
Part A : Gravity

1 Recap of Newtonian Dynamics

Consider a particle of mass m and velocity v. Momentum of the particle is defined as
p = mv. Newton’s Second Law (N2) states that, if particle is acted upon by force F, then

F =
dp

dt
= ma, (1)

where a = dv/dt and m =constant.
If F = 0 then p =constant, giving us Newton’s First Law (N1).
Newton’s Third Law (N3) states that, if body-A exerts force F on body-B, then body-B

exerts a force −F on body-A.
Consider a system of bodies with masses mi, velocities vi and momentum pi (i = 1, ...N).

Total momentum is

ptot =
N
∑

i=1

pi. (2)

We can show (ON BOARD) that the total momentum is constant if the system is not
subjected to any external forces.

In class, we will talk about

• Meaning of an isolated system

• Some generalized definitions of momentum

2 Newtonian Gravity

Newton’s Law of Universal Gravitation is : Suppose that mass M1 is at the origin and mass
M2 is at position r. Then the gravitational force of M1 on M2 is

F21 = −GM1M2

|r|2 r̂. (3)

More generally, we can define the gravitational field at each point in space g(r such that
the gravitational force felt by a particle of mass m is

F = mg. (4)
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Newton’s Law of Gravitation now gives us the gravitational field at point r from a mass M
at point r′,

g = − GM

|r− r′|3 (r− r′). (5)

For a distributed mass with density ρ(r) filling volume V , we can just treat it as a set
of point masses to write,

g = −G
∫

V
ρ(r′)

r− r′

|r− r′|3 d
3r′. (6)

From this, we can prove (ON BOARD) Gauss’s Law of Gravity,

∇ · g = −4πGρ(r). (7)

Introducing the gravitational potential Φ such that g = ∇Φ, Gauss’s Law can be written
as

∇2Φ = 4πGρ, (8)

a form known as Poisson’s equation.
In class, we will talk about

• Geometric meaning of Gauss’s Law

• Application to “Newton’s Shell Theorem”

• Analogy to electrostatics

3 The One-Body Problem

3.1 Problem setup and basic equation of motion

Consider an object of mass m moving within the gravitational field of a much more massive
object with mass M (i.e. M ≫ m). Otherwise, the system is isolated. Furthermore, we
assume that the only forces acting on m are gravitational. Place M at the origin. Then
the equation of motion is

r̈ = −GM

r2
r̂, (9)

where we write r ≡ |r|.

3.2 Conservation Laws

From this equation of motion, we can quickly derive (ON BOARD) two important conser-
vation laws, the conservation of angular momentum:

 L ≡ r× p = constant, (10)

and the conservation of total energy

E =
1

2
mv2 − GM

r
= constant. (11)
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3.3 Solving the equation of motion

To make more progress, we need to actually solve the equation of motion. Must choice
some specific coordinate system so we can describe the components of r and ṙ. The most
natural choice is to work in cylindrical polar coordinates (R, φ, z) oriented such that the
angular momentum L points along the z-axis and the motion is confined into the plane
z = 0. We can write the basic vectors of the polar coordinates (R̂, φ̂) in terms of the usual
Cartesian basis vectors (x̂, ŷ):

R̂ = cosφ x̂ + sinφ ŷ (12)

φ̂ = − sinφ x̂ + cosφ x̂. (13)

Using this, and starting with r = RR̂, we can show (ON BOARD) that

ṙ = ṘR̂ + Rφ̇φ̂. (14)

We can now translate the conservation laws into polar coordinates. We find (ON
BOARD) that L = Lzẑ with

Lz = mR2φ̇. (15)

We define the specific angular momentum Λ ≡ Lz/m. Hence

Λ = R2φ̇. (16)

We also define the specific energy ǫ ≡ E/m and can show (ON BOARD) that

ǫ =
1

2
Ṙ2 +

1

2

Λ2

R2
− GM

R
(17)

Equation (17) is an ordinary differential equation (ODE) for R in terms of time t. To
solve, it turns out to be convenient to make a change of variable to u ≡ 1/R. Then we can
show (ON BOARD) that

Ṙ = −λ
du

dφ
, (18)

and by substituting this into eqn. (17) and differentiating w.r.t. φ we find that

du

dφ

[

Λ2

(

d2u

dφ2
+ u

)

−GM

]

= 0. (19)

There are two ways that this equation can be satisfied.

Case A : du/dφ = 0, i.e. u =constant. This is circular motion! We can show (ON

BOARD) that, in this case, we have Λ =
√
GMR, φ̇ =

√

GM/R3 and ǫ = −GM/2R.

Case B : : d2u/dφ2 + u−GM/Λ2 = 0. This is a second-order linear ODE with general
solution

u =
GM

Λ2
+ c cos(φ− φ0), (20)
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where c and φ0 are (integration) constants. Relating c to the conserved quantities (Λ and
ǫ) and re-writing back in terms of R gives us the solution for R(φ) that we seek:

1

R
=

GM

Λ2
[1 + c cos(φ− φ0)] , with c =

[

1 +
2Λ2ǫ

(GM)2

]1/2

. (21)

Can immediately see that solutions only exist provided that ǫ ≥ −(GM)2/2Λ2. For specific
energies that are more negative than this, there are no solutions (at least in the real do-
main!). In fact, eqn. (21) encompasses both circular and non-circular motion (i.e. includes
Case-A as a special case when c = 0).

Let’s examine some general properties of this solution (eqn. 21). For ǫ < 0, R is finite
for all (∀) values of φ. Furthermore, the solution is clearly periodic in φ with period 2π.
Hence, this solution describes an orbit which closes on itself. The maximum value of R is
when cos(φ− φ0) = −1, giving

1

Rmax

=
GM

Λ2



1 −
(

1 +
2Λǫ

(GM2)

)1/2


 . (22)

Similarly, minimum radius is when cos(φ− φ0) = +1 and

1

Rmin
=

GM

Λ2



1 +

(

1 +
2Λǫ

(GM2)

)1/2


 . (23)

A little algebra (ON BOARD) reveals that

Rmin + Rmax =
GM

|ǫ| . (24)

So the total “length” of the orbit is purely a function of energy.
For ǫ > 0, we have that c > 1 and hence eqn. (21) would tell us that 1/R hits zero. This

means that R → ∞ as φ − φ0 → ±φm where φm = cos−1(−1/c). So, the particle comes in
from infinity from a direction φ = φ0 + φm, swings by the origin (reaching closest approach
at φ = φ0 and then heads back out to infinity along φ = φ0 − φm.

For ǫ = 0, we have R → ∞ as φ − φ0 → π. So, particle comes in from infinity along a
direction φ = φ0 + π, swings by the origin (reaching closest approach at φ = φ0 and then
heads back out to infinity along φ = φ0 − π.

3.4 Properties and Shapes of Orbits

To visualize the actual shapes of these orbits, it is useful to translate the solution (eqn. 21)
into Cartesian coordinates. With an appropriately defined Cartesian coordinate system
(with the central mass at the origin), we write R = (x2 + y2)1/2 and x = R cos(φ − φ0)
which can be used (HOMEWORK WITH HINTS IN CLASS) to translate the general
solution into

[

x− GM
2ǫ

(

1 + 2ǫΛ2

(GM)2

)1/2
]2

(GM/2ǫ)2
− y2

Λ2/2ǫ
= 1. (25)

4



We can now read off some important results for the three cases ǫ < 0, ǫ > 0 and ǫ = 0.

Case A : ǫ < 0 : Equation (25) describes an ellipse with:

Center at x0 = −GM

2|ǫ|

(

1 − 2|ǫ|Λ2

(GM2)

)1/2

, y0 = 0 (26)

semi-major axis a =
GM

2|ǫ| (27)

semi-minor axis b =
Λ

√

(2|ǫ|)
(28)

(29)

Case B : ǫ > 0 : Equation (25) describes a hyperbola with asymptotes that have slopes

dy

dx
= ±

Λ
√

(2ǫ)

GM
(30)

Case C : ǫ = 0 : A little more care is needed with the analysis of this case, but we can
show that the path is a parabola with closest approach on the x-axis at Rmin = λ2/2GM

3.5 Kepler’s Laws of Planetary Motion

Since it is such an important case (planetary orbits etc.), let’s return to the ǫ < 0/elliptical
case. For an ellipse, the distance between a focal point and the center is called the focal
length f =

√
a2 − b2 (HOMEWORK). We also define the eccentricity, e ≡ f/a which

characterizes the “squashed-ness” of the ellipse. We can show (ON BOARD) that

f =
GM

2|ǫ|

[

1 − Λ2|ǫ|
(GM)2

]1/2

, (31)

which is exactly the same as the expression we found for the distance between the center
of the ellipse and the origin (where M is located). Thus, we’ve shown that the gravitating
mass is at one focus of the ellipse! We’ve just proven Kepler’s First Law.

As an aside, we also find that

e =

(

1 − Λ2|ǫ|
(GM)2

)1/2

, (32)

which is exactly the quantity that we’ve been calling “c” until now.
For Kepler’s Second Law, we need to examine the area swept out by a line joining

the orbiting particle with the gravitating mass, A. We can show that

dA

dt
=

1

2
Λ, (33)

and hence equal areas are swept out in equal times.
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Finally, we can use this result to relate the period P of the orbit to other quantities,

Λ

2
P = πab, (34)

and we can go onto show

P 2 =
(2π)2

GM
a3, (35)

i.e., We have proven Kepler’s Third Law.

3.6 Epicyclic Motion

It is often useful to consider the behavior of a orbit that is slightly perturbed away from some
reference circular orbit (DISCUSSION IN CLASS). Consider a reference circular orbit that

has radius R0. Then, it has angular velocity Ω0 =
√

GM/R3
0, specific angular momentum

Λ0 =
√
GMR0, and specific energy ǫ = −GM/2R0. Thus, time dependence of the orbit is

described by

R = R0 (36)

φ = Ω0t. (37)

Consider a perturbation,

R = R0 + x1 (38)

φ = Ω0t +
y1
R0

. (39)

We can apply perturbation theory to derive (ON BOARD) Hill’s Equation of Motion for
the perturbation:

ẍ1 − x1Ω0 − 2Ω0ẏ1 = −2
GM

R3
0

x1 (40)

ÿ1 + 2ẋ1Ω0 = 0. (41)

The solution of these coupled ordinary differential equations is

x1 = C −A sin Ω0t (42)

y1 = Ct + 2A cos Ω0t, (43)

where A and C are constants.
If C 6= 0, the terms containing C describe the gradual azimuthal drifting away of the

perturbed orbit that has a different semi-major axis (and hence period); eventually the
assumptions of the perturbation analysis will fail as y1 becomes large.

So let’s set C = 0. The perturbed orbit executes centered elliptical motion around the
guiding center of the reference orbit.

4 The Two Body Problem

SEE PROFESSOR MILLER’S NOTES.
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5 The Three (and Two-Plus-One) Body Problem

5.1 General Comments

For the general system (including those with more than two bodies), the equation of motion
is

r̈i = −G
∑

j 6=i

mj
ri − rj
|ri − rj|3

. (44)

We have shown that this can be solved analytically for n = 2 bodies. However, this does
NOT have analytic solutions for for n ≥ 3. In this case, full solutions of the equation of
motion can only be obtained computationally. In general, such systems are chaotic — a tiny
perturbation of the position or velocity of a particle will lead to an exponential divergence
in the trajectory of the system relative to the unperturbed case.

5.2 The 2+1 Body Problem

Consider a three body system in which one of the bodies of MUCH less massive than the
other two. We can then perform some instructive analysis of the system.

Let the masses of the bodies be M1, M2 and m. Further, suppose that m ≪ M1,M2 so
that we can completely neglect the gravitational force of m when considering the motions
of M1 or M2. We say that m is a “test particle” within the gravitational fields of the two
other masses. Finally, suppose that M1 and M2 are in circular orbits about their common
center of mass, with a total separation a.

It is extremely useful to examine this system in the frame of reference rotating with the
binary and with the origin placed at the center of mass — in this frame, M1 and M2 are at
rest. The equation of motion for mass m in this rotating frame is:

r̈ = −2Ω0ẑ× ṙ− Ω2
0r−

GM1(r− r1)

|r− r1|3
− GM2(r− r2)

|r− r2|3
, (45)

where Ω0 = [G(M1+M2)/a
3]1/2 is the angular velocity of the binary. This can be translated

into Cartesian coordinates (staying in the rotating frame!) where we choose to put M1 and
M2 on the y = 0 line at x = −a1 and x = a2 respectively:

ẍ = 2Ω0ẏ + xΩ2
0 −

GM1(x + a1)

[(x + a1)2 + y2]3/2
− GM2(x− a2)

[(x− a2)2 + y2]3/2
(46)

ÿ = −2Ω0ẋ + yΩ2
0 −

GM1y

[(x + a1)2 + y2]3/2
− GM2y

[(x− a2)2 + y2]3/2
(47)

5.3 Lagrange Points

Are there places where the test mass can remain still (in the rotating frame)? Yes! To find
them, put ẋ = ẏ = ẍ = ÿ = 0 into equations 46. As discussed (IN CLASS), we find five
such points — these are the Lagrange points. Two of them (L4 and L5) form equilateral
triangles with M1 and M2, i.e., they have coordinates:

(x, y) =

(

a2 −
a

2
,±

√
3

2
a

)

. (48)
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The other three points lie on the y = 0 line (i.e. the line passing through the masses M1

and M2). For M2 ≪ M1, two of them (L1 and L2) lie close to the smaller mass,

(x, y) ≈
(

a2 ± a
[

M2

3M1

]1/3

, 0

)

, (49)

and the last Lagrange point lies at (x, y) ≈ (−a, 0), i.e., this point lies on the “opposite
side of the orbit” of M2 around M1.

All of the in-line Lagrange points are unstable... the test particle will accelerate away
from this location if given a slight push. L4 and L5 are stable provided M2 < M1/26.

5.4 Effective Potential of the 2+1 Body Problem

We can rewrite the equation of motion as

r̈ = −2Ω0ẑ× ṙ−∇Φeff , (50)

where

Φeff = −Ω2
0

2
r2 − GM1

|r− r1|
− GM1

|r− r2|
, (51)

is the effective potential of the problem. This gives the acceleration of a stationary test
particle, including the effects of the centrifugal force.

5.5 Astrophysical Significant of Lagrange Points

1. TROJAN ASTEROIDS — a group of asteroids “trapped” in the L4/L5 Lagrange
points of the Sun-Jupiter system.

2. MASS TRANSFER IN BINARY STARS — if one star fills the critical iso-potential
surface, mass is transferred across the L1 Lagrange Point towards the other star,

3. SPACE-SCIENCE — L1/L2 are attractive places to put scientific spacecraft.
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6 The N-body Problem

We now look at the general N -body problem. Of course, as with 3-bodies, a full solution
of this problem is not possible with analytic techniques — one must resort to numerical
solutions of the equations if a full solution is required. However, we can still deduce some
interesting and important aspects of N -body systems even without a computer.

6.1 The Virial Theorem

We consider a system with N bodies interacting purely gravitationally — all non-gravitational
forces are neglected and hence we do not account for the possibility of collisions between
objects. The full equation of motion for the N -body system are:

mir̈i = −
∑

 6=i

Gmimj(ri − rj)

|ri − rj |3
. (52)

Now, we define the “scalar moment of inertia” as

I ≡
∑

i

miri · rj . (53)

Suppose that the system is in a state of statistical equilibrium so that 〈Ï〉 = 0 (where the
〈.〉 denotes a time average), then

〈W 〉 + 2〈K〉 = 0, (54)

where W and K are the gravitational potential and kinetic energy respectively given by

W = −
∑

i

i−1
∑

j=1

Gmimj

|ri − rj |
, (55)

K =
∑

i

1

2
mi|ṙ|2. (56)

The result given in equation-54 is known as the Virial Theorem and is an important
theoretical tool for understanding N -body systems.

6.2 Masses of galaxies from the Virial Theorem

Consider a galaxy as an N -body system. For illustration purposes, let us suppose that all
of the stars have the same mass m and an isotropic velocity distribution (these assumptions
can be generalized straightforwardly). The isotropy assumption, in particular, means that
we are really talking about an elliptical galaxy. Then, from the Virial Theorem, we can
show that

M =
6R̄σ2

G
, (57)

where σ2 is the one-dimensional velocity dispersion of the stars and R̄ is defined by

1

R̄
≡ 2

N(N − 1)

∑

pairs

1

|ri − rj|
(58)
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This is a powerful result — it allows us to determine the mass of the galaxy by just
measuring its size and velocity dispersion.

Let’s get a little more specific. Assume that the galaxy has a density distribution
ρ(r) ∝ r−α out to a radius R (and zero for R > R). Then, with some work to determine
R̄, we can write this relation as

M =
5σ2R
G

1 − 2α/3

1 − α/3
(59)

6.3 Collapse of cosmic structure from the Virial Theorem

The early Universe was rather homogeneous. Large-scale structure in the Universe (from
dwarf galaxies up to giant clusters of galaxies) are believed to have formed by the gravita-
tional collapse of regions of the Universe that were slightly overdense relative to the average
density.

By combining the Virial Theorem with the conservation of energy, we can analyze the
collapse of overdense (dark) matter regions. If we imagine some overdense region with
initial radius Ri, the Virial Theorem implies that it will collapse to form a “virtualized”
structure that has a final radius Rf ∼ Ri/2. Hence the density of collapsed structures will
be about 8 times the average density of the Universe at the time of collapse.

6.4 Two-body relaxation

The process by which collision-less gravitational systems collapse and come into statistical
equilibrium is interesting in its own right and is known as violent relaxation (WE WILL
DISCUSS THIS IN CLASS!). However, the statistical equilibrium that results from violent
relaxation is not unique — there can be gradual evolution to a higher entropy state. An im-
portant process driving this evolution are the gravitational interactions between individual
particles — this kind of evolution is called two-body relation.

Consider the interaction of two particles in the system. Suppose that, relative to one
particle, the other has a velocity v and an impact parameter b. We can show (IN CLASS)
that the fractional change in the kinetic energy of the second particle is

∆E

E
≈
(

2GM

v2b

)2

. (60)

If the number density of the system is n, the total rate with which a particle is interacting
with other particles in a range of impact parameters b → b + db is

dN
dt

= 2πbnv db. (61)

By integrating the rate of energy loss over the impact parameters, we can calculate the
relaxation timescale (i.e. the time over which the energy of a typical particle changes by
an amount comparable to its initial energy):

trel ∼
v3

(GM)2n ln(bmax/bmin)
. (62)
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Note that the dependence on bmax and bmin is very weak. We say that bmin ∼ n−1/3 and
that bmax ∼ R. Putting everything together and doing some algebra, we get the commonly
quoted result for the relaxation time,

trel ≈
0.1N

lnN
tcross, (63)

where we have defined the crossing time of the system as tcross ≡ R/v.
In class, we show that globular clusters have had plenty of time to relax, (whole) galaxies

have not relaxed, and galaxy clusters are marginally relaxed.

6.5 Dynamical Friction

Due to two-body relaxation, a massive body moving through a sea of smaller bodies will
tend to give up energy to those smaller bodies. This effect is called dynamical friction. The
massive body M feels a force opposing its motion V through (relative to) the sea of small
bodies with density ρ. An analysis similar to that used for the relaxation time gives

FDF = −4πρ
(GM)2

V 2
ln

(

bmax

bmin

)

(64)

It is interesting to note that FDM is proportional to M2 and V −2 (hence more massive and
also slower bodies are much more strongly affected).

Dynamical friction is important for a variety of astrophysical phenomena (DISCUSSION
IN CLASS).
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