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1 Introduction

The advent of quantum field theory (QFT) was marked by a the need for a new quantum theory of
matter. Ordinary quantum mechanics is well suited to handle problems with few particles at low
energies. But, much interesting physics happens at high energy where particle creation occurs and
where relativistic effects become important. QFT represents the successful marriage of quantum
theory with relativity and is equipped to handle particle creation. It is the particle creation aspect
of QFT that we wish to explore here.

2 Canonical Quantization

To ease the presentation we cover some basic aspects of QFT that are important for the following
arguments. To begin we ask a simple question, ”How do we do QFT?”. To answer this question we
explore the simplest approach, that of canonical quantization. The structure is simple, we begin
with the Lagrangian for the field of interest, and in our case we choose a massive scalar field.

L =
1
2
∂µφ∂µφ− 1

2
m2φ2 (1)

Employing the methods of classical physics we can find the conjugate momenta (to the field) by
computing the variational derivative with respect to φ̇.

Π =
δS

δφ̇
(2)

With the definition of the canonical momentum we can find the Hamiltonian for the field
via the the Legendre transform of the Lagrangian.

H =
∫

d3x[
1
2
Π2 +

1
2
(∇φ)2 +

1
2
m2φ2] (3)
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To quantize the theory we promote the field and canonical momentum to quantum operators
and impose equal time commutation relations.

[φ̂(~x, t), Π̂(~x′, t)] = i~δ(~x− ~x′) (4)

[φ̂(~x, t), φ̂(~x′, t)] = 0 (5)

[Π̂(~x, t), Π̂(~x′, t)] = 0 (6)

After imposition of the equal time commutations relations we can now use our Hamiltonian
(operator valued) to find the Heisenberg equations of motion.

dφ̂

dt
=

1
i~

[φ̂(x), Ĥ] (7)

This leads to the field equation, which is the same equation that can be obtained by variation of
the action, S, with respect to the field, we get.

∂µ∂µφ + m2φ = 0 (8)

This particular form of our quantum field theory is not the most useful for describing
creation and destruction of particles. The ”second quantized” form most easily describes particle
creation. We arrive at the second quantized form by first solving the classical field equation and
expressing the field in terms of orthonormal modes.

φ(x) =
∫

dµ(~k)[akuk(x) + a†u∗k(x)] (9)

Where the inner product is defined as,

(φ1, φ2) = −i

∫
Σ

dΣµ√−gΣφ1(x)~∂µφ2(x) (10)

Σ is a future directed spacelike hypersurface, in mikowski space often taken to be a t = const
surface. gΣ is the determinant of the induced metric. The mode solutions to the field equation
satisfy

(uk, u
′
k) = δkk′ (11)

(uk
∗, u′k

∗) = −δkk′ (12)
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(uk
∗, u′k) = 0 (13)

To continue we promote the coefficients of the mode decomposition to quantum operators. It can
be shown that the equal time commutation relations imply that,

[ak, a
†
k′ ] = δkk′ (14)

[ak, ak′ ] = 0 (15)

and that the Hamiltonian takes the form

Ĥ =
∫

dµ(~k)~ω[a†a + 1/2] (16)

where dµ is an appropriate measure for the mode decomposition. The interpretation now becomes
obvious, the energy i.e. 〈H〉 and commutation relations are those of the creation and annihilation
operators for a simple harmonic oscillator with circular frequency ω. Where special attention is
taken to match positive frequency modes with annihilation operators i.e. modes that satisfy the
eigenvalue equation Luk = −iωuk, where L is the Lie derivative along a timelike killing vector. All
properties of these operators easily follow from the commutation relations. Particularly, we can
define the Fock space,

ak |0〉 = 0 ∀k (17)

ak |n〉 =
√

nk |nk − 1〉 (18)

a†k |nk〉 =
√

nk + 1 |nk + 1〉 (19)

where nk is the number of quanta in the kth mode. The main point to take from this section is
that it is the coefficients of the mode decomposition that become the quantum operators, and these
coefficients define the Fock space.

3 Quantum Field Theory in Curved Space

To do QFT in curved space we need to account for the effects of curvature. All derivatives are
replaced by covariant derivatives, the coordinate volume element is multiplied by the fundamental
volume element,

√
−g, and we must add all local interactions with the curvature with the correct

dimensions. For a massive scalar field in curved space the action takes the form

S =
1
2

∫
dnx

√
−g[∂µφ∂µφ−m2φ2 + ξRφ2] (20)

where only the partial derivative plays a role in the action because the derivative acts on a scalar,
and R is the scalar curvature. In such a model we are not accounting for the backreaction of
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the quantum field on the spacetime, we specify the geometry of the space and study the effects
curvature has on the quantum field.

In this section we skip all the formalism of canonical quantization. We vary the action with
respect to the field to yield the classical field equation, we solve the field equation to find the mode
solutions, and promote the coefficients in the mode expansion to quantum operators.

∇µ∂µφ + (m2 + ξR)φ = 0 (21)

For general spaces there are often many mode solutions to choose from, and often positive
frequency modes of one solution have nonvanishing innerproduct with negative frequency modes of
another solution. Consider two solutions u1k and u2k. We can write the field operator as,

φ =
∑

k

[aku1k + h.c.] (22)

or equivalently as
φ =

∑
k

[bku2k + h.c.] (23)

where a is the destruction operator for mode solution 1, b is the destruction operator for mode
solution 2, and the sum on k represents the appropriate mode sum. Both sets of modes form a
complete set, and thus we can represent a mode function of one solution in terms of the other.

u1i =
∑

j

[αiju2j + βiju2j ] (24)

Using this and the previous two relations we can write the annihilation operators for one solution
in terms of creation and destruction operators for the other. This yields the so called Bogoliubov
transformations.

ak =
∑

j

[αkjbj + β∗kjb
†
j ] (25)

bk =
∑

j

[α∗
kjaj − β∗kja

†
j ] (26)

These relations tell us that for general spaces any two sets of modes do not necessarily share the
same vacuum i.e. ak |02〉 6= 0. This failure of two modes to have the same vacuum is encoded
in the coefficient β. This is at first very troubling. Have we lost our prized concept, particles?
The answer is yes. The notion of particles is defined given the global properties of the space i.e.
the mode structure. For example, nonstatic solutions to the einstein equation will not possess a
timelike killing vector, without which we have no way to define positive frequency modes. This is
not just a feature of doing QFT in curved spaces, even in flat spacetime a uniformly accelerated
detector in vacuum will detect a thermal spectrum of particles with temperature proportional to
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the acceleration [1]. But, in certain situations we can make fruitful analysis regarding particles, for
example asymptotically flat spacetimes.

4 Example

In this section we employ the formalism of the previous sections to work out an explicit example of
cosmological particle creation. Our example is a massive scalar field minimally coupled i.e. ξ = 0
in an expanding universe in (1+1), where all spaces are conformal to minkowski space. We follow
the treatment of Birrell and Davies [2]. We write our metic

ds2 = C(η)[dη2 − dx2] (27)

where η =
∫

dt/a(t), and C(η) = a2(η). We pick C(η) = A + B tanh(ρη). Now we wish to find the
mode solutions. The spatial part of the metric is still homogeneous so we write solutions for the
modes as

uk =
1√
2π

χk(η)eikx (28)

From the field equation we find that χ satisfies

χ̈ + [k2 + m2C(η)]χk = 0 (29)

For this model we can find many mode solutions, the two that are relevant to our presentation here
are

u1 =
1√

4πωin
exp{ikx− iω+η − (iω−/ρ) ln[2 cosh(ρη)]} (30)

×2F1(1 + (iω−/ρ), iω−/ρ : 1− (iωin); (1 + tanh(ρη))/2)

u2 =
1√

4πωout
exp{ikx− iω+η − (iω−/ρ) ln[2 cosh(ρη)]} (31)

×2F1(1 + (iω−/ρ), iω−/ρ; 1 + (iωout); (1− tanh(ρη))/2)

where
ωin =

√
k2 + m2(A−B) (32)

ωout =
√

k2 + m2(A + B) (33)

ω± =
1
2
(ωout ± ωin). (34)

We see that u1 reduces to standard positive frequency plane waves in the asymptotic past, we call
these the ’in-modes’,

u1 ∼ eikx−iωinη (35)
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and in the asymptotic future we have that u2 reduces to the standard positive frequency plane
wave form, these are the ’out-modes’.

u2 ∼ eikx−iωoutη (36)

Thus the physical vacuum is defined by the u1 in the asymptotic past and by u2 in the future.
Because these two sets of modes are not the same we find a nonvanishing coefficient β when we
relate in-modes to out-modes.

βk =
√

ωout

ωin

Γ(1− (iωin/ρ))Γ(iωout/ρ)
Γ(1 + (iω−/ρ))Γ(iω−/ρ)

(37)

There is only one index because the transformation is diagonal.

Now let us interpret this result. Let our initial state be the vacuum defined by the in-modes,
|01〉. If we work in the Heisenberg picture our state is constant in time, but as our space evolves we
find that |01〉 is no longer regarded as the physical vacuum in the asymptotic future, the vacuum
in the future is defined with respect to u2, and thus inertial observers in the asymptotic future will
detect particles in the state |01〉. If we compute the number of particles in the nth mode in this
state at late times we find,

Nk = 〈01| b†kbk |01〉 = |βk|2 =
sinh2(πω−/ρ)

sinh(πωin/ρ) sinh(πωout/ρ)
(38)

where it should be noted that the appropriate number operator is defined in terms of the creation
and annihilation operators corresponding with the out-modes.

By analyzing our expression for the particle production we find that |βk| ∼ e−2πωin/ρ. From
this we infer the expected result that the particle production is exponentially suppressed at high
energies.

5 Conclusion

We have seen that through the practice of standard quantum field theory in curved space that the
notion of particles is an observer dependent concept, and that in general the vacuum is not unique.
We used a simple example with a well defined notion of particles i.e. asymptotically flat, to study
the general aspects of cosmological particle production. As expected we see that the production of
high energy quanta is suppressed.
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