Schemes Based on Flux-conservative Form

By their very nature, the fluid equations (1)–(3) can be written in flux-conservative form. In 1-D, with no external forces,

$$\frac{\partial \mathbf{u}}{\partial t} + \frac{\partial}{\partial x} \mathbf{F}(\mathbf{u}) = 0,$$

where

$$\mathbf{u} = \begin{pmatrix} \rho \\ \rho v \\ e \end{pmatrix} \quad \mathbf{F}(\mathbf{u}) = \begin{pmatrix} \rho v \\ \rho v^2 + p \\ (e + p)v \end{pmatrix}$$

(E.F.T.S.). Recall \(e \equiv \rho(\varepsilon + \frac{1}{2}v^2) = \) energy density.
When written in this form, it is clear that the techniques described before can be applied immediately (given an equation of state for p).

E.g., two-step Lax-Wendroff:

$$u_{j}^{n+1} = u_{j}^{n} - \frac{\Delta t}{\Delta x} \left(F^{n+1/2}_{j+1/2} - F^{n+1/2}_{j-1/2} \right),$$

where

$$F^{n+1/2}_{j\pm 1/2} = F(u^{n+1/2}_{j\pm 1/2}),$$

etc.

Note that all components of u must be at same location on mesh \Rightarrow staggered mesh not needed (compare with operator split method, below).

Scheme is stable provided $(|v| + c)\Delta t/\Delta x < 1$, where $c^2 = \gamma p/\rho$ ($c =$ sound speed).
Operator Split Schemes

- Simplest schemes, developed long ago by von Neumann, Richtmeyer, etc.

- The fluid equations (1)–(3) can be written as “sum” of two steps. In 1-D:

 \[\begin{align*}
 & \text{A} \\
 & \frac{\partial \rho}{\partial t} + v \frac{\partial \rho}{\partial x} = 0 \\
 & \frac{\partial (\rho v)}{\partial t} + v \frac{\partial (\rho v)}{\partial x} = 0 \\
 & \frac{\partial e}{\partial t} + v \frac{\partial e}{\partial x} = 0 \\
 & \text{B} \\
 & \frac{\partial \rho}{\partial t} = 0 \\
 & \rho \frac{\partial v}{\partial t} = -\frac{\partial p}{\partial x} \\
 & \frac{\partial e}{\partial t} = -p \frac{\partial v}{\partial x}
 \end{align*} \]
Equations in A are all the form of scalar advection equations. Adopt high-order upwind schemes to solve $A \rightarrow \text{advection step}$ (transport).

Equations in B are all source terms in the equations that can be differenced directly $\rightarrow \text{source step}$.

Best to adopt staggered mesh with v at cell edges, p, $ρ$, e at cell centers.

(In multi-D, v defined at cell faces—naturally describes flux of fluid into/out of cell.)
Leads to 2nd-order accurate FDEs for the source terms. I.e.,

\[v_{i-1/2}^{n+1} = v_{i-1/2}^n - \frac{\Delta t (p_i - p_{i-1})}{\frac{1}{2} (\rho_i + \rho_{i-1}) \Delta x}, \]

\[e_i^{n+1} = e_i^n - \frac{\Delta t (v_{i+1/2} - v_{i-1/2}) p_i}{\Delta x}. \]

Operator split schemes are simple, easy to code, and easy to extend with more complex physics, e.g., MHD, radiation, etc.

But, they don’t treat regions with sharp \(p \) gradients as well as more modern schemes (e.g., Godunov).
Smoothed Particle Hydrodynamics

So far we have only considered methods that require dividing space into a grid. Can we represent the local fluid density without a grid?

- Advantage: not confined to a specific geometry, more adaptable.

- Represent fluid by large number ($\sim 10^{4-6}$) of “particles.”
- Each particle has a mass, Lagrangian position and velocity, internal energy, and possibly an initial density.
- Other quantities derived by smoothing over an “interpolating kernel” W (units: 1/volume). In this way the statistical properties of the real fluid elements are treated in an average sense.
- Solve fluid equations in comoving frame with these smoothed quantities using any familiar method (leapfrog, RK, etc.)
The interpolating kernel

If \(f \) is some quantity (e.g., density), then its kernel estimate (per unit volume) \(\langle f \rangle \) is given by

\[
\langle f (\mathbf{r}) \rangle = \int f(\mathbf{r}') W(\mathbf{r} - \mathbf{r}'; h) \, d\mathbf{r}',
\]

where the integral is over all space,

\[
\int W(\mathbf{r} - \mathbf{r}'; h) \, d\mathbf{r}' = 1,
\]

and

\[
\lim_{h \to 0} W(\mathbf{r} - \mathbf{r}'; h) = \delta(\mathbf{r} - \mathbf{r}').
\]

(\(h \) is called the “smoothing length” and is typically chosen so that \(N \simeq 15 \) particles lie within \(h \) of any particle. The error for using this approximation goes as \(\sim O(h^2) \).)
For numerical work, split the fluid into small volume elements $\Delta \tau$ of mass $\rho \Delta \tau$, where ρ is a representative density for the small fluid element. The integral can then be approximated by

$$\langle f(\mathbf{r}) \rangle = \sum_j m_j \frac{f(\mathbf{r}_j)}{\rho(\mathbf{r}_j)} W(\mathbf{r} - \mathbf{r}_j; h).$$

(Note m_j / ρ_j takes the place of $\int d\mathbf{r}'$.)

The interpolating kernel can be any analytically differentiable function that satisfies the normalization and limiting properties above. E.g.,

3-D Gaussian kernel:

$$W(\mathbf{r}; h) = \frac{1}{(\pi h^2)^{3/2}} e^{-r^2/h^2}.$$
3-D spline kernel:

\[W(r; h) = \frac{1}{\pi h^3} \begin{cases}
1 - \frac{3}{2} s^2 + \frac{3}{4} s^3 , & 0 \leq s < 1 \\
\frac{1}{4} (2 - s)^3 , & 1 \leq s < 2 \\
0 , & s \geq 2
\end{cases} \]

where \(s \equiv r/h \).

In practice, choose \(W \) so that it falls off rapidly for \(|r - r_j| \geq h \), hence only need to sum over nearest neighbours.
Note the kernel estimate of the gradient of \(f(r) \) is just

\[
\langle \nabla f(r) \rangle = \sum_j m_j \frac{f(r_j)}{\rho(r_j)} \nabla W(r - r_j; h)
\]

(since the \(\nabla \) operator is taken with respect to the space coordinates \(r \) and \(W \) is the only quantity that depends on \(r \)). However, it is often better to use the identity \(\rho \nabla f = \nabla (\rho f) - f \nabla \rho \) to give

\[
\langle \rho_i \nabla f_i \rangle = \sum_j m_j (f_j - f_i) \nabla_i W_{ij},
\]

where \(\nabla_i W_{ij} \) is the gradient of \(W(r_i - r_j; h) \) w.r.t. the coordinates of particle \(i \).

\(^a\)Because \(\langle \nabla_i (\rho_i f_i) \rangle = \sum_j m_j f_j \nabla_i W_{ij} \) and \(f_i \langle \nabla_i \rho_i \rangle = \sum_j m_j f_i \nabla_i W_{ij} \).
The equations of fluid dynamics, SPH version

Recall the continuity equation

$$\frac{D\rho}{Dt} = -\rho \nabla \cdot \mathbf{v}$$

where the derivative is taken in the fluid frame.

The SPH equivalent would be

$$\frac{D\rho_i}{Dt} = \sum_j m_j \mathbf{v}_{ij} \cdot \nabla W_{ij},$$

where $\mathbf{v}_{ij} \equiv \mathbf{v}_i - \mathbf{v}_j$ (we used that vector identity again, replacing the gradient with the divergence).
But we could estimate the density everywhere directly by

$$\langle \rho(r) \rangle = \sum_j m_j W(r - r_j; h).$$

This means we don’t really need to solve the continuity equation (except in practice it turns out it is better to solve the equation for technical reasons; see Monaghan 1992).

The momentum equation without external forces

$$\frac{D\mathbf{v}}{Dt} = -\frac{1}{\rho} \nabla p$$

becomes

$$\frac{Dv_i}{Dt} = -\sum_j m_j \left(\frac{p_j}{\rho_j^2} + \frac{p_i}{\rho_i^2} \right) \nabla_i W_{ij},$$
where the pressure gradient has been symmetrized by

\[
\frac{\nabla p}{\rho} = \nabla \left(\frac{p}{\rho} \right) + \frac{p}{\rho^2} \nabla \rho
\]

in order to ensure conservation of linear and angular momentum (the momentum equation becomes a central force law between particles \(i\) and \(j\), assuming \(W\) is Gaussian).
Finally, the energy equation

\[
\frac{D\varepsilon}{Dt} = -\frac{p}{\rho} (\nabla \cdot \mathbf{v})
\]

becomes

\[
\frac{D\varepsilon}{dt} = \frac{1}{2} \sum_{j} m_j \left(\frac{p_j}{\rho_j^2} + \frac{p_i}{\rho_i^2} \right) \mathbf{v}_{ij} \cdot \nabla_i W_{ij},
\]

where the factor of \(1/2\) comes from symmetrization (it is a characteristic of SPH that gradient terms can be written in many different ways, just as there are a variety of FDE representations).
Particles are moved using

\[
\frac{D\mathbf{r}_i}{Dt} = \mathbf{v}_i,
\]

or, to ensure particles move with a velocity similar to the average velocity in their neighbourhood,

\[
\frac{D\mathbf{r}_i}{Dt} = \mathbf{v}_i + \epsilon \sum_j m_j \left(\frac{\mathbf{v}_{ji}}{\bar{\rho}_{ij}} \right) W_{ij},
\]

where \(\bar{\rho}_{ij} \equiv (\rho_i + \rho_j)/2 \) and \(0 \leq \epsilon \leq 1 \) is a constant (the “X” factor).

As usual, also need an equation of state.

Can add other forces, i.e., viscosity, magnetic fields, etc.

Can implement adaptive smoothing lengths.
Summary

- SPH is based on microscopic picture of real fluid. But real fluid has many more particles than can be followed on a computer, so “smoothing” is used.

- Advantage of scheme is that it is adaptive—particles go where density is high. Good for following dynamics where gravity dominates because of its N-body-like foundation.

- Disadvantage of scheme is that it does not resolve low-density regions well, it does not handle regions with strong p gradients well (shocks), and it is expensive (need a way to find nearest neighbours \Rightarrow tree code!).

- Finite differencing methods are attractive because mathematical properties of FDEs well studied, and can prove/analyze stability, convergence rate, etc. of various schemes.