Data Analysis II: High Energy

\[E = hf = \frac{hc}{\lambda} = \frac{1240 \text{ nm}}{\lambda} \text{ eV} \]

1 nm = 10^{-9} m = 10 \text{ Angstrom} = 0.001 \mu

1 eV = 1.6 \times 10^{-12} \text{ erg}

1 keV = 10^3 \text{ eV}

\[1 \text{ keV} = 1.6 \times 10^{-9} \approx 440 \text{ km/sec} \ (E=1/2 \ m_p v^2) \]
\[\approx 1.2 \times 10^7 \text{ K} \ (E=kT) \]

V-band @ 5500 \text{ Angstrom} \approx 2.3 \text{ eV}

J-band @ 1.25 \mu \approx 1 \text{ eV}

Soft X-rays: 0.1 - 1 \text{ keV}

Hard X-rays: 1 - 100 \text{ keV}
The sky in the IR (2MASS)...

.... and in X-rays (RASS)
Due to the opacity of the atmosphere, observations at high photon energies (Far UV, X-ray, γ-ray) need to be performed from either stratospheric balloon flights or from space (sounding rockets, satellites).
X-ray Optics: Focusing X-rays

It is tricky to focus X-rays because they pass through or are absorbed by matter at all but the smallest angles.

X-rays can be reflected off smooth metallic surfaces at very shallow angles smaller than some *critical angle* that *decreases* with *increasing energy*. Such *grazing incidence* reflections are particularly efficient for metals with high density, such as gold, platinum or iridium.

X-rays may be achromatically focused using *two* reflections.

"Wolter Type I" parabolic-hyperbolic telescope

The collecting area is boosted by the nesting of mirror shells.
X-ray Telescopes: Two Designs

(1) X-ray mirrors are *highly* polished glass ceramic surface with coated with an X-ray reflective surface in the Wolter I configuration.

- Advantages: sharpest image (1” resolution)
- Disadvantages: preserve image quality ➔ few shells ➔ limits collecting area; difficult to fabricate, heavy (expensive to make and launch)

Chandra

smoothness of a few atoms, alignment to ≈1μ
X-ray Telescopes: Two Designs

(2) Mirrors consist of *many thin foils*, coated with an X-ray reflective surface shaped into a conical approximation to the Wolter I geometry.

- Advantages: can boost the effective area by nesting *many* reflectors; more sensitive at high energies; lightweight, “easy” to fabricate (cheap)
- Disadvantages: limited image quality (≈1’ angular resolution)

Suzaku
X-ray Detectors: CCD Cameras

- X-Ray CCD (charge coupled device) cameras are the general purpose detectors in the focal plane of X-ray Observatories currently in orbit.
- Every incident X-ray photon is recorded as an event tagged by 1) the time of arrival, 2) the position on the CCD detector, and 3) its energy. The result of an observation is an event list of X-ray photons.
Meet the Fleet:

<table>
<thead>
<tr>
<th></th>
<th>Chandra ACIS</th>
<th>XMM-Newton EPIC</th>
<th>Suzaku XIS</th>
<th>Swift XRT EPIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>field of view</td>
<td>17’ X 17’</td>
<td>30’ X 30’</td>
<td>19’ X 19’</td>
<td>24’ X 24’</td>
</tr>
<tr>
<td>resolution</td>
<td>1”</td>
<td>6”</td>
<td>90”</td>
<td>20”</td>
</tr>
<tr>
<td>bandpass</td>
<td>0.4 – 8 keV</td>
<td>0.2 – 12 keV</td>
<td>0.3 – 12 keV</td>
<td>0.2-10 keV</td>
</tr>
<tr>
<td>effective area</td>
<td>400 cm²</td>
<td>1200 + 2 X 900 cm²</td>
<td>400 X 3 cm²</td>
<td>135 cm²</td>
</tr>
</tbody>
</table>

Each of the X-ray observatories has its own data analysis and software packages: **CIAO** (*Chandra*); **SAS** (*XMM-Newton*); **Ftools** (*Suzaku* and *Swift*).
Some X-Ray Processes

• Thermal Bremsstrahlung

• Inverse Compton Scattering

• Synchrotron Radiation

• Atomic Emission

Some X-ray Sources

• Supernova remnant, and γ-ray burst, shock waves

Cassiopeia A SNR
Some X-Ray Processes

- Thermal Bremsstrahlung
- Inverse Compton Scattering
- Synchrotron Radiation
- Atomic Emission

Some X-ray Sources

- Neutron star and (stellar and supermassive) black hole accretion disks and jets
Some X-ray Processes

- Thermal Bremsstrahlung
- Inverse Compton Scattering
- Synchrotron Radiation
- Atomic Emission

Some X-ray Sources

- Stellar (including solar) coronae

high energy particles \rightarrow high energy photons

The Sun (with TRACE)
Some X-ray Sources

• Hot thermal plasma in galaxies (including our own) and clusters of galaxies

The Abell 2029 Cluster; X-ray vs Optical
The Basics of **FITS** Files

- Flexible Image Transport System (**FITS**), originally developed to store and transport astronomical images, is primarily designed to store general scientific data sets in a standard way, and is self-documenting. **FITS** files are segmented into “Header + Data Units” (HDUs) (a) defined as primary or an extension, and (b) contain keywords describing the data, and data (tables, image arrays)
Ftools: a free suite of utility programs, distributed by NASA’s High Energy Astrophysics Science Archive Research Center (HEASARC)

http://heasarc.gsfc.nasa.gov/docs/software/ftools/ftools_menu.html

General Subpackages

<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>caltools</td>
<td>General Calibration Tasks</td>
</tr>
<tr>
<td>fimage</td>
<td>General FITS Image-Manipulation Tasks</td>
</tr>
<tr>
<td>futils</td>
<td>General-Purpose FITS Tasks</td>
</tr>
<tr>
<td>heasarc</td>
<td>General Tasks for High Energy Astrophysics (includes Xselect)</td>
</tr>
<tr>
<td>heatools</td>
<td>Next-generation futils</td>
</tr>
<tr>
<td>time</td>
<td>Timing-Specific Tasks</td>
</tr>
<tr>
<td>xronos</td>
<td>The HEASARC's general timing analysis package</td>
</tr>
</tbody>
</table>

Mission-Specific Tasks

The following subpackages are currently available for specific missions:

- asca - ASCA Mission-Specific Tasks
- einstein - Einstein Mission-Specific Tasks
- exosat - EXOSAT Mission-Specific Tasks
- gr - CGRO Mission-Specific Tasks
- heao1 - HEAO 1 Mission-Specific Tasks
- integral - Integral Mission-Specific Tasks
- os08 - OS08 Mission-Specific Tasks
- rosat - ROSAT Mission-Specific Tasks
- suzaku - Suzaku Mission-Specific Tasks
- swift - Swift Mission-Specific Tasks
- vela5b - Vela 5b Mission-Specific Tasks
- xte - XTE Mission-Specific Tasks

Xselect

Xselect is a general driver which greatly simplifies many commonly performed tasks such as extracting images or spectra from events files. Xselect is distributed with the HEASARC package on the [download page](http://heasarc.gsfc.nasa.gov/docs/software/ftools/ftools_menu.html).

GUIs
Ftools Basics

- General help: `fhelp ftools`
- Specific tasks help: `fhelp taskname`
- `fdump` prints the contents of a FITS table to an ASCII file (e.g., STDOUT)
- `fv` does this in an interactive gui
- `ftlist` prints the contents of a FITS file in flexible way.
- `fstruct` lists a description of the structure of a FITS file
- `ftsat, fimgstat` compute statistics (max, min, etc.)
Ftools Basics

- *Ftools* has required parameters that must be specified, and optional/hidden parameters that are preset but can be overridden.
- *plist taskname* specifies these parameters.
- The required parameters can be specified (in order), or one can let *Ftools* prompt for these.
- The hidden parameters must be specified on the command line, if you wish to set these.
- *Xselect*: Process an event list and extract data products (images, spectra, light curves).
For example...

plist fimgstat
Parameters for /Volumes/Apps_and_Docs/loew/pfiles/fimgstat.par
 infile = Input image file:
 threshlo = INDEF Lower threshold value:
 threshup = INDEF Upper threshold value:
 (outfile = STDOUT) Output image file:
 (sum =) Sum of the included pixel values
...
Yet More IDL Basics

Fitsio:

• **readfits**: Read a FITS file into IDL data and header variables.
• **writefits**: Write IDL array and header variables to a disk FITS file; if not specified a minimal fits header is created.
• **sxpar**: Obtain the value of a parameter in a FITS header.

see examples on next two pages...
IDL Fitsio examples:

IDL> image=readfits("ngc4406_suzaku_8bin_img.fits",hdr)
% Compiled module: READFITS.
% Compiled module: SXPAR.
% Compiled module: GETTOK.
% Compiled module: VALID_NUM.
% READFITS: Now reading 192 by 192 array
IDL> image=readfits("ngc4406_suzaku_8bin_img.fits",hdr)
% Compiled module: READFITS.
% Compiled module: SXPAR.
% Compiled module: GETTOK.
% Compiled module: VALID_NUM.
% READFITS: Now reading 192 by 192 array
IDL> my_name=sxpar(hdr,'OBSERVER')
IDL> print, my_name
MICHAEL LOEWENSTEIN
IDL> writefits, 'copy', image
IDL> image_copy=readfits("copy",newhdr)
% READFITS: Now reading 192 by 192 array
IDL> help,image_copy
IMAGE_COPY LONG = Array[192, 192]
IDL> help,newhdr
NEWHDR STRING = Array[10]
IDL> print,newhdr
SIMPLE = T / Written by IDL: Mon Nov 1 11:37:29 2010
BITPIX = 32 / Number of bits per data pixel
NAXIS = 2 / Number of data axes
NAXIS1 = 192 /
NAXIS2 = 192 /
EXTEND = T / FITS data may contain extensions
DATE = '2010-11-01' / Creation UTC (CCCC-MM-DD) date of FITS header
COMMENT FITS (Flexible Image Transport System) format is defined in 'Astronomy
COMMENT and Astrophysics', volume 376, page 359; bibcode 2001A&A...376..359H
END
More on IDL Arrays

IDL> array_1=fltarr(5); create an array of zeros
IDL> print, array_1
 0.00000 0.00000 0.00000 0.00000 0.00000
IDL> array_2=findgen(5); create an array with values = index
IDL> print, array_2
 0.00000 1.00000 2.00000 3.00000 4.00000
IDL> array_3=replicate(1.0,5); create an array of ones
IDL> print, array_3
 1.00000 1.00000 1.00000 1.00000 1.00000
IDL> array_4=2.0*array_2; multiply all array_2 elements by 2....
IDL> print, array_4
 0.00000 2.00000 4.00000 6.00000 8.00000
IDL> array_5=2.0*array_2+array_3; ... and add the elements of array_3
IDL> print, array_5
 1.00000 3.00000 5.00000 7.00000 9.00000
IDL> indices=[0,2]
More on IDL Arrays

IDL> array_6=array_5(indices); subarray of 1st and 3rd entries
IDL> print,array_6
 1.00000 5.00000
IDL> array_7=array_5; copy
IDL> print,array_5
 1.00000 3.00000 5.00000 7.00000 9.00000
IDL> array_7(indices)=0.0; zero out 1st and 3rd entries
IDL> print,array_7
 0.00000 3.00000 0.00000 7.00000 9.00000
IDL> nonzeros=where(array_7 gt 0.0); indices where array is positive
IDL> print,nonzeros
 1 3 4
IDL> array_8=array_1; copy
IDL> array_8(nonzeros)=1.0; replace specified entries
IDL> print,array_8
 0.00000 1.00000 0.00000 1.00000 1.00000