Distances and Angular Sizes

We may rearrange the relation that appeared in Lecture 1 between apparent magnitude \(m\) and absolute magnitude \(M\) at some wavelength (or in some wavelength band), and distance \(d\), as follows:

\[m - M = 5 \log \left(\frac{d}{10 \text{ pc}} \right) \]

The quantity \((m - M)\) is called the distance modulus. Some databases include \((m - M)\), or \(d\), or in some cases (e.g., NED) \((m - M)\) and \(d\).
The relationship between distance d, angular separation on the sky, ϑ, and physical separation r

in the small angle approximation ($r \ll d$) is simply $\vartheta = r/d$, for ϑ in radians, and r and d in identical units. Since 1 radian = 57.296 degrees = 3,437.8 arcminutes (= 206,265 arcseconds),

$$r = \vartheta d / 3437.8,$$

where ϑ is measured in arcminutes. On extragalactic scales, d is often expressed in Megaparsecs (Mpc); 1 Mpc = 10^6 pc.