Class 12. Random Numbers

- NRiC §7.
- Frequently needed to generate initial conditions.
- Often used to solve problems statistically.
- How can a computer generate a random number?
 - It can't! Generators are pseudo-random.
 - Generators are *deterministic*: it's always possible to produce the same sequence over and over.
 - Sometimes this is a good thing!

Random Number Generators

- User specifies an initial value, or *seed*.
- Initializing generator with same seed gives same sequence of "random" numbers.
- For a different sequence, use a different seed.
- One strategy is to use the current time, or the processor ID, to seed the generator.
 - Problem: this may have poor dynamic range, or may be correlated with when the code is run.
 - Solution: *combine* sources, e.g., int seed = (int) time(NULL) % getpid() + getppid(), to get a more robust seed.

Choosing a Generator

- Since generators do not produce truly random sequences, it's possible that your results may be affected by the generator used!
- Often the supplied generators on a given machine have poor statistical properties.
- But even a statistically sound generator can still be inadequate for a particular application.
- \bullet Be wary if you ever need more than $\sim 10^6$ random numbers, and certainly if you need more than the largest representable integer!
- Solution: always compare results using two generators.

Guidelines

- Follow these steps to minimize problems:
 - 1. Always remember to seed the generator before using it (discarding any returned value).
 - 2. Use seeds that are "somewhat random," i.e., have a good mixture of bits, e.g., 2731771 or 10293085 instead of 1 or 4096 or some other power of 2.
 - 3. Avoid sequential seeds: they may cause correlations.
 - 4. Compare results using at least two generators.
 - 5. When publishing, indicate generator used.
 - 6. Often it's a good idea to make a note of the seed used for a given run, in case you need to regenerate the sequence again later.

Uniform Deviates

• Random numbers that lie within a specified range (typically 0 to 1), with any one number in the range as likely as any other, are *uniform deviates*, i.e.,

$$p(x) dx = \begin{cases} dx & \text{if } 0 \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

- Useful in themselves, often used to generate differently distributed deviates.
- Distinguish between linear generators (discussed next) and nonlinear generators (do a web search).

Linear Congruential Generators

- Typical of most system-supplied generators.
- Produces series of integers $I_1, I_2, I_3, ...,$ each between 0 and m-1, using:

$$I_{j+1} = aI_j + c \pmod{m},$$

where m is the modulus, and a and c are positive integers called the multiplier and the increment, respectively.

- If m, a, and c are properly chosen, all possible integers between 0 and m-1 occur at some point.
 - The choice of $a = 7^5 = 16807$, c = 0, $m = 2^{31} 1 = 2147483647$ is known as the minimal standard generator.
 - Often a and c chosen so as to have integer overflow on nearly every step, giving less predictable sequence and avoiding the mod operation.

- The LCG method is very fast but it suffers from sequential correlations.
- If k random numbers at a time are used to plot points in k-dimensional space, points tend to lie on (k-1)-dimensional hyperplanes. There will be <u>at most</u> $m^{1/k}$ planes, e.g., ~ 1600 if k=3 and $m=2^{32}$!
- The quality of a LCG is measured by the maximum distance between successive hyperplanes: the smaller the distance, the better.
- Also, low-order bits may be less random than high-order bits, e.g., last bit alternating between 0 and 1.

```
- To generate random number between 1 and 10 with rand(), use
j = 1 + (int) (10.0*rand()/(RAND_MAX + 1.0));
and not
j = 1 + (rand() % 10);
(which uses lower-order bits).
```

NRiC RNGs

• NRiC gives several uniform deviate generators:

Generator	Speed	Notes
ran0	1.0	Small multiple, serial correlations.
ran1	1.3	General purpose, maximum 10 ⁸ values.
ran2	2.0	Like ran1, but longer period.
ran3	0.6	Subtractive method, not well studied.
ranqd1	0.1	Fast, machine-dependent.
ranqd2	0.3	Ditto.
ran4	4.0	Good properties, slow.

- On the department machines, see rand(), random(), and drand48().
- There is much discussion on the web of relative merits of RNGs. Recommended generators include <u>TT800</u> and the <u>Mersenne Twister</u>.
- Bottom line: test it yourself, or use web-published testing routines, e.g., spectral methods.

Transformation Method

- Suppose we want to generate a deviate from a distribution p(y) dy, where p(y) = f(y) for some positive and normalized function f, with y ranging from y_{\min} to y_{\max} .
- Let F(y) be the *cumulative* distribution of f(y), from y_{\min} to y, i.e., $F(y) = \int_{y_{\min}}^{y} f(y') dy'$.

- Set a uniform deviate $x = F(y)/F(y_{\text{max}})$ and solve for y: this is the new generation function.
- Only useful if $F^{-1}(x)$ is easy to compute.

Example: Exponential deviates

- Suppose we want $p(y) dy = e^{-y} dy$, $y \in [0, \infty)$.
- Apply the transformation method:
 - Have $f(y) = e^{-y}$, $F(y) = e^{-0} e^{-y} = 1 e^{-y}$.
 - Set $x = F(y)/F(\infty)$ and solve $x(1 e^{-\infty}) = 1 e^{-y}$ for y.
 - Get $y(x) = -\ln(1-x) = -\ln(x)$ (since 1-x is distributed the same as x).
- So if x is a uniform deviate between 0 and 1, y(x) (x > 0) will be an exponential deviate.
- See NRiC §7.2 for Gaussian deviates.

Another example: A simple IMF

- Suppose we want to generate particle masses according to $M dM = M^{\alpha} dM$, $M \in [M_{\min}, M_{\max}]$.
- From the transformation method we get:

 $M = M_{\min} \left\{ 1 + x \left[\left(\frac{M_{\max}}{M_{\min}} \right)^{\alpha + 1} - 1 \right] \right\}^{\frac{1}{\alpha + 1}},$

or

$$M = \left[(1 - x) M_{\min}^{\alpha + 1} + x M_{\max}^{\alpha + 1} \right]^{\frac{1}{\alpha + 1}}.$$

- Notice that for a flat distribution ($\alpha = 0$), get expected result.
- What happens if $\alpha = -1$? EFTS...

Initial Conditions

- Often want to generate random initial conditions for a simulation, e.g., initial position and velocity.
- Must take care when using transformations, since may not get distribution you expect.
- For example, to fill a flat disk of radius R with random points is it better to:
 - 1. Choose random θ and r then set $x = r \cos \theta$, $y = r \sin \theta$?
 - 2. Fill a square and reject points with $x^2 + y^2 > R^2$?

Answer: 2, but 1 will work if r^2 (instead of r) has a uniform random distribution.

Application: Cryptography

- A simple encryption/decryption algorithm can be constructed using random number generators.
- If both parties know the initial seed, they can both reproduce the same sequence of values.
- However, communicating the *seed* between parties carries risk.
- One popular technique is to combine *public* and *private* keys for secure communication (the example below is called Diffie-Hellman Key Exchange).
- How do public and private keys work?

Step	You	Your Friend
1	Public: choose large prime p .	Public: choose b , no common factors with $p-1$.
	Private: choose x .	Private: choose y .
	Compute $b^x \mod p$ and send.	Compute $b^y \mod p$ and send.
4	Compute $k = b^{yx} \mod p$.	Compute $k = b^{xy} \mod p$.

- -k is the encryption key. This procedure relies on the fact that is is very difficult to factor large numbers.
- Also uses the handy relationship:

$$(b^y \bmod p)^x \bmod p = (b^y)^x \bmod p$$
, for any x, y .