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We examine the capture of small, irregular satellites, which, with their distant,

eccentric, and inclined paths, must have originated in heliocentric orbits. We investi-

gate a new theory: capture of one member of a pair of ∼100-km asteroids after tidal

disruption. The energy loss from disruption is sufficient for capture, but it cannot

deliver the bodies directly to the currently observed orbits. Instead, the long-lived

capture orbits must evolve inward after capture, perhaps due to interactions with a

tenuous circumplanetary gas disk.

We find that at Jupiter, binaries offer an increase of a factor of ∼10 in the

capture rate of 100-km objects as compared to single bodies, for objects separated

by tens of radii that approach the planet on relatively low-energy trajectories. These

bodies are at risk of collision with Callisto, but may be preserved by gas drag if their

pericenters are raised quickly enough. We conclude that our mechanism is as capable

of producing large irregular satellites as previous suggestions, and it avoids several

problems faced by alternative models.

To investigate possible source populations for these captured satellites, we sim-

ulated escaping asteroids from Jupiter’s Trojan region and the outer main belt,

calculating the Jacobi constant during close approaches and comparing with three-

body capture statistics. We found that Trojans’ high approach speeds make them



unlikely source bodies, but asteroids from the outer main belt, especially those in-

terior to Jupiter’s 4:3 resonance, approach with low speeds that favor capture.

Unlike irregular satellites, regular satellites formed with their planets. Gravita-

tional resonances are important for these bodies, and we study the most famous of

them. Io, Europa, and Ganymede are in the Laplace resonance, meaning that they

have orbital periods in the ratio of 1:2:4. We focused our work on Io and Europa’s

orbital lock and modeled passage through the 2:1 resonances. We discovered cases

where damping from satellite tides led to stable equilibria prior to capturing into

the resonances. The mean-motion ratio at which this occurs matches that of Io and

Europa. We conclude that the moons never captured into resonance, and that their

resonant angles librate because of long-range resonant forcing.
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Preface

This dissertation is divided into two main parts. Chapters 1- 3 are focused on

determining the capture mechanism and source population of the irregular satellites

at Jupiter. We begin with an introduction to the irregular satellites, after which

we detail our capture model, and finally, in Chapter 3, we explore various source

populations for captured bodies. Part of this study is currently in press in Icarus,

entitled “Three-body capture of irregular satellites: Application to Jupiter” and

authored by myself, Douglas P. Hamilton, and Craig B. Agnor. Chapter 3 is an

extension of my second-year research project at the University of Maryland.

In the second section, we study the orbital evolution of Jupiter’s Galilean satel-

lites; in particular, that of Io and Europa. Chapter 4 gives background on the

Galilean satellites and orbital dynamics, and in Chapter 5, we discuss our explo-

ration of the origin of the Laplace resonance. Finally, we offer our conclusions and

some future directions.

Katie Philpott

June 15, 2010
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Chapter 1

Irregular Satellites: Introduction

1.1 Definition and discovery

With discoveries accelerating in the last decade, we now know of over 150 satellites

orbiting the giant planets. About one-third of these are classified as regular, with

nearly circular and planar orbits. It is thought that these satellites are formed by

accretion in circumplanetary disks. The majority of the satellites, however, are ir-

regular and follow very different paths from their regular counterparts. It is widely

believed that irregular satellites originated in heliocentric orbits and were later cap-

tured by their planets, but the details of how this occurred are still uncertain. This

question is a main focus of this thesis. In Section 1.3, we discuss possible capture

theories, and in Chapter 2, we describe our capture model involving three-body

interactions between a planet and small binary pairs.

One important reason to study the irregular satellites is because they probe

conditions of the Solar System at early times. Capturing the irregular satellites from

heliocentric orbit requires energy loss from a dissipative process such as dynamical

friction from gas or other bodies. Currently, the Solar System has no such process

that could remove enough energy for capture to their present orbits. Thus, the
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irregular satellites must have been captured before the Solar System settled into

its current state; for example, during planet formation and/or migration, when

numerous small bodies still roamed the Solar System. As the orbits of irregular

satellites were shaped by one or more of these processes, they provide insight into

the early Solar System environment.

Before proceeding, we discuss the common qualities of irregular satellites, defined

as moons that were captured from heliocentric orbit to their current locations around

the planet. Irregular satellites usually have orbits that are distant, highly eccentric,

and significantly inclined. From observations, we see that the giant planets’ irregular

satellites generally orbit far enough from their host planet that solar perturbations

(and not planetary oblateness) dominate long-term dynamics. Setting the precession

from oblateness equal to the precession due to solar tides, we calculate the distance

(rtr) at which orbits’ precession transitions from being dominated by oblateness to

dominated by solar tides:

rtr =
(
2J2

MP

MS

RP
2aP

3
)1/5

, (1.1)

where MP and RP are the mass and radius of the planet, MS is the mass of the

Sun, J2 is the planet’s oblateness coefficient, and aP is the mean planet-Sun distance

(Burns 1986a). The distance, rtr, is 2.3, 2.5, 1.4, and 1.8 million km for Jupiter,

Saturn, Uranus, and Neptune, respectively. In reality, it is somewhat larger, as the

planets’ large, regular satellites effectively add to J2 for more-distant bodies (Ćuk

2005). This measure by itself, however, is still not enough to differentiate between

irregular and regular moons. Neptune’s Triton has a semi-major axis smaller than

rtr even though its retrograde orbit points toward an origin by capture. However,

Triton is believed to have been pulled close to Neptune by tidal forces. We can use

rtr as a general criterion for satellite classification and add to it our intuition about

2



which satellites were likely captured.

Two great advances in observational technology were instrumental in the discov-

eries of the irregular satellites. The first was the use of photographic plates, which

began in the late 1800s. Long-exposure photographic plates allowed observers to see

faint objects, and in 1898, this resulted in the discovery of Phoebe, the ninth known

satellite of Saturn. Phoebe was seen orbiting the planet in the opposite direction of

Saturn’s eight other known satellites and at a much larger semi-major axis. A few

years later, in 1904, Himalia was discovered on a large, prograde orbit at Jupiter. In

the decades that followed, seven more irregular satellites (three more prograde, four

retrograde) were discovered at Jupiter, and Nereid was found on a highly eccentric

orbit at Neptune. The last satellite found with photographic plates, Jupiter’s Leda,

was discovered in 1974.

The advent of sophisticated, wide-field CCDs in the late 20th century led to

a flood of irregular satellite discoveries. After almost a quarter-century drought

in discoveries, Gladman et al. (1998) found two new irregular satellites at Uranus

while looking for Kuiper Belt objects. In 1999, Gladman’s team found three more

Uranians (Gladman et al. 2000) and the Spacewatch team found one new irregular

moon at Jupiter (Scotti et al. 2000). In 2000, the discoveries accelerated, with

11 new satellites found at Jupiter (Sheppard and Jewitt 2003) and 12 at Saturn

(Gladman et al. 2001). In total since 1997, 47 Jovians, 37 Saturnians, 9 Uranians,

and 5 Neptunians have been found (Gladman et al. 2000, 2001, 1998; Holman et al.

2004; Kavelaars et al. 2004; Scotti et al. 2000; Sheppard et al. 2005, 2006; Sheppard

and Jewitt 2003; Sheppard et al. 2007). As of June 2010, there are 109 known

irregular satellites. Figure 1.1 shows the growing number of known irregulars since

the beginning of the 20th century.
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Figure 1.1 The cumulative number of known irregular satellites of the giant planets,

with the total irregular satellite count represented by the black line. The spike just

prior to the year 2000 represents the transition from the photographic era to the use

of wide-field CCDs.
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Table 1.1. Satellite counts per planet

Planet Ntot Nreg Nirreg Ni,pro Ni,retr

Jupiter 63 8 55 7 48
Saturn 62 24 38 9 29
Uranus 27 18 9 1 8
Neptune 13 6 7 3 4

Total 165 56 109 20 89

Note. — Satellite counts per planet: the total
number of satellites (Ntot) and the numbers of regu-
lar satellites (Nreg), irregular satellites (Nirreg), pro-
grade irregular satellites (Ni,pro), and retrograde ir-
regular satellites (Ni,retr).

1.2 Orbital and physical properties

Table 1.1 gives the current number of regular and irregular satellites per planet,

dividing the irregular satellites into those on prograde (with inclination i < 90◦)

and retrograde (i > 90◦) orbits. While many more satellites have been discovered

around Jupiter and Saturn than Uranus and Neptune, the number differences are

primarily a result of observational bias. In fact, it is estimated that the satellite

counts at the four giant planets are roughly equal (Jewitt and Sheppard 2005). A

simple way to demonstrate this is to count the number of satellites at each planet

larger than the minimum detectable size at Neptune (∼15 km in radius); the result

is that the four planets each have ∼5 satellites at this size or larger. One interesting

fact from this table is that the number of known irregular retrograde satellites

outnumbers the number of known irregular progrades at every planet. In all, the

ratio of retrogrades to progrades is 89/20 ≈ 4.5. The reason for this lopsidedness

is unknown; possibilities include differences in capture efficiency, collision rate, or

long-term stability.
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Table 1.2. Giant planet Hill spheres

Angular size
Planet MP (1025kg) aP (AU) rH (AU) of rH (deg) Nirreg

Jupiter 190 5.2 0.36 4.8 55
Saturn 57 9.5 0.44 3.0 38
Uranus 8.7 19.2 0.47 1.5 9
Neptune 10.2 30.1 0.78 1.5 7

Note. — Characteristics of giant planets and their Hill spheres: mass
(MP ), semi-major axis (aP ), Hill radius (rH) in AU, projected angular
rH as seen from Earth at opposition, and number of irregular satellites
(Nirreg).

Table 1.2 gives the characteristics of the Hill spheres of the giant planets. The

radius of the Hill sphere (rH) is the distance at which the Sun’s tidal acceleration

roughly balances the planet’s gravity, and is given by

rH =
(

MP

3MS

)1/3

aP . (1.2)

While all of the actual satellites orbit within their planet’s Hill sphere, not all

orbits within the Hill sphere are stable. In general, prograde orbits are stable out

to about half the Hill radius, and retrograde orbits are stable to slightly beyond

the Hill radius (Hamilton and Burns 1991). A simple way to understand this pro-

grade/retrograde asymmetry is that the Coriolis force in the rotating reference frame

points in toward the planet for retrograde orbits, giving an additional source of

stability and allowing for larger orbits. Figure 1.2, a plot of the satellites’ mean

semi-major axes and inclinations, shows that the actual satellites orbit well within

their stability boundaries: progrades are found out to about a third of the Hill ra-

dius, and retrogrades orbit no further than half the Hill radius, with the exception

of S/2003 J2.
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Figure 1.2 Semi-major axis scaled by the Hill radius vs. inclination for

the known irregular satellites. Mean orbital elements for this figure and

Figs. 1.3 and 1.4 are taken from S. Sheppard’s irregular satellite website,

http://www.dtm.ciw.edu/users/sheppard/satellites/ and the JPL Solar System Dy-

namics website, http://ssd.jpl.nasa.gov/?sat elem.

7



0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

Figure 1.3 Semi-major axis scaled by the Hill radius vs. eccentricity for the known

irregular satellites.

Another striking feature in Fig. 1.2 is the lack of satellites from i = 60-130◦.

This is not due to limitations of surveys but instead is because of the Kozai effect.

The Kozai effect causes eccentricity and inclination to oscillate, conserving the di-

mensionless K =
√

1− e2 cos(i). Satellites with inclinations in this range eventually

cycle to high eccentricities and subsequently collide with the planet or its regular

satellites.
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Figure 1.3 gives the distribution in semi-major axis/eccentricity space. From

Figs. 1.2 and 1.3, we see that the semi-major axes of irregular satellites (measured

in rH) generally decrease for planets further from the Sun. The median semi-major

axes (in rH) are 0.43, 0.29, 0.17, and 0.19 for Jupiter, Saturn, Uranus, and Nep-

tune, respectively. However, measured in kilometers, the trend disappears and the

median a values are almost identical: 2.3×107 (Jupiter), 1.9×107 (Saturn), 1.2×107

(Uranus), and 2.2×107 (Neptune). The exception is at Uranus, where the irregular

satellites orbit closer to the planet on average.

Figure 1.4 shows the semi-major axes, eccentricities, and inclinations of the

irregular satellites all at once (Gladman et al. 2001). The distance from the origin

to a point gives the satellite’s semi-major axis, the angle from the positive x-axis

gives the inclination, and the radial extent (distance from pericenter to apocenter)

is displayed as the length of the line through the point. From this figure, we can

see that not only do the retrograde satellites have larger semi-major axes than

progrades, but they also have systematically larger eccentricities. This again can be

traced to the increased stability of retrograde orbits over prograde orbits.

Figures 1.2, 1.3, and 1.4 all show groupings of satellites with similar orbital

elements. These clusters are most apparent in Fig. 1.2, and several are labeled on

this plot. Satellite families are thought to arise from collisional disruption of a single

progenitor satellite (Burns 1986b; Colombo and Franklin 1971; Gladman et al. 2001;

Pollack et al. 1979). We now briefly discuss the clusters existing at each planet. We

will also summarize the naming conventions for the satellites (referencing Nicholson

et al. (2008)), both because these are often dictated by the satellite orbits as well

as for general interest.

At Jupiter, prior to 1997, it was thought that the eight known irregular satellites

split evenly into two families: one tightly clustered prograde group (with Himalia
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Figure 1.4 Semi-major axis, eccentricity, and inclination for the known irregular

satellites. The distance from the origin gives the semi-major axis, the angle from

the positive x-axis gives the inclination, and the length of the line through each

point shows the radial extent (and thus eccentricity) of the satellites.
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as its dominant member) and one more-loosely clustered retrograde group (consist-

ing of Pasiphae, Carme, Ananke, and Sinope). As more satellites were discovered,

the prograde group gained an additional member (S/2000 J11, which has not been

recovered since discovery and is considered lost). For the retrograde satellites, how-

ever, three new groupings have been proposed (Nesvorný et al. 2003; Sheppard and

Jewitt 2003), with three of the pre-1997 retrograde satellites as principal members:

the Carme group, the Ananke group, and the more diffuse Pasiphae group (with

Sinope a member of the Pasiphae group). Additionally, Themisto and Carpo, both

prograde satellites, appear to be isolated. Jupiter’s irregular satellites are named

for characters in Roman or Greek mythology that have connections to Jupiter (the

Roman name for Zeus). The prograde satellites in the Himalia group have names

ending in ‘a,’ and the progrades with higher inclinations have names that end in ‘o.’

Retrograde satellites have names ending in ‘e.’

Saturn’s prograde satellites are divided into two relatively tight groups; four

with i ≈ 34◦ (named after giants from Gallic mythology) and five with i ≈ 46◦

(with names from Inuit mythology). The three retrograde groups each have similar

inclinations (about 153◦, 168◦, or 175◦), but vary widely in a and e. All of the

retrogrades, except for Phoebe, are named after giants from Norse mythology.

With only nine irregular satellites at Uranus and seven at Neptune, it is more

difficult to observe clear clusters. Uranus has only one prograde irregular satellite,

so no prograde groupings are possible. Within the eight Uranian retrogrades, there

are loose families centered on both Sycorax and Caliban; Kavelaars et al. (2004)

and Sheppard et al. (2005) concluded that the clusters are statistically similar in

semi-major axis and eccentricity but not inclination. The Uranian moons are all

named after Shakespearean characters, irrespective of their orbits. Neptune’s single

grouping is comprised of three of the four retrograde satellites (all but Triton), which
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have inclinations near 135◦. The Neptunian irregular satellites other than Triton

and Nereid are named for Nereids, sea nymphs in Greek mythology. Progrades have

names ending in ‘a’ or ‘o’ and retrogrades end in ‘e’ or ‘o.’ As more irregular satellites

are discovered at the ice giants, their families will likely become more distinct and

numerous.

The colors of the irregular satellites fall between neutral (with spectra similar

to the Sun’s) and moderately red (Grav and Bauer 2007; Grav et al. 2004, 2003;

Luu 1991; Maris et al. 2001; Rettig et al. 2001; Tholen and Zellner 1984). Though

colors are not identical among dynamically clustered satellites, Grav et al. (2003)

noted that colors within families are generally more similar to each other than

to colors of satellites in other groups. The colors as well as low albedos (∼0.04-

0.05) of the irregular satellites are similar to those of C-, P-, and D-type asteroids

(Cruikshank 1977; Degewij et al. 1980), Trojan asteroids at Jupiter (Fernández et al.

2003; Fornasier et al. 2004) and Neptune (Sheppard and Trujillo 2006), and comet

nuclei (Jewitt 2005, 2002). However, they are systematically bluer overall than

Kuiper belt objects (KBOs) (Jewitt and Haghighipour 2007). Scattered-disk KBOs,

though, are somewhat less red than cold, classical KBOs (Tegler and Romanishin

2000; Trujillo and Brown 2002) and not as different in color from the irregular

satellites. Sheppard and Trujillo (2006) postulate that because of color similarities,

the small-body populations that may have been trapped or captured into their

current locations (including irregular satellites, Jovian and Neptunian Trojans, and

dynamically-excited KBOs) originated from a similar place in the Solar System. If

true, this conclusion might also imply that bodies comprising these populations were

transported and trapped at the same time in Solar System history.
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1.3 Theories of origin

At least eight different models have been proposed to explain the capture of the

irregular satellites, involving dissipative forces, collisions, resonances, and three-

body effects. Each model has its own strengths and weaknesses.

In one long-standing theory, planetesimals are slowed as they punch through

the gas disk surrounding a young, growing planet (Pollack et al. 1979). For this

mechanism to be efficient, the gas must be sufficiently dense to capture the plan-

etesimals in one pass. This is problematic, however, because if the gas disk does not

rarefy substantially in ∼100-1000 years, the orbits of the new satellites will decay

inward, leading to collisions with the planet or its regular satellites. Furthermore,

the atmospheres of Uranus and Neptune have only a few Earth-masses of hydrogen

and helium at present, so their gas disks could not have been as extensive or long-

lived as those of Jupiter and Saturn. A likely outcome of this model, then, is that

satellite capture should have been different at Jupiter and Saturn than at Uranus

and Neptune; however, current observational estimates suggest roughly equal effi-

ciencies (Jewitt and Sheppard 2005). With a model similar to that of Pollack et al.

(1979), Ćuk and Burns (2004a) found that Jupiter’s largest irregular satellite, Hi-

malia, would evolve inward to its current orbit in 104 − 106 years. This gas disk,

however, may make capture difficult.

In another model, planetesimals are captured when the mass of the planet in-

creases (Heppenheimer and Porco 1977; Vieira Neto et al. 2004). This mass growth

causes the planet’s escape speed to increase, rendering a previously free planetesimal

bound to the planet. For this method to be effective, the planet’s mass must increase

substantially during the time that planetesimals linger near the planet, ∼100–1000

years. However, in most planet formation models (e.g., Pollack et al. 1996), giant
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planet growth is hypothesized to take place on timescales many orders of magnitude

longer than required by this capture scenario. Furthermore, Uranus and Neptune’s

gas deficiency implies that their growth was of very short duration. Thus, our

current understanding of planetary formation makes this model improbable.

The observation that the four giant planets contain approximately the same

number of irregular satellites (accounting for observational biases; Jewitt and Shep-

pard (2005)) has led to a renewal of interest in capture theories that do not depend

strongly on the planet’s formation process. In one such scenario, a planetesimal

collides with a current satellite or another planetesimal in the vicinity of the planet,

resulting in its capture (Colombo and Franklin 1971). Though collisions were cer-

tainly more common in the early Solar System than they are today, if they resulted

in enough energy loss to permit capture, they would likely also have catastroph-

ically disrupted the bodies. Nevertheless, the fragments might then have become

independent satellites.

Astakhov et al. (2003) studied low-energy orbits that linger near Jupiter and

Saturn. While these bodies are not permanently captured, the authors found that

some of them were stable for thousands of years, long enough to allow a weak

dissipative force such as gas drag to complete the capture process. However, the

overall percentage of temporary captures that do not escape is small, and many

of these bodies are threatened by collision with the planets’ large outer regular

satellites (e.g., Callisto and Titan).

Agnor and Hamilton (2006a) examined the capture of Triton from an exchange

reaction between a binary pair and Neptune. Their motivation stemmed from the

newly discovered abundance of binaries in small-body populations. Currently, it

is estimated that binaries account for ∼30% of Kuiper belt objects (KBOs) with

inclinations < 5◦, ∼5% of the rest of the KBOs (Noll et al. 2008), and ∼2% of large
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main belt asteroids (diameters > 20 km; this percentage increases for smaller objects;

Merline et al. (2007)). In Agnor & Hamilton’s capture model, a binary is tidally

disrupted and one of its members, Triton, is captured as a satellite. This process

is most effective for large satellites like Triton, with radius 1350 km. However,

the largest of the other irregular satellites are more than 10 times smaller than

Triton: Himalia at Jupiter is ∼85 km in radius, Saturn’s largest irregular, Phoebe,

is ∼110 km, Uranus’s Sycorax is ∼80 km, and Neptune’s Halimede and Neso are

only ∼30 km each. Capturing these satellites via binary exchange reactions would

be significantly more difficult unless they were originally satellites of a much more

massive primary, as we will discuss further.

Another suggestion involves the possible instability in the orbits of the outer

planets early in the Solar System (e.g., by a 2:1 resonance crossing between Jupiter

and Saturn). Outlining the theory of the Nice model of Solar System evolution,

Tsiganis et al. (2005) have shown that such an event could cause Uranus and Nep-

tune to have many close approaches with each other and with Jupiter and Saturn.

During these encounters, the influence of the massive interloping planet can cause

planetesimals to be stabilized as satellites (Nesvorný et al. 2007). This method is

promising but has an important disadvantage in that Jupiter sustains very few close

encounters relative to the other planets. Thus Jupiter is inefficient at capturing

satellites in this way (Nesvorný et al. 2007).

Vokrouhlický et al. (2008) examined binary exchange reactions during the first

100 Myr after a Jupiter/Saturn 2:1 resonance crossing, using results of the Nice

model to guide their initial conditions. Because planetesimal speeds relative to

the planets are high after the scattering phase of the Nice model, they found that

captures from binaries during that time do not match current orbital parameters

and occur too infrequently to account for today’s populations. They also offer the
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model-independent conclusion that binary capture requires low encounter speeds to

be efficient.

Finally, Gaspar et al. (2010) studied binary capture in the prograde planar case.

They placed binaries on low-speed trajectories and examined the direction of cap-

ture. As expected, tidal disruption preferentially occurred when the two components

were aligned with the planet. In addition, they found that permanent capture oc-

curred most often when the binary was disrupted after it passed between the Sun

and Jupiter in its orbit.

In the next chapter, we introduce our model for irregular satellite capture and

discuss our numerical simulations thereof.
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Chapter 2

Three-Body Capture of Irregular

Satellites

2.1 Capture from 100-km binaries

All of the models outlined in Chapter 1 have promising aspects coupled with impor-

tant limitations. In this work, we seek to combine the best features of several models

into a viable capture scenario. In particular, we examine binaries (as in Agnor and

Hamilton (2006a); Vokrouhlický et al. (2008); and Gaspar et al. (2010)) as a way to

augment capture from low-speed orbits resulting from three-body interactions like

those studied by Astakhov et al. (2003). While Vokrouhlický et al. (2008) studied

exchange reactions in the context of an assumed initial planetesimal population, we

focus on assessing the viability of the mechanism itself. Our goal is to determine

how various parameters of the model affect its plausibility. We examine the process

at Jupiter, as a number of the above models suggest that capturing at the largest

gas giant is especially difficult.

As the largest of the existing irregular satellites are ∼80–110 km in radius, cap-
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ture of objects in this size range is particularly interesting. Since it is likely that

the irregular satellite population contains collisional families (Nesvorný et al. 2003;

Sheppard and Jewitt 2003), it may be the case that only the largest objects were

captured, while the smaller satellites formed later, via collisions. For this reason,

we focus our investigation on capturing the ∼100-km progenitors.

In order to stabilize and shrink the resulting capture orbits, a dissipation source

is required; we suggest a tenuous version of the gas drag originally proposed by

Pollack et al. (1979). Two of Jupiter’s irregular satellites, Pasiphae and Sinope, as

well as Saturn’s satellites, Siarnaq and Narvi, and Uranus’ Stephano are found in

resonances or near-resonances that may require just such a weak dissipative force

(Beaugé and Nesvorný 2007; Ćuk and Burns 2004b; Ćuk et al. 2002; Nesvorný et al.

2003; Saha and Tremaine 1993; Whipple and Shelus 1993).

Furthermore, a tenuous circumplanetary disk is consistent with current theories

of late-stage planetary formation. Jupiter’s massive gaseous envelope of hydrogen

and helium necessitates that it formed in the Solar System’s circumstellar gas disk.

Before the end of its accretion, Jupiter was likely able to open a gap in the local

density distribution of the gas (for a review, see, e.g., Papaloizou et al. (2007)).

After gap opening, gas continues to leak into the planet’s Hill sphere through the

L1 and L2 points, but at a rate much reduced in comparison to the previous epochs.

A tenuous circumplanetary gas disk results (e.g., Bate et al. 2003; D’Angelo et al.

2003; Lubow et al. 1999), from which material may condense and regular satellites

may accrete near the planet (e.g., Canup and Ward 2002; Mosqueira and Estrada

2003).

In Ćuk and Burns’ study (2004a) of the Himalia progenitor’s orbital evolution,

they considered circumjovian nebular conditions consistent with hydrodynamical

simulations of Jupiter’s gap opening in a circumstellar gas disk (e.g., Lubow et al.
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1999) and found the post-capture timescale for evolving this progenitor from its

initial location to its present orbit to be roughly in the range of 104 − 106 years.

This is similar to the timescale in which extrasolar circumstellar disks transition

from optically thick to thin (∼ 105 years; Cieza et al. (2007); Silverstone et al.

(2006); Skrutskie et al. (1990)). The similarity of timescales suggests that satellites

captured at the onset of disk dispersal have a good chance of experiencing stabilizing

orbital evolution while also avoiding collision with the planet.

The timescale for binary capture is very short compared to evolution timescales

from a tenuous gas disk. Therefore, we focus our study first on characterizing

the effectiveness of binary capture in the absence of gas. Further, we assume that

irregular satellites captured during late-stage planetary formation are able to survive

any post-formation planetary migration. This may not be the case if the host

planet has close encounters with other planets (as in the Nice model; e.g., Tsiganis

et al. (2005)). As evidence for planet-planet scattering is inconclusive, especially

for Jupiter, we focus here on examining the binary capture mechanism apart from

migration models.

In the following sections, we critically evaluate our model for capturing irregular

satellites from low-mass (∼100-km) binaries. We begin with a closer examination

of the three-body capture process and then explore parameter space with a large

suite of numerical simulations. While the details of post-capture orbital evolution

are not the focus of this work, we briefly discuss the ability of gas drag to stabilize

orbits in Section 2.10.
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2.2 Three-body capture process

Binary capture first requires a close approach between a binary pair and a planet.

As the pair approaches the planet on a hyperbolic trajectory, its two components

also orbit their mutual center of mass (CM). Hence, each member’s speed with re-

spect to the planet is a vector sum of its CM speed (vCM) and its orbital speed

around the CM. If the binary passes close enough to the planet, it will be tidally

disrupted. Following Agnor and Hamilton (2006a), we make an ‘impulse approxi-

mation’ and assume that disruption is instantaneous, so that the distance at which

tidal disruption occurs (rtd) can be estimated as:

rtd ≈ aB

(
3MP

m1 + m2

)1/3

, (2.1)

where aB is the semi-major axis of the binary, MP is the mass of the planet, and

m1 and m2 are the masses of the binary pair. This tidal disruption radius is the

distance to the planet at which the binary’s mutual Hill sphere rH is no longer larger

than the binary semi-major axis aB.

As a result of the impulse approximation, we also assume that the orbits of

the now-separated components are dictated by their speeds upon disruption. The

maximum speed change of one component (∆v1) is approximately equal to its orbital

speed around the CM:

∆v1 ≈ ±
m2

m1 + m2

(
G(m1 + m2)

aB

)1/2

, (2.2)

where G is the gravitational constant. If the speed of either component (relative

to the planet) is below the planet’s escape speed (vesc) when the binary is split,

that component will be captured. This is most efficient if the incoming vCM is only

slightly faster than the value needed for escape (see Fig. 2.1).
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Figure 2.1 The speeds of unequal-mass binary components (v1 and v2) and the

center-of-mass speed (vCM) relative to Jupiter, where m1 > m2. Since the binary

center of mass approaches the planet along a hyperbolic trajectory, it is always

traveling faster than the local escape speed (vesc). In this example, the smaller

component’s speed dips below the escape speed for a portion of its orbit. If the

binary is disrupted during this interval, the smaller component will be captured

by the planet. Though this is a purely illustrative example, the orbital speeds

correspond roughly to binary components with the masses of Earth and Mars. Note

that the smaller object’s speed drops to about vesc/
√

2, which is sufficient to place

it on a circular orbit at the semi-major axis of Himalia, Jupiter’s largest irregular

satellite. A pair of objects closer to Himalia’s mass, however, would orbit each other

at speeds of only tens of meters per second, allowing capture only to orbits that are

much more eccentric and distant than the actual orbits of the known irregulars.
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The separation of the binary (rB = 2aB, for equal-mass pairs on circular orbits)

plays a key role in determining whether a given encounter will result in capture.

From Eq. 2.2, we can see that a smaller separation imparts a higher speed change

upon disruption, increasing the probability of capture. However, the separation

must be large enough that the binary can actually be disrupted. Equation 2.1

indicates that, not surprisingly, a large separation makes the binary easier to split.

The separation that optimizes capture, then, is one just wide enough that the binary

is disrupted. In addition, the tidal radius is important: the speed change needed

for capture (vCM − vesc, the difference between the two horizontal lines in Fig. 2.1)

decreases for closer approaches. Thus deeper encounters are more likely to lead to

captures.

In much of the current work, we consider the simplified case where Jupiter orbits

the Sun along a circle. In this case, the Jacobi constant (CJ) for the planet-Sun-

interloper three-body problem is a very useful predictor of the interloper’s potential

for capture, taking on the role of v∞ from the two-body approximation. In a frame

rotating with Jupiter’s orbit around the Sun,

CJ = n2(x2 + y2) + 2

(
1− µ

r�
+

µ

rP

)
− ẋ2 − ẏ2 − ż2, (2.3)

where n is the planet’s orbital mean motion, x and y are coordinates of the inter-

loper’s position and ẋ, ẏ, and ż are coordinates of its velocity. In addition, µ =

MP

M�+MP
(with M� the mass of the Sun and MP the mass of the planet), and r� and

rP are distances from the interloper to the Sun and planet, respectively. The Jacobi

constant is given here in dimensionless units in which G, the Jupiter-Sun distance,

and the sum of the solar and jovian masses are equal to 1.

Although our model contains four bodies, and the Jacobi constant is a three-

body construct, it is an excellent approximation to consider the CM of the binary
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as one body moving in the Sun-Jupiter system up until the point of disruption. The

gravitational energy between the binary components is negligible after they separate.

Thus after disruption, we essentially have two separate three-body problems, one

for each binary component, and we can make use of the Jacobi constant throughout

the entire simulation.

If CJ ≥ CJ,crit, the critical value for capture, bodies in the vicinity of the planet

are bound by so-called zero-velocity curves (ZVCs) that enclose Jupiter and con-

strain particle motions (Fig. 2.2). For Jacobi constants lower than CJ,crit (i.e., higher

energies), one large zero-velocity curve surrounds both Jupiter and the Sun and

bodies can enter and exit Jupiter’s Hill sphere freely. The critical Jacobi constant

represents the boundary between these possibilities. Murray and Dermott (1999)

give its value: CJ,crit ≈ 3 + 34/3µ2/3 − 10µ/3. For the Jupiter-Sun system, which

is the focus of the current work, µ = 9.53 ×10−4 and CJ,crit ≈ 3.0387. At the L1

Lagrange point, an orbit with CJ = CJ,crit would have speed vL1 = 0, while orbits

with smaller CJ would have vL1 =
√

CJ,crit − CJ . This speed, vL1 , can be considered

an analog to v∞ from the two-body case.

Figure 2.3 illustrates a typical capture involving Jupiter. In the bottom panel,

the Jacobi constant of the binary pair prior to its split is lower than the critical

value, meaning that initially, the binary has too much energy to be bound. The

small oscillations in the bodies’ pre-disruption CJ are due to gravitational interac-

tions between the binary components. At the time of disruption (t ≈ 8 yr), one

component sharply gains energy (CJ decreases), while the other component experi-

ences a corresponding energy loss (CJ increases). In this example, one component’s

final CJ is higher than the critical value, signifying that it is permanently bound to

Jupiter. Though the Jacobi constant is very valuable when considering a circularly

orbiting Jupiter, a disadvantage is that it cannot be extended to cases with non-
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Figure 2.2 The Hill sphere of Jupiter (central dot marked ‘J’) with zero-velocity

curves (ZVCs) corresponding to the labeled Jacobi constant (CJ) values. The Sun

is to the left at (0,0) and the Jupiter-Sun separation (aJ) is used as the unit of

distance. The two asterisks are located at the planet’s L1 (0.933, 0) and L2 (1.070,

0) Lagrange points. The critical Jacobi constant (CJ,crit ≈ 3.0387) separates orbits

bound to Jupiter (CJ > CJ,crit) from those free to escape (CJ < CJ,crit).
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Figure 2.3 Distance from the binary components (each 225 km in radius) to Jupiter

(r) is plotted in units of the tidal disruption radius (rtd ≈ 65 RJ) in the top panel;

the middle panel shows the binary’s separation (rB) over time, in units of its initial

separation (2aB ≈ 65 RB); and the bottom panel displays the Jacobi constant of

each component. The binary’s initial CJ corresponds to vL1 = 0.6 km/s. The speed

change upon disruption is approximately equal to the binary’s mutual orbital speed

(≈23 m/s). One component is plotted with a solid line and the other with a dotted

line throughout the figure. Dashed lines indicate the tidal disruption radius (top

panel) and critical Jacobi constant (bottom panel).
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zero planetary eccentricity. In this work, we make the simplifying assumption that

eJ = 0 (rather than the true value of ∼0.048) in order to better elucidate important

physics of the problem.

In Fig. 2.4, we plot the orbits of the binary components shown in Fig. 2.3. Low-

speed orbits like these are characterized by multiple close passes by the planet (cf.

Hamilton and Burns 1991). The separation is disturbed by the strong tidal force

during each of these passes, but the binary splits only after it comes within the tidal

disruption radius (see top and middle panels of Fig. 2.3).

The binary capture mechanism is most effective at producing permanent or long-

lived captures if i) the mutual orbital speed of the binary is high, and/or ii) the

encounter speed is low. Agnor and Hamilton’s (2006a) work examined Neptune’s

moon Triton, which is somewhat of a special case because it fulfills both of these

criteria – its size means that its orbital speed around a close companion would be

high, and typical encounter speeds at Neptune in the early stages of planet formation

are relatively low.

The direct three-body capture mechanism is much less effective for most other

irregular satellites which are ∼100 km or smaller in radius. Furthermore, due to

Jupiter’s size and proximity to the Sun, encounter speeds at the semi-major axes of

its irregular satellites are relatively fast, vCM ≈ 3 km/s. To produce a large enough

energy change for capturing directly to the current satellites’ locations, binary com-

ponents must be orbiting each other at speeds comparable to their encounter speeds.

This would require binary companions of order Mars- or Earth-sized (Agnor and

Hamilton (2006b); see Fig. 2.1) – an uncommon occurrence even in the early Solar

System.

Accordingly, in this work, we relax the requirement that moons are captured

directly to their present orbits. In the example discussed above (Fig. 2.4), which
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Figure 2.4 The orbits of the binary components discussed in Fig. 2.3, in a frame co-

rotating with Jupiter’s orbit around the Sun. Jupiter is the dot near the center of

each panel, and the Sun is located to the left at (0,0). The components are plotted

together in the top panel, with solid/dotted lines corresponding to those in Fig. 2.3.

The objects are bound to each other as they approach Jupiter from the left side of

each panel. A close approach to the planet tidally disrupts the binary, sending one

component (dotted line) out of the system and causing the other component (solid

line) to be permanently captured by the planet. The bottom panel contains only

the orbit of the component that escapes, with an arrow marking the location where

the binary’s separation first exceeds 102% of its original value. About equidistant

on the other side of the planet, the binary’s separation is more than twice its initial

value.
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is typical, the final orbit of the captured satellite extends almost to Jupiter’s Hill

radius (rH), whereas the actual satellites at Jupiter are significantly more tightly

bound. We investigate the idea that the objects were first captured to these distant

orbits and a subsequent period of orbital evolution (e.g., by weak gas drag) led them

to their current configurations.

The post-capture evolution is a key component in our model because it allows for

capture from small binary pairs, even though they deliver satellites to very distant

orbits. Binaries with primaries of order 100 km were certainly much more numerous

than those with planet-sized primaries, even in the early Solar System. Models that

rely on gas drag for capture (e.g., Pollack et al. 1979) require both i) dense gas (to

enable capture) and ii) rapid dispersal (to prevent satellite loss to the planet). By

contrast, our model requires no gas for capture and puts only weak constraints on

gas required for orbital evolution. In particular, we require only that the product

of the gas density and its residence time around Jupiter be large enough that the

requisite amount of evolution can occur.

2.3 Numerical model

The goal of this work is to characterize the overall effect of binaries on the probability

of capturing bodies on planet-crossing paths. We focus primarily on captures at

Jupiter, which has the most irregular satellites and has many sources of small bodies

nearby. Also, as discussed above, three-body capture at Jupiter has been shown to

be difficult because of the planet’s large size and the fast encounter speeds for

approaching bodies. Thus these simulations provide a stringent test of our model.

Our integrations include the Sun, Jupiter, and a binary or single object, in

a planet-centered frame. In order to examine binaries’ effectiveness at producing
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long-lived captures, we compare them to captures of single-body interlopers. While

only tidally disrupted binaries can be captured permanently, unbound single bodies

can remain near the planet for long periods of time (e.g., Astakhov et al. 2003). We

define a ‘capture’ to be a body that remains near Jupiter for 1000 years, the duration

of each simulation. This choice of duration is long compared to the crossing time of

Jupiter’s Hill sphere. Furthermore, we define ‘binary capture’ to mean capture of

one or both of the bodies that originated together as binary components. Note that

these definitions encompass both permanent (energetically bound) and long-lived

temporary captures. With captures of single bodies as a baseline, we are able to

measure the enhancement due to binaries.

Our simulations are performed with HNBody, a hierarchical N-body integration

package, and HNDrag, a companion code for applying non-gravitational forces to

the particles and for detecting close approaches (Rauch and Hamilton 2002). For

most of this work, we use only the close-approach detecting capabilities of HNDrag

and include only gravitational forces. HNBody contains three types of integrators:

symplectic, Bulirsch-Stoer, and Runge-Kutta. Bulirsch-Stoer and Runge-Kutta are

adaptive-stepsize integrators for which unperturbed trajectories are straight lines

and all relevant forces (i.e., gravity from Jupiter and the Sun, and all other pertur-

bations) are applied to bend the orbit to its true path. The symplectic integrator

begins with the assumption of an elliptical trajectory and corrects for the particle’s

true path by applying only the perturbation forces. For this reason, the symplec-

tic integrator is generally much more efficient than the other two when integrating

lightly perturbed orbits. However, in our tests, we determined that the adaptive-

stepsize Bulirsch-Stoer integrator is much more efficient than the fixed-stepsize sym-

plectic integrator here because while a small stepsize is needed initially to resolve the

orbital motion around the binary CM, it can be greatly increased after disruption.
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Thus we use HNBody’s Bulirsch-Stoer integrator, with a specified accuracy of one

part in 1014.

We ran about 200 sets of three- or four-body simulations examining a range

of Jacobi constants for each interloper (2.95–3.037, corresponding to a range of vL1

from 3.9 to 0.5 km/s), as well as varying the binary components’ radii (65-, 100-, and

125-km) and separations (1–1000 body radii). Initially, all of the binaries were given

equal-sized components. For each set of parameters, we generated 10,000 binaries or

single objects, for a total of ∼2×106 simulations, each following the bodies for 1000

years. We started all of the interlopers of a given set at the same distance from the

planet, ranging from 1.0 to 1.4 rH . (Section 2.7 contains a discussion of the effects of

starting distances on capture statistics.) The choice of Jacobi constant and starting

distance constrains the possible initial positions of the binary CM. Figure 2.2 shows

Jupiter’s Hill sphere overplotted with ZVCs corresponding to the Jacobi constants

that we studied. Bodies are energetically unable to cross their zero-velocity surfaces,

and thus starting with, say, CJ = 3.037 at 1.0 rH from the planet restricts the body’s

initial position to the two small ‘endcaps’ of the Hill sphere along the Jupiter-Sun

line. For smaller CJ , these allowed areas are larger, and they finally encompass the

entire Hill sphere for CJ
<∼ 3.025. The bodies’ initial speeds are also constrained by

the specified Jacobi constant, and we chose the velocities to point in random inward

directions.

For simplicity, we set the binary components to orbit each other on circles. El-

liptical binary orbits would give a smeared-out distribution of energy changes from

disruption of a given trajectory; although we have not tested this carefully, we sus-

pect that binary eccentricities would have only a minor effect on our results. We

have also chosen the binary angular momentum to be perpendicular to Jupiter’s

equatorial plane. Though this choice of angular momentum influences the final dis-
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tribution of capture rate vs. inclination, we will see later (Section 2.7) that other

effects have a greater impact on the final inclination distribution and that we cannot

compare rates across inclinations for multiple reasons. We ran each initial condi-

tion with five different binary orbital phases (equally spaced mean anomalies) and

averaged all capture statistics over the five phases. Throughout the simulations, we

monitored the bodies, weeding out very close approaches between any two objects

and noting each body’s close approaches to Jupiter. (Collisions between binary

members do occur, but these are rare and of limited interest, since the merged ob-

ject simply behaves as a single interloper with the same CM speed.) To shorten the

computational time required, we stopped integrations in which all of the incoming

objects traveled further than 2–5 Hill radii from Jupiter, depending on the bodies’

starting distance from the planet.

2.4 Relationship between inclination and CJ

In our simulations, we find that the inclination of the approach trajectory is corre-

lated with the initial Jacobi constant, which is helpful in providing physical intuition

for the meaning of CJ . This correlation was first noticed numerically by Astakhov

et al. (2003); here we confirm their finding numerically and provide an analyti-

cal explanation. Fig. 2.5 displays this CJ -inclination relationship. We see a clear

correlation of CJ with mean inclination: lower Jacobi constants are indicative of

retrograde orbits, while prograde orbits have larger CJ . For clarity, the plot shows

only a representative population of bodies: 100-km binary members that result in

a capture, with inclinations calculated at the closest approach of each body’s first

pass by Jupiter. However, the relationship holds for all close approaches of binaries

or single objects, captured or not. This plot provokes two main questions: what is
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Figure 2.5 Inclination of 100-km captured binary components as a function of initial

Jacobi constant, plotted for the bodies’ first close approaches. Similar plots show

that the relationship holds for all close approaches of binaries or single bodies,

captured or not. Also plotted is a line connecting the mean at each Jacobi constant

(marked by the stars) as well as 1-σ error bars.
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the physical cause of this trend and why is there such high scatter in inclination at

a given Jacobi constant? We address the question of scatter first.

One complexity in making this plot is that all orbital elements, including inclina-

tion, are poorly defined at large distances from Jupiter, as solar tides are comparable

to Jupiter’s gravity at the Hill sphere. Accordingly, we were careful to calculate the

inclinations only at orbital pericenter where solar tides are weakest so that inclina-

tion is always well-defined. Poorly-defined orbital elements, therefore, are not the

source of the scatter in Fig. 2.5. Furthermore, the variations look nearly the same

when we plot single objects rather than binaries, which is expected since disrupting

the binary results in an energy change that only slightly alters CJ (e.g., Fig. 2.3).

Finally, the scatter is present even when we consider one individual object’s multiple

pericenter passages rather than those of an ensemble of objects. Thus the spread in

inclination is real, and it is due to the response of a single captured object to the

solar tidal force.

The scatter in inclination as well as the inclination-CJ trend can be understood

analytically by writing the Jacobi constant in terms of planetocentric orbital ele-

ments rather than the heliocentric orbital elements used in deriving the standard

Tisserand constant (Murray and Dermott 1999). We begin with the planet-centered

‘generalized Tisserand constant’ derived in Hamilton and Krivov (1997) (their Eq.

4) and neglect the solar tidal term since it is complicated and unimportant at peri-

center where we measure inclination. We then non-dimensionalize the equation

as in Section 2.2 (setting G, the Jupiter-Sun distance, and MS+MJ equal to 1),

and finally, to conform to standard usage (Murray and Dermott 1999), we add the

constant 3 to the final result and find:

CJ
′ = 3 +

31/3µ2/3

ā

1 + 2

(
ā3(1− e2)

3

)1/2

cos(i)

 , (2.4)
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where µ is the mass ratio as defined above; ā = a/rH ; and a, e, and i are the captured

satellite’s semi-major axis, eccentricity, and inclination, respectively. Because we

have neglected the solar tidal term and used planetocentric orbital elements, this

expression is valid only near the planet where solar perturbations are weak.

For close orbits of the planet (ā << 1), orbit-averaging the effects of the tidal

force shows that the semi-major axis ā remains constant. Accordingly, Eq. 2.4

leads directly to the Kozai constant, K =
√

1− e2 cos(i). This constant explains

the coupled oscillations in eccentricity and inclination that characterize the Kozai

resonance. If K were precisely conserved, orbits would not be able to switch between

i < 90◦ (which have K > 0) and i > 90◦ (which have K < 0). We do, however, see

such prograde-to-retrograde transfers, which indicates that, as expected, neither ā

nor K is constant for our distant orbits (see, e.g., Hamilton and Burns 1991). In

addition, at apocenter where the solar tidal force is strongest, the orbital elements

themselves are poorly defined and Eq. 2.4 is only approximate. Thus between each

pericenter passage, the orbital elements (including inclination) are scrambled by the

solar tidal force leading to dispersion like that seen in Fig. 2.5.

The trend observed in Fig. 2.5, decreasing inclination for increasing Jacobi con-

stant, is neatly explained by Eq. 2.4. Testing the equation quantitatively, we esti-

mate ā = 0.5 and e = 0.7 for a typical orbit of a body captured at Jupiter (e.g.,

Fig. 2.4). A purely prograde orbit (i = 0) gives CJ
′ = 3.036, while a purely retro-

grade orbit (i = 180◦) gives CJ
′ = 3.020. These values roughly correspond to the

range of Jacobi constants seen in Fig. 2.5, despite the major approximations that

we have made. The inclination-CJ correlation is strong enough that we will often

use the term prograde to refer to orbits with CJ ∼ 3.03, and retrograde to mean

CJ ∼ 3.01.
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2.5 Modes of capture

For each binary-planet encounter, there are four possible outcomes: 1) neither com-

ponent captures (hereafter known as ‘0C’), 2) one component captures (‘1C’), 3)

both components capture together as an intact binary without splitting apart (‘2C-

BIN’), or 4) the binary is disrupted and both components capture individually (‘2C-

IND’). Recall our operational definition of ‘capture’ to mean bodies remaining near

Jupiter for 1000 years. The frequency of each type of outcome depends on the

characteristics of the binary. Fig. 2.6 shows the outcomes that result in a capture

(i.e., 1C, 2C-BIN, and 2C-IND) for 65-km binary pairs with initial CJ = 3.037, as a

function of the initial separation, rB, of the binary. (We later generalize to examine

other masses and Jacobi constants.) The separation can be altered significantly

prior to disruption during close approaches to the planet (e.g., Fig. 2.3). The num-

ber of captures for a set of single objects is also plotted for comparison; these must

be temporary captures since there is no energy loss.

The rate of 2C-BIN captures is largest when the separation is small (and thus

the components are tightly bound to each other). For small-enough separations, the

tidal disruption radius is so close to the planet that very few binary orbits cross it

(see Eq. 2.1). Here, most of the binaries remain intact, and the 2C-BIN rate nearly

matches that of the single objects. When we increase the binary separation, more

binaries are split, and the 2C-BIN capture percentage monotonically drops to zero,

as expected.

Disrupting binaries leads to more possibilities for capture of individual objects.

Accordingly, as the separation increases, the 1C and 2C-IND capture rates rise from

zero. For the 1C population of 65-km objects with CJ = 3.037, there is a peak in

capture efficiency of ∼5 times that of a single body at a separation of ∼20 body
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Figure 2.6 Three modes of capture for integrations of RB = 65-km binary pairs

with CJ = 3.037, as a function of the separation of the binary (rB): one component

captures (‘1C’), the binary splits and both capture independently (‘2C-IND’), or

the binary remains bound and captures as a pair (‘2C-BIN’). We plot the capture

percentage for objects (rather than binaries) to facilitate comparison with single

bodies (upper solid line). Recall our working definition of capture to mean bodies

still orbiting the planet after 1000 years. Note that the 2C-BIN curve approaches the

value for singles at small separations while the sum of the 1C and 2C-IND captures

rates approaches the same value for large separations.
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radii (RB). This separation represents the optimal balance between disrupting a

high percentage of the binaries and delivering the most energy upon disruption.

The optimum separation varies depending on the mass of the binary. At larger

separations, the binding energy decreases, leading to smaller energy kicks and a

diminished capture rate.

The 2C-IND percentage has a peak at the same separation as the 1C group.

These binaries likely split during orbital phases where the energy is distributed

almost equally between the components, with v1 ≈ v2 ≈ vCM (see Fig. 2.1). The

number of 2C-IND captures is never more than a few percent of the 1C captures,

but the two populations peak at rB ∼ 20 RB for the same reasons. Binaries with

still wider separations are disrupted with a smaller energy change. Because of this,

the two components are more likely to have similar energies and post-disruption

fates, causing an increase in 2C-IND captures at larger separations.

Unlike the case for 1C and 2C-IND capture where energy is lost and capture can

be long-lived or even permanent (as in Fig. 2.3; note only one member of a 2C-IND

binary can be permanently captured), capture of singles or intact binaries (2C-BIN)

is necessarily temporary. This could be an advantage for 1C captures, which have

more stable, lower-energy initial capture orbits. The details of the final comparative

satellite yields depend on the subsequent orbital evolution, which is determined by

the gas present at the time of capture and its dissipation timescale.

2.6 Effects of binary mass and orbital separation

Having explored the physical meaning of CJ and the possible types of captures, we

now discuss the results of the numerical simulations. In this section, we consider

cases of equal-mass binaries encountering Jupiter with the planet on a circular or-
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bit, and we examine the effects of the bodies’ masses, binary separations, and initial

Jacobi constants. We performed integrations over a range of Jacobi constants: 2.95

≤ CJ ≤ 3.037, where CJ ≈ 3.0387 is the critical value above which transfer orbits

between Jupiter and the Sun are impossible (see Fig. 2.2). For CJ ≤ 2.99 (cor-

responding to a vL1 of 2.9 km/s), no captures resulted for any of the parameters

we tested, although capture at these low Jacobi constants could certainly occur for

larger-mass binaries. For now, we consider the fate of bodies started from the Hill

sphere (following Astakhov et al. (2003)); in Section 2.7, we discuss the importance

of alternative starting distances.

In discussing our results, we refrain from using orbital elements and instead

describe the capture orbits in terms of their initial Jacobi constants. We do this

because the energy change imparted upon disruption is very small and leads to

highly extended orbits with poorly defined orbital elements (see, e.g., Fig. 2.4).

We examined masses corresponding to pairs of objects each with radii 65-km,

100-km, and 125-km (assuming a density of ∼2 g/cm3). Fig. 2.7 displays the results

of these mass studies. We see that capture rates increase for higher masses: the

125-km capture rate is slightly higher than the 100-km rate throughout the range

of Jacobi constants, and they differ most significantly from 65-km binary pairs for

CJ > 3.03.

For single objects, mass has no effect on capture probability, but for binaries,

larger total mass leads to more rapid orbital speeds and a higher speed change

upon breakup. This can be seen by eliminating aB from Eqs. 2.1 and 2.2, with

mass ratio ( m2

m1+m2
) and tidal disruption distance (rtd) held constant; the result is

∆v1 ∼ (m1 + m2)
1/3. Accordingly, larger masses generally lead to increased capture

rates.

Another important result is that capture rates from binaries are extremely sen-
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Figure 2.7 Capture percentages for binaries of different masses compared to single

objects. All bodies were started on Jupiter’s Hill sphere. For each binary mass,

a single separation was used over the range of initial Jacobi constants: 471 km =

7.25 binary radii (RB) for the 65-km binaries, 1225 km = 12.25 RB for the 100-km

set, and 1512 km = 12.10 RB for 125-km binaries. These separations give near

maximum capture rates for the majority of the Jacobi constants tested, with the

exception of the highest CJ , where the optimum separation is closer to 20 binary

radii for all tested sizes.
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sitive to the binary’s separation, rB = 2aB. For each of the masses we examined, we

determined the optimum separation of the binary required to achieve the maximum

capture probability. We used Eqs. 2.1 and 2.2 to guide our separation selection,

and we integrated each point on Fig. 2.7 with several different binary separations

to determine the optimal value.

In Fig. 2.7, we have plotted statistics using a single separation for each mass

over the range of Jacobi constants. For most of the Jacobi constants studied for

a given mass, the optimal separations are very similar, ∼10 RB. An important

exception is for the highest CJ value tested, 3.037 (recall that this corresponds to

mostly low-speed prograde encounters – see Fig. 2.5), which had maximum captures

at a larger separation (∼20 RB) than the typical optimal value. Because we have

not plotted this optimal value in Fig. 2.7, the curves decline sharply at CJ = 3.037.

As is clear from Section 2.5, optimizing the separation makes a significant difference

in capture rate, especially for binaries whose CJ values are close to the capture

threshold. Changing from ∼10 RB to the optimal 20 RB for CJ = 3.037 increases

the capture percentage from ∼2% to ∼10% (100-125 km objects) and ∼1% to ∼3%

(65-km, see Fig. 2.6).

Binary capture rates also appear to depend strongly on initial Jacobi constant.

It is tempting to compare capture efficiencies for low and high Jacobi constants

(retrograde and prograde orbits). A direct comparison of these rates, however,

cannot be made for reasons that will become apparent in the next section. We can,

however, compare the binary statistics to those of single objects. The bodies that

originate in binaries capture with similar rates as the single objects below CJ ≈

3.015 (Fig. 2.7), but as CJ increases, the effects of the binaries become more visible,

rising by an order of magnitude in efficiency at delivering objects to Jupiter. One

reason for this is probably that the retrograde binaries are harder to split than

40



progrades because of their orientation to the planet (Hamilton and Burns 1991).

Another explanation, particularly for the highest initial Jacobi constants, is that

these encounters are close to the critical energy barrier for capture, and so the

energy change from disruption of the binary is more likely to result in capture.

2.7 Effects of starting distance

2.7.1 Contamination from bound retrograde orbits

Thus far we have discussed results from initial conditions that launch objects from

the Hill sphere. In the course of this study, we discovered that the choice of starting

distance can significantly affect the capture statistics. While the Hill sphere is

defined as a rough stability boundary beyond which the Sun’s tidal influence is

stronger than the planet’s gravity, in practice, stable retrograde orbits can extend

out to distances slightly beyond the Hill radius (see, e.g., Hamilton and Burns

1991). In contrast, stable prograde orbits (e.g., Fig. 2.4) are always well within the

Hill sphere. Starting the integrations with bodies on the Hill sphere, then, risks

starting on an already-stable retrograde orbit. This causes ambiguity in the capture

statistics—which orbits were always near Jupiter and which truly came in from

infinity?

We demand that true captures originate in heliocentric orbit and transition to

planet-centered orbits, remaining for at least 1000 years. To differentiate between

these and misleading ‘captures’ from bodies that are already orbiting the planet

at the beginning of our integration, we took the single-body capture orbits and

integrated the initial conditions backwards in time for 1000 years. We then separated

the captures that came in from infinity and those that were always present near the

planet. We found that when starting on the Hill sphere, most of the resulting
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retrograde captures of single objects at low CJ had always been orbiting the planet

and were in fact not true captures.

We examined several other launch distances and determined that starting from

1.1 Hill radii (rH) and beyond eliminates nearly all contamination from already-

stable retrograde orbits. Figure 2.8 compares the capture rates for single objects

beginning from 1.0 rH and 1.1 rH . We see that while the high-CJ captures are

uncontaminated, launching from 1.0 rH for CJ < 3.03 leads to many false captures.

In fact, over one-third of all 1.0 rH captures are contaminations. (This fraction

is much smaller for binaries, where there are many more prograde captures than

retrograde.) When the objects are launched from 1.1 rH , we see no artificial captures

at all. Similar tests at 1.2 rH and 1.4 rH also show no false captures. Although

stable orbits do exist to these and larger distances (Hénon 1969), they are apparently

extremely rare.

2.7.2 Scaling to different starting distances

So, is it safe to compare prograde and retrograde capture statistics for starting

distances beyond 1.1 rH? Starting outside the Hill sphere results in a decrease

in true captures over the full range of CJ (as seen in Fig. 2.8). This is expected,

because fewer of these bodies experience close approaches with the planet. However,

prograde captures are more drastically reduced than retrogrades. Determining the

reason for this is critical to answering our question.

At high Jacobi constants ( >∼ 3.03, which correspond to mostly prograde orbits),

the binary’s ZVCs are closed around the planet except for only a small neck on either

side of Jupiter, toward and away from the Sun (see Fig. 2.2). In contrast, lower

Jacobi constants (and thus retrograde orbits) allow for more freedom of movement

in the region between the Sun and Jupiter. Retrograde orbits can approach the
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Figure 2.8 Single objects integrated from two launch distances. True-capture curves

(with points that are solid circles) show only those captures that originated far from

Jupiter, while curves that show true plus contaminated captures (with open trian-

gles) also include objects that were stably orbiting the planet at the beginning of the

integrations. For launch on the Hill sphere (1.0 rH), we see that the prograde orbits

(high CJ) are not affected at all, while most of the retrograde orbits (low CJ) are

discovered to be false. For launches at 1.1 rH , the true and true-plus-contaminated

curves overlap completely, showing that contamination by false captures is effectively

zero.
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planet from all directions, while progrades are limited to the entering via the narrow

ZVC necks. Starting further than the Hill sphere means that a smaller fraction of

the initial prograde trajectories pass through the zero-velocity necks and approach

Jupiter, resulting in a decrease in captures. We tested the hypothesis that the shape

of the prograde ZVCs is the primary reason for the decrease in prograde captures

with the following procedure:

1) Determine the capture rates starting from 1.1 rH and 1.2 rH .

2) Determine the crossing rate of 1.2 rH orbits inside 1.1 rH .

3) Scale the 1.1 rH capture rate by the crossing rate from step (2).

We use the statistics for 1.1 rH and 1.2 rH because they are free from any contam-

ination from the false retrograde captures discussed above. The result of step (3)

is what we expect the 1.2 rH capture percentages would be if the ZVC shapes are

the reason for the decline in prograde captures from 1.1 rH to 1.2 rH . Comparing

these scaled capture rates with the actual 1.2 rH percentages (as shown in Fig. 2.9),

we see that this scaling accounts for most of the difference between the two capture

rates, to within 20%. This indicates that our prediction is valid.

In principle, these results also account for the reduction in true retrograde cap-

tures, but the number statistics are so low for retrogrades at these launch distances

that the actual and scaled capture percentages are equivalent to within the error.

We find, then, that because of the differing geometries of their ZVCs, we cannot

directly compare prograde and retrograde statistics. This is true even when starting

beyond the limit for already-stable retrograde orbits, chiefly because prograde orbits

are so sensitive to their initial distance. To circumvent this effect, we would have to

start far enough away from the planet that further increasing the starting distance

would result in an equal fractional decrease in captures for retrogrades and progrades

– in other words, where the geometry of the prograde ZVCs is no longer the dominant
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Figure 2.9 Capture rates of 100-km binaries that were launched from 1.1 rH (upper

dashed line), 1.2 rH (solid line), and expected capture rates for 1.2 rH (dotted line)

calculated by scaling the 1.1 rH rates by the percent of 1.2 rH trajectories crossing

interior to the 1.1 Hill radii. All are shown with 1-σ error bars. This scaling

equalizes the capture percentages between the two launch distances to within 20%.

For reference, the capture rate for single bodies starting from 1.1 rH is also plotted;

compare with Fig. 2.7.
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reason for the decrease. Our simulations, out to 1.4 rH , did not reach this threshold

and were limited by number statistics. We anticipate that comparing prograde and

retrograde captures would require starting still further from the planet than our

trials, and would demand much larger initial populations.

2.7.3 Starting from 1.1 rH vs. 1.0 rH

Launching binaries from 1.1 rH rather than 1.0 rH results in an overall decrease

in captures for the reasons described above, but many of the characteristics of the

capture orbits remain relatively unchanged. For example, the inclination distribu-

tion for the 1.1 rH captures is almost identical to the 1.0 rH population plotted in

Fig. 2.5. Also, comparing Fig. 2.9 with Fig. 2.7, we see that the trend in the capture

percentage with CJ of the 100-km binaries at 1.1 rH and 1.0 rH are generally similar.

Figure 2.10 displays the modes of capture vs. Jacobi constant for 100-km binaries

and single objects starting from both 1.0 rH and 1.1 rH . With a starting distance

of 1.1 rH , the capture rate below CJ = 3.02 is close to zero for all curves. This

is because the 1.0 rH captures in this range were likely artificial retrogrades that

are eliminated when starting from 1.1 rH . Above CJ = 3.02, the curves are all

diminished by a roughly comparable amount on the 1.1 rH plot as compared to the

1.0 rH version.

We note that other groups (including Astakhov et al. (2003) and Astakhov and

Farrelly (2004)) have initiated bodies from the Hill sphere without considering how

this affects the resulting statistics, most notably that many of their retrograde en-

counters are started on already-stable orbits. For future studies of capture near

Jupiter, we recommend the following procedure: 1) generate bodies starting from

1.0 rH , 2) integrate each body backwards in time, 3) eliminate those that remain

near the planet when integrated backwards, and 4) integrate the remaining bodies

46



3.01 3.02 3.03

0

0.2

0.4

0.6

0.8

Single

1C

2C-BIN

Retrograde Prograde

Jacobi constant

3.01 3.02 3.03

0

0.2

0.4

0.6

0.8

Single

1C

2C-BIN

Retrograde Prograde

Jacobi constant

Figure 2.10 Modes of capture vs. Jacobi constant, for integrations of 100-km binaries

starting at 1.0 rH (left panel) and 1.1 rH (right panel). The 1C-curve peaks (both at

CJ = 3.035) are off the top of the plot at ∼4.2% for the 1.0 rH runs and ∼3.0% for

the 1.1 rH group. The 2C-IND capture rates are extremely small for both starting

distances (e.g., Fig. 2.6) and, for clarity, are not plotted here. The capture rates of

single bodies are plotted for comparison.
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in normal time direction. The benefits of this approach over simply starting from

1.1 rH are that it eliminates all stable-retrograde contamination while preserving

high number statistics. Note, however, that this procedure still does not allow a

valid comparison between prograde and retrograde statistics. To obtain the true

ratio of captured progrades and retrogrades, it would probably be best to start the

interlopers on heliocentric orbits.

2.8 Scaling to unequal binary masses

The impulse approximation (Eqs. 2.1 and 2.2) implies that a binary component’s

likelihood of capture depends only on 1) the binary’s tidal disruption radius and 2)

the component’s instantaneous speed, v, at the time of disruption. Accordingly, for

any mass ratio m1 : m2 and semi-major axis aB, we can find an equal-mass binary

with the same rtd and the same component speeds as m1 and another equal-mass

binary that matches these values for m2. Setting rtd and v equal for the two mass

ratios, we solve for the component mass, m′, and the semi-major axis, aB
′, of the

equal-mass binary matching m1:

m′ =
4m2

3

(m1 + m2)2
(2.5)

and

aB
′ = aB

(
2m2

m1 + m2

)
. (2.6)

The problem is symmetric, so for the equal-mass binary matching m2, we simply

exchange m1 and m2 in the above equations.

We tested these predictions for 3:2 and 4:1 mass ratios and display the results in

Table 2.1. Each of the equal-mass components captures with the same efficiency (to
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Table 2.1. Mass ratio tests for binaries with CJ=3.03

Mass Component Total Binary Separation m1 Capture m2 Capture Total 1C Capture
Ratio Radii (km) Mass (1019kg) (km) Percentage Percentage Percentage

3:2 113-98 2.0 1350 0.54 0.96 1.50
1:1 85-85 1.0 1080 0.58 0.58 1.16
1:1 127-127 3.4 1620 0.94 0.94 1.88
4:1 124-78 2.0 1160 0.21 1.17 1.38
1:1 42-42 0.13 465 0.24 0.24 0.48
1:1 169-169 8.1 1860 1.29 1.29 2.58

Note. — Two experiments with binaries of unequal mass. The first four columns identify properties
of the binary, while the final three columns list capture statistics (with m1 ≥ m2). We used the impulse
approximation (Eqs. 2.1 and 2.2) to determine the properties of equivalent equal-mass binaries that
match the tidal disruption radius and speed of either m1 (boldfaced) or m2 (italicized). In all cases,
our predicted percentages agree with the actual measurements to within about 10%.

within 10%) as either m1 or m2. This is strong validation of the impulse approxima-

tion. This sort of scaling requires, of course, that the binary be split and therefore

applies only to our 1C and 2C-IND results. By contrast, undisrupted binaries (2C-

BIN) behave as single objects and have a capture efficiency that is independent of

mass.

The impulse approximation allows us to make other predictions as well. For

example, we can reverse the above scenario and predict the capture rates of two

equal-mass binaries corresponding to one unequal-mass pair for which the capture

rates of each component are known.

Further, given the capture rate for a single equal-mass binary, we can predict

the capture efficiency of one component of an unequal-mass pair, if one parameter

of the unequal-mass binary (m1, m2, m1 + m2, or aB) is set. This means that each

equal-mass pair matches to a whole family of unequal-mass binaries.

Finally, we can extend these techniques to guide large-scale simulations. Using

the impulse approximation, and given equal-mass capture statistics for all combi-
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nations of relevant masses and separations, we can predict the capture rates for all

unequal-mass binaries – with any mass ratio, total mass, and separation. Similarly,

knowledge of unequal-mass capture rates for one component of a binary with a fixed

mass ratio allows us to estimate the capture efficiencies of all equal-mass binaries.

Scaling with the impulse approximation is a powerful way to predict capture

rates. Practically speaking, it means that capture of any unequal-mass binaries can

be predicted by studying just equal-mass cases, and accordingly, we have restricted

our numerical studies to binaries with equal masses.

2.9 Jupiter’s eccentricity

Most scenarios, including our own, propose that irregular satellite capture occurred

early in the Solar System’s history (Section 1.3). It is likely that Jupiter’s eccen-

tricity was closer to zero at this time and its current value was acquired later. Thus

we have chosen to use eJ = 0 in our simulations and believe that it is a reasonable

assumption.

How would Jupiter’s current eccentricity affect capture? It is not straightforward

to extend this study to a non-zero jovian eccentricity for the primary reason that

the Jacobi constant is no longer a constant of the motion. Though Jupiter’s current

eccentricity is small (eJ ∼ 0.048), it causes the calculated CJ of an interloper to

vary by ∼0.2 over an orbit. This is a variation about ten times larger than our

entire range of tested Jacobi constants. Thus we cannot simply assign an initial

CJ to binaries or single objects approaching an eccentric Jupiter and compare the

capture results with the equivalent circular case. Only for eccentricities less than

a hundredth of Jupiter’s would the errors introduced in the Jacobi constant be

acceptable.
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The results of Astakhov and Farrelly (2004) suggest an order-of-magnitude lower

capture probability for single objects in the eccentric case as compared to capture by

a planet orbiting on a circle. However, their initial conditions were generated using

the same Jacobi constant values in the eccentric and the non-eccentric cases. Because

of the variation in CJ induced by eccentricity, their method actually produces a much

larger range of Jacobi constants (and much higher approach speeds) for tests with an

eccentric planet, and the results should not be directly compared with the circular

case. We believe their capture rates for an eccentric Jupiter are artificially low for

this reason.

We do not expect Jupiter’s eccentricity to strongly affect capture. As the

timescale for capture is much shorter than Jupiter’s orbital period, the planet’s in-

stantaneous location is the most relevant factor. At pericenter, Jupiter’s Hill sphere

is slightly smaller than at its average distance from the Sun and encounter speeds

are slightly higher, likely resulting in fewer captures. The opposite can be expected

at apocenter, causing the effects of eccentricity to average out and probably produce

little change in overall capture statistics. To truly know the effects of the planet’s

eccentricity would require large-scale integrations with the interlopers originating

on heliocentric orbits. This is beyond the scope of our current work.

2.10 Survivability of captured objects

The post-capture orbits are initially very irregular and prone to collisions with

Jupiter’s Galilean satellites (particularly its outermost, Callisto) or the planet itself.

Figure 2.11 displays the percent of captured bodies that are delivered onto orbits

that do not cross Callisto, which currently orbits Jupiter at 26 RJ . We begin by

assuming that objects on Callisto-crossing orbits are lost and relax that assumption
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Figure 2.11 The percent of captured objects that do not cross interior to 26 RJ

(Callisto’s semi-major axis) during the 1000-year integrations. The bodies were

started on the Hill sphere. Compare with the entire set of captures seen in Fig. 2.7.

later in this section.

An interesting feature is the lack of any captures without close approaches for

CJ = 3.02 and 3.025. These Jacobi constants correspond to a distribution of orbital

inclinations centered near 90◦ (see Section 2.4 and Fig. 2.5), where the Kozai effect is

strongest. The Kozai mechanism causes the individual orbits to have large variations

in both inclination and eccentricity, and thus they become subject to collision with
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Jupiter or one of the Galilean satellites. This is the primary reason that no existing

satellites in the Solar System have inclinations near 90◦ (see Figs. 1.2 and 1.4). The

Kozai effect causes many of the captures in this CJ range to be lost.

All of the surviving binaries plotted here capture as 2C-BIN (though not all 2C-

BIN captures are survivors), largely because of the separations we have studied. The

separations of these binaries are optimized to give maximum capture percentages,

leading to tidal disruption radii that are very close to Jupiter (Eq. 2.1). Thus these

surviving binaries, which by definition have closest approaches outside Callisto, do

not cross rtd and hence remain intact. The separations we have used, which are

optimal for capture, are not optimal for survival. Somewhat larger separations

would result in a higher percentage of surviving captures, with a lower percentage

of overall captures.

The consequences of this are apparent in Fig. 2.11. For CJ < 3.02, the curves for

single objects and all three binary masses are equivalent to within the error. This

is because most of the binary captures in this CJ range are 2C-BIN. Since 2C-BIN

captures act as a single entity with no alteration from tidal disruption, the captured

population for CJ < 3.02 is similar to that of the single bodies and the fraction

that avoid Callisto is also similar. While the surviving binaries for CJ > 3.025 are

still all 2C-BIN, 1C captures dominate the 2C-BIN captures in this Jacobi constant

range, but none of the 1C captures are safe from Callisto. Therefore, the percent of

the total binary captures that survive at high Jacobi constants is very small.

Thus we find that while retrograde captures (low CJ) are rare (see Fig. 2.7), most

of them are safe from collision with Callisto. On the contrary, prograde captures

from binaries (high CJ) are numerous but prone to collision. This is bad news for

binary capture—the largest enhancements occur for captures that are most likely to

be removed by interactions with Callisto. As we have already discussed, examining
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larger separations will lead to a larger percentage of capture orbits that are safe

from collision. This may be a significant effect. How else can collisions be avoided?

One possible way out is if the captures occurred before Callisto was formed. At

these early times, a dense accretion disk surrounded Jupiter, and the strong gas

drag could have augmented capture rates (as in Pollack et al. 1979). However, this

is not compelling, because satellites captured at this time would be prone to loss by

orbital decay and later by collisions with forming proto-satellites.

The most likely mechanism for preventing captured bodies from colliding is gas

drag from the remaining gas present outside Callisto’s orbit at the time of capture. A

small amount of gas is necessary for our mechanism in order to shrink capture orbits

to their current sizes. In principle, this process can also increase the pericenters

of the captured objects, causing them to avoid collision with Callisto. A typical

collision timescale for a Callisto-crossing orbit with a = 0.5rH and i = 10◦ is on the

order of 106 years, long enough for gas to evolve the satellites onto safe orbits (see

Section 2.1). The timescale is longer for more-tilted orbits, but significantly shorter

for retrograde orbits.

A tenuous gas around Jupiter and Saturn near the end of planet formation is

consistent with our current understanding of planet formation (Section 2.1). If gas

was present at the time of capture, its structure and density are not well constrained,

and thus we do not focus on the orbital evolution process itself in this work. As a

simple example, however, we simulated a drag force that acts against the velocity

vector and show that it is able to both shrink the post-capture orbits and safeguard

new satellites from collisions. This example is a worst-case scenario, as a drag of this

form does not affect eccentricity, while a more realistic gas drag force will rapidly

shrink eccentricities.

In Fig. 2.12, we plot the initial and final states for a prograde and retrograde
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RetrogradePrograde

Figure 2.12 An example of a simple gas drag applied to a prograde (left panels;

the same initial orbit as in Figs. 2.3 and 2.4) and a retrograde orbit (right panels).

The orbits are shown immediately after capture in the upper panels, and the bottom

panels show the orbits after 25,000 years of evolution. Jupiter is the dot in the center,

and the Sun is to the left at (0,0). These orbits are the result of 1C capture from

equal-mass binaries with 225-km components (prograde) and 65-km components

(retrograde). Before disruption, the prograde binary had a separation of 65 RB and

a Jacobi constant of ∼ 3.037. The retrograde binary had an initial CJ of ∼ 3.003

and was initially separated by 460 RB.
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orbit in the presence of gas drag. The initial capture orbits are highly eccentric and

extend out to or even beyond the Hill sphere. The gas drag is applied only after

capture for simplicity; this is valid because the timescale for temporary capture is on

the order of months, and the effects of the gas are negligible over such a short time.

The final states are chosen so that the orbits lie approximately where the current

progrades and retrogrades orbit at Jupiter (at ∼ 1
4
rH and ∼ 1

2
rH , respectively), and

they have pericenters outside Callisto’s orbit, albeit just barely. The drag strengths

were set so that the evolution for both orbits occurs over 25,000 years. However,

with a more tenuous gas than in this example, the same evolution could take place

on timescales 10–100 times longer. The binary capture mechanism discussed here

constrains only the amount of orbital evolution, not the evolution rate, and hence

avoids the satellite-loss problem of capture-by-gas-drag models.

In our simulations above (Fig. 2.12), we used an artificial drag force that does

not raise pericenter. The amount by which true gas drag from a circumplanetary

disk can raise pericenter depends on the details of two competing effects. First, since

the gas is rotating at a near-Keplerian rate, eccentricities should damp significantly

faster than semi-major axes, which tends to raise pericenter. But since the density

of the disk should increase toward the planet, the effects of drag are more important

near pericenter, which acts to oppose changes to the pericenter distance. How

these two effects actually combine in the circumplanetary disk is complicated and

very model-dependent. Accordingly, we restrict ourselves here to these qualitative

arguments.
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2.11 Discussion and conclusions

The new model discussed here, capture from low-mass binaries with subsequent

orbital evolution, has both significant advantages as well as disadvantages in com-

parison to other suggested models.

One important advantage is that capture is viable at Jupiter, unlike three of the

models discussed in Section 1.3. For example, Agnor and Hamilton’s (2006b) direct

three-body capture model works only for very large bodies in the gas giants’ high-

approach-speed environments. Also, the theory of Nesvorný et al. (2007) requires

close approaches among the giant planets, of which Jupiter has very few in the Nice

model scenario. In Vokrouhlický et al. (2008), the capture statistics from planet-

binary encounters are low for all planets, but especially low for Jupiter and Saturn.

This is primarily because of the high relative speeds assumed in their model. Though

these latter two capture mechanisms in their current forms cannot explain the gas

giants’ irregular satellites, they are worth further study, perhaps in the context of

altered versions of the Nice model or other early Solar System models.

Our model also has an important advantage over that of Pollack et al. (1979),

in that our capture scenario allows for a much more tenuous gas disk, since the gas

here is needed only for slowly shrinking the orbits, not for capturing satellites. Also,

the gas in our model can persist for much longer than that in Pollack et al., as a

weaker gas does not have the problem of quickly destroying the captured bodies.

Furthermore, various groups (e.g., Canup and Ward 2002) have proposed that the

Galilean satellites formed from a tenuous gas; if true, the gas was most likely even

thinner when the irregular satellites were captured. Thus it is important that our

capture mechanism does not rely on a dense gas.

To directly compare our mechanism with that of Astakhov et al. (2003), we
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need to consider both relative capture rates (and their survivability) and the preva-

lence of binaries vs. single bodies. In our simulations, we find that binary capture

can provide a significant advantage over capturing from populations of single bod-

ies for binaries with particular characteristics: high-enough masses ( >∼ 100 km),

optimal separations (∼10-20 RB), and low incoming energies (corresponding to Ja-

cobi constants >∼ 3.02 and mostly prograde encounters). However, like Astakhov

et al. (2003), we also find that the probability that captured bodies (from either

binaries or single bodies) avoid collisions with Callisto is low for readily captured

progenitors. In Section 2.10, we discussed that this problem can be alleviated by

altering the capture orbits with the surrounding gas or by capturing binaries with

larger-than-optimal separations that do not lead to Callisto-crossing orbits.

So, how common were easily captured binaries early in Solar System history?

This question is difficult to assess. Observational surveys of the current population

of the cold, classical Kuiper belt (i.e., objects with modest inclinations and eccen-

tricities) find a 30% binary fraction among bodies larger than 100 km (Noll et al.

2008), many with nearly equal-mass components. Also, recent studies of planetes-

imal formation have suggested that large, >∼ 100-km bodies may form quickly in

the gaseous proto-planetary disk, providing the building blocks of subsequent planet

formation (Cuzzi et al. 2008; Johansen et al. 2007). Binary formation is likely to

be contemporaneous with the formation of these bodies (Nesvorný 2008). Further,

Morbidelli et al. (2009) have shown that the size-frequency distribution of asteroids

in the main belt is consistent with large initial planetesimals, at least ∼100 km in

size. Together these results indicate that the ∼100-km binary objects considered

here may have been quite common as the very last portions of the Solar System’s

gas disk were being depleted. In addition, perhaps the biggest boost to our model’s

production of viable satellites would come from considering 50- to 100-km satellites
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of 200- to 500-km primaries. Such objects, while rarer, would capture far more

frequently than those considered here.

Finally, the known irregular satellite population numbers ∼100, and many of

these are probably members of families—thus, we need only produce at most a

few dozen captures. While accounting for the origin of such a small population is

difficult, our simulations show that it is likely binaries played a role. We conclude

by offering our model as a new idea that alleviates many but not all of the problems

faced by previous models, but acknowledge that without a detailed understanding

of the initial planetesimal population, including binary statistics, a firm conclusion

is not possible.
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Chapter 3

Assessing Asteroids as Potential

Satellite Sources

3.1 Introduction

In Chapter 2, we discussed capture from binaries approaching Jupiter on low-speed

trajectories. Now we consider the source region of those bodies. While there

are many possible source populations (e.g., Trojan asteroids, main belt asteroids,

Jupiter-family comets, and Kuiper belt objects), this chapter is focused specifically

on evaluating the Trojan asteroids and the asteroids of the outer main belt (in-

cluding Hildas and Thules). Figure 3.1 shows the locations of these populations

in today’s Solar System. We begin by discussing our numerical studies of Trojan

asteroids, and we consider Hildas and the outer asteroid belt in Section 3.5. We

simulate the asteroids’ escape from their orbits and examine the characteristics of

their close approaches, comparing them to capture statistics from Chapter 2.

There are roughly as many Trojan asteroids as there are main belt asteroids

(Yoshida and Nakamura 2005), and they librate around stable points in Jupiter’s
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Figure 3.1 The inner Solar System, from the Sun to Jupiter. The white cloud of

objects is the main asteroid belt, brown bodies are Hilda asteroids, and green dots

represent the Trojan asteroids. The Trojan group ahead of Jupiter in its orbit are

called Trojans, and the group trailing Jupiter are sometimes called Greeks; we call

the entire group Trojans throughout this chapter. Data is from the Minor Planet

Center (published on July 6, 2006), was plotted for Wikipedia, and represents the

Solar System as it appeared on August 14, 2006.
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orbit 60◦ ahead of and behind the planet. Although their orbits are extremely

long-lived, it has been shown by Levison et al. (1997) that asteroids within the

Trojan swarms have been leaking out over time. Currently, there are only two

known binary Trojan asteroids (Marchis et al. 2006; Merline et al. 2001) (with two

additional candidate contact Trojan binaries (Mann et al. 2007)), but it is estimated

that binaries could account for up to 4% of the Trojans larger than 40 km (Marchis

et al. 2003).

The Trojan asteroids we see today are in small-amplitude tadpole-shaped orbits

around Jupiter’s L4 and L5 Lagrange points (see Fig. 3.2). They orbit the Sun with

the same period as Jupiter (about 12 years) and trace out their tadpole shapes rela-

tive to Jupiter over a period of about 150 years. The amplitude of their libration, D,

is defined as the difference between the maximum and minimum angular separations

of the Trojans from Jupiter. For the current Trojan population, values of D range

between approximately 0◦ and 35◦. The proper eccentricities (intrinsic eccentricity;

i.e., the component not due to perturbations from Jupiter and the other planets), ep,

of today’s Trojans range from about 0 to 0.15, and their orbital inclinations range

from close to zero up to around 30◦ (Milani 1993).

When the Trojans have small libration amplitudes, keeping them close to the

Lagrange points, their orbits are inherently stable over long timescales. However,

very long-term effects, believed to be mainly secular perturbations from Saturn and

the other giant planets (Marzari and Scholl 2002), can cause the Trojan orbits to

become unstable. Levison et al. (1997) has shown that the timescale for instability

depends on the Trojan’s initial libration amplitude and proper eccentricity. The

larger these two quantities, the sooner the orbit becomes unstable. In preparing for

the current work, we have attempted to reproduce Levison et al.’s results, finding

a) that the instability timescales we observed matched well overall with the values
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Figure 3.2 The Trojan asteroids librate around Jupiter’s L4 and L5 Lagrange points.

This plot shows tadpole-shaped orbits (e = 0.1, D ≈ 20◦) in a frame rotating with

Jupiter’s angular velocity. The Sun is represented with a star, and Jupiter’s location

is marked with a circle. There are two observable Trojan periods here — 12 years

(Jupiter’s orbital period) to complete one small ellipse within its tadpole shape, and

about 150 years to librate along its entire tadpole from its closest distance to Jupiter

to its furthest and back again.
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derived in Levison et al. (1997), b) that the inclusion of Saturn, Uranus, and Neptune

in the simulations causes previously stable orbits to become unstable, and c) that

the asteroids’ inclinations, which were not included in the Levison et al. (1997)

study, decrease their stability time. This last result is consistent with the findings

of Marzari and Scholl (2002), who showed that the effects of the secular resonances

with the giant planets become stronger with higher inclinations, more efficiently

perturbing the Trojans toward instability.

When a Trojan becomes unstable, it typically undergoes a gradual increase in

libration amplitude until its tadpole-shaped orbit grows into a horseshoe-shaped

orbit. As the Trojan’s larger range of motion causes it to come much closer to

Jupiter, it receives stronger gravitational pulls from the giant planet. Eventually,

the Trojan will leave its horseshoe orbit altogether. Figure 3.3 shows a typical escape

trajectory.

Because the trajectories we are interested in involve multiple close approaches

with Jupiter, they are very chaotic. Numerically, this means that any small error

introduced in the particle’s coordinates (e.g., round-off error) is magnified over time.

If two simulations are identical except for a small change in the stepsize, for example,

this can result in significantly different paths, especially later in the simulation. For

this reason, it is necessary to interpret results statistically, with large populations

of bodies (just as in Chapter 2).

Because all of the current Trojans are stable over 108 − 109 year timescales,

we cannot simply use their current orbital elements as our starting conditions, as

following a large number of them until escape would be computationally expensive.

Clearly, we do not know the distribution of initial conditions of the actual Trojans

that had shorter lifetimes than the current bodies, as they have already escaped.

However, we do have knowledge of the escape timescales for combinations of initial
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Figure 3.3 An example Trojan escape orbit plotted in a rotating reference frame.

The initial tadpole (dark region) grows into a horseshoe orbit, until the asteroid

suffers a fatal close approach to Jupiter, which kicks it out of the librating region.

The central star is the Sun, and Jupiter is represented by the circle at (5.2, 0).
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D and ep (Levison et al. 1997), and thus we chose initial conditions that would

produce a large number of escaping asteroids in a reasonable amount of simulation

time. This effectively places the Trojans on large horseshoe orbits to begin with, so

that their escape is imminent. We have performed many simulations of this type.

3.2 Numerical methods

For our numerical integrations, we used HNBody, a hierarchical N-body integra-

tion package (Rauch and Hamilton 2002), and HNDrag, used for applying non-

gravitational forces to the particles and for detecting close approaches. In Sec-

tions 3.3 and 3.4, we used only the close approach detecting capabilities of HNDrag,

with no application of drag forces. In Section 3.5, we explored simulations including

a drag force to simulate the migration of Jupiter; the details are discussed therein.

As we discussed in Chapter 2, HNBody provides three main integrator options:

symplectic, Bulirsch-Stoer, and Runge-Kutta. While symplectic integrators are gen-

erally more efficient for Solar System problems, they have two drawbacks for the

current application. First, the symplectic integrator fails if a particle’s orbit becomes

too highly perturbed, as when it suffers a close approach with Jupiter. To circum-

vent this problem, we can instruct HNBody to remove bodies for which T +2U > 0,

where T is the kinetic energy and U is the potential energy of the body with respect

to the Sun. This corresponds to objects that attain more than two times Jupiter’s

circular speed; i.e., greater than about 26 km/s (which happens interior to about

5 RJ). Using this option prevents the symplectic integrations from failing during

close approaches. Nonetheless, because the trajectory cannot be followed further,

this is a shortcoming for the symplectic integrator.

The second drawback of the symplectic integrator is that unlike the Bulirsch-
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Stoer and the Runge-Kutta methods, it has a fixed stepsize. For the other two

integrators, a stepsize is determined internally at every timestep, so that large steps

are taken when the trajectory is smoothly varying and smaller steps are taken else-

where. These integrators automatically adapt their stepsizes to be as large as pos-

sible while still achieving the specified accuracy. (However, the Bulirsch-Stoer and

Runge-Kutta integrators adjust the steps to be no larger than a user-specified step-

size so that data can be printed at the designated output interval.) To accurately

resolve close approaches to Jupiter using the symplectic integrator, we found that

we must specify a very small stepsize, which is used for the entire integration. This

reduced stepsize offsets the natural speed advantage of the symplectic integrator for

our application.

Table 3.1 presents the results of tests performed to determine the performance of

different integrators on a typical simulation. For each run, we recorded the bodies’

positions and velocities as a function of time. We compare the final coordinates

for each integration. In Table 3.1, we see that the Bulirsch-Stoer results tend to

converge to more decimal places than the other integrators for a given accuracy and

stepsize. Also, increasing the specified accuracy improves convergence more than

decreasing the maximum stepsize. A good compromise between integration speed

and accuracy is the Bulirsch-Stoer accuracy 10−14, stepsize 0.1 yr run; we chose

these parameters for this work. From the last column of Table 3.1, it is clear that

once close approaches occur, the resulting trajectories become quite different for

different integrators or integration parameters. This illustrates the need for a large

sample from which to draw statistics.

To obtain information about the close-approach distributions, we used HNDrag’s

close-approach detector. This allowed us to record statistics for the closest approach

of a given trajectory that came within a specified distance to Jupiter. HNDrag
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monitored the bodies as they crossed the threshold; when they exited again, it

noted position and velocity information for both the asteroid and Jupiter at the

time of their closest encounter. This simplified our analysis by allowing us to select

a large data output interval, thereby minimizing the size of our output files.

3.3 Trojans with an eccentric Jupiter

We begin by examining simulations including Trojan asteroids, the Sun, and Jupiter,

including Jupiter’s actual eccentricity. Recall from Section 2.9 that the Jacobi con-

stant is no longer valid in cases with an eccentric Jupiter. As we wished to use CJ

to compare with binary capture statistics from Chapter 2, we performed additional

simulations with Jupiter on a circular orbit; these are explored in Section 3.4. Nev-

ertheless, the eccentric-Jupiter integrations led to several interesting results, and we

discuss them here.

Each of these simulations follow 10,000 massless Trojan asteroids integrated for

20,000 years with initial ep’s between 0.160 and 0.169, and initial true longitudes (L)

between 130◦ and 139◦. The true longitude of Jupiter is set to zero, so the Trojan

swarms in Fig. 3.2 have L near 60◦ (at L4) and 300◦ (at L5). Initial inclinations were

set to a single value for all Trojans in a given simulation, the values varying from

0.1◦ to 10◦ for different simulations. Recall that these initial conditions were chosen

because they allowed a large number of Trojans to escape in a short amount of time.

Close approaches were defined as approaches within one Hill radius of Jupiter (1

rH ≈ 0.36 AU ≈ 743RJ , where RJ , Jupiter’s radius, is about 0.0005 AU).

The top-left panel of Fig. 3.4 shows a differential distribution of close approach

distance for a simulation with Trojan inclinations of 0.1◦. The number per bin

decreases linearly (though with a very gradual slope) from one Hill radius until
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Figure 3.4 Differential distributions of close-approach distance to Jupiter for simu-

lations of escaping Trojan asteroids. The four panels are labeled with the asteroids’

initial inclinations. The total numbers of close approaches were ∼ 41,000, 57,000,

140,000, and 54,000 for i = 0.1◦, 0.65◦, 1◦, and 10◦, respectively.

about 0.04 AU (near the orbit of Callisto), where it begins to rise again toward a

sharp peak at very close distances.

We pursued several ideas for the cause of this peak. First, we performed mul-

tiple integrations with different initial conditions, keeping the inclinations constant

at 0.1◦. All of these showed the same sharp peak feature. Second, we examined the
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possibility that these were sufficiently low-speed trajectories that the bodies had

become temporarily bound around Jupiter (Hamilton and Burns 1991). Such tem-

porary capture orbits would loop around Jupiter multiple times before departing

the planet’s vicinity. Since we only record the closest approach within 0.36 AU,

recorded distances for temporary captures would be substantially lower than for

a single pass, thus artificially overpopulating the smaller-distance bins on the his-

togram. We tested this idea by decreasing our threshold close approach distance so

that it would catch the close approaches for every pass of any temporarily bound

objects. We reran the simulation with a number of close approach thresholds rang-

ing from 0.01 AU to 0.50 AU and found that any approach that appeared in the

record for a threshold smaller than 0.50 AU also appeared in the 0.50 AU record.

As 0.50 AU is larger than Jupiter’s Hill radius, none of the approaching bodies had

more than one pass by the planet, and we found no examples of temporarily bound

orbits.

Another possibility we tested was that an inclination of 0.1◦ is low enough to

be approximating a two-dimensional situation. The bottom-left panel of Fig. 3.4

shows the same distribution for a simulation with initial Trojan inclinations of 1◦.

Indeed, here the number per bin decreases linearly from one Hill radius to very close

approach distances, with a much steeper slope than before and no inner peak.

We conclude, then, that the sharp peak is due to the small inclinations of the

Trojans causing the simulation to be effectively two-dimensional. As we examine

more inclination choices (Fig. 3.4), we see a clear progression from sharply peaked

(0.1◦) to flat (0.65◦) to linear (1◦ and 10◦). This supports our assertion.

We can also derive these trends analytically, in both the three-dimensional and

two-dimensional limits. We consider straight-line trajectories approaching Jupiter

with some range of impact parameter, b, and some resulting pericenter distance, r,
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determined by Jupiter’s gravitational focusing. Figure 3.5 displays this geometry.

For a three-dimensional problem, the range of impact parameters is described by a

circle of radius b, and we wish to determine how this relates to the target area A

around Jupiter. Using conservation of energy and angular momentum, we derive

A = πb2 = πr2

(
1 +

2GMJ

v2
∞r

)
, (3.1)

where G is the gravitational constant, MJ is the mass of Jupiter, and v∞ is the

asteroids’ speed far from Jupiter. Since v∞ is a two-body construct and these

simulations include three bodies, v∞ can only be used in an approximate sense.

Differentiating to find the change in area dA (effectively, the number of approaches)

in rings of distance r from Jupiter and infinitesimal thickness dr,

dA

dr
= 2πr +

2πGMJ

v2
∞

. (3.2)

If there were no gravitational focusing, one would expect a linear decrease to-

wards zero close approaches at zero distance from Jupiter. However, Jupiter’s focus-

ing causes the second term in Eq. 3.2 and produces a non-zero intercept. Figure 3.4

shows the effects of both of these terms.

In the two-dimensional limit, the bodies approach in a single plane. Here, the

range of impact parameters is projected from a circle to a line of width 2b. Again,

we use conservation laws to relate this to the range of the resulting close approaches:

l = 2b = 2

√
r2 +

2GMJr

v2
∞

. (3.3)

Differentiating to get the change in area with close approach distance,

dl

dr
=

2r + 2GMJ

v2
∞√

r2 + 2GMJr
v2
∞

. (3.4)
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b

J

 Approach Geometry

Figure 3.5 Schematic showing the geometry of approaching asteroids. The trajec-

tories begin on a straight path (with impact parameter b) and are deflected by

Jupiter’s gravity as they approach the planet. For a three-dimensional simulation

(as shown), the physical range of impact parameters is represented by a circle of

radius b (seen from the side), and the actual approaches are distributed within a

radius rmin circle around the planet (‘J’ = Jupiter).
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For r � 2GMJ

v2
∞

, this expression reduces to

dl

dr
∼
√

2GMJ

v2
∞

1

r
(3.5)

and explains the sharp inner peak that we see in the 0.1◦ approach distance dis-

tribution (Fig. 3.4). These derivations are only illustrative, as our distributions

represent not a constant v∞ but a range of values, and even the low-inclination

scenarios are not truly two-dimensional. Equation 3.4 predicts that the number

of approaches from a flattened Trojan distribution should decrease for increasing r,

and instead we see it increase slightly (Fig. 3.4). This may be due to a superposition

of two-dimensional and three-dimensional effects.

We find, then, that to avoid artifacts from flat distributions, future simulations

must be performed with integrations set at 1◦ or higher.

3.4 Trojans with a non-eccentric Jupiter

We now discuss similar simulations of 10,000 Trojans except with Jupiter on a

circular orbit, allowing for calculation of the Jacobi constant for the escaped Trojans.

Here, we set all initial Trojan inclinations to 1◦ and varied the combination of initial

ep and L values. We followed the bodies for 40,000 years so that almost all of the

asteroids escaped.

Figure 3.6 shows the distribution of CJ values of the first approach of each

escaped Trojan (9974 of 10,000 escaped). In this simulation, the initial conditions

are evenly spread over a range of ep: 0.04-0.08 and L: 150◦-159◦. The resulting

Jacobi constants are dictated by the initial conditions and tightly confined between

CJ ≈ 2.984 and CJ ≈ 2.993.

Comparing with capture statistics from Chapter 2, these Trojans’ CJ values
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Figure 3.6 Jacobi constants for the first close approach of each escaped Trojan to

Jupiter. Initial ep ranged from 0.04-0.08 and L from 150◦-159◦. Almost all of the

Trojans escaped.
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Table 3.2. Jacobi constants of escaped Trojan asteroids

Initial ep Initial L CJ

0.0 160◦-169◦ 2.99830 - 2.99838
0.04-0.08 150◦-159◦ 2.98411 - 2.99289
0.20-0.24 140◦-149◦ 2.91576 - 2.93820
0.26-0.30 60◦-70◦ 2.87418 - 2.90197

Note. — Resulting ranges of CJ for es-
caped Trojan asteroids with the given initial
ep and L values. Trojans in each simulation
diffused on approximately the same timescale
(∼ 104 years) and in all four simulations, over
97% of the Trojans escaped by 4×104 years.
Approach speeds (vL1) range from 2.6 km/s
for the highest CJ (2.99838) to 5.3 km/s for
the lowest CJ (2.87418).

would result in near-zero capture probability (see, e.g., Section 2.6) if approaching

the planet as a single body or part of a ∼100-km binary. Larger masses would

increase the capture rate, but we are interested in assessing capture probabilities for

the more-numerous small bodies. The chief reason for the low capture probability

is that the bodies’ encounter speeds (vL1 =
√

CJ,crit − CJ ≈ 2.9 km/s) are too fast.

To be permanently captured, the asteroids would need to approach with v ∼ 0.5

km/s.

We examined other initial conditions with about the same Trojan diffusion

timescales (∼104 years) and achieved similar results. Summarizing, the ranges of

CJ values for four choices of ep and L are given in Table 3.2.

Thus we conclude that escaping Trojan asteroids are not a viable source of cap-

tured satellites at Jupiter. Neither long-lived temporary captures nor permanent

captures from binary disruption are likely to have resulted from the Trojan popu-

lation. Finally, we note that if any captures did occur, they would have produced
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retrograde satellites (Fig. 2.5).

3.5 Escape from the outer asteroid belt

We now consider the outer asteroid belt, including the Hilda and Thule asteroids, as

a source region for irregular satellites. Hildas are located between 3.8-4.1 AU, with

eccentricities up to 0.35 and inclinations up to 20◦ (Brož and Vokrouhlický 2008).

They orbit in the 3:2 mean-motion resonance with Jupiter, avoiding conjunctions

with the planet (see Fig 3.1). There are almost 1200 known Hilda asteroids, and

they are the closest large asteroid grouping to Jupiter besides the co-orbital Trojans

(Brož and Vokrouhlický 2008). Thule asteroids are rarer with just three known

objects. They orbit in Jupiter’s 4:3 resonance near 4.28 AU (Brož and Vokrouhlický

2008).

To simulate the escape of Hildas and other asteroids in the outer main belt, we

modeled Jupiter’s inward migration due to the formation of the Oort cloud, which is

predicted by most Solar System evolution models (e.g., Tsiganis et al. 2005). These

integrations include the Sun, Jupiter and 10,000 massless asteroids with a ranging

from 3.8–4.8 AU, e from 0–0.1, and i=1◦. Jupiter is modeled on a circular orbit

with a drag force applied against its velocity, moving the planet from 5.5 to 5.2 AU

in 105 years. This timescale is fast compared to the secular interactions between

Jupiter and Saturn (which cause oscillation in the planets’ e and i) as well as the

precession of asteroid orbits due to Jupiter, both of which happen with timescales

of 104 − 105 years. However, the overall results should change only slightly with

slower migration rates.

To distinguish intrinsically unstable orbits from those driven to instability by

Jupiter’s migration, we also ran an identical simulation with no migration, placing
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Jupiter in orbit at 5.5 AU. In the simulation with migration, 3023 of 10,000 bodies

escaped the asteroid belt over 105 years. For the no-migration run, 1882 of 10,000

bodies escaped, and, as expected, almost all (98%) of these same bodies also escaped

in the migration case.

We first examine the semi-major axes from which these bodies escape. Figure 3.7

shows the initial semi-major axes of escapees in both the migration and no-migration

scenarios. In both plots, we see two distinct populations with a gap in between.

We label the two escaping populations the Inner and Outer asteroid groups for

comparison with later plots. With 100 bodies initially populating each bin, we

see that almost all asteroids escape for both Outer groups (at ∼4.65-4.8 AU). This

indicates that regardless of migration, the outer regions of our semi-major axis range

are unstable. The gap in the middle of the two populations is the location of the

4:3 resonance with Jupiter, where the three known Thule asteroids currently reside

(Brož and Vokrouhlický 2008). Note that in the no-migration case, these bodies are

stable, but with migration, some of these bodies escape. We examined the orbital

elements for several asteroids near 4.6 AU and saw that, in fact, Jupiter’s migration

in the resonance is slowly driving up their eccentricities, rendering them unstable.

For the migration case, Jupiter’s inward motion causes almost all Inner bodies with

a between 4.33 and 4.48 to escape. Interior to 4.33 AU, the bodies do not escape

because they have not experienced the destabilizing effects of Jupiter for sufficiently

long times. In the no-migration simulation, the escape rate increases monotonically

from a=4.34 to a=4.45 as the closer bodies feel Jupiter’s gravity more strongly.

We now consider the contribution of the Inner and Outer populations to the

Jacobi constant distributions for both simulations. The top panels of Fig. 3.8 show

the Jacobi constants for each body’s first approach within Jupiter’s Hill sphere. For

the simulation with migration, the Jacobi constant was calculated using Jupiter’s
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Figure 3.7 Distribution of initial semi-major axes of the escaped outer-main belt as-

teroids. The left panel shows results of a simulation with Jupiter migrating inward

from 5.5-5.2 AU. The right panel shows results of an otherwise identical simulation

with no migration and Jupiter orbiting at 5.5 AU. For both simulations, the aster-

oids’ initial a was between 3.8-4.8 AU, with e ranging from 0-0.1 and i = 1◦. In the

migration case, there were a few (unplotted) escapees with a near 4.05 AU. Almost

all of the escaping bodies for the no-migration simulation also escaped in the run

including migration. The labels Inner and Outer allow for comparison with Fig. 3.8.
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Figure 3.8 Jacobi constants and corresponding speeds at L1 for the first close ap-

proach of each escaped asteroid in the migration case (left two panels) and no-

migration case (right two panels). The two cases are detailed in Fig. 3.7. Each

panel is divided into 100 bins.

instantaneous orbit at the time of close approach. Since the migration causes a small

eccentricity for Jupiter (∼0.0002), there are small errors in the calculated CJ values

for this simulation. The bottom panels show the corresponding vL1 distribution for

each of the two integrations.

From Fig. 3.8, we see again the two distinct populations. By examining the
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bodies’ initial a, we have determined that in both simulations, the unstable Outer

asteroid groups have systematically lower Jacobi constants (and faster approach

speeds) than the Inner groups. For the Inner group, the resulting Jacobi constants

are quite high in both cases, centered near CJ = 3.033. Recall from Chapter 2

that CJ,crit ≈ 3.0387. In addition, we determined in Chapter 2 that these high

Jacobi constants correspond to high capture probabilities for binaries with the right

initial conditions. For example, pairs of bodies crossing into the Hill sphere, each

with radius 125 km and separated by ∼1200 km, lead to capture at a rate of ∼4%

for CJ = 3.033 (Fig. 2.7). These captures are primarily to prograde orbits. The

Outer asteroid groups, on the other hand, have wide ranges of Jacobi constants

centered near 3.02, which corresponds with a capture percentage near 1% for the

same binary characteristics. However, CJ = 3.02 also corresponds to inclinations

near 90◦ (Fig. 2.5) and loss due to the Kozai mechanism. Thus most captures from

the Outer asteroid group would not survive. Those that survive could result in

either prograde or retrograde orbits.

We conclude that asteroids escaping because of orbital instability in the early

Solar System or because of Jupiter’s later inward migration are both likely to have

captured at Jupiter, especially if they originated interior to the 4:3 resonance. Both

simulations suggest that the main asteroid belt is a far better source for Jovian

satellites than the Trojan region. The main difference in the distributions for the

two cases (migration or no-migration) is that a significantly higher fraction of Inner

asteroids escape when Jupiter migrates (Figs. 3.7 and 3.8). However, the actual

numbers escaping during these periods in Solar System history is unknown. In

addition, other mechanisms can cause destabilization; e.g., Yarkovsky drag can move

small, km-sized asteroids. One caveat, discussed in Chapter 2, is that binary capture

results in highly extended orbits requiring orbital dissipation, and thus captures
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must have occurred while some circumplanetary gas existed in order to be viable.

Finally, we examined the distribution of close-approach distances, shown for

the migration scenario in Fig. 3.9 (with a similar distribution for the no-migration

case). With their high CJ values, these bodies’ zero-velocity curves are almost closed

around the planet (see Fig. 2.2). For such low-speed approaches, the asteroids fall

in very close to the planet. In addition, we performed the same test described in

Section 3.3 to search for temporary captures and found that many of these asteroids

stay near the planet for multiple orbits. Such orbits are characteristic of high Jacobi

constants (e.g., see Fig. 2.4). Since only the closest of these approaches is recorded,

temporary-capture orbits strongly enhance the peak near Jupiter.

3.6 Conclusions

The first portion of this chapter was focused on understanding the orbit parameters

of escaped Trojan asteroids. We confirmed that for a sufficiently three-dimensional

simulation, the number of close approaches at a given distance decreases linearly

from the edge of the Hill sphere towards the planet, and is non-zero at zero distance

from Jupiter. This result guided our inclination choice in later integrations. In

Section 3.4, we saw that Jacobi constants for escaped Trojans were below 3.0, cor-

responding with near-zero capture probabilities. Thus the Trojans are not a likely

source of captured satellites at Jupiter. If capture did occur from the Trojans, it

would deliver the asteroids to retrograde orbits.

In Section 3.5, we explored capture from escaping outer main belt asteroids.

We found that, for asteroids interior to the 4:3 resonance, Jacobi constants are

∼3.033, corresponding to some of the highest capture rates we saw in Chapter 2.

This means that binaries from this population with the right characteristics could
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Figure 3.9 Close-approach distribution for first close approaches of outer main belt

asteroids, plotted for the migration case (but similar for no migration). Close ap-

proaches are defined as crossing into the Hill sphere.
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capture to primarily prograde orbits as often as a few percent of the time. Bodies

originating exterior to the 4:3 resonance have CJ centered near 3.02 and would cap-

ture more efficiently than Trojans, to either prograde or retrograde orbits. However,

the average inclination for these asteroids is high, so most captures from this group

would not survive.

The main belt has been significantly thinned out over time (by a factor of hun-

dreds or thousands in mass; e.g., Weidenschilling (1977); Wetherill (1989)), and

almost all of the escaping asteroids likely approached Jupiter. We conclude that

asteroids from the main belt, especially those interior to Jupiter’s 4:3 resonance, are

promising sources for the binary capture mechanism detailed in Chapter 2.
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Chapter 4

Galilean Satellites: Background

4.1 Physical properties

Jupiter’s four largest satellites have been objects of fascination since their discovery

by Galileo Galilei in 1610. Shortly after his discovery, Galileo realized that the four

point sources hovering near Jupiter were in fact moons orbiting the planet. This

added support for the Copernican Sun-centered view of the Solar System: if moons

orbited Jupiter, then the Earth was not the center of motion for all Solar System

bodies.

The Galilean satellites have been at the center of several milestones in science.

In 1676, Ole Romer used observations of these bodies to measure the speed of light.

He did this by studying eclipses of the moons by Jupiter’s shadow and noticing a

difference in the observed and predicted eclipse times. He correctly assumed this

difference existed because it takes time for light to travel, and he used the data to

calculate an approximate value of the speed of light.

The timing of the Galilean satellites’ eclipses was also used to determine lon-

gitude on Earth. Observers in two locations could note the moment a moon was

eclipsed and calculate the difference in local (solar) times, enabling the calculation
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Table 4.1. Galilean satellites: physical data

Satellite M (1022kg) R (km) ρ(g/cm3)

Io 8.93 1821 3.5
Europa 4.80 1560 3.0

Ganymede 14.8 2631 1.9
Callisto 10.8 2410 1.8

Note. — Physical characteristics of the
Galilean satellites: mass (M), mean radius
(R), and density (ρ). Mass data is from
Beatty et al. (1999) and radius and density
are from JPL’s Solar System Dynamics website,
http://ssd.jpl.nasa.gov/?sat phys par.

of longitude.

Since discovery, our knowledge of the Galilean satellites has evolved greatly, and

the increase in understanding has accelerated in the past 35 years with the advent

of flyby and later orbiting spacecraft, including Pioneer 10 and 11, Voyager 1 and 2,

Galileo, Cassini, and New Horizons. Ground-based and Earth-orbit telescopes have

also made significant contributions.

Table 4.1 gives the mass, radius, and density of each satellite, and Fig. 4.1 shows

Galileo spacecraft images of the satellites in order of their distance from Jupiter.

The least-massive Galilean satellite, Europa, is slightly smaller than Earth’s Moon,

and the largest, Ganymede, is the biggest moon in the Solar System. Although

it is slightly larger than Mercury, Ganymede is less than half as massive as that

iron-dominated planet.

The innermost satellite, Io, is the most volcanic body in the Solar System. The

existence of current volcanism was predicted by Peale et al. (1979) just one week

before Voyager 1’s cameras spotted an active plume along Io’s limb (Johnson 1999).

Io’s surface is covered with volcanic pits, calderas, and lava flows, activated by its
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Figure 4.1 A composite view of the four Galilean satellites of Jupiter, as imaged by

the Galileo spacecraft. The satellites are shown to scale, in order of their orbital

distance from Jupiter; from closest to farthest (left to right): Io, Europa, Ganymede,

and Callisto. Credit: NASA/JPL/DLR.

constant tidal flexing from Jupiter. The volcanoes are powered by high-temperature

liquid silicates (> 1500 K; Johnson (2004)), emit mainly sulfur dioxide, and resurface

Io at a swift rate of 1–10 cm/yr (de Pater and Lissauer 2001). Not surprisingly, no

impact craters have been found on the moon (de Pater and Lissauer 2001). Galileo’s

gravity-field data indicated that Io is highly differentiated, with an iron-rich core

out to about half the satellite’s radius topped by a partially molten silicate mantle

and a thin silicate crust (Johnson 2004).

The outer three Galilean satellites consist of both rock and ice. Europa’s very

bright surface is made of nearly pure water ice. The satellite is also extremely flat

with no topological features higher than 300 m (de Pater and Lissauer 2001) and

very few craters. Europa is covered with ice cracks and ridges as well as features

resembling ice flows, all of which hint at a subsurface liquid ocean. It is believed

that the ridges form either from compression of two ice plates or expansion, in which

liquid water rises up through the resulting crack to make the ridge. The existence

of one form of tectonism, of course, implies that the other is also active elsewhere

on the moon. The outer ice/water layer on Europa is thought to be 75–150 km
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thick, with a solid silicate mantle below and a dense iron/rock core (Johnson 2004).

Galileo’s magnetometer also found that perturbations in Jupiter’s magnetic field

near Europa (as well as near Ganymede and Callisto) are consistent with a salty,

conductive ocean. The presence of a liquid ocean at Europa is widely accepted, but

the thickness of the overlaying ice (a key parameter for any drilling-based Europa

space mission) is debated and estimated to be anywhere from less than a kilometer

(Greenberg et al. 2002) to greater than 20 km (Pappalardo et al. 1999).

Perhaps Ganymede’s most impressive attribute is its intrinsic magnetic field,

detected by the Galileo spacecraft. An explanation for its origin, however, is still

elusive. Earth’s magnetic field requires a conductive, convective molten fluid, which

Ganymede may have in its core, but models indicate that maintaining core convec-

tion in Ganymede to the present day would have been difficult (Johnson 2004). The

surface of Ganymede consists of large stretches of both bright and dark material.

The heavily cratered dark regions appear to be the oldest areas, while the light

terrain consists of parallel grooves formed by tectonic activity. Ganymede is highly

differentiated, and models of the interior structure suggest a molten core, a silicate

mantle, and a thick outer ice shell, with a possible liquid water layer.

Callisto’s surface is uniformly dark except for bright marks from its numerous

craters. The Galileo spacecraft’s high-resolution images of the satellite showed a

surprising lack of small craters. This may be due to surface degradation produced

by sublimation of volatile materials (de Pater and Lissauer 2001). In contrast to the

other three Galilean satellites, Callisto’s interior is only partially differentiated, with

no well-defined large mantle or core. This indicates a lack of significant heating for

Callisto. Recently, Barr and Canup (2010) proposed that the difference in heating

between Ganymede and Callisto is due to different impact frequencies during the

late heavy bombardment. A simpler explanation for an undifferentiated Callisto
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may be that Ganymede’s heating comes from its resonance with Io and Europa

(Malhotra 1991; Showman and Malhotra 1997; Showman et al. 1997).

4.2 Orbital properties and resonances

The focus of the following chapter is the origin of the Galilean satellites’ Laplace

resonance. In this section, we describe some of the basics of resonance theory, as

well as the effects of oblateness and tides, with emphasis on results relevant to later

sections.

An orbit is fully defined by six orbital elements. One commonly used set of

elements includes semi-major axis (a), eccentricity (e), inclination (i), longitude of

the ascending node (Ω), argument of pericenter (w), and mean anomaly (M). The

semi-major axis, a, can be rewritten as orbital mean motion, n, which is the average

angular speed of the satellite:

n =

√
G(MP + Ms)

a3
, (4.1)

where MP is the planet’s mass, Ms is the satellite’s mass, and G is the gravitational

constant. The orbital period P , then, is simply 2π/n. Table 4.2 gives all of these

values for the present-day Galilean satellites.

The mean longitude, λ = Ω + (ω + M), can be used as a substitute for the

mean anomaly, M , and it is customary to do so in a discussion of resonances.

Mean longitude is a bent angle measured in two planes: it equals the angle from

the reference direction to the node measured in the reference plane (Ω) plus the

angle from the node to the satellite’s average location measured in the orbital plane

(ω + M), calculated as if the planet moved at a constant angular rate. The mean

longitude increases linearly in time and dλ/dt ≈ n. In addition, the longitude of
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Table 4.2. Galilean satellites: orbital data

Satellite a (RJ) e i (deg) Ω(deg) w (deg) M (deg) n (deg/day) P (days)

Io 5.89716 0.0041 0.036 43.977 84.129 342.021 203.4889583 1.769
Europa 9.38427 0.0094 0.466 219.106 88.970 171.016 101.3747242 3.551

Ganymede 14.96671 0.0013 0.177 63.552 192.417 317.540 50.3176072 7.155
Callisto 26.33861 0.0074 0.192 298.848 52.643 181.408 21.5710728 16.69

Note. — Mean orbital elements of the present-day Galilean satellites as measured from the local
Laplace plane: semi-major axis (a), eccentricity (e), inclination (i), longitude of the ascending node
(Ω), argument of pericenter (w), mean anomaly (M), mean motion (n), and orbital period (P ). Mean
anomaly is given for the epoch of January 16, 1997, 0.0 hours Terrestrial Time. Data are from
JPL’s Solar System Dynamics webpage, http://ssd.jpl.nasa.gov/?sat elem, and were produced by R.
A. Jacobson.

pericenter ω̃ = Ω + ω can be used instead of ω. Longitude of pericenter is also a

bent angle, measured both in the reference and orbital planes.

A mean-motion resonance occurs when the ratio of the orbital periods of two

bodies is rational, causing the effects of mutual perturbations to build up over time.

Gravitational perturbations on a body, including resonances, can be described with

the disturbing function, which can be written with orbital elements as a series of

cosine terms:

R =
∑
(jk)

R(jk) cos(j1λ1 + j2λ2 + j3ω̃1 + j4ω̃2 + j5Ω1 + j6Ω2), (4.2)

where R(jk) are the strengths of each term (depending on a, e, and i) and the

coefficients jk are integers that satisfy the d’Alembert conditions:

j1 + j2 + j3 + j4 + j5 + j6 = 0 (4.3)

and

j5 + j6 = even. (4.4)
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Hamilton (1994) provides an explanation for the d’Alembert rules based on spatial

symmetry. The argument of Eq. 4.2 (called the resonant argument or resonant angle)

can be rewritten in the following form commonly used for mean-motion resonances:

φ = (p + q)λ2 − pλ1 + j3ω̃1 + j4ω̃2 + j5Ω1 + j6Ω2, (4.5)

where −p = j1 and p + q = j2. The sum |j3|+ |j4|+ |j5|+ |j6| gives the number of e

and sin (i) terms that appear in the resonant strength R(jk) (from Eq. 4.2) and hence

the order of the resonance. The angle φ librates through a small range of values

when the bodies are close to or in resonance, and it circulates through 360◦ when

they are far from resonance. If there is no precession of the pericenter or ascending

node, the bodies’ longitude of conjunction (p + q)λ2 − pλ1 remains constant and

Eq. 4.5 can be differentiated to give

(p + q)n2 − pn1 = 0, (4.6)

describing an exact mean-motion resonance.

Io and Europa are in a 2:1 mean motion resonance, as are Europa and Ganymede.

For Io and Europa’s resonance, the longitude of conjunction librates about Io’s

pericenter and Europa’s apocenter, having resonant angles

2λ2 − λ1 − ω̃1 = 0◦ (4.7)

and

2λ2 − λ1 − ω̃2 = 180◦, (4.8)

with subscripts 1 for Io, 2 for Europa, and 3 for Ganymede

Europa and Ganymede’s conjunction librates about Europa’s pericenter but in-

volves neither the pericenter nor the apocenter of Ganymede. This means that
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Ganymede can be at any radial location in its orbit during conjunction with Eu-

ropa. These properties are described by the resonant arguments

2λ3 − λ2 − ω̃2 = 180◦ (4.9)

and

2λ3 − λ2 − ω̃3 , which circulates through 360◦. (4.10)

Considering all three satellites together, we subtract Eqs. 4.9 and 4.8 to get:

φ = λ1 − 3λ2 + 2λ3 = 180◦, (4.11)

and differentiating,

n1 − 2n2 = n2 − 2n3. (4.12)

Equation 4.12 describes the special kind of mean-motion resonance called the

Laplace resonance. It means that Ganymede circles Jupiter once for every two

Europa orbits and four Io orbits. The resonance stipulates that there can never be

a triple conjunction, and when any two satellites are in conjunction, the third is

at least 60◦ away (Murray and Dermott 1999). The two sides of Eq. 4.12 are the

mean conjunction drift rates for the two satellite pairs, which are presently about

0.7395◦/day (Greenberg 1982). These drift rates are much smaller than the mean

motions (see Table 4.2) and the pairs are very close to exact 2:1 commensurability.

So we see that in reality, resonances are not at exact ratios of integers, because

of precession. Planetary oblateness, resulting from the spin of non-rigid bodies, is

one source of precession. Perturbations from oblateness are quantified by another

disturbing function, involving coefficients Jk, where k is an integer. If there is north-

south symmetry (which is the case for the giant planets), the odd terms are all zero.
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As a result, the extent of a planet’s rotational deformation is commonly denoted

by J2, the highest-order non-zero coefficient. Jupiter’s J2 is 0.014736, much higher

than that of the terrestrial planets and second only to Saturn in the Solar System.

The gaseous planets are more oblate than the other planets because of their fast

spins.

While oblateness does not change e or i, it does cause precessions of the peri-

center and ascending node of an orbit. For all prograde satellites (including the

Galilean moons), oblateness causes precession of the pericenter and regression of

the ascending node; for retrograde satellites, both the pericenter and the ascending

node precess. Precession from J2 accounts for 97% of Io’s total precession and 80%

of Europa’s, but it only accounts for ∼40% of Callisto’s precession (Hamilton, 2005,

personal communication). For Callisto, Ganymede and the Sun are also significant

sources of orbital precession.

Orbital precession causes mean-motion resonances to split into multiple reso-

nances involving inclination and eccentricity that occur at slightly separated loca-

tions. The two first-order resonances for the Io-Europa and Europa-Ganymede pairs

are written in Eqs. 4.7, 4.8, 4.9, and 4.10. Labeling the resonant arguments φ1−6 in

order of distance from the planet, the entire set of six first- (2:1) and second-order

(4:2) resonances are:

φ1 = 4λ2 − 2λ1 − 2Ω1 (4.13)

φ2 = 4λ2 − 2λ1 − Ω1 − Ω2 (4.14)

φ3 = 4λ2 − 2λ1 − 2Ω2 (4.15)
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φ4 = 2λ2 − λ1 − ω̃1 (4.16)

φ5 = 4λ2 − 2λ1 − ω̃1 − ω̃2 (4.17)

φ6 = 2λ2 − λ1 − ω̃2. (4.18)

The locations of the multiple resonances are all close to each other and may

even overlap; they typically become more tightly spaced at greater distances from

the planet. Zhang and Hamilton (2008) developed a resonant overlap criterion for

the two first-order eccentricity resonances. These six first- and second-order terms

are illustrated in Fig. 4.2. In Fig. 4.2, the resonances are labeled by the orbital

elements affected by each resonance (with ω̃ affecting e and Ω affecting i) instead

of the entire resonant argument; we will continue to use this notation throughout

this dissertation. For example, the resonance in Eq. 4.13 involves only Ω1 and is

second-order, so it is labeled i1
2.

Tides also have important effects on planet-satellite systems. As the force of

gravity depends on distance, a satellite pulls strongest on the part of the planet

closest to it, less strongly on the center of the planet, and least strongly on the side

farthest away. This has the effect of raising two bulges on the planet, one on the

area closest to the satellite and one on the far side. However, planets also spin,

and tides take time to form, so the bulge is usually not perfectly in line with the

satellite. In fact, the only case when the bulge aligns with the planet-satellite line

is when the satellite orbits at exactly the same rate as the spin of the planet. This

happens when the satellite orbits at the synchronous radius rsyn:
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Figure 4.2 A schematic showing the six first- (2:1) and second-order (4:2) interior

resonances, in order of their distance from the planet (with Jupiter to the left).

Resonances are marked with the orbital elements they affect.

95



rsyn =

(
GMP

ΩP
2

)1/3

, (4.19)

where ΩP is the planet’s spin rate. The Galilean satellites are all outside of rsyn =

2.24 RJ , and their orbital rates n (see Table 4.2) are much slower than Jupiter’s

spin rate, which is about 870◦/day. Because of this, the bulge on Jupiter from any

one of the satellites gets ahead of the planet-satellite line. This exerts a torque on

the system. As a result, rotational energy from Jupiter’s spin is transferred into

orbital energy for the satellite, both slowing Jupiter’s spin and increasing the sizes

of the satellites’ orbits. The satellites’ outward migration is slow, however: only

about 1–2 RJ over the age of the Solar System (Hamilton et al. 2001; Proctor et al.

2002). Planetary tides also generally increase satellite eccentricities (Jeffreys 1961).

Tides on the satellite from the planet work in the same way. They push in the

opposite direction, opposing the semi-major axis increase from planetary tides. In

addition, they have the effect of slowing the satellite’s spin until the same face is

locked toward the planet at all times. This happens very quickly; all of the Galilean

satellites are currently spin-synchronized (Peale 1977). Satellite tides also circularize

eccentric orbits very effectively. This can be understood because tides on the satellite

are stronger at pericenter and weaker at apocenter. Since the tidal force is nearly

radial, orbital angular momentum is conserved, but orbital energy decreases and

eccentricity is forced to decrease as well. This effect usually dominates the increase

in eccentricity from planetary tides (Goldreich 1963), and thus the overall result

is eccentricity damping. The orbits of the Galilean satellites are not completely

circular (see Table 4.2), however, because of their resonant interactions.

Tides also damp inclinations, but this happens much more slowly, at nearly the

satellite tidal migration rate (Kaula 1964). Over the age of the Solar System, this

corresponds to a damping of less than a tenth of current tilts, for most satellites
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(Zhang 2007). As there are usually no other effective ways of damping inclination,

and we can assume that satellite formation in a protoplanetary disk produces zero

initial tilts, any current inclinations must be a result of orbital interactions. We

apply this assumption in our numerical study described in Section 5.3.

Tidal flexing and the Laplace resonance have rather impressive effects on the

Galilean system: powering Io’s volcanoes (Peale et al. 1979), maintaining a layer of

liquid water under Europa’s surface (Cassen et al. 1980, 1979), and possibly resur-

facing Ganymede (Malhotra 1991; Showman and Malhotra 1997). Understanding

the origin and history of this resonance is of great interest, but it is a complex prob-

lem. In the next chapter, we study a piece of the larger picture: entrance into the

Io-Europa resonance. In Section 5.1, we describe various evolution models for the

Galilean satellites. In Sections 5.2 and 5.3, we detail our numerical study, and in

Section 5.4, we discuss our overall conclusions and give some future directions.
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Chapter 5

Resonant History of the Galilean

Satellites

5.1 Orbital evolution models

There are two predominant models for explaining the origin of the Laplace resonance.

The first is resonant capture caused by orbital expansion from tides raised in Jupiter,

especially by Io. As we have discussed in the previous chapter, planetary tides cause

the orbits of satellites to grow with time. Goldreich (1965) suggested that resonances

may have developed because of tidal expansion, and several groups have investigated

this mechanism as the origin of the Galilean satellites’ Laplace resonance (e.g.,

Greenberg 1981b; Malhotra 1991; Showman and Malhotra 1997; Showman et al.

1997; Yoder 1979; Yoder and Peale 1981). Since tides are strongest close to the

planet, Io’s orbit expands fastest and locks with Europa into the 2:1 resonance.

The orbits of the pair continue to expand outward until Europa captures Ganymede

into their 2:1 resonance. It is also possible that Europa and Ganymede formed

sufficiently close to each other that their resonance was entered first, with Io joining
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later.

Greenberg (1982, 1987) proposed that the three satellites may have originated

in resonance at formation (here we define formation to mean the time at which

the circumplanetary gas disk has dissipated and satellite accretion has ended). He

suggested that the satellites formed in deeper resonance than at present (i.e., with

lower conjunction drift rates (Eq. 4.12)), and that they have been subsequently

moving out of resonance.

A problem with Greenberg’s theory was that the lack of a sufficient mechanism

other than chance to place the satellites in resonance upon formation. In 2002,

Canup and Ward detailed a model for formation of the Galilean satellites in a low-

density gas disk and noted that the satellites likely migrated inward during the

formation period. If this occurred, Ganymede’s high mass means that it would have

migrated faster than the other satellites. Peale and Lee (2002) and Peale and Lee

(2003) proposed that Ganymede could have captured Europa into resonance during

this inward motion, followed by Europa’s inward migration to meet Io. Variations

of this model have also been proposed (e.g., Peale and Lee 2003). For example, it

is possible that Io’s inward motion was fast enough to avoid resonance with Europa

during formation, while post-formation tidal expansion joined Io with Europa and

Ganymede at a later time.

Differentiating between these scenarios (i.e., resonant lock due to tidal expansion

or formation in resonance) would allow us to constrain the satellites’ formation dis-

tances and better understand the processes that have shaped the Galilean satellites

into their current states. In this chapter, we study the tidal expansion origin theory

and focus on Io’s resonance with Europa.

99



5.2 Numerical model

We studied this problem with simulations using the symplectic integrator of HNBody

(Rauch and Hamilton 2002), the N -body package also used in other chapters of this

thesis. Our simulations include Jupiter, the Sun, and Io and Europa. The Sun is

not very important for the orbits of Io and Europa, but it must be included when

Ganymede is added to the system, as will eventually be necessary for a full inves-

tigation. We were careful to set the stepsize of the integrator to resolve at least 20

steps per orbit of Io. We also included Jupiter’s J2, J4, and J6 oblateness terms.

In addition, we use HNDrag to simulate planetary and satellite tides with ar-

tificial drag forces. We first modeled only planetary tides (the tides raised in the

planet by the satellite) with a simple force in the direction of the satellite’s velocity

(F ∝ vv̂). The planetary tidal force causes the semi-major axis of the satellite’s

orbit to expand.

Over the age of the Solar System, Io has migrated outward by at most 1–2 RJ

(Hamilton et al. 2001; Proctor et al. 2002, constrained by considering Io’s effect on

the inclinations of small, inner Jovian satellites). This rate, 2–4×10−10RJ/yr, is

very slow and computationally expensive to simulate directly. To circumvent this

problem, we take two approaches: 1) simulate only the time interval in which the

resonance is important, and/or 2) speed up the drag rate by one or two orders of

magnitude. A faster drag rate is valid as long as the orbital expansion is slow enough

that the resonance of interest is traversed in the adiabatic limit.

HNBody can give output either in Cartesian positions and velocities or in oscu-

lating orbital elements, which are calculated as if there are no perturbations. Since

the perturbations from oblateness and the satellites themselves are large, osculating

orbital elements are not a good representation of the actual orbits. Instead, follow-
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ing Greenberg (1981a), we output positions and velocities and then convert these

to geometric orbital elements, which describe the physical shape of the orbit. To do

this, we use the conversion program cj2, which corrects for the effects of the planet’s

J2 value.

5.3 Simulations of Io and Europa

The goal of this work is to understand the Galilean system’s past evolution, using

their current orbits as constraints. Recall (Section 4.2) that tidal damping of orbital

inclinations happens very slowly and is almost negligible over the lifetime of the Solar

System. In addition, we expect that formation in the protoplanetary gas disk left

the satellites with very flat, zero-inclination orbits. Because of these two factors,

we can use the satellites’ current inclinations as constraints for their past histories.

From Table 4.2, we see that Europa’s inclination is almost a half degree, Ganymede

and Callisto have tilts of a few tenths of a degree, and Io’s inclination is only a

few hundredths of a degree. In order for an orbital evolution scenario to be valid,

we begin by assuming that none of the satellites’ inclinations can rise higher than

their current values. (We revise this assumption slightly later in this section.) In

addition, of course, the true scenarios must produce the current tilts, with Europa’s

relatively large value being especially diagnostic.

Io and Europa’s resonance involves libration of the angles associated with eccen-

tricity: φ4, φ5, and φ6 (Eqs. 4.16- 4.18). From Fig. 4.2, we see that the eccentricity

resonances are located further from the planet than the pair’s second-order inclina-

tion resonances. If Io evolved outward to capture Europa into the e-resonances, the

satellites must have encountered the 4:2 inclination resonances before reaching the

eccentricity resonances. In addition, Io must pass these resonances without acquir-
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ing a large orbital tilt. This requirement has proven to be the central challenge of

our work.

Before discussing the results of our simulations, we give an example plot of orbital

elements and discuss some common features seen during resonant crossing. For

bodies with converging orbits, as we simulate, resonant capture can occur; Fig. 5.1

shows trapping into the i2
2 resonance. When captured, the affected element rises

with a square-root-shaped curve (Hamilton and Burns 1993). In Fig. 5.1, i2 rises

from 0◦ to ∼0.56◦ by the end of the simulation.

Note, though, that i1 also rises along a similar square-root curve, but only to a

much smaller value (∼0.009◦). This type of feature, ubiquitous in our simulations,

is not indicative of capture into a resonance involving i1. Instead, it is a secular

effect due to the slowly changing Laplace plane. A body’s Laplace plane is defined

as the plane in which its node precesses and its inclination remains constant. Close

to the planet, the Laplace plane coincides with the planet’s equatorial plane, while

near a massive satellite, the Laplace plane is the satellite’s orbital plane. Zhang

and Hamilton (2007) calculate the instantaneous tilt of the Laplace plane for small

satellites at Neptune perturbed by Triton.

At the beginning of this simulation (Fig. 5.1), Io’s Laplace plane is close to

the Jupiter’s equatorial plane. As Europa’s inclination rises, Io’s Laplace plane

tilts slightly in response. This is Io’s forced inclination. Io’s free inclination is

actually still 0◦ if measured from the Laplace plane. Since the plotted inclinations

are measured from the equatorial plane, we are seeing the changing tilt of the Laplace

plane. In other simulations, the same type of response appears in i2 for capture

into the i1
2 resonance. We can easily distinguish this response feature from the

dual-inclination i1i2 resonance because the bodies’ inclinations rise by comparable

amounts when captured into the i1i2 resonance.
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Figure 5.1 Capture into the i2
2 resonance, with a weak response visible in i1. This

simulation was run with a drag rate of 10−9 RJ/yr and both inclinations initially

set to 0◦.
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Another feature to notice in Fig. 5.1 is a rise in the bodies’ eccentricity that halts

when the inclination capture occurs. Though the inclination resonances occur first,

the eccentricity resonances are much stronger, and thus eccentricity is forced to even

larger values as the bodies approach the more-distant e-resonances. However, the

eccentricity rise is halted when the satellites capture into i2
2 because the e-resonance

is no longer being approached.

Finally, note the large-amplitude oscillations in the semi-major axes and eccen-

tricities in Fig. 5.1. The reason for these oscillations is the mutual perturbations

between the satellites. Recall that we print out positions and velocities and use the

program cj2 to convert the data files to orbital elements. This technique allows

for inclusion of the planet’s J2 oblateness parameter, giving more accurate orbital

elements than by simply using the osculating elements. We also input the planet’s

mass to cj2, in the form of GMP . However, it is more complicated to take into

account perturbations from the satellite masses. The conversion from cj2 neglects

the masses of the satellites, and thus the orbital elements are fuzzy as a result. The

fuzziness is due to the differences between true geometric orbital elements and the

approximate elements that we use. Inclinations are less affected because the per-

turbations between satellites are primarily in-plane. The strong resonant features

are still discernible even with the orbital element oscillations, but weaker features

may require modeling of the mutual satellite perturbations to obtain more-sharply

defined elements.

We now discuss the results of our suite of integrations. In our initial simulations,

we started Io and Europa on orbits with i ≈ 0◦, setting Io’s initial a ≈ 4RJ and

placing Europa so that the bodies would cross their 2:1 resonance within several

million years. We simulated only Io’s semi-major axis growth with planetary tides

(F ∝ vv̂) and included no satellite tides. We found that for reasonable drag rates,

104



Io and Europa inevitably captured into one or more of their second-order inclination

resonances. This was true for all drag rates slower than about 10−7 RJ/yr, which is

∼200 times faster than the nominal rate. In addition, we found that in these simu-

lations, capture into the any one of the inclination resonances caused the satellites’

tilts to rise higher than their current values. Figure 5.2 shows an example of one

such case.

If Io’s orbit expanded to capture Europa in this way, some other mechanism

either a) altered their orbits, allowing them to pass by the inclination resonances

without being trapped, or b) broke them out of inclination resonance before their

tilts rose to values higher than at present. We now consider the first option.

One possible means of altering orbits is by encounters with prior resonances.

Prior to the troublesome second-order inclination resonances, Io would have en-

countered a suite of weaker third-order resonances. The 2:1 third-order resonances

labeled in Fig. 5.3 appear just before the 4:2 inclination resonances and, as can be

seen in the figure, do impart kicks to the bodies’ inclinations. However, for initial

i1 ≈ 0, i2 ≈ 0 these resonances do not trap Io and Europa, for all of our tested

migration rates. The imparted kicks are too small to prevent Io and Europa from

capturing into the 4:2 inclination resonances.

While kicks from these earlier third-order resonances are small, they do indicate

the possibility that Io and Europa had non-zero inclinations prior to encountering

the 4:2 resonance. Accordingly, we tested to see if still-larger initial inclinations

would have been enough to prevent trapping into the 4:2 inclination resonances. To

do this, we tilted Io and Europa by various amounts not exceeding their current

values, integrated them through the second-order inclination resonances, and noted

the outcome. Table 5.1 gives the results of 20 such simulations. Each was integrated

with a planetary tidal drag rate of 10−9RJ/yr, only a few times faster than the actual
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Figure 5.2 Io’s semi-major axis, eccentricity, and inclination as it captures into the i1
2

resonance with Europa just before t = 2.2×107 yr (with a drag rate of 10−9RJ/yr).

Io’s current inclination is only a few hundredths of a degree, so this evolution could

not have happened.
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Figure 5.3 Inclination kicks to Io’s inclination (i1) and Europa’s inclination (i2) from

third-order 2:1 resonances prior to the second-order 4:2 inclination resonances, with

a drag rate of 10−9RJ/yr. At t ≈ 5.1×107 yr, both bodies’ inclinations rise to large

values as they capture into the i1
2 resonance.
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Table 5.1. Integrations of Io and Europa’s 2:1 resonance passage: non-zero initial
inclinations

i1 = 0◦ i1 = 0.01◦ i1 = 0.03◦ i1 = 0.05◦

i2 = 0◦ i2
2 i1i2 i1i2 i1

2, then i1i2
i2 = 0.02◦ i1i2 i2

2 i1i2 i1i2
i2 = 0.05◦ i1i2 i1i2 i1i2 i1i2
i2 = 0.10◦ i1i2 i1

2, then i1i2 i1
2, then i1i2 e2i1i2, then i1i2

i2 = 0.20◦ e2i1i2, then i1i2 e2i1i2, then i1i2 i1i2 i1
2, then i1i2

Note. — Capture into Io and Europa’s 4:2 i1
2, i1i2, and i2

2 resonances. Some
captures into the 2:1 e2i1i2 resonance are also seen, all of which have the resonant
argument given in Eq. 5.1. The satellites’ initial inclinations are given in the top row
(Io) and left column (Europa). Entries of more than one resonance (e.g., “i1

2, then
i1i2,” mean that the satellites capture into the first resonance, break out, and then
capture into the second resonance. The boldfaced simulation is shown in Fig. 5.4.

rate. In all of the simulations, the satellites still captured into inclination resonances,

raising their tilts beyond their current values.

One interesting feature in these simulations is the reappearance of the third-

order 2:1 resonances discussed above. Figure 5.4 shows an example of capture into

the e2i1i2 resonance, with resonant argument

φ = 2λ2 − λ1 − ω̃2 − Ω1 + Ω2. (5.1)

Recalling the d’Alembert rules: 1) all coefficients of the resonant argument must add

to zero and 2) nodal terms must appear in pairs, it is easy to see that all third-order

2:1 resonances must include one positive precession term. While the more-typical

negative coefficients in resonant arguments lead to increases in the corresponding

elements, positive coefficients in a resonant argument correspond to decreases in the

corresponding elements (Zhang and Hamilton 2008). For zero inclinations, trapping

into the above third-order 2:1 resonances cannot occur, as inclination cannot be

decreased below 0◦. However, in simulations with non-zero initial inclinations, Io
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Figure 5.4 Capture into the third-order e2i2i1 resonance (at ∼ 5 × 105 yr) with

resonant argument given by Eq. 5.1 followed by capture into the i1i2 resonance (at

∼ 2.2 × 106 yr). This simulation was run with a drag rate of 10−9 RJ/yr, with Io

and Europa’s initial inclinations set to 0◦ and 0.20◦, respectively. Europa loses its

initially small inclination, while Io’s orbit becomes tilted. Although harder to see,

Europa’s eccentricity also grows due to the e2i2i1 resonance: the thickening of the

e2 trace at ∼ 5× 105 yr is due to the increase of free eccentricity superimposed on

the slowly-rising forced eccentricity from the nearby e2 resonance.
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and Europa can temporarily trap into these resonances, as seen in Fig. 5.4. In this

figure, capture into the e2i1i2 resonance increases i1 by roughly the same amount by

which i2 is decreased. As i2 approaches 0◦, the bodies exit the third-order resonance,

later capturing into the i1i2 resonance. In our simulations, temporary capture into

these third-order 2:1 resonances was always followed by permanent capture into one

of the second-order 4:2 inclination resonances.

Note that these third-order resonances offer a means of decreasing inclination,

something we previously assumed was unlikely. More accurately, the 2:1 third-order

resonances can decrease one inclination, but only if another inclination increases,

unlike their second-order counterparts. It is possible that Io and Europa exchanged

tilts through a third-order 2:1 resonance, but this would leave the origin of Io’s

initially-high tilt unexplained. Nevertheless, this broadens the types of scenarios

that should be considered.

There appear to be several patterns in the suite of simulations starting with non-

zero inclinations (Table 5.1). First, temporary capture into a third-order resonance

occurs only for sufficiently large initial inclinations of Europa (≥ 0.10◦). This is

reasonable, as the strength of the resonance increases for larger i2, and the inclination

must be non-zero in order to decrease when captured. Second, capture into i1i2

happens more frequently than capture into any other resonance. This is partially

because the i1i2 resonance is twice as strong as the other second-order inclination

resonances. Third, captures into i1
2 and i2

2 do happen, but they are infrequent and

there does not appear to be a clear pattern establishing when they occur. Fourth,

all captures into i1
2 break out and subsequently trap into i1i2. Overall, the i1i2

resonance wins out over the other resonances in nearly all cases.

While we see many complicated features in simulations with non-zero inclina-

tions, all of the simulations still resulted in final inclinations greater than the satel-
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lites’ current values. Thus non-zero initial inclinations cannot, by themselves, ex-

plain Io and Europa’s evolution into eccentricity resonances. There appears to be

no way to get past the inclination resonances and to the eccentricity resonances

beyond.

The simulations above neglect the effects of tides on the satellite, which damp

the satellites’ eccentricities. We now discuss several simulations testing the effects

of satellite tides (F ∝ Msrs
−6vrr̂) as well as a more-realistic planetary tidal force

(F ∝ Msrs
−6v̂), where Ms is the satellite’s mass, rs is its distance from the planet,

and vr is its radial speed. The r−6 dependence means that these forces are strongest

near the planet and drop off quickly with distance. We try various strengths for

both forces, which depend on the bodies’ unknown tidal dissipation quality factors

Q. While the planetary tidal force causes expansion of the orbital semi-major axes,

the satellite tidal force both damps eccentricity and opposes the semi-major axis

expansion. These effects can be seen with the following equations describing the

evolution of semi-major axis and eccentricity under the influence of the 2:1 resonance

and tidal forces (adapted from Hamilton and Burns (1993)):

da

dt
= aenβ sin φ + CPT an + 2CST ae2n (5.2)

and

de

dt
= −nβ sin φ + CST en, (5.3)

where β is the dimensionless, positive strength of the resonance, φ is the resonant

argument, and CPT and CST are the strengths of the planetary and satellite tidal

forces, respectively, with CPT positive outside the synchronous radius Rsyn (and

negative inside Rsyn) and CST always negative. Both CPT and CST are dimensionless

functions of a, but we treat them as constants here because we are interested only
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in evolution through a small range of a. Note that for zero eccentricity, da/dt for

satellite tides goes to zero. This is because the satellites are spin-locked to Jupiter.

The tidal bulges on the satellites are aligned with the planet and have no side-to-

side motion. If the satellites orbited on circles, then, there would be no source of

energy dissipation from satellite tides and no corresponding change in a. The real

satellites’ non-zero eccentricities, however, do impart a negative da/dt.

In our simulations, the tidal drag rates are input to HNDrag as the magnitude

of their contribution to da/dt and hence are equal to CPT an for planetary tides

and 2CST ae2n for satellite tides (from Eq. 5.2). We see that the semi-major axis

evolution can be determined by the struggle between planetary tides moving the

orbits out and satellite tides pushing them in toward the planet. This competition

between planetary and satellite tides leads to important effects. Figure 5.5 shows a

simulation with planetary tides (CPT an = 10−8 RJ/yr) applied to Io and no satellite

tides. We see that Io and Europa capture into the i1
2 resonance, and i1 rises to 4◦ by

the end of the simulation. Unlike the simulations discussed in Table 5.1, the satellites

do not break out of i1
2. This may be because here they start with zero tilts, and the

strengths of the inclination resonances increase with increasing inclinations. Note

the appearance of the common features we discussed earlier in this section: the

Laplace plane inclination response in i2, the halted eccentricity rise for both bodies,

and small oscillations in eccentricity.

Compare Fig. 5.5 with Fig. 5.6, which shows the same simulation except for the

addition of satellite tides applied to Io, here integrated with 2CST ae2n =−1.5×10−11

RJ/yr. The results are similar, also showing capture into the i1
2 resonance. We

see that e1 becomes less fuzzy, as satellite tides damp its oscillations in the first

million years. However, the presence of satellite tides also opposes the semi-major

axis expansion, and the satellites have slightly smaller a values at the end of the
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Figure 5.5 Orbital elements of Io and Europa integrated with planetary tides at

CPT an = 10−8 RJ/yr and no satellite tides. The bodies capture into the i1
2 reso-

nance, with thickenings in the e2 and i2 traces corresponding to non-zero values of

Europa’s free eccentricity and free inclination.
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Figure 5.6 The same as Fig. 5.5 (planetary tides at CPT an = 10−8 RJ/yr) with the

addition of satellite tides at 2CST ae2n = −1.5× 10−11 RJ/yr.

simulation. In addition, in Fig. 5.6, i1 captures slightly later in time (at t = 7×106

yr instead of 6.5×106 yr) and grows less, to only 2.5◦. The smaller final i1 in

Fig. 5.6 is not simply due to delayed capture; without satellite tides (Fig. 5.5), i1

grows to 2.5◦ long before the end of the simulation, by t = 107 yr. We see that in

this simulation (Fig. 5.6), satellite tides delay resonant capture and lead to reduced

inclination growth, because the satellites are converging less rapidly.
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Figure 5.7 shows another similar integration, here with satellite tides on Io at

2CST ae2n = −1.5× 10−10 RJ/yr, 10 times stronger than in Fig. 5.6. The evolution

changes dramatically with stronger satellite tides. Both bodies’ eccentricities still

rise as they approach the eccentricity resonances (and e1’s small oscillations damp

even faster than in Fig. 5.6), but they are halted at smaller values than in the

previous simulations. Here the eccentricities cease growing not because of resonant

capture (as in Figs. 5.5 and 5.6) but because of eccentricity damping due to the

satellite tides. The eccentricity at which Io tops off is entirely determined by the

ratio of the strengths of the planetary and satellite tidal forces (e.g., lower final e

for stronger satellite tides), and Europa’s final e follows as a natural result. Most

importantly, however, while the semi-major axes are moving out together, there

is no resonant capture. The satellite tides are strong enough to have damped the

resonant angles of both bodies to equilibrium points (φ4 (Eq. 4.16) librates around

0◦ and φ6 (Eq. 4.18)around 180◦, as seen in Fig. 5.8) before the bodies reached

the inclination resonance. We confirm this conclusion by examining the ratio of

mean motions: in Figs. 5.5 and 5.6, capture into the i1
2 resonance happens at n1/n2

= 2.0015, while here (Figure 5.7), the satellites reach equilibrium earlier and at a

greater separation, with n1/n2 = 2.0073. In addition, other simulations show that

capture into e2 occurs at still later n1/n2 = 1.9992.

What, then, is the ratio of mean motions for Io and Europa today? From

Table 4.2, we see that it is precisely 2.0073. This means that Io and Europa’s

actual state matches well with the integration shown in Fig. 5.7, and the satellites

never captured into resonance. To accurately describe their current state, we must

carefully define what we mean by “resonance” and by “capture.” Here we consider

resonance to mean having one or more resonant angles (e.g., Eqs. 4.13- 4.18) librating

about an equilibrium value. With that definition, Io and Europa are in resonance.
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Figure 5.7 The same as Fig. 5.6 (planetary tides at CPT an = 10−8 RJ/yr) except

with a 10× stronger satellite tides, at 2CST ae2n = −1.5× 10−10 RJ/yr. The mean-

motion ratio n1/n2 at which the bodies reach equilibrium is 2.0073, equal to Io and

Europa’s current n-ratio.
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Figure 5.8 Resonant angles φ4 and φ6 (Eqs. 4.16, 4.18), for the evolution in Fig. 5.7.

Tides quickly damp φ4 to a very small libration amplitude, corresponding to the

fast damping of Io’s free eccentricity seen in Fig. 5.7. As satellite tides are not ap-

plied directly to Europa, φ6, which involves Europa’s eccentricity, does not decrease

quickly.
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However, there are two types of resonant libration, bounded by a critical orbit

called the separatrix; crossing the separatrix is what is normally defined as resonant

capture. It is possible, though, to have not crossed the separatrix and still librate—

this is what Io and Europa are doing. Their proximity to the separatrix causes their

eccentricities to be forced above zero, but satellite tides cause a strong-enough back

reaction (Eq. 5.2) that the orbits cease converging. This halts the evolution at a

tidally determined equilibrium, and no resonant capture occurs.

So, the solution to the problem of bypassing inclination resonances to capture

into eccentricity resonances is that the satellites have not captured into resonance

after all. Tides on the satellites have damped their resonant angles so efficiently

that they librate stably without the satellites ever having crossed the separatrix

into resonant capture. This result is not clearly stated in the literature, possibly

because others have not considered the inclination resonances in tandem with the

eccentricity resonances.

We find, also, that the ratio of the strengths of planetary and satellite tides

in this simulation leads to a final e1 of 0.004, matching Io’s current value while

simultaneously matching n1/n2. This suggests that Io’s eccentricity was determined

by interactions primarily with Europa without strong contribution from Ganymede,

which is a reasonable conclusion. The final e2 in this simulation is 0.0025, smaller

than Europa’s current eccentricity of 0.0094, but interactions with Ganymede still

need to be considered, and the Europa-Ganymede resonance probably accounts for

the major portion of Europa’s e.

Finally, we still do not have an explanation for the satellites’ inclinations. How-

ever, Io’s inclination is small, and Europa’s larger tilt may have originated in its

resonance with Ganymede, which also has a significantly non-zero inclination.
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5.4 Findings and future directions

In our simulations of Io and Europa, we have found that for 0◦ initial inclinations

and realistic planetary tidal drag rates (but neglecting satellite tides), the satellites

inevitably capture into the 4:2 inclination resonances and their inclinations rise

above their current values.

We examined several possible ways to avoid the inclination resonances. First,

we determined that kicks imparted by earlier third-order 2:1 resonances to zero-

inclination orbits are too weak to significantly alter the orbits.

Secondly, we found that when Io and Europa’s initial inclinations are higher

than zero, the bodies can capture into the third-order 2:1 resonances, resulting in an

inclination increase for one body with a corresponding decrease for the other body.

Regardless, all simulations with non-zero initial inclinations resulted in eventual

capture into one of the 4:2 inclination resonances and final tilts higher than at

present.

Finally, we investigated the effects of satellite tides, exploring their suppression

of resonant capture. We found that strong satellite tides can cause the satellites’

resonant angles to damp onto stable equilibria prior to encountering the 2:1 suite

of resonances. For Io and Europa, this occurs when the moons reach a mean-

motion ratio n1/n2 = 2.0073, equal to that measured today. Thus Io and Europa

never captured into the 2:1 resonances and their resonant angles librate because of

damping from satellite tides. This result also naturally accounts for Io’s current

eccentricity.

Simulating all three satellites is a natural extension of this project. We believe

interactions with Ganymede almost certainly played a major role in determining the

final state of the system.
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Chapter 6

Conclusions

Our work was aimed at investigating two main questions: 1) how were the giant

planets’ irregular satellites captured? and 2) how did the Galilean satellites evolve

into the Laplace resonance?

6.1 Irregular satellites

In Chapter 2, we developed and evaluated a new mechanism for capturing the ir-

regular satellites. In the model, binary asteroids are tidally disrupted during close

approaches with a planet, resulting in a speed change that leaves one of the pair

bound as a satellite. This kind of capture produces highly extended and inclined

orbits that require dissipation to resemble current orbits. Because of this, our model

stipulates that capture must occur when circumplanetary gas is still present in the

system. However, as tidal disruption provides the energy loss for capture, only

tenuous gas is needed for orbital evolution.

In testing our satellite capture model, we found that capture depends heavily on

the binary’s mass, separation, and the simulated starting distance from the planet.

We compared capture of binaries to long-lived temporary capture of single bodies
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and found that for CJ < 3.015 (corresponding to approach speeds of vL1 ∼ 2.01

km/s), binaries capture with similar rates as single objects. For higher CJ (lower

vL1), though, the effects of binaries are easily seen, as the capture efficiency of

binaries rises to about an order of magnitude higher than that of singles. In addition,

we developed a procedure to scale our equal-mass binary results to binaries with

unequal masses. Finally, we discussed the problem of survivability for these captures

and suggested solutions including 1) capture of binaries with larger-than-optimal

separations that lead to orbits fully outside Callisto’s and 2) evolution of the capture

orbits by the surrounding gas disk.

In Chapter 3, we examined possible sources for binary capture, focusing on

Trojan asteroids and asteroids from the outer main belt. To assess each population,

we simulated the asteroids leaking out of their orbits and calculated the bodies’

Jacobi constants at each approach within Jupiter’s Hill sphere. We found that all

Trojan asteroids flew by the planet with fast speeds, corresponding to effectively-

zero binary capture probabilities. Asteroids near the outer edge of the main belt

(especially those interior to Jupiter’s 4:3 resonance), on the other hand, had Jacobi

constants close to those with maximum capture probabilities. This result applied

equally for bodies that escaped on initially unstable orbits or those escaping because

of Jupiter’s inward migration. From this study, we conclude that the outer asteroid

belt is a promising source of irregular satellites captured from binaries. In the future,

we hope to assess the capture probability of Kuiper belt objects in a similar way.
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6.2 Galilean satellites

In Chapter 5, we studied the origin of Io and Europa’s resonance and showed that

their evolution ceased prior to encountering the separatrix for capture into the 2:1

resonances. Instead, their resonant arguments librate solely because the satellites’

free eccentricities have been damped below their forced eccentricities. In leading to

this conclusion, we modeled capture into resonance by simulating tidal expansion

pushing Io out to meet Europa. We found that the satellites’ second-order inclination

resonances acted as gatekeepers for the first-order eccentricity resonances. In our

simulations, the inclination resonances inevitably raised the satellites’ tilts to values

well-above those they have today. We examined several possible routes past these

troublesome inclination resonances and found that none of them were viable.

However, when including satellite tides, which oppose the bodies’ semi-major

expansion and suppress their eccentricities, we saw that the resonant angles φ4 and

φ6 damped to equilibria before the 2:1 resonances were encountered. We found that

Io and Europa are currently in this configuration, having never captured into the 2:1

eccentricity resonances. In addition, the satellites never reached the 4:2 inclination

resonances and experienced no inclination excitation from them. This conclusion

accounts for the origin of Io’s eccentricity. Finally, it is likely that interactions with

Ganymede led to the moons’ current inclinations, and future work will elucidate its

role in establishing the Laplace resonance.
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Ćuk, M., and J. A. Burns 2004b. On the secular behavior of irregular satellites.

AJ 128, 2518–2541.
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