
A Crash Course on UNIXA Crash Course on UNIX

 UNIX is an "operating system".
 Interface between user and data stored on computer.

 A Windows-style interface is not required.
 Many flavors of UNIX (and windows interfaces).

 Solaris, Mandrake, RedHat (fvwm, Gnome, KDE), ...

 Most UNIX users use "shells" (or "xterms").
 UNIX windows systems do provide some Microsoft

Windows functionality.

The ShellThe Shell

 A shell is a command-line interface to UNIX.
 Also many flavors, e.g. sh, bash, csh, tcsh.

 The shell provides commands and functionality
beyond the basic UNIX tools.
 E.g., wildcards, shell variables, loop control, etc.

 For this tutorial, examples use tcsh in RedHat
Linux running Gnome.
 Differences are minor for the most part...

Basic CommandsBasic Commands

 You need these to survive: ls, cd, cp, mkdir, mv.
 Typically these are UNIX (not shell) commands.

 They are actually programs that someone has written.

 Most commands such as these accept (or require)
"arguments".

 E.g. ls -a [show all files, incl. "dot files"]

 mkdir ASTR688 [create a directory]

 cp myfile backup [copy a file]

 See the handout for a list of more commands.

A Word About DirectoriesA Word About Directories

 Use cd to change directories.
 By default you start in your home directory.

 E.g. /home/dcr

 Handy abbreviations:
 Home directory: ~

 Someone else's home directory: ~user

 Current directory: .

 Parent directory: ..

ShortcutsShortcuts

 To return to your home directory: cd
 To return to the previous directory: cd -
 In tcsh, with filename completion (on by default):

 Press TAB to complete filenames as you type.

 Press Ctrl-D to print a list of filenames matching what
you have typed so far.

 Completion works with commands and variables too!

 Use ↑, ↓, Ctrl-A, & Ctrl-E to edit previous lines.

Man PagesMan Pages

 To see all possible options to a command, use the
man command, e.g. man mv.

 WARNING: the man pages are very terse...
 Not for the novice; get a book instead, or go surfing.

 You can search the man pages by keyword with
the -k option.
 E.g. man -k rename

 Sometimes a command provides its own help.

WildcardsWildcards

 Wildcards provide handy filename substitution.
 E.g. ls *.c [list all files with extension ".c"]

 In tcsh, square brackets substitute for a range.
 E.g. cp obs0[0-9].fits tmp [copy first 10 FITS files]

 Curly brackets can be used to repeat patterns.
 E.g. a{b,c,d}e is shorthand for abe ace ade

 Use \ or single quotes (') to disable substitution.
 E.g. cd Data\[Oct01\] or cd 'Data[Oct01]'

Stream RedirectionStream Redirection

 Normally commands expect to receive input from
the keyboard and/or send output to the screen.

 Special redirection symbols can override this.
 E.g. ls > files.txt [send listing to file]

 mail dcr < hwk [mail file to user dcr]

 ls -l | more [pause listing by screenfuls]

 There are many other examples: see handout.
 WARNING: the syntax is very shell dependent!

Shell Variables & AliasesShell Variables & Aliases

 You can store information in a shell variable.
 E.g. set work = /home/dcr/Work

 To access the info, prepend a dollar sign ($).
 E.g. cd $work

 Shell variables are local to the shell; environment
variables are inherited by new shells and can even
be accessed internally by programs.
 E.g. setenv WORK /home/dcr/Work

Shell Variables & Aliases, Cont'dShell Variables & Aliases, Cont'd

 There are certain special variables.
 E.g. PATH contains a list of directories to search for

commands

 Aliases allow you to define new commands.
 E.g. alias rm rm -i [make rm ask for confirmation]

 Variables and aliases that you use all the time can
be defined in your "startup" file.
 E.g. in tcsh, ~/.tcshrc is your startup script

Command SubstitutionCommand Substitution

 In tcsh, you can use the result of a command as
part of a command.
 E.g. setenv OS `uname`

 Anything inside backward single quotes is first
evaluated in its own shell, and the result is
returned as a string of one or more words.

 This is very handy in scripts and in conjunction
with tools like sed and awk.

A Quick Word on EditorsA Quick Word on Editors

 There are many text editors to choose from.
 E.g. vi, emacs, pico, etc.

 To create scripts or programs, you will need to
learn how to use an editor!
 Also essential if you want to use formatting tools

such as LaTeX, etc.

 Windows systems often have good GUI editors.
 Note you can use cat or more to show file data.

sedsed

 The "stream editor" (sed) is a useful tool for
changing the contents of a file (or stream).
 E.g. sed s/apples/oranges/ myfile.txt will change the

first occurrence of "apples" on each line of myfile.txt
into "oranges". To change every occurrence, do the
following: sed s/apples/oranges/g myfile.txt.

 sed is great in scripts, but it can also be used from
the command line. E.g., in conjunction with the
foreach command, it's a handy way to rename lots
of files, like all *.JPEG files to *.jpg (EFTS).

awkawk

 awk is a powerful "pattern scanning and
processing" language.

 Use it to print a column of a file:
 E.g. awk '{print $2}' myfile.txt [print 2nd column]

 Use it to do math:
 E.g. awk '{print $1+$2}' myfile.txt [add columns]

 Use it as a calculator:
 E.g. echo '' | awk '{print sqrt(2)}'

awk, cont'dawk, cont'd

 You can write entire programs in awk:
 E.g. awk '/error/{print $0; n += 1} END {print n}'

myfile.txt [counts and displays lines containing
"error" in file]

 Like tcsh itself, awk syntax is reminscent of the
programing language C.

 awk, sed, wildcards, shell variables, stream
redirection, and command substitution enable the
creation of very sophisticated tcsh scripts...

ScriptsScripts

 A script is a sequence of shell commands, usually
stored in a file and either sourced or executed like
a program. Here's a simple example:

 foreach file (*)
 if (-d $file) then
 echo $file is a directory
 endif
 end
 To aid with scripting, tcsh has a number of built-

in commands, such as foreach, if, while, etc.

Scripts, cont'dScripts, cont'd

 A special variable called argv is defined inside a
script (shell). It contains any arguments passed to
the script (shell).
 E.g. echo $argv [show all arguments]

 echo $argv[2] [show the 2nd argument]

 echo $#argv [show the number of args]

 You can do integer math within a script using @.
 E.g. set x = 0; @ x = $x + 1; echo $x [good for loops!]

What We Didn't CoverWhat We Didn't Cover

 File permissions (chmod)
 Managing jobs (ps, nice, kill)
 Printing (lpr)
 Remote connections (ssh, scp)
 System administration (not for the faint of heart)
 And lots of other stuff!

 See the handout for web tutorials, etc.

