Class 21. *N*-body Techniques, Part 4

Tree Codes

Efficiency can be increased by grouping particles together:

Nearest particles exert greatest forces → direct summation.

Distant particles exert smallest forces → treat in groups.

But how do we organize particles into groups? Will sketch one method (Barnes & Hut 1986, *Nature* 324, 426; also see Hernquist 1987, *ApJS* 64, 715), then go into more detail.

Barnes & Hut method: Overview

- The BH method is a hierarchical force-calculation algorithm:
 - Place particles on mesh one at a time.
 - Divide mesh into equal volume subdomains at each placement so that each particle occupies a single subdomain. E.g., in 2-D:

```
1 particle

+1

2 particles

+2 +1

3 particles

+3

4 particles

+2 +1

5 particles

+4 +3

6 particles

+4 +3

7 particles

+2 +1

8 particles
```
Now, organize particles based on nesting of subdomains:

- How does this speed up force evaluation? Consider evaluation of force on particle 1:
 - If any subdomain subtends an angle $\theta = l/d < \theta_{\text{crit}}$ as seen from particle 1 (l is size of subdomain, d is distance from particle 1), then treat all particles in that subdomain as one. E.g.,
 Particle 2, 8: treat directly.
 Top-left subdomain: treat as group.
 \implies just 3 summations, instead of 7.

Barnes & Hut method: Details

- Cost of tree build depends on required depth (number of levels). For homogeneous particle distribution (i.e., no cells empty), tree depth $\simeq 1 + \log_2 N$. For $k = 3$, depth $\simeq 1 + \log N$. \therefore time required to construct tree $\sim \mathcal{O}(N \log N)$.
- Must also compute total mass and center-of-mass position \implies one more $\mathcal{O}(N \log N)$ pass through tree.
- Finally, force evaluation (“pruning”) $\implies \sim 2^k - 1$ sums per particle at each level $\implies \mathcal{O}(\log N)$ sums per particle (depends on θ_{crit}) $\implies \mathcal{O}(N \log N)$ scaling $\ll N^2$ for $N \gg 1$.

How bad an approximation is it?

- Consider expanding potential of cell α (e.g., Marion & Heald 1980, pp. 38–40; this comes from Taylor series expansion of potential near origin):
 $$
 \Phi_\alpha = -\frac{Gm_\alpha}{r} + Gm_\alpha \sum_i x_{\alpha,i}' \frac{\partial}{\partial x_i} \left(\frac{1}{r} \right) - \frac{Gm_\alpha}{2} \sum_{i,j} x_{\alpha,i}' x_{\alpha,j}' \frac{\partial^2}{\partial x_i \partial x_j} \left(\frac{1}{r} \right) + \cdots
 $$
\[\Phi = \sum_{\alpha} \Phi_{\alpha} = \Phi^{(1)} + \Phi^{(2)} + \Phi^{(4)} + \ldots + \Phi^{(2l)} + \ldots \]

where

\[\Phi^{(1)} \equiv - \sum_{\alpha} \frac{Gm_\alpha}{r} = - \frac{GM}{r} \] is the “monopole”,

\[\Phi^{(2)} \equiv \sum_{\alpha} Gm_\alpha \sum_i x'_{\alpha,i} \frac{\partial}{\partial x_i} \left(\frac{1}{r} \right) \] is the “dipole”,

\[\Phi^{(4)} \equiv - \frac{1}{2} \sum_{\alpha} Gm_\alpha \sum_{i,j} x'_{\alpha,i} x'_{\alpha,j} \frac{\partial^2}{\partial x_i \partial x_j} \left(\frac{1}{r} \right) \] is the “quadrupole”,

\[\Phi^{(2l)} \equiv \frac{(-1)^{l+1}}{l!} \sum_{\alpha} Gm_\alpha \sum_{i,j,\ldots,l} x'_{\alpha,i} x'_{\alpha,j} \cdots x'_{\alpha,l} \frac{\partial^l}{\partial x_i \partial x_j \cdots \partial x_l} \left(\frac{1}{r} \right) \] is the “2\(l\)-pole”.

- If we choose expansion center to be center of mass of group, then \(\sum_\alpha m_\alpha r'_{\alpha} = 0 \). But then notice that \(\Phi^{(2)} = \sum_\alpha Gm_\alpha r'_{\alpha} \cdot \nabla \left(\frac{1}{r} \right) = 0 \), so dipole vanishes. \(\therefore \) error term dominated by quadrupole.

- (Can also write

\[\Phi = - \frac{GM}{r} - \frac{1}{2} \frac{G}{r^5} (r Q r) , \]

where

\[Q_{ij} = \sum_k m_k (3x_{k,i}x_{k,j} - r_{k}^2 \delta_{ij}) \]

is the traceless quadrupole tensor, \(k \) is over the mass components, and \(r_k \) is relative to the cell center of mass. With this notation, and invoking the parallel axis theorem, the quadrupole of a parent cell can be constructed via the quadrupoles of its daughter cells:

\[Q = \sum_i Q_i + \sum_i m_i (3r_i r_i - r_i^2) \] , where \(i \) is over the daughter cells and \(r_i \) is relative to the parent center of mass.)

- Often, quadrupole not needed (monopole is “good enough”).

- With quadrupole, for \(\theta_{\text{crit}} = 1 \), forces typically accurate to \(\sim 1\% \) (in practice, keep \(\theta_{\text{crit}} < 1/\sqrt{2} = 0.7 \) for 2-D tree, \(< 1/\sqrt{3} = 0.6 \) for 3-D tree). This is average error; certain pathological configurations can give much larger errors. Also, trees in general break \(F_{ij} = -F_{ji} \)...
For high precision, might consider octopole.

- Turns out the octopole does not help convergence much—need to go to next higher order, the hexadecapole!
- Obviously this means many more computations to compute force (still scales as $O(N \log N)$), but can use larger θ_{crit}.

On balance, probably never need better than hexadecapole.

Barnes & Hut method: Pseudocode

Define a node **struct**: contains size, center, mass, position, Q, etc. of cell, plus info on subcells (may be nodes). Following example stores only monopole (i.e., total mass).

Tree build — start with special cell (“root”)

```plaintext
class node {
    size, center, mass, position, Q, etc.
}

start
    root = new node [includes initialization]
loop over particles i
    put_in_tree(i, root)
    calc_moments(root)

function put_in_tree(particle, node)
    to which (sub)cell does particle belong?
    is cell...
    ...empty? : make particle a leaf in cell
    break
    ...a leaf? : make cell a node
    cell = new node
    put_in_tree(leaf, cell)
    ...a node? : put_in_tree(particle, cell)

function calc_moments(node)
    [loop over non-empty (sub)cells
    is cell...
    ...a leaf? : node->mass += cell.leaf->mass
    node->pos += (cell.leaf->mass)*(cell.leaf->pos)
    break
    ...a node? : calc_moments(cell.node)
    node->mass += cell.node->mass
    node->pos += (cell.node->mass)*(cell.node->pos)
    ]
    node->pos /= node->mass
```
Tree walk — start at root

function add_to_force(pos, node, force)
 theta = (node->size)/(distance to node)
 theta < theta_crit? : multipole_expansion(pos, node, force) ["prune"]
 else : [loop over non-empty (sub)cells
 is cell...
 ...a leaf? : direct_force(pos, cell.leaf, force)
 break
 ...a node? : add_to_force(pos, cell.node, force)
]

Other Types of Trees
- Differ primarily in organization of particle information.

Mutually nearest neighbour
- Given N particles, two nearest joined together \rightarrow node, leaving $N - 1$ entities ($N - 2$ particles plus 1 node) in list.
- Node contains total mass and center-of-mass position of cluster.
- Repeat until only 1 cluster remains.
- $\mathcal{O}(\log_2 N)$ levels (binary tree), $\mathcal{O}(N \log N)$ update time.

- Advantage: Preserves physical proximity of particles (binaries). Can also let particles “drift” a while before update.
- Disadvantage: Arbitrary node shapes, hard to estimate error when expanding potentials.

k-D tree (recursively bisect longest dimension)
- E.g., Olson & Packer 1996.
- First determine dimension (x, y, or z) that spans largest spatial range of particle distribution.
• Sort data on this dimension and divide into halves containing equal numbers of particles.
• Repeat with sublists until each contains only 1 particle.
• Often used for “domain decomposition” to balance work between multiple processors.

\[
\begin{array}{|c|c|c|}
\hline
&& \\
\hline&& \\
\hline&& \\
\hline
\end{array}
\]

• Advantage: No empty cells, more efficient shape.
• Disadvantage: Extreme oblong shapes → larger error.

Fast Multipole Method

• Improved tree walking/pruning.
• In principle can achieve $O(N)$ scaling, and momentum conservation (!), but complex implementation.
• Idea is that local information is passed up the tree so it can be swapped with distant nodes: mutual multipole expansion (postal service analogy).
• Cutting edge of tree code development, much of it done here at U Maryland (Computer Science)!

Summary

• PP method (direct summation) — most accurate, but $O(N^2)$.
• PM method — $O(N_g \log N_g)$, but resolution limited.
• Tree codes — $O(N \log N)$, but sometimes difficult to implement.
• Also: PP-PM = P^3M — direct summation over nearby particles, use grid for distant interactions.