Class 12. Random Numbers

- NRiC §7.
- Frequently needed to generate initial conditions.
- Often used to solve problems statistically.
- How can a computer generate a random number?
 - It can’t! Generators are *pseudo-random*.
 - Generators are *deterministic*: it’s always possible to produce the same sequence over and over.
 - Sometimes this is a good thing!

Random Number Generators

- User specifies an initial value, or seed.
- Initializing generator with same seed gives same sequence of “random” numbers.
- For a different sequence, use a different seed.
- One strategy is to use the current time, or the processor ID, to seed the generator.
 - Problem: this may have poor dynamic range, or may be correlated with when the code is run.
 - Solution: *combine* sources, e.g., `int seed = (int) time(NULL) % getpid() + getppid()`, to get a more robust seed.

Choosing a Generator

- Since generators do not produce truly random sequences, it’s possible that your results may be affected by the generator used!
- Often the supplied generators on a given machine have poor statistical properties.
- But even a statistically sound generator can still be inadequate for a particular application.
- Be wary if you ever need more than \(\sim 10^6 \) random numbers, and certainly if you need more than the largest representable integer!
- Solution: always compare results using two generators.
Guidelines

- Follow these steps to minimize problems:
 1. Always remember to seed the generator before using it (discarding any returned value).
 2. Use seeds that are “somewhat random,” i.e., have a good mixture of bits, e.g., 2731771 or 10293085 instead of 1 or 4096 or some other power of 2.
 3. Avoid sequential seeds: they may cause correlations.
 4. Compare results using at least two generators.
 5. When publishing, indicate generator used.
 6. Often it’s a good idea to make a note of the seed used for a given run, in case you need to regenerate the sequence again later.

Uniform Deviates

- Random numbers that lie within a specified range (typically 0 to 1), with any one number in the range as likely as any other, are uniform deviates, i.e.,
 \[
 p(x)\, dx = \begin{cases}
 dx & \text{if } 0 \leq x \leq 1, \\
 0 & \text{otherwise.}
 \end{cases}
 \]

- Useful in themselves, often used to generate differently distributed deviates.

- Distinguish between linear generators (discussed next) and nonlinear generators (do a web search).

Linear Congruential Generators

- Typical of most system-supplied generators.

- Produces series of integers \(I_1, I_2, I_3, \ldots \), each between 0 and \(m - 1 \), using:
 \[
 I_{j+1} = aI_j + c \pmod{m},
 \]

 where \(m \) is the modulus, and \(a \) and \(c \) are positive integers called the multiplier and the increment, respectively.

- If \(m, a, \) and \(c \) are properly chosen, all possible integers between 0 and \(m - 1 \) occur at some point.
 - The choice of \(a = 7^5 = 16807, \ c = 0, \ m = 2^{31} - 1 = 2147483647 \) is known as the minimal standard generator.
 - Often \(a \) and \(c \) chosen so as to have integer overflow on nearly every step, giving less predictable sequence and avoiding the mod operation.
• The LCG method is very fast but it suffers from sequential correlations.

• If \(k \) random numbers at a time are used to plot points in \(k \)-dimensional space, points tend to lie on \((k - 1)\)-dimensional hyperplanes. There will be at most \(m^{1/k} \) planes, e.g., \(\sim 1600 \) if \(k = 3 \) and \(m = 2^{32} \! \).

• The quality of a LCG is measured by the maximum distance between successive hyperplanes: the smaller the distance, the better.

• Also, low-order bits may be less random than high-order bits, e.g., last bit alternating between 0 and 1.

 – To generate random number between 1 and 10 with \texttt{rand()}\!, use

 \[
 j = 1 + \text{(int)} \left(10.0 \ast \text{rand()} / (\text{RAND_MAX} + 1.0) \right);
 \]

 and \textit{not}

 \[
 j = 1 + \text{(rand()} \% 10);\]

 (which uses lower-order bits).

\textbf{NRiC RNGs}

• \textit{NRiC} gives several uniform deviate generators:

<table>
<thead>
<tr>
<th>Generator</th>
<th>Speed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ran0</td>
<td>1.0</td>
<td>Small multiple, serial correlations.</td>
</tr>
<tr>
<td>ran1</td>
<td>1.3</td>
<td>General purpose, maximum (10^8) values.</td>
</tr>
<tr>
<td>ran2</td>
<td>2.0</td>
<td>Like \textit{ran1}, but longer period.</td>
</tr>
<tr>
<td>ran3</td>
<td>0.6</td>
<td>Subtractive method, not well studied.</td>
</tr>
<tr>
<td>ranqd1</td>
<td>0.1</td>
<td>Fast, machine-dependent.</td>
</tr>
<tr>
<td>ranqd2</td>
<td>0.3</td>
<td>Ditto.</td>
</tr>
<tr>
<td>ran4</td>
<td>4.0</td>
<td>Good properties, slow.</td>
</tr>
</tbody>
</table>

• On the department machines, see \texttt{rand()}, \texttt{random()}, and \texttt{drand48()}.\!

• There is much discussion on the web of relative merits of RNGs. Recommended generators include \textit{TT800} and the Mersenne Twister.

• Bottom line: test it yourself, or use web-published testing routines, e.g., spectral methods.

\textbf{Transformation Method}

• Suppose we want to generate a deviate from a distribution \(p(y) dy \), where \(p(y) = f(y) \) for some positive and normalized function \(f \), with \(y \) ranging from \(y_{\text{min}} \) to \(y_{\text{max}} \).

• Let \(F(y) \) be the \textit{cumulative} distribution of \(f(y) \), from \(y_{\text{min}} \) to \(y \), i.e., \(F(y) = \int_{y_{\text{min}}}^{y} f(y') dy' \).
• Set a uniform deviate \(x = F(y)/F(y_{\text{max}}) \) and solve for \(y \): this is the new generation function.

• Only useful if \(F^{-1}(x) \) is easy to compute.

Example: Exponential deviates

• Suppose we want \(p(y) \, dy = e^{-y} \, dy, \, y \in [0, \infty) \).

• Apply the transformation method:

 - Have \(f(y) = e^{-y}, \, F(y) = e^{-y} - e^{-y} = 1 - e^{-y} \).

 - Set \(x = F(y)/F(\infty) \) and solve \(x(1 - e^{-\infty}) = 1 - e^{-y} \) for \(y \).

 - Get \(y(x) = -\ln(1 - x) = -\ln(x) \) (since \(1 - x \) is distributed the same as \(x \)).

• So if \(x \) is a uniform deviate between 0 and 1, \(y(x) \) (\(x > 0 \)) will be an exponential deviate.

• See NRiC §7.2 for Gaussian deviates.

Another example: A simple IMF

• Suppose we want to generate particle masses according to \(M \, dM = M^\alpha \, dM, \, M \in [M_{\text{min}}, M_{\text{max}}] \).

• From the transformation method we get:

\[
M = M_{\text{min}} \left\{ 1 + x \left[\left(\frac{M_{\text{max}}}{M_{\text{min}}} \right)^{\alpha + 1} - 1 \right] \right\}^{\frac{1}{\alpha + 1}},
\]

or

\[
M = \left[(1 - x)M_{\text{min}}^{\alpha + 1} + xM_{\text{max}}^{\alpha + 1} \right]^{\frac{1}{\alpha + 1}}.
\]

• Notice that for a flat distribution (\(\alpha = 0 \)), get expected result.

• What happens if \(\alpha = -1 \)? EFTS...

Initial Conditions

• Often want to generate random initial conditions for a simulation, e.g., initial position and velocity.

• Must take care when using transformations, since may not get distribution you expect.

• For example, to fill a flat disk of radius \(R \) with random points is it better to:

 1. Choose random \(\theta \) and \(r \) then set \(x = r \cos \theta, \, y = r \sin \theta \)?
 2. Fill a square and reject points with \(x^2 + y^2 > R^2 \)?

Answer: 2, but 1 will work if \(r^2 \) (instead of \(r \)) has a uniform random distribution.
Application: Cryptography

- A simple encryption/decryption algorithm can be constructed using random number generators.

- If both parties know the initial seed, they can both reproduce the same sequence of values.

- However, communicating the seed between parties carries risk.

- One popular technique is to combine public and private keys for secure communication (the example below is called Diffie-Hellman Key Exchange).

- How do public and private keys work?

<table>
<thead>
<tr>
<th>Step</th>
<th>You</th>
<th>Your Friend</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Compute $b^x \mod p$ and send.</td>
<td>Compute $b^y \mod p$ and send.</td>
</tr>
<tr>
<td>4</td>
<td>Compute $k = b^{yx} \mod p$.</td>
<td>Compute $k = b^{xy} \mod p$.</td>
</tr>
</tbody>
</table>

- k is the encryption key. This procedure relies on the fact that is is very difficult to factor large numbers.

- Also uses the handy relationship:

$$ (b^y \mod p)^x \mod p = (b^y)^x \mod p, \text{ for any } x, y. $$