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Star formation in disk galaxies occurs as a result of various physical mechanisms act-
ing in the interstellar medium. Molecular clouds, the sites of star formation, grow from
the diffuse interstellar medium due to a combination of gas self-gravity, galactic rotation,
and magnetohydrodynamic effects. Observations have suggested that spiral arms pro-
mote star formation by compressing gas as it flows through the arms. When the density
is sufficiently high, gravitational instability causes gas to collapse and form clouds. After
the formation of stars within such clouds, the subsequent evolution of the cloud and the
surrounding ISM is dramatically altered. Feedback effects such as stellar winds, ioniz-
ing radiation, and supernova explosions inject energy into the surrounding medium; these
processes may halt the collapse, and perhaps even destroy the natal clouds. In this thesis,
we study the flow of gas through the spiral arms of the grand-design galaxy M51; addi-
tionally, through numerical simulations, we model the growth of clouds in spiral arms and
investigate the effect of feedback on cloud formation and disk dynamics.

We use both observational and numerical methodologies to study gas kinematics and
dynamics in spiral galaxies. Using CO and Melocity fields we study spiral arm stream-
ing in M51. With numerical simulations, we investigate gravitational instability in disk
galaxies, which leads to the growth of clouds. In order to study the subsequent evolution
of the gaseous disk, we include feedback effects that return dense cloud gas back into the

surrounding ISM.



We find that the simple description of a stationary spiral pattern in M51 is inaccurate.
Our numerical models suggest that sheared features can grow regardless of the presence
of grand-design spiral structure, but that spiral perturbations cause arm clouds to grow,
along with distinct spiral substructure. We find that feedback can significantly affect the
evolution of the gaseous disk. We suggest that the disk thickness is important in setting
the rate at which stars form. The turbulence scale also needs to be considered, both for the

growth of clouds and stars, as well as for the evolution of any large-scale spiral pattern.
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ter 3 entitled “Global Modeling of Spur Formation in Spiral Galaxies” has also been
published in the Astrophysical Journal (Shetty, R., & Ostriker, E. C. 2006, ApJ, 647,
997). The observations presented in Chapter 2 were obtained with the BIMA interferom-
eter and the Maryland-Caltech Palomar Fabry-Perot. Simulations presented in Chapter
3 were performed on many workstations in the Astronomy Department at the Univer-
sity of Maryland (UMD). The high-resolution simulations presented in Chapter 4 were
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Astronomy at UMD, and the High Performance Computing Cluster at UMD, maintained
and supported by the Office of Information Technology and the Department of Astron-
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Chapter 1

Introduction

Star formation, the process of converting the diffuse gas in the interstellar medium (ISM)
into dense stars, involves many physical mechanisms that depend on the basic dynamical
state of the host galaxy. Since stars form in molecular clouds, clouds first need to form
within a galaxy’s gaseous component. In disk galaxies, clouds grow as a result of unstable
perturbations in the gas as it flows around the galactic center. Instabilities can arise due
to the interaction between stars and gas, rotational shear, magnetic fields, and the thermal
state of the various phases in the ISM, among other factors. One potential source of large
scale perturbations is the spiral arms. Gas becomes compressed as it flows through the spi-
ral arm, and clouds will grow if the collapse due to gas self-gravity is able to overwhelm
all restoring effects acting to disperse the dense gas. Gas self-gravity is also important
in the formation of clumps and cores, which are direct precursors to stars, within these
larger clouds. Once stars are formed, stellar winds, ionizing radiation from the young O
and B stars, and supernovae affect the subsequent evolution of the natal cloud, and per-
haps also the dynamics of the galaxy’s global flow. Thus, the process of individual star
formation and evolution, which occurs on small scales, is intimately related to the large
scale dynamical state of the gaseous disk. In this introductory chapter, we discuss the rel-

evant physical mechanisms at work in a gaseous disk; we also present an overview of the



observations and current theoretical understanding of the gaseous component, focusing

on spiral structure and the formation and destruction of gas clouds.

1.1 Spiral Structure in Disk Galaxies

Spiral arms, which in most disks are the dominant morphological features (see Figure
1.1), appear with many different shapes and sizes. In the widely utilized Hubble classifi-
cation of galaxiesHubble1936), early-type disks have tight winding arms, and late-type
disks have open arm&énnicutt1981). The pitch angle, defined as the angle between a
spiral arm segment and a galactocentric circle at the radius of the spiral segment, increases
from early-type to late-type disks. Grand-design spirals are disks that have distinct arms
spanning the whole disk. Many disks, especially isolated ones without bars, are floc-
culent spirals, showing localized, patchy, and segmented spiral feaklresdreen &
Elmegreerl982.

There are other differences between galaxies of different Hubble types. From early-
to late-type galaxies, gas fraction increases, relative bulge size decreases, and total mass
decreases (e.@ertin & Lin 1996 and references therein). These properties are generally
thought not to vary much over the course of a few galactic orbits. In fact, it was these
characteristics that were initially used to classify galaxies, since the telescopes of the
early 20th century were not powerful enough to resolve spiral structure in most galaxies
and gas was not observed. Galaxies that have been classified through these properties,
and which show fragmented spiral arm segments and varying pitch angles, do generally
follow the trend of increasing pitch angle from early to late type disks. Thus, there seems
to be a correlation between the pitch angle of the spiral arms with the other characteristics
of the galaxy that seemingly have little relationship to the spiral arms. For example, it is

not immediately obvious why the shape of the spiral arm is related to the total mass of the
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galaxy, or to the size of the bulge.

This correlation between the spiral arm pitch angle and other basic characteristics that
are thought to be slowly evolving led to the formulation of the quasi-stationary spiral
structure, or QSSS, hypothesis; the QSSS hypothesis was attractive because it also avoids
the “winding dilemma” Lindblad 1963. The “winding dilemma” arises if the spiral
arms are material objects; the radial velocity profile in galaxy disks, with angular veloc-
ity Q decreasing outward (typical§ [0 1/R) implies that any material entity would be
wrapped around the center, and eventually sheared out. The Lin-Shu density wave theory,
developed within the framework of the QSSS hypothesis, describes the spiral arms as the
result of a global wave which rotates with a fixed angular velodity & Shu 1964. If
spiral arms represent a density wave with fixed angular pattern speed, stars and gas pass
in and out of the arms, but the global spiral morphology remains relatively unchanged for
a significant amount of time.

Many observations of grand design spiral galaxies have been explained as natural
consequences predicted by density wave theory, and the more developed modal theory
(Bertin et al.1989ab). The observed streaming velocities across the spiral arms in M51
(Aalto et al. 1999 Rand1993 and M81 Visser1980g have qualitatively agreed with
predictions from density wave theory. Further, the relative locations of the molecular
arms (widely observed in CO maps), HIl regions, and photodissociated HI gas, is ex-
plained through density wave theory. In the density wave depiction, gas is compressed as
it passes through the spiral potential minimum. Stars eventually form downstream, within
collapsed gas clouds. There, radiation from hot O and B stars ionize the surrounding gas,
creating HIl regions. Then, the stellar radiation field will eventually photodissociate the
molecular medium into atomic gas. Such sequences have been observed iNdgéll (
et al.1988, M81 (Allen et al.1997), and M100 Knapen & Beckmari996.

However, the opposing theory asserting that spiral arms are transient has also been



cited to explain observationJoomre & Toomre(1972 suggested that tidal encounters
between two galaxies can also produce spiral structure in disks. Multiple density wave
patterns, with different pattern speeds, and regenerative spiral arms are possible conse-
guences of tidal interactions. Even studies of the grand design galaxy M51, which has
been heavily cited in support of density wave theory, have suggested that the arms are
transient (e.gElmegreen et all989 Toomre & Toomrel972 Vogel et al.1993.

Regardless of the distinctions between the QSSS and tidally-driven explanations for
global kpc-scale spiral structure, one aspect of disk galaxies that is unambiguous is that
observed sub-kpc scale structures are transient; many of these features can be attributed to
the process of star formation. Besides the increased concentration of gas along the arms,
observations also show regularly spaced dust lanes projecting out from the main spiral
arms, reaching well into interarm regions. In some cases, these features even connect one
arm to another. These extinction features were labeled “feathels/ins (1970. Later,
stellar features were observed to be correlated with the feathers, and were denoted “spurs”
(Elmegreernl980. Spurs and feathers can easily be identified in Fiduie The survey
by La Vigne et al.(2006 found that the majority of grand design spirals clearly show the
presence of spurs or feathers. That survey also found a strong correlation between the
spurs/feathers and bright OB associations located in the spiral arms, further attesting to

the link between the spiral arms the formation of stars.

1.2 Star Formation in Disk Galaxies

Despite the remaining uncertainty in the underlying nature of the spiral arms, it is clear
that the process of star formation is affected by any degree of spiral structure. In grand
design spirals, a large fraction of young stars are observed to be associated with the spiral

arms (e.gScoville et al.2001). Though observations have shown that disks with strong



or weak spiral structure have comparable star formation rates (per unit molecular mass),
spiral structure certainly has the effect of concentrating star formation activity in or near
the arms (e.gKennicutt1998a and references therein). A simple explanation for this
association is that the gas density is higher in the spiral arms, making it more likely for
gas clouds to form, within which stars can be born.

The idea that stars form in regions of high gas density suggests that large scale grav-
itational instabilities regulate star formatio@uirk 1972. Observations do indeed show
an increase in star formation activity in environments with higher densities. Empirically,
the star formation rate per unit arBgrris connected to the gas surface denEitiirough
the Kennicutt-Schmidt power law relatidizrr [0 2%, as long ag is above some critical
value Kennicutt1989 Schmidt1959. This relation is observed on both global and local
scales (e.gKkennicutt et al2007); for entire disksp=1.4 gives a remarkably good fit for
over 4 orders of magnitude in surface densKerinicutt 19980, though there is large
dispersion in both local and global relationships.

One proposal is that the star formation rate is correlated with the orbital time of the
disk 14yn, Or the angular velocit (Wyse1986 Wyse & Silk 1989. For normal disks,
>srrO 2 /Tgyn 0 2Q fits as well as th&spr 0 X power law. If all disks are considered,
including starburst galaxies, the slope of this correlation only decreased®6. Both
the Kennicutt-Schmidt power law and linear relationship betwagrkandQ have been
extensively documented, but a clear theoretical framework remains eld@vmiCutt
1998Hh.

Since the azimuthally averaged surface density decreases with radius in galaxy disks,
a real critical surface density in the Kennicutt-Schmidt law would also imply a threshold
radius. Most disk galaxies do indeed show such a cutoff radius; outside this radius, very
little star formation occurs. The actual values of the cutoff radii and critical densities,

however, vary between individual galaxi@gdrtin & Kennicutt2001).



It has been proposed that the large-scale dynamics of the disk determines the cutoff
radius. In a (2D) gaseous medium where only thermal pressure and gas self-gravity op-
erate, the minimum wavelength necessary for perturbations to grow is the Jeans length
A = c2/GZ, wherecs is the sound speed ari@lis the gravitational constant. For a rep-
resentative ISM surface densify~ 1—40 M, pc 2 andcs ~ 7 km s1(e.g.Heiles &
Troland2003, Aj ~ 0.3— 11 kpc. For a rotating disk, the Toom@parameter describes
the gravitational stability of axisymmetric perturbations, accounting for the restoring ef-

fects of thermal pressure and rotational shdap(nrel964). For thin gaseous disks,

(1.1)

Here, k is the epicyclic frequency, which is related to the angular velo@itpy k? =
4Q? + 2QR(dQ/dR). ForQ > 1 the disk is stable, so linear perturbations will not grow;
in regions whereQ < 1, the disk is unstable, so linear disturbances can lead to cloud
growth. Observation have found that the thresi@ldalue Qit &~ 1.5 in many galaxies
(Martin & Kennicutt2001).

The ToomreQ parameter indicates the susceptibility for linear, axisymmetric pertur-
bations to grow. Using azimuthally averaged quantities, suéhaaslk, the threshold)
value would locate a cutoff radius, inside of which active star formation occurs. However,
in real galaxies there are many non-linear, non-axisymmetric sources of perturbations. As
a result, star formation may still proceed in localized regions outside &) therived cut-
off radius. For instance, a spiral potential can cause gas outside of the critical radius to
collapse, sufficiently increasing the density to ultimately form stars feegguson et al.
1998. Thus, other mechanisms besides the interplay between thermal pressure, rotation,
and gas self-gravity also need to be considered to develop a more complete picture of the
star formation process. For example, another explanation for the observed cutoff in star
formation is that a phase transition occurs at the critical radius, inside of which the higher

pressure allows the gravitationally unstable cold component to &asiaye?2004). Es-



sentially, any mechanism that creates or sustains compressions in the gaseous medium
can be the initial driver of star formation.

One important aspect of the ISM is the magnetic field. In fact, magnetic fields were
thought to be responsible for tempering the collapse of gas clouds. Typically, molecu-
lar clouds have densitiesy = 100 cnr 3. If the collapse times of clouds were deter-
mined solely by self-gravity, then the typical cloud would collapse in 4 Myr. The total
mass of molecular material in the Milky Way is estimated to~d°M., (Cohen et al.

1986 Williams & McKee 1997). If the collapses occurs at the free-fall rate, then the star
formation rate would be 250 Myr—t. However, this value is almost 2 orders of mag-
nitude greater than the observed star formation rate of.4yk?! (McKee & Williams

1997. Hence, a resistive mechanism is required to slow or reverse the collapse. Mag-
netic fields could keep the ions from collapsing at the free-fall speed, but allow neutrals
to drift through the field lines at a slower rate; this process is known as ambipolar dif-
fusion. Localized collapse would then occur only at the rate permitted by ambipolar
diffusion (e.g.Spitzer1978. However, existing field strengths in clouds appear to be too
low for magnetic regulation to apply, and observational and theoretical advances have led
to a different understanding of the star formation process, leading to the development of
turbulence regulated star formation theory (see reviewdby Low & Klessen2004
McKee & Ostriker2007, and references therein).

On larger scales in disk galaxies, magnetic fields can be important for the development
of instabilities, especially when other mechanisms are also at work. In general, Coriolis
forces tend to divert compressive motions into epicycles. But, in disks with weak shear
profiles and strong magnetic fields, magnetic fields can transfer spin angular momentum
between neighboring condensations leading to the growth of dense clouds. This magneto-
Jeans instability, or MJI, may be at work in the inner regions of galaxies where the rotation

curve is rising, or equivalently, where there is little shear. Numerical simulations have also



showed that the MJI acts to grow spiral arm clouds and the associated IKpur&F02
Kim & Ostriker 2001, 2002.

The thermal state of gas in the ISM is crucial for both star formation and the overall
dynamics of a galaxy diskMcKee & Ostriker(1977), hereafter MO, expanded the two
phase proposal dfield et al.(1969 to include a hot component. In the MO model, the
majority of the volume of the ISM exists as a hot ionized medium (HIM), with temper-
atures and densities 6§10° K and ~10~3 cm3, respectively. This medium is heated
by supernova explosions (SNE), which also energize the remaining components of dense
clouds of the cold neutral medium (CNM). The temperature and density of these clouds
are 10-100 K and-50 cn1 3, and are surrounded by a warm neutral medium (WNM) and
warm ionized medium (WIN). The density of the warm medium is 0.1 - T&m

Empirically, Heiles & Troland(2003 found that about half of the WNM exists as
thermally stable gas, with temperature8000 K, and that the other half is thermally
unstable, with temperatures500-5000 K. The three phases exist in rough pressure equi-
librium. In their original depiction, MO suggested that most of the volume of the ISM
is occupied by the HIM. However, most of the ISM volume is now thought to be in the
warm phase, with the hot phase existing mostly away from the midplane of galaxy disks;
the mass fractions of the warm component is comparable to that of the cold medium (e.g
Cox2005.

The formation of stars requires the accumulation of gas in the ISM to form molecular
clouds. The rate at which diffuse gas is gathered into dense molecular clouds, which is
determined by the large-scale dynamics, may be important in setting the star formation
rate. The warm and cold gas is gathered through a variety of possible instabilities; or, cold
cloudlets could collide and stick with other cold clouds to form larger clouds. Once these
clouds are large enough, self shielding from diffuse UV radiation allows the gas to exist

in molecular form; the formation of $Himolecules from HI atoms occurs mostly on the



surfaces of dust grains. Molecular clouds have masses td* M. Clouds with masses

~ 10° — 10°M,, are called Giant Molecular Clouds (GMCs). In grand design galaxies,
the molecular clouds in spiral arms are observed to be collected into larger masses
10’M.,, referred to as giant molecular associations (GMA&gel et al.1988. Spiral

arms have also been observed to contaib0’M, atomic clouds, termed “superclouds”

by Elmegreen & Elmegree(iL983, within which molecular clouds exist. Turbulence
and other dynamical processes within these molecular clouds lead to the formation of
clumps and cores, finally producing individual stars. The physics of clump and core
formation within clouds are reviewed Ballesteros-Paredes et £007); Elmegreen &
Scalo(2004); Mac Low & Klessen(2004); McKee & Ostriker(2007).

The SNE occurring after stars have consumed all their fuel are an integral part of
the dynamics of the ISM, as MO depicted in their model. In addition to contributing to
the phase structure of the ISM, supernovae return much of the gas from massive stars
back into the ambient ISM. Further, SNE are at least partly responsible for driving ISM
turbulence. On large scales correlated supernovae create superbubbles, which destroy
the large natal clouds, and drive hot gas away from the midplane of the galaxy through
chimneys. This gas cools well above the disk, and the clouds rain back onto the disk
(Norman & lkeuchil989. The return of halo gas to the disk may be another source of
large scale turbulence.

Turbulence in the ISM is an extremely active research area, partly because turbulence
may play a key role in the process of star formation. Observed velocity dispersions sug-
gest that the turbulent velocities ax& km s 1(Heiles & Troland2003 Mohan et al.

2004). As discussed, SNE are a potential source for turbulence, both due to single SN
shocks as well as a number of correlated SN, which may also drive gas away from the
midplane of the galaxy disk only to fall back onto the disk, again creating turbulence.

However, SN driven turbulence only explains turbulence near active star forming regions.
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Proposed non-stellar sources of turbulence in the ISM include cosmic rays, the magneto-
rotational instability Balbus & Hawley1991 Piontek2009, large-scale gravitational
instability (Wada et al2002), and spiral shockd{im et al. 2006, many of which involve
galactic rotation, underscoring the importance of the large scale dynamics on the smaller

scale characteristics of the ISM.

1.3 Thesis Outline

The focus of this thesis is on the kinematics and dynamics of the global flow in galaxy
disks, leading to the formation of gas clouds, with emphasis on the role of the spiral struc-
ture, gas self-gravity, and supernovae driven feedback. We employ both observational and
theoretical methodologies to study these processes. We use interferometric CO observa-
tions to investigate the flow of the gaseous component through the spiral arms of M51.
These observations test theoretical models of the way in which gas is compressed into
spiral arms, initiating the process of star formation. Through the use of numerical simula-
tions, we investigate the detailed response of the gaseous component to an external spiral
potential, leading to the growth of large gas clouds in the spiral arms, as well as spiral
arm substructure, known as spurs or feathers. We also include feedback effects, due to
mechanical input from supernovae, to study the subsequent evolution of the gaseous disk.
These theoretical models are compared to observations of the morphological structure of
the ISM in the MW and external galaxies (including properties such as spur spacing and
GMC masses), to observations of correlations between ISM properties and star formation
rates, and to theoretical predictions based on simplified systems.

In Chapter2, we present results of our analysis of spiral arm streaming in the grand
design spiral galaxy M51. We fit the observed CO amul ¥locities to estimate the

radial and tangential velocity components as a function of arm phase, or, equivalently,
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arm distance. We then analyze these velocity components, and compare with predictions
from theory. We also consider conservation of vortensity and mass, in order to assess
whether the velocity profiles are consistent with the QSSS hypothesis.

In Chapter3, we present results of our study of the growth of spiral arm clouds and
spurs. We use numerical simulations to evolve the global flow of gas in a disk. We impose
an external spiral potential, which represents the perturbations in the background stellar
disk, in order to grow gaseous spiral arms. Gas self-gravity causes regions of enhanced
density to collapse into clouds. Self-gravity also perturbs the flow through the spiral arms,
resulting in the formation of spiral arm spurs. We compare models with and without self-
gravity, as well as magnetic fields.

In Chapter4, we extend the models presented in Chagtéw include feedback ef-
fects. Without feedback, self-gravitating clouds would collapse indefinitely. However,
feedback associated with star formation returns much of the cloud gas back into the ISM.
We consider feedback from correlated supernovae to disperse the clouds. We vary the
feedback parameters, and study the subsequent evolution of the disk. We investigate the
star formation rates associated with feedback, and compare with the observed Kennicutt-
Schmidt relation. We also assess the role of feedback on large scale turbulence, as well
as on the evolution of the spiral arms.

In Chapter5 we summarize this thesis, and discuss prospects for future research.

12



Chapter 2

Kinematics of Spiral Arm Streaming in

M51

Abstract

We use CO and # velocity fields to study the gas kinematics in the spiral arms
and interarms of M51 (NGC 5194), and fit the 2D velocity field to estimate the radial
and tangential velocity components as a function of spiral phase (arm distance). We
find large radial and tangential streaming velocities, which are qualitatively consistent
with the predictions of density wave theory and support the existence of shocks. The
streaming motions are complex, varying significantly across the galaxy as well as along
and between arms. Aberrations in the velocity field indicate that the disk is not coplanar,
perhaps as far in as 2@800 pc) from the center. Velocity profile fits from CO and H
are typically similar, suggesting that most of the ldmission originates from regions
of recent star formation. We also explore vortensity and mass conservation conditions.
\ortensity conservation, which does not require a steady state, is empirically verified. The
velocity and density profiles show large and varying mass fluxes, which are inconsistent

with a steady flow for a single dominant global spiral mode. We thus conclude that the
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spiral arms cannot be in a quasi-steady state in any rotating frame, and/or that out-of-plane

motions may be significant.

2.1 Introduction

Spiral arms are the dominant morphological features of most disk galaxies. From a the-
oretical perspective, two frameworks have been proposed to describe the nature of the
spiral arms: one is that the spiral arms are generally long-lasting, or slowly evolving, and
the other is that the arms are transient features f@gmre & Toomrel972. Observa-

tional studies have yet to show definitively whether the arms are evolving or long lived,
although it has been over 40 years since the landmark papeink§ Shu (1964 sug-
gesting that spiral structure in galaxies is a long lived phenomenon — the quasi-stationary
spiral structure (QSSS) hypothedisndblad1963. In the QSSS depiction, although ma-
terial passes in and out of the arms, the slowly evolving global pattern rotates with a single
angular speed that results from the excitation of global modes. The spiral arms are formed
from self-excited and self-regulated standing density waBestin & Lin 1996 Bertin

et al.1989ah).

However, interaction between a disk galaxy and a companion is another explanation
for the presence of spiral arms. In such a framework, the arms are transient features that
are generated by the tidal interaction (eTpomre & Toomrel972. Any spiral arms
existing before the encounter are overwhelmed by the tidal driviadp(& Laurikainen
2000.

Regardless of the origin of the stellar arms, gas in the disk will respond strongly to
the gravitational perturbations those arms impose. Numerical studies have indicated that
shocks can develop if the relative speed between the spiral perturbation and the gas is

large Roberts1969 Shu et al1973 Woodward1975. The presence of dust lanes in the
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spiral arms and the enhancement in ionized emission downstream, indicating regions of
star formation, is attributed to this shock scenario. Such shocks are also thought to be the
cause of the well defined molecular arms seen in many grand design galaxies, including
M51. Numerical and analytical studies have provided predictions for the velocity and
density profiles of the matter affected by the spiral gravitational perturbatios{gigs
& Clarke 2004 Kim & Ostriker 2002 Lubow et al.19869.

There have been numerous observational studies addressing the nature of spiral struc-
ture that have focused on the gaseous componahisser (19808 showed that steady
state density wave models fit the H | kinematics of M81 quite wietiwe et al.(1994
used the modal theory of density waves to describe the spiral pattern in M81RBnth
(1993 andAalto et al.(1999 used observed molecular velocities along 1D cuts on the
major and minor axes of the grand design spiral M51, and found qualitative agreement
with the density wave models &toberts & Stewar{1987. Kuno & Nakai (1997 fit-
ted observed CO velocities from single dish observations to obtain gas streamlines. The
smooth shape of the velocity profiles led them to conclude that galactic shocks do not exist
in M51. However, the study b&alto et al.(1999, using higher resolution interferometric
data, found steeper velocity gradients, supporting the presence of shocks.

Yet, other observational studies have suggested that the arms are not long lived. In
fact, the classic kinematic study of M51, thatTaflly (1974, found evidence for a tran-
sient pattern in the outer disk, due to the interaction with its companion, but that a steady
state is probably appropriate for the inner arfabnegreen et a1989 andVogel et al.
(1993 also suggested the presence of multiple pattern spefsy et al (2003 argued
that the spiral pattern may be a superposition ofrei2 mode and a weaken=3 mode,
suggesting a transient pattern for the arms of M51.

This paper presents a detailed study of the gaseous velocity structure associated with

the spiral pattern in M51.. In a future paper, we will discuss and compare the spiral pattern
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in different tracers. Here, we use the CO amal ¥¢locities to map the 2D velocity field
in M51.

Our study makes use of the full 2D velocity field in M51 from interferometric CO
and Fabry-Perot & observations, rather than just major and minor axis cuts. Noting that
variations in the observed velocity field are mainly associated with the spiral arms, we fit
the observed velocity field to obtain the radial and tangential components as a function
of arm phase (i.e. distance perpendicular to the arm). We then analyze whether the fitted
velocity field and density maps are consistent with the predictions of steady state theory.

In the next section we briefly describe our CO and bbservations. In 23 we
describe the method we employ to estimate the radial and tangential velocity components
throughout the disk. Since our method is sensitive to the assumed values of the systematic
velocity, major axis position angle, and disk inclination with respect to the sky?.#h §
we present results from our effort to constrain these parameters, and describe how errors
could affect the fitting results. InZ85we present and discuss the fitted profiles of radial
and tangential velocities for a range of radii. We then use the velocity and density profiles
to empirically test conservation of vortensity i”2.8.1 Next, in 8.6.2 we examine
whether (quasi) steady state mass conservation is applicable, as would be necessary for a

QSSS description. Finally, in287, we summarize our conclusions.

2.2 Observations

The CO and K intensity and velocity maps are shown in Figug$ and2.2, respec-
tively. The CO J=1-0 data for M51 were obtained in part from BIMA SONG (Survey
of Nearby Galaxies). The observations and data reduction are descriBegjam et al.
(2001 andHelfer et al.(2003. The SONG map is based on 26 pointings and has an

angular resolution of 5/8x 5.1”. Later, we obtained data for 34 additional pointings,
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so that the spiral arms were mapped as far as the companion galaxy to the north and to a
similar distance along the spiral arm to the south. In addition, inner fields were mapped
in a higher resolution array (B array), yielding higher angular resolution. The newer data
were reduced using the same procedures as descriligelfier et al.(2003 for BIMA
SONG. Together the data sets cover 60 pointings. The maps used for this paper have
variable resolution, reaching as high &sid the inner spiral arms but degrading t6-6
13" in the interarms and in the outer arms.

Ha data were obtained with the Maryland-Caltech Palomar Fabry-Perot, which cov-
ered the optical disk at an angular resolution’6&2d a velocity resolution of 25 knTs.
The observations and reduction are describeinendl (1996 and alsoVogel et al.
(1993. Both CO and k intensity maps are obtained by fitting Gaussian profiles to the
spectrum at each location. The velocity maps indicate the velocity of the peak of the fit
Gaussian intensity.

Also shown in Figure&.1and2.2are two lines tracing logarithmic spirals. The bright
CO arm is well represented by a logarithmic spiral with a pitch angle of2THe weaker
arm also generally follows a logarithmic spiral, although, as will be discussed, a number
of its arm segments either lead or lag the depicted line. The logarithmic spirals will be

discussed extensively in the following sections.

2.3 Estimation of Spiral Streaming Velocities

The observed line-of-sight velocitps can be decomposed as a sum of terms involving

the systematic velocitysys the radial velocitwr and the tangential velocity:
Vobs(R, 8) = Vsys+ [VR(R, 8) Sin(6 — Ba) + Vo (R, 6) cog 6 — Ba)] sini, (2.1)

whereR and6 are the galactocentric radius and azimuthal angle,Gandandi are the

position angle of the major axis and inclination of the galaxy, respectively. This equation
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Figure 2.1: CO (1-0) velocity-integrated intensity (bottom) and velocity (top) maps of M51.
Velocity contours increment by 10 kn§ between 360 and 560 kms Overlaid lines are
logarithmic spirals with a pitch angle of 22,separated by 180
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Figure 2.2: Ha velocity-integrated intensity (bottom) and velocity (top) map of M51. The
overlaid spirals, as well as the velocity contours, are as described in Ridure
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does not include a velocity component perpendicular to the disk. The exclusion of the
vertical velocity component is reasonable since studies of face-on grand design spirals
indicate that the-component of velocity is less than 5 km'§van der Kruit & Shostak
1982, provided the disk has no significant warp (we return to this issu@.ih.3.

Inspection of the velocity maps indicates that the isovelocity contours near the spiral
arms tend to run parallel to the arms. For a disk in pure circular rotation and with a flat
rotation curve, on the other hand, the isovelocity contours of the projected velocity field
are purely radial. It is evident that the velocity field of M51 is significantly different from
this sort of simple “spider diagram,” due to the non-axisymmetric perturbations associated
with spiral streaming. Clearlyr andvg vary with azimuth.

Previous estimates of streaming velocities have used observed velocities near the ma-
jor axis (where the projections gf vanishes) to estimatg, and velocities near the minor
axis (where the projections @f vanishes) to estimaté; (e.g.,Rand1993. However,
much of the CO gas is organized into GMCs (giant molecular clouds) and larger com-
plexes known as GMAs (giant molecular associationepél et al.1988. Further,Aalto
et al. (1999 have found that the streaming velocities of M51 GMAs in the same spiral
arm have a significant dispersion. Observations along a single cut, e.g. the major axis,
sample discrete GMCs and therefore may give a misleading estimate of the streaming
velocities. As an alternative, an approach that fits a streaming profile to all the observed
velocities in an annulus as a function of distance from the arm peak may better character-
ize the streaming velocities. Also, the gas surface density distribution varies significantly
at any distance from the peak (i.e. the gas is clumpy), and so averaging parallel to the arm
may better characterize the variation in gas surface density as a function of arm distance.

Typically, 2D fits to a galaxy velocity field assume thvatandvg are constant along
rings (e.g. the tilted ring analysis describedBageman(1989). By contrast, as men-

tioned earlieryr andvg do vary with azimuth, and indeed inspection of Figu2zesand
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Figure 2.3:Geometry depicting the spiral arm phageThe diagram on the left is the geometry

in the plane of the galaxy. The phage,represents the angular displacement between two loca-
tions with equal galactocentric radit® for two congruent spiral segments. The diagram on the
right is the logarithmic polar projection of the geometry on the left, showing the corresponding
spiral segments.

2.2indicates that the primary variations are due to the flow through the spiral arms rather
than variations with galactocentric radius. As in most galaxies, the rotation curve of M51
is relatively flat; the radial variations that do occur are associated with spiral arm stream-
ing. Thus, we are motivated to assume that radial variations of azimuthally-averaged
guantities are negligible (at least over relatively limited radial ranges) andgtzatdvg

vary primarily with spiral arm phasé. The left panel of Figur@.3 shows the relevant
geometry depicting the spiral arm phase. Our assumption ivghandvg are constant
along narrow spiral arcs, such as the segments in Figigethat are congruent to the

spiral arms. Thus, we rewrite equati¢hl) (for a limited range of radii) as

Vobs = Vsys+ [VR(W) Sin(8 — Bma) + Ve (W) cogB — Bua)] sini. (2.2)

In order to simplify the process of identifying regions of constant arm phase, we
adopt a coordinate system in which the spiral arms are stragimegreen et a1989
show that the spiral arms of M51 appear as straight line segments@riag(R)), or

logarithmic polar, coordinate system. The right panel of FiguBshows the logarithmic
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Figure 2.4:Logarithmic polar projections of the CO intensity and velocity maps. Though the
origin of the abscissa (azimuthal angle) is arbitrary, in this case it is aligned with due North. The
direction of rotation is to the right (counter-clockwise as seen on the sky). Also shown are the
two logarithmic spiral lines positioned along the two spiral arms, which correspond to the lines
overlaid on the maps of Figuz 1l

polar diagram corresponding to the features in the left panel. Fgdrehows the CO
intensity and velocity maps of M51 in log-polar coordinates, and Figuseshows the
corresponding B maps.

The sky images in Figureéa1land2.2 are first deprojected before being transformed
into a(6,log(R)) coordinate system. In order to deproject the sky view of a galaxy, the
center position, position angle, and inclination are required. We initially use the canonical
values for these parameters, which are listed in Takle We discuss the estimation of

these parameters in the next section.
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Figure 2.5: Logarithmic polar projections of the dintensity and velocity maps. Coordinate
system and log spiral overlays are as in Fig2we

Table 2.1. Initially Adopted Parameters for M51

Parameter Value Reference
Center RA () (J2000) 1829M525.71 Hagiwara et al(200J)
Center DEC @) (J2000) 47114280 ”
Systematic Velocity \(sy9 472 (LSR) Tully (1979
Position Angle of Major Axis Quva) 17¢ ”
Inclination () 20 ”
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The two straight lines overlaid on Figuregtand2.5indicate the adopted pitch angle
of 21.1° and also correspond to the spiral loci shown in Figeue It is clear from the
overlaid lines, which are separated by 18that the weaker arm is not symmetric with
the brighter one, as discussed Hgnry et al.(2003. Yet, both CO arms wrap around
approximately 360 of the galaxy, even though they appear to jump in phase at one or
more positions. The arms indHshow more jumps in phase and variations in the pitch
angle. In spite of their asymmetries, the CO spiral arms are particularly well described as
logarithmic spirals, better even tharaHor the optical arms shown glmegreen et al.
(1989.

We will refer to overlaid logarithmic spiral arcs (or lines) as “slits,” for we will extract
observed CO and ¢dvelocities as a function of position along the arc (or line), similar
to obtaining long-slit spectra. Each slit marks a region of constant arm ghas$éaus,
while the observed velocity varies along the slit due to projectig@ndvg are assumed
constant. We arbitrarily define the arm phase marked by the leftmost slit in Figures
and2.5asy = 0°. The other CO arm appears at an arm phase of approximateli80;
other features such as the stellar arms and the gravitational potential minimum may of
course be offset from the CO arms.

As noted previously, our fit will assume that the intringijcandvg are constant at
a given arm phase, i.e. along a given slit, but thatand vg vary with  as the slit
is translated in azimuth. Translating the slit amounts to shifting a straight line to the
right in the logarithmic polar diagram; this direction of increasing azimuth is the same
as the direction of rotation for M51. We then fit equati@® to the observed velocities
extracted at each arm phaethereby obtainingr(W) andvg (V).

Althoughvr andvg vary primarily with arm phase, they may of course also vary with
radius. Therefore, we limit the radial range of an annulus (or equivalently the length of a

slit) as much as possible while still fitting a sufficiently extended azimuth range to obtain
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good leverage on botvk andvg. In other words, an annulus should be sufficiently broad
to cover the spiral arm both near the major axis and the minor axis; the width of the
annulus thus depends on the pitch angle and galactocentric radius of the arm.

We first test our method by applying it to a model spiral galaxy with known radial and
tangential velocities. The solid lines in Figuzes shows the averaged densiy, andvg
profiles in an annulus from a snapshot of a hydrodynamic simulation of a disk responding
to a spiral perturbation. The model spiral galaxy is a 2D version of a 3D model described
in detail inGomez & Cox(2002, and the annulus used here extends from 8.38 - 8.92 kpc.
The direction of gas flow is in the direction of increasing phase. As the gas approaches
the arm, (marked by density maxima) the radial veloaity,decreases by40 km s,
The sign reversal ofr indicates that the gas is moving away from the nucleus before
the shock and towards the nucleus after the shock. As the gas emerges from the arm, the
radial velocity increases again. The tangential velogitgradually decreases as the gas
approaches the arm, then receives a strong boost and reaches a maximum just downstream
from the arm.

In order to test the fitting algorithm, the mode{ andvg at all locations are used in
equation 2.1 to create a model observed velocity field. This velocity field, along with
the model density map, is transformed into logarithmic polar projections. Equatign (
is then fit to the model observed velocities at each arm phase in an annulus, using slits
parallel to the spiral arms; the dashed lines in Figiu@are the results of the velocity
fits, in the same annulus (8.38 - 8.92 kpc). The results reproduce the overall shape of
the velocity profiles quite well, although with slight phase shifts and offsets. The offsets
and the shallower minimum v are likely due to the variation of the pitch angle of the
arms with radius; i.e. the spiral arms are not perfectly logarithmic, whereas the “slit”
used to extract velocities at constant arm phase is. Despite these offsets, we were able to

reproduce the major features of the velocity profiles of the model spiral galaxy, indicating
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Figure 2.6:Gas profiles as a function arm phagdor a model spiral galaxy (see text). Solid
lines: density (top)vr (Mmiddle), andvg (bottom) profiles averaged at each arm phase, in an

annulus extending from 8.38 - 8.92 kpc. Theandvg dashed lines in lower panels are obtained
by fitting equation 2.2) to the “observed” velocities in the 8.38 - 8.92 kpc annulus.
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that our method of fitting observed velocities at each arm phase recovers a 2D velocity
field reasonably accurately.

We now apply our fitting method to the M51 data, adopting systematic parameters
listed in Table2.1. As an example, Figur2.7 shows thevg (top) andvg (bottom) fits to
the observed CO anddvelocity field for one annulus between the galactocentric radii of
21” and 36. The CO intensity averaged along a slit as a function of phase dgriglalso
shown as dashed lines, indicating the distribution of molecular gas. As mentipred,
is arbitrary and is marked by the leftmost line in FiguBe4 and 2.5, corresponding to
the brighter arm, which we will refer to as Arm 1. We show a phase range greater than
360 so that both upstream and downstream velocities can easily be seen for both arms.
The direction of gas flow through the arms (assuming we are inside corotation) is from
left to right, so that the right sides of the CO peaks correspond to the downstream side of
the arm. In most cases, as the gas flows through the arm, the radial velocity decreases and
then increases, and the tangential velocity receives a boost, as predicted qualitatively by
density wave theory.

In a conventional tilted-ring velocity fitting analysis, galaxy parameters such as the
inclination, position angle, dynamical center, and systematic velocity can be directly fit.
However, even though the inclination and position angle appear explicitly in equation
(2.2), for our fits all but the systematic velocity must be assumed prior to deprojecting a
galaxy velocity field and therefore before the fit. For our initial fits we employed the stan-
dard assumed values for these parameters for M51, shown inZ4bla the next section
we explore the effects of errors in these assumed global parameters on the estimation of

VR andvg.
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Figure 2.7:CO (left) and Hx (right) vg andvg fits as a function of arm phase for an annulus with

an inner radius of 21and an outer radius of 36 The one sided @ error-bars are also shown

on the bottom of each panel. Dashed lines are the corresponding mean CO velocity integrated
intensities, with the scale depicted on the right ordinate. Taldlesshows the fixed (canonical)
parameters used in obtaining these fits.

2.4 Method Testing and Parameter Constraints

To test the sensitivity of ther andvy fits to errors in the global (fixed) parameters, we
generated test velocity fields and created sky projections with known parameters. We
then applied our fitting technique to estimateandvg for the model galaxies, assuming
incorrect values for the fixed parameters, and compared the fitting results to the actual
model values of/gr andvg. This enables us to quantify the sensitivity of the fits to the
fixed parameters. In addition to constraints obtained from fitting our kinematic data, we
also use standard methods to constrain the valu¥g 9, andi. As we shall show,

one of our conclusions is that some of the basic parameters for M51, many of which date

to Tully (1974, may in fact be poorly constrained due to the morphological and kinematic
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perturbations induced by the tidal interaction with its companion.

As an initial test, we generated a simple model wighs 240 km s andvg = —35,
i.e. an axisymmetric disk with a flat rotation curve and uniform radial inflow. We refer to
this model as the “constant velocity” model. We apply our general method\g dihd
Vg as a function of arm phase using “observed” velocities. If we assume the input values
of Vgys= 464 km s, 8ua =170, andi = 20°, we indeed recover the input values fgr
andvg as independent of phase. We now consider the effects of assuming incorrect values

for the parameters.

2.4.1 Position of Dynamical Center

In testing the sensitivity of the fits to the assumed center position, we applied the fitting
algorithm to a model for which the center position was shifted’binboth RA and DEC.

We found that aL error in the assumed center has a negligible effect on the fit velocities.
BIMA observations have an astrometric accuracy-@0% of the synthesized beam. The
highest resolution of our CO observations is”4 $o the error in position will likely not

be greater thar-0.5’. Thus, observational errors will likely not affect the results of our
fits. For all the analysis that follows, we will adopt the center position listed in Talle

This choice assumes that the dynamical center coincides with the location of a weak AGN
known to exist in the nucleus of M5H( et al.1987 Nakai & Kasugal988. We use the
position of the radio continuum source observed with the VLA, which has an accuracy of

+0”01 (Hagiwara et al2001).
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Figure 2.8:Result of fit to M51 CO velocity data in whic¥ys Vg, andvg were allowed to vary.
The radial range of the annulus is”14136’. The fact that the fit value dfsysvaries with phase

U shows that other parameters (6.8wua) vary with radius within the annulus. The mean of the
fits is 470.6 km st (LSR), shown by the dashed line.

2.4.2 Systematic Velocity

Before discussing methods for determiniigs we first explore the effect that an error in

an assumed value ®Eyswould have on fits fowr andvg in whichVsysis held fixed, using

the constant velocity model. As expected, an efdysin the assumellsys produces a

sinusoidal variation in both fitted velocity components, with an amplitud&vgfs/ sini,

and a period of 36qsee eqn2.1). Clearly,Vsysneeds to be well determined.

One approach to obtainindsys is to fit the data for its value using equatic?.2).

Figure 2.8 shows the results of fits to the M51 data in whighs was fit, along withvg

andvg, as a function of arm phase. Althouggkysshould be constant, it can be seen that

the fit value olVsysvaries with arm phase. Similar variations in fitdgsresult regardless

of what values of the position angle and inclination are assumed.

One possible explanation for the apparent variatiodspfis that the galactic disk of
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M51 is twisted and/or warped, i.e. the position angle and/or inclination may vary with
radius. We therefore compare the results of fittingMgk from a model galaxy with no
warp to a model with a warp. We again make use of the constant velocity model, for
this model also represents an unwarped disk. Instead of ke¥pjafixed, we allowed
this parameter to be free in the fit. If we use the true position angle and inclination, we
correctly recover the adopted values for all three free param¥tggsyr, andve.

To generate a warp model, we increagssonotonically from 25 at the inner radius
(100") to 35’ at the outer radius (200 the position angle is kept fixed. If we alloviysto
be free in fitting the model data, Figu2ed shows that th&sysvaries almost sinusoidally
about the true model value 400 km's The mean fitted systematic velocity is equal to
this value. This is the case regardless of what values of inclination or position angle we
use (within reasonable limits), and regardless of the radius range of the annulus used for
fitting. Thus, regardless of the assumed fixed parameters and of the limits in radius, for a
simple warp the mean value of the fits gives the correct systematic velocity.

Motivated by our finding that even with a warp the average fit valuégfgives the
true value, we calculated the mean of Yagsvalues shown in Figur@.8, obtainingVsys
= 470.6 kms?!. Comparison of th&/sys fits of the actual M51 data (Figurz8) with
Vsys fits to the simple warp model (Figuz9) shows that the warp model has a slower
variation. Hence, if a warp is responsible for producing variations in the fitted systematic
velocity it must be more complex than our simple model; we return to this question in
§2.6.2

We therefore apply two additional methods to estimate the valogyef The first
method is based on a standard tilted-ring analyBegémari989, in which the galactic
disk is represented as a series of nested tilted rings. In its most general form, each tilted
ring may have a different center, systematic velocity, position angle, inclination, and ro-

tational velocity. We use 1rings from an inner radius of 2o an outer radius of 120

31



420 . . : : : :

410

(km s™")

N
o
o

Fitted Vi,

390

380 L 1 L 1 L 1 L
0 90 180 270 360

Arm Phase ¢ (%)

Figure 2.9:Fit Vsysas a function of arm phase, similar to F@8, but for a model galaxy with
a warp. The systematic velocity adopted for the model is 400 #h{gashed line), equal to the
mean of the fits (solid line).

fixing the center position, inclination, and position angle to the values in TakhléNe
obtain mean systematic velocity of 47140.5 km s 1. When we allow the position
angle to vary as well, we obtain a mean of 47+.8.3 km s'1.

A third method we use to constraifgysis to assume a functional form for the rotation
curve, using thelEMO programrotcurshape (Teubenl1995. In contrast to the tilted-
ring method, which fits each ring independentiytcurshape fits Vsys Bua, i, center
positiona andd, and the coefficients of the function used to describe the rotation curve
simultaneously to the entire velocity field. Therefore, it can yield a sivglethat best
fits the entire velocity field. It is particularly useful for findingysif the kinematic center
position can be fixed. For this fit, we limit thet curshape fit to the inner 20 in radius.

This is inside the main spiral arms, in the region where the rotation curve is rising and
the isovelocity contours are relatively straight. We assume the cégigr,andi listed

in Table2.1and a rotation curve of the form= Vsys+ VoX/(1+ X) wherex is the ratio
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Table 2.2. Estimation of the Systematic Velocity of M51

Method Vsys(km s71)2 Error (km st
Tully (1974 472 3
FreeingVsysin fitting 470.6 0.4
for vr(W) andvg ()
Tilted Rings Analysis 471.4 0.5
Rotation Curve Fitting 473.3 0.5
Weighted Mean 471.7 0.3

a\/elocity in LSR frame

of the radius to the core radius, and fit #s Vo, and the core radius. We obtafg,s =
473+ 0.5 km sL. If we allow the position angle to vary as well, we obtain 473.9.3
km s~1. It is encouraging that this is within 2 knt%of Vsysdetermined from the other
two methods even though this fit uses a different method and fits an entirely different
region (i.e. the inner 2Q inside the main CO arms, as opposed to outsidg. 20

The canonical value ofsysfor M51 is 472+ 3 km s 1 (Tully 1974 and references
therein). Table.2lists Tully’s value forVsysas well as the results from applying the three
techniques described above. Our different methods give a mean systematic velocity of
471.7+ 0.3 km s'1. Henceforth, we will fiXsysto be 472 km st (LSR, corresponding
to a heliocentric velocity of 464 knt3) in fitting the velocity field to estimater(y)

andvg(W).

2.4.3 Position Angle

To investigate the effect of errors in the assumed galaxy position angle on the fitted values
of vg andvg, we first use the aforementioned constant velocity model. Note that the po-
sition angle is required to deproject the galaxy image, as well as in equat®nlsing

incorrect position angles, but correct model values of systematic velocity and inclination,
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yields a greater effect ovr than onvg. This is because an errdBya < 1 in Oya re-

sults in an errore —Vvg SinABa in the fittedvg, whereas the corresponding errongis

~ +VRSINABua. Sincevy is large compared tog, the shift invg is larger than the shift

in vg. Thus , a+-10° error in position angle in the “constant velocity” model that kigs
=240 km s produces approximatelya40 km st shift in the fitted radial velocity.
Position angle errors also produce small perturbations in both velocity components. We
conclude that using an accurate valudgh is very important to obtain accuratg and
especiallyvg fits.

Unfortunately, the position angle of the major axis of M51 is particularly difficult to
determine. The strong spiral arms and the tidal interaction with NGC 5195 distort the
stellar disk, making it effectively impossible to determine a position angle from the ori-
entation of the isophotes. Thus, it is necessary to go beyond morphology in determining
Bua. We therefore revisit the determination of the galaxy’s position angle. We apply the
method ofTully (1974 to our velocity data from i and CO observations. We also study
the effect of streaming motions on this method by using model galaxies with known po-
sition angles and streaming velocities. In addition, we also apply two alternate methods
to derive the position angle.

The widely used value for the position angle of M51, 1,A0as determined byully
(1974 using kinematic information. Tully assumed that the observed velocity should
reach its extreme value at the position angle of the galaxy major@xis, To determine
Bwva, he averaged the observed velocities in wedges extending overazimuth, and
then for each radius took the position angle of the wedge with the extreme velocity as the
estimated major axis at that radius. Tully excluded radii at which he was not confident
that the true major axis had measured velocities (e.g. the faint interarm regions near the
major axis).

Figure2.10shows the results of applying Tully’s position angle determination method
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to Ha and CO observations. For each annulus of radial exténthe position of the
wedge with the extreme velocity is marked. Due to the lack of data in the outer regions
of the CO observations, only the wedges in the innérptdvide reliable measures of the
position angle of the extreme velocity. Similar to Tully, we did not attempt to estimate
the position angle of the extreme velocity at radii for which data are sparse in the range of
plausible position angles of the major axis. From the location of these extreme velocity
wedges, we foun@ya to be 172 (from an error weighted average) from both CO and
Ha observations.

However, streaming motions can shift the velocities, resulting in the extreme velocity
occurring at position angles not corresponding to the true major axis. Indeed, inspection
of positions of the velocity extremum wedges overlaid on the intensity maps shows that
the position angles of the wedges in the interarms are clearly shifted counter-clockwise
from those in the arms. This is most evident in the khaps, for which emission is
detected from almost everywhere in the disk. We further explore streaming effects on
the Tully method using a model with known streaming motions, generated using one of
our Vg and vy fits to the M51 CO data, witlbya = 170°. (Since this test is designed
simply to reveal the twists in the apparent position angle due to streaming, the particular
value assumed for the true position angle and the partiogland vy fits used is not
significant.) Figure2.11shows the results of applying Tully’s method to this streaming
model galaxy. In any given annulus, the extreme velocity averaged in°theedges
occurs in the interarm regions. In Tully’s analysis, however, only spiral arm regions (near
the apparent major axis) were considered, due to observational limitations. Therefore,
the major axis position angle he found is likely biased clockwise from the true major
axis. As shown in Figur@.11, even if the interarm regions are considered, the position
angles of the locations of the extreme velocities do not necessarily correspond to the major

axis. Thus, such an extrema method can be biased due to the inherent streaming in M51,
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Figure 2.10:Tully “wedge” method for estimating galaxy position angle. The extreme velocity
for each 8 annulus, averaged irf 3vedges, is marked. The upper panels show theveloc-

ity (left) and velocity-integrated intensity (right); lower panels show the same for CO. For CO,
emission was too weak to apply the method at some radii, especially in the outer galaxy.
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Figure 2.11:Application of Tully wedge method to a model with streaming. The velocity field

is shown (left) along with the corresponding intensity map (right). The position angle assumed
in the model is 178 shown by the solid line. The*Swedges with the extreme velocity for each
annulus is marked. It can be seen that streaming shifts the estimated position angle from the true
position angle. Note that the extreme velocities do not occur in the arm.

regardless of whether the arms or interarms are considered.

We employ two alternate position angle determination methods that make use of the
full observed velocity field. In the first method, we average the observed velocity at each
position angle in a wedge for both the northern and southern sides of the galaxy; then we
fit a cosine curve to these averaged velocities as a function of azimuthal angle. We will
refer to this method as the “radial-averaged” method. This is most easily accomplished in
the polar projection, where we can average along a column to perform the radial average.
The radial-averaged velocity as a function of position angle is shown in F@yut
along with the corresponding cosine fitted curves. We assume that the galaxy major axis
should be at the position angle of the extrema of such curves. The mean position angle
determined from the & and CO fits is~177, larger than the position angle determined
by the Tully method. Again, the position angle determined in such a way is sensitive to
streaming. Earlier we showed that streaming tends to cause the position angle of extreme
interarm velocities to be biased counter-clockwise from the true value. Since the interarms
occupy a greater fraction of the galaxy compared to the arms, streaming will introduce

a counter-clockwise bias to the apparent position angle of the major axis. The effect of
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Figure 2.12:Mean observed velocity plotted vs azimuthal angle. All observed velocities were
averaged over radius at each azimuth. Velocities are fit by cosine functions (solid line); extremum
of the cosine curve indicates the best fit position angle of the major axis.

streaming on this method is further discussed below, following a discussion of our second
position angle determination method.

Our second method to determine the position angle, the “azimuthal fit” method, is
similar to the one described in the previous paragraph, but instead the cosine curve is fit
to the observed velocities along a projected circle with constant (projected) radius. As in
the previous method, the polar projection of the velocity field is useful; in this case we
simply fit a cosine curve to the velocities along a row of constant projected radius. The
results from applying this method are shown in FigRreE3 Note that the position angle
of the velocity extrema varies systematically as a function of radius; it is approximately
180 in the inner region 30from the center, declining to 18520’ from the center;

this trend, including the rise near Ldg)(= 1.7, is also evident from simple inspection of
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Figure 2.13:Fit position angle of the major axBua as a function of galactocentric radius from

Ha (upper) and CO (lower) velocity fields. The position angles were obtained by fitting a cosine
function to the distribution of observed velocity vs azimuthal angle at each radius.

Figures2.4and2.5. Averaging over the radius range displayed in Fig2iE3 we obtain

the same position angle e¥177 as in the previous method. Again, the velocities in

the interarms bias this determination of position angle, for the same reasons stated in the
previous paragraph.

In order to understand the effect of streaming motions on the position angle of the
major axis derived using the radial averaged and azimuthally fit methods, we apply these
methods to streaming models with known position angles and streaming velocities. The
model velocity fields are produced from oys and vy profiles obtained by assuming
fixed values ofdya; we then apply the radial averaged and azimuthally fit methods to
these model velocity fields. Both methods recovéfa of ~176°, for all models, simi-
lar to the actual M51 velocity field, even though the position angles assumed in generating

the streaming models can be very different. This is because for different position angles,
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the streaming velocities were derived from fits designed to best match the observed veloc-
ities. So in fact all the streaming models give virtually identical observed velocity fields
regardless of assumed position angle.

However, if we recreate the models setting the radial component to be zero every-
where, then we correctly recover the assumed position angles. This is clear evidence
that radial streaming affects methods to deternigg, not only near the minor axis, as
recognized by Tully, but also elsewhere including even the major axis.

In order to quantify the effect of the non-zero radial velocities on the apparent position
angle, we apply the position angle determination methods to models with known constant
radial velocities. In these artificial models tangential streaming velocities are assumed to
vary with arm phase, but radial streaming is assumed constant. We found that for every
+10 km stin radial velocity, the derived position angle differs from the actual position
angle by+ 3°. This degeneracy between the position angle and radial velocity renders
it difficult to accurately identify the true position angle, or to map the radial velocity. In
order to accurately determine the position angle, we need to know the radial streaming.
But in our effort to map the radial and tangential velocities of M51, we need to know the
position angle. Thus, as we carry out our investigation, we shall use a range of position

angles in deriving the two dimensional velocity components of M51.

2.4.4 Inclination

Estimating the inclination based on the orientation of the isophotes is unreliable, as dis-
cussed in 8.4.3 due to the strong perturbations from the spiral arms and the tidal inter-
action. In principle, the inclination can be determined from a fit to the velocity field, as
we did to obtain the systematic velocity i2.8.2 However, the fit inclination is not well
determined by the available data, presumably due to the streaming. To test the sensitivity

of thevr andvg fits to the inclinationj, in equation 2.2), we assume incorrect values of
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the inclination that differ from the true value iy for the constant velocity model (where
VR andvg are constant). We then fit fag andvg. As expected, an errdi results in er-
rors in the fit value of/ir andvg with magnitudes] sinAi, along with small perturbations
about this offset.

Since we find that error introduced in the velocity components due to an incorrect
inclination can be large (although just a simple scaling), we sought other constraints on
the inclination. In particular, the Tully-Fisheflly & Fisher 1977 relation can be used
to estimate the inclination. The well known Tully-Fisher relation is a correlation between
galaxy luminosity and maximum rotation speed. The inclination can be estimated by
comparing the rotational velocity predicted by the Tully-Fisher relation with the observed
velocity of the flat part of the rotation curve. We use the baryonic form of the Tully-Fisher

relation discussed bylcGaugh(2005 (see alsMcGaugh et al2000:
Mp = 50V}, (2.3)

where My, is the baryonic mass (in M, andV. is the circular rotational velocity (in
km s™1). Since the dispersion in the Tully-Fisher relatianJ V2, is relatively small,
given the luminosity the uncertainty Wy is small.

In order to determine the baryonic madg, we require the stellar masé,, which is

related to theB-band luminosityLg and theB-band mass to light ratioM /Lg),
M, =Lg-(M/Lg). (2.4)

We use the correlation of the galaxy color with/L discussed byBell & de Jong

(2001 applicable to th&harlot & Bruzual(1991) population synthesis models, to obtain
(M/Le):
(M/LB) _ 10[—0.63-0-1,54(B—V)]‘ (25)

The RC3 catalogde Vaucouleurs et al997) gives(B—V) = 0.53 for M51, so M /Lg)=1.54.
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The last quantity required to determikk is the luminosityLg, which can be derived
if we know the distance. Two independent studies have given similar M51 distance esti-
mates: observation of planetary nebulae gives a distance modutus Bf=29.62+ 0.15
(Feldmeier et al1997), and a study of surface brightness fluctuations in the companion
NGC 5195 givesn— M=29.59+ 0.15 Jensen et all996. We thus employ a distance
modulus ofm— M= 29.6, corresponding to a distance o4& 0.6 Mpc. Using the RC3

catalog value oB = 8.67, corrected for extinction,
Lp = 10 0-4(867-296-548)  — 366x 10'°L,. (2.6)

Using this value and théM/Lg) value of 1.54 (equation2[5) in equation R.4), we
obtain
M, = 5.64x 101°M. (2.7)
We can now apply thelcGaugh(2005 relation in equationZ.3) to obtain the circular
velocity:

Ve = [(M +Mgag) /504 = 188 kms 2, (2.8)
whereMgas is the total gas mass; in the case of M51 the gas is predominantly molecular.
From our CO observations, we compigas = 5.4 x 10° M., using an X-factor of of
2x10°% cm2 [K kms™1]~1 (e.g.Strong et al.1989. Due to the small value of the
exponent in equatioR.8 errors in the mass, due to variations in the X-factor, for example,
will not significantly affect the resulting rotational velocity.

The observed velocity is related to the circular velocity by
VC70bS: VC Slnl. (29)

Adopting the centeQua, andVsysdescribed in this section, we apply a tilted-ring analysis
to determine the flat part of the rotation curve. We obtain an observed circular velocity

between 70 and 80 knT$, implying

22 <0 525 (2.10)
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Therefore, for our subsequent fits, we adopt an inclination 24

2.4.5 Summary: System Parameter Values

In summary, we have shown that the fit valuesgftindvg are sensitive to the assumed
values for the fixed parameters in equati@®), Vsys Oua, andi. Uncertainties in the
assumed position of the dynamical center are too small to significantly affect the derived
streaming velocities. We have used three different methods to detevigyinavhich re-
sulted in a value similar to thésys found by Tully. We have found it to be extremely
difficult to constrain the value of the position angle of the major axis using the velocity
field, due to the significant streaming that shifts the position angle of the extreme veloci-
ties. As a result, in fitting fovg andvg, we allow for a range of plausible position angles.
Lastly, we adopt an inclination of 24which is determined by using the baryonic Tully-
Fisher relation lcGaugh et al2000 between the baryonic mass and rotational velocity.
To estimatevg andvg, we thus use the center position and systematic velocity listed in

Table2.1, but use a range of position angles and an inclination 6f 24

2.5 Results: Velocity Profile Fits

With our improved estimates of the global parameters, we apply the fitting algorithm
to the observed velocity field in different annuli to determine the radial and tangential
velocitiesvg andvg as a function of arm phasie We initially adopt a position angéya

of 170°. We address the issue of a varyiga in 82.6.2 Figures2.14and2.15show the

CO and Hx vg andyvg fits in six overlapping annuli between a galactocentric radii d¢f 21

and 103, and Figure2.16shows the corresponding overlapping annular regions.

'Employing the standard Tully-Fisher relation instead, we obtain a mean inclinatio23f using the

slope and zero-point fits froverheijen(2009).
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Figure 2.14:CO vy (left panels) ands (right panels) fits as a function of arm phapen
different annuli (with radii labeled in the upper right of each panel). The thickness of the line
shows a range af30. Only vk andvg fits with 30 < 20 km st and< 60 km s1, respectively,

are shown. Dashed lines are the corresponding mean CO intensities, with the scale shown on
the right ordinate. We assume a position angle of°1&h inclination of 24 and the center
position and systematic velocity listed in Tal#lel. Figure2.16 shows the annular regions of

M51 considered for these fits.
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Figure 2.16:Deprojected CO map of M51 showing the overlapping annuli for whighndvg

are fitted as a function of arm phase (shown in Fig@rédand2.15. The radii of (solid) circles,

from the inner to the outer, are: 2127’, 36’, 47’, 61, 80, and 103. The annulus marked

by dashed circles (4.2 kpe R < 6.1 kpc) spans possible corotation radii corresponding to an

adopted spiral pattern spe@g = 38+ 7 km stkpc ! (see 8.6.2.

An initial inspection of the streaming profiles indicates that the velocity structure is
rather complex. Models of density wave streaming qualitatively predict that as gas en-
counters the armygr, which was positive (i.e. outward) in the interarm, becomes nega-
tive, and that as the gas exits the arm it again becomes positive. The azimuthal velocity
Vg is predicted to increase rapidly as gas flows through the arm, and then decline more
gradually in the interarm (e.dgroberts & Stewar987, and &.3). First we concentrate
on Arm 1 (the brighter arm, shown gt = 0° and more fully at 369). For vg there is

a pronounced minimum close to the arm position, seen in both CO andlHere is a

boost invg through the arm, again seen in both CO ared Hor this arm, the streaming is
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gualitatively as expected from steady-state spiral shock models. The velocities associated
with Arm 2 (located atp ~ 200°) however do not agree with simple predictions. #gra

clear minimum is only apparent in the outer annuli, and the boos{ ismweak or nonex-

istent. In the interarms, the structure appears somewhat more complex than the simple
model expectation of a relatively constant or slowly risuggand a slowly decliningsg.

We suggest that Arm 1 matches simple theory because its structure is simple, i.e. well
described as a log spiral of constant phase. By contrast, for Arm 2 the CO distribution is
not as well described by a single log spiral segment. Instead, it has several segments with
different pitch angles and jumps in phase; thus the velocities associated with this arm are
complex.

One explanation for the differences in the two arms, as discuss&ixo§ Rieke
(1993, is that the spiral pattern in M51 is actually a superposition of a strong spiral mode
with a m=2 Fourier component with weaken=1 andm=3 components.Henry et al.

(2003, using the spatial distribution of CO emission obtained from the BIMA CO map,
found such a scenario to be feasible by explaining the bright arm as the result of construc-
tive interference between time=2 andm=3 components, and the weak arm the result of

a destructive interference between the two components. There is evidence for interarm
structure possibly supporting such a multiple density wave component description of the
spiral arms, which would be expected to manifest itself in the kinematics. REpénéer
observations of M51 clearly show spiral structure between the main CO arngyitaer

image and interarm features are discussed in the next section.

There are also clear differences between different annuli. For example, in’the 36
61” annuli, thevg increase downstream from the weaker arm is much more pronounced
than in the 21 - 36” annuli. In addition, there is& decrease to as low as—50 km s1
in the arms of the outer regions, which perhaps can be attributed to an incorrect choice of

a fixed position angle for the disk (se2.8.3. There are also clear differences in the
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gradients between different annuli.

By and large, similar velocity structure is apparent in both CO aadfFbr example,
in the 47 to 80" annulus, the gradual rise i from -50 km st at=180 to 70 km s1
at =300 is shown in both tracers. Further, there is a strogpgeak atp=120 in the
27" to 47" annulus in both CO and & however, such pronounced local extrema in the
interarms are not expected in the theory for a single spiral mode. In general, the overall
amplitude of the streaming and the location of most features coincide, and regions in
which the velocity structure is somewhat different tend to be interarm regions where little
CO is detected.

Such similarities are not unexpected due to the dynamical coupling between the dif-
ferent components. CO, which traces the molecular component, is dynamically cold, with
a velocity dispersion of only 4 - 8 knts. Thus, the molecular component of the disk
reacts strongly to any perturbation, as evident in the stvgrandvg gradients associated
with the spiral arms. The spiral arms compress the gas, triggering star formation. The
newly formed hot O and B stars subsequently ionize the surrounding gas, resulting in H
emission. Due to the fact that much of the Emission comes from gaearthe region of
birth, observed i velocities will be similar to observed CO velocities. There may also be
a diffuse ionized medium not closely associated with the O and B stars, and this medium
is likely not dynamically coupled with the molecular gas. However, as can be seen in
Figures2.4 and 2.5, the brightest regions of ¢d emission occur just downstream from
the molecular spiral arms. Further, the generally good agreement between the velocity
measurements from CO andxtbbservations suggest that most of the ionized emission
originates in gas associated with star forming regions. This similarity in velocity structure
derived from independent observations also gives confidence that the fitted velocities are
reliable and that the deviations from simple theory, including interarm features, are real.

The profiles in Figure®.14 and 2.15 qualitatively agree with previous studies of
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streaming in M51 involving 1D cuts along the major and minor axes {adjo et al.

1999 Rand1993. The gradients of the velocity profiles through the arms in different
annuli is in accordance with the conclusionAudlto et al. (1999 supporting the pres-
ence of shocks in the arms from a qualitative comparison of velocities along 1D cuts to
streaming models dRoberts & Stewar{1987). In 82.6 we analyze the feasibility of a
steady or quasi-steady spiral pattern in M51, which has been a working hypothesis for

many analyses of the spiral arms of this galaxy.

2.5.1 Interarm Structure

In estimating the radial and tangential velocity components, we fit observed velocities
along log-spiral segments. The slope of the slit is determined by the slope of the main
CO arms on the logarithmic polar projection, i.e. the pitch angle of the arms. Though
the slope of the CO arms, or at least the bright arm, is well defined, that slope may not
be appropriate for the interarms. In other words, velocity may not be constant along the
interarm log-spiral segments congruent to the main CO arms.

The recentSpitzer8 um image of M51 Calzetti et al.2005 Kennicutt et al.2003,
shows clear interarm features not seen in the CO map due to the lower resolution of the
CO observations. Many of these features are spurs (or feathers) that have been found
to be ubiquitous in grand design spiralsa(Vigne et al.200§. These interarm features
will also cause kinematic perturbations. In fact, close inspection reveals that interarm
perturbations in the velocity field of M51 coincide with strong interarm features apparent
in the 8um image. Since the features have different pitch angles from the main CO
arms, we are likely smearing out these finer interarm velocity perturbations. As a result,
the interarm velocity profiles we have derived do not reveal the details of the velocity
perturbations associated with interarm substructure; in a detailed study of the 2D velocity

field between the main arms, the interarm structure would need to be considered.
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In the next section, we use thig andvg fits to assess the feasibility of the hypothesis
of a quasi-steady pattern. Again, our fitting method is designed to reveal streaming solely
associated with the spiral arms, and does not capture smaller scale perturbations, such as
those associated with interarm features. Both observatinsegreenl98Q La Vigne
et al. 2006 and numerical simulationK{m & Ostriker 2002 Shetty & Ostriker2006
have shown that spurs and feathers are associated with star formation, indicating that these
features are not long lasting. The modal theory, hypothesizing quasi-stationary grand
design spiral structure, acknowledges that such smaller scale features can be transient
(e.g.Bertin & Lin 1996. In this study, smearing out the interarm perturbations likely

does not affect the overall conclusions we draw from the fitted velocity profiles.

2.6 Tests of Conservation Laws

2.6.1 Conservation of Vortensity

For a flattened system, the conservation of mass and angular momentum can be combined

to yield

0 (U X Vinerti U X Vinerti
o ( Z|nert|al> a0 ( DX Vinerta ) _o, (2.11)

whereZ is the surface density, anghertial IS the velocity in the inertial frame. Equation
(2.11) states that the vorticity per unit surface density, known as vortensity, is conserved

along streamlines. For steady systems, the conservation of vortensity can be simplified:

1 Vo 6V9 10vr

5 (ﬁ + R ﬁ%) = constant along streamlines (2.12)

because the temporal term in equati@il() vanishes. Even if the flow is not steady,
portions of the galaxy that originated in a region of constant vortensity will maintain

equal values of vortensity.
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In order to test whether equatiof.12) is satisfied for the gas in M51, we need the
surface density, which we can estimate using the observed CO brightness to derive the
corresponding bl column density. Most studies suggest that the relationship between
CO and H is reasonably linear, although the conversion factor, known as the X-factor, is
controversial. In our analysis, we will assume that CO is indeed a linear molecular tracer,
and employ an X-factor of 2 10?°cm~2 [K km s~1]~1 (e.g.Strong et al1988.

We first test the vortensity condition from the velocity profiles derived in tHe80Y
annulus, (see Figuiz14- 2.16. We choose this particular annulus becagseariations
are relatively smooth in both arm and interarm regions, and are likely due primarily to
spiral streaming. This annulus clearly shows the characteugtioost in the arm, and
the more gradual interarm decreaseadn We consider the fits derived from this annulus
assuming &ua = 170 (see Fig.2.13. As shown in 8.4.3 changes iy affectvg only
modestly.

For the first term in equatior2(12), vg/R, we use the mean value of the tangential
velocities fit in the given region. To measure the radial gradient of the tangential velocity,
which appears in the second term, we use

af_ 1 d
0R|, Rtanipdy’

(2.13)

whereip, is the pitch angle of the spiral arms, and we assume negligible variation parallel
to the arm. We adopt a pitch angle of 22L(Which is also the slope of the “slit”). We fit
straight lines to the velocity profiles in order to approximate the last two terms in equation
(2.12. For the surface densities, we use the peak value for the arm, and for the interarm
we use the value df at phase separated by°9Bom the arm. Again, we are assuming
that CO directly traces the molecular abundance. Tal8ehows the vortensity values

for the 47'-80" annulus, including the values of each of the terms in equafdi®

2As we will describe in 8.6.2 H | can be neglected since the gas in M51 is mostly molecular in the

region studied.
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Table 2.3. \ortensity in the 47 80" Annulus

Region T3 (B)b (%)b (%%)b \Vortensity Valué
Arm 1 ( =~ 360°) 244 70+1 103+2 -30+3 0.8+ 0.2
Interarm 1 ~90°) 16 67+1 -52+3 6+1 0.5+ 0.2
Arm2 (W~ 190) 128 63+05 59+3 -18+3 140.2

Interarm 2 ~275) 19 59+1 -31+2 11+1 0.9+ 0.2

a[Mg, pc2]; error of ~20%
blkm st kpc?]

¢lkmstkpc (Mg pc2)~1]

Table2.3shows that, within the errors, the arms and Interarm 2 have consistent vorten-
sity values. The value for Interarm 1, however, is lower than in the other regions. The
lower value for Interarm 1 can be inferred directly from the profile itself (Fgl5).

The tangential velocities in both arms are clearly rising, agdh Interarm 2 (down-
stream from Arm 2 ap = 200°) is predominantly decreasing, suggesting that the spiral
arms have the most significant influence on the velocities in these regions. In Interarm 1
(downstream from Arm 1 ap = 0°), however, there is more structure to the velocities,
suggesting that there are other sources of perturbations in addition to the spiral arms. We
find that for most of the velocity profiles in Figu&14 and2.15the vortensity values

are consistent between the two arms, within the errors. However, in the interarms, the
vortensity values differ. We find varying vortensity values in all interarm regions except
for Interarm 2 indicated in Tabl2.3. Overall, the agreement between vortensity in arm
regions in each annulus indicates either that a steady state depiction of the vortensity is
valid and there is very little radial migration of gas, or else that in a given annulus much
of the gas originated in a region of constant vortensity and has been conserved along

streamlines as gas in a whole annulus flows inward or outward.
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2.6.2 Conservation of Mass

Flux Weighted Averagevr

In the QSSS scenario, the spiral pattern — as defined by its amplitude, phase, and rota-
tion rate — would not change significantly over the course of a few revolutions in a frame
rotating along with the spiral patterBértin & Lin 1996 Lindblad1963. Such a frame-

work suggests that on average any accretion of material into the arms should be balanced
by the same amount of material exiting downstream. This condition corresponds to con-
servation of mass for a steady state system; if this condition holds it should be apparent
in the variation of observed velocities with spiral arm phase.

As can be seen in Figur@sl4and2.15 the spiral arms clearly pertusly with devi-
ations of> 100 km s butvg always remains positive, indicating that the orbital flow
is in one direction only. However, the radial velocities do change sign, indicating both
inflow and outflow. If the spiral arms are indeed a quasi-stationary pattern, then large
amounts of matter should not be undergoing net inflow or outflow; i.e. the mass-weighted
average radial velocity cannot be too large. A large or spatially strongly variable mass-
weighted averager would imply a very dynamic system. In particular, if the sign of
this quantity changes, then there would be a buildup or depletion of mass in one or more
radial locations.

As discussed in&4.3 the fit forvr is very sensitive to the assumed value of the posi-
tion angle. Thus, in investigating the mass-weighted average radial velocity, we consider
arange of position angles. Figuzel7shows therr fits for Ha in annuli with radii of 47
- 80" and 61 - 105’ for three different position angles, 17A.75, and 180. The CO fits
are similar, but noisier and have larger error bars (see Bid4- 2.15. A striking aspect
of the fits in Figure2.17is the large magnitude of inflow in the arms for all three position

angles; the radial velocity drops to as low-a85 km s1, suggesting significant inflow
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for gas in the spiral arms. In the upstream regians positive, approaching 70 knrs
for some parameter choices. For a region farther in, in tHe-2#7" annulus shown in
Figures2.14and 2.15 the fitted radial velocity (assumir@ya = 170°) reaches values
greater than 100 knt$, indicating tremendous outflow in the inner regions; assuming a
position angle of 180for this annulus only reduces the peak velocity frerh00 km st
to~75 kmst.

Figure2.18shows the flux-weighted average radial velocity), for different posi-
tion angles in the different annuli used in the fitting process. With the canonical position
angle of 170, there is significant outflow in the inner regions of M51. On the other hand,
a position angle of 180seems appropriate for the innermost regions of M51, since this
yields a lower value ofvg). However, with such a position angle we find significant
inflow in the outer region. If we adopt an intermediate position angle of lifere is
outflow in the inner regions and inflow in the outer regions. Féga of 175, (vg) =0
for the 36 - 61” annulus, with mean radiu®) = 1.98 kpc, while adjacent annuli have
(vg) =10 and—20 km s%, for (R) = 1.5 kpc and 2.6 kpc respectively’(£ 40.7 pc at a
distance of 8.4 Mpc). If this were true, then the gas would all collect Rear2 kpc in
less than one orbital time-scaleZ00 Myr), which is not consistent with a steady state.

This analysis leads us to conclude that if the spiral pattern is long-lived, the large
variations in the radial velocity shown in Figu&l18 suggests that the position angle
must vary with radius, indicating a disk that is not coplanar. This trend suggesting a
larger position angle in the inner regions and a smaller position angle in the outer regions
is also in accordance with the position angle tests describe2l.thFHsee Figure.13).

We schematically show a disk with a varying position in Fig@r&9 the position
angles of the ellipses are arranged as indicated by Fyaie As discussed, one effect of
a variation of position angle is a disk that is not coplanar. The inclination in this schematic

is exaggerated; the observed morphology, including the apparent spiral structure, depends
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Figure 2.17:Ha vk fits as a function of arm phase for 3 different position an@gs, 170,
175, and 180, for two annuli (47 - 80" and 61 - 105’). We fix the inclination at 24 and
other parameters used in the fitting are shown in T&ble The dashed line is the mean CO
intensity along the arm for @ya of 170°, which varies only slightly witltbya. The error bars are
not shown because they are similar to those shown in F@gl®
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Figure 2.18:Mass-weighted average radial velocitigg) in the different annuli, two of which
are shown in Figur@.17. The abscissa indicates the mean radR)s in arcsecs, of each annulus.
The three panels show the mass-weighted avevagessuming three different values for the
position angléya. The error bars include both fitted errorsigi(see Fig2.14) and an estimated
error of 20% inZ.

Figure 2.19:Model disk showing the variation of the position angle with radius. The position
angle profile is taken from Fig2.13 The inclination is exaggerated to show a more edge-on
view.

on the viewing angle, among other factors.
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Continuity and Spiral Pattern Speed

In this section we explore the plausibility of QSSS using the gas continuity equation. The

continuity equation for gas flow in a two-dimensional system is

210 =0 (214)

this holds in any frame, e.g. whether the velocity is measured in an inertial frame or one
rotating at a constant pattern speed. The first téyigt, represents the temporal growth
or decay of the surface densiyat any given radiuR and azimuthal angl@ in the plane
of the galaxy, where those coordinates are with respect to the frame in which the velocity
is being measured.

If the flow is in a steady state, then the temporal term vanishes, leaving only the mass
flux termZv. If the gas is responding primarily to a single dominant spiral perturbation, as
would be required for a fixed spiral pattern, and wkes measured in the frame rotating

at the pattern angular velociyp,
0 [2(Vinertial — QpR8)] = 0. (2.15)

Thus, for an exact steady state the mass flux into a region is equal to the mass flux out of
the region (in the frame rotating with the same angular velocity as the spiral mode). For a
guasi-steady state, the temporal variation& nill only be small, and thus variations in
mass flux would also be small. This condition can be further simplified using a reference
frame aligned locally with the spiral arms. Figu2e20shows this reference frame; the

x andy coordinates are the directions perpendicular and parallel to the local spiral arm,
respectively. The transformation between cylindrical coordinates and this arm frame is
achieved using

% = cosi pR+ sini K8, (2.16)

§ = —sinipR+ cosipf, (2.17)
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Figure 2.20:Coordinate transformation geometry, frdfR 6) galactocentric coordinates to the
(x,y) spiral arm frame.

whereip, is the pitch angle of the arms.

The velocities in the arm frame are given by
Vyx = VRCOSip + (Vg — QpR) sinip, (2.18)
and
Vy = —VRSinip+ (Vg — QpR) cosip. (2.19)

From the maps shown in Figur&l and 2.4, it is apparent that the intensity and
velocity vary significantly more across the arms, in ¥ddirection, than along them, in
they-direction. Thus, the variation in the productXf, alongy’is much smaller than the

variation in the product ofvy alongx, reducing equatior2(15 to
2Vy ~ constantalong.” (2.20)

Namely, for a steady pattern, as the gas decelerates (kdihection, perpendicular to the
arm), mass accumulates and the surface density increases; as the gas velocity increases,

the surface density decreases.
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One difficulty in testing whether equatio.R0 holds is that neithe®ya nor Qp is
well constrained. Errors iBya Yield errors in the fitted value ofy of ~ VrRSINABya
and in the fitted value ofr of ~ —VgsinABua. If AQp is the error in the pattern speed,
then the fitted value ofy will be approximately given by + (—VeSinAByacosip +
VRSINABWASiNip — AQpRsinip). Since thevg term has two factors of the sin of small
angles, that term will be much smaller compared with the other two terms. The true value
of vx will therefore differ from the fitted value b@y ~ vg sinABya cosip +AQpRsinip.

In order to assess whether steady state continuity as expressed by eqR&ihpn (

holds in the case of M51, we therefore consider the quantity
2y = Z(VRCOSIp+ (Vo — QpR) sinip +C), (2.21)

wherevr andvg are fitted values an@ = (Cy), i.e. the (unknown) azimuthally-averaged
correction due to the errors Bya andQp. We apply equation.21) by solving for the

value ofC using the values ofr, vg, andZ in the two arm segments of an annulus:

[VRarm1 COSi p + (Vg,arm1 — QpR) SiNip] Zarm1 — [VRarm2 COSi p + (Vg ,armz — QpR) SiNip] Zarmp
Zarm2 - Zarml .

C=

(2.22)

We then test whether the value©@bbtained using equatio 22 also satisfies equation
(2.2]) in the interarm regions. If equatio.Q]) is satisfied for both interarm and arm
regions, it would suggest an approximate steady state.

We again focus on the 480" annulus, where thes (andvg ) are relatively “smooth.”
Thevg profiles for this annulus is shown in Figu?el7, assuming three different values
of the position angle. Tabl2.4 shows the relevant values associated with equaf@i)
for the arms and interarm regions. We employ the pattern speed af 38km st
kpc™t, calculated byZimmer et al.(2004 by applying the Tremaine-Weinburg method
CO observations of M51. Corotation corresponding to this pattern speed is marked on

Figure2.16 After solving forC using quantities from the arms, it is clear that the flow
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in the interarm region is not consistent with a steady state description. A position angle
of 170 produces large negative mass flux in the arms, and positive flux in one interarm
region. Even variations in the X-factor cannot resolve this discrepancy. Assuming larger
values of the position angle still produces mass fluxes with vastly different magnitudes,
and even different signs. Increasing the errdC imp to an order of magnitude still cannot
result in consistent mass fluxes between the arm and interarm. This suggests that any
reasonable changes to the value®gh or Qp will still result in varying mass fluxes.

We have checked the mass flux in other annuli using the same method as fof’the 47
80" annulus, as well as in other localized regions not presented here, and found similar
discrepancies in the mass flux.

In our analysis of continuity so far, we have not taken into account the contribution
from the atomic component of the disk. In fact, in most galaxies the majority of the gas
exists in the form of H I. In M51Tilanus & Allen (1989 showed that the downstream
offset of H | relative to the dust lanes is likely due to dissociation of molecular gas by
recently formed massive stars. However, the inner disk of M51 has an unusually large
fraction of molecular gas, so even at peaks of the H | photodissociation arms, the contri-
bution of atomic gas to the total gas surface density is negligible. Using the H | maps of
Rots et al(1990, we find that the atomic column densNi(H I) is significantly less than
the molecular column densit)d(H2) in the vast majority of locations in the inner disk
(21”7 < R< 105"); N(H I) exceedsN(Hy2) in only ~ 7% of the inner disk. The mean value
of N(H2)/N(H 1) throughout the inner region tis10. Though we used a constant X-factor
to obtain the molecular surface density, moderate variations in the X-factor (for M51, see
Nakai & Kuno 1995 will not be sufficient to account for the discrepancy. Nevertheless,
no change in the X-factor, or in the contributions of the molecular or atomic matter to the
total mass, can account for the change in sign of the mass flux; the varying Sign of

can only be due to a sign changeviip notz.
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Table 2.4. Mass Flux in the 47 80" Annulus

Region 33 vrcosSp” (Vg — QpR)siniyP c¢ PRV
Oma = 170:
Arm 1l (W~ 360) 244 -24 41 -58+ 30 -10113
Arm 2 (Y ~ 190°) 128 -53 32 -58+ 30 -10113
Interarm 1 p ~ 90°) 16 23 18 - -259
Interarm 2 ) =~ 275°) 19 49 21 - 237
GMA =175
Arm 1l (P~ 360) 244 -41 41 -32+ 18 -8103
Arm 2 (Y ~ 190°) 128 -63 32 -32£ 18 -8103
Interarm 1 ()~ 90°) 16 12 18 - -38
Interarm 2 () =~ 275°) 19 36 21 - 464
GMA = 180C:
Arm1l (P~ 360) 244 -59 41 -8+ 17 -6345
Arm 2 (P ~ 190°) 128 -71 32 -8+ 17 -6345
Interarm 1 () =~ 90°) 16 1 18 - 182
Interarm 2 p =~ 275°) 19 27 21 - 761

3[Mg, pc2]; error of ~20%
blkm s1]
¢[km s~1]; error largely due to errors iB andQ,
4[Mg pc2kms

Our conclusion, after analyzing the mass flux, is that the kinematics are not consistent
with a quasi-steady spiral pattern in a flat disk. We find that no single pattern speed can
satisfy quasi-steady state continuity, suggesting that the QSSS hypothesis is not applicable
to M51. It is essentially the tremendous variations of the radial velocity within a given
annulus — amounting te- 100 km s — that lead the QSSS hypothesis into difficulty.
One explanation for the transient nature of the spiral arms in M51, perhaps due to the
interaction with its companion, is a spiral perturbation with a constant pattern speed,
but with time-varying amplitude. Or, there may be multiple modes at work in the disk

of M51, which may be construed as a mode with a radially varying pattern speed (e.g.
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Merrifield et al.2006. Multiple patterns speeds in M51 have been previously suggested
by Vogel et al.(1993 andElmegreen et al1989. However, the extreme variations in

the radial velocity cannot be explained by multiple patterns alone. Possible causes for the
large observedr gradients are large out-of-plane motions or a variation in inclination;
since the inclination of M51 is small, a variationiidue to a warped or twisted disk will

produce large variations in the observed velocity due to projection effects.

2.6.3 Discussion

We have shown that the density and velocity structure in M51 does not support a quasi-
steady state depiction for the spiral pattern, using measurements of the mass flux. Further
evidence that the observed structure is inconsistent with steady state can be obtained by
adopting the fitted 2D velocity field, and demonstrating that the density structure is then
non-steady. We have carried out this exercise using a modified version wfMbeaask
FLOWCODE (Teubenl995. In this exercise, a disk is populated with gas tracer particles
using the intensity profiles averaged along spiral segments, reproducing the spiral density
pattern of M51. Each location in the disk has an associatethdvg, given by the fitted
velocity profiles (e.g. Figure®.14and2.15, and an assumed value of the pattern speed.
The motion of the particles is then integrated usingwCoDE: after a suitably small time
step, the particles take on new velocities depending on their location in the disk. In
essence, this simulation is a purely kinematic test to determine whether the steady state
continuity equation (eqn.2[19) is satisfied or not, using the density and fitted velocity
profiles of M51 (Figs.2.142.15. We find that the input spiral pattern vanishes in less
than one orbital timescale-00 Myr), regardless of what values of the position angle
and pattern speed we assume.

The precise nature of the velocities is one of a number of issues that need to be con-

sidered in further studying the the global spiral pattern in M51. For example, our result
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suggests the role of a warp certainly needs to be taken into account. There are strong
indications that the outer disk of M51 is warped; our finding suggests that the disk is not
coplanar even further inward. The non-coplanar attribute may be the result of the tidal
interaction between M51 and its companion.

The possible warp and/or twist in the disk of M51 would of course affect the projected
velocities, and would present itself as gradients in the velocity components, as discussed
in the previous section. If this were indeed the case, then the single or multiple in-plane
modes would have to be in phase with the vertical mode in order to sustain a spiral pattern.
The inherent uncertainty in deriving three velocity components from the single observed
component leads to difficulty in estimating and analyzing both the vertical and in-plane

modes.

2.7 Summary

We have analyzed the velocity field of M51, using CO armddthservations, to investigate
the nature of the spiral structure. We summarize the main results here:

1) The velocity field is quite complex. Observed velocities show significant azimuthal
streaming associated with the spiral arms, as well as strong gradients in the radial veloci-
ties.

2) The aberrations in the velocity field strongly suggest that the disk is not coplanar,
perhaps as far in as 20~800 pc) from the center.

3) We obtain fitted radial and tangential velocity profiles by assuming that velocities
in any annulus vary only with arm phase. Strong gradients in the radial and tangential ve-
locities are found in the profile fits. In general, the shape of bothgladvg profiles are
in qualitative agreement with theory of nonlinear density waves, and support the presence

of shocks.
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4) In detail, the velocity profiles from different radial regions of M51 differ signifi-
cantly. In addition, velocity profiles associated with the two arms also show differences
in a given annulus. For the arm that is well described by a logarithmic spiral (bright
arm), the associated velocities are in good agreement with simple theoretical spiral shock
profiles. For the other arm, which is not as well described by a logarithmic spiral, the
velocities are more complex.

5) The velocity profile fits from CO and ddemission are rather similar, suggesting
that most of the I emission originates from gas associated with star forming regions.

6) When we assume a single value for the position angle of the major axis of M51 and
inclination, we find that large amounts of material flows toward an annulus of intermediate
radius, due to the large gradients and change of sign in the flux weighted average radial
velocity. As a result, either the position angle of the major axis or the inclination must
vary with radius, suggesting that the disk of M51 is warped and twisted.

7) We analyze conservation of vortensity, using the radial and tangential velocity pro-
file fits. We find that vortensity is fairly consistent within a given annulus, indicating that
the gas there all originated in a region of uniform vortensity.

8) Using the equation of continuity, we find that the density and fitted velocity profiles
are inconsistent with quasi-steady state mass conservation in any frame rotating at a con-
stant angular speed, at least for a planar system. Variations in the pattern speed, position
angle, and X-factor alone cannot account for the differences in the mass flux, suggesting

that spiral arms are quite dynamic, and possibly that out-of-plane motions are significant.
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Chapter 3

Global Modeling of Spur Formation in

Spiral Galaxies

Abstract

We investigate the formation of substructure in spiral galaxies using global MHD sim-
ulations, including gas self-gravity. Local modelingkiyn & Ostriker (2002 previously
showed that self-gravity and magnetic fields cause rapid growth of overdensities in spiral
arms; differential compression of gas flowing through the arms then results in formation
of sheared structures in the interarms. These sheared structures resemble features de-
scribed as spurs or feathers in optical and IR observations of many spiral galaxies. Global
modeling extends previous local models by including the full effects of curvilinear coor-
dinates, a realistic log-spiral perturbation, self-gravitational contribution from five radial
wavelengths of the spiral shock, and variation of density and epicyclic frequency with
radius. We show that with realistic Toom@values, self-gravity and galactic differen-
tial rotation produce filamentary gaseous structures with kpc-scale separations, regardless
of the strength — or even presence — of a stellar spiral potential. However, a sufficiently

strong spiral potential is required to produce “true spurs”, consisting of interarm struc-
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tures emerging from gas concentrations in the main spiral arms. In models @hsre
initially constant, filaments due to interarm self-gravity grow mainly in the outer regions,
whereas true arm spurs grow only in the inner regions. For models@ithR, outer
regions are intrinsically more stable so “background” interarm filaments do not grow, but
arm spurs can develop if the spiral potential is strong. Unlike independently-growing
“background” filaments, the orientation of arm spurs depends on galactic location. Inside
corotation, spurs emanate outward, on the convex side of the arm; outside corotation,
spurs grow inward, on the concave side of the arm. Based on orientation and the relation
to arm clumps, it is possible to distinguish “true spurs” that originate as instabilities in the
arms from independently growing “background” flaments. We measure spur spacings of
~3 - 5 times the Jeans length in the arm, and arm clump massed6f M. Finally,

we have also studied models without self-gravity, finding that magnetic fields suppress a
purely hydrodynamic instability recently proposed\Wada & Koda(2004 as a means

of growing interarm spurs and feathers. Our models also suggest that magnetic fields are
important in preserving grand design spiral structure when gas in the arms fragments via

self-gravity into GMCs.

3.1 Introduction

Observations of disk galaxies reveal that arm substructures are prevalent in grand design
spirals. Some of the most prominent secondary features are spurs and feathers, which are
structures that emanate from the primary spiral arm and are usually seen to sweep back to
trail the flow in the interarm region. Historically, in the observational literature the term
“spur” has denoted stellar features seen in optical emis&tnggreenl 980, whereas

the term “feathering” has been used to denote a series of extinction features that overlies

the bright portion of a stellar spiral arrhy(nds1970. EImegreen(1980 concluded that
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spurs are long-lived features, based on observations in multiple bands, including the |
band, which generally traces the older stellar component. Recent high-resolution obser-
vations, such as the Hubble Heritage image of MSddyille & Rector200]) and several
galaxies in theSpitzerSINGS sampleKennicutt et al.2003, have revealed examples

of these features in extraordinary detail. An archival study{obble Space Telescope

(HST) images has established that spurs and feathers are in fact ubiquitous in galaxies
with well-defined spiral arms and that single continuous structures evidence evolution
from primarily gaseous to primarily stellar compositidra(Vigne et al.2006. Taken to-

gether, these observations indicate that feathers and spurs are an essential aspect of spiral
structure that should be accounted for by theoretical modeling of disk galaxies.

Many studies of spiral structure, both theoretical and observational, have applied the
hypothesis of a quasi stationary spiral structure (QSE&B) & Shu 1964. Under the
QSSS framework, the general shape of the spiral pattern is assumed to remain steady
for many galactic revolutions. The stellar spiral arms themselves arise as self-consistent
density waves (or modesRoberts(1969 demonstrated that shocks can develop in the
gaseous component as it responds to an “external” spiral potential arising from the stellar
disk, and predicted values of the gas velocity both upstream and downstream from the
shocks. Such velocity profiles have been observed for many galaxies, such as M51 (e.g.
Aalto et al.1999 Rand1993 Shetty et al2007), and M100 (e.gRand1995. M81 has
also been studied extensively in support of density wave theoryl(evge et al.1994
Visser1980h.

A number of theories consistent with the QSSS concept have been proposed to explain
substructure in spiral galaxieShu et al.(1973 suggest that ultra-harmonic resonances
between the motion of the primary spiral pattern and the background gas flow can be re-
sponsible for the secondary features in spiral galaXiéskrabarti et al2003 (hereafter

CLS) performed hydrodynamic simulations of self-gravitating gaseous disks to study the
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role of ultraharmonic resonances. They showed that the spiral arm bifurcates and that
strong branches, which in observations are large scale dust lanes similar in angular extent
to the main arms, occur near resonant radii (seeAtgonowicz & Lubow (1992).

The origin and nature of observed smaller-scale feathers and spurs, however, has not
yet been firmly establishe®albus(1988 attributed these features to the growth of gravi-
tational instabilities in the gas component in preferred directigimg. & Ostriker (2002,
hereafter KO, performed numerical simulations focused on a local patch of a gaseous
spiral arm in a galactic disk, and showed that the growth of prominent, nonlineat spurs
can occur due to the mutual contributions of self-gravity and magnetic fields, via the so-
called “magneto-Jeans Instability.” Within the arm, the radial gradient in angular velocity
is reversed, so that spurs in the models of KO are initially locally leading. Well into
the interarm regions, background galactic shear causes the spurs to become trailing fea-
tures. This characteristic shape is evident in the Hubble Heritage image of346%ille
& Rector2001). On the other hand/Vada & Koda(2004), hereafter WK, suggest that
the growth of spurs results from purely hydrodynamic effects. In their two-dimensional
models (excluding magnetic fields and self-gravity), the spiral shocks become unstable;
this instability causes the growth of clumps and subsequently leading interarm features,
which they refer to as spurs. They suggest the mechanism responsible for the growth of
these spurs is the Kelvin-Helmholtz instability. Using smoothed particle hydrodynam-
ics (SPH) simulationd)obbs & Bonnell(2006 also investigate the non-self-gravitating
case, and suggest that feather and spur formation requires gas temperafiff@sK.
Contemporary with the current worlkim & Ostriker (200§ extended their 2D local
self-gravitating models to 3D; that work also investigates the effects of vertical structure

on hydrodynamic Kelvin-Helmholtz modes.

We adopt the term “spur”, following KO, to describe interarm gas features in hydrodynamic and MHD

models.
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Here we model isothermal gaseous disks under the influence of both magnetic and
self-gravitational effects. We extend the local simulations of KO into the global regime,
which allows us to study the growth of spurs using more realistic models. In particular,
whereas in KO the unperturbed disk had uniform density, a linear shear profile, and did
not treat curvature effects, the present models relax all of these idealizations. Our global
models, which extend over more than an order of magnitude in radius, allow for arbitrary
density profiles and rotation curves, and solve the full equations of magnetohydrodynam-
ics (MHD) in cylindrical symmetry. To assess the effect of self-gravity, we first consider
just a disk of rotating gas, varying initial conditions such as the magnetic field strength
and Toomre stability parameter. We then apply an external spiral potential, which reorga-
nizes the gas to form a spiral pattern. In models with and without a spiral potential, we
follow the evolution of the gas far into the nonlinear domain as self-gravity takes hold and
investigate the properties of the interarm features and clumps that arise.

This paper is organized as follows: I18.2 we present the relevant equations of MHD
and gravity, and describe the models, parameters, and numerical algorithms we use to
simulate disk galaxies with spiral arms. Ii3(§), we consider models without including
self-gravity, both with and without magnetic fields. Next, 8.4 we present the models
including self-gravity. We show how self-gravity causes the growth of condensations in
the gas, and how this effect is crucial for the growth of interarm structures in disks with
an external spiral potential. I8&we analyze and discuss various aspects of our results.
In 83.5.1, we explore the issue of distinguishing whether observed interarm structures are
true arm spurs or independent background features with a superposed large-scale spiral
structure; in 8.5.2we gquantify masses and spacings of clumps and spurs; argi588
and 8.5.4we discuss the issue of gas/star arm offsets and disk thickness, respectively.

We conclude in 8.6 with a summary.
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3.2 Modeling Methods

3.2.1 Basic Equations

Our simulations involve the gaseous response to an external spiral potential, including
effects of self-gravity and magnetic fields, in a two-dimensional galactic disk model. The
gas is initially in pure circular motion around the galactic center. We adopt a flat rotation
curve, i.e. a constant azimuthal velocity A non-axisymmetric variation in the stellar
component is responsible for an external spiral perturbation, and is modeled as a rigidly
rotating potential with a pattern spe€xj,. We investigate the formation and evolution

of arms, spurs, clumps, and other features by integrating the MHD equations in a polar
(R, @) coordinate system.

The relevant equations of MHD and gas self-gravity are

6_2 +0-(2v) =0, (3.2)
ot
ov 1 2H
E—FVDV—FEDPZR(DXB)XB—D(Q)Q)Q—FCD), (32)
0B
E—DX(VXB), (3.3)
02 = 4nGd(2)%. (3.4)

whereZ is the gas surface density amdp, andB are the vertically averaged velocity,
vertically integrated pressure, and vertically averaged magnetic field, respectively. The
semi-thickness of the disk id, such thatz/2H is the mid-plane densitpg. For our
models, we assume an isothermal equation of state, sp tha, wherecs is the sound
speed. The term®ey: and®d, respectively, represent the external spiral potential and the
gaseous self-gravitational potential. The external spiral potebgals specified at time

t, in the inertial frame, by

Dext(R, @;1) = PextocOMP— @o(R) — MO pt] (3.5)

71



wherem, ¢o(R), andQ, are the number of arms, reference phase angle, and spiral pattern
speed, respectively. We assume the spiral arms have a constant pitch anglging a

logarithmic spiral, so that

m
w(R) = —ﬁln(R)chonstant (3.6)

Since we simulate disks in an inertial frame of reference, explicit corrections to equation

(3.2 for Coriolis and centrifugal forces are not required.

3.2.2 Model Parameters

For the simulations presented in this paper, we use a constant sounccgpekith we
setto 7 km st for scaling our solutions. We use a constant rotational velagjtwhich
is set to 210 kmsl. Because our models are isothermal, in fact our results would hold
for any model with the same rati/cs = 30. The code length unit ikg, which for
convenient scaling of our solutions we set to 1 kpc. Veigts 7 km s1, this implies a
time unit for scaling ofg = Lg/cs = 1.4 x 108 years. This time corresponds to one orbit
torb = 211/Qp at a fiducial radiusy which is given byRy = Lovc/21Cs. With Lo = 1 kpc,
the value ofRy is 4.77 kpc. Our results can be rescaled to other valu&g ahdLg with
the same ratio.

We explore a range of values for the parameters required to specify the spiral perturba-
tion. The amplitude of the potential perturbati®ayo in equation 8.5) is characterized
by the ratioF of the maximum radial perturbation force to the radial force from the back-

ground axisymmetric potential (responsible ¥g), i.e.

_ Pextom
T Vtani

(3.7)

We model spiral disks with external potential strendths 10%, 3%, and 1%. We apply

the spiral perturbation gradually, increasing from zero and settling to the maximum level
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F attimet =tqp. Since it has proved to be difficult to locate corotation from observations,
we also explore a range B,/Qq = 0.19 to 0.96. For our fiducial values b andcs, Q,
ranges from~8 to 42 km s1kpc1, corresponding to corotation radii of 25 to 5 kpc for
a circular velocity of 210 km'st. The pitch anglé in most of our simulations is 0
We will show that changing the pitch angle does not strongly affect the formation and
properties of substructures. For all our models, we hava ar? (two-armed) pattern.

The initial surface densit¥g at the fiducial radiu&y, along with the constant circular

velocity v, determines the value of the Toomre stability paramet&at

KOCS

QO = T[G—Zov (38)

wherekg is the initial epicyclic frequency; for a constant circular velodity= v/2Qq =

V/2v¢/Ro. Thus, the initial background surface densityRaiis

32 D Cs ) ( Ko )
20=—MgpcC . 3.9
°" Qo P <7kms‘1 62kmstkpc?t (3:9)

As described below, we explore a couple of initial density distributions, includibgla

R~ density distribution for whicl® is initially constant for the whole disk.
We characterize the initial magnetic field strength by the rfatid the midplane gas

pressure to the midplane magnetic field pressure

_ Ppas_ 8T

B="n = 2nnz (3.10)

The initial magnetic field line® = Blie in the plane of the disk, and are directed in the
@ direction only. From equatiorB(10 the value of the magnetic field (witty, B, and
H constant) varie§] /2. TakingH = 100 pc andQg = 2, the value oB at the fiducial

radius is

4cdko \Y? 82
By — _ %< G 3.11
° <QoHGB> el (3.1
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3.2.3 Numerical Methods

We follow the evolution of the gaseous disk by integrating equati8ri§ { (3.4) using
a cylindrical polar version of the ZEUS code. ZEUSt¢ne & Normanl992ab) is a
time-explicit, operator-split, finite difference method for solving the equations of MHD
on a staggered mesh. ZEUS employs “constrained transport” to ensuré -tBat O,
and the “method of characteristics” for accurate propagation oféhlifv disturbances.
The hydrodynamic/MHD portion of our cylindrical-polar code has been verified using a
standard suite of test problems. These include advection tests, shocks aligned and not
aligned with the coordinates, a magnetized rotating wBiiie & Normaril992h, and
a rotating equilibrium disk with both magnetic and pressure gradients.

The (R, @) staggered mesh for our version of the code has a constant logarithmic in-
crement in the radial dimension, .81 = (1+ 0)R;, for somed > 0. We consider
only the perturbed gas density (by subtracting the initial density) in determining the self-
gravitational potential at each time step. The contribution of the initial axisymmetric gas
disk to the total potential is assumed to be included in the axisymmetric potential respon-
sible for the constant circular velocity. To compute the self-gravitational potent{d)
we use one of two methods described in the Appendix48 One method uses a com-
bination of a Fourier transform in the azimuthal direction and a Green'’s function in the
radial direction, while the other method uses Fourier transforms in both directions on an
expanded, zero-padded grid. For both methods, we allow for a finite disk thickness using
a softening parametét. Except as noted, we adadgt= 100 pc. We give detailed descrip-
tions of our methods, tests, and comparisons in the Appendix. Fast Fourier transforms are
performed using the free software FFTWigo & Johnsor2005.

The standard computational domain for our models has 512 radial and 1024 azimuthal

zones, covering a radius range of 1 - 15 kpc, and an azimuthal rangeaoBdians. With
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this resolution, the Jeans lengity & c2/GZ) from our initial surface density distributions

are well resolved at all radii, satisfying the Truelove criteridruglove et al1997). The

radial range allows: 5 radial wavelengths of the spiral pattern. Given the extended range
in the radial dimension, we implement outflow boundary conditions, since loss of gas at
the boundary will not affect the majority of the disk. We also taper the spiral potential
near the boundaries, which helps minimize loss of matter near the edges. In the azimuthal
direction, we use periodic boundary conditions. Although the azimuthal range is only half
of a complete disk, the gravitational potential includes the contribution from the other half

which is not explicitly simulated (see Appendix).

3.3 Simulating Spiral Galaxies Without Gas Self-Gravity

We first investigate the flow of gas in a spiral potential without including the gaseous
self-gravitational potential. These preliminary simulations will indicate whether, for a
given parameter set and numerical resolution, long lasting spiral patterns can be sustained.
We will also investigate the effect of magnetic fields on the resulting flow and spiral
morphology. As these models are similar to the hydrodynamic simulations of WK, we are
able to investigate the “wiggle instability” that they propose, and to assess how magnetic
fields affect this process. Tab&1 shows the relevant parameters used for each model.
Column (1) lists each model. Column (2) ligswhich characterizes the magnetic field
strength (see eq.3[1(). The external potential strength (from eq. B.7]) is listed in
column (3). Column (4) gives the pattern spégg(used in eq. 3.5]). The pitch angle is

listed in column (5). We note that although the computational domain only simulates half
the disk, with periodic azimuthal boundary conditions, we replicate the simulated half in

presenting snapshots of the models.
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Table 3.1. Parameters for Models Without Gas Self-Gravity

Model B F (%) Qp(kmslkpc?) i()

m @ 6 (4) ()
HD1 w 3 8.4 10
HD2 o 10 8.4 10
HD3 o 10 42 10
HD4 o 10 8.4 20
MHD1 1 10 8.4 10

3.3.1 Pure Hydrodynamic Models

We begin by considering simple cases where the rotating gas in a disk only responds to
an external spiral potential, without including magnetic fields or gas self-gravity. Model
HD1 has a weakK = 3%) and slowly rotating external spiral potential, as well as a small
pitch angle (10). Figure 3.1 shows density snapshots of model HD1. tAty, = 1,
when the external potential reaches its maximum amplitude, the spiral arms are weak but
distinct. Figures3.1(b) and3.1(c) shows that two orbits after the potential is fully applied,
the spiral arms are still distinct and rather regular.tAty, = 3, in the inner regions,
shown in Figure3.1(d), the spiral arms are not as distinct as the rest of the galaxy. The
main arms grow weaker, and leading spiral like features grow between the main (trailing)
arms. Nevertheless, a global spiral pattern persists throughout the galaxy, indicating that
a weak perturbing potential can sustain a global, long lasting, spiral pattern.

Figure 3.2 shows density snapshots of model HD2, with the same scale as shown in
Figure 3.1 for model HD1. As expected, sindeis increased to 10 %, the spiral arms
are much stronger. The global pattern persists for many orbits, but the arms are clearly
more dynamic. As early as one orbit after the potential is fully appliet/{gt, = 2), the

spiral arms at-7.5 kpc, indicated by the arrow in FiguB2(b), bifurcates. This region
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Figure 3.1: Snapshots from non self-gravitating, unmagnetized model HD1 (weak ex-
ternal spiral potentialF = 3%). Surface density at (&)to;, = 1 , when the external
potential is turned on fully, (k)/tor, = 2, and (C) /torp = 3. (d) Inner 6.8x 6.8 kpc& box
shown in (c). The color scale for (a), (b), and (c) is shown above (a) and (b), in units of
log(%/%p). Color scale for (d) is shown adjacent to (d), in unite@g,.

is near the inner Lindblad resonance (ILR). The bifurcation causes the a¢in lgic to

lose matter, and it thus becomes weaker than the arms located farther inward. Further,
the arm at~9.3 kpc has a much different pitch angle from the arms at different locations.
After an additional orbit, the bifurcated part of the inner arm has moved radially outward
and connected with the outer arms. In the meantime, the arms that lost matter during
bifurcation regain strength and attain a surface density similar to the arms in the inner

regions.
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Figure 3.2: Snapshots from non self-gravitating, unmagnetized model HD2 (strong ex-
ternal spiral potentialF = 10%). Surface density at (&)torp, = 1 , when the external
potential is turned on fully, ()/tor, = 2, and (C) /tor, = 3. (d) Inner 6.8x 6.8 kpc box
shown in (c). The color scales are arranged in the same manner as in Eifure

Figure3.2(d) shows the central regions of model HD2 At,, = 3. Here, unlike in
the case with a weaker potential (Fig.1(d)), the arms remain continuous and distinct.
However, there are also prominent interarm filamentary features, some even connecting
two adjacent arm segments. Such features can be seen to develop as e4gly a2,
in Figure3.2(b). WK found similar features, which they identified as spurs or fins, in
their hydrodynamic models (the detailed morphology differs because they use a different

rotation curve). They attribute the formation of their spurs or fins to the Kelvin-Helmholtz
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instability. In our models, these features only grow in the innermost regions; we show in
the following section that magnetic fields prevent their formafioNe further show that

it is the combination of magnetic fieldand self-gravity that results in spurs forming
everywhere in a disk, not just in the innermost regions.

Another difference between models HD1 and HD2 is the relative location of the gas
density peaks of the arms. The gaseous arms in model R>1306) form farther down-
stream than in model HDZ(= 10%). We discuss the offset between the dust lanes and
the spiral potential minimum in36, as well as compare with the results from the recent
study byGittins & Clarke(2004.

Changing the pattern speed of the spiral potential does not dramatically alter the re-
sulting spiral structure. Figur@3(a) shows a snapshot of model HD3, one orbit after the
external spiral potential witk = 10% is fully applied. Here, the corotation radius is at
5 kpc, instead of 25 kpc. The spiral structure is similar to that shown in Figu2(b),
but the arms are not as dynamic, and the bifurcation region is shifted inward, as expected
if this phenomenon is indeed due to a resonance. For all our models the shock locus
transitions from the concave to the convex side of the gaseous arm at or near corotation.
Inside this radius, the shock front is located on the concave side of the gaseous spiral arm.
Farther out in the disk, the shock front moves to the outer, convex side of the arm.

Figure 3.4 shows the density and velocity profiles relative to the external spiral po-
tential in two regions inside and outside corotation for model HD3. For both regions, the
gas peaks occur downstream from the minimur®gj. Inside corotation, the gas shocks
after the gas passes through the spiral potential. Outside corotation, the spiral pattern
passes through the gas, leaving the shocked gas behind. The shock front itself is always

upstream from the density peak. Thus, inside corotation the shock occurs on the inside

2Recent models biim & Ostriker (2006 have also shown that the instability identified by WK is

suppressed by three-dimensional effects even in unmagnetized models.
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Figure 3.3: Snapshots gttor, = 2, from models HD3 (a) and HD4 (b). Parameters are
the same as in model HD2 (Fig3.2), but with (a)Qp = 42 kms?! kpci, and (b)

i = 20°. The dashed circle in (a) indicates the corotation radius of 5 kpc. The color scale
shows lodZ /).

face of the spiral arm, while outside corotation the shock forms on the outer face of the
arm. The density and velocity profiles in Figuset are quite similar to those obtained
using local models (e.g. Figs. 2, 3 of KO). We note that in regions closer to corotation,
the gas peaks lie near the minimumddgy;, and shocks cannot be clearly distinguished.

The secondary density hump in the profile inside corotation occurs near the 4:1 ultra-
harmonic resonance, whefg, — Q = —k /4 (if pressure effects are ignored). CLS also
identified similar secondary features in their global hydrodynamic models, which they de-
note as “branches.” They also find such branches near locations of the 6:1 ultraharmonic
resonance. Qualitatively, the formation and subsequent evolution of the branch features
in our models are similar to those shown in CLS.

Models with a larger pitch angle show some differences from those with more tightly
wrapped arms. Figurg.3(b) is a snapshot of model HD4, again one orbit after the full
spiral potential is applied. Similar to the results of WK, this model shows that loosely

wound spiral arms are much more unstable than tightly wound arms, because the shock is
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Figure 3.4: Density, radial, and tangential velocity as a function of radius from model
HD3 (shown in Fig.3.3(a)), at timet /top, = 1.26. Quantities are taken from locations of
constant azimuth, from a region inside corotation (left), and a region outside corotation
(right). The corotation radius iBcr/Lo = 5. The dashed line in each plot shows the
external spiral potential.
stronger. The bifurcation is clearly evident, and results in replenishment of the depleted
arms in the outer regions after an additional orbit. The interarm sheared filamentary

features in the inner region of the galaxy are more pronounced than in the corresponding

model withi=10", shown in Figure3.2(b).

3.3.2 Magnetohydrodynamic Models

Before including self-gravity, we test the effect of magnetic fields on non-self-gravitating
disks with a spiral potential. Figui&5 compares snapshotstdt,, = 2.0, of a model
without magnetic fields, HD2, to one with magnetic fields, MHD1. Clearly, the interarm
features described in the previous section no longer appear in the magnetized case. Thus,

equipartition-strength magnetic fields are able to suppress the “wiggle instability” identi-
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Figure 3.5: Snapshots i, = 2 of the inner 6.8< 6.8 kp& of model (a) HD2 and (b)
MHD1. The color scale is in units &/Z.

fied by WK in largeF simulations (for a small enoudh, as seen in model HD1, there is

stability even in unmagnetized models).

3.4 Models Including Gas Self-Gravity

To include self-gravity in our simulations, we must introduce an additional parameter,
which we choose to be the Toomre param€gevaluated aRy, given in equation3.9).
Table 3.2 shows the input parameters for models including self-gravity. The first five
columns are the same as those in Tehlke and column (6) gives the value §f. As

shown in equation3.8), Q U k/X.
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Table 3.2. Parameters for Models Including Gas Self-Gravity

Model2 B F(%) Qp(kmsltkpc?) () Qo

1) 2 @) (4) () (6)
SHDnel o 0 - - 1
SHDne2 o 0 - - 2
SMHDne 1 0 - - 1
SMHD1 1 3 8.4 10 2
SMHD2 1 10 8.4 10 2
SMHD3 1 10 8.4 10 1

SHD1 (o 10 8.4 10 2
SMHD4 1 10 42 10 2
SMHD5 1 10 8.4 20 2

aModels listed in the text with a prime (e.g. SHDNellave
> OR?; otherwisez O R!

3.4.1 Disk Stability Tests for ConstantQ Models

For disks with constant circular velocities, the epicyclic frequexiéy R™1; thus if the

initial density distributionz 0 R, Q will be constant for the whole disk. We first con-
sider models in which the initial surface density profiles are indeed inversely proportional
to the galactocentric radius. Such a distribution is consistent with many surface density
profiles shown irRegan et al(2001); Wong & Blitz (2002.

To test the inherent stability of disks with const&twe consider cases with self-
gravity, but with no external potential, models SHDnel, SHDne2, and SMHDne, shown
in Figure3.6. Since the initial density has random white-noise 0.1% perturbations, the
over-dense regions can grow due to self-gravity. As these regions grow, they also become
stretched azimuthally due to the background shear. The runaway growth of the over-
dense regions eventually causes neighboring regions to have extremely large velocities,

such that the Courant condition would require an extremely small time step; we therefore
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Figure 3.6: Snapshots of models with self-gravity but no external potential. (a) SHDnel
(Qo = 1) att /tor, = 0.97, (b) SHDNe2Qy = 2) att /top, = 0.97, (¢) SMHDne Qo = 1,
B =1) att/to;p = 0.97, and (d) SHDne2Qp = 2) att /top, = 1.49. The color scale is in
units of logZ /o).
halt the simulation. Model SHDnel h&@s=1, and becomes unstable very rapidly (within
one orbit atRy), as shown in Figur8.6(a). Figure3.6(b) shows model SHDne2, wilQg
= 2, at the same time as tlig) = 1 model in Figure3.6(a). Since the)y = 2 model is
more stable, not enough time has yet elapsed for the over-dense regions to dominate.
The addition of magnetic fields, as shown in Fig8r§c) from model SMHDne with

Qo = 1, does not affect the growth of filaments significantly. The subtle difference is that

the magnetic fields slow the growth of over-dense regions slightly. As a result, models
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including magnetic fields evolve longer before the flow velocities in some zones becomes
extreme. Figur8®.6(d) is the last snapshot of model SHDne2 /g, = 1.5 orbits. Here,

the outer regions have evolved to the point that the structure is similar to that in Figure
3.6(a). However, it is clear that the radius of the stable inner region Qe 2 model

is larger than that of th€p = 1 model (SHDnel). As expected, increasing the value
of Qp increases the area of stability in the inner regions, and requires more time for the
instability in the outer regions to grow.

The stability tests show that filament-like structures will grow in a shearing disk with
sufficient gas surface density, regardless of the presence of magnetic fields. The Toomre
stability parameter governs which regions are prone to gravitational instabilitieQg As
increases, the outer disk becomes more stable, and more time is required for growth of
instabilities. In the models presented thus far, we have considered disks for which the
initial surface densities vary &1, so thatQ is initially constant everywhere in the disk.

The reason that the outer disk becomes unstable even when the inner disk does not is
that the disk thicknes is constant throughout the disk. The finite thickness stabilizes
the inner disk more than the outer disk, because the ratibs/af andH /A; vary as

R~ for constanQ models, where the Toomre wavelength= 4r°G3 /k? and the Jeans

wavelength\; = ¢Z2/GZ. We discuss this effect in35.4

3.4.2 Disk Stability Tests for Q [J R Models

The models we have presented so far have an initial surface density distribution propor-
tional to R™1, yielding a constant value of the Toomre parameter \WitiHowever, the
surface density distributions shown lyong & Blitz (2002 are in many cases approx-
imately consistent with a surface density distribution proportionakté. Further, in

the observational analysis dfartin & Kennicutt (2001, Q varies with radius for many

galaxies. A variety of radial distributions are evident, some clo$& foand others close
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Figure 3.7: Snapshots 8ty = 1.0 of models withQ O R; (a) SHDnel(Qo = 1) and
(b) SHDNne2 (Qp = 2). The color scale shows 108/%).

to R2. We thus consider models similar to those presented thus far, but with initial
R~2 surface density distributions, such ti@af] R. The labels of such models follow the
convention of those already presented, but with the addition of a prjme (

Figure 3.7 shows snapshots of disk models without an external potential, SHDnel
and SHDne?2 att/typ = 1.0. For SHDneY the value ofQ ranges from 0.21 at the
inner boundary to 3.15 at the outer boundary. The respective values are twice as large
in model SHDne2 When compared with Figur.6, it is clear that these models are
much more stable. Only the innermost region in SHDrebws more instability than
SHDnel, the corresponding disk wihinitially 0 R~ (Fig. 3.6(a)). As expected, since
Qincreases witlR, the outer regions of the disk are more stable, and thus less susceptible
to gravitational instabilities. In fact, there has been very little growth of perturbations in
model SHDne2(Qy = 2) at one orbit (Fig.3.7(b)). However, given enough time, the
instabilities eventually begin to grow in this disk, and will appear similar to the snapshot

in Figure3.7(a).
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3.4.3 Spiral Models with Constant Q

To investigate the interaction between gaseous self-gravity and the global spiral structure,
we focus our presentation on six spiral models with parameters shown in 3&bln
addition to these models, we have performed additional simulations with a wide range
of values and combinations of the chosen parameters, with similar characteristic results.
For our fiducial modelp = 1, Q, = 8.4 (corresponding to a corotation radius of 25 kpc,
which is outside the edge of the disk¥ 10°, andQp = 2. The external potential strength
F will be indicated, as will cases where the other parameters differ from the fiducial one.
Figure 3.8 shows the fiducial model witk = 3% and 10%, SMHD1 and SMHD2,
respectively, each af'top = 1.0 and 1.125. The most striking aspect of the snapshots,
besides the spiral arms, are the interarm features. These features differ significantly be-
tween the two models, with the differences enhanced at the later times. This is shown for
the central region in detail in Figui®29. With a weak external potential (SMHD1), the
interarm features are strong as far inwards as 7 kpc. However, with the strong external
potential (SMHD?2), the interarm features are strong in the outer regions, but at radii of
- 11 kpc they are weak. In the inner regionsRab kpc, the interarm features are again
much stronger than the background; there are no strong interarm features in the inner-
most region of SMHD1. The reason for this difference in interarm features is clear in the
structure of the arms themselves. In the 3% model, the arms inside 7 kpc are smooth.
In the F = 10% models, on the other hand, the arms are broken into many clumps. The
strong external potential in model SMHD2 has gathered more matter into the spiral arms,
and self-gravity causes concentrations to grow, with much of the gas eventually collapsing
into clumps. Gas flowing through the arms can be concentrated by these growing clumps,
and returned to the interarm regions as overdense spurs. Since the stronger spiral potential

of model SMHD2 concentrates more gas in the arms, the interarm regions at radii of
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Figure 3.8: Models SMHD1K = 3%) and SMHD2 E = 10%). SMHDL1 at (a} /torp =
1.0 and (b} /torp = 1.125. SMHD2 at (c}/tor, = 1 and (d)t /tor, = 1.125. The boxed
regions in (b) and (d) are the inner 3414 kp& shown in detail in Figur&.9. Units of
color scale are lo@ /).

- 11 kpc has less gas compared to model SMHD1 with a weak spiral potential; as a result
the interarm features in this region are weaker in model SMHD2.

The boxed region from Figurd.9b) is shown in detail in Figur&.10with the in-
stantaneous velocities, including the unperturbed velocity field. Far from the spiral arms,
the instantaneous velocities do not differ much from the initial circular velocities. As
expected, the velocities of gas near the arms are significantly perturbed. Furthermore, the

over-dense clumps in the arm flow along the arm. At this stage, gravitationally bound
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Figure 3.9: Inner 14< 14 kp@ of Figure3.8(b) and3.8(d). (a) Detail ofF = 3% model
from box shown in Figur&.8(b), and (b) detail oF = 10% model from box shown in
Figure3.8(d). The color scale shows/%,. The boxed region in (b) is shown in Figure
3.10

structures do not leave the gaseous spiral arm, but continue to build in mass as matter
from the interarm regions flows into the arm. If kept unchecked, the arm clumps would
grow in a runaway fashion.

The overlaid contours in Figu10indicate magnetic field lines. Initially, the mag-
netic field is directed only in the azimuthal direction. As the spiral arms increase in
density, the magnetic field is concentrated in the arms, thereby weakening the field in the
interarms. The growth of the clumps along the arms further perturbs the field lines. How-
ever, only strong density enhancements produce field perturbations; the interarm features
emerging from the clumps and the background features that grow in models without an
external spiral potential do not strongly affect the magnetic field.

Figure3.11shows snapshots from a model without magnetic fields. Both the interarm
features and clumps within the arms grow much more rapidly compared with the corre-

sponding model with magnetic fields, SMHD?2 (in F818). As early ad /top = 1.0, the
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Figure 3.10: Boxed region from Figu@9b) (Model SMHD2). Solid vectors show

the instantaneous gas velocity in the frame rotating with the spiral potefjat-(8.4

km s 1 kpc, Reg = 25 kpc). Dotted vectors show the initial velocities (pure circular

motion). Scale of the vectors is shown by the thick vector (top right). Contours show

magnetic field lines.
arm coherence in the outer regions is weakened due to the rapid growth of over-dense re-
gions. Even in models witf = 10 (not shown here), the arms rapidly fragment. Similar
to the models without self-gravity, strong magnetic fields act to preserve the overall arm
shape, and suppress the growth of interarm features, either those caused by self-gravity,
or by hydrodynamic effects.

Interarm features also grow more rapidly as the initial Toomre parartées re-
duced. Figure8.12shows the snapshots of SMHD3, a model similar to model SMHD2
except thaQp = 1 instead of 2. Even though this model has magnetic fields, the interarm

features still grow relatively rapidly. Similar to lo®@ models without an external poten-

tial, this model is more susceptible to the growth of perturbations at smaller radii than the
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Figure 3.11: Model SHD1K = 10%, 3 = ) at (a)t/torp = 1.0, and (b} /torp = 1.125.
The color scale is in units of Idg /o).

Figure 3.12: Model SMHD3K = 10%, Q=1) at (a)t/tor, = 0.75, and (b} /torp = 1.0.
The color scale shows 108/Z).

Qo = 2 model.
We have also explored models with varying values of the pattern speed and spiral

pitch angle. Figure3.13a) shows snapshots after one orbit of model SMHD4. Model
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Figure 3.13: Snapshots afto, = 1 of model (a) SMHD4 K = 10%, Q, = 42
km s 1 kpc™1), with the corotation radius indicated by the dashed circle, and (b) SMHD5
(F = 10%,i = 20°). Units of color scale are 14§ /).

SMHD4 is similar to the fiducial model SMHD2, except tf@p = 42 km st kpc2.

The corotation radius for such a pattern speed is 5 kpc. At first glance, this snapshot may
seem rather similar to the snapshot of model SMHD2 in Fi§u8eHowever, in regions
outside corotation the interarm features protrude inwards, towards the galactic center. The
arms still have the over-dense knots, but the stretched features near the arms project in the
opposite direction from those in the fiducial model. This is as expected, because outside
corotation, the rotating spiral potential has a greater angular velocity than the gas. The
flow enters the arms from the outer (convex) side, and leaves from the inner (concave)
side. Azimuthally varying over- or underdense regions created within the arm return to
the interarm region on the inside of the arm and are sheared into trailing structures. This
reversed orientation is even more apparent in models where the Toomre pa@rmeRer

as presented in®g4.4 The trailing features in the outermost part of the disk arise in a
different way, however, as we discuss B3

Model SMHD5, shown at/ty, = 1 in Figure3.13b), is similar to the fiducial model
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but with a larger pitch angle of= 20°. Besides the expected difference in the shape of the
spiral arms, many of the other features evident in SMHD2 (in F3g&c) and (d)), such
as the knots of matter in the arm and the trailing features in the outermost and innermost

regions, are also present.

3.4.4 Spiral Models with QO R

For spiral models with initial surface density distributidiidR 2, we only present cases
with magnetic fields[§ = 1); we have shown that magnetic fields act to keep the arms
intact. Otherwise, self-gravity causes the runaway growth of the clumps in the arms. Fig-
ure3.14shows snapshots of model SMHO®o = 1) and SMHD2(Qg = 2). Comparing
with Figures3.8, 3.9, and3.12 these models are much more stable in the outer regions, as
expected. Nevertheless, strong interarm trailing structures do grow in the inner (¥4 kpc)
Since these models are more stable, the interarm features do not extend as far away from
the spiral arms as those in the cons@mhodels. These features grow in both @g= 1
and 2 models, but are stronger in Re= 2 case. Itis also clear that the interarm features
connect with the most dense clumps in the arms, which are more dense in model SMHD2
than SMHD3.

Even though the self-gravitational force is stronger in model SMHR3 = 1) than
in model SMHD2 (because the absoluleis larger in SMHD3), the clumps in the arms
of model SMHD2 are more dense (relative k). This results because more gas flows
into the spiral arms in the more stable disk of model SMHD® shown from the cor-
responding disk stability tests in Figuser, the inner regions of models witQy = 1 are
much more unstable than models Wi = 2. These background instabilities will grow
regardless of the presence of an external spiral potential. For a stable disk as in model
SMHDZ2, stability of the background disk allows more gas to flow into the arms, resulting

in stronger arms as well as clumps.
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Figure 3.14: Snapshot of (a) SMHD@), = 1, F = 10%) att/to;p = 0.875 and (c)
SMHDZ2 (Qo = 2, F = 10%) att /torp = 1.125, along with the inner 14 14 kpc of each
snapshot in (b) and (d). The color scales of (a) and (c) are in units 6f/&g), and
scales for (b) and (c) are shown in units>ofz,.

Figure3.15shows a snapshot of model SMHDWith large pattern speedq = 42
km s~ kpc1) att /tor, = 1.25. The corotation radius of 5 kpc is indicated as well. For
this model Q in the initial conditions varies from 0.4 at the inner radius to 6.3 at the outer
radius. The nature of the interarm features in this model is much more clear than in the
corresponding model with consta@{SMHD4, shown in Fig3.13a)). Inside corotation,
the interarm features, which are connected with the arm clumps, occur exterior to the main
spiral arms. However, outside corotation, the interarm sheared features emanate inwards

from the main arms in the opposite sense from those inside corotation. This direction is
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Figure 3.15: Snapshot of model SMHO®, = 42 km s! kpc?) att/to, = 1.25. The
corotation radius is indicated by the dashed circle. The color scale is in unif&ef

downstream from the arms, as seen in a frame rotati@yalNear corotation, clumps in

the arms exist, but do not extend much either interior or exterior to the arms.

3.5 Analysis and Discussion

3.5.1 Arm Spurs or Sheared Background Features?

In our presentation and description of the models3rmSwve have referred to the interarm

structures we identify as “features,” not “spurs.” We define spurs as interarm features that
are distinctly associated with spiral arms, intersecting the main spiral arms at locations
where self-gravity caused the growth of clumps. Using this definition, spurs in the present

global models would therefore be analogies of the structures studied in the local models
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of KO.

Of course, it is well known that self-gravitating instabilities grow when the surface
density is large enough, whether or not there is an external potential. The resulting over-
dense entities, which grow via swing amplification, are stretched due to the shear in the
disk. The interarm features arising in our models with spiral perturbations have shapes
similar to those in the stability test models, since the interarm shear profile is similar to
that of the unperturbed velocity field. At first glance, it is therefore not obvious whether
the interarm features in the spiral models are specifically due to the spiral perturbation, or
whether they would arise regardless of the presence of the spiral perturbation.

Given, however, the dependence of the orientation of dense interarm features on the
spiral pattern speed (or the corotation radius) as seen in Figut8&) and3.15 it is
clear that the external potential can have a significant effect. Depending on whether the
spiral potential sweeps through the gas (outside corotation), or whether the gas over-
takes the spiral potential (inside corotation), the interarm features in these cases grow
inward or outward from the arm, respectively. This reversal of orientation indicates that
the growth of such features is dependent on the spiral potential. These dense features,
furthermore, are all connected to distinct arm clumps; they therefore fit our definition of
“true spurs.” On the other hand, the lower density interarm features evident in Figures
3.8(b) and3.12b) are similar to the structures seen in FigBréthat grow in the absence
of a spiral potential, provided the interarm surface density is sufficiently high. These
“background features” are oftarot associated with arm clumps when they are present;
we therefore do not consider them “true spurs.”

We can quantify the effect of the spiral potential on outer-disk features by comput-
ing the dimensionless wavenumber of the background feat(yesture = A3/Ateature
where \; = c2/(GX) is the local two-dimensional Jeans length, Angkyureis the mean

azimuthal separation of the background features. Taldshows the feature separation
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Table 3.3. Scale of Interarm Features

F 2 }\featureb Ky,fea'[ureC

0 1.3 11
1% 1.3 11
3% 1.4 1.0
10% 1.7 0.8

4external Potential Strength

breature separation (kpc)

CAJ/)\feature' Ay = 1.4kpc

and the wavenumber for MHD modelB € 1) with the external potential strengths F =
0%, 1%, 3%, and 10%, for a region in the outer part of the disk. The other parameters are
the same as the fiducial modek 10°, Q, = 8.4 km s kpc1, andQg = 2 (with initial
surface density distributioll R™1). For the feature separatidfeature WE Use the mean
of the distances between the peaks of the interarm features at a rad®us 819 kpc,
along an arc of 8Q att /tor, = 1 (the feature separation does not vary much with time).
At R = 9.9 kpc, using the initial surface density we fingl= 1.4 kpc. The table shows
that the feature separation does not vary much with the strength of the external potential,
suggesting that these outer-disk features are not “true spurs.” In fact, the feature separa-
tion is always approximately the Jeans length. For model SMHI3 1, F = 10%),
the feature separation at the same radius is 1.2 kpc. The valugisthalf that of the
Qo = 2 model, while the feature spacing decreases by 30%. This gives &Kigtigure
that is~ 30% smaller whel® = 1 than wherQ = 2, but is still close to unity.

From Figure3.9, it is clear that a strong external potential is required for interarm
features to grow in the inner regions. Similarly, @] R models (Fig.3.14), stretched

interarm features only grow near the arms in models with a strong external potential.
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In models havingQ [ R without an externally imposed spiral potential (Fi§.7(b)),
sheared trailing features do not grow in the inner regions. Furthermore, the features that
do grow in models with strong spiral potentials are connected to the clumps that form in
the spiral arm itself. Thus, we identify the interarm features in the inner regions as true
arm spurs, and for measuring the separation we replace the symake by Aspur. At

R~ 4.5 kpc, we measure values ®fpyr ~ 0.6 kpc, andhj ~ 0.6 kpc using the initial
surface density. We find that the spur separation is again approximately equal to the
Jeans length at ambient densities. If, instead, we had used the valuan dhe arm,

A; would decrease, giving the ratispur/Ajarm ~ 53 For model SMHD3 Qg = 1),

both the values okspyr and the arm surface density (therefdgem) are comparable to

the values of those quantities in model SMHD2, although the initial background surface
densities differ by a factor of 2. Thus, f@ = 1 the ratioAspur/Aj packground=~ 2, and
Aspur/A3arm = 5. Evidently, for “true spurs” the spacing depends more directl Qfm

than onA; packground Even though spurs will grow in the inner regions only if there is

a strong spiral potential, the distance between the spurs is still within a factor of 2 of
the minimum scale length required for gravitational instability under uniform conditions;
whenQ = 2 the ratioAspur/Aj packgroundiS indistinguishable from the case of “background
features” that grow in the outer regions independent of the spiral potential. For realistic
Q values near 2, the separation of filamentary structures is thus not sufficient in itself to
determine their origin. The additional consideration of whether structures are connected
to arm clumps or not discriminate between “true spurs” and swing-amplified “background

features.”

3In this region AR ~ 25 pc andRAB ~ 15 pc, so the Jeans length using arm densities is resolved.
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3.5.2 Spurs and Arm Clumps

As discussed above, we term the interarm features that grow out of arm condensations
“true spurs.” When interarm features grow as background effects, strong condensations
can also grow within and remain in the arm. In this case, however, there is not a one-to-one
relationship between interarm features and arm condensations (see e.g. the outer regions
of Fig. 3.8(d) and Fig. 3.124a)). In both situations, however, the arm condensations
that grow are generally regularly spaced, similar to the “beads on a string” of bright HlI
regions often observed in spiral galaxies. The spacings between the clumpQuy=ie
model (SMHD2) alR~ 4.5 kpc is typically~630 pc, comparable toA3 arm (Mmeasured
using arm surface densities before fragmentation). In other models with distinct arm
clumps, such as SMHD3X)p = 1), SMHD4 Rcr = 5 kpc) and SMHD5i(= 20°) we
measure clump spacings 68 - 5\ j arm.

We also measured the widW of the spiral arms. For the fiducial model SMHD2
(Qo = 2 andF = 10%), the FWHMW = 210 pc, for the same region of the arm for
which the clump or spur spacing was measured. The Agfig/W ~ 3 is consistent with
the observational study &lmegreen & Elmegreefi 983 and the theoretical analysis of
Elmegreen(1994). For theQy = 1 model, SMHD3, we measure an arm widtiWét 600
pc, and clump or spur spacing of 600 pc. Thus, wheiQg = 1 the ratioAspur/W is
close to unity. The measured rakigpur/AJ.arm iS therefore more consistent between our
differing Q models than the ratidspyr/W, possibly due to magnetic fields and the physics
of MJI (see KO). In practice, however, the observed rand@ wiight not be large enough
to distinguish a difference.

For models shown in Figur.8 (and3.9), only model SMHD2, with a strong spiral
potential, shows distinct clumps in the arms. In the case with a weaker potential, the

density transitions smoothly from the arm to the interarm features. Using the clump
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finding algorithmclumpfind (Williams et al.1994, we consistently measure the clump
masses to bblg ~ 10’ M, in the arms of model SMHD2. In terms of the Jeans mass,

Cs

M7 —
YT

(3.12)

andM¢ ~ 10M; using mean arm surface densities. We measure similar values for the
other models with distinct arm clumps. We find that altering the contour levels for the
clump finding algorithm does not significantly change the total mass of clumps, but only
increases the number of clumps found, giving similar masses for the new clumps. For
models with weaker spiral potentials, strong clumps are not found in the spiral arms, so
we cannot define clumps in the arm as easily; as discussed, the interarm features in models
with weak potentials are not true arm spurs.

In observations of many galaxies, especially H&TandSpitzerimages of M51 and
other galaxies in the SINGS sampkeepinicutt et al2003 Scoville & Rector2007), the
strong interarm features indeed tend to intersect the brightest regions in CO along the
main dust lanesL@ Vigne et al.2006. Vogel et al.(1988 found molecular complexes
with masses of 10— 108 M., in M51, which they named giant Molecular associations
(GMAS). In spiral galaxies for which the gaseous component is not predominantly molec-
ular, large HI clouds have also been found to have massed@f M. ; these are termed
“superclouds” byEImegreen & Elmegree(1983. Both the GMAs and superclouds are
analogous to the arm clumps in our simulations, which do not include the chemistry of the
gas. In additionl.a Vigne et al (2006 measure feather spacings-of - 11\; in M51 and
~1.9\;3 in NGC 0628, using surface densities in the arm to compyité hese measure-
ments assume the same valuegfor both cases, and may be affected by uncertainty in
the conversion of CO luminosity to gas mass. The consistency of clump masses and spur
separations and the clump/spur connection in our models to the GMA masses, interarm
feather separations, and GMA/feather association in M51 suggests that the strong spiral

potential is directly responsible for producing these structures.
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The orientation of spiral arm spurs indicates whether a given region is inside or outside
corotation. Thus, the location of corotation can be identified if the transition from inward
to outward directed spurs is observed. As discussed in KO, however, there are presently
no known galaxies that exhibit clear inward projected spurs for a number of possible

reasons, such as relatively weaker arms outside corotation, and current resolution limits.

3.5.3 Offset between Gaseous Arm and Potential Minimum

As indicated in 8.3 the relative location between the gaseous arm peak and the min-
imum in the spiral potential varies depending on the strength of the potential and the
corotation radius. Figurg.16shows the azimuthal locations of these peaks, which would
be observed as the main dust lanes, as a function of radius for three models relative to the
potential minimum. The location of the potential minimum for models HD1 and HD2 at
any given time is the same; only the strength of the potential differs. Inside corotation,
the gaseous arms from models (including those not shown here) with stronger potentials
form closer to, although always downstream from, the potential minimum. As shown in
Figure3.16b), the gaseous arm shifts from downstream to upstream from the potential
minimum at corotation.

Gittins & Clarke(2004), hereafter GC, find via the one-dimensional shock-fitting pro-
cedure ofShu et al.(1973 with local non-self-gravitating models, that the gas shock
occurs upstream from the potential minimum. The magnitude of the offset depends on
various parameters. They find that this offset approackmest corotation, suggesting
that the location of corotation can be constrained by measuring offsets between the arm
in K band (tracing the potential) and molecular (gas) observations. In the cases studied
by GC, the potential minima and the gaseous shock intersect well inside corotation. The
location of this intersection varies depending on the strength of the spiral potential.

There are a number of possible reasons for the differences in offsets between our mod-
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Figure 3.16: Location of potential minimum and gaseous arm peaks. (a) Models HD1

and HD2 withF = 3% and 10%, respectively, and (b) model HD3, with= 10% and

Rcr =5 Kkpc.
els and the results of GC. Perhaps most importantly, we use a flat rotation curve, whereas
GC use a velocity profile that varies with radius. In addition, we measure the position
of the density peak (shocks are difficult to distinguish near corotation at our resolution)
while GC report the position of the shock, which may be upstream from the density peak.
Such differences between the parameters and analysis methods in our models and those
of GC prevent a direct comparison of the results. We note that both studies include the
effect of the stellar disk only as a fixed rotating spiral potential, i.e. an unresponsive com-
ponent. The relative locations of the gaseous and stellar arms may well depend on the
mutual self-consistent interaction between the two components, an important issue for

future investigation.
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3.5.4 Effect of Disk Thickness on Stability

In our calculation of the gaseous self-gravity, we (approximately) include the effect of
disk thicknesd (see Appendix). Including this disk thickness approximation, the local

axisymmetric dispersion relation for an unmagnetized medium becomes:

2nG3 K|
W =k2 Ak 3.13
K S T KA (3.13)

WhenH = 0, the dispersion relation takes on its familiar form for razor thin disks (e.g
Binney & Tremainel987). In order to solve for the minimum value af, we define

:T[GZ_ K

ko = Z oo (3.14)
and
y = K/ko, (3.15)
so that atomin,
y(1+koHy)? = 1. (3.16)
The critical value ofQ (Whereoorznin = 0) is then given by
Qi +Y> — #%C_H) = (3.17)

We solve equations3(16 and @.17) simultaneously, and Figurg.17 shows how
Q/Qqrit varies withR, for disks withQ = 2. With the modified dispersion relation of
equation 8.13, andH = constant, disk stability decreases with increastgis shown
in Figure3.17, in the inner regions disks with large valueskbfare much more stable
than razor thin disks, for whicQcit = 1 (Toomrel1964).

The stability profile for axisymmetric perturbations will also influence the stability
of non-axisymmetric perturbations (e@oldreich & Lynden-Belll965 Kim & Ostriker
2001, Toomrel198]). As seen in Figur&.6, the outer regions of consta@ constantH

disks are unstable. The maximum radius of the inner stable reBign,depends o1Q,
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Figure 3.17:Q/Qgit for Q = 2 models when disk thickness is included (see edhdJ

-[3.16).
and is constant in time. Models with varying thicknesses showRkstincreases with
larger values oH, qualitatively consistent with the stability profiles in Figu8d.7. We
note thatR.it in our models with different values d¢f does not simply correspond to
Q/Qcrit = constant, however. For example, wih= 25 pc, we measurBi; = 5.2 kpc
empirically, andQ/Qcrit = 2.4 at this location. On the other hand, tér= 200 pc, we
measureRqit = 7.8 pc, andQ/Qgrit = 3.7 at this location. Thus, the value Qfobtained
from a modified dispersion relation (including the effect of thickness) is not sufficient for
a complete characterization of non-axisymmetric stability limits in global models.

We also find that in models with smaller valuestbf the instabilities (outsid&cyit)
grow sooner than in models with larger valuesf Furthermore, the spacing between
the perturbations also vary H is altered significantly. We find that increasikigby a
factor of 8 increases the perturbation separation by a facted. Slightly varying the

thickness does not strongly affect the perturbation spacing, however. We also note that in
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our implementatiorH = constant, which favors structures growing in the outer regions;
other choices of the thickness profiles, suclHgd® = constant, can result in stable outer

regions combined with unstable inner regions.

3.6 Summary

We have investigated the growth of interarm features in self-gravitating gaseous disks of
spiral galaxies using global MHD simulations. Our models are two-dimensional, but we
account for the thickness of the disk in an approximate way in the computation of self-
gravity. Gaseous spiral arms grow as a result of an externally-imposed rotating spiral
potential, representing the stellar spiral arms of a galaxy. We explore a range of values
for the physical parameters describing the properties of the disk. The main results are as
follows:

1) In the inner regions of disks without self-gravity or magnetic fields, we are able to
reproduce the interarm features that WK found in their models. When spiral shocks are
strong enough, hydrodynamic instabilities cause the growth of knots in the spiral arms,
and the shear causes interarm features to spread from these knots. However, we find that
including magnetic fields gives more tensile strength to the spiral arms and suppresses the
growth of such features.

2) In disks with a low amplitude (external) spiral potential but without self-gravity,
our simulations show long lasting spiral patterns in the gas. We also obtain bifurcation
features (arm branches) near locations of Lindblad and ultraharmonic resonances, similar
to features discussed in CLS.

3) To assess the intrinsic stability of disks for growth of moderate-sedtpd scale)
structure, we simulated self-gravitating disks without an external spiral potential. Slightly

over-dense regions grow (nonlinearly) in density due to self-gravity, and subsequently be-
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come stretched due to the rotational shear. For disks with a constant Toomre parameter
Q (equivalently, with initial surface density distributidhR~1) and thicknes$1, the in-
stability initially grows in the outermost regions. Only the inner regions remain stable.
For disks with a lower value d@o, the size of the inner stable region decreases, and the
instabilities grow sooner. As the thickness of the disk decreases, so does the size of the
inner stable region.

4) In self-gravitating disk models with an external spiral potential, interarm feather-
like features can arise in two distinct ways. One way these features can develop is es-
sentially the same as in models without spiral structure summarized in (3) above, i.e. via
swing amplification in the interarm region. Stronger spiral potentials changes the spacing
of these features only slightly. However, strong spiral potentials can lead to the growth of
self-gravitating knots strung out like beads along the arms. Growing arm condensations
in turn can produce interarm feathering in a second way, by concentrating gas as it flows
from the arm into the interarm regions. If we define “true spurs” as distinct interarm
features associated with the brightest regions in the arm, these structures only form in
self-gravitating disks with strondg-(~ 10%) external potentials.

5) Bound clumps that grow in the spiral arms have massesl6f M. The spacings
of these clumps, or equivalently, spurs, are measured 16336 arm - 5Aj.arm. IN Models
whereQp = 2, the ratio of clump spacing to arm width is consistent with the prediction
A/W = 3 from Elmegreer(1994 and the observational study Bfmegreen & Elmegreen
(1983. In many galaxies large clouds, such as GMAs and superclouds, are observed to
have masses and spacings similar to the knots in our models.

6) We find that without magnetic fields, the arms in self-gravitating models rapidly
fragment, destroying the continuous, distinct spiral arm shape. Thus, magnetic fields may
be important for maintaining the integrity of grand design spiral structure in the ISM,

even as self-gravity (and star formation) works to destroy these large-scale patterns.
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7) The distribution and extent of interarm features that grow in self-gravitating models
depend on the surface density distribution (or, equivalently, the instability para@)eter
For R~1 surface density distributions, for whig s initially constant, strong feathering
grows early on in the outer regions of the disk. At later times in the inner regions, spurs
grow from the arm clumps and extend out to nearly the adjacent armRFosurface
density distributionsQ increases with radius. For these disks, spur formation in the
outer regions is suppressed, but prominent spurs still grow in the inner regions. Our
models have adoptdd = constant; ifH increases witlR, it is possible to have inner-disk
instability and outer-disk stability even witQ = constant.

8) The orientation of the spurs with respect to the arms depends on the pattern speed
of the spiral potential. Inside corotation, spurs extend outward from the convex side of
the main dust lanes, as this is the downstream side of the arm. Outside corotation, the
potential rotates faster than the gas, so the spurs form inside the main dust lanes. In
principle, a reversal in the orientation of spurs in observed galaxies could be used to
determine the position of the corotation radius.

Although we were able to produce spurs and quantify the conditions necessary for the
growth of spurs with the models of this work, we were unable to follow the subsequent
evolution of the disk for many orbits. Runaway growth of the massive clumps in the spiral
arms causes the surrounding gas to have large velocities, which implies short time steps in
order to satisfy the Courant condition. In addition, the densities become sufficiently large
and the clumps so small that they are not well resolved by our grid. However, the physi-
cality of the simulation itself can be questioned at late times, because real condensations
would not grow uninhibited. The agglomeration of gas in galaxies into GMCs eventu-
ally leads to the formation of stars. The photoionization and mechanical inputs from H
Il regions and supernovae associated with massive star formation in GMCs return much

of their gas to the diffuse phase. In future work, we plan to implement feedback mech-
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anisms, using appropriate energy injection rates from typical star formation processes to
disperse the clumps formed in the arms. We also plan to include heating and cooling pro-
cesses to simulate a realistic multi-phase medium. By including processes of this kind,
it will be possible to study the spur structure morphology and GMC formation rates and

properties consistent with quasi-steady-state conditions.
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Chapter 4

Cloud Formation and Feedback in Disk

Galaxies

Abstract

We include feedback in global hydrodynamic simulations in order to study the star forma-
tion properties in gaseous disks. In previous work, we studied the growth of clouds and
spiral substructure due to gravitational instability. In order to further evolve those models,
we implement feedback through the input of mechanical energy to disperse the cloud gas
back into the surrounding ISM. For models with large supernovae momenta, colliding
flows occur, and corresponding density enhancements also lead to cloud formation; on
average, masses of clouds formed in this manner are lower than clouds formed in large
scale sheared structures and spiral arms. In general, we find a relationship between the
star formation rate density and the surface density consistent with a power law with index
~2 for our models with the largest dynamic range. We suggest that the value of the expo-
nent in numerical simulations (and likely in nature) may be dependent on the thickness of
the disk. The overall star formation rates do not strongly depend on the rate or efficiency

of star formation in dense gas (which are input parameters). The velocity dispersion is
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primarily dependent on the input feedback momentum. We find that large feedback ve-
locities, which contribute to high levels of large-scale turbulence, suppress star formation,
due to the efficient destruction of dense clouds. Additionally, we find that the star forma-
tion rates are-2-3 times larger in models with an external spiral perturbation compared
with models without one. With our simple feedback prescription, any global spiral pat-
tern cannot be sustained; less correlated feedback and smaller scale turbulence may be

required for any spiral pattern to persist.

4.1 Introduction

A crucial intermediary for the formation of stars in the ISM is the gaseous cloud. Stars
form deep within Giant Molecular Clouds (GMCs), and GMCs themselves may be em-
bedded in large atomic haloes, which are referred to as supercBmgsdgreen & Elmegreen
1983. The dispersal of cloud gas, resulting from the ionizing radiation from newly born
stars, stellar winds, and supernovae (SN), subsequently has an impact on the formation
of the next generation of stars. Supernovae also play a significant role in maintaining
and/or determining the phase of the ISMKee & Ostriker1977 Norman & Ikeuchi
1989, and are thought to be the main source of turbulence, at least in most of the diffuse
ISM , which has been invoked as the primary mechanism regulating star formation (e.g.
Ballesteros-Paredes et 2007 Mac Low & Klessen2004 McKee & Ostriker2007).
Consequently, the star formation process is directly associated with the formation, evolu-
tion, and destruction of the gaseous clouds.

The formation and growth of clouds is dependent on the gravitational stability of
the diffuse gaseous environment. In disk galaxies, galactic rotation and thermal pres-
sure, among other factors, act to oppose the growth of perturbations due to gravity. The

ToomreQ parameter indicates the susceptibility of axisymmetric perturbations to grow in
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uniform disks: forQ < 1, the surface density is sufficiently large for gas self-gravity to
overwhelm the restoring effects of shear and pressioenire1964. Non-linear simu-
lations have shown that for non-axisymmetric perturbations the thregheld.5 (Kim

& Ostriker 2001, 2007 Kim et al. 2002 Li et al. 20051. The observed cutoff in star for-
mation activity at large radii supports the idea that stars form in gravitationally unstable
regions with densities above a critical vall@finicutt1989 Martin & Kennicutt2007).

In general, magnetic fields cannot prevent but only slow the collapse of gas; however, in
conjunction with other physical mechanisms, magnetic fields may enhance instability, as
is the case when the magneto-rotational instability (M&in et al. 2003 is present, or

via the magneto-Jeans instability (MB&lim et al. 2002. Potential sources for the pertur-
bations are variations in the gravitational potential, such as the stellar spiral arms, as well
as shocks due to supernovae.

The formation of stars within GMCs occurs soon after the clouds themselves form.
The inception of star formation must occur soon after the gas accumulates to form the
clouds, because almost all GMCs contain stars. lonizing radiation from newly formed
stars subsequently dissociates the molecules and even disperses the surrounding gas; some
fraction of the gas may remain molecular, but in unbound clouds. The massive O and B
stars reach the end of their lifetimesA® - 20 Myr; the cumulative effect of feedback
from all the contiguously forming stars contribute to the short estimated GMC lifetimes
of ~20-30 Myr (e.g.Blitz et al. 2007). These feedback mechanisms drive turbulence.
This turbulence could prevent the formation of stars in nearby regions, but could also po-
tentially trigger collapse events resulting in the formation of stars elsewhere. Collisions
between supernovae blast waves can result in sufficiently large densities for gas to col-
lapse and form stars. Thus, feedback from stars that form in a cloud significantly affects
the formation rate and efficiency of later star formation, as well as the evolution of the

parent cloud itself, and, potentially, the larger scale ISM.
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Despite the host of processes that impact the formation of stars, observations have
shown a clear correlation between the star formation rate density and the gas surface
density, with power-law form&gsgr [ Zg, now known as the Kennicutt-Schmidt law
(Kennicutt1998h Schmidt1959, provided that the density is above the critical value. A
power law witha ~ 1.3 — 1.4 has been found to fit a range over four orders of magni-
tude in globally averaged surface densities (Elgyer et al2004 Schuster et aR007);
Kennicutt et al(2007) recently studied the loc@lspr— Z relationship in M51, and found
a similar power law relationship. Additionallfgouche et al(2007) found a universal
Kennicutt-Schmidt law in their high-redshift study of galaxies out to z=2.5, with1.7.

A second empirical law described by Kennicutfisrr~ 0.1Zg/Tgyn Wheretgyn is the
local orbital time of the gas.

Many theoretical studies have attempted to explain the observed relations between
the star formation rate and the gas surface density. Simple analytic prescriptions can be
obtained that depend on the star formation efficiency per cloud free-fall time or cloud
lifetime, and yield consistency with power law scalinlygcKee & Ostriker2007). Using
global 3D numerical simulations, including gas self-gravity and a prescription for star
formation, Tasker & Bryan(2006 were able to reproduce the slope of the Kennicutt-
Schmidt power lawLi et al. (2006, using SPH simulations, were also able to reproduce
the slope and normalization. Their simulations included gravity and sink particles to
track the collapsing gas, but did not treat feedbatkada & Norman(2001) performed
larger scale 2D simulations to investigate the gas dynamics and phase evolution of inner
galactic disks, in models with and without feedback. They focused on the thermal distri-
bution of the various gas components, as well as large scale turbul®ade. & Norman
(2007 extended their simulations to include 3D, mainly to test the relationship between
the star formation rate and an ISM with log-normal density distribution, as described by

Elmegreer(2002. They found that observed star formation rates can be reproduced if the
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density distribution in the ISM is log-normal. In this work we investigate how supernovae
driven feedback affects subsequent star formation in gas disks.

The evolution of large gas clouds is also relevant in studies of spiral structure. In
previous work Shetty & Ostriker2006 hereafter Chapte3) we simulated global disks
with an external spiral potential, and found that gravitational instability causes gas in
the spiral arms to collapse to form clouds with massek0’M ., similar to masses of
HI superclouds observed liimegreen & Elmegree(1983 and large GMCs, known as
Giant Molecular Associations (GMAS), found in M51 Mpgel et al.(1988. We found
that gas self-gravity is also crucial for the growth of spurs (or feathers), which are interarm
features that are connected to the spiral arm clouds (seeKails& Ostriker 2002).
Observations have shown that spurs are indeed ubiquitous in grand design galaxies, and
are likely connected with large clouds in the spiral armfregreenl98Q La Vigne
et al.2006. If grand design spiral structure is long lasting, as hypothesized by density
wave theory Bertin & Lin 1996 Lin & Shu 1964 and references therein), then feedback
mechanisms dispersing the spiral arm clouds must nevertheless leave the global spiral
pattern intact. One of the goals of this work is to assess the effect of supernovae driven
feedback in clouds on the global spiral morphology.

Conversely, the spiral arms also affect the initial formation of clouds, and therefore
star formation. Observations show that most emission in grand design galaxies oc-
cur downstream from the primary dust lanes. An explanation for these observations is
that gas is compressed as it flows through the spiral potential minimum, leading to cloud
formation; then at some later time stars form within these compressed gas clouds. This
description of the observed offsets is still under debate, due to both observational limita-
tions and opposing theoretical views on the star formation process. Further, the relative
importance of spiral arm triggering is still not completely understaadel et al.(1988

found that the star formation efficiency (in molecular gas) in the grand design galaxy M51
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is only larger by a factor of a few compared with a galaxy without a strong density wave.
Other observational studies found similar results (Seenicutt1998a and references
therein). As a result, density waves may only gather gas to form clouds in the spiral arms,
but may not affect the star formation efficiency within these clouds. Without a large-scale
density wave, a similar fraction of gas might still collapse (per galactic orbit) to form
clouds via other mechanisms (including large-scale gravitational instabilities), but not in
a coherent fashion. Here, we explore the differences in cloud formation properties in
gaseous disks with and without an external spiral driving mechanism.

In this work we are interested in the effect of feedback from star formation in large
clouds, such as GMAs, on the star formation rate, as well as the overall dynamics and
subsequent cloud formation in galaxy disks. This work extends the models presented
in Chapter3: numerical hydrodynamic simulations of global disks with gas self-gravity.
With the resolutions of our models, massive GMAs do not fragment into smaller GMCs,
so significant energy input is required to unbind the gas in these concentrations. If this
energy is provided by star formation feedback, multiple massive stars would be needed
to destroy the GMAs. We model feedback by considering the destruction of the large
clouds by single energetic events. In practice, this could represent multiple correlated su-
pernovae; this can also be considered simply as an expedient but cleanly parameterizable
feedback model. We then study the resulting nature of the turbulent gaseous disk, as well
as the formation and evolution of the clouds that form in the turbulent medium. In the
next section, we describe our numerical simulation, including model parameters and the
feedback algorithm. We then present and analyze our simulation resuls3inl@ §4.4

we summarize our results after a discussion.
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4.2 Modeling Method

4.2.1 Basic Hydrodynamic Equations

To study the growth of clouds in a gaseous disk, we simulate the evolution of the gaseous
component by integrating the equations of hydrodynamics. As in Chaptes include
the gravitational potential of the gas. The governing hydrodynamic equations, including

self-gravity, are:

a—z+m.(2v) =0, (4.1)
ot

ov 1

5t TV VA S0P = —0(Pext+ P), (4.2)
[2® = 4nGd(2). (4.3)

Here,Z, v, and p are the gas surface density, vertically averaged velocity, and ver-
tically integrated pressure, respectively. The semi-thickness of the didk $sich that
>/2H is the mid-plane densitpp. For our models, we assume an isothermal equation
of state, so thap = c23, wherec; is the sound speed. The texis the gaseous self-
gravitational potential. To grow gaseous spiral arms, we include an external spiral poten-
tial ey to model the perturbation produced by the non-axisymmetric stellar distribution,

which is specified at timein the inertial frame, by

Dext(R, ;1) = PeytocogMP— @o(R) — mQpt] (4.4)

wherem, ¢o(R), andQ are the number of arms, reference phase angle, and spiral pattern

speed, respectively. We only consider models with a constant pitch iasgléhat

m
@(r) = —ﬁln(R)+constant (4.5)
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4.2.2 Model Parameters

Similar to work presented in Chapt8r the sound speed; and rotational velocity,
are constant in space and time,= 7 kms!, andv. = 210 kms?!. We adopt the
code unit of lengthLg = 1 kpc. Usingcs as the code unit for velocity, the time unit
to=Lo/cs = 1.4 x 10° years, which corresponds to one ottgjt, = 211/Qp at a fiducial
radiusRy = LoVc/21Cs = 4.77 kpc. Our results will scale to other valuesRyf andLg
with the same ratio, as well as models with the same xgtios = 30.

In Chapter3, we explored different external spiral potential strengths,

_ Pextom
~ VZtani

(4.6)

which is the ratio of the maximum radial perturbation force to the radial force responsible
for a constant rotational velocity. We found that spurs form in disks with strong external
potential strengths. Since one of our objectives is to assess the evolution of the spurs in
disks including feedback, here we only simulate disks With 10%, for both 2 arm and

4 arm spiral galaxiesn=2 andm=4). The pattern speed for spiral models is 8.4 krh s
kpc~1, corresponding to a corotation radius of 25 kpc. We also simulate disks with no
external spiral forcing.

In our computation of gas self-gravity, we include the effect of the thickness of the
disk, which also acts as softening. We assume a Gaussian vertical gas distribution, with
H O R, so the disk flares at larger radii (seA.8). As described in Chapté& andKim
& Ostriker (2007, including the effect of thickness stabilizes the disk. For most of our
simulations, we uskl /R=0.01.

As in Chapte, the Toomre paramet€)y = #GO%O and the surface densilyat Ry are

related by:

32 _ Cs Ko )
S9=— Mgpc? . 4.7
°" Qo P (7kms‘1) (62kms‘1kpc‘l (4.7)
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For flat rotation curves, the epicyclic frequency: v/2Q = v/2v./R. Our models initially

haveX O R1, so thatQ is constant for the whole disk.

4.2.3 Numerical Methods

Since this work is an extension of previous work, we refer the reader to Chafder

a description of the cylindrical-symmetry version of the ZEUS cdi®rfe & Norman
19923ab) that we use to carry out our simulations. We use a parallelized version of the
hydrodynamic code and gravitational potential solver, allowing us to increase the number
of zones in the grid relative to the models of Chaf@eFor our standard grid we limit the
azimuthal range from OR/2 radians and the radial range from 4 - 11 kpc. We implement
outflow and periodic boundary conditions in the radial and azimuthal directions, respec-
tively. These models have 1024 radial and 1024 azimuthal zones. Since the radial grid
spacing is logarithmic, the resolution varies: the linear resolution in each dimed$on (
RAg) varies from~(4 pc, 6 pc) in the innermost region to(11 pc, 17 pc) at the outer
boundary. These high resolutions allow the Truelove criteriondlove et al1997) to be
satisfied throughout the simulation as gas collapses to form self gravitating clumps.

In this work we use a different method to compute the gravitational potential com-
pared with the approach presented in Chaptétere, we use a method derived from that
described byKalnajs (1977 in polar coordinates (see al®inney & Tremainel987).

This method employs the convolution theorem for a disk decomposed into logarithmic
spiral arcs. We implement softening to account for the non-zero thickness of the disk. We
describe the method in detail in the AppendiA(8).

We note that for simulations with the standard grid and including a spiral potential, the
limit in azimuth requires that=4 (4 arms). However, we also explore some models with
m=2 patterns, with the azimuthal range /2, using higher resolution than the standard

grid.
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4.2.4 Feedback: Event Description and Algorithm

Equations 4.1)-(4.3) only describe the flow as gas responds to self gravity, and to the
external spiral perturbation, if one is present. However, those equations do not describe
any feedback that would occur after a self-gravitating cloud forms and fragments into
smaller-scale structures, ultimately forming stars with a range of masses. In the real
ISM of galaxies, clouds are dispersed by the combination of photo-evaporation by UV
radiation from massive stars, and the “mechanical” destruction by expanding HIl regions
and supernovae.

We include in our simulations a very simple feedback prescription by implementing
“feedback events,” each representing momentum input from a number of supernovae (or,
alternatively, multiple overlapping expanding Hll regions). The supernovaRatg av-
eraged over all maddgenseabove a chosen threshold density in a galaxy is

Numberof Supernovae
Mgensdime .

Rsn = (4.8)

When this rate is applied to an individual cloud of mikgwith a lifetimet,, the average

number of supernovae in a cloud will be
Nsn = Rsn- Mgl - g (4.9)

If the total mass of stars of all masses formed per single superndgnsand the

star formation efficiency over a cloud lifetimessg, then

M
Nsn = ESFM—CI. (4.10)
SN

Equating expressiond ©) and @.10, the mean cloud lifetime is

_ &sF
RsnMsn

to (4.11)

In a given time intervadt, such as the time between successive computations in the

numerical evolution, the probability that a cloud (of lifetime,;) is destroyed it /t;.

118



Thus,

P = &t - Rsn\Msn/€srk (4.12)

In our algorithm, clouds are defined as regions above a chosen density threshold with a
prescribed bounding radius. If a particular zone is a local density maximum, that zone is
selected as the center of the cloud. For any such identified cloud, a star formation event
is initiated with a probability per time step given by equatidril@). In each cloud that

is determined to undergo feedback, gas is evenly spread out in a circular region with the
predetermined radius. Gas in each zone in the circular region is assigned an outward ve-
locity (relative to the cloud center) to expand the feedback “bubble.” A constant velocity
is also added such that total angular momentum is conserved. The velocity profile inside
the bubble is proportional to the distance from the bubble center. For most of our simula-
tions, we choose a radius of the feedback bubble to be 75 pc, which corresponds to 12-23
pixels, depending on the radial location. In this way, the initially collapsing cloud gas is
forced back into the surrounding ISM.

In our simulation, we only consider the isothermal expansion of the clouds, since
we assume an isothermal equation of state. Thus, we can only consider the net energy
input at a stage when expansion of the shell has become strongly radiative. Numerical
simulations show that for a single SN of enefay ~ 10°! ergs, the momentum during
the radiative stage iBag ~ 3 x 10° M, km s 1(Chevalier1974 Cioffi et al. 1989.

During the subsequent evolution of the bubble, the shell momeRgxim conserved, and
is equal toPaq.

For a total number of massive stars formed given by equatidiQ), and assuming

correlation in time, the total momentum applied to the shell is

Mei
Psh = NsnPrad = ek © Prad (4.13)
SN
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The shell velocitygp is
Me Prad
Msn Mgh

Vsh = Psp/Msh = €sp (4.14)

AssumingMsn = 200 M., andesg = 0.1, for Prag = 3 x 10° M, km s™1, Vg, = 150
X (Mc1/Msh) km s71,

Given our feedback prescription, the two key parameters are the probability per unit
time for cloud destruction (eq.4[19), and the momentum input in the feedback event
(eq. B.13). For the simulations presented here, we explore a range in thdRgate
and the momentum of one supernd®gy. The specific supernova rate is set either to
Rsn = (10° Mg, x 50y~ (comparable to that in the Milky Way), or ten times that
rate. SinceMgn/esk in equation 4.12) appears as its inverse in equatieghl®, we
fix Mgy = 200 M, for all simulations, and explore variations ggr. The momentum
P.ag is set either to 3.410% or 3.4x10° M., km s, in order to allow for out-of-plane
momentum losses and a rangeEgn. To implement the chosen value B4, we set the
velocity Vinp = Prag/(400 M), corresponding to 85 or 850 ks

Before any feedback, the spiral models are executed for some time to allow gas to
collapse (due to self gravity) and form the clouds in spiral arms. In simulations without
spiral forcing, condensations begin to grow due to an initial 0.1% density perturbation. As
aresult of shear, the first structures that form are large scale flocculent spiral-like features,
which we termed “sheared background features” in Ch&pt&as in these features then
collapse to form distinct clouds. Thus, we wait until some threshold density is reached
before feedback occurs. For most models, the threshold dengifizis= 10 (320 M;
pc 2 for Qo=1 and 160 M, pc 2 for Qp=2).
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4.3 Simulation Results

We first present simulations with standard grid parameters, without spiral structure. We
then show results of simulations including spiral structure, as well as simulations pertain-
ing to different radial regions.

Table4.1shows the initial conditions of the models we present, as well as the relevant
parameters controlling the feedback events. Column (1) lists each model. Column (2)
shows the initial Toomr€ parameter which is initially constant for the whole disk. Col-
umn (3) indicates the number of arms, all witk10%. Column (4) gives the supernova
rate, which is required for setting the probability that a feedback event occurs in a cloud
(see eq.4.17). Column (5) shows the assumed star formation efficiency, and column (6)

gives the supernova shell velocity parameter. For these mbigéts= 0.01.

4.3.1 Disks without Spiral Structure

Figure4.1shows a snapshot of model wiflp=1, at timet /t,r, = 0.84, without an external
spiral potential and before any feedback. As discussed!i.£ trailing features grow
due to the shear in the disk (see Cha@éor details). The most dense structures grow
as sheared, trailing features. It is in these regions where the first supernovae will occur to
disperse the dense gas.

Figure4.2 shows a snapshot of model Q1A, at titng,, = 1.125. For model Q1A,
the supernovae parameters are all at the low end of the range. At the time of this snapshot,
105 feedback events have occurred, in clouds which have Mgaa 1.2 x 10° M. The
main difference between Figurds2 and4.1 is the shape of the trailing features. The
feedback events have caused the features to become fragmented. However, dispersal of
gas due to feedback was not sufficient to prevent or reverse the inflow of gas into the high

density agglomerations. Either the supernovae do not occur rapidly enough, or do not
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Table 4.1.

Parameters for Standfaktbdels

Model Qo m R\’ &sF  Vinp (kms™)
L @ & @ © (6)
Q1A 1 0 1 0.05 85
QIB 1 0 1 01 85
QIC 1 0 1 01 850
Q1D 1 0 10 0.1 850
Q1SA 1 4 1 0.05 85
Q1SB 1 4 1 0.1 85
QIsC 1 4 1 o1 850
QISD 1 4 10 0.1 850
QISE 1 4 10 01 85
Q2SA 2 4 1 0.05 85
Q2SB 2 4 1 0.1 85
Q2sC 2 4 1 0.1 850
Q2SD 2 4 10 0.1 850

81024x 1024 zones; R 4-11 kpc;p e 0-% radians

BNumber of supernovae per 50 years petMQ

Figure 4.1: Density snapshots Qp = 1 before any feedback, at tinigt,, = 0.84. The

color scale is in units of log /o).
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Figure 4.2: Density snapshots of model Q1A, at iy, = 1.125. The color scale is

in units of log /).
have enough momentum.

Even increasing both the supernovae rate by a factor of 10, and doubling the star
formation efficiency is insufficient; the gravity from the trailing features keeps much of
the gas in those structures. Increasing the velocity by up to a factor of 8 still does not
significantly affect the outcome: much of the gas is contained in the sheared structures at
any given time.

It is only whenVinp is increased to 850 knT$, along withRgy = 10 andesg =
0.1, as in Model Q1D, that we find a significant difference, as shown in Figlu®s
4.4. The velocity is sufficiently large to drive gas away from the density maxima of
the trailing structures. Further, the rate is high enough that a large number of events
occur to significantly alter the morphology, in comparison with Figli2 Feedback
events in this model are so frequent and energetic that collisions between bubbles occur.
In some instances, such collisions create density enhancements that later result in more
collapse and subsequent feedback along the bubble interface. At tighe= 1.125

(Fig. 4.3), we can still make out the underlying loci of the initial structures formed by
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Figure 4.3: Density snapshots of model Q1D, at tinftg;, = 1.125. The color scale is

in units of log /).
gravitational instability and shear, though 537 feedback events have occurred up to this
time. Yet, after an additional 26 Myr and 75 feedback events (Big) the dominant
large scale features do not have a single pitch angle. Further, the locations of many of
the bubbles are clustered. Though gas is driven away from the initial structures formed
before feedback, at later times clouds form in clusters near the initial density maxima,
and where feedback bubbles overlap. Qualitatively, the features in the disk, consisting
of filaments and bubbles, are similar to the global models including feedbatkadd &
Norman(2001). We discuss the masses of the clouds in the next secttbB.8 along
with cloud masses in simulations with an external spiral potential.

In disks withQg = 2, sheared features will also grow, but need more time to develop
than in theQp = 1 disks. Due to its stability, after/to, = 2 only a few clouds have
formed. As a result, implementing feedback does not affect the majority of the disk. To
study the effect of feedback IQy = 2 disks, another mechanism is necessary to grow
clouds everywhere in the disk. We thus simul@g=2 disks with an external spiral po-

tential, and then implement feedback to destroy the spiral arm clouds that grow.
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Figure 4.4: Density snapshots of model Q1D, at tinftg;, = 1.375. The color scale is
in units of log /).

4.3.2 Disks with Spiral Structure

In disks with spiral structure, the stellar spiral potential acts as a source of perturbation,
compressing the gas, eventually leading to the growth of self gravitating clouds. We
explore the effect of feedback on the morphology of the gaseous spiral arms and interarm
spurs, as well as any subsequent cloud formation.

Figures4.5-4.6shows snapshots of models with= 4, for Qo = 1 andQp = 2, without
any feedback. In the spiral models, the growth of spiral arm clouds occur sooner than
clouds formed by natural instabilities in a rotating self-gravitating disk. Figubet.6
shows shapshots of models without any feedback, though iQthel snapshot (Fig.
4.5) the densities have surpassed the threshold dengiy = 10 chosen for models with
feedback.

For both models Q1SA and Q2SA, the supernova momenta are insufficient to offset
the growth of clouds and spurs resulting from the spiral potential. After a feedback event,

the dispersed cloud gas flows back toward the spiral arm. As a result, over time clouds
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Figure 4.5:Qp = 1 spiral model, without feedback, gtt,n, = 0.675. The color scale is
in units of log%/%p).

Figure 4.6:Qp = 2 spiral model, without feedback, @to, = 1.04. The color scale is in
units of logZ/Zo).
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that initially form continue to grow. Further, the spurs also continue to grow in density.
Without feedback, self-gravitating spiral arm clouds cause the surrounding gas to flow in
with large velocities. Eventually, the simulations have to be stopped because the Courant
time is too small. The time when the simulation ceases, depending partly on our choice
of the minimum acceptable Courant time, also depends on which clouds are (randomly)
selected for feedback; clouds that have produced large inflow velocities would have to be
dispersed for the simulation to continue to evolve.

We again find that large supernovae momenta are required to sufficiently disperse
clouds so that immediate re-collapse does not occur. For such models, the supernovae
rate has an effect on the number of subsequent clumps formed. Bigigleows a snap-
shot of models Q1SC and Q1SB,21 Myr after the first feedback events. At this time,

53 feedback events have occurred in model Q1SC, and 540 in model Q1SD. In model
Q1SC, itis clear that most, if not all, feedback events originated in the spiral arms. How-
ever, in model Q1SD, many feedback events have occurred in interarm regions. The spiral
arms are not as identifiable, though at this time the remnants of spurs are still identifiable.
Further, model Q1SD contains many more clumps than model Q1SC. The enhanced su-
pernovae rate has caused the collision of more shell remnants, which lead to formation of
self gravitating clumps at the interfaces.

Figure4.8 shows the histogram of the masses of the clddgsthat hosted feedback
events in models Q1A, Q1D, Q1SA and Q1SD. In model Q1A, most feedback events
have occurred in the large scale sheared features that grow due to gravitational instability.
However, in model Q1D, some fraction of the feedback events have occurred in regions
of colliding flows. The histogram suggests that clouds formed in such regions are likely

to have lower masses than those formed in the large scale sheared fé@imdsuly, in

From equation4.10), feedback events in model Q1A and Q1D on average consist of 300 and 350

supernovae, respectively.
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Figure 4.7: Models Q1SC (left) and Q1SD (right} A, = 0.73 (left). The color scales

are in units of logz /).
model Q1SA, most feedback events have occurred in the spiral arms, since most clouds
form in the arms. On average, the clouds in model Q1SD have lower masses, because
many clouds form away from the high density spiral arms, where colliding flows occur
due to earlier feedback events. A detailed analysis is not appropriate here because many
of the lower mass clouds are not well resolved. Higher resolution simulations are required
to accurately measure cloud mass distributions. Nevertheless, it is clear that the character-
istic masses of clouds formed in the sheared features or spiral arms are larger than those

formed in colliding flows.
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Figure 4.8: Left: Histogram dfi¢ in models Q1D (thick) and Q1A (thin), up until time
t /torb = 1.125 (see Figs4.2- 4.3). The mean (medianyl. for models Q1A and Q1D
are 1.210° (0.8x10°) and 0.%& 1P (0.5x10°) M., respectively. Right: Histogram of
Mcr in models Q1SD (thick) and Q1SA (thin), up until tirh&op = 0.73 (model Q1SD
is shown in Fig.4.7). The mean (mediariyly for models Q1SA and Q1SD are x2°
(1.9x10°) and 0.8<1CP (0.6x10°) M, respectively.

4.3.3 Star Formation Properties

Star Formation Rates and Turbulence

For comparison to observations, two quantities of interest are the star formati@HRte
and the turbulent velocity;,n. In each simulation, we record each feedback event to

determine th&&FR For some chosen time bikt, we compute

Z I\/lcl
At

SFR=¢€gp (4.15)

wherey M is the total mass of all gas in clumps (i.e. above the chosen threshold surface

density) that have undergone feedback events in the chosen time interval. We define
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the turbulent velocity as the RMS sum of any non-circular velocities, weighted by the

corresponding density:

(3%
Vturb—(w) ) (4.16)

where only non-circular velocity components are considedd= v — ve@. Figure4.9
shows the star formation rate and turbulent velocity as a function of time, fd@gh#
models without spiral structure. The time kb for our SFRcalculation is 3 Myr. In

these models, the first feedback events occur at t4h25 Myr. However, for the first

~25 Myr after feedback begins, ti&F Rfor all models is only a few M yr—1. Only

~25 Myr after the first feedback events does B8R substantially increase. Further,

the model with large feedback moment,f = 850 km s1) and SN rate has th8FR
increase ta>10 M., yr~L. This occurs because with such large velocities adjacent shells
collide and more clouds are formed in the interfaces, which may subsequently undergo
star formation.

The bottom panel of Figurd.9 showsv,, for all feedback models without spiral
structure and a simulation without any feedback. For the later case, we just allow self-
gravity to grow clouds indefinitely. Most models continue the trend @f established by
the no-feedback case. In a few instances of enhanced feedback, there is a corresponding
jump in viyrb. The enhance@FRat later times for the model with large supernovae
momenta also have increased levels;gf,.

Figures4.10and4.11show theSFRand v for the spiral models witlQy = 1 and
Qo = 2. Comparing Figure4.10(with spiral structure) and.9 (w/o spiral structure), the
star formation rate is consistent to within a factor of 2, although slightly larger in the spiral
models. The general trends from the models without spiral structure are reproduced in
Figures4.10and4.11 Earlier times are shown in Figu#elQ since the spiral arms cause
gas to collapse into clouds sooner. It is clear that only in models with large supernovae

shell velocities do the turbulent velocities increase appreciably; otherwise, the turbulent
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Figure 4.9:SFR(top) andvy, (bottom) for models wittQy=1, without spiral structure.

The values in parentheses in the legend are the supernovae rate pafRnetee star
formation efficiencyesg, and shell velocity paramet&f,, of each model. The large
open squares in the bottom panel is the turbulent velocity for a simulation without any
feedback.

velocity (as we have defined it) is dominated by effects from gas self-gravity.

Model Q1SE, which has the sarRgy as model Q1SD, but a lowsfnp (85 km s,
results in a higheBFR but lowervp. At later times theSFRis about a factor of 10
greater than the SFR of MODEL Q1SB, corresponding to the difference between the
chosen value dRgy for the respective models. The reason why the turbulent velocities of
model Q1SE are low is because feedback events do not have sufficient velocities to affect
regions that are far from the host clouds; feedback only slightly expands the clouds, which
subsequently resume their collapse.

Since turbulence affects the velocity dispersmra common assumption is that the

sound speeds can be replaced by
Carf =Co+0° (4.17)

in the dispersion relations that characterize stability, such as the Jeans time, as well as
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Figure 4.10:SFR(top) andvyyn (bottom) for models withQp=1, as in Figuret.9,

with spiral structure.
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other quantities such as the Jeans Mass@ndVe show the relationship between the
velocity dispersion and the surface density in Figrg2 It is clear that the dispersion
is related to the chosen value \dfp. Naively, one may expect th&F RO Rsn2/Cef .
Model Q1SE has the same chosen parameters as model Q1SB, BxqaptlO times
larger, and produces@F Rthat is~10 times larger (Fig4.10, suggesting that th8FR
is indeed directly proportional tBsn. Comparing models with all the same parameters
except folinp, Q1SD Winp = 850 km s'1) with Q1SE Yinp = 85 km s'1), theSFRis in-
deed lower in model Q1SD. A possible reason for the Id8ERin model Q1SD, besides
turbulent suppression, is because the large feedback velocity is efficient in destroying the
dense clouds. In model Q1SE a feedback event only slightly expands the clouds, and the
cloud subsequently resumes collapse. Thus star formation continues in clouds that have
undergone feedback. On the other hand, clouds in model Q1SD are completely destroyed
after a single feedback event, so star formation ceases. The suppressed star formation in
models with large feedback velocities, may be due to large scale turbulence, or efficient
destruction of the dense clouds.

Figure 4.13 shows the turbulent power spectrum (poviex?) of model Q1D. The
power is shown at constaki andky. The slopes of the power spectra range from -2 to
-3. For models that evolve for significant amounts of time, such as model Q1D, the power
spectra are relatively independent of time. These results are consistent with turbulence

dominated by numerous shocks, or Burgers turbulence.

Kennicutt-Schmidt Law

Figure4.14 shows the local star formation rate per area as a function of mean surface
density. To obtain these points, simulation data were binned in radius and time, of widths
1 kpc and 19 Myr, respectively. Only models with a sufficient number of points, which is

dependent to some degree on the number of feedback events, are shown. Best fit lines to
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the data points are also shown. The rates show some scatter, both between models with
different parameters, as well as between points from a given model. Overall, in most cases
the general star formation rate - surface density relationship tends to increase consistent
with a power law.

The Qo = 1 models, both with and without a spiral perturbation, and with different
feedback parameters, all give slopes that agree to within a factor of about two. Most of the
Qo = 1 models evolve for sufficiently long times that gas in the first clouds that are formed
are allowed to be recycled into subsequently formed clouds.Q@he 2 model, on the
other hand, gives a variety of slopes, and the relationship between the star formation rate
and surface density is not as well correlated as irQhe- 1 models. The consistency of
the slopes in th€y = 1 models with varying parameters suggests that for marginally sta-
ble galaxies, turbulence does not qualitatively change the way star formation is regulated.
For theQp = 2 models, the number of feedback events are insufficient to affect much of
the disk. As a result, some clouds continue to collapse, and the Courant condition is even-
tually violated. At this point the simulation must cease. The stochastic feedback events
do not result in any developed turbulence. Therefore, the SFR as computed is sensitive to
model parameters governing the feedback events, unlik®@ghke 1 spiral models.

We have also run simulations of the inner regions of disks, with radial eRent
0.8—2.2 kpc. The other parameters are the same as for the standard models. The only
difference here, besides the radial range, is the initial surface density.&meeonstant,
andQp O R 1, the initial surface density is 5 times larger. We have also measured the star
formation rate for these models, to compare with the standard models.

Figure4.15shows the star formation rate as a function of surface density, for model
Q1D, as well as the corresponding simulation of the inner region. The larger surface
density does indeed lead to higher star formation rates, with a alep2 2 that is similar

to the valuea = 2.4 of the standard model. We find similar trends for other inner disk
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Figure 4.14: Schmidt law for models in Taklel. Each point is obtained by binning the
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Figure 4.15: Left: Star formation rate vs. surface density for Models Q1D (triarRgles;

4 - 11 kpc), as well as the corresponding model of the inner region (crdkse$,8 -

2.2 kpc). Best fit lines for each model is also shown, with slopes of 2.4 for the 4 - 11

kpc model and 2.2 for the 0.8 - 2.2 kpc model. Right: Triangles and crosses from figure

on the left are shown, along with globally averaged observational dataKeymicutt

(219981: circles show normal spirals, with best fit slope of 1.3, and diamonds show IR

sources, with best fit slope of 1.4.
models in comparison with the corresponding standard models. For comparison, Figure
4.15also shows data frodennicutt(1998h. Each point indicates the globally averaged
star formation rate for individual galaxies. Though there is less scatter in the simulation
points, the slope of th&sgr- Z relation from the simulations~2.3) is larger than the

slope from observational data-1.4). At the lowZ end, the model results overlap with

the observed points.
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Predicting Gas Depletion Times

The gas depletion timgr is the time required for all gas to be converted to stars if the

star formation proceeds as it has been during a given intAtval

Mot
tsE = Atm, (4.18)
whereMyqt is the total mass in a given annulus. The summation in equati@)(s taken
over all clouds in which a feedback event has occurred, as in equatits).
Observationally, if the supernovae rate per dense gas Rasss known, the gas

depletion time can be estimated based on the total amount of gas and the portion in dense

clouds as:
Mtot

tor = ,
SF > MderMsnRsN

wherey Myenis the total mass of gas above some chosen threshold density Rsijden =

(4.19)

esk/te from equation 4.12), the results of equationg.(L8 and @.19 should agree on
average. WittRsy = 1 or 10,tgp = 2.5 108 x (Miot/ S Mden) Yr x 1 or0.1.

Figure 4.16 shows the gas depletion time in different annuli for Model Q1D. The
low values oftsg are a result of the large input value B§y (which is not meant to be
realistic). The actual depletion time, shown by the filled symbols, are computed using
equation 4.18, after binning the simulation data in radii of 1 kpc widths and in time
with t/top = 0.125 widths. The open symbols show the predicted depletion time by
applying equation4.19 on the same binned data. The predicted times agrees well with
the actual depletion times. We find similar agreement with all other médEets:. this

model,tgp = 2.5 % 107 x (Mtot/ S Maen) Yr. The increase afyp with tor, particularly at

2Most other models do not run for as long as the D models that have high feedback rates, because
some dense clumps continue to collapse without feedback, eventually causing the Courant condition to be

violated.
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Figure 4.16: Gas depletion times from model Q1D, as a function of orbital time (or,
equivalently, in different annuli). Legend shows,tifto, the limits of each time bin.
Filled symbols show actual depletion times (eghl18, and open symbols show pre-
dicted depletion times (eqd.19).

early time, is indicative of an increase ot/ S Mgen With torp in annuli (i.e. a smaller

fraction of the gas is dense at large radii, whEiie lower?)

4.4 Discussion and Summary

4.4.1 Kennicutt-Schmidt Law in Simulations

We have found that the exponent of therr [ 2% relation is somewhat sensitive to the
supernovae parameters@= 1 models without spiral forcing, and in the spi@l= 2
models. The exponent in tlig@= 1 models with spiral forcing are relatively independent

of the chosen supernovae parameters. In models that evolve for a significant amount

3The secular variation & with to, at early times during the simulations (i20R1 0 tojé) contributes

to the variation in thésg — tor, relation with time in Fig4.16 at later timesg is not proportional tdRL.
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of time, such as the models with high supernovae rates and shell velocities, there is a
relatively tight correlation betweelsrrandz. In fact, the scatter iispr—  relation is
smaller than from the observationsKdnnicutt(19981), as can be seen in Figudela

Simulations byTasker & Bryan2006 also show a power ladispr— 2 relation. They
find that the exponent is consistently 1.5, in agreement with observations, which they
argue is a consequence of the dependence of clump formation on the dynamical time.
However, they do not show the effect of varying the feedback parameters, which could
affect the overall dynamics of the disk, and consequently the star formation properties.

Li et al. (2005ab, 2006, by implementing sink particles into SPH simulations, study
gravitational collapse in galaxy disks. Their simulations, spanning a range in surface
densities, reproduced the slope and normalization of the Kennicutt - Schmidt law. They
suggest that gravitational instability is the primary mechanism regulating star formation,
due to independence of the slope of lwg-r— 2 relation from their input model param-
eters.

In the simulations ot.i et al. (2005ab, 2006, clouds can only form due to gravita-
tional instability. As they indicate, cloud formation can only be modeled for one collapse
time, since no feedback occurs. It may be at a stage early in the simulation, when clouds
are forming, that the star formation rate is determined. In order to evolve the simulation
for longer times, feedback is necessary. The rates at which gas is dispersed from clouds
may affect the subsequent star formation rates, as we found in our models by \Rgying

A similar argument can be made for oQr= 1 spiral models. With spiral structure,
the slope and normalization for alDf = 1) models are similar (middle panel of Figure
4.14). In these models, clouds initially form due to gravitational instability in the high
density spiral arm gas. However, without an external spiral potential, the slopes and
normalizations vary (top panel of Figudel4). In these models, clouds are forming along

with the feedback induced destruction of other clouds all over the disk, so feedback has
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an effect early on. Feedback even causes gas to collapse, in a region of colliding flow,
for example. However, had we been able to evolve all our simulations for many more
orbits, then it is possible that all models would give similar star formation properties.
Our simulations suggest that measured star formation properties are subject to transient
effects, thus for meaningful theoretical predictions it is necessary for systems to evolve
well beyond the initial state.

Another possible reason foragr 315 relation in global simulations of disks is
the effect of the disk thickness. The gas free-fall timggis- (Gp)~95. For thick disks,
the volume densitp ~ >/H. If the Kennicutt-Schmidt law is explained agrr Zg/1g,
thenZsrrd Z5°/v/H. In simulations that have a constant thickness (either by design or
as a consequence of limited numerical resolution), then natifgiyJ =5°. However,
for self-gravitating gaseous disks, the thickness would depend on the surface deasity,
c2/(TGE) (if the vertical gravity is instead dominated by the stars, tHeacs//4TGp,.).
In our models, we assunt¢ [0 Rand alsa&® 0 R1, so withZspr 24/Tg would predict
>sFr Zé. In models with the largest dynamical rangeziand that evolve for a number
of orbits, the slope is near this value, such as shown in Figure However, the slopes
may be dependent on other supernovae parameters; our other models show varying values

(although they are statistically less well determined).

4.4.2 Model Limitations and Pending Questions

Spiral Structure

In spiral models, the external spiral potential is initially the primary driver for enhanc-
ing the density, leading eventually to the growth of clouds. In models that evolve for a
significant amount of time, soon after feedback and the dispersal of cloud gas the global

spiral pattern is disrupted, and eventually vanishes. With the simple feedback prescrip-
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tion that we have adopted, we were unable to simulate a spiral galaxy in which the global
spiral pattern is maintained simultaneously as cloud gas is returned to the ISM through
feedback.

If the arms truly are long lasting, then either the spiral potential is much stronger than
in our modelsE >> 10%), and/or that the feedback events are not as disruptive of struc-
ture on kpc scales. Very larde, however, does not appear consistent with observations
of the old stellar diskRix & Rieke 1993. One possibility is that other feedback mecha-
nisms such as stellar winds or photo-ionization in Hll regions ¢ergmholz et al.2006
act to disperse cloud gas, but do not completely destroy spiral arm coherence. Less corre-
lated and spatially separated energy input would produce shells with dimensions less than
the spiral arm thickness, and therefore may not destroy the global spiral structure.

We have shown that turbulence induced by correlated feedback events plays a signifi-
cant role in the subsequent evolution of the gaseous disk. In our models, feedback occurs
only after the formation of sufficiently dense clouds, which grow due to gravitational in-
stability. The growth of clouds in an initially turbulent medium was not considered. This
result raises the question of how spiral arms grow in a turbulent medium in the first place.
In galaxy disks there are other sources of turbulence, and smaller scale turbulence may be

less disruptive to the global spiral pattern.

Isothermality

In our models, we follow the isothermal expansion of the cloud, due to correlated super-
novae events. Of course, just after a supernova event, energy is injected into the ISM.
The high density shell cooling time{ Myr) is much shorter than other timescales (such

as the dynamical timey 100 Myr). The cooling time of the hot phase of the interstellar
medium is longer, but contains a smaller fraction of the total mass of the ISM. We thus

use the isothermal approximation for our simulations of the global flow focusing on the
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warm component that contains most of the mass. We do not include the cold atomic com-
ponent (T~100 K) explicitly. This component may be more gravitationally unstable than
the warm component that we follow in our simulations, unless there is significant turbu-
lence. Additionally, our models constrain feedback within the galaxy’s midplane, and do
not allow for dynamically evolving disk thickness. In the real ISM, energy injected from
supernovae also affects the dynamics of the surrounding ISM, and contributes for main-
taining the multi-phase structure of the ISMd¢Kee & Ostriker1977. Such correlated
supernovae may be important in driving the supernovae heated gas away from the mid-
plane of the galaxy into the halo, through so-called chimneys and superbuliblasan

& lkeuchi 1989. After this gas is cooled in the halo, it falls back onto the disk in the form

of cloudlets (e.gJoung & Mac Low2006. Even though recent simulations have shown
that the fraction of mass that is vertically driven is smdk (Avillez & Breitschwerdt
2009, the in-falling clouds may still affect the dynamics of the disk and may also act as
another source of turbulence.

In order to accurately model disks that account for the effects of supernovae heating,
chimneys, superbubbles, and the return of halo gas onto the disk, a 3D grid as well a
numerical treatment of heating and cooling is necessary. 3D numerical simulations will
also allow us to test the sensitivity of the Kennicutt-Schmidt slope to the disk thickness,
as discussed in 8.4.1 These processes are important avenues of future research that we

plan on pursuing.

4.4.3 Summary

We have added feedback into our global simulations of gaseous disks (CBlapterder
to disperse gas that collapses due to self-gravity. We then analyzed the star formation and
turbulent properties of disks with and without an externally imposed spiral perturbation.

We summarize our main findings here:
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1) In models with the largest dynamic randg@y(= 1 with spiral structure), the star
formation rate densit¥sgris not strongly sensitive to the chosen feedback parameters. In
other models, the simulations do not evolve for long after feedback, so a direct comparison
is not applicable.

2) Feedback can cause colliding flows, within which density enhancements can col-
lapse to eventually form stars. The characteristic masses of clouds formed in colliding
flows are lower than those formed in spiral arms or the sheared background features.
Higher resolution simulations will allow for a more detailed analysis of the mass distri-
butions.

3) We find that the large scale turbulent velocity;, depends primarily on the input
feedback momentum. Models with simil&8FRs can have different measured values of
Viurb- [N models with low velocity dispersions, ti&FRis proportional to the energy
injection or supernovae rate. Large dispersions or efficient cloud destruction suppress
subsequent star formation.

4) The SFRs in models with spiral structure are about 2-3 times larger than models
without spiral structure (foQy = 1).

5) For 1< log(Z) < 2, the range irksgris similar to the range observed in normal
disks. The slope of the Kennicutt-Schmi#rr [ X% is steeperd ~ 2) in our simulations
than the observed slopa & 1.3— 1.7). For both low and higlx, we find less scatter in
2spr— 2 than in observations. We suggest that the thickness of the gaseous disk may be
important for setting the index in the Kennicutt-Schmidt relationship.

6) We were unable to model long lasting global spiral patterns; either the corre-
lated feedback destroy global spiral structure as cloud gas is dispersed, or an insufficient
amount of momentum is added to the gas clouds, so that arm clouds continue to col-
lapse, eventually depleting the surround spiral arm gas. Perhaps other mechanisms, such

as small scale turbulence and less correlated feedback, both spatially and temporally, are
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required for global spiral patterns to persist.
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Chapter 5

Summary and Future Work

5.1 Summary

The interdependence between large scale galaxy dynamics and much smaller scale star
formation results in the ISM being rich in various physical processes. Grand-design stellar
spiral structure causes perturbations in the differentially rotating gaseous disk. Gas is
compressed in the spiral arms, and stars eventually form within these compressions. Gas
that flows through and out the arm is also significantly perturbed, leading to the formation
of spurs and feathers. Within gas clouds supernovae explosions from massive stars can
return much of the remaining gas back into the surrounding ISM. The returned gas then
continues its orbit around the galaxy’s center, and may be involved in another episode of
star formation. In this thesis, we present results of our investigation into spiral streaming
in the gaseous component of the grand-design galaxy M51, of numerical simulations of
the formation of spiral arm clouds and spurs, and star formation properties in disks with
feedback.
Using interferometric CO and Fabry-PerotiHbbservations, we studied the spiral

streaming motions in M51. We fit the 2D observed velocity field to estimate the radial
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and tangential velocity components at each arm phase. Using the velocity profile fits, we
then analyzed whether the streaming motions are as predicted by a QSSS description. We
found large radial streaming, resulting in a velocity field that is inconsistent with steady
state continuity. Variations in the X-factor, position angle, or spiral pattern speed cannot
account for the discrepancies. We thus concluded that the spiral arms in M51 are dynamic
features, and perhaps that out-of-plane motions are significant.

In Chapter3, we presented results of our first set of numerical simulations of gaseous
disks. Gas self-gravity and galaxy rotation naturally cause large-scale sheared features to
form. In simulations with an external spiral potential, representing the background stellar
perturbation, gravitational instability causes gas to collapse in the arms, foradifig
Mg clouds. Additionally, spurs (or feathers) are formed out of the gas that flows through
and out the arms, due to the combined effect of gravitational instability and shear. These
spurs are different from the background sheared features because there is a one-to-one
correlation between the spurs and the spiral arm clouds, and their orientation depends on
the relative speeds between the spiral pattern and the gas: inside corotation, spurs project
outward from the convex side of the arm, but outside corotation, spurs form on the con-
cave side, projecting inward. Magnetic fields act to slow the collapse of the spiral arms,
thereby suppressing pure hydrodynamic instabilities found/aga & Koda(2004).

We extended our models to include feedback effects, which are presented in @hapter
In sufficiently dense clouds, we injected kinetic energy, modeling correlated supernovae
explosions, to expand and disperse the cloud gas back into the surrounding ISM. We
found that the relationship between the star formation rate density and the gas surface
density can be expressed as a power law, consistent with observédtemsqutt1989.
However, in models that evolve for a significant amount of time, the exponer.i¥\e
suggest that iEspr 0 =1°/+/H (if it is governed by gas self-gravity), for disk thickness

H, thenZsrr 0 22 would be expected in our simulations sindel] R (andZ O R™1).
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This dependence may also explain results of previous simulations with coRstahich
produceZser 0 1. We also found that in simulations with high feedback rates, large
feedback velocities can suppress subsequent star formation because clouds are efficiently
destroyed. Simulations with and without an external spiral potential do not produce vastly

different star formation rates.

5.2 Future Work

An outstanding issue relating to spiral structure is the offsets between various compo-
nents. Observations of spiral galaxies show offsets between the molecular peaks, which
is coincident with the dust lanes, and star forming regions traceddye-y. Tilanus
et al. 1988 Vogel et al.1988. However, due to the poor resolution of CO observations,
these offsets require further investigation. Such offsets have been heavily discussed in
the ongoing debate of star formation timescale; both in favor for and against rapid star
formation (e.gBallesteros-Paredes & HartmaR@07 Tassis & Mouschovia2004). The
CARMA interferometer will produce the highest resolution CO map of M51 in the near
future. We plan on investigating the CO peaks, relative to other high resolution images
from SpitzerSINGS (Calzetti et al.2005 Kennicutt et al.2003 and theHubble Space
TelescopdScoville et al.200)). Infrared observations fror8pitzerwill be used to de-
fine the star formation peaks. We will average the intensities at each arm phase, as we
described in Chapté, to measure the offsets between various components, and compare
with the different predictions from star formation theories.

We also plan on extending our numerical simulations of disk galaxies. With 3D sim-
ulations, we can study the development of turbulence due to the spiral arrkanas
et al. (2006 demonstrated with 2DR— z) simulations. In addition, we could include a

live stellar disk. Our current simulations only include a fixed external rotating potential,
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with a live stellar disk, we can track the response of the stellar component to the gaseous
disk; those simulations will expand on the 2D studyKain & Ostriker (2007). Further,

we could include heating and cooling to track the phase evolution of the gas. With a
multi-phase medium as well as 3D, we can more realistically model feedback, taking into
account the supernovae driving of hot gas away from the midplanal¢grgan & Ikeuchi

1989, as well as the return of halo gas onto the disk in the form of cloudlets. Calcula-
tions including both a multi-phase medium and 3 dimensions will more accurately track

turbulence, which has been a key topic in current studies of star formation.

5.3 Suggestions from Thesis Committee

The following are two interesting points that we discussed with the committee after the
presentation.

1) Do observations show the kind of bifurcations we found in our simulations, due to
ultra-harmonic resonances? If so, can corotation be identified using the locations of the
bifurcations?

2) We found that magnetic fields strengthen the spiral arms, slowing the collapse and
fragmentation of gas in the arms. Is there a systematic trend of stronger magnetic fields

in grand-design galaxies?
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Appendix A

Numerical Methods for Computing the

Self-Gravitational Potential

A.1 Cartesian Coordinates
Numerically, Poisson’s Equation
[%® = 4AnGp, (A.1)

can be solved efficiently using Fourier methods. In 3D Cartesian coordinates,

ATIGP(Ky, ky, kz)
k2 ’

D (Ky, ky, kz) = — (A.2)

where® and p are the Fourier transform of the potentiéland densityp, and k? =
K2+ k§ +K2. If density is periodic on a domaifiy, Ly, L;) with (N, Ny, N;) zones in each
dimension, respectively, the valueskqf= +n,21t/Ly with ny =1... Ny /2.

For an infinitesimally thin, two dimensional disk, one may use separation of variables

to show that the potential within the disk in Cartesian coordinates satisfies

" 2T[Gi ( an ky)

Dk, ky) = — K (A.3)
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wheres is the Fourier transform of the surface dengitfe.g.Binney & Tremainel987).
The effect of the nonzero disk thickness may be accounted for in an approximate way

(Kim et al. 2002, such that equatiorA(3) becomes

2NGS.
K[(14|k[H)’

whereH is the thickness of the disk, azd= 2Hp.

D (ke ky) = — (A.4)

Obtaining the potential using Fourier methods expressed in equafa)saf (A.3)
assumes that the density is periodic. Thus, the resulting potential includes a contribution
from replicas of the density distribution (outside the computational domain). If in fact one
desires to compute the potential of a spatially isolated system with zero density outside of
the computational domain, then this method is modified by computing Fourier transforms
on a larger, zero-padded array. The central portion of the larger array is filled with the
density values from the original domain, and the surrounding zones are set to zero. To
obtain a solution of the Poisson’s equation, the zero-padded array must be at least twice
the size of the original array in each dimension (elgckney & Eastwood 981). A larger
padded region moves unphysical cusps away from the boundaries of the computational
domain; of course, increasing the size of the padded region requires more memory as well

as CPU time.

A.2 Polar Coordinates |

In 2D cylindrical polar coordinates, a number of techniques have been explored to cal-
culate the potential.Miller (1976 describes a method that sums the potential due to
concentric rings in polar coordinates. The potentidRatp) is written as

O(R ) = —G/ RdR d(pD(RR P—9)Z(R,Q) (A.5)
where

D(RR;9— @) = (R+R?+¢&%— 2RRcogp—¢)) 2, (A.6)
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where,¢ is a softening parameter. We can discretize equafiob)( writing the result as

OR.Q) = -G T D(R,Rji® — &) (R}, )5, (A7)
m ]

wheredAj, = Rj0R;d¢,. The direct summation in equatioA.(’) is computationally
expensive; however, Fourier transforms can accelerate the computation. The integral over
(p/ in equation A.5) is a convolution oD with the mass distribution in the ring R’g with

the equivalent for the sum in equatiof.{). By the Fourier convolution theorem, we can

write

&Dn(R) = —Ggﬁn(Ri,Rj)Mn(Rj)a (A.8)

WhereMn(Rj) is the 1D Fourier transform in the azimuthal direction of the nidgs =

i nAjn. The discrete Fourier transform (in thedirection) of the Green’s function
D(RR;p—¢), 6n(Ri,Rj), only needs to be computed once, at the beginning of the sim-
ulation. For an(R, @) computational grid, including periodic replicas of the density is
required to cover the fulli2domain of the azimuthal coordinate. The computational do-
main must therefore ber@m for somem; we usem = 2 for a two-armed spiral. Aside
from the effect of softening, this method of computing the potential is exact.

Even though the Miller (1976) method is more efficient than direct summation of
equation A.7), more memory and CPU time are still required than for a pure Fourier ap-
proach. Thus, for numerical expediency, we instead use a computationally more efficient
method to obtain an approximate solution fbr Although this method is not an exact
calculation of®, we show that the differences between the exact (Miller) method and our
more efficient method is small. After describing our method, we show how the results, as
well as CPU usage, from the different methods compare.

To compute an approximate potentilin polar coordinates based solely on Fourier

transforms, we use the method describedAnl§ Below we refer to this method as the

152



coordinate transformation method. If we apply a coordinate transformation

(- n()

Ro®, (A.9)

<
Il

Poisson’s equation becomes

Fo e (R\P® (R
X2 0y2 R/ 02 \Ro

2
) 4TGp. (A.10)

For in-plane gradients large compared to vertical gradients, the solution is

. oMGS

cD(an ky) = - |k‘2H ) (All)

wheref = (R/Rp)2Z. This has the same form as equatiéd() in the limit |k|H >> 1.

More generally, solutions to the Laplace equation in cylindrical coordinates have the
form 3y AkCi (kR %e~IK4 where theCy’s are two independent Bessel functions - €.
andy, - and whergz| — « and azimuthal boundary conditions have been applied. The
coefficients of each term in the sum is determined by the requiremerddhat|,_q+ =
2nGX(R, ). EachAy can then be written as a Fourier-Hankel transform of the surface
densityAy O [Z"e 1%dg [*, dRJ(KRIR2Z(R, ¢) (e.g.Binney & Tremainel987).

Since the force is dominated by terms with large gradients, the kargkies are most
important. For large arguments, the Bessel functions approach sinusoidal functions, so
that theAy’s can be written as two-dimensional Fourier transform&.dh this limit, we
must haveﬁ)(kx,ky) = —2T[G§/|k|. Altogether, we may therefore write our approximate

solution as A
. 2MGS.

where ky = | /R andk is the wavenumber corresponding to the transformed radial co-
ordinate. In order to have the values equally spaced, the radial grid coordinates are

equally separated in ldg
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With this method, the surface density is implicitly assumed periodic in both azimuth
and radius. The spurious contribution from periodic replicas in the radial direction can
be minimized by zero padding the edges of the density array in the radial direction, as

described at the end ofA&81.

A.3 Comparison of Methods

To compare the effects of the periodic replicas in the test cases for the coordinate transfor-
mation method, we use arrays that ase 2x, 8x, 16x, and 3% the size of the original
density array. The computational domain for the comparison tests has 256 radial elements
and 1024 azimuthal elements. As an example, for the case for which we us&egér

array, the size of thE array before taking a Fourier transform to obtaiis 1024x 1024.

The actual values of the densities are stored in array elements in which the first (radial)
index is between 385 and 640. All other elements of the array are set to zero.

To compare the two methods of computing the potential from test simulations, we
arrange test cases for which the total mass in the computational domain is O or very small.
The Fourier method will include contributions from matter outside the computational
domain, due to the assumed periodicity of the density. Thus, minimizing the total mass
reduces this superfluous contribution. In analyzing the differences between the methods,
we keep in mind that the softening will affect the numerical values of the potential (and
force) in regions with large density gradients. With the coordinate transformation method,
we also compare the results from cases where the size of the zero padded zones vary.

We inspect the potential of three test disks containing (1) a positive and negative ring,
(2) a positive and negative radial spoke, and (3) and a positive and negative logarithmic
spiral arm. To avoid edge effects, we compare the region between the positive and nega-

tive mass distributions regions. For test cases (1) and (2), we find the relative difference
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between the coordinate transformation and the Miller methdg{(— ®vm |/ Pmm) to be

within ~3%. For test case (3), we measure a relative difference586. Again, these
relative differences are measured between the positive and negative density regions, away
from the edges of the disk. For the self-gravitating simulations we perform, we are in-
terested in the growth of substructures under similar circumstances, i.e. away from the
edges of the disk, near regions where the perturbed density is both positive and negative.
Nevertheless, even near the edges, all tests give values of the potential that agree within
~25%. Finally, the difference between the tests using the coordinate transformation (with
varying sizes of the zero-padded zone) is negligible.

The main advantage of using the coordinate transformation method is the decrease in
CPU time for each simulation. For this method computing the potential requires a mul-
tiplication of the density to obtail, a Fourier transform to obta%, a multiplication in
Fourier space for the gravitational kernel in equatiari@), and an inverse Fourier trans-
form to obtain®. This sequence requires fewer operations than the Miller computational
method.

To measure the efficiency of each method, we use a test simulation slightly different
from the ones described above. In these tests, with a grid of 256 radial and 512 azimuthal
zones, a spiral potential is turned on over the first half orbit, then the self-gravitational
potential is slowly turned on over another half an orbit. Thus, both potentials are turned
on fully after one orbit. The test simulations are subsequently allowed to run for an
additional orbit, after which the CPU times are compared.

All these tests, as well as many of the simulations presented in this paper, were run on
a machine with a 2.99 GHz Pentium 4 processor, with 2 GB of RAM. TAkleshows
the CPU time (relative to that using the exact solution) required for each test to run. It
is evident, as expected, that the simulations using the coordinate transformation method

(where we enlarge the density array by,24x, or 8x) requires much less CPU time
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Table A.1. CPU Time for Different Potential Computation Methods

CT(2x)@ CT (4x)® CT(8x)2 CT(16x)@ CT(32x)2 MM P

0.59 0.62 0.70 0.89 1.25 1.0

aCT: Coordinate Transformation, with zero-padded enlargement of
density array as indicated in parentheses

bMM: Miller’'s Method

than those using the exact potential computational method. Since the numerical differ-
ences between the methods are modest, and to take advantage of the superior efficiency
of the coordinate transformation method, we use the coordinate transformation method,
enlarging the density array byx4 for our high resolution simulations presented in this
paper. We have also tested models using the Miller method, and obtain essentially the

same results.

A.4 Polar Coordinates Il

In 8A.2, we described two methods to solve Poisson’s equation numerically on a polar
grid; both methods employ Fast Fourier Transforms (FFT). One method sums the poten-
tial from concentric rings, as described Mjller (1976. The other method employs a
coordinate transformation from polar coordinates to a Cartesian-like coordinate system.
The former method is exact, but computationally expensive, and the latter is an approxi-
mation, but computationally efficient.

Here, we describe another FFT based method that is exact, and more efficient than the
Miller (1976 method. The basic scheme is describeainajs(1971) andBinney &
Tremaine(1987); we describe the method including the effect of the thickndss the

disk, which also acts as softening. The potertiat each positioriR, @) on the disk, at
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z=0, is

/ / / le<Z,,R,)Z(RI,(p,)
®(Rz=0)=-G [dR [dg [dz . (A13
Re ) / /(p/ [F(2+R2—2RRcos((p—cp')+z’2]% (A-13)

Here,G is the usual gravitational constant and the coefficient functiotescribing the
vertical profile of the surface densi®y must be normalized”, dz f(z,R) = 1. Substi-

tutingu=InR, andZ = Z/v/2R in equation A.13), the potential reduces to

—u / / !/ /! I
D(R@,z=0) = —Ge“/du/d(p/dz e f({,u)Z(u,9) -
e ( cosr(u u) —cogo—@))+7?2
(A.14)
If &/ f(Z',u) is a function ofZ’ only, we can define
(U —u@—g =e /d e f(Z,u) -, (A.15)
(&Y (cosi{u—u') — cog@— @) + 2?2
For a Gaussian vertical density distribution,
o, elez/ZHz(R')
fZR)= . (A.16)
2TH2(R)
For a radial thickness profild (R) O R, we define?f = H(R) /R, so that
V1 R e (¢ /07 A17
e R)=—"——. :
(¢,R) N (A.17)
We now have an expression far
(U —u,p—@) dz e (0 (A.18)
U—UQ—@=—— / ; . (A
V2L ] @it (cost{u—U) — cogp— @) + {72

LIf gas is the dominating component for vertical gravity= c2/TiGZ, so thatH /R = csQ/+/2V,. If both
the ToomreQ parameter ands/v. is independent dR, as in our models, theid /R = constant. Similarly, if
the stellar disk dominates gravity thelY R= csQ../2v, so constants/v; andQ, implies constanit /R. For
self-gravitating gaseous disks,f= 1 andv./cs=30, thenH /R = 0.02. Including stellar gravity typically
reducedH by a factor of~ 2 (e.gKim et al. 2002.
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Substituting equationA(.15) into equation A.14),

®(R,@,2=0) — —Ge“/du’/dcp’Z(u’,cp’)l W —ue—0). (A.19)

The integral in equationA.19) is simply a 2D convolution. Thus, through the convolution
theorem, the gravitational potential can be computed by taking the Fourier transfarm of
to obtainZ, and then taking the inverse Fourier transform of the produktafdi’, where

| is the Fourier transform df In hydrodynamic simulations,can be computed once at

the beginning of the simulation run, so that only two FFTs need to be performed at each

time step, FFTY) and FFT 4(Z).
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