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Atomic Structure (recap)

Time-dependent Schroedinger equation:

oy

Stationary solution: v (r,t) = pe'Ft/" where
Hp=FEyp

Is time-independent Schroedinger equation.
For hydrogen atom, neglecting spin, relativistic effects, nuclear effects,

the Hamiltonian is
2
o [Pl
2Me

o 6¢7

where the momentum p = iAV is an operator and ¢(r) = e/r.
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Solution for hydrogen atom in terms of eigenfunctions (complete
orthonormal base):

R(n,1)

¢<T797¢> — )/l,m<97¢)
Where spherical harmonics obey the eigenvalue problem,

infl,m — l(l+1>h2YVZ,m7 (1)
Lz}/l,m — mh}/l,ma (2)

and the radial function obeys the differential equation

d*R, 2, I(1+1
R’l+{ 2 | B - 2| - i >}Rn,l=o.

dr? r r2

where E,, = —e?/2n?, withn =1+ 1,1+ 2,1+ 3, ....
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Non-reativistic limit of EM Hamiltonian

For hydrogen atom: m,v?/2 ~ e?/2ay where ag = h*/m.e?. Thus,
velocity v/c ~ e /hc = a = 1/137 is NR.
The NR Hamiltonian of single particle in EM fied is:

1
H =
2Me

e 2
P + ZA’ —egb,

where m.%X = p + (e/c)A is the particle momentum and A and ¢ are
the EM vector and scalar potentials.

In Coulomb gauge (V- A = ¢y = 0) can be shown that A represent

EM in vacuum (i.e., LJA = 0) and ¢ represent the static potential of atom.
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Thus, Hamiltonian can be separated in H = H,; + H;,,¢, with
H,.. = Hi + H, where

e e
Hy = (P-A+A-p)=

2MmeC MeC

A'pa

(note that in Coulomb gauge [A, p] = 0), and

62

Hy = A - A (two photon processes).
2m.c>

Can show that Hy, < H; <« Hg;, with

Hy/H, ~ H,/Hgy ~ (npnag)/? < 1

Semi-Classical Theory of Radiative Transitions — p.5/1.



Because 1A = 0 we can write;

A= Z [ea(f{)aa(k)ei(k"‘_m) + c.c.}
k,«o

From Parsival theorem we have
Hyag = — / dz® (B + B2) = 22 5 (|Ea(K)? + [Ba(k)?)
87T \V4 87T

k,«

In Coulomb gauge we have E = —(0A/0t)/c, B =V x A. Thus,
E, = ikageq, Ba = ikao(k x e,) and

V 2 2
Hyoq = Gy kz:k |aa(k)|

In terms of photon occupation number:

hNo (k)
Vw
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Hyag =Y hwNuy(k), = |aa(k)| = c [
k,a



Thus,

where
Hs = ‘ [ f M(k)] v eik'xea(f{) P (3)
@ Me | VW ’
o Me | Vw ’

Note, we added 1 to 2nd eq. to account for spontaneous emission
processes. Our semi-classic treatment in which the EM field is not
quantized. ¢ and a' should be operators (creation/annihilation
operators) that do not commute: [a,a'] = he/wV. This gives rise to
spontaneous emission term.
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Perturbation theory

We may expand the perturbed wave function ) as follows:

¢(37, t) — Z Cj (t)gpj (gj)e_iEjt/h

J

because Hy is Hermitian operator and ¢; satisfying Hop; = E;p;
forms a complete orthonormal basis for representing any wave
function for the atomic system.

Thus, eliminating the zero-th order terms we have

Hiyp = Z Cjngpje—iEjt/ﬁ _ ihz éjgpje—iEjt/h _
J j

Now we can multiply by (p¢| = Sp;zeiEft/h

Z@“"f”t () f|Hilpj) = ihcy(t) where wy; = (Ey — Ej)/.
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Absorption transition probability

Because at t = 0 we have c; = ¢,; to zero-th order we can drop all
terms 5 # ¢ in the summation:

t
cr(t) = —z’h_1/ < pf|Hilp; > st at!
0
etlwri—w)t _q
= It < s |H i > [ ]
(wfi —w)

Thus, going to the continuous limit and using dk® = ¢ 3w?dwdf?, the
transition probability Py = >°,  |cs|?is

1% A3k b sin[(w — wy;)t/2] ik-x
P = (e | i oA 0P S x e el

Thus, the transition rate probability is dP;¢/dt ~ const(t).
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Dipole Approximation

Approximate e’** =1+ k -x + ... ~ 1 thus

1k-x

< prle"Feq - plps >~ eqr < pr|Plp; >

It is useful to express the momentum operator as the commutator

h2 h2 R
(V2X — XV2) = ——V = —Z—p

2Me Me Me

|Hy,x| = Hyx — xHy = —

Thus,

< prlplwi >= imew s X, where Xy =< pr|x|p; >
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Bound-bound absorption cross section

Finally, from the transition probability rate we derive the cross section
o, for a flux of photons ¢/ integrated over phase-space elements:

dP; 47Te2w§’% 5 1
= —F—= i)| X fil® =
dt shes Y (wri) [ Xl (27)3

/OO o,eN(w)dk.
0

Thus, o, = %a\XﬁPwé(w — wy;), Where « is the fine structure
constant. In terms of the classical cross section for bound-bound

transitions we have;:
7T€2

O, —

f12¢12(V),

MeC

where the oscillator strength in terms of the matrix elements is:

2me (wa1]X21])?
3hwo1

~ 1.

fi2 =

(ratio of kinetic energy of electron to the emitted photen faergyy s manstions -p1u1



Relativistic Electromagnetic Hamiltonian

Relativistic Hamiltonian with EM field:
H = [(cp — eA)? + m2c*)Y2 + e¢

Relativistic hard to separate due to square root. Two approaches:
1) Klein-Gordon (without electromagnetic potentials for simplicity)
sguare operators in Schroedinger eq before applying to v:

H?vp = hd*1) /Ot?

1 0? me 2
2
_ ) (= =0
(- zam) - (%) ]
Operator is d’Alambertian where the second term is the Compton
wavenumber of particle of mass m.
The solution represent the equation for scalar field » in QFT. Scalar

field represent a gauge boson of mass m and spin s = 0. Photon is a
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Dirac approach

Rewrite relativistic equation as linear in p:
H =a-Pc+bmc? +ep = [(PP? + m2cHY? + e¢

where P = p — e¢/cA is the relativistic particle momentum.

The coefficient a and b need to be 4 x 4 matrices to satisfy the
equation.

The solution gives rise to concepts of spin and anti-matter. For particle
at rest in vacuum there are 2 possible eigenvalues of energy:

E = +m.c*.

What represent a negative rest mass energy? Dirac interpretation of
anti-particle: a hole in “sea” of negative rest-mass energy particles (not
guite rigorous).

Feynman interpretation of anti-particle: positive rest-mass energy but
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moving backward in time (more rigorous interpretatioriy.
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