
Class 12. Random Numbers

• NRiC §7.

• Frequently needed to generate initial conditions.

• Often used to solve problems statistically.

• How can a computer generate a random number?

– It can’t! Generators are pseudo-random.

– Generators are deterministic: it’s always possible to produce the same sequence
over and over.

– Sometimes this is a good thing!

Random Number Generators

• User specifies an initial value, or seed.

• Initializing generator with same seed gives same sequence of “random” numbers.

• For a different sequence, use a different seed.

• One strategy is to use the current time, or the processor ID, to seed the generator.

– Problem: this may have poor dynamic range, or may be correlated with when the
code is run.

– Solution: combine sources, e.g., int seed = (int) time(NULL) % getpid() +

getppid(), to get a more robust seed.

Choosing a Generator

• Since generators do not produce truly random sequences, it’s possible that your results
may be affected by the generator used!

• Often the supplied generators on a given machine have poor statistical properties.

• But even a statistically sound generator can still be inadequate for a particular appli-
cation.

• Be wary if you ever need more than ∼ 106 random numbers, and certainly if you need
more than the largest representable integer!

• Solution: always compare results using two generators.

1



Guidelines

• Follow these steps to minimize problems:

1. Always remember to seed the generator before using it (discarding any returned
value).

2. Use seeds that are “somewhat random,” i.e., have a good mixture of bits, e.g.,
2731771 or 10293085 instead of 1 or 4096 or some other power of 2.

3. Avoid sequential seeds: they may cause correlations.

4. Compare results using at least two generators.

5. When publishing, indicate generator used.

6. Often it’s a good idea to make a note of the seed used for a given run, in case you
need to regenerate the sequence again later.

Uniform Deviates

• Random numbers that lie within a specified range (typically 0 to 1), with any one
number in the range as likely as any other, are uniform deviates, i.e.,

p(x) dx =

{

dx if 0 ≤ x ≤ 1,
0 otherwise.

• Useful in themselves, often used to generate differently distributed deviates.

• Distinguish between linear generators (discussed next) and nonlinear generators (do a
web search).

Linear Congruential Generators

• Typical of most system-supplied generators.

• Produces series of integers I1, I2, I3, ..., each between 0 and m − 1, using:

Ij+1 = aIj + c (mod m),

where m is the modulus, and a and c are positive integers called the multiplier and the
increment, respectively.

• If m, a, and c are properly chosen, all possible integers between 0 and m − 1 occur at
some point.

– The choice of a = 75 = 16807, c = 0, m = 231 − 1 = 2147483647 is known as the
minimal standard generator.

– Often a and c chosen so as to have integer overflow on nearly every step, giving
less predictable sequence and avoiding the mod operation.

2



• The LCG method is very fast but it suffers from sequential correlations.

• If k random numbers at a time are used to plot points in k-dimensional space, points
tend to lie on (k − 1)-dimensional hyperplanes. There will be at most m1/k planes,
e.g., ∼ 1600 if k = 3 and m = 232!

• The quality of a LCG is measured by the maximum distance between successive hy-
perplanes: the smaller the distance, the better.

• Also, low-order bits may be less random than high-order bits, e.g., last bit alternating
between 0 and 1.

– To generate random number between 1 and 10 with rand(), use

j = 1 + (int) (10.0*rand()/(RAND MAX + 1.0));

and not

j = 1 + (rand() % 10);

(which uses lower-order bits).

NRiC RNGs

• NRiC gives several uniform deviate generators:

Generator Speed Notes
ran0 1.0 Small multiple, serial correlations.
ran1 1.3 General purpose, maximum 108 values.
ran2 2.0 Like ran1, but longer period.
ran3 0.6 Subtractive method, not well studied.
ranqd1 0.1 Fast, machine-dependent.
ranqd2 0.3 Ditto.
ran4 4.0 Good properties, slow.

• On the department machines, see rand(), random(), and drand48().

• There is much discussion on the web of relative merits of RNGs. Recommended gen-
erators include TT800 and the Mersenne Twister.

• Bottom line: test it yourself, or use web-published testing routines, e.g., spectral meth-
ods.

Transformation Method

• Suppose we want to generate a deviate from a distribution p(y) dy, where p(y) = f(y)
for some positive and normalized function f , with y ranging from ymin to ymax.

• Let F (y) be the cumulative distribution of f(y), from ymin to y, i.e., F (y) =
∫ y
ymin

f(y′) dy′.

3



• Set a uniform deviate x = F (y)/F (ymax) and solve for y: this is the new generation
function.

• Only useful if F−1(x) is easy to compute.

Example: Exponential deviates

• Suppose we want p(y) dy = e−y dy, y ∈ [0,∞).

• Apply the transformation method:

– Have f(y) = e−y, F (y) = e−0 − e−y = 1 − e−y.

– Set x = F (y)/F (∞) and solve x(1 − e−∞) = 1 − e−y for y.

– Get y(x) = − ln(1 − x) = − ln(x) (since 1 − x is distributed the same as x).

• So if x is a uniform deviate between 0 and 1, y(x) (x > 0) will be an exponential
deviate.

• See NRiC §7.2 for Gaussian deviates.

Another example: A simple IMF

• Suppose we want to generate particle masses according to M dM = Mα dM , M ∈

[Mmin, Mmax].

• From the transformation method we get:

M = Mmin

{

1 + x

[

(

Mmax

Mmin

)α+1

− 1

]}
1

α+1

,

or

M =
[

(1 − x)Mα+1

min + xMα+1

max

]
1

α+1 .

• Notice that for a flat distribution (α = 0), get expected result.

• What happens if α = −1? EFTS...

Initial Conditions

• Often want to generate random initial conditions for a simulation, e.g., initial position
and velocity.

• Must take care when using transformations, since may not get distribution you expect.

• For example, to fill a flat disk of radius R with random points is it better to:

1. Choose random θ and r then set x = r cos θ, y = r sin θ?

2. Fill a square and reject points with x2 + y2 > R2?

Answer: 2, but 1 will work if r2 (instead of r) has a uniform random distribution.

4



Application: Cryptography

• A simple encryption/decryption algorithm can be constructed using random number
generators.

• If both parties know the initial seed, they can both reproduce the same sequence of
values.

• However, communicating the seed between parties carries risk.

• One popular technique is to combine public and private keys for secure communication
(the example below is called Diffie-Hellman Key Exchange).

• How do public and private keys work?

Step You Your Friend

1 Public: choose large prime p. Public: choose b, no common factors with p − 1.

2 Private: choose x. Private: choose y.

3 Compute bx mod p and send. Compute by mod p and send.

4 Compute k = byx mod p. Compute k = bxy mod p.

– k is the encryption key. This procedure relies on the fact that is is very difficult
to factor large numbers.

– Also uses the handy relationship:

(by mod p)x mod p = (by)x mod p, for any x, y.

5


