
Statistical Equilibria: Saha Equation

We are now going to consider the statistics of equilibrium. Specifically, suppose we let

a system stand still for an extremely long time, so that all processes can come into balance.

We then measure the fraction of particles that are in each of several states (e.g., if we have

a pure hydrogen gas, we might want to know the ionization fraction). How can we compute

this fraction? We’ll take a look at this in several different ways. We will then step back

and ask ourselves when these equilibrium formulae do not apply. This is important! To

paraphrase Clint Eastwood, “An equation’s got to know its limitations”. In virtually all

astronomical problems we deal with approximations, so we always need a sense of when

those approximations fail. This serves a double purpose: it keeps us from making errors,

but it also keeps us from applying too complex an approach to a simple problem.

Let’s start out with a simple case. We consider a column of isothermal gas (temperature

T ) in a constant gravitational acceleration g. Each molecule has mass m. If we can treat

this like an ideal gas, Ask class: how do we figure out how the pressure vary with height

h? An ideal gas has pressure P = nkT , where n is the number density. In equilibrium the

pressure gradient balances the weight of the gas, so dP/dh = −ρg. Using ρ = nm = Pm/kT

and the constancy of T , we have dP/dh = −(mg/kT )P , so P = P0 exp(−mgh/kT ), where

P0 is defined as the pressure at h = 0. This is the familiar Boltzmann formula. As usual,

we can check various limits: when h increases the pressure decreases (correct); when T

decreases the pressure decreases at a fixed h (correct); and so on. Note that the decrease

is faster for heavier molecules. This is one reason why at high altitudes we have an oxygen

deficit: our natural breathing rate is controlled by the level of CO2 in the bloodstream, and

this decreases rapidly at high altitude so we don’t breathe as often as we should until we

acclimate.

This is one special case of a much more general formula of statistical distribution

in thermal equilibrium. I highly recommend you look at the Feynman Lectures on

Physics if you want physical insight on just about anything; Feynman had a remarkably

original perspective on physics, which is different enough that it often provides the key

to understanding. In it, he shows that in any potential, the distribution of states is

proportional to exp(−∆E/kT ), where ∆E is the difference in energy from some arbitrary

level (it’s the ratio that matters, so we don’t need to specify the reference level). There may

be other factors (e.g., the multiplicity of the state), but this basic one is always obtained

in a classical equilibrium. Another example is the Maxwell-Boltzmann distribution. At

temperature T , the fraction in a volume d3p around momentum p is ∝ exp(−E/kT )d3p,

which (for nonrelativistic motion and isotropic distribution in momentum space) is

∝ exp(mv2/2kT )p2dp. Yet another example is the population of states in an atom.

Compared to some reference state (e.g., the ground state), the fraction of atoms in a state



of energy E is ∝ exp(−E/kT ).

Now let’s return to the subject of ionization. This is important because the ionization

fraction has consequences for the equation of state (pressure related to density and

temperature) and opacity (e.g., which sources matter most), among other things. For

simplicity, consider a hydrogen atom with a single energy level (ground state), and consider

the ionization reaction

H+ + e− ←→ H0 + χH , (1)

where χH=13.6 eV is the ground state binding energy. In equilibrium, what can be said

about the abundances? In this case, let the reference energy (E = 0) be for the free electron

and proton. Statistical weights: 2 for the hydrogen atom, two combined for the proton and

electron (spins in same direction, spins in opposite directions). From the previous lecture

notes, integration of the distribution function over the momenta yields the number densities

ne =
2[2πmekT ]3/2

h3
eµ−/kT , (2)

n+ =
[2πmpkT ]3/2

h3
eµ+/kT , (3)

and

n0 =
2[2π(mp + me)kT ]3/2

h3
eµ0/kT eχH/kT . (4)

Ask class: if we were being really accurate, would the actual mass in the third equation

be mp + me? (No, because we’d have to subtract the binding energy. But this is only

13.6/511,000 of even the electron mass, which would be a 1/40,000 correction, and can

be dumped. In the same spirit, the electron mass is only a 1/1,800 correction and can be

ignored here.)

Forming the product n+ne/n
0, we find

n+ne

n0
=

(

2πmekT

h2

)3/2

e(µ−+µ+
−µ0)/kT e−χH/kT . (5)

Ask class: what is (µ− + µ+
− µ0) in equilibrium, which we’ve been assuming? It’s zero.

The numerical factor is about 2.4 × 1015T 3/2 cm−3. Ask class: is this equation sufficient

to determine the abundances of electrons, protons, and neutral hydrogen? No, because we

have only one equation for three unknowns. Ask class: what are reasonable auxilliary

conditions? Charge balance implies n+ = n−, and conservation of nucleons means that

n0 +n+ = n, the total number density. With these extra conditions, the degree of ionization

y ≡ n+/n = ne/n is, numerically,

y2

1 − y
=

4 × 10−9

ρ
T 3/2e−1.6×105/T , (6)

where as usual quantities such as ρ and T are referenced to the appropriate cgs unit.



An important thing to remember about this equation and many like it is that the

exponential usually dominates. What this means specifically is that for “interesting” levels

of ionization (say, around 50%), T is so much lower than 1.6 × 105 K that a tiny change in

T makes a huge difference in the ionization fraction. Operationally, this means that you can

get a remarkably good first guess at the temperature for a specified value of y by ignoring

the T 3/2 factor, which doesn’t change as rapidly. If you like, you can then substitute your

value of T in the T 3/2 factor and solve again by iteration. This is an easy way to converge

rapidly to a solution without having to write a computer program.

Ask class: what does the Saha equation imply about the degree of ionization for a

fixed temperature but varying density? (degree of ionization goes up when density goes

down). Why is that? This is thermal ionization, so you can imagine some radiation field

pervading the region. The ionization rate per volume, therefore, just goes like the number

density. However, the recombination rate involves two particles, and hence must go as the

product of their densities. Therefore, the recombination rate increases more rapidly when

the density goes up, and the resulting ionization fraction goes down.

Let’s test how well this equation works in practice. Ask class to compute ionization

fraction in the center of the Sun. Suppose Ask class T = 1.5 × 107 K and

ρ = 100 g cm−3, for round numbers. Then y2/(1− y) = 2.3. This has a solution of y = 0.75,

so the center of the Sun is 25% neutral (!). See if this poses a problem for anyone in

class!. This is nonsense, of course! The problem is that at such densities, the separation

between atoms is much less than the size of an individual free atom, so the electrons get

squeezed up to continuum states and pressure ionization dominates. In reality, the center

of the Sun has fully ionized hydrogen. As Shu points out, this also means that when you

sometimes hear people say that the full ionization is because of the high temperature, that’s

not completely accurate.

Okay, so let’s return to the Saha equation. We derived it by assuming that hydrogen

atoms are single-level systems (either ground state or ionized). ’Tain’t so in reality. There

is, in principle, an infinity of excited bound states. Each of these contributes a term that is

like the multiplicity of the state times exp(−∆E/kT ) times the original term, where ∆E is

the energy with respect to the energy of the ground state. But wait! This means we have

an infinite sum of finite terms. Ask class: how do we get around this? In reality, the size

of the orbital increases like n2, so in most circumstances only the first term needs to be

kept, as we did.

The Saha equation is important enough that I’d like to come at it from another

perspective, given in Shu (Chapter 7, pgs. 64-65). Let’s define the thermal de Broglie

wavelength of the electron

λTe ≡ h/(2πmekT )1/2 . (7)



Then the Saha equation between ionization states i and i + 1 can be written

ni+1

ni

=
2Zi+1

(neλ3
Te)Zi

exp(−Ii/kT ) . (8)

Here Ii is the ionization energy from state i to state i + 1 and Zi and Zi+1 are partition

functions (these are sums of the multiplicity of each atomic level times exp(−∆E/kT )).

Even better, we note that the chemical potential for nondegenerate free electrons is

−µe = kTξ, where ξ ≡ ln(2/neλ
3
Te). Note that neλ

3
Te is the number of electrons in a cubic

thermal de Broglie wavelength, which is really tiny if our assumption of nondegeneracy

works. Typically ξ ∼ 10 − 30 (remember, “all logarithms are 10”!). Then we rewrite the

Saha equation as
ni+1

ni

=
Zi+1

Zi

e−(µe+Ii)/kT . (9)

What does this tell us? The ratio of partition functions is usually of order unity, and as

before the exponential will dominate. This means that the two states are populated equally

roughly when −µe = Ii. This implies that the thermal energy at this transition temperature

satisfies kT ≈ Ii/ξ, which is a good order of magnitude less than one’s first guess kT ≈ Ii.

Why the difference? You can think of it like this: at a temperature kT = Ii/ξ there is a

substantial energy penalty to be paid by ionizing an electron, but the electron then has lots

more phase space to run around in. There are some additional consequences. First, the

transition between ionization states is usually pretty sharp, on the order of ∆T ≈ kT/ξ.

Therefore, if you fix the density and look at the state that is most populated, it changes

abruptly with the temperature (and there is usually one state that dominates). Second,

this means that it is in some sense “easier” to ionize an atom than to raise it to an excited

bound state (since that really does need kT ≈ Ii, if the excitation energy is roughly Ii as it

is in hydrogen).

The Saha equation is useful in lots of circumstances, but now we need to examine the

assumptions that go into it. Ask class: what are two circumstances under which the

Saha equation will give incorrect ionization fractions? One we just saw: when the density

is high enough to infringe on the atoms, thermal ionization isn’t as relevant as pressure

ionization. Ask class: what would this mean, physically, about the size of atoms and their

separations? Qualitatively, if the separation between atoms is comparable to the size of

their electron clouds, one would expect significant extra ionization. This is the same thing

we used to argue that we could cut off the partition function after a finite number of terms.

Ask class: what is another way in which the Saha equation could be invalid? If

there is any other source of ionization, it could modify the ionization fraction. Ask class:

Examples? Gas in a molecular cloud at 100 K that is being illuminated by UV from a hot

star has a much different ionization structure than if it were not illuminated. Cosmic rays

help keep protoplanetary disks far more ionized than they would be in thermal equilibrium



at their temperatures. In fact, this may be crucial to the birth of stars. There is strong

evidence that a nonnegligible level of ionization is crucial to allowing angular momentum

transport in protoplanetary disks, so without the influence of cosmic rays the matter would

just pile up until something catastrophic occurred.

Ask class: what is yet another way in which the ionization fraction could be different

from the Saha prediction? The ionization fraction could in principle be anything at all if

there hasn’t been enough time to establish equilibrium. Ask class: is this more likely

in low-density or high-density environments? Low, because interaction rates are less. An

example is the very early universe (prior to any star formation), where there is a residual

ionization fraction because the density drops due to universal expansion. Ask class: how,

then, would one compute the ionization fraction? Your only recourse is to have some initial

conditions, then make calculations based on the fundamental rate equations rather than

being able to assume equilibrium. As always, equilibrium is a great simplifier, but you have

to be able to justify that it is valid.


