## Reverse Drift Bursts in the 0.8-4.5 GHz Band and their Relation to X-Rays

František Fárník and Marian Karlický

Astronomical Institute Academy of Sciences 251 65 Ondřejov Czech Republic ffarnik@asu.cas.cz karlicky@asu.cas.cz

### Aim of the study:

- To look for any relation between Reverse Drift Bursts (RDBs) observed in 0.8-4.5 GHz range and X-rays (especially above 12 keV), to describe the relation or to deny it.
- It was supposed that RDBs are radio manifestation of beams of energetic electrons moving downward to chromosphere and causing radio emission through plasma emission mechanism. The same electrons produce hard X-rays upon arrival into dense layers. We tried to show or to deny one-to-one correlation between the RDBs and hard X-ray peaks.
- If the correlation is found we would like to measure the time delay between RDB and X-ray peak.
- It is known that some RDBs have a very high frequency drift and its determination requires high temporal resolution of radio spectra (it is due to a very steep gradient of plasma density in the source region and high velocity of the beam, about c/3) and others have a much slower drift and their origin may be different. We tried to look for any differences in X-ray emission (like different time relation or changes in X-ray source position or shape) between the two basic groups of RDBs.
- If possible, we would like to describe a few "typical" features of different RDB+X-ray events and to try to "classify" them.

#### Table of RDB events (Ondřejov spectrograph) for which RHESSI observations are available

| No. | Date       | Time Interval   | Frequency             | GOES Flare |       |       | GOES  |
|-----|------------|-----------------|-----------------------|------------|-------|-------|-------|
|     |            | of RDBs (UT)    | Drift (MHz $s^{-1}$ ) | Start      | Мах   | End   | Class |
| 1.  | 30 Mar 02  | 06:49:30-:50:10 | 600                   | 06:20      | 07:08 | 08:40 | C9.0  |
| 2.  | 10 Apr 02  | 12:27:30-:29:20 | 1100                  | 12:15      | 12:32 | 18:00 | М9.0  |
| 3.  | 11 May 02  | 11:32:00-:32:30 | >1000                 | 11:20      | 11:32 | 12:30 | М1.5  |
| 4.  | 27 May 02  | 05:02:30-:03:30 | 750                   | 05:00      | 05:07 | 05:20 | C1.1  |
| 5.  | 30 Jul 02  | 07:37:20-:38:00 | 1500                  | 17:10      | 17:38 | 18:20 | C2.3  |
| 6.  | 14 Ang ()2 | 17:07:35-:08:00 | 70                    | 17:05      | 17:15 | 17:30 | C1.3  |
| 7.  | 31 Ang 02  | 14:20:20-:21:00 | >5000                 | 14:17      | 14:22 | 14:32 | C5.0  |
| 8.  | 01 Scp 02  | 09:31:30-:31:50 | 2400                  | 09:30      | 09:32 | 09:40 | C7.3  |
| 9.  | 25 Oct 02  | 07:02:10-:02:40 | 1500                  | 07:01      | 07:02 | 07:14 | C4.0  |
| 10. | 21 Nov ()2 | 12:43:20-:44:20 | 800                   | 12:42      | 12:46 | 12:56 | C1.0  |
| 11. | 10 Mar 03  | 10:02:45-:03:25 | 1600                  | 10:01      | 10:05 | 10:22 | C1.3  |
| 12. | 15 Mar 03  | 10:39:10-:39:40 | 630                   | 10:02      | 10:10 | 10:50 | м0.0  |
| 13. | 09 Jnn 03  | 16:28:20-:29:00 | 800                   | 16:25      | 16:29 | 16:45 | C6.8  |
| 14. | 10 Ang 03  | 10:15:10-:16:30 | 420                   | 10:00      | 10:20 | 10:50 | C3.5  |
| 15. | 28 Oct 03  | 11:01:25-:01:40 | 620                   | 09:30      | 11:08 | 21:00 | X17.2 |
| 16. | 31 Oct 03  | 11:22:00-:22:07 | 2800                  | 11:10      | 11:13 | 11:40 | C3.0  |
| 17. | 23 Jul 04  | 06:44:50-:45:00 | 240                   | 06:41      | 06:48 | 07:15 | C2.1  |
| 18. | 26 Jul 04  | 05:39:00-:41:00 | 48                    | 05:36      | 05:52 | 06:45 | М1.4  |
| 19. | 03 Dec 04  | 13:04:55-:05:27 | 600                   | 13:02      | 13:08 | 13:40 | B8.0  |
| 20. | 11 Apr 05  | 07:51:20-:51:40 | 600                   | 07:51      | 07:52 | 07:54 | B1.2  |
| 21. | 09 May 05  | 10:45:30-:46:00 | 600                   | 10:30      | 11:03 | 11:40 | C9.0  |
| 22. | 01 Ang 05  | 13:28:10-:29:10 | 920                   | 13:07      | 13:50 | 19:00 | м1.1  |

First example of an event with a single well defined "fast" RDB on 27 May 02





Typical features of many events in our data set:

- \* very weak hard X-ray emission, short and nearly symmetrical profile
- \* compact hard X-ray source
- \* soft X-ray importance C
- \* high frequency drift
- \* RDBs during the rise phase in RHESSI flux
- \* RDBs are nearly always observed during the hard X-ray burst but it seems to be impossible to make a reliable temporal correlation of an RDB and a sub-peak in the X-ray flux

A few other examples:







07:02:30





As a small sub-group of the previous events we found relatively "fast" RDBs which were accompanied by multiple sources X-ray emission. Some changes of the X-ray sources are observed during

the RDB observation.

We can show a few examples:





Another group of RDBs are those events where RDBs have an extremely slow frequency drift. These events seem to be accompanied by multi-source X-ray emission, not so impulsive as in the first group. During RDBs observation the shape of the corresponding X-ray source may change or expand. It seems also that the X-ray emission is not so hard and impulsive but the events have higher GOES soft X-ray importance. The RDBs "driver" may be different, i.e. instead of fast electron beams a shock disturbance.

A few examples :







#### GOES Soft X-Ray Importance versus RDBs Observation



Soft X-Ray Importance

# CONCLUSIONS

- Reverse Drift Bursts are mostly observed during the rise (flash) phase of hard X-ray emission.
- It seems that RDBs with high frequency drift are mostly accompanied by compact X-ray sources.
- There are also events with high frequency drift RDBs and with multiple X-ray sources which may change shape or intensity during the RDB observation.
- In some cases the frequency drift of the observed RDBs was very small. Here the radio emission might be a result of a downward moving shock front.
- In the frequency range below 1.4 GHz Aschwanden et al. found in 26 % of studied 882 events correspondence between individual X-ray peaks and type III radio bursts (including RDBs). The relative timing between HXR pulses and radio bursts was found with a coincidence of <0.1 s in statistical average.</li>

In the range above 1 GHz we did not find any such one-to-one relation between individual X-ray peaks (sub-peaks) and individual RDBs on the time scale of the order of 1 s.

 GOES importance versus RDBs shows that RDBs are preferably observed during flares with lower soft X-ray importance. The reason is unclear so far.