
Equation of Motion and Geodesics

The equation of motion in Newtonian dynamics is ~F = m~a, so for a given mass and

force the acceleration is ~a = ~F/m. If we generalize to spacetime, we would therefore expect

that the equation of motion is

aα = F α/m , (1)

and we would be right. However, in curved spacetime things are complicated because the

coordinates themselves twist and turn. Therefore, aα is not as simple an expression as one

might have imagined. We’re not going to go into details of this (feel free to consult the grad

lectures if you want some more information), but we will concentrate on geodesics, which are

paths in which particles fall freely, meaning that the force F α = 0. Note that an observer

on such a path would “feel” no net force, i.e., would measure nothing on an accelerometer.

However, the particle can execute quite complicated orbits that are geodesics. See Figure 1

for examples of geodesics on a sphere.

For a Schwarzschild spacetime, let’s consider motion in the rφ plane (i.e., no θ motion,

which one can always arrange in a spherically symmetric spacetime just by redefinition of

coords). Then the radial equation of geodesic motion is (here we use the proper time τ as

our affine parameter)
d2r

dτ 2
+

M

r2
− (1 − 3M/r)u2

φ/r
3 = 0 . (2)

Let’s think about what all this means. First, let’s check this in the Newtonian limit. In that

limit, M/r ¿ 1 and can be ignored, and at low velocities dτ 2 ≈ dt2 so we get the usual

expression
d2r

dt2
= −

M

r2
+ u2

φ/r
3 . (3)

In particular, that means that for a circular orbit, d2r/dt2 = 0, the specific angular momen-

tum is given by u2
φ = Mr.

What about in strong gravity? First consider radial motion, uφ = 0. Then d2r/dτ 2 =

−M/r2. This has the same form as the Newtonian expression, but remember that the

coordinates mean different things, so you have to be careful. Now consider circular orbits.

Again we set d2r/dτ 2 = 0, to find u2
φ = Mr2/(r− 3M). But wait! Something’s strange here.

That r−3M in the denominator means that the specific angular momentum goes to infinity

at r = 3M , but the horizon is at r = 2M . Have we reached a contradiction of some sort?

No, but we have happened upon one of the most important features and predictions of

general relativity. To explore this more closely, note that the minimum value of Mr2/(r−3M)

occurs at r = 6M , for which uφ =
√

12M . This is completely different from Newtonian

gravity, in which the specific angular momentum is happily monotonic down to arbitrarily

small radius. Let’s figure out what this means for circular particle motion near a very



Fig. 1.— On a sphere, geodesics are simply great circles (minimum distance). From

http://people.hofstra.edu/geotrans/eng/ch1en/conc1en/img/greatcircledistance.gif



compact object, like a black hole or a neutron star. First, consider the Newtonian part far

from the object. Suppose we have a particle in a circular orbit. Imagining that it keeps

its angular momentum, give it a kick inward. Now, it has more angular momentum than a

particle in a circular orbit at the new radius. Ask class: what happens to the particle as

a result? It moves outward. Now, Ask class: what if we give it a kick outward, so that it

has less angular momentum than a particle in a circular orbit at the new radius? It moves

inward. Fine, now suppose that we think of a particle orbiting in a circle at the minimum

of the angular momentum. If we give it a kick outward, its angular momentum is smaller

than that of a circular orbit at the same radius. Ask class: what happens to the particle?

It moves inward. Now, what if we give it a kick inward, in which case (since it was at a

minimum) it is still at a lower angular momentum than a particle in a circular orbit at the

same radius. Ask class: what happens then? It moves in, where it still has less uφ than it

needs, so it moves in faster, and so on. In fact, it pretty much spirals right into the central

object. Thus r = 6M is the innermost stable circular orbit, shortened to ISCO by cool

people.

Ask class: what does this mean for gas spiraling close to a black hole or neutron star?

It means that even if the gas was moving in almost circular orbits at larger distances, then

(neglecting other forces) when it reaches this critical radius it’ll go right in without having to

lose more angular momentum. This radius is called the innermost stable circular orbit, and

it plays a fundamental role in the physics of accretion disks around very compact objects.

Qualitatively, one can think of it like this. A fundamental feature of the Schwarzschild

geometry is the so-called “pit in the potential”. That is, near a compact object gravity

is “stronger” than you would have expected based on an extrapolation of the Newtonian

law. To compensate for this, the angular velocity has to be higher than it would have been

otherwise, so the angular momentum is higher than it would have been in the Newtonian

limit, and eventually uφ reaches a minimum and then increases as the radius is decreased

further. This predicted behavior is an example of a phenomenon that only occurs in strong

gravity, and so can only be tested by observing compact objects.

If we plug the uφ for a circular orbit into the formula for specific energy we found earlier,

we find

−ut(circ) =
r − 2M

√

r(r − 3M)
. (4)

At the ISCO, −ut =
√

8/9, so 5.7% of the binding energy is released in the inspiral to this

point.

Now, to help build up our calculational skills, we will do a number of derivations in the

Schwarzschild spacetime.

We argued above that to compensate for the stronger gravity, particles have to move



faster near a compact object. That would suggest that the angular velocity observed at

infinity would be higher than in Newtonian gravity. However, there is also a redshift, which

decreases frequencies. Let’s calculate the frequency of a circular orbit observed at infinity,

to see which effect wins.

We said a while back that the Schwarzschild time coordinate t is simply the time at

infinity, and the azimuthal coordinate φ is also valid at infinity (in fact, unlike t, φ has

constant meaning at all radii). Therefore, the angular velocity is Ω = dφ/dt. To calculate

this, we relate it to components of the four-velocity: dφ/dt = (dφ/dτ)/(dt/dτ) = uφ/ut.

Now, we express this in terms of our conserved quantities uφ and ut:

uφ

ut
=

gαφuα

gαtuα

=
gφφuφ

gttut

=
uφ/r

2

−ut/(1 − 2M/r)
. (5)

Then

Ω =
1 − 2M/r

r2

uφ

−ut

=
1 − 2M/r

r2

√

Mr2/(r − 3M)

(r − 2M)/
√

r(r − 3M)
=
√

M/r3 . (6)

This is exactly the Newtonian expression! By a lovely coincidence, in Schwarzschild coor-

dinates the angular velocity observed at infinity is exactly the same as it is in Newtonian

physics.

As our next calculation, let’s use our expression for the specific angular momentum of a

circular orbit, and for the specific energy, to derive the radius of the marginally bound orbit,

which is where −ut = 1 and hence a slight perturbation outward could send the particle to

infinity.

Answer:

Since −ut = 1 this means that u2
t = 1 as well, so we can make our lives easier by

squaring.
u2

t = (1 − 2M/r)[1 + (Mr2/(r − 3M))/r2]

= (1 − 2M/r)(1 + M/(r − 3M))

= (r − 2M)2/[r(r − 3M)] .

(7)

Setting this to 1 and solving gives r = 4M . One consequence of this is that if a test particle

plunges in from a very large distance, it could in principle go in to a pericenter distance of

4M and come back out again. Any closer, though, and it spirals right in.

A particle is in a circular geodesic at radius r around a star of mass M . Assuming the

Schwarzschild spacetime, what is the linear azimuthal velocity of the particle as measured

by a local static observer? Recall that the angular velocity as seen at infinity is dφ/dt =

(M/r3)1/2.

Answer:



The local linear azimuthal velocity is dφ̂/dt̂, or uφ̂/ut̂. Using the transformation matrices,

vφ̂ =
uφ̂

ut̂
=

eφ̂
φu

φ

et̂
tu

t
=

ruφ

(1 − 2M/r)1/2ut
=

r

(1 − 2M/r)1/2

(

M

r3

)1/2

=

(

M

r − 2M

)1/2

. (8)

For example, at the innermost stable circular orbit (r = 6M), vφ̂ = 1/2.

A particle is moving in a Schwarzschild spacetime around a star of mass M . It moves in

a circle at a Schwarzschild coordinate radius r at an angular frequency as seen at infinity of

Ω. That is, dφ/dt = Ω, where t is the Schwarzschild coordinate time. What is the specific

angular momentum at infinity uφ of the particle? This is a useful calculation for matter on

slowly rotating stars, for which the Schwarzschild spacetime is a good approximation.

Answer:

We have

Ω =
dφ

dt
=

uφ

ut
=

gφφ

gtt

uφ

ut

= −
1 − 2M/r

r2

uφ

ut

⇒ ut = −
1 − 2M/r

r2

uφ

Ω
. (9)

We also know u2 = −1, so

utut + uφuφ = −1 , gttu2
t + gφφu2

φ = −1 . (10)

Substituting in the expression for ut we find

u2
φ =

(

−gtt

gφφ

)

Ω2

gttΩ2 + gφφ
. (11)

Finally, substituting gtt = −(1 − 2M/r)−1 and gφφ = 1/r2 we get

u2
φ =

r4Ω2

(1 − 2M/r) − r2Ω2
. (12)

We’ve taken a long diversion here to discuss the radial component of the equation of

geodesic motion and some of its implications. Let’s briefly consider the azimuthal component,

specifically uφ;αuα = 0. This can be expressed as

duφ

dτ
+??? = 0 . (13)

We can certainly go through the same procedure of calculating the connection coefficients.

But here is a place where we should apply our intuition to shortcut those calculations.

Recalling that uφ is the specific angular momentum, and that we are considering geodesic

motion (no nongravitational forces), Ask class: what should the “???” be in this equation



for the Schwarzschild spacetime? It should be zero! Angular momentum is conserved for

Schwarzschild geodesics, so duφ/dτ had better vanish. You can confirm this explicitly if you

want.

One last note about geodesics is that they represent extrema in the integrated path

length ds2 between two events. The reason for this is extremely deep and ultimately comes

down to the same reason that optical paths are extrema in length. Basically, if you represent

light as a wave, then two paths with different lengths will have different numbers of cycles and

hence different phases along the way. With different phases, there is destructive interference

and the amplitude is small. Only near an extremum, where nearby paths differ in path

length by a small second-order quantity, are the phases close to each other, so only there

is the interference constructive and the amplitude high. For massive particles the principle

is the same, according to quantum mechanics. Again, a particle can be represented by a

wave (or a wave function), and again if nearby paths have significantly different phases the

interference will be destructive. Only near an extremum is the amplitude high. For this case,

however, it isn’t simply the length of the path, but instead the integral of the Lagrangian

that matters (this integral is called the action). Extremization of the action is one of the

unifying principles of physics, and provides (for example) a different way of looking at general

relativity than the geometric approach we’ve taken.

Intuition Builder

Some of the results we derived are specific to the set of coordinates we

defined. For example, the radius at the ISCO is 6M in Schwarzschild coor-

dinates, but we could define other coordinates in which this isn’t so. Which

of our results is coordinate-independent?


