
9/5/14

1

Computational Astrophysics:
Methodology

1.  Identify astrophysical problem
2.  Write down corresponding equations
3.  Identify numerical algorithm
4.  Find a computer
5.  Implement algorithm, generate results
6.  Visualize data

Computer Architecture

•  Components that make up a computer
system, and their interconnections.

•  Basic components:
1.  Processor
2.  Memory
3.  I/O
4.  Communication channels

9/5/14

2

Processors

•  Component which executes a program.
•  Most PCs (used to have) only one processor

(CPU) – these are “serial” or “scalar” machines.
•  High-performance machines usually have many

processors – these are “vector” or “parallel”
machines.

•  Nowadays PCs have CPUs with 16-32 cores, and
GPU (graphic processor units) with 2600 cores.

9/5/14

3

Fetch-Decode-Execute

•  Processors execute a…
 fetch - get instruction from memory
 decode - store instruction in register
 execute - perform operation
 …cycle. (e.g., LD A,R1; LD B,R2; ADD R1,R2,R3; STORE R3,C).

–  Instruction address held in program counter (PC).
–  PC incremented after each cycle.

•  Very primitive commands! “Compilers” or “interpreters”
are used to translate high-level code into such low-level
operations.

Cycles
•  Timing of cycle depends on internal construction

& complexity of instructions.
•  Quantum of time in a processor is called a “clock

cycle”. All tasks take an integer number of clock
cycles to occur.

•  The fewer the clock cycles for a task, the faster it
occurs.

•  NOTE: Higher clock speeds imply faster heating of
components, increasing cooling requirements: GHz are
common these days.

9/5/14

4

Measuring CPU Performance

•  Time to execute a program:
 t = ni × CPI × tc

 where
 ni = number of instructions
 CPI = cycles per instruction
 tc = time per cycle

Improving Performance

1.  Obviously, can decrease tc. Mostly
engineering problem (e.g. increase clock
frequency, use better chip materials, …).

2.  Decrease CPI, e.g. by making instructions
as simple as possible (RISC --- Reduced
Instruction Set Computer). Can also
“pipeline” (a form a parallelism/latency
hiding).

9/5/14

5

Improving Performance, Cont’d

3.  Decrease ni any one processor works on:
•  Improve algorithm.
•  Distribute ni over np processors, thus ideally

ni
* = ni/np.

•  Actually, process of distributing work adds
overhead: ni

*  ni/np + no.
•  Will return to high-performance/parallel

computing toward the end of the course.

Defining Performance

•  MIPS – “million instructions per second”:
not useful due to variations in instruction
length, implementation, etc.

•  MFLOPS – “million floating-point
operations per second”: measures time to
complete a meaningful complex task, e.g.
multiplying two matrices ∼ n3 ops.

9/5/14

6

Defining Performance, Cont’d

•  Computer A and computer B may have different
MIPS but same MFLOPS.

•  Often refer to “peak MFLOPS” (highest possible
performance if machine only did arithmetic
calculations) and “sustained MFLOPS” (effective
speed over entire run).

•  Nowadays, supercomputer centers aim at Peta-flop
(Peta=1015) performance

•  “Benchmark”: standard performance test.

Memory

•  Passive component which stores data or
instructions, accessed by address.

•  Data flows from memory (“read”) or to
memory (“write”).

•  RAM: “Random Access Memory” supports
both reads and writes.

•  ROM: “Read Only Memory” – no writes.

9/5/14

7

Bits & Bytes
•  Smallest piece of memory = 1 bit (off/on)

–  8 bits = 1 byte
–  4 bytes = 1 word (on 32-bit machines)
–  8 bytes = 1 word (on 64-bit machines)

•  1 word = number of bits used to store single-precision
floating-point number. Usually equals width of data bus.

•  Typical home computers these days have ∼ 1-64 Gbyte of
useable RAM.

•  1 MB = 1 megabyte or 1,048,576 (220) bytes (sometimes just 106).
•  1 Mb = 1 megabit or 106 bits (rarely 220).

Memory Performance

•  Determined by access time or latency,
usually 10-80 ns.(a)
–  Latency hiding: perform other operations while waiting

for memory to respond.

•  Would like to build all memory from fastest
chips, but this is often too expensive.

•  Instead, exploit “locality of reference”.
(a) Note: DDR-SDRAM (double data rate, synchronous dynamic RAM), the newest type of memory, is

speed-rated in terms “memory cycles,” i.e., the time required between successive memory accesses,
typically ∼ 10 ns or less.

9/5/14

8

Locality of Reference

•  Typical applications store and access data in
sequence.

•  Instructions also sequentially stored in
memory.

•  Hence if address M accessed at time t, there
is a high probability that address M + 1 will
be accessed at time t + 1 (e.g. vector ops).

Hierarchical Memory

•  Instead of building entire memory from fast
chips, use hierarchical memory:
– Memory closest to processor built from fastest

chips – “cache”.
– Main memory built from RAM – “primary

memory”.
– Additional memory built from slowest/cheapest

components (e.g. hard disks) – “secondary
memory”.

9/5/14

9

Hierarchical Memory, Cont’d

•  Then, transfer entire blocks of memory
between levels, not just individual values.
– Block of memory transferred between cache

and primary memory = “cache line”.
– Between primary and secondary memory =

“page”.
•  How does it work?

The Cache Line

•  If processor needs item x, and it’s not in
cache, request forwarded to primary
memory.

•  Instead of just sending x, primary memory
sends entire cache line (x, x+1, x+2, …).

•  Then, when/if processor needs x+1 next
cycle, it’s already there.

9/5/14

10

Hits & Misses

•  Memory request to cache which is satisfied
is called a “hit”.

•  Memory request which must be passed to
next level is called a “miss”.

•  Fraction of requests which are hits is called
the “hit rate”.

•  Must try to optimize hit rate (> ~90%).

Effective Access Time

•  teff = (HR) tcache + (1 – HR) tpm

 tcache = access time of cache
 tpm = access time of primary memory
 HR = hit rate
 e.g. tcache = 1 ns, tpm = 10 ns, HR = 98%
  teff = 1.18 ns, close to cache itself.

9/5/14

11

Maximizing Hit Rate

•  Key to good performance is to design
application code to maximize hit rate.

•  One simple rule: always try to access
memory contiguously, e.g. in array
operations, fastest-changing index should
correspond to successive locations in
memory.

Good Example

•  In FORTRAN:
 DO J = 1, 1000
 DO I = 1, 1000

 A(I,J) = B(I,J) + C(I,J)

 ENDDO
 ENDDO

•  This references A(1,1), A(2,1), etc. which
are stored contiguous in memory.

9/5/14

12

Bad Example
•  This version references A(1,1), A(1,2), …,

which are stored 1,000 elements apart. If
cache < 4 KB, will cause memory misses:
 DO I = 1, 1000
 DO J = 1, 1000

 A(I,J) = B(I,J) + C(I,J)
 ENDDO

 ENDDO

NOTE: C, unlike FORTRAN, stores 2-D array data by
column, not by row, so this is a good example for C!

I/O Devices

•  Transfer information between internal
components and external world, e.g. tape
drives, disks, monitors.

•  Performance measured by “bandwidth”:
volume of data per unit time that can be
moved into and out of main memory.

9/5/14

13

Communication Channels

•  Connect internal components.
•  Often referred to as a “bus” if just a single

channel.
•  More complex architectures use “switches”.

– Let any component communicate directly with
any other component, but may get “blocking”.

Programming Languages

•  Low-level
•  Machine code, Assembly

•  High-level
–  Interpreted (portable and easier to implement):

•  Java, Python, Matlab, Mathematica, IDL, etc

– Compiled (faster, parallelizable to clusters of
CPU/GPU):

•  Fortran, C, C++, CUDA (GPU), OpenCL(GPU)
•  Java, Python: bytecode

9/5/14

14

Example: 4-core CPU (i7)

Example: 480-cores GPU
(Nvidia GTX 480)

9/5/14

15

Shared Memory Supercomputers

Blacklight: The SGI® Altix® UV1000 system
Featuring 512 eight-core Intel Xeon 7500 (Nehalem) processors (4,096 cores) with 32 terabytes of memory,
Blacklight is partitioned into two connected 16-terabyte coherent shared-memory systems — creating the two
 largest coherent shared-memory systems in the world.
Blacklight is now available for research through the TeraGrid allocation process

9/5/14

16

Computer Cluster (distributed memory)

Room containing a cluster of 420 computing nodes, each linked together by a fast speed network. The nodes
are able to access a computer storage cluster with three petabytes of storage space. The system allows users
to analyze large amounts of data using high speed computing power.

Photographed at the Genome Sciences Center, March 2011.

Parallel Computing
•  Clusters: MPI (message passing interface)

– Communication channel: ethernet, infiniband
(speed 10-100 Gbit/s + latency ~200 nsec)

•  Shared memory: OpenMP
– Communication channel: memory bus
 (64 bits x clock~500 Gbit/s + latency ~10 nsec)

•  GPU computing: CUDA (Nvidia), OpenCL,
OpenHMPP
– Communication channel: graphic card bus PCI-

Xpress (~400 Gbit/s + latency: bottleneck is
transfer of memory from CPU to GPU)

9/5/14

17

Code Optimizations
•  Compiler optimization options: -O0,-O1,-O2,-O3

– Loops optimization, Inlining of functions, etc
– Compilation time longer and size of the executable

larger
•  Auto-parallelization (-openmp -parallel for intel

compilers)
•  Examples:
icc –o progx progrx.c –O3 –openmp –parallel (C compiler)
ifort –o progx progx.f –O3 –openmp –parallel (Fortran compiler)

Debuggers

•  Instead of printing vars throughout the code
•  Used to catch seg faults, fpe, and other errors
•  Unfortunately catching fpe is compiler and OS

dependent!! Need to experiment
•  Example:

>cc -o debug debug.c -g –lm
>gdb ./debug
(gdb) r
(Note: -g option needed to load symbols table for debugging)

