# Class 27. Fourier Transforms, Part 2

- For each *n* discrete frequencies must compute sum of *k* discrete times  $\implies \mathcal{O}(N^2)$  operation.
- Can we do better? Yes!

## The Fast Fourier Transform (FFT)

- Cf. NRiC §12.2.
- Strategy: divide and conquer. Notice

$$H_n = \sum_{k=0}^{N-1} h_k e^{2\pi i k n/N}$$
  
=  $\sum_{k=0}^{N/2-1} h_{2k} e^{2\pi i (2k)n/N} + \sum_{k=0}^{N/2-1} h_{2k+1} e^{2\pi i (2k+1)n/N}$   
=  $\sum_{k=0}^{N/2-1} h_{2k} e^{2\pi i k n/(N/2)} + e^{2\pi i n/N} \sum_{k=0}^{N/2-1} h_{2k+1} e^{2\pi i k n/(N/2)}$   
=  $H_n^e + e^{2\pi i n/N} H_n^o$ ,

where  $H_n^e$  and  $H_n^o$  are periodic in n with length N/2.

• Can continue this process:

$$\begin{aligned} H_n^e &= H_n^{ee} + e^{2\pi i n/(N/2)} H_n^{eo} \\ H_n^o &= H_n^{oe} + e^{2\pi i n/(N/2)} H_n^{oo}, \end{aligned}$$

where each of  $H_n^{ee}$ ,  $H_n^{eo}$ ,  $H_n^{oe}$ , and  $H_n^{oo}$  are periodic in n, length N/4.

• If N is a power of 2 (zero-pad your data if not!), can continue process until you get transforms of length 1. What is FT of length 1? Just identity op that copies its one input number  $(h_k)$  into its output slot! I.e.,

$$\sum_{k=0}^{0} h_k e^{2\pi i k n / (N/N)} = h_k$$

• End up with  $\log_2 N$  pattern of e's & o's such that, e.g.,

$$H_n^{eooeeeoe\cdots eoo} = h_k,$$

for some k. (This doesn't depend on n, since it's periodic with length 1.)

• Trick is to figure out which k corresponds to which pattern of e's & o's. Solution: reverse (left-to-right) pattern of e's & o's and let  $e \equiv 0$ ,  $o \equiv 1$ —this is the binary representation of k! Why? Schematically,



#### Algorithm

- Rearrange input data in bit-reversed order. This gives the 1-pt FTs. Combine adjacent pairs to get 2-pt FTs, then adjacent pairs to get 4-pt FTs, and so on until you get desired N-pt FT.
- Each combination requires  $\mathcal{O}(N)$  ops to perform. There are  $\log_2 N$  combinations,  $\therefore$  method is  $\mathcal{O}(N \log_2 N)$  (assuming bit-reversal sorting is also  $\mathcal{O}(N \log_2 N)$ , which it is).
- This is called "decimition-in-time" (Cooley-Tukey FFT). Could also do decimation-infrequency (Sande-Tukey FFT). Can also stop with base-4, base-8, or even base-prime (for arbitrary N) to exploit various optimizations.

## **NRiC** Implementation

• *NRiC* implements Cooley-Tukey as four1():

void four1(float data[],unsigned long nn,int isign)

- Use isign = +1 for forward transform, -1 for inverse (times N). Here nn is N. data is 2\*nn elements long: 1<sup>st</sup>, 3<sup>rd</sup>, ... elements are *real* components; 2<sup>nd</sup>, 4<sup>th</sup>, ... are imaginary.
- Transform returned in data in same fashion, but using frequency-ordering conventiond discussed earlier (cf. *NRiC* Fig. 12.2.2).
- If input function is pure real, can gain efficiencies (e.g., twofft(), realfft()).
- For 2-D, e.g., 2-D grid  $0 \le k_1 \le N_1 1, 0 \le k_2 \le N_2 1$ :

$$H(n_1, n_2) = \sum_{k_2=0}^{N_2-1} \sum_{k_1=0}^{N_1-1} h(k_1, k_2) e^{2\pi i k_2 n_2/N_2} e^{2\pi i k_1 n_1/N_1}$$

- Pull sub-2 expression out of sub-1 summation  $\Rightarrow$  FFT-on-2 {FFT-on-1 [ $h(k_1, k_2)$ ]}.

#### Discrete convolution (NRiC §13.1, convlv())

• Convolution with a response function of finite duration N:

$$(r \star s)_j \equiv \sum_{k=-N/2+1}^{N/2} s_{j-k} r_k.$$

• Convolution theorem:

$$\sum_{k=-N/2+1}^{N/2} s_{j-k} r_k \Longleftrightarrow S_n R_n.$$

Here  $s_j$  is periodic with period N and the  $r_k$ 's are stored in wrap-around order.

#### Discrete correlation (NRiC §13.2, correl())

• Correlation of two sampled functions  $g_k$  and  $h_k$ , each of period N:

$$\operatorname{Corr}(g,h)_j \equiv \sum_{k=0}^{N-1} g_{j+k} h_k.$$

• Correlation theorem:

$$\operatorname{Corr}(g,h)_j \iff G_k H_k^{\star}$$

#### Power spectrum estimation (NRiC §13.4, spctrm())

- A *periodogram* is the discrete analog of the power spectrum.
- Since  $f_k$ 's are discrete, expect  $P(f_k)$  to be some kind of average of P(f) over a narrow window function centered on  $f_k$ :

$$W(s) = \frac{1}{N^2} \left[ \frac{\sin(\pi s)}{\sin(\pi s/N)} \right]^2,$$

where s is the frequency offset, in bins. Note  $\lim_{s\to\infty} W = (\pi s)^{-2}$ . W(s) is actually the square of the DFT of the unity (square) window function.

- There will be significant leakage if f is not a pure sine wave.
- To minimize leakage, choose a "rounder" window. E.g.,



• Other methods for power spectrum analysis exist, e.g., maximum entropy "all poles" method (*NRiC* §13.7), Bayesian analysis, etc.

## Unevenly spaced data points

- Cf. NRiC §13.8, period() and fasper().
- Can interpolate onto a regular grid, but may get spurious power at low frequencies.
- Instead, use Lomb normalized periodogram (see NRiC).
  - Normally  $\mathcal{O}(N^2)$  but can use approximation to get  $\mathcal{O}(N \log N)$ .
  - May remove aliasing (i.e., get real power above  $f_c$ ).