Lecture 13: Black Holes

- Old ideas for black holes
- Theory of black holes
- Real-life black holes
 - Stellar mass
 - Supermassive
- Speculative stuff

I: OLD IDEAS FOR BLACK HOLES

- “What goes up must come down”... or must it?
- Escape velocity, V_{esc}
 - Critical velocity object must have to just escape the gravitational field of the Earth
 - $V < V_{esc}$: object falls back to Earth
 - $V > V_{esc}$: object never falls back to Earth
 - In fact, escape velocity given in general by
 $$ V_{esc} = \sqrt{\frac{2GM}{R}} $$
 when the mass of an object is M and the distance from the center is R
- Starting from Earth’s surface, $V_{esc} = 11 \text{ km/s}$
- Starting from Sun’s surface, $V_{esc} = 616 \text{ km/s}$
18th Century ideas

- By making M larger and R smaller, V_{esc} increases.
- Idea of an object with gravity so strong that light cannot escape first suggested by Rev. John Mitchell in 1783.

- Laplace (1798) - “A luminous star, of the same density as the Earth, and whose diameter should be two hundred and fifty times larger than that of the Sun, would not, in consequence of its attraction, allow any of its rays to arrive at us; it is therefore possible that the largest luminous bodies in the universe may, through this cause, be invisible.”

II: Modern (GR) ideas of black holes

Gravitational redshift outside of a spherical object with mass M is

$$\nu_{\text{obs}} = \left(1 - \frac{2GM}{rc^2}\right)^{1/2} \nu_{\text{emit}}$$
Event horizon
- Point of no-return... the location where the escape velocity equals the speed of light
- The gravitational redshift becomes infinite here (as seen by an outside static observer)
- Nothing occurring inside can be seen from outside (or have any causal effect on the external Universe!)
- So... as a practical matter, astrophysics never need concern themselves with the Universe interior to the event horizon
- Radius corresponding to event horizon for a non-spinning black hole is known as the Schwarzschild radius

\[R_{Sch} = \frac{2GM}{c^2} \approx 3 \left(\frac{M}{M_\odot} \right) \text{ km} \]

Singularity
- The center of the black hole... the place into which all of the matter making the black hole has been crushed
- General Relativity gives nonsense answers here (infinite density, infinite spacetime curvature)... so GR must break down here
- Some new theory of quantum gravity is needed

For spinning black holes...
- Spacetime is twisted by rotation... objects close to black hole are “dragged” into rotation with it (frame-dragging)
- Within ergoregion, it becomes impossible to stand-still... you have to rotate in same sense as black holes
- Turns out that ergoregion is where the rotational energy of the black hole is stored
- Nature can tap this energy store... can energize accretion disk or power jets
Frame dragging by rotating black hole

Even a particle with a contrary angular momentum is swept along by the rotation of the black hole.

Effect of Frame Dragging

Graphics: University of Winnipeg, Physics Dept.
More features of Schwarzschild black hole

- Events inside the event horizon are causally disconnected from events outside of the event horizon (i.e. no information can be sent from inside to outside the horizon)
- Observer who enters event horizon would only feel “strange” gravitational effects if the black hole mass is small, so that R_h is comparable to observer’s size
- Once inside the event horizon, future light cone always points toward singularity (any motion must be inward)
- Stable, circular orbits are not possible inside $3R_h$: inside this radius, orbit must either be inward or outward but not steady
- Light ray passing BH tangentially at distance $1.5R_h$ would be bent around into a circle
- Thus black hole would produce “shadow” on sky

Curved space around a star...

From web site of UCSD
... and around a black hole

Artist’s conception of rotating black hole
III: Real-life black holes

- So much for theory - what about reality
 - Thought to be two (maybe three?) classes of black hole in nature
 - "Stellar mass black holes" - left over from the collapse/implosion of a massive star (about 10 solar masses)
 - "Supermassive black holes" - giants that currently sit at the centers of galaxies (range from millions to billions of solar masses)
 - "Intermediate-mass black holes" - suggested by very recent observations (hundreds to thousand of solar masses)

Stellar mass black holes

- End of massive star’s life...
 - In core, fusion converts hydrogen to heavier elements (eventually, core converted to iron Fe).
 - Core collapses under its own weight
 - Huge energy release: Rest of star ejected - Type II Supernova
 - Either a black hole or neutron star remains
Black holes in binary systems

- If black hole is formed in binary star system,
 - Tidal forces can rip matter of the other star
 - Matter goes into orbit around black hole - forms an accretion disk
- As matter flows in towards the black hole, it gives up huge amount of energy
 - Analogy to hydroelectric power derived when water falls over a dam
- Energy is first converted to heat, raising gas temperature in accretion disk to millions of degrees
- Hot accretion disk radiates away energy, emitted as X-rays
- These systems are called X-ray binaries

“X-ray” binary

Outer layers of a nearby star are pulled off by tides, crash into accretion disk around BH
Supermassive black holes (SMBHs)

- Found in the centers of galaxies

Center of the Milky Way: Sgr A*

- The center of our own Galaxy
- Can directly observe stars orbiting an unseen object
- Need a black hole with mass of 3.7 million solar masses to explain stellar orbits
- Best case yet of a black hole.
M87

- Another example - the SMBH in the galaxy M87
- Can see a gas disk orbiting galaxy’s center
- Measure velocities using the Doppler effect (red and blue shift of light from gas)
- Need a 3 billion solar mass SMBH to explain gas disk velocities

Active Galactic Nuclei

- M87 shows signs of “central activity”
- The Jet
 - Jet of material squirted from vicinity of SMBH
 - Lorentz factor of >6
 - Powerful (probably as powerful as galaxy itself)
- What powers the jet?
 - Accretion power
 - Extraction of spin-energy of the black hole
M87 is example of an “active galactic nucleus”
- Material flows (accretes) into black hole
- Energy released by accretion of matter powers energetic phenomena
 - Emission from radio to gamma-rays
 - Jets
- Supermassive black hole equivalent to the X-ray binaries systems
- Particularly powerful active galactic nuclei are sometimes called Quasars
1966 Cover, discovery of QSOs

The powerful radio-galaxy Cygnus-A

Radio image with the Very Large Array in New Mexico
Another example... the “Seyfert galaxy” MCG-6-30-15

Rapidly spinning black hole for MCG-6-30-15 inferred on basis of X-ray data

Magnetic fields may transfer energy of spin from black hole to accretion disk!
What can come out of black hole?

...more than you might think!

+ Magnetic fields threading ergosphere can attach to and drag surrounding matter, reducing the black hole’s spin and energy
+ “Hawking Radiation”: black hole slowly evaporates due to quantum mechanics effects
 + Particle/antiparticle pair is created near BH
 + One particle falls into horizon; the other escapes
 + Energy to create particles comes from gravity outside horizon
 \[t_{\text{evap}} = 10^{10} \text{ yrs} \times \left(\frac{M}{10^{12} \text{ kg}} \right)^3 \]
 + Solar-mass black hole would take 10^{65} years to evaporate!
 + Mini-black holes that could evaporate are not known to exist now, but possibly existed in early Universe

White holes and Worm holes

+ GR does not know about entropy: there is a symmetric solution for a BH known as a White-hole
+ What if we can connect a BH and a WH to form a worm home?
+ Shown by Rosen & Einstein for a Swartschild BH, but it isn’t stable and it cannot avoid the singularity
+ Solution developed by K. Thorne, but requires exotic matter. Other solutions exist...