
Appendix A

drPACS Pipeline

ABSTRACT

We describe1 a simple yet flexible and effective pipeliner for Unix commands. It uses a Makefile (behind
the scenes) to define a serial set of commands for your choice of the pipeline. The pipeline commands
share a common set of parameters by which they communicate. Pipeline parameters can optionally be
made persistent accross multiple runs of the pipeline. Commands must follow a simple convention to
retrieve and store parameters.

A.1 Introduction

To process a large number of datasets in a very similar way is a common theme, particularly for the type
of PACS data we are discussing here. We thus developed a simple infrastructure to assemble and run a
pipeline comprising of a set of commands that have to be run in a certain order, and depend on each
other. We call this package ’drpacs’2.

Technically drpacs consists a set of shell and python scripts and the infrastructure to setup a serial
pipeline, and some aspects of running this pipeline in parallel as well.

Although drpacs was written for the first stages of analyzing a large set of PACS data, you can use it
and construct your very own pipeline. An example is given later in this Appendix.

A summary of typical PACS pipeline commands is:

pipeline $DRPACS/cat/pipeline.001 > Pipefile # generate control Pipefile

pipepar -c project=c0184.3B_108PG2130.13 carmaRefant=2 # set some parameters

pipe all # run the pipe

A.2 Pipeline

Lets assume we have 4 programs (or scripts) called step1, step2, step3 and step4 that need to be
run in succession in each project directory. Each of the stepX commands accepts its own unique set
of keyword=value command line arguments, but the pipeline convention is that the values for each of
these keywords are remembered for any subsequent run if you do not specify them explicitly. So if you
would manually first run a command as “step2 foo=bar”, the next time you would run just “step2”,

1Draft version Sept 23
2Dalton and Roger were its first users for a PACS project, and helped developing it

A-1

A-2 APPENDIX A. DRPACS PIPELINE

it will have remembered the value bar for foo. Users of the MIRIAD shell program will recall this type
of global parameter behavior. This can be very convenient, but also bite you when you least expect it.

With the “pipeline” command you establish which commands, and in which order, need to be executed
for your pipe. This will produce a Unix-style Makefile, which by convention we call a Pipefile:

% pipeline 4 step1 step2 step3 step4 > Pipefile

Of course these 4 commands3 must exist in your Unix $PATH and most follow the pipeline parameter
convention (see below).

Unless for some bizarre reason you do not use pipeline parameters, a dummy parameter file needs to be
created before you can run the pipeline:

% pipepar -c

Apart from manually running each command, the “pipe” command will now run these 4 steps in succes-
sion:

% pipe

Checking ./Pipefile

Doing step1 as step1

Doing step2 as step2

Doing step3 as step3

Doing step4 as step4

This command uses the Unix “make” command, and uses the Pipefile as the controllng Makefile with
all dependancies properly defined. If for some reason step2 fails, the pipe will be aborted at that stage.
If you try and re-run the pipe after it had been successfully finished, you will probably see something like
the following:

% pipe

Checking ./Pipefile

make: Nothing to be done for ‘all’.

Technically, it uses Unix dot files for its dependancies. These dot files should not be touched or removed,
unless you know what you are doing. They make sure commands are not run again if not needed because
nothing was changed.

Here are some simple examples of running and re-running portions of the pipeline

pipe all does all steps in the pipeline (if needed)

pipe step2 run just step2 (if even ran ok before)

pipe all now will do step3 and step4

pipe step3 all does step3 and step4

pipe clean wipes the pipeline control files (the dot files)

As was hinted to before, a utility is needed to manage the global pipe parameter file. This is the file
that contains the parameters that are passed between the programs and scripts in the pipeline. This file
is a very simple ascii file with a set of “par=val” pairs, one per line. No spaces should be used before
the parameter, or surrounding the ’=’ sign. You can actually use any text editor to modify this file. No
quotes are needed as everything is interpreted as text. CHECK THIS FOR VALUES WITH SPACES

Here is the usage line for the pipepar command

3Although we gave the command simple stepX names, you can name these any way you like, e.g. pipeline 2 foo bar

is legal

A.3. SOME EXAMPLES A-3

pipepar [-h] [-c] [-f parfile_name] [-s shell] [-d var] [-v par] [-e par] [par=val ...]

-h help

-c create empty drpacs.def (parfile_name)

-f use another parfile_name from the default drpacs.def (not recommended)

-s output for given shell (csh and bash are currently known)

-v show value of a parameter (multiple allowed, but do not combine with -e flag)

-d delete a parameter

-e print 1 or 0 if a parameter exists (only only occurence allowed now)

par=val assign (new) value to a parameter (multiple allowed)

A.3 Some Examples

1. rerun the complete pipeline (from step1 onwards) with a new parameter

pipepar foo=1.3

pipe step1 all

2. rerun the pipeline with a new parameter, but only run the pipeline from step3 onwards. This also
implies you better make sure that foo is not needed in step1 and step2.

pipepar foo=2.3

pipe step3 all

3. Rerun piece of the pipeline in each of a set of directories. In csh notation this could be achieved as
follows:

foreach dir (‘cat dirs.txt‘)

cd $dir

pipepar foo=3.3

pipe step3 all

cd ..

end

and because this is somewhat cumbersome to program, a special command is available to help
running (pipeline) commands in a set of directories:

piperun dirs.txt ’pipepar foo=3.3 ; pipe step3 all’

does the same thing

4. From a set of directories, create a scatterplot of two pipeline derived parameters. Again, with the
aid of the piperun command this can be done as follows

piperun dirs.txt pipepar -v foo -v bar > foo_bar.tab

tabplot foo_bar.tab

5. Run a (pipe) command on a set of project directories in parallel. Generally you will need to
understand if your pipeline contains I/O and if running them in parallel is an efficient usage of your
resources. And of course the number of processes you can run them under. Here is an example of
running a set of pipelines on 4 processors, from step2 and onwards:

piperun -n 4 dirs.txt pipe step2 all

6. Re-create a new pipeline using an extra step, and rerun the whole pipeline

A-4 APPENDIX A. DRPACS PIPELINE

pipeline $DRPACS/cat/pipeline.002 > Pipefile

pipe clean all

You generally will need to use an extra clean step, in order to clean up the old control files, since
the steps are unlikely to be compatible with the old pipeline (the exception being if the new pipeline
appends steps to the old one).

7. Run the PACS pipeline in parallel on a 4-way processor on a set of project directories, and store
the output in pipe.log (in each project directory):

piperun -n 4 -c -o pipe.log dirs.txt ’pipepar -c project=%s showPlots=False; pipe clean all’

Note the use of the special “%s” construct to replace it with the active directory name from the
dirs.txt file as it loops over the project directories. Here is the full usage line for the piperun

command:

Usage: piperun [-n #procs] [-o logfile] [-c] dirs.txt cmd [args]

-h this help

-n #procs parallel processing using #procs processors

-o logfile output log

-c create directories

-v verbose (debug)

dirs.txt text file with directory names

cmd unix command to run

args arguments to unix command (inlcuding ; cmd2 args2...)

8. Re-Run the PACS pipeline for failed projects

% piperun -v -o pipe1.log dirs.txt ’pipepar showPlots=False; pipe all’

CAVEAT: There appears to be a Unix issue aborting this command with the usual Ĉ, it will instead
work on the next project directory. A better way to halt the series, is to issue Ẑ, which suspends
the task, and then issue “kill %%” the currently last suspended task.

9. Re-Run a project with some additional flagging :

% echo ’ant(2)’ > CARMA.uvflag

% echo ’ant(21)’ > SZA.uvflag

% pipe reduction all

Flagging is acted upon in the reduction step, but only if files CARMA.uvflag and/or SZA.uvflag
are present, they are created with an editor, or in this case with a simple echo command, and the
pipeline is run again.

If you want to store these uvflag files in a more persisent way, use the advanced feature of storing
them as pipefiles (see “Advanced Usage” below) together with drpacs.def do the following

% pipepar pipefile=CARMA.uvflag,SZA.uvflag

% pipesave

A.4 Pipeline Parameter Convention

Any script or program that is part of the pipeline must follow the same convention of retrieving named
parameters from the commandline, and override any previously stored values in the (default: drpacs.def)
pipeline parameter file. At the (successfull) end of the script new and changed parameters will be written
back to this parameter file for the next program in the pipe to pick up these variables.

In short, these are the conventions:

A.4. PIPELINE PARAMETER CONVENTION A-5

1. arguments to a pipeline tasks should be a unique series of “par=val” (since parameters can be
shared between pipeline tasks)

2. values are stored as a string, assigning a type (integer, real, boolean etc.) are left open to the task

3. each task should define a default value for each parameter

4. the task should then read the global database (usually from the drpacs.def file)

5. task can now compute

6. task should write out all parameter back to the global database

A.4.1 csh

Here is a very simple example in the csh scripting language how this can be accomplished:

#! /bin/csh -f

#

(1) define default values in case not given

set a=1

set b=2

(2) pipeline interface to grab old defaults

pipepar -s csh > tmp$$.par; source tmp$$.par; rm tmp$$.par

(3) poor man’s command line processor to override parameters

foreach _arg ($*)

set $_arg

end

(4) The Actual Code where the work can be done

echo A=$a B=$b

(5) write pipeline parameters back

pipepar a=$a b=$b c=3

The actual code is in (4), though (1) and (3) are fairly common techniques to make your shell script
more dynamic and have it accept parameters in a simple way. (2) and (5) are the new pipeline based
commands to ensure previous defaults are read before the commandline sets them (2), and ensure their
values are stored back into your local pipeline database (5).

A.4.2 python

Here is a very simple example in the python scripting language how this can be accomplished:

#! /bin/env python

#

import parfile, sys

a=1

b=2

if __name__ == "__main__":

p = parfile.Parfile(’drpacs.def’)

p.argv(sys.argv)

p.set(’a’,a)

if p.has(’b’):

b = p.get(’b’)

A-6 APPENDIX A. DRPACS PIPELINE

else:

p.set(’b’,b)

p.set(’sum’,a+b)

p.save()

You can find full examples of this convention for bash, csh and python in the $DRPACS/templates/pipeline
directory. There are no examples in C or Fortran yet, but are relatively easy to implement and add to
your library.

A.5 Advanced Usage

Two wrapper scripts exist that help you managing your pipeline parameters in a persistent way. Imagine
your pipeline directory tree runs completely from scratch, so you would like to save and restore parameters
between different versions of the pipeline. We simply store the parameter files (drpacs.def) in an
agreed upon location, currently the project directory within the $DRPACS DEF (if present, or else the
default $DRPACS/def) directory), and retrieve them in a subsequent run. The commands pipesetup and
pipesave are used for this

pipesetup a=1 b=2 project=test

pipe all

pipesave

Another common technique to store large amounts of simulations is in a hierarchy where each level
identifies a new value in a parameter. drpacs supports this method as well, by storing the project
directories in that same hierarchy. In the example below you see three levels representing values for the
3 parameters a, b and c:

mkdir par/0.4/0.1/6.0

pushd par/0.4/0.1/6.0

pipepar -c project=par/0.4/0.1/6.0 a=0.4 b=0.1 c=6.0

pipe all

pipesave

popd

...

mkdir test

cd test

pipesetup project=par/0.4/0.1/6.0

pipe all

In addition to the special identifying project parameter, the pipefile parameter is also treated some-
what special by the pipesetup and pipesave wrappers: they can contain a comma separated list of
filenames that will be retrieved and saved at the start and beginning of a pipeline, if you add these
wrappers to your pipeline. This would then enable your pipeline to use these files in a more persistent
way.

Example:

pipepar pipefile=NOTES,uvflags

echo flagging ant 2 and 13, both had issues > NOTES

echo ’ant(2),time(10:00,11:00)’ > uvflags

echo ’ant(13),time(11:00,12:00)’ >> uvflags

pipesave

A.6. BUILDING YOUR OWN PIPELINE A-7

A.6 Building your own Pipeline

1. Define your pipeline commands, and for each command make sure they follow the pipeline parameter
convention. Place the commands somewhere in your $PATH.

2. Create the Pipefile, for example

pipeline 5 getdata calibrate map deconvolve summary > Pipefile

You can stick this Pipefile either in each project directory you want to run the pipeline on, or make
it a default by overwriting the example in $DRPACS/cat/Pipefile

3. Run the pipe, set parameters etc.etc.

pipepar -c foo=bar fum=bar

pipe all

4. If you want save/restore the pipeline parameters, the project parameter is the key for this:

pipepar project=mytest1

pipesave

the next time you setup a pipeline in another directory, the command

pipesetup project=mytest1

will restore your previous defaults.

A.7 drPACS Command Summary

Although the current $DRPACS/bin directory also contains many PACS specific commands, the following
commands are very general pipeline related, and all start with the 4 letters pipe:

pipeline create a Pipefile for running the ’pipe’ command

pipepar set and retrieve pipeline parameters

pipe run the pipeline

piperun run (optionally in parallel) pipeline in set of directories

pipesetup grab previously run pipeline parameters for a project

pipesave save pipeline parameters for a project

Appendix B

Installation

Here we discuss the installation of drpacs and comment on some related packages that may be needed.

B.1 drpacs

We use the same CVS repository as MIRIAD and NEMO, and the installation is very similar. The module
is called drpacs and once installed it will need MIRIAD, python + scipy/matplotlib and NEMO (at least
for the actual PACS pipeline, for your own pipeline you only need whatever your pipeline programs
need):1:

% cvs -d :pserver:anonymous@cvs.astro.umd.edu:/home/cvsroot co drpacs

% cd drpacs

% ./configure

% source drpacs_start.csh

From this point on you can put new scripts and python modules in the appropriate places (e.g. $DRPACS/bin
and $DRPACS/lib, or your own style somewhere in $PATH2

B.2 MIRIAD

For the actual PACS pipeline, you will need to have MIRIAD installed. See the appropriate MIRIAD
documentation.

B.3 python

You will have to have python installed with at least scipy and matplotlib. You can test this the following
way, and see if you got any error messages about none existent modules:

% ipython -pylab

In [1]: import matplotlib

In [2]: import numpy

1In its most basic form the drpacs package does not need MIRIAD, NEMO or anything but the most basic pieces of

python
2because commands are executed in another directory, the scripts in the current directory will not work.

B-8

B.4. NEMO B-9

However, if you got an error message such as

ERROR: matplotlib could NOT be imported! Starting normal IPython.

or

ipython: Command not found.

you are in bad shape. For U of Maryland computers the command(s)

source /astromake/astromake_start

astroload python

will give you a version of (i)python with all the proper modules included, and even more. The script
to ease the installation into your own workspace is called python.install , and a copy should be in
$NEMO/src/scripts or $MIR/install.

B.4 NEMO

If you do not have NEMO installed, there is a simple way within MIRIAD to install NEMO:

% cd $MIR/borrow

% cvs -Q checkout nemo

% mirboss

% mir.install nemo

% source $MIR/borrow/nemo/nemo_start.csh

and to test a simple program that plots some garbage into a pgplot window, try this

% nemoinp 1:10 | tabhist -

Appendix C

PACS

This Appendix describes some PACS specific aspects of the drPACS pipeline.

C.1 PACS parameters

The global pipeline parameters are stored in ASCII format in a small text file, by default this is called
drpacs.def. For our PACS pipeline the following parameters listed in column 2 are defined by the
programs listed in column 1:

pipesetup project <optional step for re-running pipes with old drpacs.def files>

pipesetup pipefile optional comma separated list of to-be-saved filenames

pipesetup step most pipeline scripts store their last successful step name here

getdata datadir where tar.gz or miriad/mir files live [/grus1/pacsdata]

getdata project e.g. c0184.1B_105PG1351.10

getdata cvis e.g. c0184.1B_105PG1351.10.miriad - usually derived from project

getdata svis e.g. zrc0184.1B_105PG1351.10.mir

getdata link normally 1, if symlinks used, use 0 if you want a local copy

timeselect whitelist source1[,source1,...] - case does not matter

timeselect blacklist source1[,source1,...]

timeselect cfreq somewhere in the 1mm or 3mm band, in GHz

timeselect sfreq always fixed at 30.0 now, could be slightly off

timeselect szaPatchSource list of ’SOURCE,HH:MM:SS,DD:MM:SS’ to patch bad SZA ra,dec’s

antselect goodCarAnts list of good ants (if absent, all are good?)

antselect goodSzaAnts

reduction source a prefix (foobar)

reduction carmaRefant [7]

reduction szaRefant [22]

reduction fastInterval [0.04]

reduction slowInterval [4]

reduction showPlots [True] or False

reduction cleanUp [True] or False

reduction timeOffset 0 (1 would trigger options=time for uvedit to fix CARMA filler bug)

reduction pipefile files CARMA.uvflag and SZA.uvflag can be used to flag data

baselinecalc freqRatio force it to -1, or inherit from cfreq/sfreq; used in unwrap

unwrap none, antenna, baseline (only one) are optional [none]

plotdata -

pipesave - (any parameters in pipesetup also apply here)

C-10

C.2. PACS ISSUES C-11

C.2 PACS ISSUES

C.2.1 WIKI

See also our wiki: http://carma.astro.umd.edu/wiki/index.php/PACS

Version 1.1 issues (17 Dec and after)

* now have properly dimensioned systemp, though some data don’t have systemp (e.g. pacs 19)

* some data create an extra hierarchy data/eml/mirData/ in the current directory. Simple manually move it.

[edit] Version 1.1 issues (before Dec 17)

* systemp is erroneously written with the wrong dimension. New version of listobs (V1.26) has been patched

to look at wsystemp in this case.

* There are no linelength data (phasem1), but this is a known issue and won’t be added for a while.

[edit] Version 1.0 issues (before Dec 11)

* Data not always time sorted (solved in 1.1). If the data is not time sorted, mfcal won’t work.

Rest should be ok. See comments on 3QSO below.

* The antpos uv variable is not correct. (fixed in 1.1)

* The freq variable is missing, listobs now works around that (fixed in 1.1)

* There is no version keyword in the data. (fixed in 1.1)

* Only wide band data are flagged (fixed in 1.1), you must run

uvwide vis=SZA narrow=t

* missing NOISE source data.(zrcx252.Arp220_12CO.1.mir.tar)

* (now resolved) prior to about Dec 3, data had the wrong sign in the U-V coordinates.

You can solve that by using scale < 1 in gpbuddy (V1.9). To check if your data has the

wrong sign of the phases, check a similarly oriented antenna pair using UV list and see

in which quadrant the UV coordinates are, viz.

uvlist vis=SZA select=’ant(21)(23),time(15:00,15:01),-source(noise)’

uvlist vis=CAR select=’ant(2)(4),time(15:00,15:01),-source(noise)’

* systemp’s are constant, but this is a feature. Need to double check if the array is properly

written as systemp(nants,nwide), and not the other way around.

* 3QSO track (zrct015.3QSO_3C273.3mm.1.mir).

o no wide band data

o first few integrations after a source change are bad.

There are actually two versions of the 3QSO dataset (zrct015.3QSO_3c273.3mm.1.mir.tar.gz and

zrct015.3QSO_3C273.3mm.1.mir.tar.gz) that have a 30MB difference in size. The latter (upper case C)

one is smaller and sorted in time, but has lost the wide band data (a feature of uvsort).

In the following procedure

uvwide vis=zrct015.3QSO_3c273.3mm.1.mir narrow=t

uvsort vis=zrct015.3QSO_3c273.3mm.1.mir out=sza1

uvwide vis=sza1 out=sza2 nwide=16

all flags are correct, including the bad data after a source change.

C.2.2 NEW

1. listobs output and other tests showed that time in CARMA is off by inttime/2, see BUGZILLA
#786. Solution:

uvedit options=time

for data prior August 2009. (but after Feb 2006 ?) . CARMA data version 1.0.3 or earlier has this
issue. To find out data version, e.g. do this:

C-12 APPENDIX C. PACS

% uvio c0184.3B_108PG2130.13.miriad | grep version

0x000009a8 SIZE: version Count=5,Type=a

0x000009b0 DATA: version 1.0.3

2. select=time(t0,t1) is of course subject to rounding, but for a given time ’t’ in the vis data, the
record selection is not dependant on inttime, but purely on the values of t0 and t1 in the following
way: t0 ≤ t < t1.

3. selfcal and mselfcal assign a timestamp to an interval that can be confusing if ’interval’ larger but
close to ’inttime’. Also recall that the “validity time” for a gain table entry is “interval” on either
side the timestamp.

0 1 2 3 4 5 6

0 6

0 6

SelfCal

MSelfCal

Figure C.1: Timestamps: with an selfcal gain interval=1 (top bar) and integration time of 0.6 minutes,
selfcal (middle bar) and mselfcal (bottom bar) compute their timestamps differently, as depicted by the
triangles.

Given that we could clearly see a 2 second shift on a 4 second integration time in 3C454.3, getting
the times right on this level is important.

The following table was created with uvgen1:

vis selfcal mselfcal

time time time

00:00.0 00:00.0

00:36.0 00:18.0

01:12.0 00:54.0

01:48.0 01:30.0

02:24.0 02:06.0

03:00.0 03:00.0 02:42.0

03:36.0

04:12.0 03:54.0 03:54.0

04:48.0

05:24.0 05:06.0 05:06.0

06:00.0 06:00.0

4. The interpolation formulae2 that computes a baseline based gain at time t, from antenna based
gains gA and gB that had been computed at times t1 and t2 is given by the following expression:

G = gA,2(1 + (

∣

∣

∣

∣

gA,1

gA,2

∣

∣

∣

∣

− 1)ǫ)

(

gA,1

gA,2

)ǫ

g∗B,2(1 + (

∣

∣

∣

∣

gB,1

gB,2

∣

∣

∣

∣

− 1)ǫ)

(

gB,1

gB,2

)

−ǫ

1harange=-6,6,0.01 options=slip is needed to get the times rounded a little nicer
2See also $MIRSUBS/uvgn.for::uvGnFac()

C.2. PACS ISSUES C-13

and for a phase-only selfcal solution, where |g| = 1, this simplifies to:

G = gA,2g
∗

B,2

(

gA,1

gA,2

)ǫ (

gB,1

gB,2

)

−ǫ

where

ǫ =
t2 − t

t2 − t1

5. SZA data can have varying inttime’s, by fractions of the frames

6. some SZA data have no narrowband data flagged:

% uvwide vis=c0184.3B_108PG2130.13.miriad narrow=t

will flag the wide-band based on narrow band. Also, bands 1 and 2 are always flagged due to
missing correlator boards at that time (winter 2008/2009)

7. linreg on all the phase correlation data, csPhaseDiff.txt, gives a sigma in the intercept, that’s pretty
good way to measure goodness of fit? Or should be we use sigma(offset)/slope ?

8. If RA/DEC for all sources the same, szaPatchSource can be set on a tuple of sourcename,ra,dec,
e.g. szaPatchSource=3c111,12:11:10.2,-20:12.02.3,3c454,22:20:10.2,35:30:21.6

9. wrapping is still bad in the pipeline,here and there

10. if an ant is missing, pipeline breaks in places

11. use of proper antpos file vs. output of listobs, not for SZA yet, since we don’t have antpos files for
SZA yet.

