Fluid Dynamics

Massimo Ricotti

ricotti@astro.umd.edu

University of Maryland

- The equations of fluid dynamics are coupled PDEs that form an IVP (hyperbolic).
- Use the techniques described so far, plus additions.

Fluid Dynamics in Astrophysics

- 99% of normal matter in the Universe is in gas or plasma (ionized gas) phase
- Whenever mean free path $\lambda \ll$ problem scale L in a plasma, can use continuum equations to describe evolution of macroscopic variables, e.g., density, pressure, etc.
- Mathematically,

$$\lambda \simeq \frac{1}{\sigma n} \sim \frac{10^{16}}{[n/1 \text{ cm}^{-3}]} \text{ cm},$$

where σ = classical cross-section of atom or ion ($\sim \pi r_{Bohr}^2$).

Medium	$\sim n~({ m cm}^{-3})$	$\sim\lambda$ (cm)	$\sim L~({ m cm})$	Scale
planetary atmosphere	10^{20}	10^{-4}	₁₀ 2–3	1–10 m
stellar interior	10^{24}	10^{-8}	10^{11}	1 R_{\odot}
protoplanetary disk	10^{10}	10^{6}	10^{13}	1 AU
GMC	10	10^{15}	10^{19}	10 pc
diffuse ISM	1	10^{16}	10^{20}	100 pc
cluster gas	0.1	10^{17}	10^{22}	10 kpc
universe	10^{-6}	10^{22}	$> 10^{24}$	> 1 Mpc

- What would we like to learn from studying fluid dynamics?
 - Steady-state structure of certain fluid flows, e.g., stellar structure, accretion and winds around stars and compact objects
 - 2. Time evolution of system, e.g.,
 - stellar evolution
 - ISM=interstellar medium and IGM=intergalactic medium
 - Propagation of shocks through clumpy medium (SN explosions).
 - Accretion flows onto protostar or black hole.
 - Formation of structure in universe.
 - 3. Growth and saturation of instabilities, e.g.,

- Important in SN explosions, ISM, etc.
- Kelvin-Helmholtz:

- Important in jets and outflows in ISM.
- To study these phenomena, must use equations of fluid dynamics.

Equations of Fluid Dynamics

1. Continuity equation:

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \mathbf{v}) = 0, \tag{1}$$

where $\rho = \text{mass density}$, $\mathbf{v} = \text{velocity}$, and $\nabla = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$.

Sometimes see this written as:

$$\frac{D\rho}{Dt} = -\rho \nabla \cdot \mathbf{v},$$

where $\frac{D}{Dt} \equiv \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla = \text{Lagrangian or co-moving or}$ substantive derivative (rate of change of ρ in fluid frame, as opposed to $\frac{\partial}{\partial t} = \text{Eulerian derivative, rate of change in lab}$ frame). For an incompressible fluid, ρ is constant in space and time, so the continuity equation reduces to:

$$\nabla \cdot \mathbf{v} = 0.$$

The continuity equation is a statement of mass conservation.

2 Euler's equation (equation of motion):

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \frac{\mathbf{F}}{\rho} - \frac{1}{\rho} \nabla p, \qquad (2)$$

where $p = \text{pressure and } \mathbf{F} = \text{any external force (other than gas pressure) acting on a unit volume.}$

More compactly,

$$\rho \frac{D\mathbf{v}}{Dt} = \mathbf{F} - \boldsymbol{\nabla} p.$$

Solution For gravity, have $\mathbf{F} = -\rho \nabla \phi$, where $\nabla^2 \phi = 4\pi G \rho$. In hydrostatic equilibrium, $\mathbf{F} = \nabla p$, so there is no mass flow. E.g., in 1-D, have $dp/dr = -\rho GM(r)/r^2 = -g\rho$, where g =gravitational acceleration.

- Solution
 ✓ For viscosity, $F = \mu \nabla^2 v$, where μ = coefficient of dynamical viscosity, assuming ρ = constant (incompressible fluid). If there are no other force terms in F, this gives the Navier-Stokes equation.
- Similarly, can add force terms for electric and/or magnetic fields.
- For the steady flow of a gas, $\partial v / \partial t = 0$ and, if there are no external forces, get

$$p \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla p,$$

which is Bernoulli's equation for compressible flow.

Euler's equation is a statement of momentum conservation.

3 Energy equation:

$$\frac{\partial e}{\partial t} + \boldsymbol{\nabla} \cdot \left[(e+p) \mathbf{v} \right] = 0, \tag{3}$$

where $e \equiv \rho(\varepsilon + \frac{1}{2}v^2)$ = energy density (energy/volume) and ε = specific internal energy (energy/mass).

In Lagrange form,

$$\frac{De}{Dt} = -e(\boldsymbol{\nabla} \cdot \mathbf{v}) - \boldsymbol{\nabla} \cdot (p\mathbf{v}),$$

or, more compactly,

$$\frac{D\varepsilon}{Dt} = -\frac{p}{\rho} (\nabla \cdot \mathbf{v}).$$

• The energy equation is a statement of *energy conservation* (there are many alternative ways to write the energy equation, depending on the context, e.g., using specific enthalpy $(= \varepsilon + p/\rho)$, specific entropy combined with temperature and heat transfer, etc.). 4 Equation of state:

$$p = p(\rho, \varepsilon). \tag{4}$$

Needed to close system.

E.g., for ideal gas, p = (γ – 1)ρε, where γ = adiabatic index (= ratio of specific heats at constant volume and pressure). ^a For ideal monatomic, diatomic, and polyatomic gases, γ = 5/3, 7/5, and 4/3, respectively.

^{*a*}Also have pV^{γ} = constant, $TV^{\gamma-1}$ = constant, $Tp^{(1-\gamma)/\gamma}$ = constant.

Solving the Equations of Fluid Dynamics

- There are many choices one can make when adopting a numerical algorithm to solve the equations of fluid dynamics, e.g.,
 - 1. Finite differencing methods, including:
 - (a) Flux-conservative form.
 - (b) Operator splitting.
 - 2. Particle methods (e.g., smoothed particle hydrodynamics, or SPH).

Schematically (will discuss methods in *italics*),

