Class 13. Numerical Integration

Simple Monte Carlo Integration (*NRiC* §7.6)

- Can use RNGs to estimate integrals.
- Suppose we pick \(n \) random points \(x_1, \ldots, x_N \) uniformly in a multi-D volume \(V \).
- Basic theorem of Monte Carlo integration:
 \[
 \int_V f \, dV \approx V \langle f \rangle \pm V \sqrt{\frac{\langle f^2 \rangle - \langle f \rangle^2}{N}},
 \]
 where
 \[
 \langle f \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} f(x_i) \quad \text{and} \quad \langle f^2 \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} f^2(x_i).
 \]
- The ± term is a 1-σ error estimate, not a rigorous bound.
- Previous formula works fine if \(V \) is simple.
- What if we want to integrate a function \(g \) over a region \(W \) that is *not* easy to sample randomly?
 - Solution: find a simple volume \(V \) that *encloses* \(W \) and define a new function \(f(x) \), \(x \in V \), such that:
 \[
 f(x) = \begin{cases}
 g(x) & \text{for all } x \in W, \\
 0 & \text{otherwise.}
 \end{cases}
 \]
 - E.g., suppose we want to integrate \(g(x, y) \) over the shaded area inside area \(A \) below:

![Area A](image)

To integrate, take random samples over the whole rectangle, set
\[
f(x_i, y_i) = \begin{cases}
 g(x_i, y_i) & y_i \leq b(x_i), \\
 0 & \text{otherwise,}
 \end{cases}
\]
and compute
\[
\int_{\text{shaded area}} g(x, y) \, dx \, dy \approx \frac{A}{N} \sum_i f(x_i, y_i).
\]
- Nifty example: \(\pi \) can be estimated by integrating
\[
p(x, y) = \begin{cases}
1 & x^2 + y^2 \leq 1, \\
0 & \text{otherwise},
\end{cases}
\]
over a \(2 \times 2 \) square:
\[
\pi = \int_{-1}^{1} \int_{-1}^{1} p(x, y) \, dx \, dy \\
\approx \frac{4}{N} \sum_{i} p(x_i, y_i).
\]
- See \(NRiC \) for another worked example.

- Optimization strategy: make \(V \) as close as possible to \(W \), since zero values of \(f \) will increase the relative error estimate.

- Principal disadvantage: accuracy increases only as square root of \(N \).

- Fancier routines exist for faster convergence: \(NRiC \) §7.7–7.8.

- Monte Carlo techniques used in a variety of other contexts: anywhere statistical sampling is useful. E.g.,
 - Predicting motion of bodies with short Lyapunov times if starting positions and velocities poorly known.
 - Determining model fit significance by testing the model against many sets of random synthetic data with the same mean and variance.

Numerical Integration (Quadrature)

- \(NRiC \) §4.

- Already seen Monte Carlo integration.

- Can cast problem as a differential equation (DE):
\[
I = \int_{a}^{b} f(x) \, dx
\]
is equivalent to solving for \(I \equiv y(b) \) the DE \(dy/dx = f(x) \) with the boundary condition (BC) \(y(a) = 0 \).
- Will learn about ODE solution methods next class.
Trapezoidal and Simpson’s rules

- Have abscissas $x_i = x_0 + ih$, $i = 0, 1, ..., N + 1$.
- A function $f(x)$ has known values $f(x_i) = f_i$.
- Want to integrate $f(x)$ between endpoints a and b.

- **Trapezoidal rule** (2-point closed formula):

 $$
 \int_{x_1}^{x_2} f(x) \, dx = h \left[\frac{1}{2} f_1 + \frac{1}{2} f_2 \right] + O(h^3 f''),
 $$

 i.e., the area of a trapezoid of base h and vertex heights f_1 and f_2.

- **Simpson’s rule** (3-point closed formula):

 $$
 \int_{x_1}^{x_3} f(x) \, dx = h \left[\frac{1}{3} f_1 + \frac{4}{3} f_2 + \frac{1}{3} f_3 \right] + O(h^5 f^{(4)}),
 $$

Extended trapezoidal rule

- If we apply the trapezoidal rule $N - 1$ times and add the results, we get:

 $$
 \int_{x_1}^{x_N} f(x) \, dx = h \left[\frac{1}{2} f_1 + f_2 + f_3 + ... + f_N - 1 + \frac{1}{2} f_N \right] + O \left(\frac{(b - a)^3 f''}{N^2} \right).
 $$

- Big advantage is it builds on previous work:
 - Coarsest step: average f at endpoints a and b.
 - Next refinement: add value at midpoint to average.
 - Next: add values at $\frac{1}{4}$ and $\frac{3}{4}$ points.
 - And so on. This is implemented as `trapzd()` in NRiC.

More sophistication

- Usually don’t know N in advance, so iterate to a desired accuracy: `qtrap()`.
- Higher-order method by cleverly adding refinements to cancel error terms: `qsimp()`.
- Generalization to order $2k$ (*Richardson’s deferred approach to the limit*): `qromb()`.
 - Uses extrapolation methods to set $h \to 0$.
- For improper integrals, generally need *open formulae* (not evaluated at endpoints).
- For multi-D, use nested 1-D techniques.