
CARMA Memorandum Series #999

IMAGE CUBE I/O: Comparing access patterns

Peter Teuben

University of Maryland

April 16, 2013

ABSTRACT

A number of data cube I/O patterns are defined, and their methods are compared

in performance and code complexity in a few common astronomical data analysis pack-

ages.1 We focus on multi-dimensional access (> 3-Dim). Some relevant benchmarks are

defined. For the example of clumpfinding an overview is giving of the available commu-

nity codes, and a unified frontend to running and analyzing comparing their clumps is

described.

This is work in progress for AStute.

1partially based on a talk given at STSCI on March 31, 2011

– 2 –

Change Record

Revision Date Author Sections/Pages Affected

Remarks

0.1 2011-Oct-15 P. Teuben

Initial version

0.2 2011-Dec-05 P. Teuben

Add cube examples

0.3 2013-Apr-12 P. Teuben

Various updates for AStute, added clumpfinders

– 3 –

1. Introduction

2. Image Cube Analysis Patterns

First of all, some example image cubes, all available upon request. The typical image “cubes” we

will discuss here are 1k x 1k x 10k, but we are using several examples: 2

1. Orion EVLA datacube is 96 x 96 x 24,012. Although spatially small, rich in spectral lines.

This cube is well separated in space and line though, unlike C. Brogan’s SMA data (not

available yet)

2. The NGC 1333 example , about 1000 x 1000 x 150, in three molecules, two of which have 3

hyperfine lines. (CARMA 2011 data, not available in final form yet)

3. SMC ATCA (HI) cube, an example of heavily warped galactic disk. Extra bonus diffi-

culty: this galaxy is so nearby, that perspective corrections are needed. (see also 1999MN-

RAS.302..417S.pdf). Cube is 578 x 610 x 78 (107MB).

4. the NGC 6503 cube, a simple galaxy rotating disk (VLA data, 2005?) See figure ??

5. ROS13, the Rosetta Nebula, in optically thin 13CO, used as the benchmark in the 1994

ClumpFind paper. This is a small 61 x 61 x 27 cube, but 39533 of the 100467 pixels (40%)

are masked out.

2.1. single line

The NGC 6503 VLA datacube is fairly modest in size, and relatively straightforward to analyze.

Single profiles. Some challenges are to find HVC in “forbidden” areas, as has been done in other

galaxies. There is at least one suspicious blob in this cube, not clear if this has been noted in

the literature. An older VLA cube is 256 x 256 x 31 (4MB) observed in 1983 (published in

1985AJ.....90.1038V). Newer VLA data is 371 x 251 x 89 (32MB) from 1996 (published in e.g.

2009AJ....137.4718G)

2.2. hyperfine transition

Our own CARMA data of three molecules for NGC 1333. HCO+ is a single line, HCN a simple

triplet, and N2H
+ a triplet of which the low and middle component contain a triplet in themselves,

usually forming a blended set of three lines each. At high enough resolution this would 7 hyperfine

transition lines. This combination gives for interesting experiments in clump finding.

2Some of this on: ftp://ftp.astro.umd.edu/pub/carma/data

– 4 –

2.3. single line,complex geometry, possible warping

The ATCA HI data of the SMC is very complex. At many positions multiple components are

visible.

2.4. multiple lines, with possible blending

The Orion EVLA (900MB) datacube is an example of something that will approach the size and

complexity of what we are aiming at. It

The SMA data C.Brogan has been showing at meetings is overwhelmingly complex, a lot of blending,

a large fraction of un-identified lines.

3. Modeling

Understanding observations, in particular their modeling, will be a key component of analysis code.

First some notation, in a very generic way (cf. CASA’s measurement equation):

• M : model

• T : telescope model that transforms a model into telescope (observable) data

• O : observations

• R : reduction operation (e.g. dimensional, 3d to 2d or 1d)

3.1. Invert the observations

Either the observations can directly be inverted:

M = O−1

or the model can be inverted after some reduction operator

M = (O.R)−1

3.2. Match the transformed model to the observations

The model can be virtually observed through with a model telecope, and then compared (and

minimized w.r.t. various parameters) to the observations:

||M.T −O||

– 5 –

3.3. Examples of reduction operators

• Taking moments along the 3rd spectral axis, one obtains the total emission, the mean veloc-

ity3, velocity dispersion and even higher order moments.

• For given geometry of an ellipse (center, position angle and eccentricity), one can fit, in this

case a circularly rotating disk

Vobs(x, y) = Vt(R) cos θ sin i

Several reduction parameters can be used in succession. For example, after taking a first moment

to obtain a mean velocity along the 3rd axis,

3.4. Segmenting and Clump Finding

Astronomers and Computer Scientists can use different words to mean the same thing. Segmenting

in CS (normally done in 2D images) is the essentially the same a clump-finding in 2D and 3D cubes.

All it does is identify which pixels/voxels belong to a “clump”, after which various properties can

be determined for these clumps, and multi-variate analysis , principle component (PC) be used to

find relationships.

Idea: masks can be used to define clumps, each clump their own mask? Giving more modular

code? Mask has on optional convex area definition, with a classic true/false bitmask for each pixel

inside.

4. Package Overview

1. miriad : Uses the classic low-memory line-based I/O to fortran-style (column-major) multi-

dimensional arrays. Access to (hyper) cubes is done by indexing. This is done in the xyio

routines. This approach makes for slightly complicated application code. An alternative

approach is done in the xyzio routines, which simplify access when higher level needs access

different

2. nemo : uses memory based I/O, the data-array can be read in one big chunk, and simple

data[ix][iy][iz], as well as the miriad style line based access for very large cube, can be

used.

3. eclipse : uses memory based fits image based I/O. Developed in 1995, their last version

appears to be from 2005 and perhaps fell out of fashion. Was meant to be the driving engine

for (ESO) pipeline. Now there is the Common Pipeline ... Appears

3mean, median, peak; this and many more used

– 6 –

4. gipsy : a novel new approach using GDS - cf. Starlink’s HDS?

5. CASA : lattice I/O, very general slicing access methods

6. pyfits : using scipy data[iz,iy,ix] Note that you can opt to store the arrays in column major

or row major order.

5. MIRIAD

MIRIAD started development in 1988, and thus (similar to Classic AIPS) adopted a low memory

approach to what we then realized could be sizeable 100 MP cubes (1k x 1k x 100 channels).

5.1. xyio

The industry standard at the time was AIPS, and thus a typical access to miriad images was row

based4

real sum, data(MAXDIM)

call xyopen(lun,’cube.mir’,nx,ny,nz)

do k=1,nz

call xysetpl(lun,k)

do j=1,ny

call xyread(lun,j,data)

do i=1,nx

sum = sum + data(i)

enddo

enddo

enddo

call xyclose(lun)

Two important aspects to image I/O should be added to this simplified code example: masking

and region selection. A masking cube lives separate from the image data cube, and is boolean

in nature, instead of floating point. Programs exists to mask out data that are deemed “bad”.

The programmer needs to call masking I/O routines that are very similar to the image data I/O.

Region selection is normally parsed from the commandline region= keyword, and transformed

into an integer runs(3,MAXRUNS) data structure. Instead of looping over the cube in the before

mentioned method, acccess would now become:

4the examples below use a simplified argument list to illustrate the method, the actual implementation is different

– 7 –

real sum, data(MAXDIM)

call xyopen(lun,’cube.mir’,nx,ny,nz)

do k=1,nz

call xysetpl(lun,k)

do j=1,ny

call xyread(lun,j,data)

do i=1,nx

sum = sum + data(i)

enddo

enddo

enddo

call xyclose(lun)

Application code that does not need to accumulate data beyond a single dimension can easily be

written. For routines that need to keep an image plane in memory, can be written lazy as follows:

real data(MAXDIM,MAXDIM)

do j=1,ny

call xyread(lun,j,data(1,j))

enddo

for large values of MAXDIM it is more efficient to fill the array as a one dimensional array, and pass

the work on to a subroutine that automagically knows about the two dimensions:

real data(MAXDATA)

idx = 1

do j=1,ny

call xyread(lun,j,data(idx))

idx = idx + nx

enddo

call worker(data,nx,ny)

..

subroutine worker(data, nx, ny)

integer nx, ny

real data(nx,ny)

..

end

– 8 –

5.2. xyzio

When access to datacubes is not channel based, the algorithms using the xyio routines can become

very clumsy. They were developed (with ideas taken from the Gipsy GDS routines) to allow

application programmers to write cube orientation independant code, where the xyio routines

made this very complex.

xyzopen(lun, name, naxis,axlen()) --> same as xyopen()

xyzclose(lun)

xyzsetup(tno, subcube, blc(*), trc(*), viraxlen(*), vircubesize(*))

subcube: ’ ’ = single pixel

’z’ = i/o on profiles in the z direction

’xy’ = i/o on XY-planes

’xyz’ = i/o to get subcubes

’zy’ = plane and permute

xyzmkbuf()

xyzs2c(tno, subcubenr, coords(*))

xyzc2s(tno, coords(*), subcubenr)

xyzread(tno, coords(*), data(*), mask(*), ndata)

xyzpixrd(tno, pixelnr, value, mask)

xyzprfrd(tno, profilenr, profile(*), mask(*), ndata)

xyzplnrd(tno, planenr, plane(*), mask(*), ndata)

xyzwrite(tno, coords(*), data(*), mask(*), ndata)

xyzpixwr(tno, pixelnr, value, mask)

xyzprfwr(tno, profilenr, profile, mask, ndata)

xyzplnwr(tno, planenr, plane, mask, ndata)

A surprising benchmark: A 1482 x 1482 x 150 cube (1.3GB) needed to be Hanning smoothed

(miriad task: hanning), which took about 210 cpusec straight on this cube. Instead, using reorder

mode=312; hanning; reorder mode=231, we measured 5.5, 6.6 and 10.4 cpusec resp, so only a

sum of 22.5. Clearly, the xyzio access was not optimized here. An in-core smooth is much faster.

NEMO, even though the file size is twice the size (double precision cubes) was able to hanning

smooth this cube in 3 cpusec!!

casa> %time importfits(’mem1res.all.mask15/fits’,’h0’)

– 9 –

CPU times: user 3.87 s, sys: 1.24 s, total: 5.11 s

Wall time: 5.80 s

casa> ia.open(’h0’)

casa> ia.coordsys().names()

[’Right Ascension’, ’Declination’, ’Frequency’, ’Stokes’]

casa> %time ia.hanning(’h0s0’,axis=0)

CPU times: user 1.95 s, sys: 0.90 s, total: 2.86 s

Wall time: 3.17 s

casa> %time ia.hanning(’h0s1’,axis=1)

CPU times: user 2.56 s, sys: 0.76 s, total: 3.32 s

Wall time: 3.57 s

casa> %time ia.hanning(’h0s2’,axis=2)

CPU times: user 9.47 s, sys: 0.35 s, total: 9.82 s

Wall time: 10.30 s

expected, VEL axis is slowest

casa> %time imtrans(’h0’,’hv0’,’2013’)

CPU times: user 4.97 s, sys: 1.43 s, total: 6.39 s

Wall time: 6.70 s

casa> ia.open(’hv0’)

casa> ia.coordsys().names()

[’Frequency’, ’Right Ascension’, ’Declination’, ’Stokes’]

casa> %time ia.hanning(’hv0s0’,axis=0)

CPU times: user 8.31 s, sys: 0.56 s, total: 8.87 s

Wall time: 9.10 s

casa> %time ia.hanning(’hv0s1’,axis=1)

CPU times: user 1.95 s, sys: 0.66 s, total: 2.61 s

Wall time: 2.85 s

casa> %time ia.hanning(’hv0s2’,axis=2)

CPU times: user 3.41 s, sys: 0.62 s, total: 4.04 s

Wall time: 4.74 s

this was not expected, VEL axis should be fastest

6. NEMO

The NEMO package started development in 1986, just a little ahead of MIRIAD, but is mostly

written in C and also assumes images to be present in memory. A compiler option determined if

images are stored in column-major (“fortran”) or row-major (“C”) order. The tsf program can

show how images are stored, in a human readable form:

– 10 –

% ccdmath out=- fie="%z+10*%y+100*%x" size=2,3,4 | tsf -

set Image

set Parameters

int Nx 2

int Ny 3

int Nz 4

...

char Storage[5] "CDef"

tes

set Map

double MapValues[2][3][4] 0.00000 1.00000 2.00000 3.00000 10.0000 11.0000

12.0000 13.0000 20.0000 21.0000 22.0000 23.0000 100.000 101.000 102.000

103.000 110.000 111.000 112.000 113.000 120.000 121.000 122.000 123.000

tes

tes

showing that in this mode data are stored in C order but with the (at least odd in C) convention

of writing data[ix][iy][iz]

imageptr iptr;

real sum = 0.0;

read_image(’cube.nemo’,&iptr);

for (i=0; i<Nx(iptr); i++)

for (j=0; j<Ny(iptr); j++)

for (k=0; k<Nz(iptr); k++)

sum += CubeValue(iptr,i,j,k);

7. KARMA

Intelligent arrays, as defined by Karma, use a different indexing concept for arrays:

data[x[i]+y[j]+z[k]]

x[i] = i

y[j] = nx*j

z[k] = nx*ny*k

This scheme also has the advantage that non-contiguous arrays may be implemented by simply

changing the index arrays. Tiled and toroidal arrays fall in this category.

Note that recent experiments on 2011 type architecture showed that classic data[ix][iy][iz]

access is about 10% faster than the intelligent access method . Perhaps during its development

on and with different architectures and compiler there was a significant advantage. However, non-

contiguous array access can be an interesting advantage in a distributed environment.

– 11 –

8. GIPSY

9. ECLIPSE

10. CASA

Lattice I/O. now isolated within casacore.

11. PYTHON

The scipy and numpy module in python has quite a capable datastructure

import numpy as np

a = np.arange(6.0)

a.resize(2,3)

print a[1][2]

print a[1,2]

12. idl/gdl

In a few cases IDL (the one you need a license for)5 and GDL (GNU Data Language)6

13. matlab

14. R

The R language has a solid strong following in statistics, and a small group of loyal users in

astronomy as well.

15. Coordinate Systems

Within Astronomy the WCS conventions (mostly implemented within FITS) are defined in a series

of papers (Calabretta & Greisen). Astronomers/FITS uses a right handed system where the lower

left pixel (center) is (1,1), and counts to (NAXIS1,NAXIS2). Hence the first axis really runs from

0.5 to NAXIS1+0.5.

5http://www.exelisvis.com/ProductsServices/IDL.aspx

6http://gnudatalanguage.sourceforge.net/

– 12 –

In geo spatial (and image) data (e.g. gdal.org) we find the typical convention that the origin is the

upper left pixel, and the coordinate system runs from 0 to N instead of 0.5 to N+0.5.

16. BENCHMARKS

An 880MB EVLA dataset (orionall hannclean hotcore cube.fits, 96 x 96 x 24012), was used

to benchmark the various access modes our analysis code uses. We will also need a more typical

ALMA dataset, 2k x 2k x 4k, but these are not available yet and 5 times bigger.

time fits in=orionall_hannclean_hotcore_cube.fits out=map1 op=xyin

3.533u 1.147s 0:10.04 46.5% 0+0k 1735952+1784664io 12pf+0w

time histo in=map1

3.253u 0.350s 0:03.62 99.4% 0+0k 64+8io 1pf+0w

%time importfits(’orionall_hannclean_hotcore_cube.fits’,’evla1’)

CPU times: user 6.68 s, sys: 1.30 s, total: 7.98 s Wall time: 8.61 s

%time imstat(’evla1’)

CPU times: user 4.79 s, sys: 0.15 s, total: 4.94 s Wall time: 4.98 s

16.1. Access Patterns

Some of the access patterns may need extra care if masking and region selection is active, particu-

larly the latter.

• 1D processing. This can loop over the data in any fashion, in fact, a base benchmark would

be like a gigantic 1D array.

• 2D processing. This requires a whole image to be in memory, e.g. fitting a galaxy image to

a model, subtracting a background. Perhaps we should assume a 2D image should be the

minimum assumption the software should be capable of holding in memory.

• 2D from N-D processing. This would imply transposing a higher dimension into 2D and

working on this 2D, and perhaps looping over the other dimensions reducing that dimension.

Examples below.

• 3D neighborhood.

• 4D neighborhood

– 13 –

• 4D cube transposing. This is where many molecules (m) are present in velocity. A[m][v][y][x]

needs to become B[m][y][x][v], fitting needs to be done to reduce to C[m][y][x], where C

designates total intensity, mean velocity and dispersion.

• 5D cube transposing. Same as previous, but where polarization is present. A[m][p][v][y][x]

however will have a small number of discrete values of p, at most 4 (I,Q,U,V) and it is unclear

if a dimension should be sacrificed or separate images be used.

17. Recommendations

• There should be no assumptions on what dimension (spatial, spectral) is smaller or bigger.

OmegaCAM works on 16k x 16k images, but has small number of images to process. EVLA

may have small 100 x 100 images, but can have 24k spectral channels. Both are about the

same size (1GB).

• A simple I/O alorithm, allowing all data to fit in memory, should be available as well

• Tiling in different dimensions should be possible (xyzio? CASA::lattice?) to optimize certain

algorithms on big data.

• Just thinking 3-dimensional datacubes is not correct, we need at least 4-dimensional, and if

polarization is present, perhaps 5.

• scripting access (e.g. python) should be available.

18. Questions

• how well does CASA integrate their “ipython” based environment with other now common

“ipython” based environments, or is the user forced to have several windows open. How then

to transfer science objects accross? Do we need to pickle this?

19. Conclusion

• miriad twice more efficient than nemo i/o, looking at the system time to process an image.

this is despite the fact that miriad is line based, nemo is cube based!

• casa faired rather bad, at least twice as slow as miriad.

acknowledgements: We thank bla bla. Maybe Rob Olling for his IDL prostelization.

– 14 –

REFERENCES

MIRIAD: http://carma.astro.umd.edu/miriad

NEMO: http://www.astro.umd.edu/nemo

ECLIPSE:

CASA:

GIPSY:

KARMA: Programmers Guide (200+ pages, 2006, by Richard Gooch)

Sault, R. J., Teuben, P. J., and Wright, M. C. H. 1995. A Retrospective View of MIRIAD -

1995ASPC...77..433S

Appendix A: Array Storage Nomenclature

Let us list the dimensions of an D-dimensional data structure as N1, N2, N3, ...ND.

For 2-dimensional arrays, or matrices, we perhaps all remember that “Fortran is column-major”

and “C is row-major”. For multi-dimensional arrays this naming convention is less clear

When using row-major order, the difference between addresses of array cells in increasing rows is

larger than addresses of cells in increasing columns.

Fortran:

real fdata(3,2)

data fdata/1,2,3, 4,5,6/

C:

float cdata[2][3] = { {1,2,3}, {4,5,6} };

Python/SciPY/pyfits:

hdu = pyfits.open(’cube.fits’)

data = hdu[0].data

data[0,0] ... data[1,2]

Examples of column major programming languages are Fortran, Matlab, R and Octave, where

columns are stored behind each other. data(r,c) - major last index.

Examples of row major programming languages are C/C++, scipy/pyfits?. Rows are stored

behind each other. data[r][c] - major first index.

– 15 –

19.1. NEMO

An Image/Cube in NEMO is 2D or 3D and has dimensions (nx,ny,nz). Here X is the first dimension,

and Z the last dimension in the cube. The data is either stored in CDEF or FORDEF mode.

// CDEF:

// row major: data[iy][ix] data[r][c] offset = row*NUMCOLS + col

// In row-major order, the last dimension is contiguous,

// ??row-major wise, x varies fastest, so you ’d locate the (x,y,z)th item at z*ny*nx+y*nx+x

#define MapValue(iptr,ix,iy) (*((iptr)->frame + iy + Ny(iptr)*(ix)))

#define CubeValue(iptr,ix,iy,iz) (*((iptr)->frame + iz + Nz(iptr)*(iy + Ny(iptr)*(ix))))

// FORDEF:

// column major: data(ix,iy) data(r,c) offset = col*NUMROWS + row

// In column-major order, the first dimension is contiguous,

// ??? offset = row + column*NUMROWS

// ?? Column-major-wise z varies fastest and x varies slowest, so (x,y,z) would be at the z+y*nz+x*ny*nz

#define MapValue(iptr,ix,iy) (*((iptr)->frame + ix + Nx(iptr)*(iy)))

#define CubeValue(iptr,ix,iy,iz) (*((iptr)->frame + ix + Nx(iptr)*(iy+Ny(iptr)*(iz))))

20. Arrays and Matrices

Two concepts when dealing with arrays and matrices. First are they 0 or 1 based?

• 0-based arrays: C/C++, Python, IDL

• 1-based arrays: Fortran, matlab?

Secondly, are they row-major or column-major.

• 0-based arrays: C/C++, Python, IDL

• 1-based arrays: Fortran, R, matlab

21. Source Finding

Separating signal from noise is one of the most important first steps in the analysis of an image

or a data cube. Many algorithms have been developed and published over the last 30 years. They

basically can be classified in two main categories: thresholding and pattern matching.

– 16 –

Fig. 1.— Position-Velocity diagram for NGC 6503 (left) and SMC (right)

– 17 –

Some recent reviews are available: Popping et al. 2012, Hassan (2012) Thesis Section 5.

Here we review some methods in common use with published papers. We are ignoring a very

similar cottage industry in the N-body (points) world. A good recent review and code comparison

by Knebe et al. (2013) can be found in http://arxiv.org/abs/1304.0585.

ASCL references listed below can be found off http://ascl.net, as well as in ADS http://adsabs.harvard.edu/.

This is probably the easiest reference point to find everything related to the listed software.

21.1. clumpfind

The Williams et al. 1994 ClumpFind 7 algorithm has been implemented as clfind in miriad,

but is also available in an IDL version. ascl:1107.014 Now superseded by cprops (CloudProps,

Rosolowski and Leroy 2006) ascl:1102.012 8.

21.2. duchamp / selavy

Whiting (2011,2012) for 2D and 3D. Used in ASKAP pipeline. selavy is the ASKAP 21-cm version.

ascl:1201.011 9

21.3. blobcat

Hales et al. 2012. 2D. ascl:1208.009

21.4. getsources

Menshchikov et al. 2012. Herschell based. 2D. 10

7http://adsabs.harvard.edu/abs/1994ApJ...428..693W

8http://arxiv.org/abs/astro-ph/0601706/

9http://adsabs.harvard.edu/abs/2012MNRAS.421.3242W

10http://adsabs.harvard.edu/abs/2012A&A...542A..81M

– 18 –

21.5. gaussclumps

The original stutzki code is also available in GILDAS, as well as in STARLINK. It iteratively

decomposes a 3D cube into a series of Gaussian shaped clumps. It starts by fitting a 3-dimensional

clump locally to the maximum of the input lbv cube. It then subtracts this clump from the cube,

creating a residual map, and then continues with the maximum of this residual map. The procedure

is repeated until a stop criterion is met, for instance when the maximum of the residual maps drops

below the 3 sigma level.

gaussclumps was developed by Stutzki & Guesten (1990, ApJ, 356, 513) who applied it to their

M17SW data sets. It was later described and analyzed in more detail by Kramer et al. (1998, A&A,

329, 249) who also applied it to data cubes of various Galactic clouds. The papers of e.g. Heithausen

et al. (1998) and Simon et al. (2000) give more examples of the application of gaussclumps to large

scale CO maps.

21.6. imsad

imsad = Image Search and Destroy. Implemented in MIRIAD, based on imfit, esssentially fits a

gaussian to a peak that sticks out of some plateau.

21.7. SExtractor

Awidely source extractor (Bertin & Arnouts 1996), but not so good for blended objects. ascl:1010.064

21.8. SFind

Hopkins et al. 2002. Implemented in MIRIAD.

21.9. MultiFind

perl script using a series of miriad commands. Kilborn 2001. Written for HIPASS.

21.10. tophat

Meyer et al. 2004. For HIPASS. Uses a pattern matching of shapes and cross correlation to find

signals.

– 19 –

21.11. lovedata

Saintonge 2007. For ALFALFA. Written in IDL. Pattern matching.

21.12. GammaFinder

Boyce 2003. Masters thesis Cardiff. In java. Use gamma function to estimate noise and reject

non-signal

21.13. 1d-1d wavelet

C++ by FLoer and Winkel 2012.

21.14. smooth plus clip

An old method from the WSRT Bosma time, but more formally introduced by Serra et al. 2011.

ATLAS3D.

21.15. CNHI

Jurek 2012. for WALLABY project design study. CNHI = Characterised Noise HI Source Finder.

Pattern matching. Also mentions the Lutz (1980) one path algorithm, which is used to group

regions from the same source into a single source.

21.16. DisPerSE

DisPerSE is open source software for the identification of persistent topological features such as

peaks, voids, walls and in particular filamentary structures within noisy sampled distributions in

2D, 3D. Sousbie (2013) ascl:1302.015 11

Using DisPerSE, structure identification can be achieved through the computation of the discrete

Morse-Smale complex. The software can deal directly with noisy datasets via the concept of

persistence (a measure of the robustness of topological features). Although developed for the study

of the properties of filamentary structures in the cosmic web of galaxy distribution over large scales

in the Universe, the present version is quite versatile and should be useful for any application where

11http://www2.iap.fr/users/sousbie/web/html/indexd41d.html

– 20 –

a robust structure identification is required, such as for segmentation or for studying the topology of

sampled functions (for example, computing persistent Betti numbers). Currently, it can be applied

can work indifferently on many kinds of cell complex (such as structured and unstructured grids,

2D manifolds embedded within a 3D space, discrete point samples using delaunay tesselation, and

Healpix tesselations of the sphere). The only constraint is that the distribution must be defined

over a manifold, possibly with boundaries.

21.17. FIVe

Hacar et al. (2013) discuss a new Friends of Friends (FOF) algorithm they dubbed FIVe (Friends

in Velocity), and implemented in the R scripting language. 12

21.18. Kemper

A multi-scale approach to automated feature extraction from HI data cubes. So far only published

as a research note, Kempker (2005) from RUG.

21.19. PyFind

Serra (2012) at WSRT/ASTRON has developed this not-yet-named code. PyFind is his current

placeholder name.

It is a simple Python code working on FITS files. It smooths the cube using a set of specified kernels

and finds emission at each resolution by applying a specified threshold. The program applies also

a size filter at each resolution and makes a final mask as the union of all masks. Two papers in

2012, one on MNRAS and one on PASA, discuss it.

21.20. GRID core

Gong and Ostriker (2013), coming from a more theoretical angle and instead of working with

densities, developed GRID core that works with the gravitational potential. In essense this is

simply a more smooth version of the density. It uses a watershed model (much like ClumpFind)

to define clumpy structures. If the potential is not directly available, a poisson solver can be be

used to define densities and with an assumed conversion factor, regions of bound structures can be

defined as well. ascl:1302.007

12http://arxiv.org/abs/1303.2118

– 21 –

21.21. TODO

Here’s some catchphrases that need to be tracked down if they have relevant code.

GAIA, MATADOR, AstroMed, SPLAT-VO, Herschel DP, S2Plot, AstroMD.

