1. Write a function that transforms a uniform deviate into a Rayleigh distributed deviate described by

\[p(y) \, dy = ye^{-y^2/2} \, dy, \quad y \geq 0. \]

Generate a suitable number of deviates and plot a normalized histogram to test your function (plot the expected Rayleigh distribution over your histogram for comparison).

2. The total mass \(M \) of an object of density \(\rho \) is given by

\[M = \int V \rho \, dx \, dy \, dz, \]

where \(V \) represents the volume of the object. Using simple Monte Carlo integration, write a program that computes \(M \) and its estimated error \(\sigma_M \) if \(\rho = 1 + x^2 + 3(y + z)^2 \), where the volume of the object \(V \) is defined by \(x^2 + y^2 + z^2 \leq 9, \quad x \geq 0, \quad \text{and} \quad y \geq -1. \)

Plot \(M \) with errorbars \(\sigma_M \) as a function of the number of points \(N \) used in the Monte Carlo integration, for \(N \) between 10 and \(10^7 \), in integer powers of 10.