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ABSTRACT

HEterogeneous MOsaicing SImulations (hemosi) using MIRIAD are described. A

Python script implements the algorithm also found in earlier shell scripts. The user

supplies an image and an antenna location file and through a set of parameters to the

scripts defines groups of antennas. We also discuss some advanced usage of the Python

scripting language for MIRIAD, some of its Pros and Cons, and some scaling issues with

MIRIAD we found in using the script for these types of simulations. We also suggest a

new method to have MIRIAD tasks communicate with the shell.
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Change Record

Revision Date Author Sections/Pages Affected

Remarks

1.0 2008-Jul-30 P. Teuben

Initial version, based on hex7-15.csh, mosaic.py and hetero.py

2.0 2008-Aug-08 P. Teuben

Various keywords changed meaning: config=ant, ants=pb, tsys=systemp, plot=device;

added new keyword factor=, filename conventions changed in the run directory

2.2 2008-Aug-15 P. Teuben

Re-running script implemented differently and clarified
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1. Introduction

In previous memos (e.g. Wright 2004, CARMA memo 27) simulations of interferometric arrays have

been presented using MIRIAD shell scripts. The directory $MIR/demo/carma in particular contains

shell scripts that produced CARMA memo 27 and some earlier memos referenced therein. The

script described in this memo, hemosi.py can be found in $MIR/examples/mosaic and expands

on the ideas presented in earlier scripts, most notably in providing a more programming friendly

environment using Python for this relatively well defined problem.

? Explain Antenna type vs. Primary Beam type?

2. Description

MIRIAD (Sault et al. 1995) contains a number of programs useful in generating data for heteroge-

nous mosaicing simulation. The script employs the following procedure.

1. uvgen : a template visibility file for each antenna/primary beam type (K) is generated.

Each file has multiple pointings (N) and they are generated with only realistic noise (i.e. no

source).

2. demos : the input model map is de-mosaiced into N fields as defined by the previously

generated visibilities.

3. uvmodel : for each field and PB type the corresconding model is added onto the visibilities.

4. invert : all K*N visibilities from the previous step are accumulated and inverted into a single

linearly mosaiced dirty map and K*N dirty beams

5. mosmem (or mossdi) : using a Maximum Entropy or a Steer CLEAN algorithm the mosaic

is deconvolved. For a single field single antenna setting one can also choose maxen or clean.

Some comments on mfclean

6. restor : produces a “cleaned” map by restoring the synthesized beam with the clean com-

ponents.

An important feature of the script is that it can be re-run skipping the first 5 steps and only

recomputing the deconvolution method, and with different parameters.
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3. HEMOSI

3.1. Running

Running the script requires the MIRIAD environment to be loaded in your shell1. In addition,

the PYTHONPATH environment variable should point to the location where Miriad.py is located

(MIRIAD provides this by default).

When you run the script, a number of parameters are passed via the commandline, much like

running MIRIAD commands. On the screen you will see python script output and the MIRIAD

commands that are issued, but you will not see the sometimes lengthy output from the individual

MIRIAD commands. They are gathered in the miriad.log file inside a run directory. With the

log=t keyword you will be able to view its progress in an another window.

Here is an example of a simple simulation of a 6 element OVRO array in the CARMA C configu-

ration (since the first 6 antennae are the orginal OVRO antenna, the CARMA+SZA 23 antenna

file can be used for this):

% hemosi.py image=n4254.3 ant=$MIRCAT/carma_CZ.ant dir=n4254_CZ pb=ovro,6 jyperk=43 nring=1

--- HEMOSI: HEterogenous MOsaicing SImulations ---

hemosi.py: PYRAMID Version 2.1 (8-aug-2008)

Found 23 antenna in carma_CZ.ant

Telescopes: [’ovro’, ’hatcreek’, ’sza’, ’carma’, ’sza10’, ’sza6’]

Jy/K: [43.0, 126.0, 383.0, 73.0, 128.0, 220.0]

MOSAIC FIELD, using hexagonal field with nring=1 and grid=20 (1 pointings)

....

MIRIAD% uvgen ant=/home/astromake/opt/miriad/cvs/cat/carma_CZ.ant

baseunit=-3.33564 radec=23:23:25.80,30 lat=37.28 ellim=10

harange=-2,2,0.013 source=$MIRCAT/no.source telescop=ovro

jyperk=43 systemp=80,290,0.26 freq=115 corr=1,1,0,8000

out=n4254_CZ/uv_0 center=0.00,0.00

MIRIAD% puthd in=n4254_CZ/single/crval1 value=23:23:25.80,hms

MIRIAD% puthd in=n4254_CZ/single/crval2 value=30.0,dms

MIRIAD% puthd in=n4254_CZ/single/crval3 value=115.0

MIRIAD% puthd in=n4254_CZ/single/cdelt1 value=-0.5,arcsec

MIRIAD% puthd in=n4254_CZ/single/cdelt2 value=0.5,arcsec

MIRIAD% demos map=n4254_CZ/single vis=n4254_CZ/uv_0 out=n4254_CZ/uv_0_demos

MIRIAD% uvmodel vis=n4254_CZ/uv_0 model=n4254_CZ/uv_0_demos1

out=n4254_CZ/uv_1_0 select=ant\(1,2,3,4,5,6\)\(1,2,3,4,5,6\)

options=add,selradec

MIRIAD% invert vis=@n4254_CZ/vis.all map=n4254_CZ/xy.mp

beam=n4254_CZ/xy.bm imsize=257 select=-shadow\(3.5\) sup=0

1For certain demos you will need a non-default MIRIAD installation with a larger value for MAXANT
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options=mosaic,double,systemp

...

Placing all files in a single run directory makes for easy data management and cleanup. You will

also find that within a run directory files always carry the same name. For example, the final

cleaned image is always called xy.cm.

It may be advantageous to encode certain parameters in the name of your run directory, or in a

hierarchy of run directories.

An important NOTE: the hemosi.py script is organized in such a fashion to create vis data once,

if not present, and deconvolve many times with different parameters.

3.2. Keywords

The hemosi.py script accepts a keyword=value command line interface. Use --help to obtain

help on the current keywords and defaults, as they keyword listing below can easily get out of sync

with the actual code. Most keywords have a reasonable default, listed here in square brackets.

• dir : Run directory in which all datasets are written. Depending on the type of simula-

tions you are doing, choosing your run directory hierarchy and/or naming convention can

be beneficial for further analysis. The current directory “dir=.” is also allowed, but not a

recommended practice. NOTE: Only for the first run visibility files will be generated, but for

any subsequent run only the deconvolution will be run. [run1]

• ant : antenna config file (NEU in meters). This file will also be copied into the run directory.

[CZ.ant]

• pb : Primary beam types and antenna numbers, plus PB types for all cross type baselines.

First a list of primary beam types, followed by the number of antennas that are in the array

need to be listed, followed by the cross correlation primary beam types of unequal antennas.

For example, the initial CARMA-15 array would be encoded as

pb=ovro,6,hatcreek,9,carma,

and the 2008 CARMA-23 array with 8 added SZA antennas is encoded as

pb=ovro,6,hatcreek,9,sza,8,carma,sza10,sza6.

The convention for the order of the PB types of the cross antennae list is to make the second

index runs fastest, and is also larger than the first, much like the output of the uvlist

program in MIRIAD, thus carma=1-2, sza10=1-3 and sza6=2-3. If only one primary beam

type is given (a homogenous array), it can still be optionally followed by the number of
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antennas that will be used from the antenna file. If none is given, it will assign each this PB

type to each position. [ovro,6,hatcreek,9,sza,8,carma,sza10,sza6]

• systemp : System temperature(s). Either one or three numbers can be given. Either a

constant receiver temperature is given, or else a receiver and sky temperature, plus a zenith

opacity, from which elevation dependant system temperatures are calculated. See also the

description under the uvgen::systemp keyword. Currently there is no support for antenna

dependant system temperatures. Just before invert is run, the system temperatures are

patched with fake values using jyperk in order to run a weighted invert. See also MIRIAD’s

obstau program for more information on reasonable values for this parameter. [80,290,0.26]

• jyperk : Jy/K scaling for all primary beam types. This determines the noise scaling. An

entry for each primary beam type needs to be given. [43,126,383,73,128,220]

• gnoise : Gain noise (percentage) used to emulate pointing errors.

• dec : Declination where object should be placed. [30.0]

• freq : Observing frequency (in GHz) [115.0]

• image : Model image to map. This needs to be a MIRIAD image (2D or 3D). The scaled

image (see below) will be copied into the run directory. The value at the reference pixel will

also be changed, to account for the requested declination. (RA – check) [casc.vla]

• nchan : Number of channels to use from the model image. If the input model is a cube, this

number can be less or equal the number of channels in the model cube. [1]

• cell : New cell size of the model. This parameter allows one to change the size of the input

model, to match the requested field of view of the mosaiced pattern. [0.5]

• factor : Factor by which the input model image is scaled to Jy. Depending on the header,

the image can be JY/BEAM or JY/PIXEL, but this factor merely scales the numbers. [1]

• size : Size of the cleaning and plotting region (-size..size) in arcsec. [50.0]

• nring : Number of rings in the hexagonal mosaic. Notice a single (non-mosaic) pointing

counts as 1 ring. [2]

• grid : Gridsize (in arcsec) for the mosaic. The program will warn if you are not close to

Nyquist sampling of the smallest primary beam. [20.0]

• center : optional center file that overrides (nring,grid). By default the nring and grid

parameters define

• method : Deconvolution method. Valid options are: mossdi, mossdi2, mosmem, joint,

or default. If there is only one field and one antenna type, the old-style clean and maxen

programs can also be choosen. [mosmem]
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• niters : Maximum number of iterations in mossdi/mosmem/.... [200]

• flux : Expected flux in the image (for mosmem/maxen). **check if this works on re-run **

[0]

• device : The pgplot device name. Some choices can make your script interactive. The name

is allowed to contain a format directive for an integer that gets automatically incremented

for each time a device= is used in a MIRIAD program. Examples are %d/xs if you want a

persisent X window for each plot, or pgplot %d.ps/ps if you want to keep postscript files in

the run directory. [/null]

• log : Show live view of the logfile in an xterm? [f]

Not all parameters which could become command line keywords are exported as such. For example,

the observatory is hardcoded at a latitude of 37 degrees (CARMA), the observing HA range is from

-2 to 2 hours, etc.etc. It is fairly straightforward to promote these to command line parameters.

3.3. Input Files

The script needs only a few input files:

1. An antenna configuration file, as requested by the ant= keyword. These are simple ASCII

files, of which many examples can be found in the directory $MIRCAT. A few notes on this file.

The format is currently hardcoded to be in a topocentric North-East-Up frame of reference,

in meters. Another popular format used by CARMA is geocentric XYZ in nanoseconds. This

is only a minor change to the UVGEN interface, but not implemented in the script. If you

ever need to convert one to the other, here’s a simple recipe using MIRIAD:

uvgen ant=$antpos baseunit=1 out=$vis lat=37.28 source=$MIRCAT/point.source

puthd in=$vis/veltype value=VELO-LSR type=ascii

listobs vis=$vis > listobs.log

grep ^Ant listobs.log | awk ’{print $7,$6,$8}’ > $antpos.NEU

Of course, far easier is it to have an option to support a baseunit=1 option in the script.

Also note the latitude of the observatory is needed to properly compute the topocentric

coordinates, another reason antenna files are better kept in topocentric format.

2. A model image dataset, as requested by the image= keyword. This can be a two- or three-

dimensional MIRIAD image dataset. Note that some care is needed in certain header ele-

mented to ensure MIRIAD programs. Some often forgotten ones are ...... Use puthd
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3. Optionally a mosaic pattern can be given by a small text file (the center= keyword), though

by default a hexagonal pattern optimal for Nyquist sampling is choosen using the the nring=

and grid= keywords.

3.4. Output Files

The script produces a lot of output files, but they are all created in the run directory as specified

by the dir= keyword.

• single : the model, fully scaled (factor= and cell=) and RA/DEC modified

• xy.bm : dirty beam, usually multiple planes denoting different pointings and primary beam

types. For example a 7 pointing mosaic with a OVRO+HATCREEK array will have 7 x 3 =

21 planes.

• xy.psf : mosaic beam computed from mospsf, the linear combination of the beam in xy.bm

• xy.mp : dirty map, produced by invert

• xy.cc: clean components (CC) (output produced by mosmem or mossdi).

• xy.cm: clean map, which is the dirty map (MP) minus clean components (CC) convolved by

dirty beam (BM) plus the clean components (CC) convolved by the gaussian beam (PSF).

• uv K: visibilities, one for each primary beam type, containing only noise

• uv K demosI: demos fields (I counts field, K primary beam types) of the model

• uv K I: visibilities of the model per field (I) and primary beam type (K)

4. MIRIAD lessons

In experiments with 5 rings (61 fields) and 3 antennae types (6 primary beam types) invert will

need 366 files. Some real observations (M51) have

Scaling issues. The select=ant(...)(....) resulted in very long strings. select.for and uvmodel.for

needed changes. The number of files processed can be large, which needed a change in uvdat.for

(400 - 4000 and 2000 - 20000).

invert also issues with too many files, this was solved using an include file in the python code.

(using an include file @uv.inc)
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5. Python

5.1. Pros and Cons of Python

Pros and Cons of using the Python scripting language, instead of the more common C-shell. The

historic reason of using C-shell (csh) for MIRIAD scripts is because this is traditionally the more

common login shell on Unix systems, despite the presence of the much more programmable and

powerful bash (Bourne Again Shell) shell. The usage of python at CARMA and many other

observatories and data processing system had already led to us to investigate this option a few

years ago, but users are conservative and have mostly continued to write scripts in csh.

Pros: Python is very programmable, can do math in the shell, simple way to make a keyword=value

parsable command line. Once data are in python, some sophisticated plotting and analysis can be

done, e.g. using Python modules matplotlib, ....etc.

bla bla

Cons: what you see is not what you get, so you have to construct the commands in perhaps

somewhat awkward ways using the miriad(program(arg1,arg2,...)) style and define your personal

functions for MIRIAD programs. This can get out of hand and make it difficult to exchange code

with other scripts.

...

def selfcal(vis):

cmd = [

’selfcal’,

’vis=%s’ % vis,

’options=amp’

]

return cmd

...

miriad(selfcal(gains))

...

Example already in this script is the existence of uvgen and uvgen point.

Although the grepcmd is very convenient, just like in the regular shell, these are very dangerous

constructs to use, as programs change their output in unextected ways and the resulting script is

usually not very robust againsts such changes.

For example, using csh -fvx a shell script is run in verbose mode, and can usually be easily

debugged. Use missing histo example?

bla bla
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5.2. Algorithm

Leaving off all fluff, the essential algorithm of the code is as follows:

# generate vibilities for each PB type (there are k1 of those)

for k in range(0,k1):

miriad(uvgen(ant,dec,harange,freq,nchan,uv_k[k],center,telescopes[k],jyperk[k],systemp))

# copy model image, and fix up the header

miriad(imgen0(image,base2,factor))

miriad(puthd(base2,’crval1’,ra,units=’hms’))

miriad(puthd(base2,’crval2’,dec,units=’dms’))

miriad(puthd(base2,’crval3’,freq))

miriad(puthd(base2,’cdelt1’,-cell,units=’arcsec’))

miriad(puthd(base2,’cdelt2’,cell,units=’arcsec’))

# de-mosaic the model into images as each field would see it

for k in range(0,k1):

miriad(demos(base2,uv_k[k],demos_k[k]))

# uvmodel add each field to the previously generated PB type visibilities,

# and select only the appropriate baselines

vis_all = ""

fp = open("%s/vis.all" % rundir, "w")

for k in range(0,k1):

for i in range(1,npoint+1):

vis_i = "%s_%d_%d"% (uv,k,i)

demos_i = demos_k[k]+"%d"%i

miriad(uvmodel(uv_k[k],demos_i,vis_i,antselect_k[k]))

# hack systemps for weights for invert

miriad(puthd(vis_i,’systemp’,2.0*jyperk[k],type=’real’))

if len(vis_all)==0:

vis_all=vis_i

else:

vis_all=vis_all + ’,’ + vis_i

fp.write("%s\n" % vis_i)

fp.close()

# add amp noise to emulate pointing errors

if gnoise > 0:

print "Adding pointing errors: gnoise=%g" % gnoise

visgain = ’gains.uv’

for k in range(0,k1):

miriad(uvgen_point(ant,dec,harange,freq,nchan,visgain,telescopes[k],jyperk[k],systemp,gnoise))

miriad(selfcal(visgain))

for i in range(1,npoint+1):

vis_i = "%s_%d_%d"% (uv,k,i)

miriad(gpcopy(visgain,vis_i))
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# invert

vis_all = "@%s/vis.all" % rundir

miriad(invert(vis_all, base1+".mp", base1+".bm", imsize, select))

# deconvolve

miriad(mosmem(map1,beam1,cc,region,niters=niters))

# find out effective beam

miriad(mospsf(beam1,psf1))

bmaj = string.atof(grepcmd(’imfit in=%s object=beam’ % psf1, ’Major axis (arcsec)’, 3))

bmin = string.atof(grepcmd(’imfit in=%s object=beam’ % psf1, ’Minor axis (arcsec)’, 3))

bpa = string.atof(grepcmd(’imfit in=%s object=beam’ % psf1, ’ Position angle’, 3))

# restore clean components

miriad(restor(map1,beam1,cc,cm,[bmaj,bmin],bpa))

6. Model Making

easy is uvgen and patch the resulting image, that way you are ensured of proper header variable

in the image (cube). Can create a velocity map using velmodel (***seems to have bug***) , or

NEMO’s ccdvel), and then unfold an image into cube using velimage.

Maps can have JY/PIXEL or JY/BEAM, or worse, something MIRIAD doesn’t know how to deal

with. Use histo to get the flux, use factor= to scale it down to the Jy you expect. That way the

signal to noise is realistic for the observatory.

According to Sicking (1997) number of effective points per beam is

4πBxBy

PxPy

for given beam size Bx,y and pixel size Px,y.

bla bla

7. Debugging

Running a Python script such as this one can be challenging to debug. A common type of error

% hemosi.py image=cube6 ...

...

MIRIAD% imframe in=run2/single out=run2/single.bigger frame=-1024,1024,-1024,1024

###: Error 256 from imframe
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and this cryptic error can only be understood by looking at the MIRIAD error message, which is

now hidden in miriad.log, e.g. viax

% tail run2/miriad.log

...

imframe version 1.1 31-Aug-98

### Fatal Error [imframe]: No space left on device

A better way perhaps, especially if you are monitoring the progress of the script, is to use the

log=t option, which keeps a live view of the logfile in a scrolling xterm.

8. Examples

8.1. Single Pointing Homogenous Array

The simplest example is a single pointing using a single telescope type. For simplicity we will use

imgen to create a model image, but this image needs a few extra header items for hemosi to work:

% imgen out=point object=point

% puthd in=point/naxis value=3

% puthd in=point/naxis3 value=1

% puthd in=point/ctype3 value=FREQ

% hemosi.py ant=$MIRCAT/carma_C.ant image=point pb=ovro,6 jyperk=43 nring=1 systemp=35

If the header

8.2. Single Pointing Heterogenous Array

hemosi.py ... pb=ovro,6,hatcreek,9,carma jyperk=42,126,73 nring=1

8.3. Multiple Pointing Homogenous Array

hemosi.py ... pb=hatcreek jyperk=43 nring=3 grid=30

8.4. Multiple Pointing Heterogenous Array
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hemosi.py ...pb=ovro,6,hatcreek,9,carma jyperk=42,126,73 nring=3 grid=30

8.5. Pointing Error figure

hemosi.py ant=carma_CZ.ant image=point nring=1 dir=run1a gnoise=0

hemosi.py ant=carma_CZ.ant image=point nring=1 dir=run1b gnoise=5

hemosi.py ant=carma_CZ.ant image=point nring=1 dir=run1c gnoise=10

hemosi.py ant=carma_CZ.ant image=point nring=1 dir=run1d gnoise=20

imcat in=run1a/xy.cm,run1b/xy.cm,run1c/xy.cm,run1d/xy.cm out=gnoise.mir options=relax

implot in=gnoise.mir device=gnoise.ps/vps nxy=2,2 units=s conflag=g range=-0.02,0.05

This run takes about 5 minutes on a current 2008 style workstation. QUESTION: WHat is the

relationship between pointing errors (e.g. via uv variables) and gnoise?

See also Figure 1.

Config DEC HA[hrs] Beam[arcsec] scale Model_Flux,Peak Image_Flux,Peak Residual:Rms,Max,Min[Jy] Fidelity

carma_CZ 30 -2,2,0.013 -1.000 4.42 2.3 1 1.000 1.000 3.222 1.037 0.004 0.019 -0.047 258.109 (run1a)

carma_CZ 30 -2,2,0.013 -1.000 4.42 2.3 1 1.000 1.000 3.507 1.040 0.004 0.021 -0.050 248.593 (run1b)

carma_CZ 30 -2,2,0.013 -1.000 4.42 2.3 1 1.000 1.000 4.157 1.048 0.005 0.023 -0.058 220.073 (run1c)

carma_CZ 30 -2,2,0.013 -1.000 4.42 2.3 1 1.000 1.000 7.136 1.085 0.007 0.026 -0.103 152.274 (run1d)

8.6. Saturn images - CARMA memo 27

In CARMA memo 27 a 603x603 0.1 arcsec pixel VLA image of Saturn was introduced and used.

Peak is 0.036 Jy/pixel, total flux is 732.1 Jy. Here we will show how to use hemosi to run an

example from this memo.

9. Design your own array

The following changes are probably needed if you want to design a new array:

• The antenna file is simply an ASCII file, currently in topocentric East-North-Up (ENU) with

meters as the units this occurs if you use imgen

• If there is a new antennae that MIRIAD does not know about , modify $MIRSUBS/obspar.for
and recompile the library, and if needed all programs. Then test your new telescope:
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telepar telescop=foobar

In the example in the next subsection we have cheated and bypassed this by only mapping

the inner few beams (e.g. for VLBA/VLBI type observations).

9.1. Micro managing your baselines

Here is an example where each baseline was given different characteristic. Although formally each

antennae would need a different size, in this example we choose to use a nominal antennae and only

map the inner portions of this array where the primary beam did not matter.

nchan = 44

step = 0.02

jyperk = [6.6, 1.0, 1.8, 1.8, 2.0, 0.6, 1.8]

def antpos(file):

fp = open(file,’r’)

lines = fp.readlines()

fp.close()

x=[]

y=[]

for line in lines:

w = line.split()

x.append(float(w[0]))

y.append(float(w[1]))

return (len(x),x,y)

(nant,x,y) = antpos(’merlin.antpos’)

up = open("uvall.inc","w")

visno = 0

for n in range(nchan):

f = 1.0 + step*n

bl = 0

for i in range(nant):

for j in range(i+1,nant):

# now working on baseline i+1,j+1, for channel n

# the order is 1,2 1,3 1,4 .... 6,7

visno = visno + 1

out = ’uv.%d’ % visno

ant = ’ant.%d’ % visno

fp = open(ant,"w")

fp.write("%g %g 0.0\n" % (f*x[i],f*y[i]))

fp.write("%g %g 0.0\n" % (f*x[j],f*y[j]))

fp.close()

date = ’79jan01.%03d’ % visno
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cmd = ’uvgen source=Taurus freq=4.2,0.01 ant=%s out=%s harange=-4.5,

4.5,0.001 baseunit=-3.33564 lat=52 corr=1,1,0,10 systemp=25.0 jyperk=%g radec=0.

,30. time=%s’ % (ant,out,(jyperk[i]*jyperk[j]),date)

print cmd

# cmd = cmd + ’ > /dev/null’

os.system(cmd)

bl = bl + 1

up.write("%s\n" %out)

up.close()

os.system(’uvcat vis=@uvall.inc out=uvall’)

Several comments:

1. there will be nant*(nant-1)*nchan uv files, thus uvcat needs a macro include file, as the

wildcard usage will not have enough string space

2. uvgen needs to use a different date for each file, since that is used as the seed for the random

number generator. Amusing results were obtained if the same seed was used.

10. Sample Error Messages

Typical failure of hemosi is a message

###: Error 256 from uvmodel

which means you should look at the last few lines in the miriad.log file in the run directory. The

following error messages are found to be common ones:

• ### Fatal Error [demos]: Frequency could not be determined, in pbInit : this

occurs if you use imgen

• ### Fatal Error [uvmodel]: No visibilities selected : typically happens if you have

specified more antennas then there are in the antenna file. Check your ant=

11. TODO

should we keep running it from local directory and forcing all these rundir references, vs. chdir

(dangerous if it’s not a local subdirectory, need to keep remembering abs path)

Instead of the current method to get numbers out of a miriad program’s output
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...

bmaj = string.atof(grepcmd(’imfit in=%s object=beam’ % psf1, ’Major axis (arcsec)’, 3))

it would be better to have a contractual agreement what kind of number miriad will output. As a

suggestion, suppose – similar to the key routines to input values from the command line – we would

have a mechanism to output values to the calling program. Let us call them the yek routines:

Miriad.imfit(in=%s,object=beam,yek=’bmaj,bmin,bpa’)

bmaj=yek(’bmaj’)

bmin=yek(’bmin’)

bpa=yek(’bpa’)

12. Conclusion

Python is great! Gotta love that new PGPLOTDeviceName() class where you can use device=pgplot%d.ps/vps

names.

The brittle places in shell scripts where textual output is captured, parsed and decided upon is

isolated in python functions, aiding the debugging. Unless there are contracts betweem Miriad

routines and such parsers, this is a very dangerous path to write pipeline code. However this is also

an excellent place to make our legacy code (“code without tests”) more robust.
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Fig. 1.— Point source in CARMA-23 CZ imaging array (4.4 by 2.3 arcsec) with gnoise=0, 5, 10

and 20% resp.


