
ASTR 601 - Radiative Processes

Final (10:30am-12:30am Monday, Dec 18th 2006)

1 Specific intensity from a galaxy [5 pts]

Consider an idealize model of a galaxy where stars are distributed uniformly within a
cylinder of radius R and height H. The number density of stars is n [in units of stars per
volume]. Model each star as a spherical black body of temperature T∗ and radius R∗. The
number density of stars n is so low that of all possible lines of sight running through the
galaxy, the fraction that intersects a star is � 1. An observer resolves the galaxy in a
face-on viewing geometry, but does not resolve the individual stars making up the galaxy.

a) Write down the specific intensity the observer measures. Neglect terms of the order
H/d, where d is the distance to the galaxy.

2 Clouds [10 pts]

Idealize the clouds as a uniform, 1-dimensional slab comprising particles that can only
scatter light. A uniform flux of photons irradiates the top of the cloud deck. A photon
passing through the cloud gets bounced like a pinball from cloud droplet to cloud droplet,
preserving its frequency and never getting absorbed by any droplet. A few photons are
lucky enough to make it through the cloud, while most get pinballed back out the way
they came. We will calculate the fraction that make it through.

Take the cloud to have a droplet density [droplets per cubic volume] ncl, the droplet radius
to be R, and the vertical thickness of the cloud to be zmax. Measure vertical distance
through the cloud by z, where the top of the cloud is located at z = 0 and the base of the
cloud is located at z = zmax.

(a) Write down the optical depth of the cloud, τ .

(b) Incident photons from the sun strike the top of the cloud. The photons have a number
flux, Fi [number per time per area]. What is the number density of incident photons at
the top of the cloud? Call this photon number density ni. These incident photons have
NOT been scattered yet by any droplet.

(c) These photons random walk through the scattering droplets. Random walks are
described by the diffusion equation,

∂n

∂t
= D

∂2n

∂z2
(1)

where D is the diffusion coefficient and n is the photon number density. Express D in terms
of symbols defined above and whatever fundamental constants you deem appropriate.
Hint: dimensional analysis may prove useful.

(d) In steady-state, ∂n/∂t = 0 (the number density of photons everywhere in the cloud
does not change with time). Write down the solution to the diffusion equation for n(z).
Hint: You should have two, as yet unknown, constants of integration.

(e) To solve for the two constants of integration, you need two boundary conditions. The
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first condition is that nt = n(z = zmax). Here nt is the number density of photons at the
base of the cloud. These photons comprise the transmitted flux. The second condition is
that the (net, number) flux, F , of photons at z = 0 equals the incident flux, Fi (directed
down into the cloud) MINUS the outgoing, reflected flux, Fr (directed up, away from
the cloud into space). So we have F (z = 0) = Fi − Fr. Recall that the (net) flux
F = −D∂n/∂z. Use the above, and the fact that the incident flux, Fi, must equal the
reflected flux, Fr, PLUS the transmitted flux, Ft, to calculate T = Ft/Fi, the ratio of the
transmitted flux to the incident flux, in terms of τ .

(f) If you clouds did absorb light instead of scattering it, what would be the transmit-
ted flux assuming the same optical depth for scattering and absorption ? Compare the
transmitted flux for scattering and absorption for τ = 1, 2 and 3.

3 Cooling time of Supernova remnants at high redshift [10 pts]

We will estimate the cooling time of the hot gas produced by the explosion of a Supernova
at high redshift. Let’s assume that the gas inside the Supernova remnant is pure hydrogen
with a number density nH = 0.01 cm−3, is fully ionized and has a temperature T = 106

K.

(a) Estimate the cooling time of the gas due to free-free emission. Recall that the total
emissivity per unit volume due to free-free emission is approximately

ε = (1.4 × 10−27 ergs−1cm−3)T 1/2nenp.

Hint: In order to calculate the cooling time you need to compare the emissivity to the
thermal energy density of the gas.

(b) Estimate the cooling time of the gas due to inverse Compton scattering with the
radiation of the Cosmic Microwave Background that is a black body with temperature
T = 2.73(1 + z) K. Hint: Use the formula for the total Compton power (in the non-
relativistic limit) and compare it to the thermal energy of the gas. If you do not remember
the formula for the total Compton power try to derive it using dimensional analysis
recalling that it depends on Uph and the Thompson cross section σT = 6.65 × 10−25 cm2.

(c) At which redshifts Compton cooling dominates over free-free cooling ?

4 Absorption and emission coefficients: [5 pts]

(a) Write down the emissivity and the opacity in terms of the Einstein coefficient.

(b) Write down the opacity in terms of the absorption cross section and the oscillator
strength. Hint: if you do not remember the formula for the cross section in terms of the
oscillator strength you may be able to derive it using the formula in (c) and recalling why
the oscillator strength has such a name.

(c) Recall that the quantum mechanical derivation of the bound-bound cross section can
be written in terms of the matrix element X12: σν = (4π2/3)αωδ(ω − ω12)|X12|

2, where
α = e2/h̄c is the fine structure constant. Derive the formula for the oscillator strength,
f12, in terms of X12. Why f12 is called “oscillator strength”?
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Some (possibly) useful numbers:

Astronomical constants

1 yr = 3.16 × 107 s
1 pc = 3.086 × 1018 cm
1 AU = 1.50 × 1013 cm
1 M� = 1.99 × 1033 g
1 L� = 3.85 × 1033 erg s−1

1 R� = 6.96 × 1010 cm
G = 1.33 × 1011 km3 s−2 M−1

�

Physical constants

G = 6.673 × 10−8dyn cm2g−2

c = 2.998 × 1010 cm s−1

h = 6.626 × 10−27 erg s
k = 1.38 × 10−16 erg K−1

σ = ac/4 = 5.67 × 10−5 dyn cm−2 K−4

N0 = 6.02 × 1023 mol−1

1 eV = 1.602 × 10−12 erg
e = 4.803 × 10−10 esu
me = 9.109 × 10−28 g
mp = 1.673 × 10−24 g

Units

1 arcsec (1′′) = 4.84814 × 10−6 radian
1 Angstrom (Å) = 10−8 cm
1 Micron (µm) = 10−4 cm
1 Jansky (Jy) = 10−26 W m−2 Hz−1 = 10−23 erg cm−2 s−1 Hz−1
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