Class 10. Statistics and the K-S Test

Statistical Description of Data

- Statistics provides tools for understanding data.
 - In the wrong hands these tools can be dangerous!
- Here’s a typical data analysis cycle:
 1. Apply some formula to data to compute a “statistic.”
 2. Find where that value falls in a probability distribution computed on the basis of some “null hypothesis.”
 3. If it falls in an unlikely spot (on distribution tail), conclude null hypothesis is *false* for your data set.

Statistics

- Statistics and probability theory are closely related. Statistics can never prove things, only disprove them by ruling out hypotheses.
- Distinguish between *model-independent* statistics (this class, e.g., mean, median, mode) and *model-dependent* statistics (next class, e.g., least-squares fitting).
- Will make use of special functions (e.g., gamma function) described in *NRiC* §6.

Moments of a Distribution

- The **mean**, **median**, and **mode** of distributions are called *measures of central tendency*.
- The most common description of data involves its *moments*, sums of integer powers of the values.
- The most familiar moment is the **mean**:
 \[\bar{x} = \langle x \rangle = \frac{1}{N} \sum_{i=1}^{N} x_i. \]

Variance

- The width of the central value is estimated by its second moment, called the **variance**,
 \[\text{Var} = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2, \]
 or its square root, the **standard deviation**,
 \[\sigma = \sqrt{\text{Var}}. \]
Why \(N - 1? \) If the mean is known \textit{a priori}, i.e., if it’s not measured from the data, then use \(N \), else \(N - 1 \). If this matters to you, then \(N \) is probably too small!

- A clever way to minimize round-off error when computing the variance is to use the \textit{corrected two-pass algorithm}. First compute \(\overline{x} \), then do:

\[
\text{Var} = \frac{1}{N - 1} \left\{ \sum_{i=1}^{N} (x_i - \overline{x})^2 - \frac{1}{N} \left[\sum_{i=1}^{N} (x_i - \overline{x}) \right]^2 \right\}.
\]

- The second sum would be zero if \(\overline{x} \) were exact, but otherwise it does a good job of correcting RE in \(\text{Var} \). \textbf{Proof}: EFTS (hint: set \(\overline{x} \rightarrow \overline{x} + \epsilon \)).

\textbf{Other moments}

- Higher moments, like \textit{skewness} (3rd moment) and \textit{kurtosis} (4th moment) are also sometimes used, but can be unreliable.

\textbf{Distribution Functions}

- A distribution function (DF) \(p(x) \) gives the probability of finding a value between \(x \) and \(x + dx \), e.g., the familiar “normal” (Gaussian) distribution \(p(x) dx = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \ dx \).

- The expected mean data value is:

\[
<x> = \frac{\int_{-\infty}^{\infty} x p(x) \ dx}{\int_{-\infty}^{\infty} p(x) \ dx}.
\]

- For a discrete DF:

\[
<x> = \frac{\sum_i x_i p_i}{\sum_i p_i}.
\]

- Similar to weighted means, e.g., center of mass.

\textbf{Median}

- The \textit{median} of a DF is the value \(x_{\text{med}} \) for which larger and smaller values of \(x \) are equally probable:

\[
\int_{-\infty}^{x_{\text{med}}} p(x) \ dx = \frac{1}{2} = \int_{x_{\text{med}}}^{\infty} p(x) \ dx.
\]

- For discrete values, sort in ascending order \(i = 1, 2, ..., N \), then:

\[
x_{\text{med}} = \begin{cases}
 x_{(N+1)/2}; & \text{if } N \text{ is odd}, \\
 \frac{1}{2}(x_{N/2} + x_{N/2+1}); & \text{if } N \text{ is even}.
\end{cases}
\]
Mode

- The **mode** of a probability DF $p(x)$ is the value of x where the DF takes on a maximum value.

- Most useful when there is a single, sharp max, in which case it estimates the central value.

- Sometimes a distribution will be *bimodal*, with two relative maxima. In this case the mean and median are not very useful since they give only a “compromise” value between the two peaks.

Comparing Distributions

- Often want to know if two distributions have different means or variances ($NRiC$ §14.2):
 1. Student’s t-test for significantly different means.
 (a) Find number of standard errors $\sim \sigma/N^{1/2}$ between two means.
 (b) Compute statistic using nasty formula: probability that the two means are different by chance.
 (c) Small numerical value indicates significant difference.
 2. F-test for significantly different variances.
 (a) Compute $F = \text{Var}_1/\text{Var}_2$ and plug into nasty formula (the distribution of F in the case that the variances are the same—the null hypothesis—is related to the incomplete beta function).
 (b) Small value indicates significant difference.

- Given two sets of data, can generalize to a single question: Are the sets drawn from the same DF? E.g., are stars distributed uniformly in the sky? Do two brands of lightbulbs have the same distribution of burn-out times?

- Recall can only disprove (to a certain confidence level), not prove.

- May have continuous or binned data.

- May want to compare one data set with known DF, or two unknown data sets with each other.

- Popular technique for binned data is the χ^2 test. For continuous data, use the KS test. Cf. $NRiC$ §14.3.

Chi-square (χ^2) test

- Suppose have N_i events in ith bin but expect n_i:

 \[\chi^2 = \sum_i \frac{(N_i - n_i)^2}{n_i}. \]
- Large value of χ^2 indicates unlikely match (i.e., N_i’s probably not drawn from population represented by n_i’s).

- Compute probability $Q(\chi^2|\nu)$ from incomplete gamma function, where ν is the number of degrees of freedom.
 * Typically $\nu = N_B$, where N_B is the number of bins, or $N_B - 1$, if the n_i’s are normalized such that $\sum_i n_i = \sum_i N_i$.
 * Null hypothesis assumes differences $N_i - n_i$ are standard normal random variables of unit variance and zero mean.

- For two binned data sets with events R_i and S_i:
 \[
 \chi^2 = \sum_i \frac{(R_i - S_i)^2}{R_i + S_i}.
 \]
 - Have sum in denominator, rather than average, because variance of difference of two normal quantities is sum of individual variances.

Kolmogorov-Smirnov (KS) test

- Appropriate for unbinned distributions of single independent variable.

- From sorted list of data points, construct estimate $S_N(x)$ of the cumulative DF of the probability DF from which it was drawn...
 - $S_N(x)$ gives fraction of data points to the left of x.
 - Constant between x_i’s, jumps $1/N$ at each x_i.
 - Note $S_N(x_{\text{min}}) = 0$, $S_N(x_{\text{max}}) = 1$.
 * Behaviour between x_{min} and x_{max} distinguishes distributions.
 - Cf. *NRiC* Fig. 14.3.1.

- Statistic is maximum value of absolute difference between two cumulative DFs.

- To compare data set to known cumulative DF:
 \[
 D = \max_{x_{\text{min}} \leq x \leq x_{\text{max}}} |S_N(x) - P(x)|.
 \]

- To compare two unknown data sets:
 \[
 D = \max_{x_{\text{min}} \leq x \leq x_{\text{max}}} |S_{N_1}(x) - S_{N_2}(x)|.
 \]

- Plug D and N (or $N_e = N_1 N_2/(N_1 + N_2)$) into nasty formula to get numerical value of significance. As usual, a small value indicates a significant difference.