Class 20. N-body Techniques, Part 3

The PM Method, Continued

There are several distinct steps in PM process:

1. Assign particles to mesh to compute ρ_i.
2. Get boundary conditions for Φ (Φ_0 and Φ_{N+1}).
3. Solve discretized version of Poisson’s equation.
4. Compute \mathcal{F} from discretized version of force equation.

Step 1: Assigning particles to mesh

Discuss two schemes here:

1. Nearest Grid Point (NGP) scheme:
 - Assign entire mass of particle to grid zone that contains it.
 - E.g., discretize space into N zones in x-dimension:

 \[
 \rho_i = \frac{n_i m}{\Delta x}, \quad \text{where } n_i = \text{number of particles in cell } i \text{ (equal mass)}.
 \]
 - Leads to a very coarse distribution of ρ_i:

2. Charge-In-Cell (CIC) or Particle-In-Cell (PIC):
 - Assign a “shape” or “cloud” to particle.
 - Assume a distribution of ρ inside this shape.
 - Then distribute mass to zones according to overlap.
 - E.g., assume particle has top-hat ρ distribution, width w, height $\rho_0 = m/w$:

Then (in 1-D), \(\int_{-\infty}^{\infty} \rho(x) \, dx = m \). Distribute mass of particle according to overlap:

Leads to smoother \(\rho_i \).

- Can adopt more complex shapes for density. E.g.,

 Triangle

 Gaussian

 etc.

Higher-order “shapes” introduce ringing into system.

Step 2: Boundary conditions

- Given \(\rho_i, \ i = 1, \ldots, N \), need a boundary value for \(\Phi \), i.e., need \(\Phi_0 \) and \(\Phi_{N+1} \).

- Often can use periodic BC, i.e., \(\Phi_0 = \Phi_N, \Phi_{N+1} = \Phi_1 \). Appropriate for, e.g., cosmology simulations.

- Otherwise, standard to use multipole expansion (e.g., Jackson 1975) to compute potential on boundary due to mass in each cell.

 - Often, first (monopole) term is good enough:

 \[
 \Phi_B(r) = -\sum_{i=1}^{N} \frac{Gm_i}{|r - r_i|}.
 \]

 - See Binney & Tremaine Eq. 2-122 for full series (involves spherical harmonics).

Step 3: Solve Poisson’s equation

- Can see that discretized equation

 \[
 \frac{\Phi_{i-1} - 2\Phi_i + \Phi_{i+1}}{(\Delta x)^2} = 4\pi G \rho_i
 \]

 leads to tri-diagonal (tri-di) matrix:

 \[
 \begin{bmatrix}
 -2 & 1 & & & \\
 1 & -2 & 1 & & \\
 & 1 & -2 & \ddots & \\
 & & \ddots & \ddots & 1 \\
 & & & 1 & -2 & 1 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
• There is an extremely efficient algorithm for solving tri-di systems.
 – Write discretized system as:
 \[a_i \Phi_{i-1} + b_i \Phi_i + c_i \Phi_{i+1} = d_i. \]
 – Then forward elimination gives (Hockney & Eastwood, p. 185):\(^1\)
 \[w_1 = \frac{c_1}{b_1} \quad w_i = \frac{c_i}{b_i - a_i w_{i-1}}, \]
 \((i = 2, 3, \ldots, N - 1), \) and,
 \[g_1 = \frac{d_1}{b_1} \quad g_i = \frac{d_i - a_i g_{i-1}}{b_i - a_i w_{i-1}}. \]
 – Backsubstitution:
 \[\Phi_N = g_N \]
 \[\Phi_i = g_i - w_i \Phi_{i+1}, \]
 with \(i = N - 1, N - 2, \ldots, 1. \)
 – If \(a, b, c \) constant, can precompute \(w_i \) and \(1/(b_i - a_i w_{i-1}) \).
 – If \(a = 1, b = -2, c = 1, \) only need \(4N \) operations.
 – For periodic BC, even simpler method possible (Hockney & Eastwood, p. 35).

Step 4: Force interpolation

• Once potential is given, must compute force (per unit mass) from \(\mathbf{F} = -\nabla \Phi. \)
• In 1-D, \(\mathbf{F} = -\partial \Phi/\partial x \Rightarrow \text{FDE } \mathbf{F}_{i+1/2} = -(\Phi_{i+1} - \Phi_i)/\Delta x. \)
 – Forces centered at cell boundaries:

• Must interpolate forces to particle positions.
• Linear interpolation simplest. For each particle, position \(x_{i-1/2} < x < x_{i+1/2}, \) compute:
 \[
 \mathbf{F}(x) = \mathbf{F}_{i-1/2} + \left(\frac{x - x_{i-1/2}}{\Delta x} \right) \left(\mathbf{F}_{i+1/2} - \mathbf{F}_{i-1/2} \right).
 \]
• Higher-order interpolation used in conjunction with higher-order charge-assignment schemes.

\(^1\)Also see tridag() (NRiC §2.4).
We now have ingredients necessary for a 1-D PM code:

1. Particle assignment;
2. Boundary conditions;
3. Solve Poisson’s equation;

Result is F for every particle.

Generalizing to 3-D

- Generalizing to 3-D is straightforward:
 1. Particle assignment: use NGP; or for PIC, particle is sphere.
 2. BCs: periodic, or use 3-D multipole expansion.
 3. Solve Poisson’s equation in 3-D (see below).
 4. Interpolate F in 3-D (easy).

- Poisson’s equation in 3-D:
 \[
 \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho.
 \]

- Discretize Φ in 3-D:
 \[
 \Phi(x, y, z) \rightarrow \Phi_{i,j,k}, \\
 \rho(x, y, z) \rightarrow \rho_{i,j,k}.
 \]

- FDE becomes:
 \[
 \frac{\Phi_{i-1,j,k} - 2\Phi_{i,j,k} + \Phi_{i+1,j,k}}{(\Delta x)^2} + \frac{\Phi_{i,j-1,k} - 2\Phi_{i,j,k} + \Phi_{i,j+1,k}}{(\Delta y)^2} \\
 + \frac{\Phi_{i,j,k-1} - 2\Phi_{i,j,k} + \Phi_{i,j,k+1}}{(\Delta z)^2} = 4\pi G \rho_{i,j,k}.
 \]

- Can be written in matrix form:
 \[
 a_i \Phi_{i,j,k-1} + b_i \Phi_{i,j-1,k} + c_i \Phi_{i-1,j,k} + d_i \Phi_{i,j,k} + e_i \Phi_{i,j+1,k} + f_i \Phi_{i,j+1,k} + g_i \Phi_{i,j,k+1} = h_i,
 \]
 where $i = 1, ..., N_x$, $j = 1, ..., N_y$, $k = 1, ..., N_z$ and
 \[
 c_i = e_i = 1/(\Delta x)^2, \quad d_i = -2 \left[(1/\Delta x)^2 + (1/\Delta y)^2 + (1/\Delta z)^2\right], \\
 b_i = f_i = 1/(\Delta y)^2, \quad h_i = 4\pi G \rho_{i,j,k} \text{ (modulo BCs)}, \\
 a_i = g_i = 1/(\Delta z)^2.
 \]
• Leads to very large sparse banded matrix:

\[
\begin{bmatrix}
 d & e & f & g \\
 c & \cdot & \cdot & \cdot \\
 \cdot & \cdot & \cdot & g \\
 \cdot & \cdot & \cdot & f \\
 b & d & e & \cdot \\
 \cdot & c & d & \cdot \\
 \cdot & \cdot & \cdot & f \\
 b & \cdot & \cdot & \cdot \\
 a & \cdot & \cdot & \cdot & e \\
 a & b & c & d
\end{bmatrix}
\]

- Dimension is \((N_xN_yN_z) \times (N_xN_yN_z)\)!
- \(\Rightarrow\) even very small problem \((20^3)\) → large matrix \(8000 \times 8000\).
- “Reasonable” sized problem \((100^3)\) → \(10^6 \times 10^6\) matrix!
- Clearly need efficient ways to solve matrix:
 1. Relaxation schemes — guess solution, then relax (Cf. NRiC §19.5–19.6).
 E.g., “Successive Over-Relaxation” (SOR), “Alternating-Direction Implicit” (ADI), multi-grid (use exact solution on coarse grid as initial guess for iterative solution on fine grid), etc.
 2. Sparse banded solvers, e.g., conjugate gradient method (NRiC, §2.7).
 3. Fourier methods — solution of FDE in Fourier space is very simple, then can inverse Fourier transform solution back to real space (NRiC §19.4).
 * Very powerful, but requires periodic BCs.

Summary: PM Method

• What is advantage of PM code?

 - Force solving scales as \(\mathcal{O}(N_g)\), where \(N_g = \) number of mesh grid points.
 - Leapfrog scales as \(\mathcal{O}(N_p)\), where \(N_p = \) number of particles.
 - Work associated with leapfrog \(\ll\) solving Poisson’s equation.
 \(\therefore\) can afford very large \(N_p\), e.g., \(N_p \sim 10^6\) with \(N_g \sim 10^4\).
 - Not good for correlated systems (in which 2-body encounters important) but great for uncorrelated systems (where it takes the place of softening).