared to the ∆Σ(r)
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Fig. 25. Right Panel: Shown in greyscale is the I-band VLT/FORS image of the
Bullet cluster used to measure galaxy shapes. Over-plotted in black contours is
the weak lensing mass reconstruction with solid contours for positive mass, dashed
contours for negative mass, and the dash-dotted contour for the zero-mass level.
Left Panel: Shown in greyscale is the Chandra X-ray image from Markevitch et al.
(2002) with the same weak lensing contours as in the Right Hand panel. (Figure
from Clowe et al. 2004).

computed for a given parametrized mass model. Mandelbaum et al. (2010)
discuss and compare this cluster mass estimator with other proposed ones. In
a recent paper, Gruen et al. (2011) compare the use of various aperture mass
estimators to calibrate mass-observable relations from weak lensing data.

The alternative method is to directly fit the observables using simple paramet-
ric models similar to what is done in the strong lensing approach, for example
using radially binned data (e.g. Fischer & Tyson 1997; Clowe & Schneider
2002; King et al 2002; Kneib et al. 2003). The advantage of adopting such
a method lies in its flexibility, i.e. allowing combination of strong and weak
lensing constraints. This direct approach also allows inclusion of external con-
straints such as those from X-ray data and the redshift distribution of back-
ground sources that can be estimated using photometric-redshift techniques.
Of course, such parametric techniques require allowing sufficient freedom in
the radial profile and the inclusion of substructures substructures (e.g. Metzler
1999, 2001; King et al 2001) to closely match observed lensing distortions.

3.5 Cluster Triaxiality

As lensing is sensitive to the integrated mass along the line of sight, it is
natural to expect mass overestimates due to fortuitous alignment of mass
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concentrations not physically related to the cluster or alternatively depar-
tures of the cluster dark matter halo from spherical symmetry (e.g. Gavazzi
2005). Till recently, most studies of the dark matter distribution and the
intra-cluster medium (ICM) in galaxy clusters using X-ray data have been
limited due to the assumption of spherical symmetry. However, the Chandra
and XMM-Newton X-ray telescopes have resolved the core of the clusters,
and have detected departures from isothermality and spherical symmetry. Ev-
idence for a flattened triaxial dark matter halo around five Abell clusters
had been reported early on by Buote & Canizares (1996). Furthermore, nu-
merical simulations of cluster formation and evolution in a cold dark matter
dominated Universe do predict that dark matter halos have highly elongated
axis ratios (Wang & White 2009), disproving the assumption of spherical ge-
ometry. In fact the departures from sphericity of a cluster may help explain
the discrepancy observed between cluster masses determined from X-ray and
strong lensing observations (Gavazzi 2005). This suggests that clusters with
observed prominent strong lensing features are likely to be typically preferen-
tially elongated along the line of sight which might account for their enhanced
lensing cross sections. This is definitely the case for the extreme strong lenses
with large Einstein radii and therefore anomalously high concentrations. The
galaxy cluster A1689 is a well-studied example with such a mass discrepancy
(Andersson & Madejski 2004; Lemze et al. 2008; Riemer-Sorensen et al. 2009;
Peng et al. 2009). In the same vein, large values of the NFW model concen-
tration parameters have also been reported for clusters with prominent strong
lensing features (Comerford & Natarajan 2007; Oguri et al. 2009). This can
again be explained by strong lensing cluster halos having their major axis
preferentially oriented toward the line of sight (Corless et al. 2009).

Combining strong lensing constraints with high-resolution images of cluster
cores in X-rays obtained with Chandra is an excellent way to probe the tri-
axiality of the mass distribution in cluster cores. Mahdavi et al. (2007) pro-
vided a new framework for the joint analysis of cluster observations (JACO)
using simultaneous fits to X-ray, Sunyaev-Zel’dovich (SZ), and weak lensing
data. Their method fits the mass models simultaneously to all data, provides
explicit separation of the gaseous, dark, and stellar components, and allows
joint constraints on all measurable physical parameters. The JACO prescrip-
tion includes additional improvements to previous X-ray techniques, such as
the treatment of the cluster termination shock and explicit inclusion of the
BCG’s stellar-mass profile. Upon application of JACO to the rich galaxy clus-
ter Abell 478 they report excellent agreement among the X-ray, lensing, and
SZ data.

Morandi et al. (2010) have used a triaxial halo model for the galaxy clus-
ter MACS J1423.8+2404 to extract reliable information on the 3D shape and
physical parameters, by combining X-ray and lensing measurements. They
found that this cluster is triaxial with dark matter halo axial ratios 1.53±0.15
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and 1.44±0.07 on the plane of the sky and along the line of sight, respectively.
They report that such a geometry produces excellent agreement between the
X-ray and lensing mass.

These first results are very encouraging and pave the way for a better under-
standing of the 3D distribution of the various mass constituents in clusters.
Theoretically, according to the current dark matter dominated cosmological
model for structure formation cluster halo shapes ought to be triaxial and
a firm prediction is proffered for the distribution of axis ratios for clusters.
More observational work needs to be done to test these predictions, and ulti-
mately techniques that combine lensing, X-ray and Sunyaev-Zel’dovich decre-
ment data might be able to provide a complete 3-dimensional view of clusters.

4 Mass distribution of cluster samples

Although the careful modeling of individual cluster cores and extended regions
offers a unique way to characterize the mass distribution and understand clus-
ter physics in detail, analysis of cluster samples provides important insights
into cluster assembly and evolution. There have been several statistical stud-
ies focused on measuring cluster masses derived from lensing and comparing
these with mass estimates from other measurements such as: richness, X-ray
luminosity, X-ray temperature, velocity dispersions of cluster galaxies, and
the Sunyaev-Zel’dovich decrement. These multi-wavelength comparisons en-
able a deeper understanding of empirically derived scaling relations between
key physical properties of of clusters (e.g. Luppino & Gioia 1992, Loeb & Mao
1994, Miralda-Escudé & Babul 1995, Allen 1998, Ota et al 1998, Ono et al
1999, Irgens et al 2002, Huterer & White 2002). These studies also help un-
cover how mass is partitioned between the different baryonic and non-baryonic
components on cluster scales. Studying cluster samples allows the probing of
several fundamental questions with regard to the dynamical state of clusters,
namely, are clusters relaxed? How much substructure is present in clusters?
How triaxial are clusters? How recently has a cluster had a major merger with
another sub-cluster and what are the signatures of such an event? How im-
portant are projection effects in mass estimates? Are clusters in hydrostatic
equilibrium? When did clusters start to assemble? And how have they evolved?
Observationally derived answers to these questions from cluster samples can
then be directly compared to numerical simulations, thus providing insights
and tests of the structure formation paradigm.
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Fig. 26. Cluster samples: 3 of the 12 z ∼ 0.2 X-ray luminous clusters of galax-
ies selected from the XBACS catalog (Ebeling et al. 1996) observed with the
HST/WFPC2 camera. Top row is Abell 68, second row is Abell 209 and last row
Abell 267. First column is the weak shear field as measured from the HST data.
The second column is a zoom of the cluster cores, and shows for Abell 68 the
predicted critical lines (black lines). The third column is the strong lensing mass
reconstruction and last column is the overlay of the Chandra X-ray map (Smith et
al. 2003).

4.1 Early Work

Comprehensive multi-wavelength datasets that ideally span a range of spa-
tial scales in clusters are needed for such statistical studies. Collecting such
datasets is a big challenge as it requires coordination between researchers
working with a range of observational techniques deploying many different
resources. Some of the first studies of cluster samples did produce interesting
cosmological results, as discussed in Luppino et al (1999), Allen et al (2001,
2002), Dahle et al. (2002) and Smith et al. (2003).

One of the key challenges for these statistical studies lies in the very def-
inition of a sample with robust criteria, that will be complete and volume
limited and be representative to avoid systematic biases. Starting from simple
selection criteria is therefore very important. For instance, dramatic lensing
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Fig. 27. Left Panel: Central mass fraction (a measure of the dominance of the central
dark matter halo), Mcen/Mtot versus central K-band luminosity fraction (measures
the dominance of the central galaxy), LK,BCG/LK,tot. There is a remarkably clean
separation between a homogeneous population of centrally concentrated clusters
(Mcen/Mtot > 0.95, LK,BCG/LK,tot >∼ 0.55) and a much more diverse population of
less concentrated clusters. Center & Right Panels: Mass-LX and Mass-TX relations.
The solid and dashed lines show the best-fit relations normalized by the relaxed and
unrelaxed clusters respectively. The error bars on each line show the uncertainty on
the normalizations. The scatter in the Mass-LX relation appears to be symmetric;
in the mass–TX relation the normalization of the unrelaxed clusters appears to be
40% hotter than the relaxed clusters at 2σ significance. Figures from Smith et al.
(2005).

Fig. 28. Left Panel: Lensing 2D mass versus optical luminosity for the clusters in the
Bardeau et al. (2007) sample (12 X-ray bright clusters selected to be at z ∼ 0.2).
The lensing mass is computed at the virial radius r200 derived from the best weak
lensing fits. The luminosity is computed in the R band for the cluster red sequence
galaxies. Dashed line represents a constant M/L ratio of 133 in solar units. The solid
line is the best-fit power law M ∝ L1.8. Center Panel: Weak lensing 3D virial mass
M200 versus X-ray luminosity. The best-fit line has a slope α = 1.20 ± 0.16. Right
Panel: Weak lensing 3D virial mass M200 versus X-ray temperature. The straight
line corresponds to a M200 ∝ T 3/2 relation while the dashed line corresponds to
the best-fit power law relation M ∝ T 4.6±0.7. Temperatures are derived from XMM
data (Zhang et al. 2007), including A 2219 from ASCA data (Ota et al. 2004). The
4 clusters with cooling core or relaxed properties are marked with empty boxes.
(From Bardeau et al. 2007).
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clusters imaged by HST are likely a biased sample of the most massive clus-
ters at any redshift with enhanced strong lensing cross sections due to an
excess of mass along the line of sight from either the cluster itself or the
presence of other intervening structures. Most frequently cluster samples are
therefore selected on the basis of their X-ray luminosities, which should min-
imize projection effects that typically plague optically selected clusters. Since
X-ray luminosity is proportional to the square of the electron density of the
Intra-Cluster-Medium (ICM), this selection should pick genuinely virialized
clusters, irrespective of the line of sight distribution of cluster member galax-
ies or additional background structures. One of the first systematic studies
that combined X-ray and lensing data was a sample of 12 z ∼ 0.2 X-ray lu-
minous clusters of galaxies selected from the XBACS catalog (see Figures 26
and 27) with LX > 8× 1044erg/s in the 0.1-2.4 keV band. These clusters have
been imaged with the WFPC2 camera (Smith et al. 2001, 2005). It is found
that the fraction of strong lensing clusters in this sample is 70%. All of the
cluster cores also have a significant weak lensing signal, providing independent
lensing constraints on cluster masses.

Smith et al. (2005) defined a number of criteria to characterize whether clusters
are relaxed and also quantified the amount of substructure in them. Out of 10
clusters, they found that three clusters form a homogeneous sub-sample that
have mature, undisturbed gravitational potentials which satisfy the following
criteria: a dominant central dark matter halo (Mcen/Mtot > 0.95); a dominant
central cluster galaxy K-band luminosity fraction (LK,BCG/LK,tot >∼ 0.5);
close alignment between the center of the mass distribution and the peak of
the X-ray flux (∆rpeak < 3kpc); a single cluster-scale dark matter halo best-
fit for the lens model; and circular or mildly elliptical X-ray flux contours.
The remaining seven clusters did not satisfy one or more of these criteria and
were classified as disturbed. The disturbed clusters are much more diverse
than the undisturbed clusters and typically have a bi- or tri-modal dark mat-
ter distribution, irregular X-ray morphology and an offset between X-ray and
mass peaks. Comparison of these results with theoretical predictions indicates
that the multi-modal dark matter distribution in disturbed clusters is due to
recent infall of galaxy groups into the parent cluster since about z = 0.4.
The exact scaling relation between lensing mass and X-ray properties appears
to be strongly dependent on the dynamical state of the cluster. Relaxed and
unrelaxed clusters appear to follow slightly different scaling relations. Further-
more, this sample was also observed with the wide field CFHT12k camera in
three bands (B,R,I) in order to probe the wide field mass distribution using
the measured weak lensing shear signal out to the virial radius. However, the
comparison of the weak lensing determined mass to the cluster luminosity and
X-ray mass estimates reported in Bardeau et al. (2007) [see Figure 28] does
not reveal an obvious difference between relaxed or unrelaxed clusters. There
are some strong limitations though with this dataset as there were scant con-
straints on the redshift distribution of background sources, and some lingering
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inconsistencies between strong and weak lensing results. These first results
with only 10 clusters set the stage for the need for larger cluster samples to
understand the physical origin of such differences.

In a parallel paper, Hoekstra (2007) investigated the lensing versus X-ray mass
relations for a sample of 20 clusters including those of Bardeau et al. (2007),
although their cluster selection was primarily driven by X-ray emission. This
investigation has lead to a more ambitious project known as the Canadian
Cluster Comparison Project (CCCP) that will add 30 more X-ray selected
clusters observed with the CFHT12k or Megacam camera to the initial set of
20 clusters. Lensing results are however still pending at the time of writing
this review.

4.2 On-going and future cluster lensing surveys

Clusters of galaxies are complicated systems that are rapidly assembling and
evolving, nevertheless they are considered to be very good tracers of the un-
derlying cosmology (and in particular could probe Dark Energy) as well as a
way to measure the growth of structure, thus potentially sensitive to gravity
and to the nature of Dark Matter. A better understanding of clusters will be
possible only with larger cluster samples, as earlier work and conclusions there-
from were limited by statistics. The number of massive clusters with published
lensing data is steadily growing, as is the number of cosmological surveys in
which clusters can be studied with strong and weak lensing techniques, either
directly from the survey data or by further follow-ups.

Four techniques are avidly pursued to search for clusters:

• Photometric searches that use wide field imaging surveys such as the Sloan
Digital Sky Survey (SDSS), the Red-sequence Cluster Survey (RCS), and
the CFHT Legacy Survey (CFHTLS). Furthermore, new photometric sur-
veys have just started or will start in the next year, namely the VST KIDS
survey, the Dark Energy Survey (DES), and the Subaru Hyper-Suprime
Camera (HSC) survey.

• X-ray selected cluster searches: i) based on the follow-up of the ROSAT
All Sky Survey: such as the MAssive Cluster Survey (MACS) (Ebeling et
al. 2001) and the REFLEX survey (Boehringer et al. 2004) ii) based on
dedicated (or serendipitous) X-ray ROSAT or XMM imaging surveys such
as: WARPS (Scharf et al. 1997), SHARC (Collins et al. 1997), the ROSAT
Deep Cluster Survey (Rosati et al. 2001), XDCS (the XMM Deep Cluster
Survey - Fassbender et al. 2008), XCS (Romer 2008); and XMM-LSS (Pierre
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et al. 2007).

• SZ searches: e.g. Atacama Cosmology Telescope Cluster Survey (ACT) (see
e.g. Hincks et al. 2010, Marriage et al 2011, Hand et al 2011), the South
Pole Telescope Cluster Survey (SPT) (e.g. Chang et al. 2009, Vanderlinde
et al 2010, Plagge et al 2010) and the Planck mission (Ade, P. A. R., et al.
2011).

• Weak and Strong lensing searches based on photometric surveys, or follow-
ing up X-ray or SZ selected clusters.

We focus on the latter techniques in the following sub-sections.

4.3 Targeted cluster surveys

4.3.1 The Local Cluster Substructure Survey (LoCuSS)

LoCuSS extends Smith et al.’s (2005) pilot study of 10 X-ray luminous clusters
at z = 0.2 to an order of magnitude larger sample at 0.15 < z < 0.3, drawn
from the ROSAT All-sky Survey Catalogues (Ebeling et al., 1998, 2000; Ebel-
ing et al., 2004). The main lensing-related goals of LoCuSS are to measure the
mass, internal structure, and thermodynamics of a complete volume-limited
sample of 80 clusters observable from Mauna Kea, and thus to obtain definitive
results on the mass-observable scaling relations at low redshift. The normaliza-
tion, shape, scatter (and any structural segregation detected) of these scaling
relations will calibrate the properties of low redshift clusters as an input to
cluster-based cosmology experiments, and to help interpret high-redshift clus-
ter samples.

To date LoCuSS has published weak lensing analysis of 30 clusters observed
with Suprime-CAM on the Subaru 8.2-m telescope (Okabe et al. 2010; see
also Oguri et al. 2010). The main results from this statistical study are that
(i) a simple color-magnitude selection of background galaxies yields samples
that are statistically consistent with negligible residual contamination by faint
cluster members, albeit with large uncertainties, (ii) cluster density profiles are
curved (in log-log space), and statistically compatible with the Navarro Frenk
& White (1997) profile, and (iii) based on the NFW profile model fits, the
normalization of the mass-concentration relation of X-ray selected clusters is
consistent with theoretical ΛCDM-based predictions, although the slope of the
observed relation may be steeper than predicted. The last of these results is
particularly interesting in the context of detailed studies of individual clusters
selected to have a large Einstein radius. As noted in Section 7, such objects
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are often found to have concentrations that exceed the CDM prediction by
factors of 2-3 (Comerford & Natarajan 2007; Oguri et al. 2009). Okabe et
al.’s results from 30 X-ray-selected clusters indicate that the large Einstein
radius selection in earlier work introduces a strong bias.

Comparison of Okabe et al.’s weak lensing mass measurements with X-ray
and Sunyaev-Zel’dovich (SZ) effect probes has so far been limited by the pres-
ence of outlier clusters in the small samples for which the relevant data are
available. For example, the well-known merging cluster A1914 strongly influ-
ences the results in the X-ray/lensing comparison of 12 clusters for which Sub-
aru and XMM-Newton data are available (Okabe et al., 2010b; Zhang et al.,
2010). More recently, Marrone et al. (2011) presented the first weak lensing-
based mass-SZ scaling relation based on Subaru and Sunyaev-Zel’dovich Array
(SZA) observations of 18 clusters. Encouragingly, this relation is consistent
with self-similar predictions, although it presents 20% scatter in natural log of
mass at fixed integrated Y-parameter - a factor of 2 more scatter than found
in studies that use X-ray data and assume hydrostatic equilibrium to infer
cluster mass. Indeed, the normalization of the MWL − Y relation at ∆ = 500
(roughly 1Mpc) for undisturbed clusters is 40% higher in mass than that for
disturbed clusters. Marrone et al. identified several of the undisturbed clusters
as likely prolate spheroids whose major axis is closely aligned with the line of
sight as being largely responsible for this segregation. These results highlight
the feasibility and growing maturity of lensing-based studies of large cluster
samples, and also emphasize that much important work remains to be done
to fully understand the optimal methods for cluster mass measurement.

4.3.2 The MAssive Cluster Survey

The MAssive Cluster Survey (MACS) is an ongoing project aimed at the com-
pilation and characterization of a statistically complete sample of very X-ray
luminous (and thus, by inference, massive), distant clusters of galaxies. The
primary goal of MACS was to increase the number of known massive clusters
at z > 0.3 from a handful to a hundred. To achieve these goals, Ebeling et
al. (2001) applied an X-ray flux and X-ray hardness-ratio cut to select distant
cluster candidates from the ROSAT Bright Source catalog. Starting from a
list of more than 5,000 X-ray sources within the survey area of 22,735 square
degrees they use positional cross-correlations with public catalogs of Galac-
tic and extragalactic objects, with reference to APM colors, visual inspection
of Digitized Sky Survey images, extensive CCD imaging, and finally spectro-
scopic observations with the University of Hawaii’s 2.2m and the Keck 10m
telescopes to compile the final cluster sample. The MACS cluster sample com-
prises 124 spectroscopically confirmed clusters at 0.3 < z < 0.7 (Figure 29).
Comprehensive follow-up observations of MACS clusters include: weak lensing
mass measurements using wide-field SUBARU imaging data, virial mass esti-
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Fig. 29. The Luminosity versus redshift plot comparing the MACS surveys to a
number of other X-ray surveys: EMSS, eBCS, WARPS, the 400 square degree survey.
It is evident from this figure that MACS is very efficient in selecting the most massive
X-ray clusters at z > 0.3.

mates based on cluster galaxy velocity dispersions measured with the CFHT
and Keck, SZ observations with the BIMA mm-wave radio interferometer,
measurements of the cluster gas and temperature distribution with Chandra,
and both deep, multi-passband and snapshot images with HST. A large num-
ber of MACS clusters are strong lenses and some of them have been studied in
detail: MACS J1206-0847 (Ebeling et al. 2009); MACS J1149.5+2223 (Smith
et al. 2009); MACS J1423.8+2404 (Limousin et al. 2010; Morandi et al. 2010).
MACS J0025.4-1222 (Bradač et al. 2008) was identified as a merging cluster
with some similarity to the “Bullet Cluster”. Zitrin et al. (2011a) presented
the results of a strong lensing analysis of the complete sample of the 12 MACS
clusters at z > 0.5 using HST images. The distribution of Einstein radii has
a median value of ∼28 arcseconds (for a source redshift of zS ∼ 2), twice as
large as other lower-z samples, making the MACS sample a truly massive clus-
ter sample confirmed by the numerous strong lensing discoveries. One of the
most extreme clusters known presently is likely MACS J0717.5+3745 (Ebeling
et al. 2004) which was recognized as a complex merger of 4 individual sub-
structures, with a long tailed filamentary structure. The 4 substructures have
all been identified in a recent lensing mass reconstruction by Limousin et al.
(2011) and the filamentary structure was directly measured by weak lensing
measurements with a 18-pointing HST mosaic (Jauzac et al. 2012). Horesh et
al. (2010), investigated the statistics of strong lensed arcs in the X-ray selected
MACS clusters versus the optically-selected RCS clusters (see below). They
measured the lensed-arc statistics of 97 clusters imaged with HST, identify-
ing lensed arcs using two automated arc-detection algorithms. They compile
a catalog of 42 arcs in MACS and 7 arcs in the RCS. At 0.3 < z < 0.7, MACS
clusters have a significantly higher mean frequency of arcs, 1.2±0.2 per clus-
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ter, versus 0.2±0.1 in RCS, which can easily be explained by the nature of the
selection of these two different cluster samples.

4.3.3 ESO distant cluster survey

Nevertheless, optical selection is still common specially for high-redshift clus-
ters (z > 0.6) where X-ray selection is limited. A particular focused and pro-
ductive survey is the ESO distant cluster survey (EDiSC, White et al. 2005).
EDiSC is a survey of 20 fields containing distant galaxy clusters (0.4 < z < 1.0)
chosen amongst the brightest objects identified in the Las Campanas Distant
Cluster Survey. They were confirmed by identifying red sequences in moder-
ately deep two color data from VLT/FORS2, and further investigations with
VLT in spectroscopy, the ESO Wide Field Imager, and HST/ACS mosaic im-
ages for 10 of the most distant clusters. Using the deep VLT/FORS2 data,
Clowe et al. (2006) measured the masses for the EDiSC clusters. In particu-
lar, they compared the mass measurements of 13 of the EDiSC clusters with
luminosity measurements from cluster galaxies selected using photometric red-
shifts and find evidence of a dependence of the cluster mass-to-light ratio with
redshift.

4.3.4 Red-sequence cluster surveys

Another important optically selected cluster survey is the 100 deg2 Red-
Sequence Cluster Survey (RCS, Gladders 2002, Gladders & Yee 2005) and
its 1000 deg2 RCS-2 extension (Gilbank et al. 2011), that are based on shal-
low multi-color imaging with the CFHT12k and Megacam cameras. RCS-2
covers ∼ 1000 deg2 and includes the first RCS area, it reaches 5σ point-source
limiting magnitudes in [g,r,i,z] = [24.4, 24.3, 23.7, 22.8], approximately 1-2
magnitudes deeper than the SDSS. RCS-2 is designed to detect clusters over
the redshift range 0.1 < z < 1, building a statistically complete, large (∼ 104)
sample of clusters, covering a sufficiently long redshift baseline to be able to
place constraints on cosmological parameters probed via the evolution of the
cluster mass function. Furthermore, a large sample of strongly lensed arcs as-
sociated with these clusters has been derived (e.g. Gladders et al. 2002, 2003),
and weak lensing measurements from the most massive clusters detected in
RCS-2 is likely possible.

4.3.5 The Multi-Cluster Treasury: CLASH survey

The recently approved MCT (Multi-Cluster Treasury) program on HST will
achieve multi-band imaging of a sample of 25 X-ray selected clusters (Post-
man et al 2011), thus providing detailed photometric redshift estimates for
multiple-images. This sample with appropriate ground based follow-up is likely
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to provide important insights into many of the current unsolved problems in
cluster assembly and evolution. Dedicated lensing studies will enable detailed
investigation of their mass distributions (Zitrin et al. 2011b, 2011c) and will
help find some efficient lenses that can be exploited to study the distant Uni-
verse by using them as gravitational telescopes (Richard et al. 2011) - a topic
that will be discussed further in the next section.

4.4 Cluster lenses in wide cosmological surveys

The previous sub-section focused on targeted cluster surveys. However cluster
lenses can also be found in wide cosmological surveys (e.g. Wittman et al
2001, 2003; Hamana et al 2004; Maturi et al 2005). We briefly outline some
of the most representative surveys of this decade starting from the widest to
the deepest.

4.4.1 The Sloan Digital Sky Survey

The Sloan Digital Sky Survey (SDSS) is an imaging and spectroscopic survey
covering 10,000 deg2 (Aihara et al. 2011). Although, this survey was not de-
signed or optimized to measure cluster lensing, interesting results have been
produced from detected strong and weak lensing measurements of clusters.
Estrada et al. (2007) investigated the Sloan images of 825 SDSS galaxy clus-
ters searching for giant arcs. Both a visual inspection of the images and an
automated search were performed, and no arcs were found. They neverthe-
less report a serendipitous discovery of a bright arc in the Sloan images of
an as yet unknown cluster. Hennawi et al. (2008) presented the first results
of a strong lensing imaging survey (using the WIYN and UH 2m telescope)
targeting the richest clusters (with 0.1 < z < 0.6) selected from SDSS. From
a total of 240 clusters followed-up, they uncovered 16 new lensing clusters
with definite giant arcs, 12 systems for which the lensing interpretation is
very likely, and 9 possible lenses which contain shorter arclets or candidate
arcs which require further observations to confirm their lensing origin. The
new lenses discovered in this survey will enable future systematic studies of
the statistics of strong lensing and their implications for cosmology and the
current structure formation paradigm. Kubo et al. (2009) and then Diehl et
al. (2009) identified 10 strongly lensed galaxies as part of the “Sloan Bright
Arcs Survey”. Follow-up imaging identified the lensing systems as group-scale
lenses, an intermediate regime between isolated galaxies and galaxy clusters
(see Cabanac et al. 2007). Baylis et al. (2011) presented the results from a
spectroscopic program targeting 26 strong lensing clusters (0.2 < z < 0.65)
visually identified in SDSS or RCS-2 revealing 69 unique background sources
with redshifts as high as z = 5.2, which will enable robust strong lensing mass
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Fig. 30. SDSS discovered strong lensing clusters – a) Abell 1703, b) SDSS
J1446+3033, c) SDSS J1531+3414, and d) SDSS J2111-0114. Color composite im-
ages are made from g, r, i imaging obtained with Subaru/SuprimeCam. All images
are 75′′ × 75′′. Background sources are bracketed by red lines and labeled. Source
labels with the same letter but different numbers (e.g. A1, A2, etc.) have the same
redshifts to within the measurement errors, and are presumed to be the same source,
multiply imaged (Figure from Bayliss et al. 2011).

models to be constructed for these clusters (some of the most remarkable
clusters discovered are presented in Figure 30).

On the weak lensing side, the first measurement was conducted by Sheldon et
al (2001). Later on Rykoff et al. (2008) measured the scaling relation between
X-ray luminosity and the total mass for 17,000 galaxy clusters in the SDSS
maxBCG cluster sample. To achieve this, they stacked subsamples of clusters
within fixed ranges of optical richness, and they measured the mean X-ray
luminosity LX , and the weak lensing mean mass, < M200 >. For rich clusters,
they found a power law correlation between LX and M200 with a slope compat-
ible with previous estimates based on X-ray selected catalogs. Furthermore,
Rozo et al. (2010) used the abundance and weak lensing mass measurements
of the SDSS maxBCG cluster catalog to simultaneously constrain cosmology
and the cluster richness-mass relation. Assuming a flat ΛCDM cosmology, they
found that σ8(Ωm/0.25)0.41 = 0.832 ± 0.033. These constraints are fully con-
sistent with those derived from WMAP five-year data. With this remarkable
consistency they claim that optically selected cluster samples may produce
precision constraints on cosmological parameters in future wide-field imaging
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cosmological surveys.

4.4.2 The CFHT-Legacy Survey

Soon after the first light of the Megacam camera at CFHT, a legacy survey
(LS) was started. It comprises a deep ugriz (i ∼ 27.5) survey of 4 square
degrees in four independent fields spread across the sky, and a wide synoptic
u, g, r, i, z (i ∼ 24.5) survey of 170 square degrees in four patches of 25 to 72
square degrees. Due to the excellent seeing delivered by CFHT, the Legacy
Survey has lead to intensive strong and weak lensing studies.

In particular, Cabanac et al. (2007) have searched for strong lensing arcs and
Einstein rings around galaxies in both the deep and wide part of the CFHT-
LS. Most of the systems uncovered have deflection angles ranging between 2
and 15 arcseconds. Such samples have thus uncovered a large population of
strong lenses from galaxy groups with typical halo masses of about 1013h−1M�.
The 13 most massive systems have been studied in detail by Limousin et al.
(2009), and detailed analysis of the mass distribution on small and large scales
has been investigated by Suyu & Halkola (2010) and Limousin et al. (2010),
respectively. A weak lensing search for galaxy clusters in the 4 square de-
grees of the 4 CFHT-LS deep fields was performed and results are presented
in Gavazzi & Soucail (2007). Using deep i-band images they performed weak
lensing mass reconstructions and identified high convergence peaks. They used
galaxy photometric-redshifts to improve the weak lensing analysis. Among the
14 peaks found above 3.5σ, nine were considered as secure detections upon
cross-correlation studies with optical and X-ray catalogs. Berge et al. (2008)
conducted a joint weak lensing and X-ray analysis of (only) 4 square degrees
from the CFHTLS and XMM-LSS surveys. They identified 6 weak lensing-
detected clusters of galaxies, and showed that their counts can be used to con-
strain the power-spectrum normalization σ8 = 0.92+0.26

−0.30 for Ωm = 0.24. They
showed that deep surveys should be dedicated to the study of the physics
of clusters and groups of galaxies, and wide surveys are preferred for the
measurement of cosmological parameters. A first catalogue of lensing selected
cluster has been recently published by Shan et al.(2011) on the CFHT-LS W1
field. They perform a weak lensing mass map reconstruction and identify high
signal-to-noise ratio convergence peaks, that were then correlated with the
optically selected cluster catalogue of Thanjavur et al.(2011). They then used
tomographic techniques to validate their most significant detections and esti-
mate a tomographic redshift. More weak lensing cluster analyses are expected
to be published from CFHT-LS in the near future.
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Fig. 31. The COSMOS M − LX relation from Leauthaud et al. (2010). Dark blue
diamonds show individually detected clusters from Hoekstra et al. (2007) with up-
dated masses from Madhavi et al. (2008). Sienna cross symbols show data points
from Bardeau et al. (2007). Light blue plus symbols represent the Rykoff et al.
(2008) results from a stacked analysis in the SDSS and black diamonds take into
account a recent correction to these masses due to a new calibration of the source
distribution. The upper error bars have been adjusted to account for the redshift un-
certainty. Green asterisks show four data points at intermediate masses from Berge
et al. (2008). Finally, the red squares depict our COSMOS results which extend
previous results to lower masses and to higher redshifts. Three arrows highlight the
highest redshift COSMOS data points. The grey shaded region shows the upper and
lower envelope of the ensemble of lines with a slope and intercept that lie within
the 68 percent confidence region.

4.4.3 The COSMOS Survey

With only 2 square degrees the COSMOS Survey focused on the relatively
high-redshift Universe. Due to the relatively small volume probed, COSMOS
is unlikely to find the most massive structures in the Universe, but it has
delivered interesting constraints on the redshift evolution of clusters and the
scaling relations between observables. Thanks to the deep X-ray observation
of COSMOS fields, clusters can be efficiently selected in principle out to z ∼ 2.
Taking advantage of the X-ray selected catalog, Leauthaud et al. (2010) have
investigated the scaling relation between X-ray luminosity (LX) and the weak
lensing halo mass (M200) for about 200 X-ray-selected galaxy groups. Weak
lensing profiles and halo masses were derived for 9 sub-samples, narrowly
binned in luminosity and redshift. The COSMOS data alone are well fit by
a power law, M200 ∝ LαX , with a slope α = 0.66 ± 0.14. These observations
significantly extend the dynamic range for which the halo masses of X-ray-
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selected structures have been measured with weak gravitational lensing as
shown in Figure (31). Combining with other measurements demonstrates that
the M − LX relation is well described by a single power law with α = 0.64±
0.03, over two decades in mass: M200 ∼ 1013.5 − 1015.5h−1

72 M�. These results
confirm that clusters do not follow the self-similar evolution model with α =
0.75 proposed by Kaiser (1986).

5 Cluster Lenses as Nature’s Telescopes

5.1 Magnification due to Gravitational Lensing

Cluster lenses magnify and distort the shapes of distant galaxies that lie behind
them. For strong lensing clusters, the amplification factor can in principle be
infinite if the source is compact enough and is located exactly behind the
caustic, of course such an event is infinitely rare! Nevertheless, in several strong
lensing clusters, amplification factors larger than 40× (∼4 magnitudes) have
been measured (Seitz et al. 1998), and in fact, amplification factors larger than
4× (∼1.5 magnitudes) are quite common (Richard et al. 2011). It is thus not
surprising that “Cluster Lenses” are often referred to as “Nature’s Telescopes”
or “Cosmic Telescopes” and have been rather effectively used to discover and
study the most distant galaxies that lie behind them.

The regions with the largest magnification are the regions closest to the critical
lines in the image plane (typically less than 1 square arcminute), and closest
to the caustic line in the source plane (typically a few tens to hundreds square
arcsecond). The cross section for high amplification will vary from cluster
to cluster and depends on the detailed mass distribution. To first order, the
cross section scales with the square of the Einstein radius as well as with the
ellipticity or anisotropy of the projected mass distribution on the sky.

As the magnification is wavelength independent, the benefit of using cluster
lenses as cosmic telescopes has been exploited at various wavelengths, from X-
ray to the radio domain. Lensing clusters were first used as cosmic telescopes in
the optical/NIR domain, where a large population of the most distant galaxies
(at their time of discovery) were found behind these cluster magnified regions
(e.g Yee et al. 1996; Franx et al. 1997; Ellis et al. 2001; Hu et al. 2002; Kneib
et al. 2004; Richard et al. 2011). Lensing clusters were also used at longer
wavelengths in sub-millimeter using SCUBA at JCMT (e.g Smail et al. 1998)
and in the mid-infrared domain using the ESA ISO space telescope (Altieri
et al. 1999; Metcalfe et al. 2003, Coia et al 2005a, 2005b) and now in the
far-infrared using the Herschel space observatory (Egami et al. 2010; Altieri
et al. 2010).
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Fig. 32. The high magnification critical region in the core of the massive cluster
Abell 1689. Red lines are the critical line for z = 7 (both radial and tangential
lines are shown) and the yellow contours delimit the regions of the sky having a
magnification larger than a factor of ten.

There are two important and unprecedented advantages that cluster lenses
offer as cosmic telescopes as they provide the largest field of view with high
magnification:

• the potential discovery of the most distant objects and low-luminosity ob-
jects that would otherwise remain undetected with similar blank field imag-
ing,
• the possibility to study the morphology of distant galaxies which other-

wise would not be resolved and explore their physical properties that would
otherwise be impossible to characterize.

Furthermore, we note that as cluster lenses magnify they also distort the
shapes of distant galaxies. In general, the further the sources, the stronger the
distortions. Hence to first order, the shape of a lensed galaxy (assuming it can
be resolved), and whether it is multiply imaged or not, can be used as a good
distance indicator.
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5.2 Cosmic Telescope Surveys

Rather similar to other galaxy surveys two distinct observational strategies
that trade-off depth with area have been explored thus far:

1) deep mapping (in imaging or spectroscopy) of a few well modeled lensing
clusters to search for distant lensed sources - this allows us to probe down the
luminosity function of the targeted distant source population,

2) shallow mapping on a large cluster sample to search for rare highly magni-
fied background sources (e.g. Figure 33), with the idea to thereafter conduct
detailed follow-up observations of these sources benefiting from the high am-
plification/magnification to constrain important physical and morphological
properties of high-redshift sources (e.g. Lemoine-Buserolle et al 2003).

As the strong magnification region covers typically at most about a few square
arcminutes, surveys through cluster lenses are particularly adapted to those
instruments/telescopes that have an instantaneous field of view comparable
to the strong lensing region. The HST cameras are particularly well matched
to cluster strong lensing regions and are thus very well adapted to use for
the search and study of distant sources. Incidentally, this was also the case
for the SCUBA instrument on JCMT, as well as the ISOCAM on the ISO
space mission. In the near future ALMA, MUSE (the one square arcminute
integral field unit on the VLT), and the forthcoming JWST instruments are
all facilities that will most effectively exploit lensing magnification.

Of course when conducting a detailed follow-up study of highly magnified
sources, the most effective instruments are high-resolution imagers and spec-
trographs. In particular, because of the extended nature of the most amplified
sources, integral field spectrographs are more adapted compared to long-slit in-
struments, and it is thus natural to conduct follow-up studies with instruments
such as SINFONI on VLT or OSIRIS on Keck for the extremely magnified,
rare, lensed sources.

Finally, an other particular observation strategy of cosmic telescope is that of
“critical line mapping”. In this case, one specifically targets regions near the
critical lines using dedicated instruments such as a long slit spectrograph (e.g.
Santos et al. 2004; Stark et al. 2007), an integral field spectrograph (Clement
et al. 2011 in preparation) or a millimeter wave interferometer to blindly probe
the distant Universe. In this case the effective field of view of the instrument
is small compared to the critical region, thus requiring a mapping strategy to
cover the region with the highest amplification.
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Fig. 33. Newly discovered giant arcs or multiple-images as part at the SNAPSHOT
HST observations (PI. H. Ebeling) of the MACS cluster sample. These images show
the diversity of morphology for these serendipitously discovered strongly lensed
galaxies (Figure is from Richard et al. private communication).

5.3 “Lens redshift” measurement

As lensing distortion and magnification are a function of the redshift of the
background sources, once a cluster mass distribution is well known, the lens
model can be used to predict the redshifts for the newly identified multiple
systems (e.g. Kneib et al. 1993; Natarajan et al. 1998; Ellis et al. 2001) as well
as for the arclets (Kneib et al. 1994b; 1996).
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For multiple-image systems, the relative positions of the different images is a
strong function of the redshift of the background source. Although the red-
shift sensitivity decreases with the redshift of the background source (because
the DLS/DS variation is smaller with increasing redshift) it can neverthe-
less be used to easily distinguish between low and high-redshift solution. In
this respect, one can easily discriminate z ∼1–2 obscured galaxies from z > 4
high-redshift lensed galaxies, and this property has been used many times very
effectively (Ellis et al. 2001; Kneib et al. 2004; Richard et al. 2008; Richard
et al. 2011). For the arclets, the redshift prediction is based on the fact that
on average a distant galaxy is randomly orientated, and its ellipticity follows
a relatively peaked ellipticity distribution (σε ∼ 0.25). Hence, by conducting
high-resolution imaging (e.g. with Hubble), and by measuring the ellipticity
and orientation of the background lensed sources in the core of massive cluster
lenses, one can statistically derive the redshift distribution of the background
lensed population. Such measurements were first introduced by Kneib et al.
(1993), and developed further in Kneib et al.(1996). These predictions were
tested and verified by Ebbels et al. (1998) using spectroscopy in the case of
the lensing cluster Abell 2218. Despite the successful demonstration of the
technique, it never became popular due to the following limitations. First, the
derived probability distribution p(z) distribution is relatively broad, partic-
ularly, at high-redshift. Therefore the method is not really competitive with
photometric redshift determinations, except may be for disentangling catas-
trophic photometric redshifts. Second, the cluster galaxy contamination is high
in the optical/near-infrared domain and statistical estimates always have lim-
ited utility. Third, galaxy sizes decrease rapidly with redshift, and accurate
measurement of the galaxy shape can only be done efficiently with deep Hubble
imaging yet again limiting the use of this technique. Finally, as there are many
other good science drivers to obtain multi-band information on these massive
clusters, and as photometric redshift determination methods are rapidly im-
proving, the statistical lens redshift measurements never became attractive
and/or popular.

5.4 Lensing Surveys in the Sub-millimeter

The SCUBA (the JCMT Submillimeter Common-User Bolometer Array) Lens-
ing survey was likely one of the first systematic surveys to exploit distant
lensed galaxies using massive clusters. This survey first started with the map-
ping of two massive clusters: Abell 370 at z = 0.37 and Cl 2244-02 at z = 0.33
(Smail et al. 1997) and continued to map the region behind five similarly mas-
sive clusters covering a total area of 0.01 square degree (Smail et al. 1998).
Each SCUBA continuum map from this cluster lens survey covered a total
area of about 5 square arcminutes to 1σ noise levels less than 14 mJy/beam
and 2 mJy/beam at 450 and 850 micron wavelengths respectively.
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Fig. 34. (Left) A true-color image of the core of A 2218 (blue:HST F450W,
green:HST F814W and red: WHT/INGRID Ks). The 850µm sub-mm image from
SCUBA is overlayed as white contours. The three images of the multiply imaged
sub-mm galaxy are annotated as A, B and C. The sub-mm contour at the top left
corresponds to a z = 4.04 sub-mm galaxy discussed in Knudsen et al.(2010). Two
other galaxies at z ∼ 2.5, are identified: the single-image #273 and the fold-im-
age #384 and its counter-image #468. The yellow line shows the critical line at
z = 2.515. (Right) Panel of 10”×10” images showing the INGRID Ks-band (left
column) and HST true color image from F450W/F606W/F814W (right column) of
the four submm sources in the core of A 2218. Note how each of the sub-mm sources,
SMM J16359+6612.6, SMM J16359+6612.4 and SMM J16358+6612.1, comprises a
NIR source (γ) which is bracketed by two features in the F814W image (α and β).
[From Kneib et al. 2004].

Since SCUBA was a new instrument that achieved a sensitivity 2–3 orders
of magnitude deeper than was previously possible and thanks to the clus-
ter magnification, Smail et al. (1997) were the first to find the distant sub-
millimeter (sub-mm) selected galaxy population. In total 17 sources brighter
than the 50% completeness limits (10 brighter than the 80% limit) were dis-
covered (Smail et al. 1998). The sub-millimeter spectral properties of these
first sources indicated that the majority lie at high-redshift (1 < z < 5.5),
which was confirmed later with redshift measurements. Measured redshifts
for a large number of these submm-selected galaxies placed the bulk of this
population at z ∼ 2.5 (Ivison et al. 1998; Barger et al. 2002; Chapman et al.
2005).

The use of cluster lenses in the case of the sub-millimeter high-redshift searches
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was strongly motivated by the fact that cluster galaxy members are not sub-
millimeter sources and are therefore transparent at this wavelength, making
clusters perfect telescopes to preferentially probe the distant galaxy popula-
tion (Blain 1997). Importantly, the use of cluster lenses increases the sensitivity
of sub-mm maps and reduces the effects of source confusion (which plagues
bolometer surveys in sub-mm and mm wavelengths) due to the dilution pro-
duced by lensing clusters. With accurate lens models Blain et al. (1998) first
corrected the observed sub-mm source counts for lensing amplification using
the SCUBA lensing survey data on the first seven clusters, thus pushing the
850 micron counts down below the SCUBA confusion limit; for example at 1
mJy, 7900±3000 galaxies per square degree were found. Down to the 0.5 mJy
limit, the resolved 850 micron background radiation intensity was measured to
be (5±2)×10−10 W m−2 sr−1, comparable to the current COBE estimate of the
background, indicating for the first time that the bulk of the 850 micron back-
ground radiation is effectively produced by distant ultra-luminous galaxies.
These first sub-mm galaxy counts were confirmed later with a larger sam-
ple of clusters mapped by SCUBA (Cowie et al. 2002; Knudsen et al. 2008)
reaching a lens-corrected flux limit of 0.1 mJy. The first sub-mm multiple-
images were found in Abell 2218 (Kneib et al. 2004) and MS0451-03 (Borys
et al. 2004) identified at z = 2.516 and z ∼ 2.9 respectively. In particular, the
source SMM J16359+6612 is gravitationally lensed by Abell 2218 into three
discrete images with a total amplification factor of ∼45, implying that this
galaxy has an unlensed 850-micron flux density of only 0.8 mJy. Furthermore,
SMM J16359+6612 shows a complex morphology with three sub-components
arguing for either a strong dust (lane) absorption or a merger. Interestingly,
these sub-mm sources are surrounded by two other highly amplified galaxies
at almost identical redshifts within a ∼100-kpc region suggesting this sub-mm
galaxy is located in a dense high-redshift group (see Figure 34). Further map-
ping at the IRAM Plateau de Bure interferometer indicated that this source is
a compact merger of two typical Lyman-break galaxies with a maximal sepa-
ration between the two nuclei of about 3 kpc, thus it bears a close similarity to
comparable luminosity, dusty starbursts that result from lower-mass mergers
in the local Universe.

However, the most spectacular lensed sub-mm galaxy is certainly the recently
discovered SMMJ2135-0102 at redshift z=2.3259 that is gravitationally mag-
nified by a factor of 32 by the massive cluster MACSJ2135-010217 (Swinbank
et al. 2010; Figure 35). This large magnification, when combined with high-
resolution sub-mm imaging, resolves the star-forming regions at a linear scale
of just ∼100 parsec. The luminosity densities of these star-forming regions are
comparable to the dense cores of giant molecular clouds in the local Universe,
but they are ∼100× larger and 107 times more luminous. The star formation
processes at z ∼2 in this vigorously star-forming galaxy appear to be similar
to those seen in local galaxies even though the energetics are unlike anything
found in the present-day Universe.
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Fig. 35. (Left) Hubble Space Telescope V, I -band color image of MACSJ2135-010217
with white contours denoting the 870 micron emission of SMMJ2135-0102 with
flux 106.0 ± 7.0 mJy as observed by APEX/LABOCA. The optical counter part
is faint with IAB=23.6±0.2. The solid red lines denote the z = 2.326 radial and
tangential critical curves from the best-fit lens model. (Center) True color IRAC
3.6, 4.5, 8.0 micron image of the cluster core with contours denoting the 350 micron
emission from APEX/LABOCA. The mid-infrared counterpart is clearly visible as
an extended red galaxy centered at the sub-mm position. (Right) SMA 870 micron
image of the galaxy. The map shows eight individual components, separated by
up to 4” in projection. The red line is the same z = 2.326 radial critical curve.
Components (A,B,C,D) represent two mirror images of the galaxy, each comprising
four separate emission regions reflected about the lensing critical curve. Figure from
Swinbank et al. (2010).

In the sub-mm domain, lensing has proven to be truly useful in revealing
details about high-redshift sources that would otherwise be impossible, even
with the next generation of large aperture telescopes.

5.5 Mid-Infrared Lensing Survey

In the late 90’s, the ISOCAM camera on the ESA Infrared Space Observatory
(ISO) targeted a number of massive cluster lenses. The motivation for these
observations was to probe the faint and distant Mid-Infrared galaxy population
and their contribution to the cosmic mid-infrared background radiation. In
particular a few well-known massive cluster lenses were imaged deeply by ISO
at 7 and 15 micron. The deepest ISO observation of a cluster targeted Abell
2390 (Altieri et al. 1999). Cross-identification of the numerous mid-infrared
sources with optical and near-infrared data showed that almost all 15 micron
sources were identified as lensed distant galaxies. These observations allowed
the computation of number counts in both the 7 and 15 micron bands and led
to the ruling out of non-evolutionary models, and favoring very strong number
count evolution. By combining the data on three massive clusters (Abell 370,
Abell 2218 and Abell 2390), Metcalfe et al. (2003) detected a total of 145 mid-
infrared sources, and after a very careful lensing correction derived the intrinsic
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Fig. 36. True color R,K view (50′′ × 50′′) of the Abell 68 cluster core (combining
HST and near-infrared UKIRT data). The bright elliptical galaxy in the center of
the frame is the central galaxy of the cluster. Three images of ERO J003707 are
clearly visible and are marked as A, B and C. Each image comprises a central
red “bulge”, surrounded by numerous fainter blue knots of current or recent star
formation (from Smith et al. 2002).

counts of the background source population. It was found that roughly 70%
of the 15 micron sources are lensed background galaxies. Of sources detected
only at 7 micron, 95% are cluster galaxies in this sample. Of the 15 sub-mm
sources already identified within the mapped regions of the three clusters, 7
were detected at 15 micron. Flux selected subsets of the field sources above
the 80% and 50% completeness limits were used to derive source counts to a
lensing corrected sensitivity level of 30 micro-Jy at 15 micron, and 14 micro-
Jy at 7 micron. The source counts, corrected for the effects of completeness,
contamination by cluster sources and lensing, confirmed and extended earlier
findings of an excess by a factor of ten in the 15 micron population with
respect to source models with no evolution, with a redshift distribution that
spans between z = 0.4 and z = 1.5.

5.6 Lensed Extremely Red Objects

The benefits of lensing have also been used to search for Extremely Red Ob-
jects (EROs) behind a sample of 10 X-ray luminous galaxy clusters (Smith et
al. 2002a, 2002b) imaged by both the WFPC2 camera (using F702W filter)
and UKIRT in the K-band. EROs are galaxies with R −K > 5.3 as defined
by Daddi et al. (2000) as the criterion to select distant elliptical galaxies. The
other more stringent definition with R−K > 6 was adopted by Thompson et
al. (1999). In these clusters a total of about 60 EROs have been identified so
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far allowing the number counts of these rare objects to be computed down to
about 2 magnitudes fainter than previous work published at that time. The
exploitation of the lensing effect has also permitted a more accurate study of
the morphology of these peculiar galaxies, revealing in some cases spectac-
ular disky components already in place at fairly early times (Figure 36). In
particular, for the case of the multiply imaged ERO J003707, morphological
and photometric analyses reveal an L∗ early-type disk-galaxy. It has been es-
timated that ∼ 10% of EROs with R − K > 5.3 and K < 21 have similar
properties. The unique association of passive EROs with elliptical galaxies
therefore appears to be too simplistic and has been reconsidered. More re-
cent work on searching for lensed EROs was conducted in A1835 and AC114
(Schaerer et al. 2007) taking advantage of complete wavelength coverage in-
cluding HST, ground based and Spitzer data. They found in these observations
that most of the EROs were, in fact, young dusty star-bursts at z ∼ 2− 3.

5.7 Lensed Lyman-α Emitters

One of the exciting current ventures is to map the critical region of mas-
sive clusters (Figure 32) in order to search for Lyman-alpha emitters at very
high redshifts (z > 4), compute their number density, derive their luminos-
ity function and therefore characterize this population. By pushing to very
high-redshift z > 7 one should get closer to re-ionization, and the increase
in neutral gas content of the Universe should block Lyman-α photons. Thus
at some point one should expect a strong evolution of the Lyman-α emit-
ter luminosity function. Two approaches have been pursued in the search for
Lyman-α emitters, a direct search through intense spectroscopy, and an indi-
rect one that relies on conducting narrow-band imaging searches in which the
wavelength range is tuned to probe a specific redshift window.

5.7.1 Spectroscopic critical line mapping

The first dedicated critical line mapping using spectroscopy was conducted at
Keck, using the long slit mode of LRIS (Santos et al. 2004). Nine interme-
diate redshift, massive clusters with good lensing mass models were carefully
selected, and a number of long-slit observations was conducted, sliding the
long slit across the critical line region thus achieving magnification factors
generally greater than 10. Eleven emission-line candidates were located in the
range 2.2 < z < 5.6 with Lyman-α as the line identification. The selection
function of the survey takes into account the varying intrinsic Lyman-α line
sensitivity as a function of wavelength and sky position. By virtue of the strong
magnification factor, these measurements provide constraints on the Lyman-α
luminosity function to unprecedented limits of 1040 erg/s, corresponding to a
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star formation rate of 0.01 M�/yr. Combining these lensing results with other
surveys, limited to higher luminosities, Santos et al. (2004) argue that there
exists evidence for the suppression of star formation in low-mass halos, as pre-
dicted in popular models of galaxy formation. The highest redshift Lyman-α
emitter discovered in this survey is the z = 5.576 pair in the cluster Abell
2218 (Ellis et al. 2001). High-resolution spectroscopic follow-up confirmed the
lensing hypothesis of the LRIS discovery by identifying the second image. The
unlensed source appears to be a very faint source with (I∼30)and is compact
in nature (<150 h−1

65 pc). This source is a promising candidate for an isolated
∼106 M� system seen likely producing its first generation of stars close to the
epoch of reionization.

Pushing to higher redshifts than z > 7 requires an infra-red spectrograph.
In a challenging experiment, Stark et al. (2007) blindly surveyed the criti-
cal line region of nine massive clusters using the Keck/NIRSPEC long slit.
The magnification boost ranges from 10 to 50× for a background galaxy be-
tween ∼ 8 < z <∼ 10, thus pushing the sensitivity limits to unprecedented
low fluxes (1041-1042 erg/s) for this redshift range. This survey identified six
promising (>5σ) candidate Lyman-α emitters that lie between z = 8.7 and
z = 10.2. Lower redshift line interpretations were mostly excluded through
the non-detection of secondary emission in further spectroscopy undertaken
with LRIS and NIRSPEC. Nonetheless, it is considered plausible that at least
two of the candidates are likely at z ∼ 9. If true, then given the small volume
surveyed, this suggests there is an abundance of low-luminosity star-forming
sources at z ∼ 8 − 10 that could provide a significant proportion of the UV
photons necessary for cosmic reionization. A parallel study was conducted us-
ing the SINFONI 3D spectrograph at VLT, and three of the Keck/NIRSPEC
candidates were re-observed - as part of the SINFONI critical line mapping
program. However, no confirmation of the Keck/NIRSPEC detected lines was
found, casting some doubt on the real redshifts of these particular sources.
The results of this survey are presented in Clement et al. (2011). Future 8-
10m class instruments such as MUSE in the visible and MOSFIRE, KMOS
and EMIR in the near infrared should, thanks to their higher multiplexing,
provide new opportunities to further conduct critical line surveys and find
more robustely numerous high-redshift Lyman-α emitters.

5.7.2 Narrow-band searches

An alternative to direct spectroscopy of Lyman-α emitters, is to conduct
narrow-band imaging. Although this technique has been very popular in blank
fields, only a few such observations have been conducted in the direction of
cluster cores. Hu et al. (2002) have discovered a redshift z = 6.56 galaxy lying
behind the cluster Abell 370 (Figure 37). The object nicknamed HCM-6A was
found in a narrow-band imaging survey using a 118 Åbandpass filter centered
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Fig. 37. HST (ACS+WFC3) color V, I, J view of the HCM-6A z = 6.56 Lyman-α
emitter located near the core of the Abell 370 cluster. Note the strong detection
in the F110W (J-band) filter and its bimodal light distribution. The region shown
covers 60”×20”.

at 9152 Åusing LRIS on the Keck telescope. At the time of discovery, HCM-6A
was the first galaxy to be confirmed at redshift z > 6 (its observed equivalent
width is 190 Å, with a flux of 2.7 10−17 erg/cm2/s). Using the detailed lensing
model of this cluster, a lensing amplification factor of 4.5 was estimated as
the source is situated about 1 arcminute away from the cluster center. This
discovery suggested that the re-ionizing epoch of the Universe lies beyond
z ∼ 6.6. Follow-up of this source with Spitzer (Chary et al. 2005) and in mil-
limeter with MAMBO-2 (Boone et al. 2007 - which provided an upper limit
at 1.2mm) have helped derive some physical parameters with relatively high
accuracy considering the distance of this source. Even more ambitious was
the narrow J-band filter NB119 survey (corresponding to Lyman-α at z ∼ 9)
nicknamed the ‘z equals nine’ (ZEN) survey conducted towards three massive
lensing clusters: Abell clusters A1689, A1835 and AC114 (Willis et al. 2008).
However, no sources consistent with a narrow-band excess were found and no
detection in bluer deep optical was reported. The total coverage of the ZEN
survey sampled a volume at z ∼ 9 of approximately 1700 co-moving Mpc3 to
a Ly-α emission luminosity of 1043 erg/s. The limits from this survey still offer
the best constraints at this redshift.

5.8 Lyman-break Galaxies

As the number density of Lyman-break galaxies (at 3 < z < 3.5) is typically
half a galaxy per square arcminute down to R = 25 (Steidel et al. 1996),
a massive cluster will likely magnify one of them, and if we consider a wider
range in redshift, the probability that one of them is multiply imaged is almost
guaranteed. The first giant arc in Cl 2244-04 at z = 2.24 is considered to
be the first Lyman-break galaxy detected in a cluster lens, although at the
time of its discovery in the late 80’s, this galaxy was not classified as such.
As part of the CNOC survey, Yee et al. (1996) identified a “proto-galaxy”
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Fig. 38. HST ACS color V, I, z view of Abell 2218 showing the triply-imaged Ly-
man-break galaxy at z ∼ 6.8 (Kneib et al. 2004).

at z = 2.72, the galaxy cB58 in the cluster MS1512+36. Interestingly, they
assumed that this object although being very close to the cluster center was
unlikely to be lensed. But soon after, Seitz et al. (1998) demonstrated that
cB58 was highly lensed, magnified by more than a factor of 50, thanks to the
identification of its counter image. The estimate of such a high magnification
led to a number of follow-up studies at high spectral resolution to further
constrain the physical properties of this high-redshift galaxy (e.g. Pettini et
al. 2002). At about the same time, the triple arc at z = 2.515 in Abell 2218
(Ebbels et al. 1996) was the first recognized Lyman Break galaxy lensed by
a massive cluster, however its magnification is only ∼ 15×, much less than
that of cB58. Shortly afterward in the course of a spectroscopic cluster galaxy
survey of MS1358+62, Franx et al. (1997) discovered a Lyman-break galaxy
at z = 4.92 multiply imaged by the cluster. Further study and modeling by
Swinbank et al. (2010) derived a magnification factor for the brightest image of
12.5± 2. At the time of discovery the arc in MS1358+62 was the most distant
galaxy known. In the massive cluster Abell 2390, Frye & Broadhurst (1998)
and Pelló et al. (1999) independently found a z = 4.04 pair, strongly lensed by
the cluster. These high-redshift discoveries have demonstrated the potential
of discovering even higher redshift galaxies lensed by massive clusters. Thanks
to deep F850LP/ACS data, following-up the z = 5.56 Lyman-α galaxy pair
of Ellis et al. (2001), Kneib et al. (2004) found an i-band dropout detected in
z-band (see Figure 38). Detection with NICMOS confirmed a z ∼ 6.8 redshift,
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however a NIRSPEC/Keck spectrum failed to detect a Lyman-α line, but
Spitzer IRAC 3.6 and 4.5 micron detections (Egami et al. 2005) provided
strong constraints on the age of the underlying stellar population, making it
one of the best studied objects at this redshift.

Using the ESO/VLT instruments FORS and ISAAC, a deep imaging survey
of the clusters AC114 and A1835 was conducted by Richard et al. (2006) to
search for lensed optical and near infrared dropout galaxies. In this work,
they identified 26 optical dropout candidates in both A1835 and AC114 (with
H ∼ 23.5 − 24.0). Half of these candidates show an SED compatible with
star-forming galaxies at z > 6, and 6 of them are likely intermediate-redshift
extremely red objects based on luminosity considerations. With this dataset
a first attempt was made to characterize the luminosity function of these
high-redshift galaxies, that are not well constrained by deeper HST/NICMOS
observations of the HUDF (Hubble Ultra Deep Field). This work lead to the
study by Richard et al. (2008) of a further 6 massive clusters with HST using
the NICMOS camera and complemented by Spitzer observations. The survey
yielded 10 z-band and 2 J-band dropout candidates to photometric limits of
J110 ∼26.2 AB (5σ). By taking into account the magnifications afforded by
the clusters, they probed the presence of z > 7 sources to unlensed limits of
J110 ∼30 AB, fainter than those charted in the HUDF. Taking into account
the various limitations of this work, they concluded that about half of the
sample of z-band dropouts are at high-redshift. An ambitious infrared spec-
troscopic campaign undertaken with the NIRSPEC spectrograph at the Keck
Observatory for seven of the most promising candidates failed to detect any
Ly-α emission.

Behind Abell 1689, using HST/NICMOS Bradley et al. (2008) found a bright
H = 24.7 z ∼ 7.6 galaxy candidate: A1689-zD1. This source is 1.3 mag
brighter than any known z850-dropout galaxy (thanks to a cluster magni-
fication factor of ∼ 9.3×). Nevertheless, no spectroscopic observations have
yet confirmed the redshift of this candidate. In the more recent years, discov-
eries have been reported using either the ground based ESO/Hawk-I infrared
imager (Laporte et al. 2011) or the new WFC3 camera installed in May 2009
onboard HST (Bradley et al. 2011; Kneib et al. 2011; Paraficz et al. 2012). In
the long term, the James Webb Space Telescope (JWST) and the Extremely
Large Telescopes will uncover large numbers of these very high-redshift sys-
tems, enabling the study of their sizes, morphologies and physical parameters
(e.g. Wyithe et al. 2011; Salvaterra et al. 2011).
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Fig. 39. (LEFT) PACS 100 ?m map toward Abell 2218 with lensed and foreground
sources marked with blue circles, other sources are identified cluster members. Over-
laid contours in black show the rms contours at 0.7, 1.0, 2.0 and 4.0 mJy. (RIGHT)
Number counts at 100 micron with lensing correction (red filled circles), normalized
to the Euclidean slope , against the prediction of various synthetic counts models.
Errors refer to pure Poisson statistics at 68% C.L. GOODS-N counts are contrasted
in the shaded area (from Berta et al. (2010)). (Figures from Altieri et al 2010).

5.9 Far Infra-Red Lensing Surveys

With the launch of the Herschel Space Observatory in May 2009, a new win-
dow to the Universe has been opened. The Herschel Lensing Survey (HLS)
conducted deep PACS and SPIRE imaging of 44 massive clusters of galaxies.
These observations complement the observation of 10 massive clusters by the
GTO teams. In particular, it is foreseen that the strong gravitational lensing
power of these clusters will enable penetration through the confusion noise,
which sets the ultimate limit on our ability to probe the Universe with Her-
schel. Although the analysis of this large dataset is still in progress, some early
results were presented in the A&A Herschel special issue in spring 2010. In
particular, Egami et al. (2010) summarized the major results from the science
demonstration phase observations of the Bullet cluster (z = 0.297). The study
of two strongly lensed and distorted galaxies at z = 2.8 and 3.2 and the de-
tection of the Sunyaev-Zel’dovich (SZ) effect increment of the cluster with the
SPIRE data have been reported.

By looking at Abell 2218, Altieri et al. (2010) studied the population of in-
trinsically faint infrared galaxies that lie below the sensitivity and confusion
limits using ultra-deep PACS 100 and 160 micron observations (Figure 39).
They derived (unlensed) source counts down to a flux density of 1 mJy at
100 micron and 2 mJy at 160 micron. In particular, the slope of the counts
below the turnover of the Euclidean-normalized differential curve could be
constrained in both bands and was found to be consistent with most of the
recent evolutionary models. By integrating the number counts over the flux
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range accessed by exploiting lensing by Abell 2218 they retrieved a cosmic
infrared background surface brightness of ∼ 8.0 and ∼ 9.9 nW/m2/sr, in the
110 and 160 micron bands respectively. By combining the Abell 2218 results
with wider/shallower fields, the source fluxes correspond to ∼ 60% and ∼ 90%
of the DIRBE cosmic infrared background at 100 and 160 micron. These first
Herschel results from HLS and the GTO sample will certainly expand as the
data are getting analyzed and we can envision numerous follow-up observa-
tions at optical and near-infrared wavelengths as well as with ALMA.

As part as the second call for observations another interesting lensing search
has been implemented in the Herschel observing program to find a larger num-
ber of exceptionally bright lensed galaxies such as the one found by Swinbank
et al. (2010). This project is aiming to conduct a SPIRE snapshot survey
of ∼ 300 X-ray-selected massive galaxy clusters to discover the few extreme
magnified objects that will then be very easy to follow-up at various wave-
lengths for an in-depth study. Although this survey is not yet finished, a
number of highly amplified SPIRE sources have been identified, and intensive
multi-wavelength follow-up are in progress.

5.10 Cluster Lensed Supernovae

In the last two decades, Supernovae (SNe) have been used for several astro-
physical and cosmological applications. In particular, core collapse SNe trace
the star formation history while the standard candle property of Type Ia SNe
can be used for probing the expansion history of the Universe (e.g. Riess et
al 1998, Perlmutter et al 1999, Amanullah et al. 2010). One of the focus on
current SNe research is to probe the distant Universe. However, one strong
limitation is the light collecting power of existing telescopes.

A possible alternative to current investigation is to target these SNe in the
field of view of massive clusters. Although, the idea is not new and was first
discussed by Narasimha & Chitre (1988) and then by Kovner & Paczynski
(1988), it is only recently that SNe observations in cluster fields has become
more popular (Kolatt & Bartelmann 1998, Sullivan et al. 2000; Gal-Yam et al.
2002). The most interesting locations are of course the strong lensing regions of
clusters where the amplification is the largest, and were SNe could be multiply
imaged offering the possibility to measure the time delay between the different
images.

At first SN searches were done at optical wavelengths where SNe typically emit
most of their light. For example, Gal-Yam et al. (2002) using archival HST
imaging of 9 clusters, in which they discovered two or three likely cluster SNe
and three other SNe, with one background to a cluster at redshift z = 0.985.
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More recently, Sharon et al (2010) in a dedicated SNe HST multi-epoch ACS
I-band survey of 16 massive clusters (ranging from z = 0.5 to z = 0.9) have
discovered 24 SNe, with 8 of them being background to these clusters (the
highest SN redshift found is at z = 1.12). However, none of those lensed SNe
are in the regions of multiple-images. At even higher cluster redshift z ∼ 1,
the Supernova Cosmology Project (PI: Perlmutter) has targeted 25 clusters
through an HST multi-epoch program in which nine clusters and twenty other
(foreground or background) SNe have been discovered (Dawson et al. 2009).
However, the main focus of these cluster multi-epoch surveys was essentially
geared toward the discovery and study of cluster type Ia SNe, and thus were
not optimized to benefit from the cluster lens magnification.

On the contrary, Gunnarsson & Goobar (2003) presented the feasibility of
detecting high-z SNe along the line of sight of massive clusters, in partic-
ular focusing on the SNe detection in the near-infrared. Using a dedicated
VLT/ISAAC multi-epoch SN survey, Stanishev et al. (2009) and Goobar et
al. (2009) reported the discovery of a highly amplified SN at z ∼ 0.6 behind
the well-studied Abell 1689 cluster. More recently, using the new VLT/Hawk-I
infrared camera, Amanullah et al (2011) found one of the most distant SNe
ever found at z = 1.703 (measured through X-Shooter spectroscopy of the
galaxy host) thanks to the large magnification (∼ 4.3 ± 0.3) of the massive
cluster Abell 1689. This study demonstrated that further SNe follow-up may
lead to important new discoveries.

6 Cosmological constraints from cluster lensing

In this section, we discuss 3 powerful cluster lensing based methods at various
stages of development and application that may provide competitive and im-
portant constraints on cosmological parameters. These are: cosmography using
several sets of multiple-images lensed by the same cluster; the abundance of
arcs and the statistics of lensed image triplets. For cosmography and triplet
statistics purely geometric constraints are obtained via the ratio of angular
diameter distances, whereas the abundance of arcs provides potentially strong
constraints on the growth of structures and primordial non-gaussianity.

6.1 Cosmography with multiple-images

Measurements of the Hubble diagram for Type Ia Supernovae (SNIa)(Riess et
al. 1998; Perlmutter et al. 1999) combined with constraints from the Wilkin-
son Microwave Anisotropy Probe (WMAP5) (Spergel et al. 2003), cosmic shear
observations (Bacon, Refregier & Ellis 2000; Kaiser et al. 2000; van Waerbeke
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Fig. 40. The critical lines for a source at z = 3 are over-plotted in yellow on the
HST ACS image of Abell 1689. The lensing mass model used is the one from which
we derived cosmological constraints. In addition to two large-scale clumps and the
BCG, this model includes the contribution of 58 cluster galaxies. The positions of
cluster galaxies are marked with green crosses. Over-plotted in white are the 28
multiple-images arising from 12 families used in their work; the red circles mark the
positions of the rejected images (Figure from Jullo et al. 2010).

et al. 2000; Wittman et al. 2000; Semboloni et al. 2006), cluster baryon frac-
tion (Allen et al. 2004), cluster abundances (Vikhlinin et al. 2009) and baryon
acoustic oscillations (BAO) from galaxy surveys (Efstathiou et al. 2002; Sel-
jak et al. 2005; Eisenstein et al. 2005) suggest that ∼ 72% of the total energy
density of the Universe is in the form of an unknown constituent with negative
pressure - the so-called dark energy, that powers the measured accelerating ex-
pansion. These observations probe the equation-of-state parameter wX, defined
as the ratio of pressure to energy density, through its effect on the expansion
history of the Universe and the growth of structures.
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Constraining the geometry and matter content of the Universe using multi-
ple sets of arcs has been explored in cluster lenses using different techniques
(Paczynśki & Gorski 1981; Link & Pierce 1998; Cooray 1999; Golse et al.
2002; Sereno 2002; Sereno & Longo 2004; Soucail et al. 2004; Dalal et al.
2005; Meneghetti et al. 2005a,b; Maccio 2005; Gilmore & Natarajan 2009;
Jullo et al. 2010).

As shown in Section 1, the lensing deflection produced in the image of a back-
ground source depends on the detailed mass distribution of the cluster as well
as on the ratio of angular diameter distances. The cosmological dependence
arises from the angular diameter distance ratios that encapsulate the geometry
of the Universe and are a function of both Ωm and ΩX.

The most promising technique, is using multiple sets of arcs with measured
redshifts. By taking the ratio of their respective Einstein radii and marginal-
izing over parameters of the mass distribution, one can in principle constrain
the cosmological parameters Ωm and ΩX. In this method, the angular diameter
distance ratios for two images from different sources defines the ‘family ratio’
Ξ, from the cosmological dependence of which constraints on Ωm and wX are
extracted:

Ξ(zL, zs1, zs2; Ωm,ΩX, wX) =
D(zL, zs1)

D(0, zs1)

D(0, zs2)

D(zL, zs2)
, (58)

where zL is the lens redshift, zs1 and zs2 are the two source redshifts, and
D(z1, z2) is the angular diameter distance.

Link & Pierce (1998) showed that the cosmological sensitivity of the angular
size-redshift relation could be exploited using sources at distinct redshifts and
developed a methodology to simultaneously invert the lens and derive cosmo-
logical constraints. Golse et al. (2002) using simulated cluster data, showed
that the recovery of cosmological parameters was feasible with at least 3 sets
of multiple-images for a single cluster. Soucail et al. (2004) then applied the
technique to the lensing cluster Abell 2218 using 4 systems of multiple-images
at distinct redshifts, and found (Ωm < 0.37, wX < −0.80) assuming a flat
Universe.

Jullo et al. (2010) have presented the results of the first application of this
method to the massive lensing cluster Abell 1689 at z = 0.184 (see Figure 40).
Based on images from the Advanced Camera for Surveys (ACS) aboard the
Hubble Space Telescope (HST) this cluster has 114 multiple-images from 34
unique background galaxies, 24 of which have secure spectroscopic redshifts
(ranging from z ∼ 1 to z ∼ 5) obtained with the Very Large Telescope (VLT)
and Keck Telescope spectrographs (Broadhurst et al. 2005; Limousin et al.
2007). Their parametric model has a total of 21 free parameters consisting
of two large-scale potentials, a galaxy-scale potential for the central brightest
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Fig. 41. The current cosmological constraints in the (Ωm, Ωλ) based on the best-fit
model of Abell 1689 from Jullo et al. (2010): the results from combining cosmological
constraints from WMAP5 + evolution of X-ray clusters + cluster strong lensing
(cluster only methods); the 1 and 2σ contours are plotted, blue contours - constraints
from WMAP5, pink contours - X-ray clusters, orange contours - cluster strong
lensing.

cluster galaxy (BCG), and includes the modeling of 58 of the brightest clus-
ter galaxies. The contribution of substructure in the lens plane and along the
line of sight is explicitly included (see D’Aloisio & Natarajan 2011 for a de-
tailed discussion of the systematics). Combining the lensing derived cosmolog-
ical constraints with those from X-ray clusters and the Wilkinson Microwave
Anisotropy Probe 5-year data gives Ωm = 0.25± 0.05 and wX = −0.97± 0.07
which are consistent with results from other methods (see Figure 41). Inclu-
sion of this work with all other techniques available brings down the current
2σ contours on the dark energy equation of state parameter wX by about 30%.

As with all techniques, an accurate inventory of the key systematics and their
contribution to the error budget is also the challenge for this technique. The
two significant current limitations arise from: (i) accounting appropriately for
the lensing effect of the uncorrelated line of sight substructure (see schematic
in Figure 42) and (ii) the simplifying scaling relations assumed to relate galaxy
total mass to galaxy light. However, the results from Abell 1689 are extremely
encouraging and the future prospects for this method look promising due to
the power from combining several clusters at various redshifts.
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Fig. 42. Schematic diagram illustrating the creation of lens planes to quantify the
lensing effects of halos along the line of sight. A rectangular slice of the Millennium
Simulation box is taken and the locations of halos are projected along the long axis
and analytic NFW potentials are placed on those positions. The NFW parameters
are obtained through scaling relations with mass and redshift. The lens plane is
inserted at the appropriate redshift and a multi-plane lensing algorithm is used to
trace rays. Many lens planes between z = 0 and z = 5 are used to estimate the
systematic errors at the positions of multiple-images from the structure along the
line of sight.

6.2 Arc statistics and Primordial Non-gaussianity

The production of giant arcs by lensing clusters is ubiquitously observed. The
abundance of massive clusters available to do so is sensitive both to the ex-
pansion history and initial conditions of the Universe. Given the scaling of

88



the lensing efficiency with redshift, it is known that the frequency of giant-arc
formation depends on the abundance and characteristics of galaxy-clusters
roughly half-way to the sources. Cluster physics, cosmological effects and the
properties of the high-redshift source population all play a role in determin-
ing the abundance of giant arcs, however, isolating these effects is difficult.
It was originally claimed by Bartemann et al. (1998) that the ΛCDM model
predicted approximately an order of magnitude fewer arcs than seen in obser-
vations. Subsequent studies (e.g. Zaritsky & Gonzalez 2003; Gladders et al.
2003) substantiated this claim of a ‘giant-arc problem’. This mis-match be-
tween observations and the concordance cosmological model predictions sug-
gest that either the Bartelmann et al. (1998) analysis was lacking a crucial
component of properties exhibited by real cluster lenses and the source pop-
ulation (Williams et al 1999) or that the concordance cosmology is in fact
inconsistent with the observed abundance of giant arcs. A significant amount
of effort has been expended toward understanding the most important char-
acteristics of arc-producing clusters, and how they may not be typical of the
general cluster population (e.g. Hennawi et al. 2007; Meneghetti et al. 2010;
Fedeli et al. 2010). Other studies focused on effects that were not captured in
early simulations. The mass contribution of central galaxies appears to have
a significant effect, though not enough to entirely resolve the Bartelmann et
al. (1998) disagreement alone (Meneghetti et al. 2003; Dalal et al. 2004). The
probability of giant-arc formation increases with source redshift, therefore the
overall abundance is sensitive to uncertainties in the high-redshift tail of the
source-redshift distribution (Wambsganss et al. 2004; Dalal et al. 2004; Li et
al. 2005). However, none of these effects can account for the observed discrep-
ancy. On the other hand, taking into account a realistic source population and
observational effects, Horesh et al. (2005) claimed that the clusters predicted
by ΛCDM have the same arc production efficiency as the observed clusters.
The effects of baryonic physics, such as cooling and star formation, on central
mass distributions have also been investigated (Meneghetti et al. 2010).

The amplitude of the linear matter power spectrum plays a critical role in
determining how severe and if there is a giant-arc problem or not. Observations
seem to be converging on σ8 ≈ 0.8 (Fu et al. 2008; Vikhlinin et al. 2009;
Komatsu et al. 2011), while most numerical studies on the giant-arc abundance
to date have assumed σ8 = 0.9. It is likely that adjusting σ8 from 0.9 to 0.8 will
lower the predicted giant-arc abundance significantly, increasing tension with
observations (Li et al. 2006; Fedeli et al. 2008). The cosmological model may
play a role here. In arguing that the giant-arc problem may be unavoidable if
σ8 ≈ 0.8, Fedeli et al. (2008) mention in passing that early dark energy or non-
Gaussian initial conditions may provide “a way out.” The effects of dark energy
on giant-arc statistics have been investigated in Bartelmann et al. (2003),
Maccio (2005), Meneghetti et al. (2005a,b,c), and Fedeli & Bartelmann (2007).
On the other hand, the possible effects of non-Gaussian initial conditions have
only been explored recently by D’Aloisio & Natarajan (2011). They argue
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Fig. 43. The ratio of giant-arc cross sections in the case of non-Gaussian and Gaus-
sian initial conditions. Halos have enhanced central densities in models with fNL > 0.
Their giant-arc cross sections are therefore increased relative to the Gaussian case
and vice versa (Figure from D’Aloisio & Natarajan 2011).

that primordial non-Gaussianity (PNG) can affect the probability of giant-
arc formation in at least two ways. 8 First, PNG can lead to an enhanced or
diminished abundance of galaxy clusters, depending on the particular model
(e.g. Matarrese et al. 2000; LoVerde et al. 2008; Dalal et al. 2008), which would
lead to a change in the number of supercritical lenses that are available in the
appropriate redshift range. Secondly, PNG is expected to influence the central
densities of halos (Avila-Reese et al. 2003; Oguri & Blandford 2009; Smith
et al. 2010). Since lensing cross sections are sensitive to central densities, we
expect corresponding changes in them as well. If a cluster-lens cannot produce
arcs with length-to-width ratios above some threshold, then its cross section for
giant-arc production is zero. Roughly speaking, this corresponds to a minimum
mass required to produce giant arcs. Owing to the effects on central densities,
we expect PNG to alter this minimum mass threshold as well.

D’Aloisio & Natarajan (2011) quantify the impact of non-Gaussian initial
conditions with the local bispectrum shape on the predicted frequency of gi-
ant arcs. Non-Gaussianity is generally expressed in terms of fNL that char-

8 The PNG model considered here is the simplest one that gives rise to a non-zero
3-point correlation function.
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acterizes the amplitude of non-Gaussianity in the primordial curvature per-
turbation (Komatsu & Spergel 2001). Using a path-integral formulation of
the excursion set formalism, extending a semi-analytic model for calculat-
ing halo concentrations to the case of PNG, they show that massive halos
tend to collapse earlier in models with positive fNL, relative to the Gaussian
case, leading to enhanced concentration parameters. The converse is true for
fNL < 0. In addition to these effects, which change the lensing cross sections,
non-Gaussianity also modifies the abundance of supercritical clusters available
for lensing. These combined effects work together to either enhance (fNL > 0)
or suppress (fNL < 0) the probability of giant-arc formation (see Figure 43).
Using the best value and 95% confidence levels currently available from the
Wilkinson Microwave Anisotropy Probe, they report that the giant-arc optical
depth for sources at zs ∼ 2 is enhanced by ∼ 20% and ∼ 45% for fNL = 32 and
74 respectively. Conversely they report a suppression of ∼ 5% for fNL = −10.
These differences translate to similar relative changes in the predicted all-sky
number of giant arcs. Ideally the goal is to use giant-arc statistics to constrain
small scale PNG. The prospects are extremely promising given upcoming all
sky surveys planned by future deep wide-field imaging surveys such as fore-
seen by the Dark Energy Survey (DES), the Large Synoptic Survey Telescope
(LSST) and future wide-field space mission (e.g. EUCLID).

6.3 Triplet statistics

Triplet statistics offer an interesting geometrical method that uses the weak
gravitational lensing effects of clusters to constrain the cosmological parame-
ters Ωm and ΩΛ (Gautret, Fort & Mellier 2000). For each background galaxy,
a foreground lensing cluster induces a magnification that depends on the local
convergence κ and shear terms γ1 and γ2 and on the cosmological parame-
ters through the angular diameter distance ratio DLS/DOS. To disentangle
the effects of these three quantities, the ellipticities of each triplet of galaxies
located at about the same apparent position in the lens plane (although at
three distinct redshifts) needs to be compared. The simultaneous knowledge
of ellipticities and redshifts of each triplet enable the building of a purely ge-
ometrical estimator G(Ωm,ΩΛ) that is independent of the lens potential. This
estimator G has the simple form of the determinant of a 3x3 matrix built with
the triplet values of DLS/DOS and observed ellipticities.

When G is averaged over many triplets of galaxies, it provides a global func-
tion which converges to zero for the true values of the cosmological parameters.
However, in order to apply this method the various sources of statistical noise
need to be quantified. The linear form of G with respect to the measured
ellipticity of each galaxy implies that the different sources of noise contribut-
ing to G decrease as 1/

√
N , where N is the total number of observed lensed
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galaxies. From simulations that incorporate realistic geometries and conver-
gences for lensing clusters and a redshift distribution for galaxies, the results
are promising for a sample of 100 clusters. These 100 clusters essentially need
to be imaged in multiple bands to obtain accurate photometric redshifts for
the triplets. With next generation cosmological surveys the observational data
needed for this sample size would not be impossible to obtain.

7 Comparison of observed lensing cluster properties with theoret-
ical predictions

With the growing success of gravitational lensing analysis of clusters, it has
become possible to compare and test theoretical predictions against observa-
tions. With the rapid progress in high-resolution cosmological simulations of
dark matter we now have a unique opportunity to directly compare properties
of cluster dark matter halos derived from lensing studies. Many important
physical questions with regard to the internal structures of halos, their dy-
namical evolution and the granularity of dark matter can now be tackled:
the assembly process (role of merging sub-clusters); lensing cross sections; ef-
ficiency of lensing and super-lenses; selection effects; mass profiles; density
profiles; ellipticity; alignments; abundances, and the mass concentration. We
briefly outline below the results of recent studies on this topic.

7.1 Internal structure of cluster halos

In cosmological simulations of structure formation it is found that the density
profiles of dark matter halos are well fit over many decades in mass from
cluster mass scales down to dwarf galaxy-scales by the Navarro-Frenk-White
profile (see Appendix A.3 for details). By combining strong and weak lensing
constraints, as discussed above it has become possible to probe the mass profile
of the clusters on scales of 0.15 Mpc, thus providing a valuable test of the
universal form proposed by NFW on large scales (e.g. Okabe et al. 2010,
Umetsu et al. 2011). As for the inner density profile slopes there appears to
be similarly a large degree of variation, some like Cl0024+1654 (Kneib et al.
2003; Tu et al. 2008; Limousin et al. 2008) adequately fit the NFW form,
others like RXJ1347-11 are found to have slopes shallower than the NFW
prediction (Newman et al. 2011, Umetsu et al. 2011), while others like MS2137-
23 are found to have steeper slopes (Sand et al. 2004). One caveat with the
NFW prediction is that the functional form is derived from dark matter only
simulations, whereas in reality it is clear that baryons in the inner regions
close to the cD/BCG play a significant role both in terms of the mass budget
and modifications to density profile slopes in the very center.
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Fig. 44. Observed cluster concentrations and virial masses derived from lensing
(filled circles) and X-ray (open circles) measurements. For reference, the solid lines
depict the best-fit power law to our complete sample and its 1-σ scatter. The lensing
concentrations appear systematically higher than the X-ray concentrations, and a
Kolmogorov-Smirnov test confirms that the lensing results likely belong to a differ-
ent parent distribution. This figure is from Comerford & Natarajan 2007.

Lensing clusters are preferentially more significantly concentrated than all
clusters (see Figure 44 and Comerford & Natarajan 2007; but also: Broad-
hurst et al. 2008; Oguri et al. 2009; and Meneghetti et al. 2011) and they
typically tend to be outliers on the concentration-mass relationship predicted
for clusters in the ΛCDM model. The origin of this enhanced concentration
parameter is likely due to: i) high incidence of projected line of sight struc-
tures for massive lensing clusters; ii) elongated shapes that enhance lensing
efficiency, factors that might observationally bias lensing selection; iii) baryons
that could play an important role in the inner regions.

7.2 Mass function of substructure in cluster halos

Combining observed strong and weak lensing and exploiting galaxy-galaxy
lensing inside clusters, it has been possible to map the granularity of the dark
matter distribution (Natarajan & Kneib 1997; Natarajan & Springel 2005;
Natarajan, DeLucia & Springel 2007) in clusters and compare them to predic-
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tions from the Millennium cosmological simulation (Springel et al. 2005). This
is done by attributing local anisotropies in the observed shear field to the pres-
ence of dark matter sub-halos (Natarajan et al. 2009). The mass function thus
derived for several clusters agrees well with that predicted entirely indepen-
dently from high-resolution cosmological simulations of structure formation
in the standard ΛCDM paradigm over the mass range 1011 − 1013M�. The
comparison was made with clusters that form in the Millennium Simulation
(Springel et al. 2005). This excellent agreement of the mass function derived
from these 2 independent methods demonstrates that there is no substructure
problem (which was claimed earlier) on cluster scales in ΛCDM. This is a sig-
nificant result as a substructure crisis has been claimed on galaxy-scales. Since
ΛCDM is a self-similar theory, if the substructure problem had been endemic
to the model, it would have been replicated on cluster scales. This suggests
that the substructure discrepancy on galaxy-scales arises from the galaxy for-
mation process or from some hitherto undiscovered coupling between baryons
and dark matter particles. Therefore, lensing clusters have provided unantic-
ipated insights into the dark matter model. Moving on from the Millennium
Simulation, state of the art at the present time is the Mare Nostrum simulation
which is promising in terms of mass resolution and larger volume probed and
offers a new test-bed for comparison with lensing data from cluster surveys
like the CLASH Hubble survey (Meneghetti et al. 2011).

7.3 Dynamical evolution of cluster halos

Exploiting strong and weak gravitational lensing signals inferred from panoramic
Hubble Space Telescope imaging data, high-resolution reconstructions of the
mass distributions are now available for clusters ranging from z = 0.2−0.5. Ap-
plying galaxy-galaxy lensing techniques inside clusters the fate of dark matter
sub-halos can now be tracked as a function of projected cluster-centric radius
out to 1-5 Mpc, well beyond the virial radius in some cases. There is now clear
detection of the statistical lensing signal of dark matter sub-halos associated
with both early-type and late-type galaxies in clusters. In fact, it appears now
that late-type galaxies in clusters (which dominate the numbers in the out-
skirts but are rare in the inner regions of the cluster) also possess individual
dark matter halos (Treu et al. 2002; Limousin et al. 2005, 2007; Moran et al.
2006; Natarajan et al. 2009). In the case of the cluster Cl0024+1656 that has
been studied to beyond the virial radius, the mass of a fiducial dark matter
halo that hosts an early-type L∗ galaxy varies from M = 6.3± 2.7× 1011 M�
within r < 0.6Mpc, to 1.3± 0.8× 1012 M� within r < 2.9 Mpc, and increases
further to M = 3.7 ± 1.4 × 1012 M� in the outskirts. The mass of a typical
dark matter sub-halo that hosts an L∗ galaxy increases with projected cluster-
centric radius in line with expectations from the tidal stripping hypothesis.
Early-type galaxies appear to be hosted on average in more massive dark mat-
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Fig. 45. Comparison between substructure mass function retrieved from the galaxy–
galaxy lensing analysis (red shaded histograms) and results from haloes selected
from the Millennium Simulation. The black solid line in each panel represents the
average sub-halo mass function of haloes selected at the redshift of the observed
lensing cluster (see text for details). The grey shaded region represents, for each
value of the sub-halo mass, the min-max number of substructures found in the
simulated haloes (Figure from Natarajan, DeLucia & Springel 2007).

ter sub-halos compared to late-type galaxies. Early-type galaxies also trace the
overall mass distribution of the cluster whereas late-type galaxies are biased
tracers. The findings in this cluster and others are interpreted as evidence for
the active re-distribution of mass via tidal stripping in galaxy clusters. Upon
comparison of the masses of dark matter sub-halos as a function of projected
cluster-centric with the equivalent mass function derived from clusters in the
Millennium Run very good agreement is found (see Figure 45 and Natarajan,
De Lucia & Springel 2007). However, simulated sub-halos appear to be more
efficiently stripped than lensing observations suggest (see Figure 46). This is
likely an artifact of comparison with a dark matter only simulation. Future
simulations that simultaneously follow the detailed evolution of the baryonic
component during cluster assembly will be needed for a more detailed com-
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parison. Lensing has proved to be a powerful probe of how clusters assemble
and grow, and it appears that our findings ratify the ΛCDM paradigm, hier-
archical growth of structure and the key role played by tidal stripping during
cluster assembly.

7.4 Constraints on the nature of dark matter

While it is clear that clusters are vast repositories of dark matter, the nature
of dark matter remains elusive. A plethora of astronomical observations from
the early Universe to the present time are consistent with the dark matter be-
ing a cold, collision-less fluid that does not couple to baryons. However, there
is potential for dark matter self-interactions and lensing observations offer a
unique window to probe this further (e.g. Miralda-Escud 2002). Limits on the
dark matter interaction cross section can be placed from lensing observation of
clusters, however, these are currently not particularly constraining or illumi-
nating. Two distinct arguments have been used to obtain limits that strongly
support the collision-less nature of dark matter. One involves the distribution
of the sizes of tidally truncated sub-halos in clusters (Natarajan et al. 2002);
and the second involves estimates from the separation between the dark mat-
ter and X-ray gas in the extreme merging system, the Bullet Cluster (Clowe
et al. 2006; Bradač et al. 2006) wherein they find σ/m < 4gm−1cm2 assuming
that the two colliding sub-clusters experienced a head-on collision in the plane
of the sky. Similar results were also found from the so-called “Baby Bullet”
cluster (Bradač et al. 2008). Exploring these merging clusters is certainly an
avenue where lensing observations may provide constraints and insights on the
nature of dark matter.

8 Future prospects

Since the discovery of giant arcs in the late 80’s gravitational lensing by clusters
of galaxies has now become a powerful cosmological tool.

We list below some possible new avenues for the next exciting discoveries in the
coming years using gravitational lensing in clusters, assuming improvements
in the data quality and data volume:

• Dedicated lensing surveys of well defined massive cluster samples can probe
in a systematic way the cluster mass distribution at high-resolution from
galaxy-scales out to the virial radius using both weak and strong lensing.
In particular, we can hope to study the build-up of the mass in clusters as
a function of time and disentangle the time scales on which the segregation
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Fig. 46. Variation of the mass of a dark matter sub-halo that hosts an early-type
L∗ galaxy as a function of cluster centric radius. The results from the likelihood
analysis are used to derive the sub-halo mass for the galaxy-galaxy lensing results
and the counterparts are derived from the Millennium simulation with an embed-
ded semi-analytic galaxy formation model. This enables selection of dark matter
halos that host a single L∗ galaxy akin to our assumption in the lensing analysis.
The solid circles are the data points from the galaxy-galaxy lensing analysis and
the solid squares are from the Millennium simulation. The upper solid square in
the core region marks the value of the sub-halo mass with correction by a factor
of 2 as found in Natarajan, De Lucia & Springel (2007). The solid triangle is the
galaxy-galaxy lensing data point for the sub-halo associated with a late-type L∗

galaxy. The radial trend derived from lensing is in very good agreement with simu-
lations and demonstrate that tidal stripping is operational with higher efficiency in
the central regions as expected.
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between the different mass components occurs during the assembly process.
One could also envision being able to systematically trace the filamentary
structures linking massive clusters that are simply the nodes of the cos-
mic web seen in numerical simulations of the formation and evolution of
structure in the Universe.
• From wide field imaging surveys: mass selected clusters can be identified,

but likely the more interesting prospect is the ability to investigate the dark
matter mass versus stellar-mass relation and its evolution with time, thus
providing useful cosmological constraints on the growth of structure in the
Universe, as well as on the underlying geometric cosmological parameters.
• With larger cluster samples, better constraints will be obtained on density

profile slopes in the inner and outer regions of clusters thus permitting to
robustly test theoretical predictions of the ΛCDM model.
• Using numerous multiple-images with measured redshifts in a number of

massive clusters, we should be able to provide geometrical constraints of
Dark Energy in a complementary way to other cosmological probes.
• Measuring the time-delays of temporally variable phenomena such as Su-

pernovae or AGN when observed behind well-known massive lensing clus-
ters, will lead to measurement of the Hubble parameter H(z), in a similar
way as multiple quasars behind galaxies, but with much improved accuracy.
However, in order to have a time-delay of a limited number of years, these
transients event must be located close to the critical lines. While, the likeli-
hood of detecting multiple-images of such transient phenomena is extremely
low, it is not insignificant provided there is a steady increase in the volume
of the Universe probed with time.
• Finally, massive cluster lenses will always be the unique places to probe the

high-redshift Universe, as they offer enhanced sensitivities at all wavelengths
and enable mapping the detailed morphology and physical properties of the
most distant galaxies in the Universe.

In the near future lensing observations will likely be geared towards optical and
near-infrared imaging exploiting the next generation of ground based experi-
ments (DES, LSST, TMT, E-ELT), and spaced based observatories (JWST,
EUCLID/WFIRST).

However, in the long run, it is not too unreasonable to think that cluster
lensing observations may be well conducted in the radio domain. In such an
event we foresee up to an order of magnitude improvement in lensing mea-
surement that will result from combining information on galaxy shapes with
velocity field data (Blain 2002; Morales 2006). Such preliminary developments
will certainly come first with ALMA, but only centimeter radio interferome-
ters such as SKA (Square Kilometer Array) will allow the exploration of these
techniques on cosmological scales.
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Appendix A: Parametric mass distributions used to model clusters

Parametric profiles have been extremely successful in modeling cluster mass
distributions derived from observed lensing data. A key advantage of para-
metric models is their flexibility, as they can be used to probe the granularity
of the mass distribution on a range of spatial scales. For the case of clus-
ters, this enables combining strong and weak lensing data that derive from
different regions of clusters in an optimal fashion. Below we outline the lens-
ing properties of three most commonly used mass distributions: the circular
Singular Isothermal Sphere [SIS]; the truncated isothermal mass distribution
with a core that can be easily extended to the elliptical case [PIEMD] and
the Navarro-Frenk-White [NFW] profile. While most mass distributions can
be generalized to the elliptical case, there are not always simple and conve-
nient analytic expressions available for lensing quantities as readily as for the
PIEMD model. The availability of analytic expressions for the surface mass
density, shear and magnification have made the PIEMD a popular choice for
modeling lensing clusters.
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A.1 The Singular Isothermal Sphere

The primary motivation for the circular singular isothermal sphere (SIS) pro-
file derives from the good fit that it provides to the observed approximately
flat rotation curves of disk galaxies. Flat rotation curves can be reproduced
with a model density profile that scales as ρ ∝ r−2. Such a profile with a
constant velocity dispersion as a function of radius appears to provide a good
fit to cluster scale halo lenses as well (see e.g. Binney & Tremaine 1987 for
more details). The projected surface mass density of the SIS is given by:

Σ(R) =
σ2
v

2GR
, (59)

where R is the distance from the center of the lens in the projected lens plane
and where σv is the one-dimensional velocity dispersion of ‘particles’ that trace
the gravitational potential of the mass distribution. The dimensionless surface
mass density or convergence is defined in the usual way in units of the critical
surface density. For the case of the SIS we have:

κ(θ) =
θE
2θ

; γ(θ) =
θE
2θ
, (60)

where θ = R/DOL is the angular distance from lens center in the sky plane
and where θE is the Einstein deflection angle, defined as

θE = 4π
(
σv
c

)2 DLS

DOS

. (61)

Lensing properties of SIS lens model in a nutshell:

• the magnification and the shear are of the same magnitude; κ = γ and
evaluated at the Einstein radius κ = γ = 1

2
;

• the tangential critical line is the Einstein ring, and the radial critical line is
reduced to the central point;
• the central mass density is infinite, and the total mass is also infinite.

A.2 Truncated Isothermal Distribution with a Core

Although the SIS is the simplest mass distribution, it is unphysical as it has
an infinite central density, an infinite total mass, and therefore cannot ade-
quately match true mass distributions. More complex mass distributions have
therefore been developed to provide more realistic fits to observed clusters.
The Truncated Isothermal Distribution with a Core, which has finite mass
and a finite central density is quite popular as a lensing model, and one that
we have used extensively and successfully in modeling cluster lenses.
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The density distribution for this model is given by:

Σ(R) =
Σ0R0Rt

Rt −R0

(
1√

R2
0 +R2

− 1√
R2
t +R2

), (62)

with a model core-radius R0 and a truncation radius Rt � R0.

The useful feature of this model, is the ability to reproduce a large range of
mass distributions from cluster scales to galaxy-scales by varying only the ratio
η, that is defined as η = Rt/R0. There also exists a simple relation between
the truncation radius of the mass distribution and the effective radius Re of
the light distribution for the case of elliptical galaxies:

Rt ∼
4

3
Re. (63)

Furthermore, this simple circular model can be easily generalized to the el-
liptical case (Kassiola & Kovner 1993; Kneib et al. 1996) by re-defining the
radial coordinate R as follows:

R2 = (
x2

(1 + ε)2
+

y2

(1− ε)2
) ; ε =

a− b
a+ b

, (64)

Interestingly, all the lensing quantities can be expressed analytically (although
using complex numbers) and the expressions for the same were first derived
in Kassiola & Kovner (1993).

The mass enclosed within radius R for the model is given by:

M(R) =
2πΣ0R0Rt

Rt −R0

[
√
R2

0 +R2 −
√
R2
t +R2 + (Rt −R0) ], (65)

and the total mass, which is finite, is:

M∞ = 2πΣ0R0Rt. (66)

Calculating κ, γ and g, we have,

κ(R) = κ0
R0

(1−R0/Rt)
(

1√
(R2

0 +R2)
− 1√

(R2
t +R2)

) , (67)

with:
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2κ0 = Σ0
4πG

c2

DLSDOL

DOS

, (68)

where DLS, DOS and DOL are respectively the lens-source, observer-source and
observer-lens angular diameter distances.

To obtain the reduced shear g(R), given the magnification κ(R), we solve
Laplace’s equation for the projected potential ϕ, and evaluate the components
of the amplification matrix following which we can proceed to solve directly
for γ(R), and then g(R).

ϕ = 2κ0[
√
R2

0 +R2 −
√
R2
t +R2 + (R0 −Rt) lnR

− R0 ln [R2
0 +R0

√
R2

0 +R2] + Rt ln [R2
t +Rt

√
R2
t +R2]].

(69)

We can then derive the shear γ(R);

γ(R) = κ0[− 1√
R2 +R2

0

+
2

R2
(
√
R2 +R2

0 −R0)

+
1√

R2 +R2
t

− 2

R2
(
√
R2 +R2

t −Rt) ].

(70)

Scaling this relation by Rt gives for R0 < R < Rt:

γ(R/Rt) ∝
Σ0

η − 1

Rt

R
∼ σ2

R
. (71)

where σ is the velocity dispersion (note this is similar to the SIS case).

At larger radius, for R0 < Rt < R:

γ(R/rt) ∝
Σ0

η

Rt
2

R2
∼ Mtot

R2
, (72)

where Mtot is the total mass. In the limit that R � Rt, we have,

γ(R) =
3κ0

2R3
[R2

0 − R2
t ] +

2κ0

R2
[Rt − R0], (73)
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Lensing properties of the truncated isothermal distribution with a core in a
nutshell:

• κ 6= γ;
• the tangential critical line once again corresponds to the Einstein ring, and

the radial critical line is a circle interior to the Einstein ring;
• the central mass density is finite, and the total mass is also finite.

A.3 The Navarro-Frenk-White Model

Although the truncated isothermal distribution with a core is very popular,
it has never been fitted to the results of numerical simulations, in contrast
to the universal “NFW” density profile (Navarro, Frenk & White 1997). In
simulations of structure formation and evolution in the Universe, the NFW
profile was found to be a good fit for a wide range of dark matter halo masses
from 109−1015M�. The spherical NFW density profile has the following form:

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
, (74)

where ρs and rs are free parameters. It is often convenient to character-
ize the profile with the concentration parameter, cvir = rvir/rs where rvir

is the virial radius. By integrating the profile out to rvir and using mvir =
200ρc(z) 4π r3

vir/3, where mvir is defined to be the virial mass and ρc is the
critical density of the universe, the concentration parameter can be related to
ρs.

We now proceed to calculate the lensing properties of the NFW profile (more
details can be found in Wright & Brainerd 2000). In the thin lens approx-
imation, z is defined as the optical axis and Φ(R, z) the three-dimensional
Newtonian gravitational potential – where r =

√
R2 + z2. The reduced two-

dimensional lens potential in the plane of the sky is given by:

ϕ(~θ) =
2

c2

DLS

DOLDOS

+∞∫
−∞

Φ(DOL θ, z) dz, (75)

where ~θ = (θ1, θ2) is the angular position in the image plane.

For convenience we introduce the dimensionless radial coordinates ~x = (x1, x2) =
~R/rs = ~θ/θs where θs = rs/DOL. In the case of an axially symmetric lens, the
relations become simpler, as the position vector can be replaced by its norm.
The surface mass density then becomes

Σ(x) =

+∞∫
−∞

ρ(rs x, z)dz = 2ρcrsF (x). (76)
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with

F (x) =



1

x2 − 1

(
1− 1√

1− x2
arcch

1

x

)
(x < 1)

1

3
(x = 1)

1

x2 − 1

(
1− 1√

x2 − 1
arccos

1

x

)
(x > 1).

and the mean surface density inside the dimensionless radius x is

Σ(x) =
1

πx2

x∫
0

2πxΣ(x)dx = 4ρcrs
g(x)

x2
, (77)

with

g(x) =



ln
x

2
+

1√
1− x2

arcch
1

x
(x < 1)

1 + ln
1

2
(x = 1)

ln
x

2
+

1√
x2 − 1

arccos
1

x
(x > 1).

The lensing functions ~α, κ and γ also have simple expressions:

~α(x) = θ
Σ(x)

Σcrit

= 4κs
θ

x2
g(x)~ex

κ(x) =
Σ(x)

Σcrit

= 2κs F (x)

γ(x) =
Σ(x)− Σ(x)

Σcrit

= 2κs

(
2g(x)

x2
− F (x)

) (78)

with κs = ρcrsΣ
−1
crit. Noting ~∇~x α(x) = (∂x1α, ∂x2α) and φ = arctan(x2/x1), we

obtain some useful relations for the following that hold for any circular mass
distribution (Golse & Kneib 2002):

κ(x) =
1

2θs

(
α(x)

x
+
∂x1α(~x)

cosφ

)

γ(x) =
1

2θs

(
α(x)

x
− ∂x1α(~x)

cosφ

)
∂x1α(~x)

cosφ
=
∂x2α(~x)

sinφ

κ(x) + γ(x) =
α(x)

θs x

(79)

By integrating the deflection angle we obtain the lens potential ϕ(x):

ϕ(x) = 2κsθ
2
s h(x), (80)
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where

h(x) =


ln2 x

2
− arcch2 1

x
(x < 1)

ln2 x

2
+ arccos2 1

x
(x ≥ 1).

(81)

The velocity dispersion σ(r) of this potential, computed with the Jeans equa-
tion for an isotropic velocity distribution, gives an unrealistic central velocity
dispersion σ(0) = 0. In order to compare the pseudo-elliptical NFW potential
with other potentials, we define a scaling parameter vc (characteristic velocity)
in terms of the parameters of the NFW profile as follows:

v2
c =

8

3
Gr2

sρc. (82)

Using the value of the critical density for closure of the Universe ρcrit =
3H2

0/8πG, we find

ρc
ρcrit

=
v2
c

H2
0r

2
s

= 1.8 103 h−2 ×
(

rs
150 kpc

)−2 (
vc

2000 km s−1

)2

.

Lensing properties of the NFW model in a nutshell:

• κ 6= γ;
• the tangential critical line is the Einstein ring radius, and the radial critical

line is a circle interior to the Einstein ring;
• the central mass density is infinite, and the total mass is also infinite (how-

ever, only the virial mass is of interest and that is calculable), and the
central velocity dispersion is vanishing at the center.

A.4 Flexion for the Singular Isothermal Sphere

For a Schwarzschild lens: by definition the first flexion is zero everywhere
except at the origin. This is of course due to the fact that the gradient of the
convergence is zero. A Schwarzchild lens does produce ”arciness” in the image.
This effect is captured by construction by the second flexion. Expressions for
the first and second flexion generated by the mass distribution of a singular
isothermal sphere have been provided by Bacon et al. (2005). We reproduce
their notation and consistent with our description in section 2.4. The flexion
produced by the SIS at angle θ, measured from the centre of the lens is given
by:

F = −
[
θE
2θ2

]
eiφ, (83)
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Fig. 47. Top: Comparison of the magnitude of first flexion due to a NFW and a SIS
halo of M200 = 1× 1012h−1M� at redshift zlens = 0.35. Middle: A similar Flexion1
comparison but this time the SIS halo has M200 = 1.8× 1012h−1M�. Bottom: The
magnitude of Flexion2 for a NFW and a SIS halo of M200 = 1×1012h−1M�, where
the doubling in scale of the angular separation axis highlights the larger range and
amplitude of the second flexion.

where φ is the position angle with respect to the lens. The first flexion F
for the SIS profile can be written as a vector and its direction points radially
inward.

The second flexion G, as per the notation of Bacon et al. (2005) is given by:

G =
3θE
2θ2

e3iφ . (84)

G has a larger peak value than the first flexion for the SIS, although both
F and G fall off with the same power law index away from the lens. For the
explicit derivation of the flexion for more complicated density profiles, namely
the softened isothermal sphere and the cosmologically motivated Navarro-
Frenk-White profile, see Figure ?? for a comparison as well as Bacon et al.
(2006).
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