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The modern theory of accretion disks is dominated by the discovery of the

magnetorotational instability (MRI). While hydrodynamic disks satisfy Rayleigh’s

criterion and there exists no known unambiguous route to turbulence in such disks, a

weakly magnetized disk of plasma is subject to the MRI and will become turbulent.

This MRI-driven magnetohydrodnamic turbulence generates a strong anisotropic

correlation between the radial and azimuthal magnetic fields which drives angular

momentum outwards. Accretion disks perform two vital functions in various astro-

physical systems: an intermediate step in the gravitational collapse of a rotating

gas, where the disk transfers angular momentum outwards and allows material to

fall inwards; and as a power source, where the gravitational potential energy of

infalling matter can be converted to luminosity. Accretion disks are important in

astrophysical processes at all scales in the universe. Studying accretion from first

principles is difficult, as analytic treatments of turbulent systems have proven quite

limited. As such, computer simulations are at the forefront of studying systems this

far into the non-linear regime.



While computational work is necessary to study accretion disks, it is no

panacea. Fully three-dimensional simulations of turbulent astrophysical systems

require an enormous amount of computational power that is inaccessible even to

sophisticated modern supercomputers. These limitations have necessitated the use

of local models, in which a small spatial region of the full disk is simulated, and

constrain numerical resolution to what is feasible. These compromises, while neces-

sary, have the potential to introduce numerical artifacts in the resulting simulations.

Understanding how to disentangle these artifacts from genuine physical phenomena

and to minimize their effect is vital to constructing simulations that can make re-

liable astrophysical predictions and is the primary concern of the work presented

here.

The use of local models is predicated on the assumption that these models

accurately capture the dynamics of a small patch of a global astrophysical disk.

This assumption is tested in detail through the study of local regions of global

simulations. To reach resolutions comparable to those used in local simulations an

orbital advection algorithm, a semi-Lagrangian reformulation of the fluid equations,

is used which allows an order of magnitude increase in computational efficiency. It

is found that the turbulence in global simulations agrees at intermediate- and small-

scales with local models and that the presence of magnetic flux stimulates angular

momentum transport in global simulations in a similar manner to that observed for

local ones. However, the importance of this flux-stress connection is shown to cast

doubt on the validity of local models due to their inability to accurately capture the

temporal evolution of the magnetic flux seen in global simulations.



The use of orbital advection allows the ability to probe previously-inaccessible

resolutions in global simulations and is the basis for a rigorous resolution study pre-

sented here. Included are the results of a study utilizing a series of global simulations

of varying resolutions and initial magnetic field topologies where a collection of pro-

posed metrics of numerical convergence are explored. The resolution constraints

necessary to establish numerical convergence of astrophysically-important measure-

ments are presented along with evidence suggesting that the use of proper azimuthal

resolution, while computationally-demanding, is vital to achieving convergence. The

majority of the proposed metrics are found to be useful diagnostics of MRI-driven

turbulence, however they suffer as metrics of convergence due to their dependence

on the initial magnetic field topology. In contrast to this, the magnetic tilt angle,

a measure of the planar anisotropy of the magnetic field, is found to be a powerful

tool for diagnosing convergence independent of initial magnetic field topology.
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Preface

Portions of the research described in this work have been published or sub-

mitted to The Astrophysical Journal. Chapter 3 appeared in a modified form in

Sorathia et al. (2010). The entirety of Chapter 5 and material from Chapter 6 have

been submitted as Sorathia et al. (2011) and includes a reduced version of Chapter 4

as an appendix. The remainder of the material of Chapter 6 will form the basis of

a future work. The content of these papers has been modified and expanded where

appropriate for consistency and clarity.
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Chapter 1

Scientific Background

1.1 Introduction

Accretion, at its simplest, is merely the infall of matter onto a gravitational

source. This simple definition, however, belies the complex mechanism that under-

lies this important astrophysical phenomenon. Understanding the details of this

mechanism leads one to the intersection of three disciplines: plasma physics, astro-

physics, and computational science. Accretion is of vital importance at a range of

scales in the Universe: from its role in mediating gravitational collapse in the forma-

tion of stars and planetary systems to its role as a power source in active galaxies.

The mechanism of accretion is reliant upon plasma turbulence, and as is common

in turbulent systems, analytic treatments are limited. Simulations, therefore, are at

the forefront of studying these systems.

While these details will be expanded upon below, for now an accretion disk will

be defined through a simple illustration: a cloud of gas about a central gravitational

source. In the singular case where all of the dynamics of the system are spherically

symmetric (centered on the gravitating mass) and the gas far from the central mass

is at rest, we have Bondi accretion (Bondi, 1952) in which the gas dynamical equa-

tions can be exactly solved using analytical methods. Difficulty arises, however,

upon consideration of the more general situation in which the gas is rotating about
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the central source. In this case, the gas possesses centrifugal support against the

inward gravitational force of the central source. However, vertical collapse proceeds

until impeded by internal pressure support. This results in a thin, rotating disk

of gas about the central object. Due to the inverse square spatial dependence of

the gravitational force the disk is differentially-rotating, specifically that the orbital

rotation profile is decreasing with radius. The central problem of accretion disk the-

ory is the precise manner in which gravitational contraction can proceed despite the

centrifugal barrier imposed by the conservation of angular momentum.

The primary function of an accretion disk is to mediate gravitational contrac-

tion by redistributing angular momentum away from the inner regions of the disk

and thus allowing matter to fall inwards. As will be described, weakly magnetized

differentially rotating disks are subject to an instability, the magnetorotational in-

stability, that results in rapid and significant magnetic field amplification during the

linear growth phase of the instability followed by saturation and transition into a

fully turbulent flow. This turbulence, highly anisotropic due to the shear of differ-

ential rotation, will induce a radially outward angular momentum flux that allows

matter infall.

Accretion is a vital mechanism of structure formation in the Universe; stars,

planets, black holes, and even galaxies are formed through accretion processes. In

many cases there is a sufficient presence of angular momentum for accretion disks to

form as a intermediate step in the formation of astrophysical structure. Additionally,

accretion onto compact objects, particularly black holes, is a tremendously efficient

source of power and is indeed the operant mechanism behind the most luminous

2



phenomena in the Universe. Accretion onto black holes is significantly more efficient

than fusion at converting mass into energy, and represents the second most prolific

source of radiative energy in the Universe.

Computational modeling, while a necessity of studying systems this far into the

nonlinear regime, is no panacea. Choices one makes regarding algorithms, models,

and initial conditions can leave imprints, or numerical artifacts, in the induced

turbulence. Understanding how to disentangle numerical artifacts from genuine

physics is a vital precondition towards the overall goal of being able to reconcile the

predictions of computer simulations with observational data. It is towards this goal

that the bulk of the research described here will be directed.

1.2 The Role of Accretion in Astrophysics

Astrophysical accretion disks can broadly be classified into three types: pro-

toplanetary disks (PPDs), a precursor to the formation of stars and planetary sys-

tems; accretion disks in binary star systems, in which an accretion disk mediates

mass transfer from a donor star onto a compact object (white dwarf, neutron star,

or black hole); and disks in active galactic nuclei (AGN), where accretion disks fa-

cilitate matter inflow onto supermassive black holes (SMBHs). Accretion in binary

systems generally involves a donor star that has expanded to fill its Roche lobe, the

critical equipotential of the binary gravitational potential associated with the L1

Lagrange point. Matter from the donor star streams through the Lagrange point,

becoming gravitationally bound to the compact object, and forms an accretion disk.
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At a much larger scale, AGN are associated with SMBHs at the centers of galaxies.

Not all SMBHs are associated with AGN however; in the majority of galaxies, very

little matter accretes onto the SMBH and thus very little “activity” results. Our

own SMBH in the Milky Way is in this class.

While the mechanism underlying angular momentum transport is the same

in all these systems, PPDs can be distinguished from binary and AGN disks due

to their disparate thermodynamics and composition. The presence of dust and

comparatively cold temperatures present in PPDs result in a complex chemistry

and the need to treat resistive effects carefully. The significantly higher thermal

energies characteristic of binary and AGN disks make these systems amenable to

a treatment utilizing simpler and more well-posed mathematical models predicated

on the assumptions of a fully ionized hydrogen plasma. For this reason, the results

and simulations described here will be primarily relevant to these two types of

systems. The outer regions of binary and AGN disks are likely to exhibit significant

differences due to their differing geometric structure, however the interior regions

are expected to be quite similar. The simulations described here will, in general,

remain agnostic as to the specific context of the high-energy disk by restricting the

simulation domain to these inner regions.

Interest in accretion in the context of high energy astrophysics began in the

1960’s with the advent of X-ray telescopes. The ability to study X-ray emission

opened a new window through which we could study the most powerful and luminous

objects in the Universe. It was realized early on in the study of these objects that the

nuclear processes that powered stars were wholly inadequate to explain the immense
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energetics of these systems. The search for a power source that was more efficient

than even fusion eventually led to gravity, specifically accretion.

As a first step towards understanding the manner in which accretion can act

as a power source we perform a simple calculation in which we consider the change

in gravitational potential energy of a particle of mass m infalling from infinity onto

a Newtonian gravitational source of mass and radius M∗ and R∗, respectively. The

change in gravitational potential energy is given by

∆E = Gm
M∗

R∗

=

(

GM∗

R∗c2

)

mc2. (1.1)

In particular, the dependence on the dimensionless ratio of mass to radius suggests

the importance of accretion onto compact objects: white dwarfs, neutron stars,

and black holes. The obvious flaw in this simple calculation is that while we have

identified a source of energy, the mechanism by which gravitational potential energy

is converted to radiative emission remains unclear. Indeed, this example suggests

that the entirety of the potential energy will be converted into kinetic energy which

would be deposited onto the surface of a white dwarf and neutron star, or carried into

the event horizon of a black hole. In addition to its role in mediating gravitational

contraction through angular momentum transport, the accretion disk also functions

to couple the loss of gravitational potential energy to thermal radiation emission. In

reality, a particle infalling from infinity will not fall directly onto the object, it will

slowly spiral inwards through the disk as its angular momentum is drained. During

this spiral infall, turbulent dissipation will act to convert gravitational potential

energy into thermal energy.
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A common metric used to measure the efficiency of a power source for a lu-

minous phenomenon is the parameter η which relates the luminosity, L, to the

mass-flux, Ṁ , converted to an energy-flux by scaling by the square of the speed of

light through

L = ηṀc2. (1.2)

For stellar processes, in which hydrogen is fused into helium the efficiency parameter

is given by, η ≈ 0.007, where in this case the mass flux corresponds to the mass

of stellar material processed by the nuclear reactions per unit time. In contrast,

estimates of the efficiency of a non-rotating, or Schwarzschild, black hole yields

an efficiency of η ≈ 6%. For rotating, or Kerr, black holes values of η approach

40% for maximally-rotating black holes. The superior efficiency of accretion in

converting rest-mass energy to radiative energy is vital to understanding observed

ultra-luminous phenomena like AGN, where observed luminosities can reach 1040W .

1.3 Turbulent Nature of Accretion Disks

The turbulent nature of accretion disks is hinted at in attempts to explain

angular momentum transport in the context of laminar flow. Towards this end, we

begin with the development of the theory of thin accretion disks. The geometry of

these structures is amenable to a treatment utilizing a cylindrical coordinate system,

defined as (R, φ, z). For brevity and clarity, the cylindrical and spherical radius are

distinguished with the former given as R, and the latter as r =
√

R2 + z2. Accretion

disks are quite large, and in particular the length scales of interest are generally far in
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excess of the microscopic kinetic scales, thus the appropriate equations are those in

the continuum limit. For hydrodynamic disks the relevant equations are the Navier-

Stokes equations, a set of non-linear coupled partial differential equations relating

the fluid variables: the scalar density, ρ, and the vectorial quantity velocity, v.

These quantities are functions of space and time, and are related through equations

representing the conservation of mass and momentum with dissipative viscous terms

given by

∂ρ

∂t
+ ∇·(ρv) = 0, (1.3)

ρ
∂v

∂t
+ ρv · ∇v = −∇P − ρ∇ΦN + ρν

(

∇2v +
1

3
∇(∇·v)

)

. (1.4)

This set of equations is incomplete and requires a formulation of the scalar pressure,

P . This can be accomplished through the addition of an equation encapsulating the

conservation of energy and an adiabatic equation of state. Alternatively, a simpler

treatment can be used in which an isothermal equation of state is used that omits

the internal energy and simply relates the gas pressure to the density by

P = cs
2ρ, (1.5)

where the speed of sound, cs, is assumed constant throughout the disk. Physically,

the assumption of an isothermal equation of state is the statement that the timescale

associated with radiative equilibration is much smaller than the kinematic timescales

of interest. The gravitational potential of the central source is included, represented

by the static, axisymmetric gravitational potential Φ, however, the self-gravity of

the disk itself will be neglected. The Navier-Stokes equations differ from the Euler

fluid dynamic equations due the inclusion of a viscous dissipation term, ν.
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An accretion disk can be thought of as a collection of rings of gas rotating

at close to the Keplerian velocity. The Keplerian velocity, vK , is defined as the

rotational velocity associated with a circular orbit in the gravitational potential of

the central source of mass M . For a Newtonian disk, in which the gravitational

potential is given as

ΦN = −GM

r
, (1.6)

then the Keplerian velocity is given as

vK =

√

GM

r
. (1.7)

That the disk is geometrically thin, R ≫ z, allows a simple treatment of the

disk structure in which the vertical and radial structure decouple. The azimuthal

velocity is simply the Keplerian value with the vertical dependence neglected, i.e.

vK ∝ R−1/2. Similarly, we define the Keplerian angular velocity for a thin disk as

ΩK =

√

GM

R3
, (1.8)

where the linear and angular velocities are related in the standard manner by the

relationship vK = RΩK . The density structure is given by the solution of the

equation representing vertical hydrostatic equilibrium, and is given by

ρ = ρ0 exp(−z2/H2), (1.9)

where the pressure scale height is defined as

H =
√

2
cs

ΩK

. (1.10)

It is worth noting that the pressure scale height is a function of radius through its

dependence on the Keplerian angular velocity, and that definitions in the literature
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vary regarding the inclusion of the constant coefficient,
√

2. In non-isothermal disks

the temperature, and thus the sound speed, will vary with height and although

hydrostatic equilibrium would still apply this will result in a non-Gaussian verti-

cal density profile. For clarity, results from the literature presented here will be

modified as necessary so as to be consistent with this definition. As a requirement

for self-consistency with the assumption of a geometrically thin disk, one expects

that H/R ≪ 1. This is equivalent to the statement that the Keplerian velocity is

supersonic, specifically that MK ≫ 1, where the Keplerian Mach number is defined

as

MK =
vK

cs
≈
(

H

R

)−1

. (1.11)

This ratio, H/R, has both important physical and numerical consequences: it is a

dimensionless measure of the temperature in the disk and defines the partition of disk

energy between the thermal energy of the gas and the coherent rotational energy; it is

also a measure of the disparity of scales in the disk, measuring the separation between

the length scales H and R as well as the dominant signal speeds, vK and cs. Large

separation of spatial and temporal scales present difficult numerical challenges, as

simultaneously resolving all the important scales is computationally very demanding.

Conversely, it is interesting to note that it is precisely this separation of scales that

makes analytic progress on thin disks possible.

The disk structure described above can be used to construct a simple, one

dimensional analytic model. The fluid variables are assumed to be axisymmetric

and, with the exception of the density, to have no dependence on height. Further,
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it assumed that the fluid is constrained to orbit at the local Keplerian velocity, thus

vφ = vK . To treat the density in a one-dimensional manner, we define the surface

density Σ(R) =
∫

ρdz, as the vertically-integrated density. Rewriting equations 1.3

and 1.4 in their vertically-integrated form and in terms of the angular momentum

yields

R
∂Σ

∂t
+

∂

∂R
(RΣvR) = 0, (1.12)

R
∂

∂t
(R2ΣΩ) +

∂

∂R
(R3ΣvRΩ) =

∂

∂R

(

νR3Σ
∂Ω

∂R

)

. (1.13)

Using equation 1.12 to simplify equation 1.13 allows the radial velocity to be isolated

and solved as

vR =
−3√
RΣ

∂

∂R
(ν
√

RΣ), (1.14)

where a Newtonian gravitational potential has been assumed (ΩK ∝ R−3/2).

Substituting the radial velocity into equation 1.12 yields the evolution equation

for the surface density

∂Σ

∂t
=

3

R

∂

∂R

[

√
R

∂(νΣ
√

R)

∂R

]

. (1.15)

Equation 1.15 encapsulates a simple and intuitive model of angular momentum

transport in the form of a diffusion equation. The Keplerian velocity decreases

with distance from the central source, and thus the inner rings will rotate faster

than the outer rings. The action of a shear viscosity between a pair of radially

adjacent rings will transfer angular momentum outwards. The viscous interaction

between the faster inner ring and the slower outer ring induces a torque whose

orientation is antiparallel to the rotation vector of the disk. This torque results in

10



the transfer of angular momentum from the inner ring to the outer ring, and the

iterative interactions of adjacent rings would allow sustained angular momentum

transport radially outwards. The simplicity of this model makes it quite attractive,

and indeed as a zeroth-order approximation it will turn out that this model has

many useful applications. The difficulty, however, comes about when attempting to

identify the nature of the viscosity.

The natural candidate for viscosity in an accretion disk is molecular/ionic

viscosity caused by kinetic-scale effects. Consideration of the Reynolds number,

Re = RvK/ν, allows one to assess the importance of molecular/ionic viscosity.

Physically, the quantity represents the ratio of the inertia of the flow to the viscous

dissipation. Thus, small values of Re are associated with dissipative flows whereas

larger values are associated with relatively inviscid flows. Estimates of this quantity

using values appropriate to those in an accretion disk yields a Reynolds number asso-

ciated with molecular/ionic viscosity of Remol > 1014 (Frank et al., 2002). The high

value associated with the Reynolds number suggests that molecular/ionic viscos-

ity is negligible, and thus not a significant source of angular momentum transport.

Consequently, the inclusion of microphysical viscous dissipation will be neglected

moving forwards. However, the large value of the Reynolds number does suggest an

underlying turbulent nature to astrophysical accretion disks.

Experience with laboratory fluids teaches one to associate large Reynolds num-

bers with turbulent flows, however one must be careful not to mistake this correlation

with a causal relationship. The Reynolds number is the ratio of the inertia, rep-

resented by the convective nonlinearity term (ρv · ∇v) in the fluid equations, and
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the viscous term (νρ∇2v). Thus, a large Reynolds number is merely a measure

of the relative importance of these terms. A fluid in equilibrium at high Reynolds

numbers, already subject to a linear instability, would only require a small pertur-

bation to undergo a transition to turbulence. At low Reynolds numbers, dissipation

would dominate and smooth perturbations to stabilize the equilibrium. Neglecting,

temporarily, the question of the existence of a linear instability, the presence of tur-

bulence is often associated with enhanced transport. The presence of turbulence

would result in a turbulent viscosity with a characteristic scale related to the size of

the turbulent eddies, and this turbulent viscosity could be many orders of magni-

tude larger than the viscosity associated with molecular, kinetic-scale effects. Again,

however, this is not to say that the presence of turbulence alone is sufficient to guar-

antee sustained, coherent momentum transport. As we will see, for the sustained

radial transport of angular momentum to proceed the turbulence has to be highly

anisotropic, with strong correlations between the radial and azimuthal components

of the vector fields associated with the flow.

With a preliminary understanding of the structure of an accretion disk in place,

we can proceed to the more pressing question as to the nature of the instability. The

hydrodynamic stability of a differentially-rotating system to linear, axisymmetric

perturbations is governed by the Rayleigh criterion. The criterion is given in terms

of the epicyclic frequency,

κ2 =
1

R3

d(R4 ΩK
2)

dR
, (1.16)

the frequency at which a radially displaced fluid element will oscillate. The Rayleigh
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criterion for local stability is simply the condition that κ2 > 0, or that the specific

angular momentum, ℓ = R2ΩK , should increase with radius. Physically, this is

the statement that if a fluid element is radially displaced, while conserving angular

momentum, the centrifugal imbalance will act as a force opposed to the perturbation.

While this condition may be violated in laboratory fluids, it will clearly be satisfied

for astrophysical disks where ℓ =
√

GMR.

The difficulty of the situation presented by the realization that turbulence was

the likely cause of significant angular momentum transport while being unable to

identify a cause can not be overstated and was the source of significant theoretical

difficulty for several decades. While the magnetic character of the instability will

be discussed in the following section, for now a brief description of the anomalous

viscosity model of Shakura & Sunyaev (1973) will be presented. The anomalous

viscosity, or α model, represents an important bridge and its simplicity has lent it

a longevity that continues to influence accretion disk theory today.

Anomalous viscosity models owe their simplicity to their ability to treat com-

plex turbulent phenomenon in the context of a one-dimensional hydrodynamic model

like equation 1.15 with the addition of a prescribed form of enhanced viscosity. There

are two, roughly equivalent, means in which to treat turbulent transport in these

models. The first, assumes a turbulent viscosity of the form

νT = αSScsH. (1.17)

While this is written in the form of an isotropic Navier-Stokes viscosity, it is applied

in the vertically-integrated, axisymmetric equations and thus this quantity is only
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meant to cause radial viscous diffusion. This form of viscosity is merely dimensional

analysis used to quantify the viscosity given a characteristic velocity and turbulent

eddy size and based on the observation that the relevant scales are given by the sound

speed and scale height of the disk and therefore the viscosity must take this form.

Intuitively, this is based on the expectation that turbulent velocity fluctuations will

be, in a statistical sense, subsonic as supersonic velocity perturbations would become

highly dissipative and that the size of a turbulent eddy will be limited by the vertical

span of the disk. Thus, we expect the parameter αSS to be bound between zero and

unity.

The alternative formulation, assumes a prescribed form of the stress tensor

in the Euler equation. One can write the equation representing conservation of

momentum, absent viscous dissipation, in the manifestly hyperbolic form as

∂(ρv)

∂t
+ ∇·W = 0, (1.18)

where W is the stress tensor, which for hydrodynamic systems is given by W =

ρvv + P I, where I is the identity tensor. Assuming a similar dimensional analysis

to the formulation of the turbulent viscosity, one sets WRφ = αSSP . This constant

of proportionality, αSS, that measures the relationship between the stress tensor

and the gas pressure has become the most common scalar diagnostic of accretion

efficacy. It is worth noting that while the same constant is used in both formulations

of the anomalous viscosity model, strictly speaking these constants are not equal

but are related by a coefficient of order unity. The treatment of a complex turbulent

phenomenon in the context of these models is appealing as all of the uncertainty
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regarding the nature of the turbulence is confined to the choice of αSS.

While a full treatment of these α-viscosity models will be neglected, particu-

larly the inclusion of radiative transfer and its predictions for observational signa-

tures of accretion disks, it is useful to consider the important timescales for these

models as they will be considered again in the context of the full simulations pre-

sented. The most important timescales are the dynamical timescale, Td = ΩK
−1,

and the viscous timescale, Tν = R2/ν. The former is the fastest timescale as it is as-

sociated with the fastest signal speed, the Keplerian rotation. The latter represents

the timescale on which the radial structure of the disk can vary, and can be thought

of as a measure of the time it takes for matter to accrete through the disk. Under

the assumptions of a thin disk we expect the viscous timescale to be significantly

larger than the dynamical timescale, specifically Tν = MK
2Td/αSS. Related to this,

we define the timescale associated with changes in the vertical structure of the disk,

Tz = H/cs, and expect the relationship Td ≈ Tz.

While theory provides little guidance towards estimating values of αSS, this

parameter does represent an important intersection between simulation and observa-

tion. Estimates of this quantity from simulation will be presented in later chapters,

for now we briefly discuss observational estimates. Observational constraints on

αSS are, in general, based on the estimation of the viscous (or in some cases ther-

mal) timescale of an astrophysical accretion disk, from which the parameter αSS

can be calculated. A specific example of this occurs in a subclass of cataclysmic

variables (CVs), binary systems in which a white dwarf accretes from a donor star.

This subclass is subject to outbursts (referred to as “dwarf novae”), in which the
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accretion disk can switch from a cold to hot state. In the cold state, the ioniza-

tion fraction of the plasma decreases and resistive effects suppress the instability

that drives turbulence (Gammie & Menou, 1998). The transition to the hot state

increases the ionization fraction, and accretion proceeds on a timescale given by Tν .

This timescale can be estimated observationally, and thus an approximate value of

αSS can be computed. In a survey paper, King et al. (2007) collect results using this

method as well as several others to compute an estimated value of αSS ≈ 0.1−0.4 for

fully ionized accretion disks. As we will see, estimates of αSS from simulations are

generally significantly lower except when the MRI is driven by a particularly strong

vertical magnetic field, however the existence of such strong vertical magnetic fields

in astrophysical systems is contentious (van Ballegooijen, 1989).

Anomalous viscosity models of disk accretion are written in the guise of hy-

drodynamics, but that should not be taken as evidence that early treatments of

accretion disk theory did not appreciate the importance of magnetic fields. Indeed,

Shakura & Sunyaev (1973) discuss the likelihood that magnetic fields play an impor-

tant role in accretion disk turbulence nearly two decades before the linear instability

that induces turbulence, the magnetorotational instability (MRI) was fully appreci-

ated. The final precursor to a full discussion of this instability will be a presentation

of the relevant equations.
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1.4 Magnetohydrodynamics

The equations of ideal magnetohydrodynamics (MHD), are at their simplest

the coupling of the Euler equations of fluid dynamics to Maxwell’s equations of

electrodynamics and are used to study the behavior of plasmas at large scales. A full

derivation will be neglected, however some of the implicit assumptions of the model

will be detailed. The equations of MHD assume a continuum model, and thus are of

no use towards exploring the behavior of a plasma at kinetic scales: the collisional

mean free path and the cyclotron radius of the particles in the plasma. The equations

utilize a one fluid model, in which hydrodynamic quantities simultaneously describe

the properties of the electrons and ions. This is predicated on the assumption of a

strongly collisional plasma, in which collisions ensure that the velocity distributions

of the electrons and ions are Maxwellian and further are both described by the

same characteristic temperature (local thermodynamic equilibrium, LTE). This is a

classical model, in which the assumption that fluid velocities are non-relativistic is

explicitly used to neglect the displacement current in Maxwell’s equations. Finally,

the fluid is assumed to have an infinite conductivity so that magnetic resistivity can

be neglected.

Like the Euler equations, the equations of MHD include hyperbolic conserva-

tion laws expressing the conservation of mass, momentum, and energy. Additionally,

an evolution equation for the magnetic field is necessary and represents the conser-
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vation of magnetic flux. The equations of ideal MHD are1:

∂ρ

∂t
+ ∇·(ρv) = 0, (1.19)

∂(ρv)

∂t
+ ∇·(ρvv − BB + P ∗I) = −ρ∇Φ, (1.20)

∂E

∂t
+ ∇·[(E + P ∗)v −B(B · v)] = 0, (1.21)

∂B

∂t
−∇×(v × B) = 0. (1.22)

The hydrodynamic variables are augmented by the inclusion of a magnetic vector

field (B), and total energy (E). The total energy is the sum of the internal, or

thermal, energy of the gas, the kinetic energy, and the magnetic pressure. Formally,

E = e +
ρv2

2
+

B2

2
. (1.23)

The sum of the gas and magnetic pressure, the total pressure, is given as P ∗ = P+Pb,

where Pb = B2/2. The identity tensor is represented by I, and Φ represents the

gravitational potential of the central object. An adiabatic equation of state is used

to define a relationship between the internal energy and the pressure as required

to close the system of equations, specifically P = (γ − 1)e. This formulation can

be simplified through the use of an isothermal equation of state, in which case

equation 1.21 is neglected in favor of a closure relation given by equation 1.5. A

useful measure of the partition of energy in a plasma is given by the ratio of gas to

magnetic pressure,

β =
P

Pb
. (1.24)

1For consistency with Stone et al. (2008) we adopt a system of units where the magnetic per-

meability is unity.
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The formulation of MHD given in equations 1.19 through 1.22 clearly demon-

strates the mathematical structure of the coupled system of partial differential equa-

tions (PDEs); that the evolutions equations for the mass, momentum, and energy

are given by hyperbolic conservation laws. However, this is at the cost of obfuscating

many of the important physics. In contrast, one can rewrite equation 1.20 as

ρ
∂v

∂t
+ ρv · ∇v = −∇

(

P +
B2

2

)

+ B · ∇B− ρ∇Φ, (1.25)

which clarifies the physical forces acting in a magnetized fluid. The individual forces

are clearly identified, in the order they appear on the RHS as: the pressure (gas and

magnetic) force; magnetic tension, associated with the geometric curvature of the

magnetic field; and the gravity of the central source.

The inclusion of the magnetic field in the fluid equations adds new waves to

the hyperbolic structure of the system. These waves are the magnetosonic waves,

in which pressure (both magnetic and gas) act as a restoring force allowing a wave

to propagate orthogonal to the magnetic field lines, and the Alfven wave, in which

magnetic tension is the restoring force allowing a wave to propagate parallel to the

magnetic field lines. The magnetosonic waves are separated into the slow and fast

modes depending on whether the magnetic and gas pressures are acting in opposition

or concert, respectively. The speed of the Alfven wave is given by

vA =
|B|√

ρ
, (1.26)

and for later use we also define the component Alfven wave speed

vAx =
|Bx|√

ρ
. (1.27)
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The wave speeds obey the relationship, vs ≤ vA ≤ vf , where vs and vf denote the

speeds associated with the slow and fast magnetosonic wave.

The interconnected nature of the magnetic field and the fluid in MHD are vital

to the dynamics of accretion disks. The magnetic flux through a closed surface that

is allowed to evolve freely with the local fluid velocity is conserved. This constraint,

often referred to as the “frozen field” condition, implies that in the weak-field regime

the magnetic field will be advected with the fluid flow. Phrased another way, this

means that fluid elements initially associated with a magnetic field line will remain

so indefinitely.

As the radial transport of angular momentum is the primary function of an ac-

cretion disk, it is worthwhile to consider the relevant conservation equation directly.

The angular momentum, L = ρRvφ, evolves according to

∂L

∂t
+ ∇·FL = 0, (1.28)

where our concern will primarily be on the radial component of the angular momen-

tum flux

FL,R = R[ρRΩKvR + ρvRv′

φ − BrBφ], (1.29)

which makes use of the perturbation velocity, defined as

v′ = v − vKφ̂. (1.30)

The first term on the RHS of Equation 1.29 represents the direct advection of an-

gular momentum through accretion. The second (TRφ = ρvRv′
φ) and third (MRφ =

−BRBφ) terms, the Reynolds and Maxwell stress terms, illustrate that correlations
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between the radial and azimuthal turbulent quantities allow the radial transport of

angular momentum. The equation also illustrates that turbulence alone is insuffi-

cient to guarantee enhanced transport; if the turbulence were isotropic the correla-

tion in these terms would, in a statistical sense, be zero and there would be no net

transport. The anisotropic character of turbulence in accretion disks is vital for the

consistent transport of angular momentum.

The efficiency of angular momentum transport is defined in a manner remi-

niscent of the anomalous viscosity models, specifically the stress scaled by the gas

pressure. Two measurements that will be used extensively are

α =
TRφ + MRφ

P
, (1.31)

and

αM =
MRφ

P
. (1.32)

1.5 The Magnetorotational Instability

The magnetorotational instability has a somewhat curious history; the first

hints at an understanding of the instability are attributed to Velikhov (1959) and

Chandresekhar (1960) regarding their work on the stability of Couette flow in the

presence of a magnetic field. However, the first paper to explicitly connect the

stability of a rotating magnetized fluid to angular momentum transport in accretion

disks did not appear for several decades (Balbus & Hawley, 1991). The intuitive

simplicity of the MRI is in stark contrast to the importance of the problem its

discovery solved.
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We begin with a simple calculation of the dispersion relation for the MRI,

based on Balbus & Hawley (1991). The calculation is done in the cylindrical geom-

etry described above, and the fluid variables are assumed to have perturbations of

the form δXei(kRR+kzz−ωt), thus explicitly assuming axisymmetry. The linear per-

turbation analysis is done in the local sense in which kRR is assumed sufficiently

large so that large-scale radial structure can be neglected. The rotation profile, Ω,

is assumed to have only radial dependance and is given by the Keplerian value,

and the zeroth order field is assumed to be Bz(R), Bφ(R, z) and BR = 0. Fur-

ther, the perturbation analysis is done in the Boussinesq approximation, in which

magnetoacoustic waves are excised from the system. This results in the dispersion

relation

k2

k2
z

ω̃4 −
[

κ2 +

(

kR

kz

Nz − NR

)2
]

ω̃2 − 4Ω2k2
zv

2
Az = 0, (1.33)

where ω̃2 = ω2 − k2
zv

2
Az, and k2 = k2

z + k2
R (not to be confused with the epicyclic

frequency, κ2; equation 1.16). The Brunt-Väisälä (BV) frequency is given by

N2
x = − 3

5ρ

∂P

∂x

∂ln(Pρ−5/3)

∂x
, (1.34)

which represents the frequency associated with buoyant oscillations, and we define

N2 = N2
R + N2

z .

The stability is investigated by setting ω = 0, which results in a system that is

a quadratic in kR. Requiring the discriminant of this system to be negative ensures

stability by requiring a complex value of kR for ω2 to pass through zero. This results

in the stability criterion for an individual mode to be

k4
zv

4
Az + k2

zv
2
Az

(

N2 dΩ2

dlnR

)

+ N2
z

dΩ2

dlnR
> 0 STABILITY. (1.35)
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Working under the assumption that the disk is buoyantly stable (NR, Nz > 0),

the condition for all modes to be stable is

dΩ2

dR
≥ 0 STABILITY. (1.36)

The criterion of equation 1.36 is quite different than that of the Rayleigh stability

criterion. The former requires an angular velocity increasing with radius, a condi-

tion violated in astrophysical disks, while the latter requires an increasing specific

angular momentum, which will be satisfied. Thus, this represents the desired linear

instability that can drive accretion disk turbulence. Of note, is that the stability

criterion associated with the MRI does not depend on the strength of the magnetic

field. In the absence of resistivity, the stability of differentially rotating disks is

fundamentally altered even in the limit of vanishing magnetic field. While the for-

mal derivation presented above is vital to understand in a quantitative manner the

action of the instability, a simpler, physical picture of the instability is also useful.

At its simplest, the MRI is an interchange instability in which the addition

of a weak magnetic field to a differentially rotating system drastically changes the

stability properties. In words, one considers two fluid elements at an equal distance

from the central object tethered by a magnetic field. One of these fluid elements is

perturbed to a smaller radius and will be constrained to orbit at the local, faster

orbital velocity. The differential orbital velocity between the two fluid elements leads

to a shearing of the magnetic field, thus allowing energy to be transferred from the

differential rotation to the magnetic field. Note, the assumption of a weak magnetic

field is vital, were the field strong it would act against the initial radial perturbation
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through the magnetic tension force. As the two fluid elements move further apart

due to the differential orbital velocity the magnetic field acts to mediate a torque

between the two elements. This torque transfers angular momentum from the inner

element to the outer element, which allows the inner element to move further inwards

thus enhancing the radial displacement and continuing the process.

Before moving on, it is worthwhile to return to the axisymmetric dispersion

relation and calculate several important values. Assuming that N2 and N2
z are

negligible, the critical vertical wavelength becomes

λcrit = 2πvAz

∣

∣

∣

∣

dΩ2

dlnR

∣

∣

∣

∣

−1/2

, (1.37)

in the general case and

λcrit =
2πvAz√

3Ω
, (1.38)

for a Newtonian disk. Perturbations of spatial lengths larger than this critical wave-

length will be unstable, and as the strength of the vertical magnetic field increases

this critical wavelength becomes larger. A useful constraint for thin accretion disks

is λcrit < 2H , the requirement that the critical wavelength fit within the “body” of

the disk, somewhat arbitrarily defined to reside within a distance H of the midplane.

This constraint can be rewritten in terms of β and becomes

β =
π2

3

(

λcrit

2H

)−2

, (1.39)

which implies that when β drops below approximately 3, the critical wavelength

becomes larger than the body of the disk and the instability is suppressed.

In addition to the assumption that the BV frequency is negligible, we now also

assume kR = 0 and that the disk is Newtonian. Equation 1.33 can be used to solve
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for the vertical wavelength with the highest growth rate, denoted λMRI and given

by

λMRI = 2π

√

16

15

vAz

Ω
, (1.40)

with a growth rate of ωMRI = 0.75Ω. For the specific case of a Newtonian disk,

λMRI/λcrit = 4/
√

5. We note that the growth rate of the fastest growing mode does

not depend on the strength of the magnetic field. The significance of this growth

rate is in stark contrast to the nature of the MRI as a weak field instability, ωMRI

suggests the potential for a millionfold amplification in only a few orbits. It has

been conjectured (Balbus & Hawley, 1992b), that this growth rate represents the

most efficient possible growth of an instability powered by differential rotation.

A full calculation of the details of the non-axisymmetric dispersion relation

(Balbus & Hawley, 1992a) can be quite cumbersome, and as such will be omitted

here. Instead, the salient details will merely be summarized. Due to the differential

rotation the calculation must be done in time-dependent variables, thus modifying

the wavevector, k = (kR(t), m/R, kz) The time-dependence of the radial component

of the wavevector is given as

kR(t) = kR(0) − mt
dΩ

dR
. (1.41)

Further, the differential rotation acts upon the zeroth order unperturbed magnetic

field to produce azimuthal field from radial in the following manner,

Bφ(t) = Bφ(0)

[

1 +
BR

Bφ(0)

dΩ

dlnR
t

]

. (1.42)

Though individually both the wavevector and unperturbed magnetic field have

time-dependence, the quantity k · B is constant, and consequently so is k · vA.
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The nature of the instability is understood through its movement through the two

dimensional parameter space, (k/kz,k · vA), where k2 = k2
R + m2/R2 + k2

z is simply

the magnitude of the wavevector. Because the second component is constant, this

movement will be along horizontal lines in the plane. The time dependence of

kR causes the k/kz term to initially decrease with time until reaching a value of

approximately unity when kR passes through zero and then increase again. During

this horizontal oscillation, there will be exponential growth during the period

k

kz

< − dΩ2

dln R
. (1.43)

The toroidal MRI is thus a transient amplification as opposed to a true instability.

The condition for instability is that there is a finite amount of time spent in the

unstable region, which leads to the condition for the stability of a given mode

(k · vA)2 > − dΩ2

dln R
STABILITY. (1.44)

For a purely toroidal field and a Keplerian disk, the critical wavenumber be-

comes mcrit =
√

3vK/vAφ. Wavenumbers smaller than mcrit, i.e. those associated

with a larger spatial scale, will be unstable. The wavevector associated with the

maximum growth rate of the non-axisymmetric instability is given by

(k · vA)

Ω
=

√

1 − κ4

16Ω4
. (1.45)

In a Newtonian disk, κ = Ω, and the RHS of equation 1.45 is approximately unity.

For a purely toroidal field, this results in the most rapidly growing wavenumber,

called the characteristic wavenumber, mc = vK/vAφ. The resultant wavelength is

λc = 2π

√

16

15

vAφ

Ω
, (1.46)
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in analogy with the most unstable vertical wavelength associated with the axisym-

metric MRI (equation 1.40). The presence of a purely toroidal field results in signifi-

cant amplification on a timescale of dozens of orbits in contrast to the sub-dynamical

timescale associated with amplification of the vertical-field MRI. However, the pres-

ence of even a weak poloidal field can allow amplification of a predominantly toroidal

field configuration comparable to the vertical-field MRI.

While analytic theory is useful towards exploring the linear regime in which the

MRI operates and some aspects of the early nonlinear behavior (Goodman & Xu,

1994), fully turbulent plasmas are too far into the nonlinear regime for analytic

methods to be feasible. Because of this, computational work is at the forefront of

efforts to understand the MRI-driven MHD turbulence in accretion disks. While

analytic treatments are quite limited, simulations have proven invaluable to under-

standing the nonlinear resolution of the MRI. Simulations have shown that the MRI

results in vigorous, sustained, anisotropic turbulence that drives the redistribution

of angular momentum and makes consistent accretion possible. These simulations

have also facilitated estimates of α, and by extension the rate of accretion, which

is necessary to understand the timescales associated with accretion-driven structure

formation and the energetics of ultra-luminous phenomena powered by accretion.

Nonlinear processes in accretion disk turbulence, dynamo-driven field amplification

for instance, can be studied in the context of simulations and has facilitated the abil-

ity to connect these processes to potentially observable astrophysical phenomena,

e.g. O’Neill et al. (2010).

This reliance on simulation, however, has brought to the fore new concerns.
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The measure of accretion, α, has been found to depend on numerical resolution,

choice of model, and initial conditions. Further, there remains a significant order

of magnitude discrepancy between values of α observed in simulations and observa-

tional estimates from astrophysical systems. Understanding the interplay between

numerics and physics and constructing simulations from which reliable astrophysical

implications can be inferred is a vital concern.

1.6 Outline

Prior to a thorough discussion of the research that will be described in this

work, Chapter 2 will complete the background material and will describe the numeri-

cal methods and models that are traditionally used to study MRI-driven turbulence

in accretion disks. In particular, this chapter will focus on finite-difference and

finite-volume algorithms to solve the equations of MHD and the use of the local, or

shearing-box approximation, to study the small-scale structure of accretion disk tur-

bulence. Chapter 3 will describe a preliminary exploration of the methods, analysis

and goals that will form the cornerstone of the dissertation as a whole. The con-

tent of Chapter 3 is largely material that was originally published as Sorathia et al.

(2010).

With this preliminary exploration described and the goal of higher resolu-

tion simulations motivated, Chapter 4 will describe the algorithm development that

allowed a significant improvement in the performance of the simulations whose anal-

ysis will form most of the remainder of the dissertation. Chapter 5 focuses on the
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numerical concerns that arise in simulations of this type and provides metrics to

measure the reliability of the results against numerical artifacts. Following this,

Chapter 6 presents an extension and refinement of the material presented in Chap-

ter 3. In particular, a focus of this chapter is on the validity of the shearing-box

approximation and the assumptions upon which it relies. The bulk of the material

in Chapters 5 and 6 have been submitted for publication (Sorathia et al., 2011).

Finally, Chapter 7 presents a summary of the results described throughout this

dissertation and a discussion of the future work that the results and methodology

presented here suggest.
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Chapter 2

Simulating Astrophysical Accretion Disks

Computational simulations of accretion disk turbulence rely on two factors: an

algorithm to solve the equations of MHD and a set of initial and boundary conditions

with which to initialize the algorithm, referred to as a model. The algorithms to be

discussed here are those used by the software packages Zeus, predominantly based on

a finite-differencing approach, and Athena, utilizing a finite-volume algorithm. This

is not to suggest that these approaches are representative of all the algorithms used

in simulations of accretion disk turbulence, though they do represent two common

astrophysical MHD algorithms, merely that these are the software packages that are

used in the simulations that will be presented here.

The models that will be considered here are broadly separable into local sim-

ulations, in which a small Cartesian patch of the Keplerian flow is modeled, and

global simulations, in which the full geometric extent of the disk is modeled in cylin-

drical or spherical coordinates. The assumptions of a geometrically thin disk will

be used, in contrast to alternative models of thicker accretion tori. The formulation

and salient results of local models will be summarized here, with a description of

global models deferred to the following chapter and discussed in the context of the

particular global models used in the simulations to be presented.
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2.1 Numerical Magnetohydrodynamics

While the purely mathematical treatment of algorithms often focuses solely on

order of accuracy, the use of algorithms in computational physics requires methods

that identify and respect quantities of physical importance. As an example, a high-

order method that poorly conserves energy would be of little practical use in many

astrophysical applications. Further, the equations of fluid dynamics admit non-

classical, or weak, solutions. These solutions may exhibit discontinuities or other

points at which differentiability fails but solve the equations of MHD in an integral

sense.

Prior to a discussion of the general numerics involved in solving the equations

of MHD, it is worth introducing the often unwieldy notation associated with these

methods. The algorithms that will be discussed here are grid-based, in the sense that

they rely on a decomposition of the spatial domain of the equations into a collection

of grid cells, denoted Vi,j,k, centered about spatial nodes (xi, yj, zk) (in Cartesian

geometry) for a three-dimensional spatial domain. The grid spacing, referred to as

the resolution, is denoted ∆x for each given coordinate direction. In general this

spacing may itself have spatial dependence. Initial conditions are translated to the

grid by defining for each cell a representative value of each variable in one of two

ways. For Zeus, the cell representative merely represents the pointwise value of the

quantity at the spatial center of the cell, or in the case of vectorial quantities at the

interface between cells. The finite volume algorithm of Athena, by contrast, defines

the representative value to be the volume average of the quantity over the entire
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cell, or in the case of the magnetic field the area average over a specific surface.

For smooth flows, this distinction is negligible, however the cell averaging method

is able to naturally handle discontinuous flows. The function of the algorithm is to

update the grid variables at a given time, tn, to a new time, tn+1 = tn + ∆t, where

the timestep ∆t is constrained by the particular method and is discussed in more

detail below. For a flow attribute, q, the cell-centered representative value of grid

cell (i, j, k) at time tn will be denoted qn
i,j,k. Cell interfaces are denoted by integer

indices displaced by 1/2, e.g. the magnetic field at an x-interface would be given as

Bx,(i+1/2,j,k).

In the MHD equations, the evolution equations for the conserved hydrody-

namic variables (mass, momentum, and energy) take the form of a system of hyper-

bolic conservation laws, each of which can be written as

∂q

∂t
+ ∇·Fq = 0, (2.1)

where q and Fq represent the conserved quantity and its flux, respectively. Integrat-

ing over a fiducial cell denoted V results in

d

dt

∫

V

q dV = −
∮

∂V

Fq · dA = −
6
∑

i=1

∫

Si

Fq · dA, (2.2)

where Si represents the various cell faces and dA representing the differential surface

area element with outwards facing normal . The formulation given in equation 2.2

represents the fundamental physical importance of the flux through the cell interface

of a conserved quantity. A simple differencing scheme to solve equation 2.1 would

allow variation in the total volume integral of the quantity q related to the order of

the method. In contrast, a flux update, in which the conserved quantity is updated
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utilizing an appropriately temporally- and spatially-averaged interface flux, will pre-

serve the total volume integral of the conserved quantity to machine precision. This

is because the flux at each interface is used to update two cells and thus the flux

from one cell into an adjacent cell is precisely tracked. In one dimension, a flux

update of the quantity qn
i takes the form

qn+1
i = qn

i − ∆t

∆x

[

f
n+1/2
i+1/2 − f

n+1/2
i−1/2

]

, (2.3)

where the interface fluxes are given by

f
n+1/2
i−1/2 =

1

∆t

∫ tn+1

tn
Fq(xi−1/2, t)dt. (2.4)

The induction equation (equation 1.22) is not a hyperbolic conservation law,

but does represent an equally important physical principle, namely the solenoidal

constraint. The induction equation ensures that the constraint, ∇·B = 0, will be

maintained so long as the initial magnetic field is itself divergence free. Again, a

simple differencing treatment of the induction equation will not ensure the solenoidal

constraint. Integrating the solenoidal constraint over a fiducial cell, V, yields

∮

∂V

B · dA =

6
∑

i=1

Φi = 0, (2.5)

where Φi =
∫

Si
B · dA, represents the magnetic flux piercing a given cell interface.

Equation 2.5 encapsulates the lack of magnetic source points, or monopoles, and

thus the total magnetic flux through a given cell will be zero. Preserving this

magnetic flux formulation of the solenoidal constraint is at the heart of the method

of constrained transport (CT; Evans & Hawley 1988).
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The approach of Evans & Hawley (1988) utilizes the observation that there is

an analogous quantity to the interface-flux by which to update the magnetic field.

This quantity is the electromotive force (EMF), defined by

ǫ = v ×B. (2.6)

Integrating the induction equation over a face of a given grid cell yields

dΦi

dt
=

∮

∂Si

ǫ · dl =
4
∑

j=1

∫

Ei,j

ǫ · dl, (2.7)

where Ei,j represents the edges of the cell interface Si.

As each edge is represented in the boundary of two cell surfaces, each with

different orientation to the outward normal, pairwise cancellation gives

d

dt

6
∑

i=1

Φi =

6
∑

i=1

4
∑

j=1

∫

Ei,j

ǫ · dl = 0. (2.8)

Algorithms utilizing CT often rely on a staggered mesh, in which the magnetic field

quantities are spatially centered at the corresponding cell interface, i.e. Bx would

be localized at the x-interface. Further, in the staggered mesh formalism the mag-

netic flux through the x-interface is approximately BxAx, where Ax is simply the

area of the x-interface. Thus, equation 2.7 can be reformulated utilizing appropri-

ately spatially- and temporally-averaged values of the EMF to construct a means

of updating the magnetic field that precisely conserves the solenoidal constraint.

Generally, this update uses the time-centered EMF, ǫn+1/2, and utilizes a four-point

update in which each directional component of the line integral is approximated by

the value of ǫn+1/2 at the edge center, as in Zeus, or an approximation to the time-

and edge-integrated EMF, as in Athena.
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Formulating algorithms around flux and EMF updates allows the creation of

methods that naturally satisfy the fundamental physical principles encapsulated

in the equations of MHD. Utilizing these types of updates will be of paramount

importance when discussing the code development undertaken as part of the research

presented here. Calculating the quantities necessary for these updates, however,

presents challenges in and of itself.

The algorithms discussed here, explicit time-advancing schemes, require as a

condition for stability that the timestep is limited by the time it takes for any signal

to cross a grid cell. This is a consequence of the CFL condition which requires that

the numerical domain of dependence, one cell in each direction, must contain the

physical domain of dependence. For the MHD equations, the fastest wave speed, cf ,

is that of the fast magnetosonic wave and the fastest signal is the velocity enhanced

fast magnetosonic wave, |v|+ cf . The maximum timestep allowable given signals in

a specific coordinate direction is (minimizing over all grid cells),

∆tx = C0
∆x

|vx| + cfx
, (2.9)

where C0 is the Courant number, required to be less than 1/2 for three dimensional

simulations, and cfx is the fast magnetosonic wave in the x-direction. The overall

timestep is then

∆t = min [∆tx, ∆ty, ∆tz] . (2.10)

For accretion disk simulations, in which the Keplerian rotation is highly supersonic

and thus the dominant signal speed, the timestep will approximately be given by
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the Keplerian timestep defined as

∆tK = C0
∆φ

ΩK

, (2.11)

where ∆φ is simply the azimuthal grid spacing.

2.1.1 The Finite-Difference Algorithm of Zeus

This discussion of Zeus (Stone & Norman, 1992; Hayes et al., 2006) will refer

to its underlying algorithm as opposed to one of the many individual implementa-

tions. The algorithm is a grid-based method that relies heavily on finite differenc-

ing, but with several extensions to improve the numerics of the method. The Zeus

method uses a staggered mesh formalism in which scalar quantities are spatially

localized to the center of the cell, and vectorial quantities are spatially centered at

cell interfaces. This centering simplifies the use of CT to ensure maintenance of the

solenoidal constraint on the magnetic field.

Finite difference approaches to the equations of fluid dynamics exhibit stabil-

ity problems when faced with discontinuous flows; this necessitates the use of an

artificial viscosity that acts to “smear” discontinuities over several grid cells so that

they are resolvable. Additionally, utilizing differencing to treat the source terms pre-

cludes a full flux-update to the conserved quantities, which results in a method that

is not fully conservative. The temporal accuracy of Zeus is limited to first order,

however the relative simplicity of the method is conducive to the implementation of

new physics.

The algorithm Zeus employs is operator split, and the time evolution of the
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equations is done in three steps: a source step, in which source terms of the momen-

tum and energy equations are included; a separate treatment in which the magnetic

tension force is included and the magnetic field is evolved using a CT update, de-

noted the method of characteristics-constrained transport (MOCCT;Hawley & Stone

1995); and finally, a transport step in which the advection of the fluid variables due

to local flow is treated. For simplicity, the components of the algorithm will be

discussed in the context of isothermal MHD although the Zeus-based simulations

presented in Chapter 3 will employ an adiabatic equation of state.

The source step solves the equation

ρ
∂v

∂t
= −∇

(

P +
B2

2

)

−∇·Q − ρ∇Φ, (2.12)

where Q is the von Neumann-Richtmyer artificial viscosity tensor. The velocity

is evolved using explicit second-order centered spatial differencing with the unad-

vanced values of the density and magnetic field. The inclusion of the pressure terms

incorporates the magnetosonic waves, however the absence of the magnetic tension

force implies that the Alfven wave has not yet been taken into account.

The MOCCT step includes the magnetic tension force, thus solving the equa-

tion

ρ
∂v

∂t
= B · ∇B, (2.13)

and evolves the magnetic field utilizing an EMF update. This is an operator split

method in that the magnetic tension force is applied to the value of the velocity

after the source step is complete. Incorporating the Alfven waves involves solving

a series of one-dimensional characteristic equations, derived from the propagation
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of Alfven waves in an incompressible fluid; as the effects of compressibility hav-

ing already been taken into account in the source step. Updating the magnetic

field requires the time- and edge-centered EMFs, which in turn require the rele-

vant velocity and magnetic field components with the same centering. For instance,

ǫ
n+1/2
z = (vxBy − vyBx)

n+1/2. Calculating the time-centered velocity and magnetic

field components is accomplished by tracing the characteristics backwards in time to

the “footpoints”, identifying a spatial point from which information will propagate.

The calculation of ǫz is illustrated in Figure 2.1. The necessary constituent informa-

tion required for calculating the EMF is then interpolated at the footpoints of the

characteristics, and the magnetic field is evolved consistent with CT. Finally, the

magnetic field values calculated from the footpoints are used to include the magnetic

tension force in the updated velocity by differencing equation 2.13.

The final step of Zeus algorithm is the transport step which incorporates fluid

advection and solves the equations

d

dt

∫

V

ρ dV = −
∮

∂V

ρv · dA (2.14)

d

dt

∫

V

ρv dV = −
∮

∂V

ρvv · dA, (2.15)

written in integral form. The transport step is directionally-split and involves a

series of one-dimensional flux updates for each coordinate direction, referred to as

directional sweeps. As the updates are of the form of equation 2.3, the only issue is to

calculate the fluxes. For clarity, this will be discussed in the context of a sweep in the

x-direction, however the general procedure does not depend on the direction chosen,

save for appropriate scaling in curvilinear geometries. The first step in the procedure
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is a reconstruction of the conserved quantity (mass or momentum), in practice

this is a linear reconstruction of the one-dimensional dependence of the conserved

quantity in each cell. An arbitrary linear reconstruction would be problematic as the

reconstructed profile may introduce new extrema to the profile which may induce

growing oscillations that would lead to an instability of the method. To help ensure

stability, the reconstruction is required to be total variation diminishing (TVD), or

formally the constraint that TV (qn+1) ≤ TV (qn), where

TV (q) =
∑

i

|qi − qi−1|. (2.16)

The reconstruction used in Zeus is piecewise linear, thus second order, and satisfies

the TVD constraint through slope-limiting.

With this reconstruction in place, as demonstrated in Figure 2.2, the next step

is to calculate the flux through the interface xi−1/2. The flux is upwinded, in that

the reconstruction used, either from the left or right of the interface, depends on

the direction of vx at the xi−1/2 interface. A positive velocity requires use of the

reconstruction in cell Vi−1, whereas a negative value will use the reconstruction of

cell Vi. The numerical flux at the interface is then calculated by approximating the

area integral at the interface of the appropriate reconstruction moving at a velocity

vx.

While the formulation of the source step precludes a conservative flux update

of the momentum, the absence of source terms in the continuity equation implies

that this method will conserve mass. The completion of the directional sweeps

in the transport step finalizes the evolution of the algorithm from one timestep
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Figure 2.1: Schematic of characteristic tracing used in MOCCT step. Figure from
Hayes et al. (2006). Characteristics are traced backwards from ǫ

n+1/2
z to footpoints

at tn.

i−1 ii−1/2

i−1

L,i−1/2

i

R,i−1/2

q

q

q

q

Figure 2.2: Linear Reconstruction in one dimension.
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to the next. The simplicity, robustness, and flexibility of Zeus has made it an

indispensable tool for modeling astrophysical plasmas for many years. However,

advances in computational fluid dynamics have rendered it somewhat outdated.

2.1.2 The Finite-Volume Algorithm of Athena

The Athena algorithm (Stone et al., 2008) is a second-order finite-volume code

based on the method described in Gardiner & Stone (2005) and Gardiner & Stone

(2008). The algorithm represents an important step forward in astrophysical MHD

as it was able to fuse the finite volume methods at the cutting edge of hydrody-

namic work with CT to evolve the magnetic field consistent with the solenoidal

constraint. Specifically, Athena augments the piecewise-parabolic method (PPM;

Colella & Woodward 1984) to solve the equations of MHD.

The Athena-based simulations to be presented are all performed in the context

of isothermal MHD, and so the discussion of the Athena algorithm will be limited

to this context. The fluid variables are, depending on the context within the algo-

rithm, formulated either in conservative form, U = {ρ, ρv,B}, or primitive form,

W = {ρ,v,B}. The variables are stored in conservative form, where the mass and

momentum are volume-averaged, and the magnetic field is stored as both a volume-

averaged quantity and as an area-averaged quantity at the interface as demonstrated

in Figure 2.3. It is the area-averaged form of the magnetic field that is evolved while

the volume-averaged magnetic field calculated using second-order averaging of the

interface states. Using this notation, the isothermal MHD equations in Cartesian
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geometry can be written

∂U

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= 0, (2.17)

where

F =

















































ρvx

ρv2
x + P ∗ − B2

x

ρvxvy − BxBy

ρvxvz − BxBz

0

Byvx − Bxvy

Bzvx − Bxvz

















































, (2.18)

and the fluxes along the other axes, G and H, are defined similarly with their spatial

localizations shown in Figure 2.3.

As in PPM, Athena relies on a Riemann solver to compute interface fluxes.

The Riemann problem in the most general form refers to a solution of the one-

dimensional equations given piecewise constant initial data about an interface, e.g.

in the x-direction the initial conditions take the form

q =















qL : x < xi+1/2,

qR : x > xi+1/2,















. (2.19)

The hyperbolic nature of the MHD equations yields a solution of the type demon-

strated in Figure 2.4. The solution over all of spacetime is characterized by the

propagation of a series of waves away from the interface that decompose spacetime

into disjoint sets upon which the solution, given by the state vector q, is generally
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constant. While hyperbolic the equations of MHD are not strictly so, and thus cer-

tain waves may be degenerate resulting in fewer intermediate states. A full solution

of the Riemann problem yields more information than is actually required for the

purposes of the Athena algorithm. All that is required for a conservative flux update

of the variables is the behavior of the solution at the cell interface from which the

flux can be calculated. Because of this, the use of an approximate Riemann solver is

preferred. An approximate Riemann solver, given the left and right interface states

and the interface magnetic field component orthogonal to the interface, returns the

interface flux which can be used to perform a conservative update. The approx-

imate Riemann solvers are less costly due to the reduced number of waves, and

consequently intermediate states, considered. While the full details will be omit-

ted, the simulations presented here use the HLLD solver (Miyoshi & Kusano, 2005),

which utilizes four intermediate states bounded by the contact, fast magnetosonic,

and Alfven waves. The heart of the Athena algorithm is the calculation of time-

averaged left and right interface states (q
n+1/2
Lx,i+1/2,j and q

n+1/2
Rx,i+1/2,j ) as well as the

parallel component of the magnetic field (B
n+1/2
x,i+1/2,j). With these values in place, the

Riemann solver can be used to calculate fluxes with which to conservatively update

the fluid variables. Further, the fluxes returned by the Riemann solver can be used

to construct a CT update for the magnetic field.

Prior to a discussion of the calculation of the time-centered values to be passed

to the Riemann solver, it is worth noting the manner in which the fluxes returned

by the solver can be used to update the magnetic field. Note that the flux in the x-
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Figure 2.3: (Left) Centering of conservative variables and interface magnetic fields.
(Right) Centering of interface fluxes computed from the Riemann solver. Figures
taken from Stone et al. (2008)
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Figure 2.4: Illustration of the solution of the Riemann problem. Waves decompose
spacetime into disjoint regions upon which the state vector, q, is constant. Calcu-
lation of the interface flux requires only the the region which contains x = xi−1/2

and corresponds to state q∗
3 in the above diagram. Figure taken from Stone et al.

(2008).
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direction given by equation 2.18 includes ǫz and ǫy which are necessary to update Bx

at the interface. However, these components of the EMFs are centered incorrectly,

at the interface as opposed to the edges. Converting the EMFs to the proper edge

centering is referred to in the algorithm as “integrating to the corner.” This is

accomplished through a gradient approximation using, in the case of ǫz, values from

the fluxes in the x and y direction. This results in the formula

ǫz,i−1/2,j−1/2,k =
1

4

(

ǫz,i−1/2,j,k + ǫz,i−1/2,j−1,k + ǫz,i,j−1/2,k + ǫz,i−1,j−1/2,k

)

+
δy

8

(

(

∂ǫz

∂y

)

i−1/2,j−1/4,k

−
(

∂ǫz

∂y

)

i−1/2,j−3/4,k

)

+
δx

8

(

(

∂ǫz

∂x

)

i−1/4,j−1/2,k

−
(

∂ǫz

∂x

)

i−3/4,j−1/2,k

)

. (2.20)

The derivatives in equation 2.20 are “upwinded” in that they are approximated

using backwards or forwards numerics based on the sign of the mass flux at the

interface. Analogous equations for the other components of the EMFs allow the

fluxes returned by the Riemann solver to be used to accurately update the interface

magnetic fields consistent with CT.

Calculating the time-centered interface states is done in a manner similar to

the corner-transport upwind (CTU;Colella 1990) method. For a hydrodynamic sys-

tem, the method begins with a series of one-dimensional reconstructions to compute

left and right states (qL and qR) at each interface. This is similar to the reconstruc-

tion done in the transport step in the Zeus algorithm, demonstrated in Figure 2.2,

however it is modified to utilize a slope-limited piecewise-parabolic reconstruction

resulting in a third-order spatially accurate method. Characteristic tracing in one
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dimension, described below, is used to advance the left and right states by a timestep

of ∆t/2 along the interface direction. For instance, the left and right states about an

x-interface (qLx and qRx) are advanced by ∆t/2 in the x-direction to compute the

evolved states, q∗
Lx and q∗

Rx. These “star” states are then passed to the Riemann

solver to calculate the fluxes (f ∗, g∗, h∗) in the x-, y-, and z-directions respectively.

The transverse fluxes are used to evolve the star-states formally to tn+1/2, i.e. q∗
Lx is

evolved to q
n+1/2
Lx using g∗ and h∗. The final time-centered left and right states are

again passed to the Riemann solver to calculate temporally second-order accurate

fluxes, fn+1/2 etc. , with which to update the cell-centered conserved quantities in

the manner of equation 2.3 and complete the hydrodynamic algorithm.

Extending the CTU method to MHD is complicated by the multidimensional

nature of the solenoidal constraint, and by extension, the induction equation. The

directional sweeps necessary for the characteristic tracing allow magnetic field com-

ponents to evolve independently, whereas physically the solenoidal constraint re-

quires multidimensional coupling. One of the primary innovations of the Athena

algorithm is the formulation of magnetic source terms to include in the character-

istic tracing step to incorporate this information. Defining Wx to be the set of

primitive variables with Bx omitted allows the simple definition of the characteristic

tracing in the x-direction to correspond to a solution of

∂Wx

∂t
+ A

∂Wx

∂x
= σ, (2.21)

where A is the hyperbolic matrix linearized about the state Wx, and σ represents

the source terms associated with the x-direction. These source terms will include
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the MHD source terms and potentially gravitational and, in the case of curvilinear

geometry, geometric source terms. The hyperbolic nature of the system implies

that the wave matrix A is diagonalizable, i.e. there exists L such that LAL−1 = Λ,

where Λ is a diagonal matrix whose entries correspond to, potentially non-distinct,

wavespeeds. Projecting the primitive variables onto the characteristic variables,

ax = LWx, decouples the equations and results in a collection of linear advection

equations which are advanced by ∆t/2, including only the information from waves

that reach the interface in the timeframe considered, which are then projected back

onto the primitive variables.

This allows the computation of the star-states at the left and right of each

interface and their associated fluxes from the Riemann solver as described above.

Next, the left and right states are advanced to the half-timestep through the inclu-

sion of transverse flux gradients, e.g. qLx is evolved according to

q
n+1/2
Lx,i−1/2,j,k = q∗

Lx,i−1/2,j,k −
∆t

2∆y

[

g∗

i+1,j+1/2,k − g∗

i+1,j−1/2,k

]

− ∆t

2∆z

[

h∗

i+1,j,k+1/2 − h∗

i+1,j,k−1/2

]

+
∆t

2
σyz, (2.22)

where σyz refers to source terms associated with the y- and z-direction, and the

remaining interface states are updated analogously. These time-centered states along

with the time-centered magnetic field, computed by integrating to the corner with

the intermediate fluxes, are again passed to the Riemann solver to compute second-

order accurate fluxes, [f, g, h]n+1/2. The final update of the conserved quantities

then takes the form of the multidimensional analog of equation 2.3

Un+1
i,j,k = Un

i,j,k −
∆t

∆x

[

f
n+1/2
i+1/2,j,k − f

n+1/2
i−1/2,j,k

]

− ∆t

∆y

[

g
n+1/2
i,j+1/2,k − g

n+1/2
i,j−1/2,k

]
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− ∆t

∆z

[

h
n+1/2
i,j,k+1/2 − h

n+1/2
i,j,k−1/2

]

+ S
n+1/2
i,j,k , (2.23)

where Sn+1/2 are the time-centered and volume-averaged gravitational, and if neces-

sary, geometric source terms. Time-centering is necessary to ensure that the source

terms are consistent with the finite-volume formulation.

The global simulations that will be presented that using Athena algorithm

also make use of the cylindrical geometry extension described by Skinner & Ostriker

(2010). The extension to cylindrical geometry omits modification of the Riemann

solver itself at the cost of introducing source terms to the MHD equations. This

requires modifications to the conservation of radial and azimuthal momentum given

by

∂(ρvR)

∂t
+

1

R

∂(RTRR)

∂R
+

1

R

∂TφR

∂φ
+

∂TzR

∂z
=

ρv2
φ − B2

φ + P ∗

R
(2.24)

∂(ρvφ)

∂t
+

1

R2

∂(R2TRφ)

∂R
+

1

R

∂Tφφ

∂φ
+

∂Tzφ

∂z
= 0 (2.25)

where T = ρvv −BB + P ∗I is the full stress tensor. The additional source term in

equation 2.24 and modified form of the scaling factor in the radial tensor derivative

in equation 2.25 will be of particular importance when describing the extensions

to the cylindrical Athena algorithm. Additionally, the spatial dependence of cell

volume necessitate the inclusion of scale factors at various points in the algorithm.

The details of these will be omitted save for when they are relevant to the algorithmic

extensions that will be detailed in Chapter 4.
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2.2 Computational Models of Accretion Disks

With algorithms in place to solve the equations of MHD, the next concerns are

models and initial conditions appropriate to simulating accretion disks. Modeling

accretion disks can be quite challenging due to the multiscale nature of the problem.

The three dominant spatial scales of an accretion disk are, in decreasing order,

the global radial lengthscale, the vertical scale height, and the dissipation scale,

λD. These spatial scales are each separated by orders of magnitude. The disparate

temporal scales serve to only exacerbate the problem with the dynamical and viscous

timescale also separated by several orders of magnitude. This, combined with the

computational limitations of even the most sophisticated supercomputers, has led

to a bifurcated approach towards modeling accretion disks. Local models focus on

resolving the scale height, and more recent applications also resolve the dissipation

scale. Global models, by contrast, focus on modeling the radial and vertical scales

albeit at generally lower resolution.

There is a natural inclination to simulate accretion disks in two dimensions

due the vastly reduced computational expense, but this must be avoided. Two

dimensional turbulence exhibits a fundamentally different character than three di-

mensional turbulence. For instance, in inviscid, incompressible two dimensional

hydrodynamic turbulence the enstrophy and energy are conserved quantities. A

cascade in one quantity, in which power is driven to smaller spatial scales, neces-

sitates an inverse cascade in the other, in which power is driven to larger spatial

scales. Three dimensional turbulence is characterized by three conserved quantities,
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and as such there is no analogous simple relationship between the spectral structure

of the conserved quantities. Further, the likely existence of an active dynamo in

accretion disks makes a two dimensional treatment unphysical. Astrophysical disks

are observed to accrete on timescales much larger than the resistive timescales, the

time it takes for a magnetic field to be resistively dissipated. This suggests the exis-

tence of a dynamo, the process by which the turbulent fluctuations of the fluid act in

a statistically self-consistent manner to amplify the magnetic field and compensate

for resistive dissipation. Numerical evidence supports the existence of an accretion

disk dynamo. The anti-dynamo theorem of Cowling states that a dynamo can not

exist without symmetry breaking all three spatial dimensions.

A simplification that can be made is the use of unstratified models, in which

the vertical component of gravity is omitted from the equations. This approxima-

tion suppresses the vertical structure of the disk which often presents numerical

challenges. Regions away from the midplane take on the characteristics of a corona,

a highly magnetized and low density structure. Strongly magnetized regions in the

midplane of the disk are buoyantly unstable and will tend to float away thus form-

ing the corona. The corona is home to supersonic Alfven waves which can act to

constrain the allowable timestep. Removing the vertical dependance of the gravita-

tional force, in essence replacing the spherical radius with the cylindrical, has the

physical interpretation of modeling just the midplane of a realistic disk. Unstrati-

fied models have the added benefit of allowing a simple periodic treatment of the

vertical boundary conditions. Neglecting the vertical component of gravity removes

the vertical density and pressure structure of the disk, however it does not reduce
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the importance of the vertical scale height. Even in the absence of vertical struc-

ture, the effective scale height remains an important ratio representing the relative

importance of thermal energy to rotational energy.

2.2.1 Local Models of Disk Turbulence

The necessity of three dimensional simulations presents a significant computa-

tional difficulty; the simultaneous resolution of the vertical and radial spatial scales.

To alleviate this constraint local, or shearing box, models are often used. Local

models simulate a Cartesian domain centered about a fiducial point, R0, corotating

with the disk at an orbital velocity Ω0 = ΩK(R0). Under the assumption that the

radial extent of the simulation domain, Lx, is small compared to R0, the radial de-

pendence of the Keplerian velocity is linearized about the fiducial point. The limited

radial extent significantly reduces the volume of the computational domain allow-

ing significantly higher resolutions than would be otherwise feasible. The Cartesian

domain is related the standard cylindrical geometry through the transformation

(x, y, z) = (R−R0, R0φ, z). The Keplerian velocity in its linearized form is given by

vK = −qΩ0x, (2.26)

where the shear parameter, q, is defined as

q = −dln ΩK

dln R
. (2.27)

The shear parameter is a measure of the strength of the differential rotation, and for

disks in a Newtonian gravitational potential q = 3/2. While in general, the shear
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parameter is a function of radius and height from the midplane, in the context of

local models it is taken to be a constant defined by its value at the fiducial point.

Simulating a rotating domain requires the inclusion of source terms in the

momentum and energy equations accounting for the centrifugal and Coriolis force,

while the mass and induction equation remain unchanged. The modified momentum

and energy equations are given as

∂(ρv)

∂t
+ ∇·(ρvv − BB + P ∗I) = ρΩ2

0(2qxx̂ − zẑ) − 2Ω0ẑ × ρv, (2.28)

∂E

∂t
+ ∇·[(E + P ∗)v −B(B · v)] = Ω2

0ρv × (2qxx̂ − zẑ). (2.29)

Finally, boundary conditions appropriate for the rotating Cartesian patch must

be defined. The azimuthal coordinate naturally lends itself to periodic boundary

conditions. While less physical, the vertical coordinate is often also treated using

periodic boundary conditions. Treatment of the radial boundaries is more difficult,

and rely on the concept of shearing periodicity. For a fluid variable, X, not including

the azimuthal velocity, vy, the boundary conditions are defined as

X(x, y, z) = X(x + Lx, y − qΩ0Lxt, z) (2.30)

vy = vy(x + Lx, y − qΩ0Lxt, z) + qΩ0Lx. (2.31)

At the beginning of the simulation, each ghost cell is mapped to its peri-

odic counterpart, as the simulation evolves the time-dependent boundary condition

maintains this initial mapping by taking into account the differential rotation over

the domain. The azimuthal velocity must be further corrected to obtain the appro-

priate local orbital velocity. The imposition of these boundary conditions results in
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a “closed” simulation, in which matter accreting through the inner radial domain

will come back into the simulation through the outer radial domain. Additionally,

this constrains the evolution of the magnetic flux through the domain. In the case

of an initial magnetic field topology lacking a net radial flux, as is common, the net

magnetic flux through the domain will remain constant.

2.2.2 Results from Local Models

In addition to pioneering the use of the local model in accretion disk simula-

tions, Hawley et al. (1995) also used the methodology to perform the first thorough

exploration of the parameter space associated with the MRI. Utilizing a variety of

unstratified local simulations initialized with differing initial magnetic fields they

were able to demonstrate unambiguously that the nonlinear resolution of the MRI

is a state of vigorous, anisotropic turbulence that results in sustained angular mo-

mentum transport. The saturated, or quasi-steady, state (QSS) refers to the fluid

state after the initial growth phase of the linear MRI and the transition into a fully

nonlinear state. The delicate interplay between numerics and physics was noted in

Hawley et al. (1995), in particular the dependance of the saturated state on both the

size of the numerical domain being simulated and on the presence of a net magnetic

field threading the simulation domain.

This concept is encapsulated in the notion of a saturation predictor, in which

the stress or magnetic pressure in the QSS is related to the initial conditions of the

simulation. For simulations initialized with a constant vertical magnetic field profile
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it was found that

〈Pb〉QSS ≈ 1.21ρ0(LzΩ0)(λMRIΩ0), (2.32)

where < X >QSS refers to a spatial and temporal average of the quantity in the QSS,

and ρ0 is the value of the constant density used to initialize the simulation. The de-

pendence on the size of the simulation domain is a consequence of the small domains

considered and would not be expected to extend to simulations large enough to en-

sure that the domain size doesn’t inhibit the formation and resolution of structure.

Alternatively, for simulations initialized with a constant toroidal magnetic field, the

following predictor is derived

〈Pb〉QSS ≈ 0.01ρ0(LyΩ0)(λcΩ0), (2.33)

where the characteristic wavelength, λc is given by equation 1.46. Further, indepen-

dent of initial field topology, < MRφ + TRφ >QSS∝< Pb >QSS. In particular, this

relationship is encapsulated by the dimensionless product

αβ =
MRφ + TRφ

Pb
≈ 1

2
. (2.34)

The relationship of equation 2.34 was further bolstered by (Blackman et al., 2008),

who conducted a meta-analysis of a wide range of published local simulations, and

showed that this result holds quite broadly.

The saturation predictors given in equations 2.32 and 2.33 demonstrate the

dependence of the saturated state on both physical (initial field strength) and numer-

ical (box-size) parameters. Increasing either will result in more angular momentum

transport and a stronger characteristic magnetic energy. Further, as suggested by
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the linear theory of the MRI, poloidal magnetic fields are much more efficient at gen-

erating angular momentum transport than toroidal field configurations of the same

energy. The dependence on domain size is even deeper than this; the simulations

considered by Hawley et al. (1995) are all such that Lx/Lz = 1 and exhibit signif-

icant levels of intermittency characterized by impulsive spikes of accretion. It was

found (Bodo et al., 2008) that more disparate values of Lx and Lz led to suppressed

intermittency as compared to simulations with a radial aspect ratio of unity.

At first glance the dependence of the saturated state on the initial magnetic

field strength and topology are genuinely physical, however even here there are

numerical details lurking beneath the surface. It is known from the linear theory

of the MRI that a sufficiently strong vertical magnetic field becomes a stabilizing,

rather than destabilizing, force. In practice, sufficiently strong fields are associated

with large wavelengths and will be eventually become larger than the vertical extent

of the simulation. Conversely, as weak fields are associated with small wavelength

disturbances, sufficiently weak fields will be driven to spatial values smaller than

the grid scale and thus be unresolvable. In this case, even though there is a physical

magnetic field present, numerically this field will be equivalent to a null field. These

details were used by Pessah et al. (2007) to augment the vertical field saturation

predictor as

< αM >QSS

(H

Lz

)(5/3)

= 0.61 ×































∆z/Lz : λMRI ≤ ∆z,

λMRI/Lz : ∆z < λMRI ≤ Lz ,

0 : Lz < λMRI ,































. (2.35)

For simulations not initialized with a constant vertical field, λMRI represents the
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volume average of the pointwise value. The augmented saturation predictor includes

three regions: an unresolved region in which λMRI is unresolvable and consequently

α ∝ ∆; the resolved region probed by the saturation predictor given in equation 2.32;

and a stable region in which λMRI exceeds the vertical domain of the simulation and

turbulence is absent. The structure of the saturation predictor given in equation 2.35

is shown in Figure 2.5 along with the results of a series of simulations of varying

initial field strength.

The augmented saturation predictor of Pessah et al. (2007) incorporates the

earlier convergence results of Fromang & Papaloizou (2007). Fromang & Papaloizou

(2007) consider consider the resolution dependence of a series of unstratified local

models, initialized with a vertical field with vanishing net flux. For these simulations

initialized with a vertical field, it is common to discuss resolution in the context of

the number of zones per vertical scale-height (ZPH). The simulations considered

are of size (Lx, Ly, Lz) = (H, πH, H) with vertical resolutions (in ZPH) of H/∆z =

64, 128, 256. It was found that as the resolution increased, < α >QSS tended towards

zero.

The lack of convergence in these simulations was initially quite troubling, how-

ever a series of results shortly afterwards demonstrated that the lack of convergence

required a combination of model parameters. The absence of any of these parame-

ters fundamentally changed the result and convergence was achieved. Convergence

towards a non-zero value of α can be achieved through the addition of stratification

(Davis et al., 2010), the inclusion of an initial magnetic field with a non-zero net flux
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Figure 2.5: Series of simulations utilizing purely vertical initial magnetic fields of
varying strengths, characterized by the Alfven velocity of the initial field. Figure
taken from Pessah et al. (2007).
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(Simon et al., 2009), the inclusion of explicit dissipation terms, or the presence of a

sufficiently large Lz (Jim Stone, private communication). The presence of explicit

dissipation in addition to contributing to convergence, also has a significant effect on

the saturated state. It was found (Lesur & Longaretti, 2007) that in the saturated

state α ∝ Pm, where Pm = ν/η represents the dimensionless Prandtl number, the

ratio of the viscosity and the resistivity.

The lack of convergence in the models considered by Fromang & Papaloizou

(2007) is often attributed to the lack of a physical scale in the problem. The absence

of a physical scale gives the gridscale an unphysical importance in the problem, as

evidenced by the behavior αM ∝ ∆z when the wavelength associated with the net

vertical flux is unresolvable. The addition of stratification transforms the scale

height from a thermodynamic measurement to an important vertical lengthscale.

The presence of net flux imposes an alternative lengthscale, namely the wavelength

associated with the net magnetic flux. Analogously, explicit dissipation incorporates

a dissipation lengthscale. These imposed physical lengthscales take the place of the

numerical gridscale and thus these models will be less sensitive to resolution. While

the lack of convergence of unstratified, zero net flux models is a somewhat singular

case the result does serve to highlight the importance of numerical effects in accretion

disk simulations.

These results are indicative of the difficulty associated with simulations of

MRI-driven MHD turbulence in accretion disks. Choices of initial parameters, par-

ticularly the box-size and initial magnetic field strength and topology, strongly in-

fluence the saturated state. The effect of this is a particularly large parameter space
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associated with local disk models.

2.3 Local Versus Global Models

The reduced computational expense associated with local models is a clear

advantage, however this comes at a steep price. There are significant, well-known

limitations (Regev & Umurhan 2008) to the local approximation. The closed nature

of these simulations enforces the conservation of quantities on scales much smaller

than would be astrophysically realistic. This constraint inhibits the evolution and

formation of radial structure. In particular, the evolution of the magnetic field

is constrained by the condition that the net magnetic flux is conserved. As we

will see, the strong dependence of accretion on magnetic flux makes this a difficult

approximation to justify. On the other hand, global models allow the study of

the full evolution of the disk at the cost of significant computational resources.

Clearly, these two models must be used in a complimentary manner with local

models probing the structure of disk turbulence at small scales and global models

studying large scale structure formation. Consequently, verifying that these two

models agree at intermediate scales is a vital self-consistency check and an important

step towards understanding the limitations of both types of models. The results

from a preliminary investigation exploring the connection between local and global

models is presented in the next chapter.
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Chapter 3

Connecting Local and Global Models: Preliminary Investigation

3.1 Introduction

Local simulations have known limitations (Regev & Umurhan, 2008; Bodo et al.,

2008). By construction, they enforce the local conservation of quantities (in par-

ticular the net magnetic flux) that in reality are only globally conserved. In many

older implementations they also enforce periodicity (in radius, azimuth, and in some

instances also height) on a scale that may be small enough to impact the results. Re-

cently, a number of authors (Davis et al., 2010; Guan et al., 2009; Johansen et al.,

2009) have used larger-than-usual shearing-box simulations to quantify whether

these limitations matter for practical purposes. In this chapter we address the same

problem from the other direction. We analyze small patches of global disk simula-

tions in an attempt to determine whether the disk behaves as if it were a collection

of shearing-boxes. Our specific goal is to ascertain whether the relationship between

local Rφ-component of the magnetic stress and vertical magnetic flux that is found

in local simulations (Pessah et al., 2007), and encapsulated in equation 2.35, is re-

covered in local patches of global simulations. As a result, we uncover the potential

importance of the magnetic connectivity of the disk and the need to fully capture

the vertical extent of the corona.

The work presented here is a preliminary investigation of the connection be-
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tween local and global models of accretion and certain numerical concerns related

to the geometry of the simulation domain. This investigation is preliminary in the

sense that it uses a simulation model that was originally intended to serve a some-

what different astrophysical purpose (Reynolds & Miller, 2009). Because of this

there are additional complications introduced by the physics associated with the

pseudo-Newtonian potential and vertical stratification. The benefit of using this

simulation is that it has been thoroughly explored and can be considered free of

defects and has moderate resolution. The work presented in this chapter uses this

model as an incubator for the ideas that will be explored in greater detail through-

out the remainder of this dissertation utilizing models that have been tailored to

address the questions raised here.

The plan of this chapter is as follows. Section §3.2 describes the simulations

used in this work. Section §3.3 discusses the importance of vertical domain size to

the accretion efficiency in the saturated state. The main body of work is described

in Section §3.4 which discusses the correlation between magnetic flux and stress and

how this relationship in global models is an extension of the saturation predictors

used for local models. Finally, a discussion and concluding remarks is included in

Section §3.6.

3.2 Simulations

The simulations used here are based upon those described by Reynolds & Miller

(2009). We use the ZEUS-MP code (Stone & Norman, 1992; Hayes et al., 2006) to
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solve the equations of ideal MHD in three dimensions. The basic version of the code

has been modified to incorporate a Paczynski-Wiita pseudo-Newtonian gravitational

potential (as a first approximation of the gravitational field about a Schwarzschild

black hole; Paczynsky & Wiita 1980) and the simulation is run using cylindrical

polar coordinates. These simulations are ideal MHD in the sense that no explicit

resistive or viscous dissipation is included; all dissipative processes are due to the

discretization of the spatial domain and hence occur close to the grid scale. Fur-

thermore, an internal energy equation assuming an adiabatic equation of state with

γ = 5/3 is used. Energy is lost from the domain when magnetic fields undergo

numerical reconnection due to the non-conservative nature of the treatment of the

energy equation in Zeus.

The initial disk is in a state of Keplerian rotation (with respect to the pseudo-

Newtonian potential), and is in vertical hydrostatic equilibrium with a constant

scale height h. Thus, the initial density, pressure and velocity field is

ρ(R, z) = ρ0(R) exp(− z2

2h2
), (3.1)

p(R, z) =
GMh2

(r − 2rg)2r
ρ(R, z), (3.2)

vφ = RΩ =

√
GMR

R − 2rg

, (3.3)

vz = vr = 0, (3.4)

where R represents the cylindrical radius, r =
√

R2 + z2, rg = GM/c2 and h =

0.05risco = 0.3rg. We set the initial midplane density to be ρ0(R) = 1 beyond the

innermost stable circular orbit (ISCO) at risco = 6rg, and ρ0(R) = 0 within the

ISCO.
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The initial magnetic field is specified in terms of a vector potential of the form,

Aφ = A0f(R, z)p1/2 sin(
2πR

5h
), (3.5)

AR = Az = 0. (3.6)

Here f is an envelope function that is unity in the disk body and smoothly goes

to zero away from the main body so as to avoid unphysical interactions with the

boundaries. This results in a magnetic field topology consisting of distinct poloidal

field loops of alternating orientation throughout the main body of the simulation.

Of importance to the current discussion is that there is no net vertical magnetic

flux threading the disk as a whole. The constant A0 is chosen to ensure that the

magnetic field strength is normalized so that the ratio of volume-integrated gas and

magnetic pressure β ≈ 103.

The boundary conditions used in global simulations often present greater dif-

ficulties than their local counterparts. The desire to allow material and magnetic

flux to leave the domain through accretion processes require the use of appropriate

outflow boundary conditions. Here, a zero-gradient outflow boundary is used in the

radial direction in which the fluid variables in the ghost zones are set based on an

enforced zero-gradient constraint. Outflow is ensured through the use of a “diode”

condition, in which the radial velocity in the ghost zones are set to zero in the event

that they would otherwise correspond to motion into the simulation domain. Along

the φ-boundary periodic boundary conditions are the natural choice, however more

unnaturally this choice is also made along the z-boundary. This latter choice is

made to avoid common numerical issues associated with outflow along the vertical
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Figure 3.1: Images of the evolution of simulation Thin.M-Res.6z. Shown are
poloidal contours of the logarithmic density utilizing 10 contours per decade over the
range of three decades in density. The snapshots correspond to the initial conditions
(Top-Left), and the evolution after one (Top-Right), ten (Bottom-Left), and
one hundred (Bottom-Right) orbits at risco. Figure taken from Reynolds & Miller
(2009).
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boundary. Specifically, as noted by Stone et al. (1996) outflow boundary conditions

can result in field-line “snapping”, in which a field loop traversing the boundary be-

comes disconnected and subject to potentially strong magnetic tension forces that

can affect the entire disk. This is avoided here, as in Stone et al. (1996), through

the use of periodic vertical boundary conditions where the vertical boundaries are

placed sufficiently far from the turbulent disk to avoid potential artifacts.

A set of simulations were run to span a range of numerical parameters, specifi-

cally varying the vertical and radial resolution, as well as the vertical and azimuthal

extent of the domain. A comparison of simulations with varying azimuthal extents

suggest a negligible dependence on this parameter, and as such all the simulations

considered here use the same 30◦ wedge-shaped azimuthal domain. The vertical

domain size is found to be important, and will be discussed below. A detailed study

of the dependence on resolution, requiring much greater computational expense,

is deferred to a later work. All simulations presented here have a radial domain

r ∈ (4rg, 16rg). Details of the simulations considered are given below in Table 3.1.

A series of still images is presented in Figure 3.1 to give a sense of the evolution of

the fiducial disk model Thin.M-Res.6z. Shown are the contours of the logarithmic

density in the poloidal plane and how they evolve over time, the horizon of the black

hole is marked for reference as the curved line at r = 2. The turbulent nature of

the disk is clear after 10 ISCO orbits from the small-scale structure of the density

contours and from the snapshots the radial and indeed vertical evolution of the disk

can be inferred.
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Run ID Resolution Vertical Extent Total Orbits Mean αM Standard Deviation
(R,φ,z) (in rg) (at risco) of αM

Thin.M-Res.12z (240,32,512) 12 122 0.008 0.0011
Thin.M-Res.6z (240,32,256) 6 664 0.0086 0.0016
Thin.M-Res.3z (240,32,128) 3 112 0.0061 0.001

Table 3.1: The spatial resolution, vertical domain size, duration of the simulations analyzed in this work. Also included are the
mean and standard deviation of αM , defined by equation 3.7, between 50 and 100 orbits at risco.
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3.3 Dependence of Stress on Vertical Domain Size

Quantifying angular momentum transport in a global, stratified disk requires

a suitable metric that highlights the dominant region of accretion in the midplane,

while minimizing the importance of potentially problematic regions near the bound-

ary. Towards this end, a density-weighted average of αM (equation 1.32) is defined

to be

αM =

〈

∫

−ρMrφ

p
dz

∫

ρdz

〉

φ,r∈(7rg,12rg)

. (3.7)

The restriction on the radial range of the averaging is designed to ignore the plunging

region of the accretion flow (r ≤ 6rg) and any effects related to the outer radial

boundary. Density weighting is used in the vertical direction to take into account the

low density, highly magnetized regions while still allowing the dominant contribution

to the integral to come from the denser mid-plane of the disk.

A comparison of αM and its dependence on vertical domain is given in Fig-

ure 3.2. The initial growth phase of the MRI is unaffected by the vertical do-

main as expected, since all the simulations considered have the same vertical reso-

lution and can thus resolve the same unstable MRI modes. While the two simula-

tions with the largest vertical domains exhibit comparable values of αM , simulation

Thin.M-Res.3z produces a consistently smaller value. We attribute this effect to

stifling of the growth of the magnetized regions in the smaller vertical extent sim-

ulation. However, the long-term effects of vertical extent are ambiguous. Whether

the simulations converge to the same αM or the apparent convergence is a result of

short-term variability is unclear from the current simulations. Longer simulations
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will need to be carried out to determine the vertical domain size that is needed in

order to reliably capture the dynamics of a global disk. These results do suggest the

potential dynamical importance of the corona and this point is returned to in the

context of the generation of stress in response to local magnetic flux.

3.4 Connection Between Flux and Stress

3.4.1 Vertical Structure of Stratified Thin Disks

Our primary goal here is to study the instantaneous correlation between stress

and magnetic flux within the simulated disk. In a stratified disk this correlation

may vary with height above the disk midplane, and hence we start by considering

how the mean magnetic field structure varies vertically in our simulations.

To analyze the simulations the principal quantity of interest is the R−φ compo-

nent of the Maxwell stress tensor which dominates MRI-driven angular momentum

transport (Balbus & Hawley, 1998). In a turbulent stratified disk, both MRφ and

other physical quantities of interest are complicated functions of space and time. To

make sense of them we use temporal and spatial averages. Run Thin.M-Res.6z has

the longest duration of any of our simulations, and we use this run to construct a

representative vertical profile of the magnetic structure of the disk. To reduce the

effects of spatial intermittency in the turbulence, we azimuthally average over the

entire domain and average over a small radial range centered about a fiducial radius

in the body of the disk ( 8rg − h < r < 8rg + h) . To smooth out the temporal

variability and isolate the behavior of the disk in a saturated turbulent state we
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time average over 400 ISCO orbits starting at orbit 50.

The results are given in Figure 3.3, which shows the vertical profiles of the

relevant quantities scaled to their maximum values. Our interest in vertical structure

is predominantly in the magnetic fields, and in particular the vertical magnetic flux,

Bz, and the magnetic stress, MRφ. However, we also plot the density, ρ, to highlight

the contrast between the relatively unmagnetized midplane of the disk and the

sparse magnetized “corona” away from the midplane. The obvious reason for the

formation of these two disparate regions is magnetic buoyancy resulting from the

effect of vertical gravity, but this may be overly simplistic. Also of interest is the

double-peak vertical profile of vertical flux and stress. Broadly similar results are

seen in a subset of the stratified local simulations of Miller & Stone (2000) and a

subset of the global simulations of Fromang & Nelson (2006). It is interesting that

the vertical location of the peak field and stress seem to approach constant values

rather than growing monotonically with time. Whether the region of strong flux

is trapped, possibly due to magnetic tension from field lines connecting it to the

midplane, or is continually dissipating while outflowing, is currently unclear.

The local flux-stress relationship to which we will compare our results is based

on unstratified shearing box simulations and the rich vertical magnetic structure due

to stratification in our global disk means that there is necessarily some ambiguity

in the comparison. In what follows, we therefore analyze the flux-stress relationship

within the global simulation not just at the midplane but also as a function of height.

One should note that the offset of the peak vertical flux and stress from z = 0 means
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orbits for run Thin.M-Res.6z.
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that high values of flux and stress are only accessible away from the midplane.

3.4.2 Local Flux-Stress Correlations in a Global Disk

Although our simulations have zero net vertical flux, small patches of the disk

are instantaneously threaded by a vertical field. We seek to determine whether

the Maxwell stress tracks this transient vertical field in the same way as it would

in a local simulation where the vertical field is persistent (Hawley et al., 1995;

Pessah et al., 2007). To proceed, we break up the global simulation domain at

each timestep into several hundred small cylindrical wedges of size ∆z = ∆r = h

and ∆φ ≈ 0.1. Within each wedge we average to obtain a single estimate of the

magnetic stress (Mrφ/p, normalized to the local gas pressure) and the local vertical

flux, which we express in terms of the wavelength of the most unstable MRI mode,

λMRI (equation 1.40). Note that because we scale the stress by the local pressure

(a decreasing function of height), we immediately introduce a height dependence.

Choosing instead to scale by the midplane pressure (only a function of radius) still

yields a height dependence and as such we are confident that the height dependence

seen is not solely a consequence of the pressure scaling.

To avoid early transients, our analysis excludes the period prior to the first

50 ISCO orbital periods. To improve our statistics (and to give a measure of the

convergence of our results given the finite duration of the run) we consider wedges

that are centered at z = ±[0, 1, 2, 3]h and plot results for the samples separately. The

resulting pairs of flux-stress values from all of the wedges and all of the snapshots
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in time were binned according to (logarithmic) vertical flux in order to diagnose

trends.

The resulting flux-stress relations for all the simulations considered are broadly

similar. Our best statistics come from the long duration run Thin.M-Res.6z, and

the flux-stress relation for this case is plotted in Figure 3.4. The stress is observed to

be flat for weak vertical fields (small λMRI), while for larger field strengths we have

approximately MRφ ∝ λMRI . This may be compared with the local scaling relation

derived from unstratified simulations, equation 2.35. Note the distinction between

the locally defined H , used to calculate the dimensionless stress in each wedge, and

the globally constant h, used in the initial conditions. In comparing our results to

those obtained for local simulations, we consider L to be the size of the wedge and

H to be the locally defined pressure scale height given by

H =

√

2

γ

cs

ΩK
, (3.8)

which is consistent with the previously-defined isothermal scale height (equation 1.10)

for γ = 1.

Our simulations do not spontaneously develop vertical fields strong enough

to quench the MRI (and hence we do not sample the λMRI > L regime), but the

behavior of patches at low and intermediate vertical fluxes is qualitatively the same

as that found in local simulations. In contrast to the local (unstratified) results of

Pessah et al. (2007) is the strong dependence on height in our stratified simulations.

In addition to the fact that the largest values of flux are only accessible at large

heights is the fact that the stress response to flux is also height dependent. There
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is a height-dependence of the transition point between low and intermediate flux,

as well as in the slope of the intermediate flux regime. Of particular note is the

location of the transition point itself. The vertical line marked in Figure 3.4 is given

by λMRI = ∆/20, and approximately marks the location of the transition point

at z = ±H . This stands in contrast to the transition point for local unstratified

simulations, λMRI = ∆z. We return to a discussion of the physics of this transition

in Section 3.4.3.

The fact that transient self-generated vertical flux is able to stimulate the local

stress in the same manner as occurs in local models is primarily a formal result,

although it does lend some credence to models in which patches of vertical field are

assumed to have a physical identity (Spruit & Uzdensky, 2005). Of greater import

is the observation that, across much of the disk, the self-generated field is strong

enough to fall into the linear regime of the flux-stress relation. Figure 3.5 shows

the distribution of flux through patches in all three. The vertical flux distributions

are approximately symmetric in log-space. We find that, at any instant in time,

about half of the area of the disk is threaded by a field strong enough to control the

stress. We interpret this to mean that in a zero-net field global simulation, much

of the disk sees a field strong enough to control its dynamics. In other words, the

dynamics of the disk is strongly influenced by the connectivity of the self-generated

magnetic field between different patches of the disk.

In these results we again see the importance of the magnetized region away

from the midplane. Not only is this the location of the largest values of flux, and
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thus stress, but for the same flux the stress response is higher. This increased stress

response to flux suggests that the corona is important not just as a warehouse of

magnetic energy, but also has the ability to use this magnetic energy more efficiently

to induce angular momentum transport. One possible explanation for this efficiency

is the ability of the corona to mediate magnetic links through radially disparate

regions of the disk due to the presence of coronal field loops. This is potentially

connected to the results discussed in Section 3.3, in which the importance of vertical

domain size is considered, and is possibly the result of the truncation of the corona

affecting the dynamics of the disk. Considered next, is the nature of the transition

point itself.

3.4.3 The Nature of the Transition Point in the Flux-Stress Relation

To reiterate, the flux-stress relation obtained from our global simulation shows

a transition at approximately λMRI ∼ ∆/20, in contrast with λMRI ∼ ∆ found from

local unstratified simulations (Pessah et al., 2007). Neither of these transitions can

correspond straightforwardly to the condition that the fastest growing MRI mode

is resolved. To resolve a mode in a ZEUS-like scheme requires that the wavelength

is spanned by at least ∼ 8 computational zones. Since λMRI is, by construction, the

wavelength of the fastest growing mode corresponding to the net vertical magnetic

field, the condition that the fastest growing MRI mode is resolved corresponds to

λMRI ∼ 8∆. Our result then implies that magnetic fields that are very weak – in

the sense that their fastest growing mode cannot be resolved – nonetheless have an
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important influence on the dynamics of our global disk.

We do not have a quantitative explanation of why λMRI ∼ ∆/20. On general

grounds, however, we note that we would expect that the transition point would lie at

λMRI ≪ 8∆. A given vertical field is unstable not just to the fastest growing mode,

but also to a whole spectrum of slower-growing modes that have longer wavelengths

that are more easily resolvable numerically. Plausibly, the transition point will then

correspond to the condition that we resolve the slowest growing mode that grows

appreciably before it is truncated by non-linear coupling to other MRI modes or

some other aspect of the physics (e.g. a dynamo cycle). If this is the case, then it is

unsurprising that the transition point varies between local and global simulations,

since the time scale available for a mode to grow may well depend on the presence

or absence of a low density disk corona within which the MRI is not active.

To consider this more quantitatively, consider purely vertical MRI modes (kr =

kφ = 0) in a thin accretion disk (so that radial gradients of pressure and entropy

can be neglected). Let the spacetime dependence of the modes be ei(ωt−kz). The

dispersion relation for these modes (Balbus & Hawley, 1991) reads

ω̃4 − κ2ω̃2 − 4Ω2
0k

2v2
A = 0, (3.9)

where ω̃2 = ω2 − k2v2
A and κ is the radial epicyclic (angular) frequency. We wish to

examine modes with wavelengths much longer than the fastest growing mode, i.e.,

with |kvA/Ω0| ≪ 1. Rewriting in terms of the growth rate, σ = −iω and expanding

the dispersion relation to lowest order in k2v2
A/Ω2

0 gives

σ2 =

[

4

(

Ω0

κ

)2

− 1

]

k2v2
A. (3.10)
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Suppose that a given mode can grow exponentially for a time τ before it is

truncated by mode coupling or some other unspecified physical process. Then, the

slowest growing mode that actually experiences significant growth (hereafter, the

slowest appreciably growing mode [SAGM]) has σsagm = 2π/τ and a wavenumber

given by

k2
sagmv2

A =
4π2κ2

τ 2(4Ω2
0 − κ2)

. (3.11)

Our hypothesis is that the transition point in the flux-stress relation corresponds to

the point where the slowest appreciably growing mode is just resolvable, i.e., where

λsagm ≡ 2π/ksagm ∼ 8∆. This predicts a transition point at

λMRI ∼ 16κ

151/2π(4Ω2
0 − κ2)1/2

∆

τ ′
, (3.12)

where τ ′ ≡ τ/torb, torb being the orbital period at that radius.

Equation 3.12 offers some insight into the transition point found in the flux-

stress relations that we have been considering. In the local unstratified simulations

of Pessah et al. (2007), the implicit potential is Newtonian (κ2 = Ω2
0) and their

results indicate λMRI ∼ ∆, implying τ ∼ torb. In the global simulations presented

here, we find the transition point at λMRI ∼ ∆/20 which (accounting for the fact

that κ2 < Ω2
0 in the pseudo-Newtonian potential) gives τ ∼ 5− 10torb. Thus, within

the framework of this argument, the difference in the location of the transition point

between the local unstratified and the global simulations is due to a difference in

the robustness of the long wavelength and slowly growing modes; slowing growing

modes appear to be able to grow for longer within the global simulation before

being truncated. The nature of this difference, which must be closely related to
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the saturation of the turbulent state, is beyond the scope of this work. It will be

demonstrated in Chapter 6 that the transition point itself is a function of resolution.

3.4.4 Temporal Flux-Stress Correlations

The results of §3.4.2 suggests that the (fluctuating) magnetic flux threading

a local patch of the disk determines the R − φ component of the magnetic stress

generated by the turbulence in that patch. If the vertical magnetic flux is indeed the

causal agent in determining the stress, we expect a temporal lag between fluctuations

in the magnetic flux and the resulting variations in the stress. On the basis of

experiments with local simulations (Hawley et al., 1996), we expect this lag to be

approximately two (local) orbital periods. Thus, we expect the temporal lag to

increase with radius in the disk due to the increasing orbital period.

To search for this lag, we use Thin.M-Res.6z and output the 3-d structure

of the disk once every 0.1 ISCO orbits during the interval between 50–90 ISCO

orbits (this is 10 times the nominal data output rate). Using these 400 snapshots

of the disk structure, we then computed the instantaneous vertical magnetic fluxes

and magnetic R − φ stresses in families of co-moving wedges at three radii R ∈

{8rg, 10rg, 12rg}. The azimuthally averaged value of vφ at each radius was used

to track a given co-moving wedge between timesteps. This procedure is not fully

Lagrangian, because it does not account for the radial movement or fluctuating

azimuthal velocity of a co-moving patch, but we expect these effects to be negligible

for the short timeframe under consideration. The time-series of magnetic flux and
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stress for each wedge were then cross-correlated and, finally, the cross-correlations

for all wedges at a given radius were averaged.

The resulting averaged temporal cross-correlations are shown in Fig. 3.6. At

each radius we see a strong instantaneous correlation, likely due to the immediate

shearing of perturbed vertical fields. However, in general, the cross-correlation is

biased toward positive lag. This is consistent with what we would expect, namely

that the presence of vertical flux will feed the MRI and result in enhanced transport.

Of note is the fact that the inner-most radius considered, R = 8rg exhibits a double

peak structure whereas this is unresolved at higher radii. Also peculiar is the fact

that the outer-most radius, R = 12rg is significantly less biased towards positive

lag than the other radii under consideration. A further exploration of these issues

is beyond the scope of this paper, and will be explored in future work employing

orbital advection algorithms and test-particle tracers in order to correctly follow the

evolution of a local patch.

3.5 Long-Term Behavior

In the one case of run Thin.M-Res.6z, the disk was simulated for 664 ISCO

orbits. This simulation allows us to search for long-term trends in the dynamics of

the disk. As shown in Figure 3.7 there is a slight downward drift in αM over time.

The same temporal trend is also evident in the flux-stress relationship. Figure 3.8

shows the flux-stress relationship averaged in 100 orbit blocks starting at 50 ISCO

orbits. During the first 300 orbits, there appears to be a secular drift in the flux-
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stress relation. The linear (high-flux) part of the relation achieves a steady state

relatively quickly (only the first time block between 50 and 150 ISCO orbits shows

significant differences), but the flat (low-flux) part of the relation continues to fall

until it too achieves a steady state at approximately 350 ISCO orbits into the run.

Associated with this, the “knee” in the flux-stress relation appears to move to smaller

fluxes.

In essence, this result says that low-flux regions still support (small) stresses

at early times but that those stresses decay over a period of several hundred ISCO

orbits. We ascribe this to stresses associated with a sheared residual of the initial

magnetic field configuration which are “mixed away” on a relatively long timescale.

Our initial field configuration threads the midplane with regions of net magnetic flux

which alternate with a radial periodicity of 5h. Radial Fourier transforms of the mid-

plane azimuthally-averaged Bz do indeed find a (weak) periodicity corresponding to

the initial field even once the turbulence is fully developed. This periodic component

grows weaker and is no longer detectable at approximately the same time that

the flux-stress curve achieves steady-state and suggests that the correlation scale

of the vertical field may affect the transition point in the flux-stress relationship.

These observations further suggest that residual flux from the initial conditions is

responsible for the long term variability.

Assuming that a long-lived residual of the initial magnetic field is the driving

mechanism for this phenomenon, we can recover the time required to achieve the

steady state from elementary arguments. The time needed to turbulently diffuse

together two patches of oppositely directed flux separated by a radial distance ∆r =
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2.5h is given by

tmix ∼
∆r2

ηeff
, (3.13)

where ηeff is the effective turbulent resistivity. If we define Prm,eff as the effective

turbulent magnetic Prandtl number (i.e. the ratio of the effective turbulent viscosity

to the effective turbulent resistivity), we can write

ηeff = Pr−1
m,effαMcsh, (3.14)

where cs is the sound speed. We can then write the mixing time as

tmix ∼
Prm,eff

2παM

(

∆r

h

)2

torb, (3.15)

where torb is the local orbital period and we have used the fact that h/cs ∼ r/vφ ∼

torb/2π. Using Prm,eff = 1 (Guan et al., 2009; Lesur & Longaretti, 2009; Fromang & Stone,

2009) and αM = 0.005 suggests that the memory of the initial conditions will be

lost on a timescale of tmix ∼ 200torb. This crude estimate is in reasonable agreement

with the timescale on which we see the flux-stress relationship achieve a stationary

state.

3.6 Conclusions

It has been a long-held ansatz that one can extract and model the dynamics

of a local patch of an accretion disk and obtain results (for the angular momentum

transport, for example) that have meaning for the disk as a whole. By examining

local patches of a moderately high resolution global disk simulation, we have pro-

vided a direct test of this notion. We have shown that MRI-driven turbulence in
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global geometrically thin accretion disks behaves in a way consistent with scaling

laws derived for local simulations. In particular, we find that global disks display

a local flux-stress relation qualitatively similar to that found in local simulations

(Hawley et al., 1995; Pessah et al., 2007). However, other aspects of the global

models are distinctly different.

Even though we model a global accretion disk that has zero net magnetic field,

any given patch of the disk is threaded by a net magnetic flux resulting from the

self-generated field in the MRI-dynamo. Across much of the disk, the local flux is

strong enough to have a controlling effect on the local stress. Thus, our zero-net

field global disk is behaving as a collection of net field local patches.

The normalization, slope, and location of the “knee” of the flux-stress rela-

tionship changes with vertical height in the accretion disk. This amplifies the role

of the off-midplane region (h < |z| < 2h) of the disk; not only does this region

have stronger vertical magnetic fields than the midplane, but a given vertical field

induces stronger magnetic stresses. The result is a strong enhancement of magnetic

stress well off the midplane of the disk. The transition point (or “knee”) in the

flux-stress relation occurs as significantly smaller fluxes in the global simulation as

compared to the local unstratified simulations. We relate this transition point to

the ability of the simulation to marginally resolved the slowest appreciably growing

mode. Angular momentum transport (i.e. αM) in the global disk appears to be

impeded if the vertical domain size of the simulation is too small; we found signifi-

cant differences between our z = ±5h and z = ±10h cases. On the other hand, the

z = ±10h and z = ±20h cases appear very similar suggesting convergence has been
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achieved. Given that magnetic linkages between different patches of the disk appear

to be crucial for determining the local flux (and hence the local stress), and that

such linkages are made through the low-density corona of the disk, such a sensitivity

to the vertical domain size is not surprising.

Analysis of our long simulation (which ran for 664 ISCO orbits) reveals long-

term secular trends. In particular, there is a secular variation of the flux-stress

relationship such that the knee of the relationship moves to smaller fluxes and the

low-flux normalization decreases. This secular drift stabilizes after approximately

300 ISCO orbits. We attribute this to stresses associated with a long-lived residual

of the initial magnetic field configuration.

The desire to make comparisons between local and global models is compli-

cated due to the difficulty of appropriately resolving accretion disk turbulence in

the significantly larger spatial domain associated with global models and by the

need to disentangle the effects of stratification from the MRI. Toward the end of

developing a suite of simulations that offer a better comparison to unstratified local

models, further work is done using the superior Athena algorithm. Comparisons of

local models run using Zeus and Athena (Stone, 2009) find that at a fixed resolu-

tion Athena offers superior accuracy and less dissipation while also precisely, i.e. to

machine precision, respecting the conserved quantities. The next chapter will detail

a semi-Lagrangian extension developed to complement the sophisticated algorithm

of Athena that allows order of magnitude performance benefits when running ac-

cretion disk simulations. This combination of high-order Godunov algorithm and

semi-Lagrangian extension has allowed the study of unstratified global disks at res-

85



olutions comparable to local models and unprecedented in the context of global

simulations.
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Chapter 4

Orbital Advection

4.1 Introduction

Orbital advection, first proposed for hydrodynamic systems by Masset (2000)

and extended to MHD by Johnson et al. (2008), utilizes a semi-Lagrangian approach

to alleviate the dominant timestep restriction associated with Eulerian simulations

of supersonically rotating disks. The essence of orbital advection is the observation

that in accretion disk simulations the dominant signal speed is associated with the

Keplerian rotation. Thus, the timestep of an Eulerian code will be limited by ∆t ≤

∆tK , with the Keplerian timestep given by equation 2.11. The background Keplerian

rotation, however, is time-independent and has a simple spatial dependence which

suggests the existence of a simple Lagrangian frame, referred to as the Keplerian

frame. In this frame, assuming a weak magnetic field, the timestep will be limited

by ∆t ≤ C0R∆φ/cs. Thus, solving the equations in the Keplerian frame results in

a potential speedup corresponding to the maximum Keplerian mach number (MK ;

equation 1.11) over the simulation domain. Orbital advection is an operator-split

method in which the equations of MHD are solved in the Keplerian frame followed

by a remap, or advection, step in which the Keplerian frame is mapped back onto

the initial Eulerian grid. This section will describe an implementation of orbital

advection for use in simulating global accretion disks utilizing the Athena algorithm
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in cylindrical geometry. The use of orbital advection and the typically order of

magnitude speedup that it facilitates has allowed the exploration of accretion disk

turbulence in global models at resolutions that were previously computationally

inaccessible.

4.2 Derivation and Implementation

A necessary first step in developing orbital advection is to define the La-

grangian frame which is taken to be the frame induced by the rotation profile ΩL(R).

In what follows, it will be assumed that the Lagrangian frame is the Keplerian frame,

i.e. ΩL = ΩK (equation 1.8), and that the disk is unstratified. It is worth noting that

the actual implementation is far more flexible than suggested by this assumption

and that any user-specified rotation profile is admissible so long as it depends solely

on the cylindrical radius. In the case of stratified disks ΩL(R) = ΩK(R, z = 0), and

the residual gravitational force and vertical gravity are taken into account.

We begin by noting that the equations of MHD are nearly linear in velocity

and further, the Keplerian velocity is solenoidal. These factors suggest decomposing

the velocity into its Keplerian component and remaining perturbation as in equa-

tion 1.30. Inserting this decomposition into the isothermal MHD equations and

simplifying results in

∂ρ

∂t
+ ∇·(ρv′) + ΩK

∂ρ

∂φ
= 0 (4.1)

∂(ρv′)

∂t
+ ∇·(ρv′v′ −BB + P ∗I) + ΩK

∂(ρv′)

∂φ
= Fc (4.2)

∂B

∂t
−∇× ǫ′ −∇× ǫK = 0, (4.3)
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where ǫ′ = v′×B is the perturbation EMF and ǫK = vK ×B is the Keplerian EMF.

The non-inertial forces associated with the Keplerian frame are given by Fc and

defined as

Fc = 2ΩKρv′

φR̂ + ΩK(q − 2)ρv′

Rφ̂, (4.4)

where q is the shear parameter (equation 2.27) and may, in general, have radial

dependence. The assumption of Keplerian rotation results in the cancellation of

the centrifugal force associated with the rotating frame and the radial gravitational

force. Equation 4.4 includes both the Coriolis force associated with the Keplerian

frame and centrifugal force associated with the perturbation velocity.

The structure of this system is suggestive, in that each of the initial conserva-

tion laws is now in the form of a conservation law with a flux set by the perturbation

velocity, v′, and an additional linear advection term. The induction equation is mod-

ified in an analogous manner, with the evolution of the magnetic field coming from

the EMF in the rotating frame and a Keplerian EMF. To solve the resulting system

numerically, we consider an operator-split method that decomposes the equations

into a system of linear advection equations and an MHD system (with Coriolis and

centrifugal source terms) with a characteristic velocity given by v′. The advection

system is given by

∂ρ

∂t
+ ΩK

∂ρ

∂φ
= 0 (4.5)

∂(ρv′)

∂t
+ ΩK

∂(ρv′)

∂φ
= 0 (4.6)

∂B

∂t
−∇× ǫK = 0, (4.7)
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while the MHD system is given by

∂ρ

∂t
+ ∇·(ρv′) = 0 (4.8)

∂(ρv′)

∂t
+ ∇·(ρv′v′ −BB + P ∗I) = Fc (4.9)

∂B

∂t
−∇× ǫ′ = 0. (4.10)

Prior use of orbital advection focused on either local or global hydrodynamic

disks, or local MHD disks in the context of the Zeus algorithm. Extending the use of

orbital advection to conservative second-order algorithms like Athena requires care.

When solving the advection system it is necessary to ensure that the algorithm is

conservative and preserves the solenoidal constraint of the magnetic field. Further,

introducing new source terms into the equations of MHD requires a treatment that is

second-order accurate and includes the geometric source terms already present. This

is done through an extension of the method described by Stone & Gardiner (2010),

an orbital advection algorithm for use with shearing box simulations in Athena.

4.2.1 Splitting Methodology and Timestep Constraint

The implementation that will be described here uses Godunov splitting, in

which the equations are first evolved for ∆t via the advection step and the results

are used as the initial conditions to evolve the MHD system in the Keplerian frame

for ∆t. At first glance, this is problematic as the temporal order of accuracy of

the Athena algorithm is second-order whereas Godunov splitting is formally only

first-order. This can be rectified by using Strang splitting, in which the advection

system is evolved for ∆t/2, followed by a full ∆t update of the MHD system, and
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finalized with another ∆t/2 update from the advection system. Given the small cost

of solving the advection system compared to the expensive Riemann solvers used

twice every timestep for each cell in the MHD system, Strang splitting performs

almost as well as Godunov splitting. In practice, however, there appears to be little

benefit to using Strang splitting as the coefficient associated with the first-order

error of the Godunov splitting is so small.

To define the timestep constraint associated with the full algorithm we begin

by considering the timestep limitations of the individual systems. The MHD system

is governed by the standard CFL condition, however in this case it is the CFL

condition associated with the perturbed velocity v′ which will be considerably more

lenient. The advection system, made up of a series of linear advection equations,

has no associated timestep constraint as there is a simple analytic solution. While

it is indeed true that the timestep constraint of the split method is given simply

by the CFL condition associated with the perturbed velocity v′, this is not a direct

consequence. The constraint of splitting the equations must be taken into account,

although as will be demonstrated the CFL condition remains the dominant timestep

constraint.

As pointed out by Masset (2000) there is a timestep constraint associated

with the shear itself. This can be derived by considering two radially adjacent

cells, centered at Ri and Ri+1 = Ri + ∆R, and the action of the advection system

upon them. The timestep must be constrained so that the shear in the Lagrangian

frame will not disconnect two radially adjacent cells. This ensures that the physical

domain of dependence, i.e. the backwards “light”-cone, does not become disjoint
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from the numerical domain of dependence, i.e. the discretized grid values used in

the numerical update. Assuming uniform grid spacing this can be written formally

as

[ΩK(Ri) − ΩK(Ri+1)] ∆t ≤ ∆φ

2
(4.11)

where this must be true for all indices i. This can be seen as a simultaneous con-

straint on both the radial resolution and the shear parameter as coarse radial reso-

lution and large values of the shear parameter would allow this condition to be vi-

olated. Using the estimate ∆t ≤ 0.5R∆φ/cs a sufficient condition for equation 4.11

to be satisfied is for the following to hold over the entire simulation domain

H

∆R
≥

√
2q, (4.12)

where, in general, the scale height (H; equation 1.10) and the shear parameter have

radial dependence. For the case of a Newtonian disk, q = 3/2 and the condition

becomes

H

∆R
≥ 2.12. (4.13)

This condition is quite lenient as having radial resolution coarser than this is unlikely

to be sufficient to adequately resolve turbulent structure.

4.2.2 Advection System

Solving the advection system, equations 4.5 through 4.7, is done in the manner

of Stone & Gardiner (2010). The conserved quantities, mass and momentum, are

updated utilizing an interface flux and the magnetic field is updated consistent

with CT using the Keplerian EMF, ǫK . The evolution equations are essentially one
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dimensional, as the solution of the linear advection equation is merely an azimuthal

advance of the initial data by ΩK∆t/∆φ grid cells. In the case that this quantity is an

integer, a simple cyclic permutation of the grid cells would be sufficient to solve the

evolution equations. In general this will not be the case and a reconstruction of the

azimuthal profiles of the quantities is necessary. This is done utilizing a third-order

piecewise-parabolic spatial reconstruction used in the Athena algorithm, specifically

the reconstruction described in (Colella & Sekora, 2008).

Given the one dimensional nature of the evolution equations, for simplicity,

the update can be defined at one ring of fixed radius and height. As a matter of

notation, we define the azimuthal reconstruction of a conserved quantity q at fixed

indices i and k, where these indices will be suppressed, as q̂(φ). The flux at each

azimuthal interface is defined as the upstream integral in the manner

fq,j−1/2 =

∫ φj−1/2

φj−1/2−ΩK∆t

q̂dφ. (4.14)

In general, the domain of dependence, φj−1/2 −ΩK∆t, will contain a number of full

grid cells as well as a fractional region of a grid cell. For cells fully contained within

the domain of dependence the volume-average is simply added to the flux; integra-

tion of the reconstructed profile is only necessary for cells that straddle the domain

of dependence. With these interface fluxes calculated the conserved quantities can

be updated in a conservative manner using equation 2.3.

Evolving the magnetic fields at each interface is done consistent with CT based

on the Keplerian EMF, ǫK = vKBzR̂ − vKBRẑ. At each edge an appropriate time-

advanced EMF is calculated using an upstream integral similar to the calculation
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of the flux. After reconstructing the interface magnetic fields, B̂R(Ri−1/2, φ, zk) and

B̂z(Ri, φ, zk−1/2), the edge-centered Keplerian EMF is (suppressing the subscript K)

ǫ
n+1/2
R,i,j−1/2,k−1/2 = vK(Ri)

∫ φj−1/2

φj−1/2−ΩK∆t

B̂z(Ri, φ, zk−1/2)dφ (4.15)

ǫ
n+1/2
z,i−1/2,j−1/2,k = −vK(Ri−1/2)

∫ φj−1/2

φj−1/2−ΩK∆t

B̂R(Ri−1/2, φ, zk)dφ. (4.16)

These edge-centered EMFs are then used to update the interface fields in the stan-

dard manner of CT described in Chapter 2, save for the addition of appropriate

geometric scaling terms to account for cylindrical geometry.

Ensuring this implementation of orbital advection is capable of parallelization

is paramount, as the improved performance would provide little benefit restricted to

only one processor. Parallelization is accomplished in the standard manner, where

the spatial domain is decomposed into tiles and each tile is assigned to a particular

processor. Ensuring the proper evolution of the system is accomplished through the

use of “ghost zones”, where variables from spatially-adjacent tiles are attached to

the processor’s computational domain. This is a standard practice in parallelized

codes, however the use of orbital advection requires a larger number of ghost zones to

account for the potentially large azimuthal upstream domain. This requires, where

Ngφ is the number of ghost cells in the azimuthal domain for a given tile, that

Ngφ ≥ ΩK∆t

∆φ
, (4.17)

hold over the entire tile. It is inefficient to reallocate memory for ghost zones at

every timestep, so instead a bound on each MPI tile is calculated at the beginning

of the simulation and used for the duration of the run. Using the fact that the
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timestep is bounded by the azimuthal sound-crossing time for a grid cell allows

Ngφ = ⌈max
R

(C0MK)⌉ + 1, (4.18)

the maximum Keplerian Mach number over the given tile. It is worth noting that

for very thin disks, where H/R ≪ 1, the required number of ghost zones would

be very large and require a great deal of memory. In this case using dynamic

memory allocation to only gather needed data from neighboring MPI tiles may

become necessary. This completes the description of the solution of the advection

system, and we now turn our attention to the second operator in the algorithm.

4.2.3 Non-Inertial MHD System

Solving the equations of MHD in the non-inertial frame proceeds in a manner

quite similar to the standard MHD integrator save for three points: the radial

gravitational force is removed1; the perturbation velocity, v′, is used instead of the

standard Eulerian velocity; and source terms associated with the rotating frame

must be included. Transitioning to the perturbation velocity is a simple matter of

passing only the perturbed velocity to the MHD integrator. Including the source

terms properly, however, requires greater care.

The rotating frame only introduces new source terms to the azimuthal and

radial momentum equations of MHD, equations 2.24 and 2.25 in cylindrical coordi-

nates. Defining m = ρvR and n = ρvφ while letting fm and fn correspond to the

1Note, that this is under the assumptions of this section, namely that we are in the Keplerian

frame. In practice, the radial gravitational force is modified to subtract the centrifugal force

associated with the rotating frame.
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appropriately scaled sum of tensor derivatives results in the evolution equations for

the planar momenta becoming

∂m

∂t
+ fm = 2ΩKn +

n2

ρR
+

P ∗ − B2
φ

R
, (4.19)

∂n

∂t
+ fn = ΩK(q − 2)m. (4.20)

Properly including source terms into the predictor-corrector formalism of Athena

can be difficult due to the numerous places within the algorithm where source terms

must be applied. Source term corrections must be applied to the interface states,

when evolving from tn to tn+1/2, and when using the time-centered fluxes to compute

the final evolution from tn to tn+1. Save for the last case, applying the source terms

is done at first-order accuracy using simple forward Euler mimicking the treatment

of source terms by Stone & Gardiner (2010) and Skinner & Ostriker (2010).

The full timestep update, corresponding to equation 2.23, requires second-

order temporal accuracy. Skinner & Ostriker (2010) treat the geometric source term

in equation 2.24 using the time-centered source terms requiring the time-centered

value of the azimuthal velocity, itself not subject to source terms. The coupled

nature of equations 4.19 and 4.20 requires a unified approach. Stone & Gardiner

(2010) apply the Cartesian non-inertial source terms, both linear in m and n, using

the Crank-Nicholson method. The quadratic dependence on n in equation 4.19

makes this approach unwieldy. Instead, equations 4.19 and 4.20 are jointly evolved

using a two-step Runge-Kutta method. This is a predictor-corrector method, where

a ∆t forward Euler advance is the predictor, and the trapezoidal method utilizing the

arithmetic average of the initial data and predicted value is used to correct. While
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this does not explicitly conserve the energy of epicyclic oscillations in a stress-free

medium in the manner of Crank-Nicholson, as pointed out by Stone & Gardiner

(2010) this is relatively unimportant in the context of MHD as epicyclic oscillations

are unstable.

4.3 Tests of Orbital Advection

The bulk of the tests discussed here are reproductions of tests used by Skinner & Ostriker

(2010) to validate the cylindrical Athena algorithm. We begin by presenting a

force-balance problem to demonstrate the formal order of accuracy of the method.

Next, the advection of a magnetic field loop in cylindrical geometry is presented to

demonstrate the accuracy of the constrained transport implemented in the orbital

advection module. Finally, we present three somewhat more qualitative tests and

compare both the results and speed with the standard cylindrical integrator. These

qualitative tests are of particular interest in that they all deal with the stability

of rotating disks. The first is a study of the Rayleigh stability criterion where we

perturb uniform hydrodynamic disks (with varying values of q) and test that the

Rayleigh criterion (stability when q < 2) is respected. Finally, we present two stud-

ies of the MRI in accretion disks. We consider the evolution and saturation of the

MRI in both a uniform, unstratified Newtonian disk and an unstratified disk in

equilibrium in a psuedo-Newtonian potential.
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4.3.1 Force Balance

The first test we consider is a static force balance problem in MHD. We begin

by noting that the purely azimuthal field,

Bφ =
B0

R
, (4.21)

is such that the magnetic pressure and tension forces balance. We construct a

uniform (ρ0 = 1) disk rotating as a solid body, with potential

Φ =
(Ω0R)2

2
, (4.22)

where Ω0 = 2π and introduce a uniform vertical velocity (vz = 0.1). The resulting

system is stationary, and as such the analytic solution is merely the initial condition.

The magnetic field is initialized with B0 = 1, and the isothermal sound speed is

cs = 0.1. The physical domain of the simulation is (R, φ, z) ∈ [1, 2] × [0, π] × [0, 1]

and is evolved until t = 10.

We define the L1 error of a physical quantity q by,

L1(q) = Σi,j,k|qi,j,k(t = 10) − qi,j,k(t = 0)|. (4.23)

The RMS error is the Euclidean norm of the vector of L1 errors for each physical

quantity. The goal of this test is to verify that the algorithm converges at second

order, in other words that by doubling resolution the RMS error will decrease by

a factor of four. The simulations are run with increasing resolutions of the form

NR = Nφ = N and Nz = N/4, where N ∈ {16, 32, 64, 128, 256}. The results are

given in Figure 4.1 along with results using the cylindrical integrator kindly provided
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by Aaron Skinner. This verifies that convergence is achieved at the expected order

and that the rate of convergence and accuracy is comparable to that of the cylindrical

integrator alone.

4.3.2 Field Loop Advection

To test that the implementation of the constrained transport update to the

magnetic field used in the orbital advection update has been correctly modified for

cylindrical geometry, we consider the advection of a weak field loop. The physical

domain is given by (R, φ, z) ∈ [1, 2]× [−2/3, 2/3]× [0, 1] using a resolution of NR =

Nφ = Nz = 128. The simulation is initialized with a uniform density (ρ0 = 1),

a solid-body rotation profile (vφ = Ω0R), and a uniform vz = 1. The simulation

is run for two orbits, where Ω0 = 4/3 so that Porb = 1. The equation of state is

given by setting the isothermal sound speed, cs = 1. Note that this problem is

not rotationally dominated, the timestep constraint is given by the uniform vertical

velocity. The magnetic field is defined via a magnetic vector potential

Az = ×















A0(a0 − r) : r ≤ a0,

0 : r > a0,















(4.24)

with AR = Aφ = 0, a0 = 0.3, and r representing the distance from the center

of the simulation domain. To ensure that the field loop is passively advected, the

magnetic pressure of the field loop is constrained to be much smaller than the

ambient gas pressure by setting A0 = 10−3. This formulation is identical to that

used by Skinner & Ostriker (2010).
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A comparison of the results is given in Table 4.1. The L1 errors in each of

the physical quantities are presented, i.e. L1(q) = Σ|q(t = 2) − q(t = 0)|, and

the RMS error is given by the Euclidean norm of the individual L1 errors. As

this is fundamentally an advection problem, it is unsurprising that in each category

orbital advection performs either comparably or superior to the standard cylindrical

integrator. It is also worth noting that since the problem presented here is not a

smooth flow (due to the discontinuous magnetic field), the RMS error does not

converge at second order; the convergence is first order for both the cylindrical

integrator and orbital advection. The next comparison is based on the dissipation

of magnetic energy, the evolution of < B2/2 > is plotted in Figure 4.2. After two

orbits the simulation run using the cylindrical integrator has dissipated 6.18% of

its initial magnetic energy in comparison to the orbital advection run which has

dissipated 6.92%. While the orbital advection algorithm is slightly more dissipative,

the results are comparable.

4.3.3 Rayleigh Stability Criterion

Here we consider differentially rotating systems with Ω(R) = Ω0R
−q. Rayleigh’s

criterion states that systems of this form will be stable to small axisymmetric per-

turbations for q < 2 and unstable otherwise. Simulations of differentially rotating

systems at the cusp of stability are used to demonstrate that the momentum source

terms are being correctly implemented. To this end, the values of q considered are,

q ∈ {1.95, 1.99, 2.01, 2.05}, using both orbital advection and the standard cylindrical
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Figure 4.1: Convergence of RMS error of an MHD force balance problem with
increasing resolution.
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Figure 4.2: Comparison of the dissipation of magnetic energy (scaled to unity at
t = 0) using the standard cylindrical integrator (red) and orbital advection (blue).
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Method L1(ρ) L1(MR) L1(Mφ) L1(Mz) L1(BR) L1(Bφ) L1(Bz) RMS Error

Orbital Advection 1.57 × 10−6 1.22 × 10−7 1.46 × 10−7 1.57 × 10−6 9.35 × 10−6 5.97 × 10−6 6.18 × 10−18 4.53 × 10−5

Cylindrical 1.67 × 10−6 1.21 × 10−7 3.37 × 10−6 1.67 × 10−6 8.38 × 10−6 7.07 × 10−6 1.78 × 10−16 4.69 × 10−5

Table 4.1: Comparison of the errors after two orbits in the field loop advection problem.
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integrator.

The physical domain simulated is given by (R, φ, z) ∈ [3, 7]×[0, π/2]×[−0.5, 0.5],

using a resolution of (NR, Nφ, Nz) = (128, 200, 32). The simulation is initialized us-

ing a constant density ρ0 = 200, with Ω0 = 2π, and an isothermal sound speed of

cs = 0.1 which results in a flow that is highly rotationally dominated. Note that

this is just a three-dimensional extension of the Rayleigh stability test presented

in Skinner & Ostriker (2010). As in Skinner & Ostriker (2010), the instability is

seeded using perturbations to the azimuthal velocity of the form, vφ = vK(1 + ∆),

where ∆ ∈ [−10−4, 10−4] and is uniformly distributed. The simulations are evolved

to t = 300; the number of cycles taken and the wall-time to complete each simulation

is given in Table 4.2.

Taking as an example the case q = 1.95, corresponding to a Newtonian disk,

the simulation without orbital advection takes approximately 24 times as long to

run and processes approximately the same number of cycles per minute. Even in

the case of an unstable disk, e.g. q = 2.05, where mass is driven off the grid there is

almost an order of magnitude performance increase.

To measure the instability of these systems, we consider a radial scaling of the

Reynolds stress normalized to the gas pressure given by

< RρvRv′
φ >

< RP >
=

∫

RρvR(vφ − vK)dV

c2
s

∫

RρdV
, (4.25)

where the integrals are performed over the entire domain. The time evolution of this

quantity for all simulations is shown in Figure 4.3. As discussed by (Skinner & Ostriker,

2010), this stress should remain very low, for q < 2, if the method is to be sufficiently
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q Cylindrical Integrator Orbital Advection
(Cycles : Wall-time) (Cycles : Wall-time)

q = 1.95 72.9 : 4.7h 3.2 : 11.7m
q = 1.99 69.9 : 4.6h 3.2 : 12m
q = 2.01 68.6 : 4.5h 4.5 : 17.4m
q = 2.05 65.4 : 4.9h 9.6 : 35.8m

Table 4.2: Comparison of the performance of the cylindrical integrator versus orbital
advection. Specifically shown are cycles (in thousands) and wall-time (in h[ours] and
m[inutes]). The simulations were run on Ranger using 64 processors and an MPI
topology of (TR, Tφ, Tz) = (8, 4, 2).

accurate that only physical, rather than numerical, effects are transporting angular

momentum. There is a clear difference in the evolution of the stress depending on

the shear parameter as expected. For q > 2 (unstable) we see that the scaled stress

grows by many orders of magnitude, whereas in the case of q < 2 (stable) we see

that the scaled stress remains fairly uniform. Even near the cusp of the stability

criterion, q = 1.99 and q = 2.01, orbital advection accurately discerns between

stability and instability while providing a significant performance boost.

4.3.4 Evolution and Saturation of the MRI in a Newtonian Disk

The first accretion disk test is done in the context of an unstratified disk in

a Newtonian potential. The model used for this test forms the basis of a suite

of simulations that will be analyzed in detail throughout the remainder of this

work. The simulation model is discussed in detail in the following chapter and

corresponds to run BzZ8 in that notation, and will merely be summarized here.

The disk is initially threaded with a sinusoidal vertical magnetic field such that

the total magnetic flux through the simulation domain is zero, and initialized with
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a constant density, a Keplerian rotation profile and small vertical and azimuthal

velocity perturbations. The Keplerian Mach number, MK = 20, at the inner edge

of the simulation domain and thus is the expected limitation on the performance

boost obtainable with orbital advection.

Figure 4.4 shows a comparison of the evolution of the volume-integral of αM

(equation 1.32) for simulations run with and without orbital advection. The linear

growth of the instability is precisely matched and the agreement remains strong

even into the strongly nonlinear regime. Finally, and perhaps most importantly, the

quantitative benefit of orbital advection is addressed. This is quantified through a

comparison of the timesteps used in the evolution of each simulation. The timesteps

are sampled ten times per orbit, and denoted ∆tC and ∆tF for the cylindrical and

orbital advection runs, respectively. The speedup is defined as

S(t) =
∆tF
∆tC

. (4.26)

The time dependance of the speedup is shown in Figure 4.4. The timestep associated

with orbital advection is significantly more volatile than without, as the timestep

is associated with turbulent quantities as opposed to the time-invariant Keplerian

rotation. In particular, the speedup drops significantly during the initial linear

growth of the MRI due to the impulsive accretion and larger magnetosonic speeds

associated with the exponential growth phase. Upon the saturation and breakup

into turbulence, the speedup increases again steadily and overall maintains an order

of magnitude increase in the allowable timestep.
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4.3.5 Evolution and Saturation of the MRI in a Pseudo-Newtonian

Disk

The next model considered is that of an unstratified accretion disk about

a non-rotating black hole, and as such we use the psuedo-Newtonian potential of

Paczynski and Witta given by,

Φ =
−1

R − 2Rg
. (4.27)

In the simulation units are normalized so that the gravitational radius, Rg,

is unity. As in the Newtonian disk model, a system that is in hydrodynamic equi-

librium is used. To this end, a disk with a gaussian surface density profile given

by,

ρ = ρ0 exp

(

−(R − R0)
2

2L2
R

)

, (4.28)

is used. The radial dependence of this density profile leads to radial pressure forces

which must be balanced to construct a disk in equilibrium. To this end a non-

Keplerian velocity profile, uφ, is constructed to balance out the pressure forces.

Solving the radial force-balance equation yields,

u2
φ

R
=

1

(R − 2Rg)2
− c2

s(R − R0)

L2
R

. (4.29)

The simulation is initialized using ρ0 = 1, LR = 4, R0 = 12, and cs = 0.05.

The radial profiles of the density, uφ, and vK are given in Figure 4.5. In terms of

(R, φ, z) the simulation domain is given by [4, 19]×[0, π/4]×[−2, 2] with a resolution

of (NR, Nφ, Nz) = (128,64,64). The initial magnetic field is given by,

Bz =
A0Mf(R; R0, LR)

R
sin

(

R − R0

LR

)

, (4.30)
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where A0 is a constant and Mf is a smooth mollifier function symmetric about R0

that is unity at R = R0 and zero for |R − R0| > LR. Specifically,

Mf (x; 0, 1) =















exp
(

−x2

1−x2

)

: |x| < 1

0 : |x| ≥ 1















. (4.31)

The vertical field is scaled by A0/R so that < Bz >= 0 and A0 is defined such that

β = 500. Boundary conditions analogous to the simulations presented in Chapter 3

are used.

The instability is seeded using azimuthal velocity perturbations of the form

vφ = vK [1 + ∆Mf (R; R0, LR) cos(φ) cos(z/π)], (4.32)

where ∆ = 0.01. A comparison of the volume-integral of the Maxwell stress, MRφ,

with and without orbital advection is given in Figure 4.6. Again, the agreement

between the two is excellent, reproducing the double-peaked behavior of the initial

transient almost precisely. The timestep evolution is compared in Figure 4.6, and

shows a consistent boost in the allowable timestep. The enhancement of orbital

advection is somewhat reduced in the psuedo-Newtonian case due to the existence

of an ISCO, inside of which material will plunge inwards generally in excess of the

sound speed.

4.4 Conclusion

The addition of the orbital advection algorithm to the cylindrical integrator

leads to solutions with similar or better accuracy and an order of magnitude in-

crease in performance. The combination of orbital advection with the cutting edge
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algorithm at the heart of Athena provides us with a new tool with which to explore

accretion disk turbulence at unprecedented resolutions.

The significant cost associated with global models makes a rigorous treatment

of resolution difficult. Often this leads to global simulations simply being run at

the highest resolution affordable without appropriate consideration being paid to

ensuring that the astrophysical implications of these simulations are robust and

not strongly dependent on resolution. This has resulted in the impression, e.g.

Hawley et al. (2011), that the vast majority of global simulations presented in the

literature are unresolved or at best, under-resolved. In particular, Hawley et al.

(2011) point to only one simulation (Noble et al., 2010) with adequate poloidal

resolution and remark that sufficient azimuthal resolution is universally absent. In-

creasing azimuthal resolution is particularly costly due to the combination of more

grid cells and the reduction of the Keplerian timestep. Because of this and the

importance of resolving the vertical magnetic field, due to its association with the

fastest growing MRI modes, the azimuthal resolution of global simulations has often

been somewhat poor.

Orbital advection not only provides significant performance benefits, but be-

cause of its treatment of the MHD equations in the Keplerian frame it is amenable

to the use of isotropic resolutions, meaning a grid with an aspect ratio of unity. The

following chapter makes use of the model introduced in Section 4.3.4 as the basis

of a convergence study utilizing a suite of simulations of varying initial magnetic

field topologies and resolutions to diagnose the importance of resolution and provide

metrics to diagnose converged MRI-driven accretion disk turbulence.
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Figure 4.3: Evolution of the scaled stress (equation 4.25) using the cylindrical inte-
grator (red) and orbital advection (blue).
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Figure 4.4: (Top) Comparison of disk evolution with and without orbital advection.
(Bottom) Speedup using orbital advection.
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Chapter 5

Convergence of Global Models

5.1 Introduction

Numerical simulations are necessary to study accretion disk turbulence, but

they are no panacea. Choices ones makes regarding the solution of the relevant

equations and initial conditions can leave unintended and unphysical artifacts in

the results. Understanding how to disentangle numerical artifacts from genuine

physical phenomenon is vital to constructing simulations that can make reliable

predictions. In particular, the discretization of the physical simulation domain, or

resolution, will be of interest to us here. Concern was raised when it was discov-

ered by Fromang & Papaloizou (2007) that local unstratified simulations without

explicit dissipation, and without a net magnetic flux threading the domain, result

in angular momentum transport that vanishes with increasing resolution. This lack

of convergence is not robust as the inclusion of stratification, explicit dissipation, or

a net magnetic field lead to a converged value of momentum transport (Davis et al.

2010, Fromang 2010). Further, Sorathia et al. (2010) (Chapter 3) observe that, to

the extent that local models are predicated on being representative of a small patch

of a global disk, the constraint of enforcing a zero magnetic flux over a small phys-

ical domain is likely unphysical, albeit an important theoretical pathology. These

results highlight the importance of understanding the sometimes delicate nature of
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numerical convergence when dealing with simulations of turbulence.

The primary goal of this chapter is to study accretion disk turbulence induced

by a variety of different initial field topologies in the context of global simulations

of higher resolution than have previously been considered and to ascertain the im-

portance of resolution. To reduce the significant expense associated with global,

three-dimensional MHD simulations we use an implementation of orbital advection

(Masset 2000, Johnson et al. 2008), which results in an order of magnitude speed-

up for the simulations considered here. The implementation of this algorithm has

been described in Chapter 4. These simulations are meant to be comparable with

the surveys performed for local models by Hawley et al. (1995) and for global by

Hawley (2001). As we will see, global simulations analogous to the local models

considered by Fromang & Papaloizou (2007) do converge to non-zero angular mo-

mentum transport. Additionally, we consider the resolution requirements to attain

convergence as well as explore the question of what convergence means in relation

to non-dissipative simulations of turbulent systems.

The plan of this chapter is as follows. Sections §5.2.1 and §5.2.2 describes

the simulations and diagnostics used in this and the following chapter. Section

§5.2.3 compares the disk evolution under the influence of varying initial magnetic

field topologies and discusses this evolution in the context of reduced anomalous

viscosity models. Section §5.3 explores the use of a selection of convergence metrics:

physical metrics (Section §5.3.1); numerical metrics (Section §5.3.2); and spectral

metrics (Section §5.3.3). Section §5.3.4 presents results suggesting that the magnetic

tilt angle is a robust indicator of convergence that is invariant of initial magnetic

114



topology. A discussion of the convergence study with an emphasis on a comparison

with the recent work of Hawley et al. (2011) is presented along with concluding

remarks in §5.3.5.

5.2 Methodology and Diagnostics

5.2.1 Simulations

The work presented here is based on a series of simulations exploring the

behavior of global accretion disks under a variety of resolutions and initial seed

magnetic fields. Our simulations model an unstratified, isothermal, relatively cold

Keplerian disk in a Newtonian potential. These simulations are run in the context

of 3-d ideal isothermal magnetohydrodynamics; the equations are integrated using

the cylindrical coordinate extension (Skinner & Ostriker, 2010) to the Athena code

package (Stone et al., 2008). The equations are solved in cylindrical coordinates,

denoted by (R, φ, z), with r =
√

R2 + z2 referring to the standard spherical radius.

The accretion disks we evolve are Newtonian and unstratified, as in Armitage (1998)

and Hawley (2001), meaning that the gravitational potential is independent of the

z coordinate and given by Φ = −1/R. Neglecting the vertical dependence of the

gravitational potential physically means that our simulations are meant to model

the midplane of a realistic disk. This eliminates the effects of magnetic buoyancy

and allows a more pure probe of MRI-driven phenomena. Numerically, it allows us

to remove the vertical variation of zones per scale-height without resorting to the

use of a more complex graded mesh with poorly understood grid-scale dissipation.
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As one of the goals of this study is to explore issues of convergence, a word

about resolution is in order. We classify simulations based on the number of zones

per vertical scale height, specifically H0/∆z. Given a choice of zones per scale height,

the resolution is constrained by the condition that the aspect ratio is 1 : 1 : 1 at

the fiducial radius, R0 = 2. This results in the condition ∆z = ∆R ≈ R0∆φ. The

ability to explore simulations with an aspect ratio of unity is a particular benefit

of orbital advection, detailed in the preceding chapter, and stands in contrast to

the vast majority of the current literature on simulations of global accretion disks.

The expense of running these simulations using the standard cylindrical integrator

would be extreme, for instance the highest resolution simulation considered would

take well over 4M CPU-hours. The use of orbital advection allows the exploration

of resolutions whose expense would otherwise be computationally prohibitive.

To give a sense of the simulations and their resolution, Figure 5.1 shows two

still images of the MRI-driven turbulence in the saturated state. The first, Fig-

ure 5.1, is a volume rendering of the logarithmic magnetic pressure in a simulation

with a vertical resolution of 64 cells per vertical scale height, denoted simulation

BzZ64W in the terminology introduced below. The second, Figure 5.1, shows the

same variable in the z = 0 plane at the same timestep from a simulation with a

vertical resolution of 32 cells per vertical scale height, denoted simulation BzZ32.

In cylindrical coordinates the physical domain spans (R, φ, z) ∈ [1, 4]×[0, 2π]×

[−2H0, 2H0], where H0 = 0.2, with the exception of two reduced runs that use a

smaller azimuthal domain. The sound speed is set so that, H(R0) = H0, where
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Figure 5.1: Still images of logarithmic magnetic pressure at orbit 75. Both im-
ages use the same color table. (Top) Volume rendering from simulation BzZ64W.
(Bottom) Plane z = 0, from simulation BzZ32.
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R0 = 2 and H(R) is given by equation 1.10 and the Keplerian angular velocity

takes its Newtonian value ΩK = R−1.5.

The hydrodynamic variables are initialized with a constant density, ρ = 100,

and with velocities initialized as

vR(R, φ, z) = 0, (5.1)

vφ(R, φ, z) = RΩK(1 + δ), (5.2)

vz(R, φ, z) = δ, (5.3)

where δ is a uniformly-distributed random perturbation such that δ ∈ [−10−2, 10−2].

To explore the effects of varying initial seed topologies, we consider here three

distinct initial field configurations; a zero net flux vertical field (BzZ), a net-flux

vertical field (BzN), and a net-flux azimuthal field (BpN). For simplicity we will

often distinguish between the zero net flux (ZF) simulations and the net-flux sim-

ulations (NF). For the net-flux vertical field runs (BzN), the initial magnetic field

is set such that the fastest-growing unstable mode of the MRI is equal to the fidu-

cial scale height, i.e. λMRI ≡ H(R0), with λMRI given by equation 1.40. In our

lowest-resolution runs, this gives a fastest growing mode that is marginally resolved,

λMRI/∆z = 8. For the zero-net flux runs (BzZ), this vertical field configuration is

modulated by a sinusoidal function with a wavelength equal to the effective scale

height to ensure that net magnetic flux threading the simulation domain is zero.

We do not explore the use of alternative ZF field topologies, but note that as the

wavelength is increased we expect the behavior of the simulations to approach that

of the BzN simulations. The toroidal field runs (BpN) are constructed to ensure
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that the critical azimuthal wavenumber of the toroidal MRI, mc = RΩ/vA (where

vA = |B|/√ρ), is constant in radius with a value of 20. Finally, the field strengths

are tapered to zero close to the radial boundaries of the calculation. These choices

of seed fields are not meant to be representative of what may be present in an as-

trophysical accretion disk, but are chosen to allow controlled experiments to study

MRI-driven disk turbulence.

Formally, the fields for the three cases are given by

Bz(R) = A0
I(R)R∗ΩK(R∗)

R
sin

[

2π(R − R0)

H0

]

(BzZ), (5.4)

Bz(R) = ANS(R)ΩK(R) (BzN), (5.5)

Bφ(R) =
S(R)

√

ρ/R

Mc
(BpN). (5.6)

Each initial field topology is defined by a single magnetic field component with

the remaining components identically zero throughout the domain. In the above

definitions, A0 and AN represent scaling terms, R∗ is a piecewise constant function

of radius that assumes the central radial value of each sinusoid, and Mc = 20. The

function I(R) is an indicator function on the domain R ∈ [1.2, 3.8]. The function

S(R) is a mollifier function, defined as in equation 4.31, with value unity on the

domain R ∈ [1.5, 3.5], zero on the complement of the domain R ∈ [1.5−H0, 3.5+H0],

and smoothly interpolates between the two domains. Figure 5.2 shows the resulting

radial profiles of the initial magnetic field strengths.

As the simulations described here are unstratified, periodic boundary con-

ditions are appropriate in the azimuthal and vertical direction. Radial boundary
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conditions are, as always, more difficult to implement appropriately. The boundary

conditions used in the simulations presented here are particularly simple: the values

of physical quantities in the ghost zones are simply copied over from the last phys-

ical zone. There are two exceptions to this: the radial velocity and the azimuthal

velocity. The radial velocity uses what we refer to as an enforced diode condition to

ensure that material does not enter the simulation. Formally, this means that if the

radial velocity in the last physical zone is directed outwards then it is copied into the

ghost values, otherwise the radial velocities in the ghost zone are set to zero. For the

azimuthal velocity a Dirichlet boundary condition is used in which the ghost zone

values are set to the appropriate Keplerian value. While some of the simulations

described here are initialized to have a zero-net magnetic field, the boundary condi-

tions are not constructed to enforce this flux constraint during the natural evolution

of the disk. To ensure that these choices of radial boundary condition do not affect

the physical behavior of the simulations several potential boundary conditions were

considered. These include two choices for hydrodynamic variables and two choices

for the magnetic field variables. In addition to the simple copy with diode condition

for the hydrodynamic variables used, a variant in which the perturbed azimuthal

velocity (i.e., the azimuthal velocity in the local Keplerian frame) was held constant

in the ghost zones with an analogous diode condition. As an alternative the simple

copy of the magnetic field variables, an alternative in which the magnetic field in

the ghost zone was constrained to only have a divergence-free radial component was

tested. These choices result in four possible radial boundary conditions, and all

were tested to ensure that none resulted in an appreciable change in the evolution
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and behavior of the disk. It is worth noting that replicating a magnetic field con-

figuration from one cell to another in a curvilinear coordinate system will not, in

general, guarantee that it is divergence free. Indeed, the magnetic field in the ghost

zones will not necessarily solve the solenoidal constraint. However, the ghost zones

are necessary merely for the reconstruction of the magnetic field inside the physical

domain and the use of constrained transport will guarantee that the magnetic field

in the simulation domain will satisfy the solenoidal constraint.

The details of the suite of simulations are given below in Table 5.1. The simu-

lations are classified according to their initial field topology and resolution (defined

as H0/∆z). These simulations are run for a period of time measured by the orbital

period at the inner radial edge of the simulation. While the majority of the sim-

ulations presented use a full azimuthal domain and an aspect ratio of unity, extra

control runs were performed to study the importance of these choices. Wedge runs,

utilizing a reduced azimuthal domain of π/4, were run to assess the importance of

low-m modes and to access resolutions higher than were possible with the restric-

tive constraints of the other simulations. These simulations are denoted BzZ32W

and BzZ64W. In additional to using a truncated azimuthal domain, it is common in

the literature to use a reduced azimuthal resolution. To assess the importance of

azimuthal resolution, two runs (BzZ32R and BzZ32RR) were performed which halved

and quartered, respectively, the number of azimuthal grid cells used in run BzZ32

while maintaining the vertical and radial resolution. Also included in Table 5.1 are

a series of scalar metrics whose definitions are given in §5.2.2.
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Simulation Azimuthal Resolution Orbits < α >QSS < β >QSS T1/2

Range (NR, Nφ, Nz)

BzZ8 2π (120,480,32) 200 0.013 26.55 184.4
BzZ16 2π (240,960,64) 200 0.02 23.01 127.2
BzZ32 2π (480,1920,128) 200 0.018 27.67 116.1

BzZ32W π/4 (480,240,128) 100 0.023 23.35 N/A
BzZ64W π/4 (960,480,256) 100 0.024 20.40 90.0

BzZ32R 2π (480,960,128) 200 0.021 24.03 109.6
BzZ32RR 2π (480,480,128) 200 0.015 30.01 127.5

BzN8 2π (120,480,32) 200 0.058 8.18 20.0
BzN16 2π (240,960,64) 200 0.076 8.26 19.4

BpN8 2π (120,480,32) 200 0.055 6.37 56.2
BpN16 2π (240,960,64) 200 0.064 7.37 40.2
BpN32 2π (480,1920,128) 200 0.067 7.42 35.5

Table 5.1: Simulation Parameters
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5.2.2 Diagnostics

As turbulence involves fluctuating quantities in both space and time, diag-

nostics will invariably involve some combination of spatial and temporal averaging.

For simplicity, we define here the quantities we will use below. The most common

quantity is simple volume-averaging and for a variable X(R, φ, z, t) this is defined

as X̄(t) =< X > /|V |, where V represents the full simulation domain.

The fiducial timescale of these simulations is the orbital period at the inner

edge of the disk, Po = 2π, and for brevity simply designated as an orbit without

further qualification. Often we would like to compute scalar values of quantities that

are representative of a simulation as a whole. The initial growth of certain physical

quantities, particularly the stress and magnetic energy, is exponential and driven

by the linear phase of the MRI. These quantities reach a peak value and quickly

decrease as the linear phase of the MRI transitions into a fully turbulent state in

which there is significantly reduced secular variation. We will refer to this stage

as the quasi-steady state (QSS), which we define for simulations initialized with a

vertical field as between 50 orbits and the end of the simulation. Due to the slower

growth rate of the toroidal MRI we quantify the QSS as between 100 orbits and

the end of the simulation. Scalar representative values, like those in Table 5.1, are

denoted X̄QSS and are defined as the temporal average over the timeframe defined

as the QSS of the volume-average of the quantity.

The dynamics of accretion disk turbulence are of particular astrophysical in-

terest, due to the anisotropic structure of the resultant turbulent magnetic field and
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its ability to drive angular momentum radially outward. To study the efficacy of

angular momentum transport, many of our diagnostics will focus on the stress that

allows this transport to happen. This stress is of two types: the Reynolds stress,

TRφ = ρvRδvφ, and the Maxwell stress, MRφ = −BRBφ, with the Maxwell stress

generally dominating the Reynolds component. While these two quantities are of

the most direct physical relevance, it is common to scale the stress by the gas pres-

sure resulting in the diagnostics given by equations 1.31 and 1.32. Also of interest is

the strength of the magnetic field in relation to the thermal energy of the gas, given

by β = P/Pb, the ratio of gas and magnetic pressure. We define < α > and < β >

to refer to the volume-average of the numerator divided by the volume-average of

the denominator of these quantities. The quantity < X >QSS is defined in the same

manner as X̄QSS.

In an effort to study how well resolved the MRI is, we consider the following

diagnostics

Fz = |V |−1

∫

V

(λMRI ≥ 8∆z)dV, (5.7)

Fφ = |V |−1

∫

V

(λC ≥ 8R∆φ)dV, (5.8)

where in the above equations logical statements refer to indicator functions that

assume the value of unity or zero based on the truth or falsity of the statement.

The characteristic wavelength of the toroidal field, λC , is defined by equation 1.46

and is analogous to λMRI save for the use of the toroidal Alfven speed in place of the

vertical. These scaled integrals represent the fraction of the disk where the fastest-

growing modes of the vertical and critical toroidal modes of the MRI are resolvable,
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using the often employed 8-zone criterion. These are related to the quality factors,

first used by Noble et al. (2010), given as

Qz = λMRI/∆z, (5.9)

Qφ = λc/(R∆φ), (5.10)

where these values are in general functions of space and time. Use of the quality

factor as a diagnostic represents an important step in appreciating the numerical

resolvability of the MRI, but we feel that the resolvability fraction diagnostic we

employ is an even more stringent resolvability requirement.

It is well-known that the anisotropy of the magnetic field is key to angular

momentum transport, and indeed the correlation between the radial and azimuthal

component of the magnetic field is an important diagnostic of angular momentum

transport in disks. An alternative measure of the anisotropy, called the magnetic

tilt angle, was first discussed by Guan et al. (2009). This measure is defined as,

θB = arcsin(αMβ)/2. (5.11)

Physically, this can be thought of as an approximation to the angle between the

planar magnetic field and the azimuthal axis assuming a weak vertical magnetic

field. An estimate of the tilt-angle is derived as θB ≈ 15◦, in Guan et al. (2009),

by noting that all the local models considered satisfy the relationship αβ ≈ 1/2.

Strictly speaking, αM < α, and thus we expect this estimate to be an upper bound.

Studying the spectral structure of turbulent flows is often more natural than

alternative diagnostics in physical space. Our primary interest here will be studying
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the azimuthal structure of power spectra of physical quantities, in particular the

density and magnetic pressure. To this end, we begin by defining the subdomain

S = [R0 − 2H0, R0 + 2H0] × [0, 2π] × [−2H0, 2H0]. (5.12)

For simulations that do not model the full 2π radian azimuthal domain the subdo-

main definition is modified to include the full azimuthal range modeled. We then

consider, for a physical quantity X(R, φ, z), the azimuthal Fourier decomposition

X(R, m, z). Further, we define X(m) as the volume-weighted radial and vertical

mean over the subdomain S. This removes spatial transients, but to remove tem-

poral transients we also average between orbits 50 and 100, for simulations seeded

with a vertical field, and between orbits 100 and 150 for simulations seeded with a

toroidal field. We refer to this reduced temporal domain as RQSS. To ensure that

these results are not adversely affected by secular trends within the subdomain re-

lated to the evolution of the disk we scale, at each timestep, by < X >S , the volume

integral of the quantity over the subdomain. Formally,

X̂(m) =

〈

X(m)

< X >S

〉

RQSS

. (5.13)

To more directly study important azimuthal scales we will employ the transforma-

tion of the wavenumber, m, to an effective azimuthal wavevector given by

kφ =
m

2πR0
. (5.14)

One final tool we employ when studying the spectral structure of disk turbu-

lence is the use of a fiducial power spectra. To study the relative importance of

large-scale versus small-scale features, we consider a fiducial power spectrum given
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by, Pm = m−1. This fiducial spectra has the property that the inner and outer scales

are equally important to the total integrated power over the accessible wavenumbers.

We diagnose the dominant azimuthal scale by considering the location of the peak

value of the spectra defined in equation 5.13 scaled by this fiducial power spectrum,

namely mX̂(m).

The above formalism will be employed to study the structure of density and

magnetic energy, and while it is common to study the structure of stress in a similar

manner we choose a slight variant. Astrophysical interest in stress as a diagnostic is

based on its ability to drive radial angular momentum transport. We note, however,

that when projecting this quantity onto a basis of periodic functions all but the

m = 0 mode will correspond to an azimuthal average of zero. Instead, we choose to

analyze the structure of contributions to stress that result in net radial transport.

Formally, we define

α̃M(m) =

〈−BR(m)Bφ(m)

< P >S

〉

RQSS

. (5.15)

One of the goals of this work will be to explicitly compare local and global

models, towards this end we proceed in a similar fashion to Sorathia et al. (2010)

(Chapter 3) and decompose our global simulation into a set of subvolumes through

which we can calculate “local” statistics. This is accomplished by considering sub-

volume of the physical domain (R, φ, z) ∈ S and decomposing it into wedges of size

[H0, 2πH0, H0]. This yields, at each timestep, a set of 160 subvolumes in which rele-

vant physical quantities can be volume-averaged. To calculate statistics, we simply

take the mean, denoted [X](t), and when relevant, the standard deviation of these
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quantities at each timestep.

5.2.3 Evolution of Global Disks

Prior to a full discussion of the resolution dependance of the simulations that

will be presented in Section §5.3, we focus on the field topology dependance of

several fiducial runs. For this we choose the highest resolution simulation of each

field topology that was run for the full 200 orbits, these are: BzZ32, BzN16, and

BpN16. The most significant difference between global and local simulations is the

secular evolution of global simulations. Open boundary conditions allows mass to

be accreted off the grid and the total magnetic flux to evolve in a dynamical manner.

The development of radial structure of the mass profile adds radial pressure gradients

to the dynamics of the turbulence.

To provide a sense of the evolution, Figure 5.3, shows the temporal evolution

of several global quantities: the mass fraction, the volume integral of the mass in

the simulation scaled by the initial total amount of mass; the efficiency of angular

momentum transport, < αM >; and the dimensionless magnetic energy, < β−1 >.

Most striking in all of these figures is the significant accretion and field amplification

caused by the presence of a net magnetic field in the initial growth phase. Contrast-

ing this, is the comparatively similar behavior of these quantities in the QSS. In

this initial phase the net field runs exhibit magnetic fields with energies comparable

to and even in excess of the thermal energy of the disk and accretion efficiencies

an order of magnitude above those normally associated with zero-net field disks.
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Indeed, a majority of the mass is accreted during the initial growth phase.

The significant accretion of mass is in contrast to what one would expect from

a simple estimate of the viscous timescale, Tν = R2/ν, where the viscosity takes

the common form ν = αSScsH . Calculation of the viscous timescale at the fiducial

radius, R0 = 2, and converting to orbits yields Tν ≈ 63.6/αSS. Comparison with

the mass evolution (Figure 5.3, Top) and T1/2 (Table 5.1) suggests a value of αSS

considerably in excess of the value of α measured in the QSS (Table 5.1) or even

during the initial evolution (Figure 5.3, Middle). For instance, equating Tν and T1/2

suggests a value of αSS ≈ 3 for run BzN16 (< α >QSS= 0.076) and αSS ≈ 0.5 for

BzZ32 (< α >QSS= 0.018).

The viscous timescale is, of course, a crude estimate. Formally, it should

be valid only in the case of a radially localized mass distribution with a viscos-

ity exhibiting minimal radial dependance. Attempting to apply this estimate to

global disks of the type described here stretches the approximation far beyond its

area of applicability. Understanding the evolution of global disks in the context

of an anomalous viscosity model requires a more sophisticated treatment including

the radial structure. Towards this end, we compare our simulated disks with a 1-

dimensional reduced model for the time-evolution of the surface density Σ =
∫

ρdz

based upon the anomalous viscosity model (e.g., see Pringle 1981) and given by

equation 1.15.

We solve Eqn 1.15, with ν = αSScsH , using the values of α calculated from

the full simulation. We use the vertically and azimuthally averaged values of α,
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temporally spaced every tenth of an orbit, in place of αSS in the formulation of the

turbulent viscosity. We note that αSS and α are related by a factor of 3/
√

2. The ra-

dial dependance of the viscosity is important, as the evolution of the surface density

depends on its spatial derivatives. The early evolution of the disk is characterized

by small-scale structure in the stress that is likely to form an important contribution

to the evolution of the surface density, which itself exhibits weak spatial variability

during the initial phase of the evolution. The evolution equation is solved utilizing

a simple implicit, finite-differencing scheme. For simplicity, the boundary condi-

tions are set by the constraint that the mass profile agrees with the vertically and

azimuthally averaged mass in the full simulation at the inner and outer boundary.

Figure 5.4 compares the evolution predicted by the reduced model to that

obtained in the full MHD simulation. A comparison of the broad features of the

evolution, specifically the mass fraction, is given in Figure 5.4 (Top). In all cases

the reduced model accurately predicts the mass evolution of the disk. More de-

tail is given in Figure 5.4 (Bottom), in which the radial mass profile computed by

the reduced model is compared to that from the full simulation at orbit 75. The

overall features of the profile are captured, although we notice a larger discrepancy

than observed in the mass fraction. The observed discrepancy appears to be largely

caused by the limitations of the temporal discretization used in which values of α

from the simulation are calculated ten times every orbit. The initial growth of the

MRI induces fluctuations with significant variability in both space and time that are

not adequately captured by the temporal discretization. The model showed in Fig-

ure 5.4 must agree with the full simulation if the latter conserves mass and angular
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momentum in the limit as the temporal spacing of α from the simulation vanishes.

Indeed, taking as the initial condition the density profile after the saturation of the

turbulence and evolving this profile using the one-dimensional model and data from

the simulation removes much of the discrepancy.

While this section has focused on a formal comparison of our MHD simulations

with reduced models, these results may have more direct astrophysical implications.

The most direct way of determining α in real accretion disks is the analysis of dwarf

nova outbursts and X-ray transient outbursts. As pointed out by King et al. (2007),

these estimates suggest α ∼ 0.1 − 0.4 whereas numerical simulations (including

those presented here) typically obtain steady-state values of α that are an order of

magnitude smaller. In the light of our results, we note that an accretion disk which

has just entered an outburst state may well go through a period of field-growth

that resembles the early transients seen in our simulations. During these transients,

the effective value of α is substantially enhanced, and spatio-temporal gradients

in α further enhance the angular momentum transport. Thus, it is interesting to

conjecture that the large values of α inferred from outburst systems correspond to

these transient phenomena. These issues will be explored in a future publication.

5.3 Convergence of Global Disk Simulations

Standard tests of convergence rely on running simulations with increasing res-

olution while leaving the underlying physical problem unchanged. Convergence in

the case of turbulent non-explicitly-dissipative systems is inherently ill-defined for
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two reasons. The first is that when increasing resolution there will invariably be

minor differences in the seed perturbations that feed the instability1, and as a result

we cannot expect precise agreement between simulations. The second and more

fundamental reason is that in ideal MHD the dissipation scale is set by the grid

scale, and thus when increasing resolution we are not leaving the underlying phys-

ical problem unchanged. Further, changes in resolution alters the evolution of the

disk; changes in mass accretion and mass distribution results in a fundamentally

different disk. In light of these complexities, we will hereafter take the notion of

convergence to mean that an increase in resolution will leave relatively unchanged

spatially- and temporally-averaged measurements.

We consider three broad categories of convergence metrics: physical, numeri-

cal, and spectral. The physical metrics, αM and β, are perhaps the most natural and

directly physically relevant and therefore have the longest history of use as a diag-

nostic of accretion disk turbulence. However, as we will demonstrate these metrics

are often ambiguous and display non-monotonic resolution dependance. Numerical

metrics, the resolvability fractions and quality factors, directly measure how well

the linear MRI is resolved and were a focus of the convergence study described by

Hawley et al. (2011). The spectral metrics we employ study the azimuthal structure

of the turbulent flow, and specifically seek to identify the dominant azimuthal scale

and its dependance on resolution. We will demonstrate that all of these metrics

are useful diagnostics towards studying the nature of the turbulent flow in accretion

1This effect can be removed by initializing a simulation with perturbations defined by an explicit

power spectrum, however in the QSS power will be spread amongst all available modes regardless.
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disks, however as a convergence criterion the magnetic tilt angle appears unambigu-

ous and robust.

5.3.1 Physical Metrics

The simplest and most astrophysically relevant convergence criterion is accre-

tion efficacy as measured by the dimensionless stress αM . Figure 5.5 (Top) shows

the evolution of the Maxwell stress over the course of the simulation for all three

standard ZF models. As is expected, initial peaks in the stress associated with the

linear growth of the vertical MRI are resolution dependent. While the initial mag-

netic field is constructed so that the most unstable mode, λMRI , is resolvable in each

simulation there are other slower-growing unstable modes whose resolvability will

vary depending on the resolution of the simulation. The true test of convergence is

the behavior of the stress in the saturated quasi-steady state. The lowest resolution

simulation, BzZ8, exhibits < αM >QSS≈ 0.01, while both higher resolution simu-

lations exhibit a comparable stress to each other that is roughly 50% greater than

BzZ8.

While this fundamental criterion of convergence in stress is satisfied, other

diagnostics paint a more subtle picture. Figure 5.5 (Bottom) illustrates the evolution

of the scaled magnetic energy, β−1. Again, as expected, we see that the initial field

amplification is monotonic with resolution and dominated by the growth of the

toroidal magnetic field, however the saturation and transition into the fully non-

linear state is more complex. While BzZ32 peaks at a higher value due to the larger
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number of resolvable, unstable MRI modes the lower resolution simulations, BzZ8

and BzZ16, maintain a stronger magnetic field proportionally. These lower resolution

simulations also lack the steep drop-off in magnetic field energy often associated with

the saturation of the MRI. This may be a consequence of the inability to resolve

the parasitic instabilities associated with saturation of the linear MRI. Also of note,

is the late-time field growth associated with BzZ8. The nature of this growth is

unclear, but may be suggestive of a very low-frequency temporal behavior.

Our analysis of the physical metrics of models initialized with a seed field

possessing net flux proceeds in much the same way as our analysis of the ZF models.

As above, we begin by considering the time evolution of the global quantities, αM and

β−1. The results are shown in Figure 5.6 in the Top and Bottom panel respectively.

The evolution of the linear MRI displays a significant resolution dependence, as

would be expected, but in all cases the values of αM in the saturated state are

comparable for the same initial field topologies. Due to the significantly higher values

of αM in the net field simulations we see a corresponding significant increase in mass

loss of the disk (Table 5.1) compared to the ZF runs. Field amplification for the

runs initialized with a vertical field is monotonic with resolution. However, regarding

field amplification the net toroidal runs behave more analogously to the net-zero field

runs discussed above, in which lower-resolution simulations seem to exhibit greater

field amplification in the QSS. The presence of a net field, regardless of topology,

results in order of magnitude increases in the peak values of αM and β−1 compared

to the ZF simulations considered above. Insofar as angular momentum transport is
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concerned, there is only a weak dependance on resolution in the saturated state even

for the most poorly resolved simulations. The evidence from these global metrics

suggests that net-flux simulations converge more quickly, however we’ll see through

the consideration of the other metrics that the picture is more subtle.

Overall, we see that while the behavior of αM paints a simple picture and is

suggestive of convergence, the magnetic energy is far more volatile and does not

follow a clear pattern in its dependance on resolution. Further, as a convergence

criterion αM suffers from its dependance on initial field topology.

The use of orbital advection allows us a unique opportunity of exploring

isotropic resolutions in a cost-effective manner. Without orbital advection, the

timestep constraint is set by vK/∆φ and thus doubling azimuthal resolution re-

sults in a steep price, specifically a quadrupling of the necessary operations from

the doubled number of cells to time-advance and the half-timestep being used. The

result is that in the majority of the literature, azimuthal resolution is compromised

for computational expediency. The goal of runs BzZ32R and BzZ32RR are to study

the importance of azimuthal resolution in a controlled way in comparison to run

BzZ32 and deduce a maximum aspect ratio from which converged turbulence is

guaranteed. Figure 5.7 shows the evolution of αM (Top) and the scaled magnetic

energy (Bottom) for these runs. We note that in both cases we see non-monotonic

behavior, specifically reducing the resolution by a factor of two results in increased

accretion efficacy and toroidal field amplification. Further reduction results in a

significant drop-off in both of these quantities. While increased field amplification
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with reduced resolution is expected from Figure 5.5 (Bottom), that a reduction in

resolution could increase angular momentum transport is unexpected. Assessing

convergence from these global quantities is murky, at best. For now, we merely note

the importance of azimuthal resolution by pointing out that reducing azimuthal res-

olution can severely impact accretion efficiency. The convergence of these reduced

azimuthal runs is returned to in §5.3.4 where it is demonstrated that run BzZ32R is

converged, whereas BzZ32RR is not.

5.3.2 Numerical Metrics

Our consideration of numerical metrics begins with the resolvability fractions

defined in equations 5.7 and 5.8 and shown, for the ZF runs, in Figure 5.8 (Top

panels). The initial radial profile of the vertical seed field is constructed so that

λMRI/∆z ≥ 8 for simulation BzZ8 in a small neighborhood around each maximal

value of the sinusoid. The variations in the initial values of Fz are due to the

size of the neighborhood about each maximal value of the initial sinusoid in which

the resolvability criterion is satisfied. Of all the diagnostics considered, the most

startling behavior is seen when considering Fz. The two lower resolution simula-

tions, BzZ8 and BzZ16, both show a significant initial drop in the resolvability of

the vertical MRI correlated with the linear growth and saturation phase of the evo-

lution. Following the transition, both of these simulations show a slight increase

in the resolvability fraction but clearly in the most of the disk the vertical MRI is

not adequately resolved. In contrast to this, BzZ32 seems to exhibit substantially
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differing behavior and shows a value of Fz that is roughly constant during the full

evolution of the simulation. The evolution of Fφ, shown in Figure 5.8 (Top-Right) is

by comparison much simpler and monotonic in nature. As the toroidal field grows

due to shear amplification driven by the vertical MRI, the toroidal MRI becomes

resolvable throughout a significant portion of the disk.

The behavior of the resolvability fractions paints an interesting picture. Runs

BzZ16 and BzZ32 exhibit similar saturated values of stress, but their ability to resolve

the vertical MRI seem to be significantly different. This suggests the intriguing

possibility that run BzZ16, while initially seeded with a vertical field is actually

reliant on the resolvability of the toroidal field to reach a comparable stress to

run BzZ32. However, if these two simulations are actually taking differing routes

to turbulence there then must be some additional mechanism that accounts for the

similar values of stress achieved in the quasi-steady state. The resolvability fractions

suggest that run BzZ32 has reached a categorically different state in its resolvability

of the vertical MRI, and the toroidal MRI is resolvable throughout almost all of the

disk.

Next we consider the resolvability fractions of the NF runs, given in Figure 5.8

(Bottom panels). The resolvability of the vertical MRI is, at first glance, generally

somewhat poor. Of all the simulations considered, only BpN32 resolves the vertical

MRI in a majority of the disk over the full evolution. As was the case with the ZF

runs considered, all of the simulations resolve the toroidal MRI in the majority of

the disk (Figure 5.8, Bottom-Right). From these resolvability fractions, only BpN32

is clearly well-resolved. Of interest is that the resolvability fraction in the saturated
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state appears to have stronger dependence on resolution than initial field topology.

The resolvability fractions employ the often used 8-zone resolvability criterion;

however this is somewhat arbitrary. They allow us to get a sense of how much of

the disk is “well”-resolved. Now we employ the quality factors to understand how

“well”-resolved the disk is. Figure 5.9 (Top panels) illustrate the evolution of the

vertical and toroidal quality factors for the ZF runs. The vertical quality factors

roughly double with corresponding resolution doublings, starting at Qz ≈ 2 for

the lowest resolution simulation. This results in a situation in which run BzZ16 is

crudely resolved with an average of four zones per λMRI and BzZ32 is demonstrably

resolved. Consideration of the toroidal quality factor results in a reiteration of the

point made regarding the toroidal resolvability fraction, Fφ, specifically that the two

highest resolution simulations clearly are resolving the toroidal MRI. In particular,

run BzZ32 has an average of 40 zones per critical wavelength.

Consideration of the quality factors for the NF runs (Figure 5.9, Bottom pan-

els) reveal a similar resolution dependance as that seen in the resolvability fractions.

With the exception of BpN32, all of the net-flux runs evolve to a point with an av-

erage of a vertical quality factor less than eight, the fiducial criterion. The toroidal

quality factors, in contrast, are quite large and the simulations with all but the

lowest resolution simulations exhibit toroidal quality factors above 20. Overall, con-

sideration of the resolvability fractions and quality factors are taken as evidence that

runs BzZ32 and BpN32 are resolved whereas BzZ16 is barely resolved.
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5.3.3 Spectral Metrics

While integrated global quantities are undoubtedly important when diagnosing

turbulence, it is often the case that the spectral structure of turbulence is more

amenable to study than is the physical structure. Convergence in this domain is

again inherently ill-defined due to the non-dissipative nature of these simulations.

Increasing the resolution of a simulation increases the number of modes in which

power can reside, and it would be unphysical to expect that these newly opened

modes would remain free of power. We adopt as a definition of convergence that the

mode at which power peaks remains constant with increasing resolution. To probe

the spectral structure at the smallest scales, we include in consideration the wedge

runs, BzZ32W and BzZ64W, where the function of the former is primarily as a control

to ensure that the small-scale behavior is not altered by the reduction of azimuthal

domain.

Figure 5.10 shows the time-averaged azimuthal power spectra of the density,

magnetic pressure, and stress scaled to remove the secular evolution and tempo-

rally averaged for 50 orbits beginning at orbit 50. It is clear from these figures

that reducing the azimuthal domain of the simulation, as done in BzZ32W, does not

significantly change the small-scale distribution of power. The importance of large-

scale structure to the overall density profile of the disk is clear from Figure 5.10

(Top). Comparing the structure of the magnetic pressure and stress, Figure 5.10

Middle and Bottom panel, suggests that the magnetic pressure is clearly dominated

by intermediate scales while the stress is more equally distributed at large and inter-
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mediate scales. From a visual inspection, it is clear that all of the power spectra are

self-similar and, for resolutions above 32 zones per scale height, all peak at approxi-

mately the same scale. At small scales the power spectra look quite like those of the

non-converged, zero net-flux models presented by Fromang & Papaloizou (2007).

The large-scale behavior, however, is quite different as the power at large scales

is at most weakly dependent on resolution in stark contrast to the non-converged

models of Fromang & Papaloizou (2007).

Next, we consider the azimuthal spectral structure of the turbulence for the

NF runs (Figure 5.11). Broadly, we note again that the structure is dependent

largely on resolution and only minimally on field topology. Simulations of lower

resolution are more dependent on large-scale features, and as resolution increases

we see a more even distribution of power between the intermediate and small scales.

While the density and pressure have a clear peak at an intermediate scale, the

scale-distribution of stress is more evenly distributed at large to intermediate scales.

To quantify the dominant scale, we consider in Table 5.2 the wavenumber at

which the wavenumber-scaled power peaks for each simulation and for each of the

variables considered. For the eventual comparison of these results with local models,

it is useful to consider this measurement both as wavenumber, appropriate for global

simulations, and as an effective azimuthal wavevector, kφH0, which is more directly

analogous to local models. The dominant density scale is much larger than the

corresponding dominant magnetic scales. All of the simulations considered exhibit a

dominant density scale of approximately 4H0, and in this regard resolution does not
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appear to play a significant role save for the absolute lowest resolution simulation.

Reducing the azimuthal domain results in a increase of the effective scale associated

with the magnetic quantities. While the magnetic quantities do not clearly converge

with increasing resolution, the peak of the highest resolution simulation, BzZ64W, is

almost precisely displaced in wavenumber by eight. The reduced azimuthal domain

simulations use only an eighth of the full 2π domain, which means that the accessible

wavenumbers are limited to modes that are integer multiples of eight. In this regard,

the peak of runs BzZ32W and BzZ64W are within one accessible wavenumber of the

peak of BzZ32. With this in mind, we again take this as evidence of the convergence

of BzZ32.

The dominant density scale is roughly halved when going from run BpN8 to

BpN16, however the transition from BpN16 to BpN32 results in only a minor (∼ 10%)

decrease and suggests that this latter run is near convergence. This is contrasted

with the dominant scales of the magnetic energy and stress which decrease much

more significantly in the transition from BpN16 to BpN32. While the dominant

density scale of run BzZ32 is twice that of the dominant stress scale, the toroidal

field runs display a much more comparable value of these two scales. Overall, we

take this evidence as suggesting that run BpN32 is approaching convergence but not

fully so.

The most striking feature of the net vertical field simulations is the significantly

larger dominant stress scale (∼ 10H0). Also larger than expected is the dominant

magnetic energy scale, which is again in excess of the other topologies considered.

These large scales may suggest the existence of a memory of the initial field config-
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uration. In particular, this large structure may be a remnant of the linear shearing

phase in the initial growth of the MRI. This linear shearing phase is particularly

strong in the simulations initialized with a net vertical field, and exhibit magnetic

pressures in excess of the gas pressure.

Simulation Density Peak Pb Peak Stress Peak

m kφH0 m kφH0 m kφH0

BzZ8 7 0.111 13 0.207 11 0.176
BzZ16 14 0.223 25 0.398 19 0.302
BzZ32 14 0.223 48 0.764 33 0.525
BzZ32W 16 0.255 40 0.637 24 0.382
BzZ64W 16 0.255 56 0.891 24 0.382

BpN8 8 0.127 12 0.191 8 0.127
BpN16 17 0.271 17 0.271 12 0.191
BpN32 19 0.302 32 0.509 16 0.255

BzN8 10 0.160 13 0.207 5 0.080
BzN16 15 0.234 15 0.234 6 0.095

Table 5.2: Comparison of dominant azimuthal mode in the power spectra of density,
magnetic pressure, and stress.

5.3.4 Tilt Angle

The metrics discussed thus far are useful tools to measure convergence, but

they suffer from the limitation that their behavior must be compared against other

simulations using identical field topologies. Meaningful convergence studies can be

computationally quite expensive and therefore a more robust indicator of conver-

gence that is independent of field topology would be useful. The evidence we will

present here suggest that the magnetic tilt-angle, defined in Eqn 5.11, may indeed

be this diagnostic. As a precursor to this, we consider the evolution of the tilt an-
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gle in all of the ZF simulations (Figure 5.12, Top panel). The magnetic tilt angle

reaches an approximately steady-state value that is almost identical for all of the

higher resolution simulations (above 32 zones/H0). This value, θB ≈ 13◦, is remark-

ably close to the estimated value of 15◦ (Guan et al. 2009). Also of note is that

while the initial peaks in both stress and magnetic energy are strongly resolution

dependent, the tilt angle, a function of the ratio of the two, has an initial peak

that is seemingly independent of resolution. This may suggest that the transition

from the linear growth of the MRI into saturated turbulence depends on a precise

relationship between the quantities αM and β.

Next, we consider the behavior of the magnetic tilt angle in the NF runs,

given in Figure 5.12 (Middle). As resolution increases, we see a corresponding

increase in the tilt angle. Regarding the toroidal field simulations, we note the strong

similarity between runs BpN16 and BpN32. This suggests that a further doubling in

resolution may indeed prove convergence. The vertical field simulations display a

similar behavior and ambiguity. Unfortunately, with the simulations available we are

not able to conclusively demonstrate convergence for these net field runs, however

we do argue that BpN32 is likely converged.

At this point, we recall the difficulty of defining convergence using the phys-

ical metrics in the context of the reduced azimuthal resolution runs, BzZ32R and

BzZ32RR. The physical metrics are ambiguous but, when we consider the tilt angle

(Figure 5.12, Bottom), we see a clear monotonicity with resolution. A reduction in

the azimuthal resolution by a factor of two results in a very minor change in the

tilt angle, however further reduction of the azimuthal resolution results in a much
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more significant alteration. We take this as evidence that run BzZ32R is converged,

whereas BzZ32RR is not. This demonstrates the importance of azimuthal resolu-

tion, and indeed suggests that treating azimuthal resolution on nearly equal footing

with vertical resolution is of vital importance towards ensuring simulations that are

numerically converged.

The results we have presented indicate that the magnetic tilt angle is a power-

ful diagnostic tool towards demonstrating convergence of MRI-driven accretion disk

simulations. The fact that it is monotonic with resolution, exhibits minimal varia-

tion in the saturated state, and appears to converge suggest that fiducial values of

converged tilt angle can be computed and compared against simulations. Addition-

ally, as demonstrated in Figure 5.13, the value in the saturated state appears to be

almost independent of initial field topology and that there may exist a single fiducial

value of tilt angle, although a much wider range of simulations including differing

physical domains and physics will be necessary to verify this rigorously. We conjec-

ture that higher resolution simulations utilizing the same model initialized with a

net field will indeed definitively demonstrate that the tilt angle is a robust conver-

gence metric. Assuming this can be done, this would prove a powerful tool towards

verifying convergence without resorting to the significant expense of running higher

resolution control simulations. Further, the existence of a single fiducial tilt angle

would imply the ability to unify the often disparate phenomenology associated with

varying initial field topologies.

The natural question raised by the existence of a single scalar that appears
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to characterize the saturated, fully non-linear state of MRI-driven MHD turbulence

is whether this can be derived from theory. The relationship, αβ ≈ 1/2, was first

observed by Hawley et al. (1995) and discussed at length by Blackman et al. (2008).

The latter work includes a heuristic argument that α and β should be related by a

constant, however predicting that constant is beyond the means of the dimensional

analysis used. Recent work by Pessah (2010) provides the potential for a more

quantitative understanding of this relationship. Through an analysis of the growth

and subsequent saturation of a single vertical MRI mode by parasitic instabilities, as

initially studied by (Goodman & Xu, 1994), they find that when Kelvin-Helmholtz

parasitic modes dominate that the saturation of the primary MRI mode occurs when

αβ ≈ 0.4 (θB ≈ 12◦). The regime in which Kelvin-Helmholtz parasites dominates is

when the Elsasser number, Λη = v2
A/ηΩK , is larger than unity and it is this regime

that we expect our ideal simulations to correspond to. This work is encouraging as

it represents an important point of connection between our numerical results and

theory. The analysis of Pessah (2010) finds that the magnetic tilt angle will depend

on dissipative coefficients and finding agreement between this dependence and future

numerical simulations would bolster the importance of this quantity. Additionally,

the fact that simulations initialized with a toroidal field are characterized by the

same tilt angle as simulations initialized with a vertical field may suggest that the

formation and subsequent parasitic destabilization of channel solutions may play an

important role in the saturation of the non-axisymmetric MRI.
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5.3.5 Discussion and Conclusions

Hawley et al. (2011) survey a series of local simulations to test various pro-

posed convergence metrics, and then compare these metrics with a series of pseudo-

Newtonian simulations of thick accretion disks. Our comparison to their work be-

gins with their choice of metrics: αMag = MRφ/PB; the quality factors, Qz and

Qφ (though the definitions given there differ from ours by a numerically negligible

factor of
√

16/15); and the correlations, < B2
R/B2

φ > and < B2
z/B

2
R >. We note

that the measure αMag used in Hawley et al. (2011) is not the same as our metric

αM ; while both involve a pressure scaling of the magnetic stress the former uses

the magnetic pressure whereas the latter uses the gas pressure. We also note that

two of the metrics proposed are in an information content sense equivalent to the

magnetic tilt angle, θB. Due to the nature of the magnetic tilt angle being a mea-

sure of anisotropy in the planar field, we can rewrite αMag = αMβ which implies

sin(2θB) = αMag. Similarly, the correlation B2
R/B2

φ = tan2(θB). Regarding the lat-

ter correlation, B2
z/B

2
R, the authors note that this term does not appear to exhibit

a strong trend with increasing resolution and as such we will not consider it further.

To aid in our comparison we include a summary of convergence metrics in Table 5.3.

For the local models reviewed in Hawley et al. (2011), simulations of 64 zones

per scale-height result in quality factors of Qz ≈ 10 and Qφ ≈ 40. These are fairly

comparable to each other, and run BzZ32 (Table 5.3), despite the disparate initial

field topologies. A zero-net vertical field is used in Davis et al. (2010) whereas a net

toroidal field is used in Simon et al. (2011). Of note, is that the net toroidal field
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model considered here, BpN32, shows significantly higher quality factors at lower

resolutions. While Davis et al. (2010) also consider a model utilizing 128 zones per

scale-height which results in an increase in the quality factors by approximately

150%, this does not result in a change in αMag = 0.36 from the 64 zone per scale-

height run. This value of αMag corresponds to θB ≈ 10.5◦. The simulations discussed

in Simon et al. (2011) result in a largest value of tilt angle of θB ≈ 11.8◦. These are

both comparable to the values seen in our global runs with a slightly larger value of

θB ≈ 12◦ − 13◦.

In their discussion of stratified local models, Hawley et al. (2011) also note

the importance of azimuthal resolution which is bolstered by the work presented

here. In §5.3.4 we present evidence that when the azimuthal resolution is reduced

by a factor of four from an aspect ratio of unity, the resultant simulations exhibit

significantly lower accretion and magnetic tilt angles. Also discussed, is the ability

for large toroidal quality factors to compensate for a poorly resolved vertical MRI.

Indeed, this likely explains the results for simulation BzZ16 in which a comparable

value of α in the steady-state is achieved despite the significant discrepancy between

the resolvability fractions of simulations BzZ16 and BzZ32.

The global simulations presented by Hawley et al. (2011) are diagnosed to have

lower quality factors and smaller tilt angles than the ones presented here and to the

local models they consider. However, we observe that the stratified local models also

seem to involve a smaller tilt angle than what may be expected from our unstratified

global models. Beckwith et al. (2011) measure a tilt angle of approximately 9◦ in a

stratified global simulation. This suggests that stratification itself may suppress tilt

147



angle somewhat and a future resolution study of stratified global disks using orbital

advection would be useful. Overall, the work suggests that convergence is attained

when Qz & 10− 15 for poorly resolved toroidal quality factors (Qφ ≈ 10), and that

larger values of toroidal quality factor (Qφ & 25) can alleviate the constraint on the

vertical quality factor. Based on these constraints, we find that all of the simulations

utilizing a resolution exceeding or equal to 32 zones per scale-height are converged

as well as the simulations seeded with a net field and using resolutions above 16

zones per scale-height. The criterion presented here of a converged tilt angle would

not consider the runs BzN16 and BpN16 converged, but would consider run BzZ32R

converged in contrast to the quality factor criterion.

Simulation < θB >QSS Q̄z,QSS Q̄φ,QSS

BzZ8 8.61◦ 1.68 8.38
BzZ16 11.44◦ 4.57 16.82
BzZ32 12.86◦ 9.91 41.22
BzZ32W 12.75◦ 9.98 33.95
BzZ64W 12.76◦ 24.51 73.77
BzZ32RR 11.12◦ 6.64 7.38
BzZ32R 12.59◦ 9.08 16.13

BpN8 8.08◦ 4.46 18.86
BpN16 10.98◦ 9.23 31.92
BpN32 12.09◦ 22.2 64.22
BzN8 9.37◦ 3.54 16.24
BzN16 11.83◦ 8.97 32.41

Table 5.3: Summary of Convergence Metrics

In this chapter, we have presented results from a series of simulations utilizing,

for the first time, orbital advection in global cylindrical coordinates. The use of

orbital advection, and the order of magnitude performance enhancement it provides,
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has allowed the exploration of global disks at resolutions not only comparable to

local models, but in many cases exceeding the resolution of shearing box simulations

in the literature. Removing the constraint of the Keplerian timestep has also allowed

the exploration of simulations with isotropic resolution (∆z = ∆R ≈ R∆φ) without

the significant computational cost normally associated with azimuthal resolution.

The primary distinction between local and global simulations is the significant

degree of temporal evolution of the latter. Simple estimates of accretion relying

on the viscous timescale from anomalous viscosity disk theory vastly underestimate

the degree of accretion observed during the initial transient of global simulations.

However, a more sophisticated treatment utilizing a one-dimensional model (equa-

tion 1.15) based on the measured stress in the simulation accurately reproduce the

temporal evolution and radial distribution of the mass. Estimates of α based on

the viscous timescale inferred from the initial transient result in values well over an

order of magnitude above the values of α that characterize the simulation in the

QSS and even in excess with the measured values of α associated with the tran-

sient. This discrepancy may have potentially important astrophysical implications

regarding observational estimates of α based on the viscous timescale.

Understanding and minimizing the grid-scale dependance exhibited by simula-

tions of accretion disk turbulence is a vital precursor to constructing computational

models that can be confidently compared against observational data. The ability to

quantify complex, spatially and temporally varying turbulence into a simple scalar,

the magnetic tilt angle, and use that to verify the presence of converged turbulence

is an important step towards that goal. While several convergence metrics have
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been explored here focusing on either the physical, numerical, or spectral nature

of the simulations, the magnetic tilt angle stands out as being the most important

indicator of convergence. In the context of unstratified global simulations presented

here, it appears that numerically-converged MRI-driven MHD turbulence is char-

acterized by θB ≈ 13◦. While all the metrics considered here are useful towards

understanding the physics and numerics of MRI-driven turbulence, the magnetic

tilt angle alone possesses all the qualities we desire in a convergence metric. The

tilt angle is monotonic with resolution, and is independent of initial field topology,

while exhibiting weak dependence on stratification and local versus global formalism.

The data presented here suggests the following resolution requirements for conver-

gence (assuming that λMRI < H): a vertical resolution of H/∆z ≥ 32, ∆R = ∆z,

and an azimuthal resolution that satisfies R∆φ ≤ 2∆z. This final requirement is

particularly constraining given the computational difficulty associated with nearly

isotropic resolution in simulations without orbital advection. The importance of

orbital advection in future simulations is clear.

150



1 1.5 2 2.5 3 3.5 4
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Radius

S
ee

d 
F

ie
ld

 

 
BzZ
BzN
BpN

Figure 5.2: Radial profiles of initial magnetic field topologies.
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Figure 5.3: Comparison of the evolution of the fiducial simulations. (Top) Mass
fraction (Middle) Accretion efficiency (Bottom) Dimensionless magnetic energy
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Figure 5.4: Comparison of simulations (solid) and reduced model (dashed). (Top)
Evolution of mass fraction. (Bottom) Radial mass profile at orbit 75.
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Figure 5.5: Physical convergence metrics, ZF simulations. (Top) Accretion effi-
ciency (Bottom) Dimensionless magnetic energy
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Figure 5.6: Physical convergence metrics, NF simulations. (Top) Accretion effi-
ciency (Bottom) Dimensionless magnetic energy
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Figure 5.7: Physical convergence metrics for reduced azimuthal resolution runs.
(Top) Accretion efficiency (Bottom) Dimensionless magnetic energy
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Figure 5.8: Vertical and toroidal resolvability fractions for ZF and NF simula-
tions. (Top-Left) Vertical Resolvability, ZF (Top-Right) Toroidal Resolvability,
ZF (Bottom-Left) Vertical Resolvability, NF (Bottom-Right) Toroidal Resolv-
ability, NF
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Figure 5.9: Vertical and toroidal quality factors for ZF and NF simulations. (Top-

Left) Vertical Quality, ZF (Top-Right) Toroidal Quality, ZF (Bottom-Left) Ver-
tical Quality, NF (Bottom-Right) Toroidal Quality, NF
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Figure 5.10: Azimuthal distribution of power for the ZF simulations. (Top) Density
(Middle) Magnetic pressure (Bottom) Stress (MRφ)
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Figure 5.11: Azimuthal distribution of power for the NF simulations. (Top) Density
(Middle) Magnetic pressure (Bottom) Stress (MRφ)

160



0 20 40 60 80 100 120 140 160 180 200
−2

0

2

4

6

8

10

12

14

16

18

Orbits

[θ
B

]◦

 

 
BzZ8
BzZ16
BzZ32
BzZ32W
BzZ64W

0 20 40 60 80 100 120 140 160 180 200
−5

0

5

10

15

20

25

Orbits

[θ
B

]◦

 

 
BpN8
BpN16
BpN32
BzN8
BzN16

0 20 40 60 80 100 120 140 160 180 200
−2

0

2

4

6

8

10

12

14

16

18

Orbits

[θ
B

]◦

 

 
BzZ32RR
BzZ32R
BzZ32

Figure 5.12: Temporal evolution of the magnetic tilt angle. (Top) ZF Models
(Middle) NF Models (Bottom) Reduced azimuthal resolution models
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Chapter 6

Locality of Global Accretion Disk Turbulence

6.1 Introduction

While the preceding chapter focused primary on numerical issues, specifically

the reliability of astrophysically-relevant metrics derived from simulations subject

to finite-resolution effects this chapter will return to the material of Chapter 3. In

this earlier chapter the physics of stratification and coarse resolution made the com-

parison of local and global models problematic. Running simulations with orbital

advection has facilitated the exploration of resolutions comparable to those used in

local models and as such these models provide a vastly superior testing ground to

study the issues brought to light in Chapter 3.

Returning to the concept of generating “local” statistics through the decom-

position of a global simulation into local analogs we begin by performing an analysis

of the instantaneous correlation of magnetic flux and stress in patches of the disk.

This analysis is extended from the one presented in Chapter 3 with the inclusion of

a study of the toroidal magnetic flux and its connection to local stress. Additionally,

the use of a fiducial lengthscale to quantify the flux-stress relationship is introduced

and discussed. The ability to predict local stress from the presence of magnetic

flux is complemented with a thorough analysis of the distribution and evolution of

magnetic flux in the fiducial subdomain. The significant evolution of magnetic flux
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observed casts doubt on the validity of the flux-constraining boundary conditions

commonly employed in local models.

Finally, the comparison of local and global models is extended to smaller

lengthscales through the use of two-point correlation functions in the manner of

Guan et al. (2009) and Beckwith et al. (2011). The partition of turbulent energy

into its components is explored and the resulting hierarchy of scales and rotated

principal axes is found to be in strong agreement with previously published works.

In particular, agreement between these simulations and local models is found at

intermediate- and small-scales. The resolvability of the smallest important scale of

turbulence, identified by Guan et al. (2009), is discussed and while not achieved the

resolution requirements for the resolvability of this scale is estimated.

The structure of this chapter is as follows. Section §6.2 expands upon the

diagnostics introduced in §5.2.2 to define the appropriate metrics of interest for

the remainder of the study. Section §6.3 begins the comparison between local and

global models with a qualitative set of figures of the fiducial subdomain transformed

into an appropriate local geometry. This is replaced in Section §6.3.1 with a more

quantitative analysis of the derived local statistics with a focus on their variability.

Next, Section §6.3.2 returns to the question of the instantaneous relationship be-

tween magnetic flux and stress. This discussion is augmented with an analysis of

the distribution and evolution of magnetic flux over the course of the simulation.

Section §6.4 focuses on the intermediate- and small-scale structure of MRI-driven

turbulence through the use of two-point correlation functions. Finally, Section §6.5

presents a brief summary of the results of this chapter and concluding remarks.
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6.2 Diagnostics

Unless otherwise noted the notations and definitions introduced in the previous

chapter will be maintained here. The goal of the metrics introduced here will be to

facilitate a comparison between local and global models in a quantitative manner.

The focus will be on the fiducial subvolume S and its decomposition defined in the

previous chapter.

First, we consider the instantaneous correlation of flux and stress as a means

of comparing local and global models. To study the global analogue to these lo-

cal saturation predictors, we proceed in a manner similar to Sorathia et al. (2010)

(Chapter 3). We calculate the instantaneous flux and stress in each subvolume at

each timestep after orbit 50, to remove transients associated with the linear growth

phase of the MRI. The resulting flux-stress pairs are logarithmically binned ac-

cording to flux in order to diagnose trends. In contrast to the local model and

Sorathia et al. (2010), where flux-stress pairs are scaled by L and (H/L)5/3 respec-

tively, we proceed in a manner more appropriate to global simulations in which the

size of the subdomain has no physical meaning as the boundaries of the subdomain

can not act to suppress the formation of structure on scales larger than the size of

the subdomain. The flux-stress pairs calculated here are of the form (λMRI/∆z,αM ),

as in Beckwith et al. (2011). Scaling the local flux to the grid scale is more directly

meaningful and facilitates a closer inspection of the transition point discussed in

Sorathia et al. (2010) (Chapter 3).

In addition to studying the relationship between vertical flux and stress, we
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also consider the analogous connection in the presence of toroidal flux, encapsulated

by equation 2.33. Arguably, the presence of strong net toroidal field is more astro-

physically relevant than strong vertical field (van Ballegooijen 1989). The evolution

of the toroidal MRI is more complex than its vertical counterpart, and there is no

simple form for its most unstable mode. We consider flux-stress pairs of the form

(λc/R∆φ, αM), with λc given by equation 1.46, and perform the same logarithmic

binning as described for the vertical flux-stress pairs.

To further quantify the relationship between the subvolume S and local models

we introduce the mapping

(R, φ, z) → (x, y, z) = (R − R0, R0φ, z), (6.1)

through which the geometry of the subvolume can be explored in a local manner.

To study the structure of turbulence, we follow the model of Guan et al. (2009) and

consider the two-point correlation, or autocorrelation, function (ACF) for a fluid

variable f(x, y) defined as

Cf(∆x, ∆y) =

∫

S

δf(x + ∆x, y + ∆y)δf(x, y)dxdy, (6.2)

where the scaled perturbation δf is given by

δf(x, y) =
f(x, y)− < f >y (x)

< f >y (x)
, (6.3)

specifically the fluctuation about the annulus average scaled by the annulus aver-

age. As pointed out by Beckwith et al. (2011), removing radial structure from the

fluctuation quantities is important as global simulations can exhibit radial structure

due to their evolution that would be missing from local models.
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Though the definition of the ACF is given by equation 6.2, the actual manner

in which it is calculated is somewhat more circuitous. The calculation utilizes the

Weiner-Khinchin theorem which states that the Fourier transform of the two-point

correlation is the power spectral density, |δf(kx, ky)|2. Formulating the calculation

in Fourier space is far more efficient due to the significantly reduced computation

involved in the calculation of the fast Fourier transform (FFT) compared to the full

integral necessary in the initial formulation of the ACF. Utilizing Fourier transforms

implicitly assumes periodicity which is satisfied in the azimuthal and vertical direc-

tion but will be violated in the radial. This has the potential to adversely affect the

ability for the ACFs to accurately capture large radial structure, however the strong

shear in these systems suppresses this structure regardless. As will be shown, radial

structure decorrelates on a lengthscale much smaller than the radial extent of the

subdomain used for these calculations.

The computation is done through the calculation of the full three dimensional

FFT over the subvolume followed by a temporal averaging of the power from orbits

65 through 85, resulting in < |δf(kx, ky, kz)|2 >T . The ACF is then simply the

inverse FFT of < |δf(kx, ky, kz = 0)|2 >T , as in Beckwith et al. (2011), which are

then scaled to have a maximum of unity. An example is shown in Figure 6.1 (Top),

which shows Cρ for simulation BzZ32. The structure of the two-point correlation of

density, equivalently the gas pressure, is representative of all the correlation func-

tions. Specifically, it is characterized by contours associated with ellipses having

major and minor axes rotated from the Cartesian. To characterize the major and
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minor axes we define

x̂′ = x̂ cos(θ) + ŷ sin(θ), (6.4)

ŷ′ = −x̂ sin(θ) + ŷ cos(θ), (6.5)

where θ is calculated based on the major and minor axes of a fiducial contour.

Calculating θ is done by taking the numerically computed contour associated with

1/e (assuming a maximum value of unity at the origin) and fitting the general

equation of an ellipse. To further quantify the correlation function, we employ the

approximation

Cf ≈ exp

[

−|x′|
λm

− |y′|
λM

]

, (6.6)

where the values of λM and λm are simply the semi-major and semi-minor axes of

the ellipse fit to the 1/e contour of the correlation function. As a demonstration of

the validity of using an exponential model for the correlation function, Figure 6.1

(Bottom) compares the value of the correlation function and its exponential approx-

imation along both the major and minor axes for the example correlation function

shown in Figure 6.1 (Top). Thus the correlation function, Cf , is determined solely

by the parameters θ, λm, and λM .

6.3 Comparing Local and Global Models

The restricted geometric domain of local models makes them ideal to explore

accretion disk turbulence at resolutions far in excess than what is feasible in global

models. However ensuring that these local models accurately represent the small-

scale dynamics of accretion disk turbulence is a vital validation of the wealth of
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Figure 6.1: (Top) Example correlation function, Cρ from simulation BzZ32. (Bot-

tom) Comparison of the correlation function (equation 6.2, solid) and its exponen-
tial approximation (equation 6.6, dashed) along the major and minor axes of Cρ

from simulation BzZ32.
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results learned from local models. The simulations presented here provide a unique

opportunity to accomplish as the resolutions of these global models are not only

comparable to, but greater, than the majority of local simulations in the literature.

Towards this end, we proceed in a manner similar to Sorathia et al. (2010)

(Chapter 3) and decompose the global simulation domain into an ensemble of small

regions that are comparable to shearing box models as described in detail in §5.2.2.

To provide a sense of the structure of the subdomain, S, we employ the transforma-

tion to a Cartesian domain through the mapping given in equation 6.1. To further

facilitate the comparison to a shearing box, we consider the quantity

vy = vφ − vK(R0). (6.7)

Figure 6.2 (Top) shows the quantity vy/cs in the transformed subdomain, S, at 100

orbits in simulation BzZ64W. Similarly, Figure 6.2 (Bottom), illustrates the toroidal

magnetic field for the same time and simulation. We note the visual similarity

between these images and those presented from shearing box simulations.

6.3.1 Evolution of Local Ensemble

The benefit of treating a global simulation as a local ensemble is that it allows

us to study the local dynamics of accretion disk turbulence over a large range of pa-

rameter space simultaneously. Additionally, it offers the opportunity to directly test

the importance of curvature terms and the degree to which local flux is truly con-

served. Local statistics can be used not only to study the average value of a quantity

but also the variation in the quantity and how it evolves. Figure 6.3 illustrates the
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Figure 6.2: Still images of subvolume of simulation BzZ64W at orbit 100 mapped to
the local Cartesian frame. (Top) Azimuthal velocity, vy/cs (Bottom) Azimuthal
magnetic field
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time evolution of [αM ] and [β−1] for a selection of ZF and NF simulations. Com-

paring [αM ] and [β−1] in the ZF simulations, Figure 6.3 (Top panels), illustrates the

resolution dependence analogous to the physical metrics considered above, however

the variability of these quantities is inversely related to the resolution. The behav-

ior of run BzZ8 is statistically separated from the behavior of the higher-resolution

simulations, with runs BzZ16 and BzZ32 demonstrating more comparable values of

these quantities.

The behavior and evolution of the accretion efficiency and scaled magnetic

energy for a selection of NF runs is given in Figure 6.3 (Bottom panels). Most

striking is the extreme initial transient associated with run BzN16, characterized by

values of αM well in excess of unity and strongly magnetized regions with Alfven

speeds several times the sound speed. This transient, however, is short lived with

the long-term evolution comparable to that of runs BpN16 and BpN32. The toroidal

runs, like the ZF simulations, display an inverse relationship between variability

and resolution. The resolution dependence of the variability is itself interesting,

while the global treatments of these quantities discussed above can demonstrate

their convergence that the variability weakens with resolution suggests a separate

resolution requirement.
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Figure 6.3: Evolution of the local ensemble. (Top-Left) Accretion efficiency,
ZF (Top-Right) Magnetic energy, ZF (Bottom-Left) Accretion efficiency, NF
(Bottom-Right) Magnetic energy, NF
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6.3.2 Distribution and Evolution of Magnetic Flux and its Relation

to Stress

In Sorathia et al. (2010), we make a preliminary effort towards connecting local

and global models of accretion disks using the method described in §5.2.2 and §6.2

to generate “local” statistics. The simulations considered were useful but suffered

due to the added difficulty of separating effects of stratification and resolvability

from the desired comparison. However that the resolvability of the linear MRI

in saturated turbulence is important or sufficient is not clear from analytic theory.

The simulations considered in this work are designed from first principles to be more

directly applicable to the comparisons we would like to make. We have previously

considered the instantaneous correlation between vertical flux and stress; here we

also study the relationship between toroidal flux and stress. That there is a structure

to the relationship between toroidal flux and stress is interesting (Figure 6.4, Right

panels). At first glance, one might not expect a transition in the correlation, since

the comparison is between toroidal field and stress, a term dominated by the toroidal

field. The nature of this correlation is unclear, as in contrast to the vertical MRI

which grows quite rapidly and would be expected to correlate to the presence of

field, it is not clear that the toroidal MRI would be associated with timescales

small enough to correlate to the presence of field. Assuming that the connection

between toroidal flux and stress is causal, as is believed to be the case in the vertical

flux-stress correlation, it may suggest that toroidal flux generates stress in the non-

linear regime in a manner much faster than it would in the linear. An alternative
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possibility is that the correlation between toroidal flux and stress is a consequence

of the vertical flux-stress relationship. In this case, the presence of vertical flux

would drive stress with toroidal flux amplification as an intermediate step. This

possibility would suggest that the relationship between the turning points in the

two flux-stress relationships is meaningful. We note, that while the fluxes are scaled

to the grid resolution these are not the same as the quality factors presented earlier

as the flux is averaged over each wedge as opposed to taken on a cell by cell basis.

This averaging reduces the strength of the net field which results in lower values

than the quality factors.

The calculated flux-stress relationship for the ZF simulations is given for both

vertical flux and toroidal flux in Figure 6.4 (Top panels). It was noted in Chapter 3

that the transition between the flat unresolved region and the linear resolved region

suggested a seeming super-resolvability, specifically that we saw this transition at

λMRI ≈ ∆z/20. We note similar behavior in run BzZ8, in Figure 6.4 (Top-Left), in

which the transition occurs at λMRI ≈ ∆z/10. The remaining simulations exhibit a

transition at λMRI ≈ ∆z, in agreement with the scaling law given by equation 2.35

(Pessah et al. 2007) and the simulations of Beckwith et al. (2011). Related to this,

we see a qualitatively similar resolvability threshold in the toroidal flux-stress re-

lationship. While the two highest resolution simulations exhibit a transition at

approximately 10R∆φ , the transition for BzZ8 occurs at approximately half of

that.

The exact cause of the differences between run BzZ8 and its higher resolution

counterparts, namely the weaker stress in the unresolved flux-stress regime and the
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seeming ability to resolve a sub-gridscale λMRI , is unclear. The former is interpreted

as a consequence of the “density” of resolved regions, in a manner similar to the

resolvability fractions presented in Chapter 5. In run BzZ8 the fraction of the com-

putational domain in which the MRI is properly resolved is quite small and thus

one would expect the stress in the unresolved flux-stress regime to be a remnant of

when the subvolume last encountered resolvable flux, which would likely be much

longer in the lowest-resolution simulation than in the higher-resolution counterparts.

Equivalently, the stress in this regime is a measure of the global properties of the

disk and should depend on the timescale required for the presence of magnetic flux

to drive stress. The nature of the transition point is interpreted in the context of the

slowest appreciably growing mode (SAGM) discussed in Section §3.4.3. The SAGM

argument supposes that the transition point is governed by more slowly growing

MRI modes that are able to grow significantly before being truncated through some

aspect of the nonlinear physics of the saturation. If this truncation is caused by the

action of parasitic modes, as suggested by Goodman & Xu (1994), the timescale τ

used in Section §3.4.3 may itself have a resolution dependence due to the resolvabil-

ity of the parasitic modes. This suggests the counterintuitive result that the lower

resolution simulation BzZ8 super-resolves the MRI due to its inability to properly

resolve parasitic modes. It is worth noting, that both of these interpretations are

speculative and more detailed analysis will likely be needed to settle the issue. It is

clear, however, that the seeming super-resolvability of run BzZ8 is unphysical and

an attribute of poor resolution. More physically, we interpret the transition point

of simulations BzZ16 and BzZ32 as also being a consequence of the SAGM as we do
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not expect λMRI = ∆z to be resolved.

Next we consider the flux-stress relationship for the net field simulations for

both vertical flux and toroidal flux in Figure 6.4 (Bottom panels). We note that in

general the net flux runs exhibit a very similar general structure to the net-zero flux

runs. Specifically, the transition points between the flat and linear stress-response

regimes are independent of initial field topology. None of the net-field simulations

considered exhibit the super-resolvability seen in BzZ8 which suggests that even low

resolution net-field runs are more resolved than their zero-flux counterparts. The

general trend is that, with increasing resolution, the stress response to unresolved

flux (i.e. flux corresponding to wavelengths above the transition point) is generally

increased and the slope of the linear regime, in which flux is resolved, becomes

shallower. An interesting feature is seen in the stress response to vertical flux for

the net toroidal field runs. For vertical flux λMRI/∆z ≈ 6 we see a flat stress

response. This region occurs well below what we would expect for the MRI-stable

region in which the most unstable vertical mode exceeds the vertical domain of the

simulation, and we also note that the net vertical field runs maintain a linear slope

in this region.

A further comparison we can make between local and global models is based

not just on the structure of the flux-stress relationships, but on the precise manner in

which increased flux generates an increased stress response. While the dependence

of local saturation predictors on box-size prevent direct comparisons, we can work

backwards and use the slope of the resolved region to define an effective local box

177



10
−3

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

λMRI /∆z

α
M

 

 
BzZ8
BzZ16
BzZ32

10
−2

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

λc/(R∆φ)

α
M

 

 
BzZ8
BzZ16
BzZ32

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

λMRI /∆z

α
M

 

 
BpN8
BpN16
BpN32
BzN8
BzN16

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

λc/(R∆φ)

α
M

 

 
BpN8
BpN16
BpN32
BzN8
BzN16

Figure 6.4: Correlations between vertical and toroidal magnetic flux and stress,
ZF and NF runs. (Top-Left) Vertical flux, ZF (Top-Right) Toroidal flux, ZF
(Bottom-Left) Vertical flux, NF (Bottom-Right) Toroidal flux, NF
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size. The physical meaning of this length scale is unclear, and is presented here as

merely a convenient manner in which to quantify the slope of the linear-response

regime. Formally, we use the saturation predictors given by Eqn 2.35 and Eqn 2.33 to

constrain the value of the box-size to fit the instantaneous correlations we find. The

values of box-size from the vertical flux-stress and toroidal flux-stress are denoted

ℓz and ℓφ respectively.

The values of this effective box-size are given in Table 6.1. Both the vertical

and azimuthal length scales are monotonic with resolution, with the net field sim-

ulations corresponding to larger effective box-sizes. Of interest is the approximate

relationship, ℓz ≈ 2πℓφ, in particular due to its connection with commonly used

local domain sizes. Also of note is that by reducing the azimuthal domain we see a

significant drop in ℓz, while ℓφ remains roughly constant.

Simulation ℓz/H0 ℓφ/H0

BzZ8 0.348 1.838
BzZ16 0.899 4.956
BzZ32 0.964 5.040
BzZ32W 0.283 5.970
BzZ64W 0.372 7.696

BpN8 0.487 3.377
BpN16 0.674 4.612
BpN32 0.905 4.953
BzN8 0.472 5.552
BzN16 0.731 8.255

Table 6.1: Effective box-size for global simulations.

The manner in which a localized region of the disk responds to the instanta-

neous presence of flux makes up an important part of the dynamics of the disk, the
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natural analog to this is the distribution of magnetic flux through the localized re-

gions of the disk. Here, we focus on the latter. We compute a distribution function

of the vertical and toroidal magnetic flux through each wedge during the QSS. As

in the flux-stress diagrams, these fluxes are scaled to the grid resolution. The distri-

bution is calculated using logarithmic binning in the flux (80 bins per decade) and

the result is smoothed using a ten bin moving window. The results for simulations

BzZ32, BpN32, and BzN16 are displayed in Figure 6.5.

Of interest is the fact that for simulation BzZ32, the majority of the disk is

below the threshold in which there is a linear stress response to flux. In contrast

to this, simulations BpN32 and BzN16 have the majority of the disk well above the

resolvability threshold of (Qz, Qφ) ≈ (1, 10). Related to the initial conditions, BpN32

is biased towards toroidal flux and BzN16 is biased towards vertical. Forming an

intermediate case, BzZ32 possesses a more even distribution of flux albeit weaker

than the net field cases.

An alternative manner by which to consider the distribution of magnetic flux

is through the consideration of the local statistics as representative of the trajectory

of an ensemble. That is, to consider the path ([Qz ](t), [Qφ](t)) and its temporal

evolution. Figure 6.6 illustrates the trajectory for simulations BzZ32, BpN32, and

BzN16 where markers are placed on the trajectory approximately every 8 orbits.

For the net field simulations the evolution of the flux during the initial transient is

quite stark, resulting in migration from the axes to large values of both azimuthal

and vertical flux, specifically large enough to exceed the transition point to linear
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Figure 6.5: Distribution of magnetic flux in the QSS. (Top) BzZ32 (Middle) BpN32
(Bottom) BzN16
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stress response. After the initial transient, the net flux simulations are character-

ized by a general decrease in the mean flux. In contrast to the net flux simulations,

the trajectory of BzZ32 is constrained to a much smaller region of the flux-space.

The trajectory only briefly crosses into the region associated with a linear stress

response, unlike the net flux simulations whose trajectories spend the majority of

the simulation in this region. Compared to truly local simulations, in which the

boundary conditions prevent migration in the Qz × Qφ space, global simulations

are characterized by significant evolution particularly those initialized with a net

flux. This suggests the possibility that local simulations initialized with a net flux

could result in an artificially-maintained angular momentum transport due to the

boundary conditions preventing the advection of flux off the grid. The trajectory of

simulations BzZ32 and BzN16 evolve to possess comparable fluxes despite exhibiting

significantly different behavior during much of the simulation. The limited temporal

domain for which simulation BpN32 was evolved prevents making a similar compar-

ison, however the behavior is consistent with the possibility of evolving to a state of

magnetic flux comparable to simulations BzZ32 and BzN16. Run BpN16, while run

for 50 orbits more than BpN32, displays similar behavior that is consistent with this

possibility but does not achieve it during the time domain simulated.

6.4 Spatial Scales and Orientations of MRI-Driven Turbulence

In Chapter 5 the dependence of large-scale quantities like the global angular

momentum transport and dimensionless magnetic energy upon resolution and initial
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magnetic topology is explored. Here, the use of the two-point correlation functions

allows a complementary analysis of the small-scale structure of the MRI-driven

turbulence. The choice of quantities in the analysis that will be presented is based on

the investigations of Guan et al. (2009), in the context of unstratified local models.

Their analysis has subsequently been extended to large shearing boxes (Davis et al.,

2010) and global simulations (Beckwith et al. 2011, Nelson & Gressel 2010). The

analysis will focus on a comparison of the small-scale structure encapsulated by the

ACF with prior works.

The energetics of an accretion disk are dominated by the energy associated

with the Keplerian rotation which acts as a energy reservoir that powers turbu-

lence. The energy of the turbulence itself is partitioned into three sources: the gas

pressure, P , which for an isothermal disk is equivalent to the density structure; the

turbulent kinetic energy, K ′ = ρ|v′|2; and the magnetic pressure, Pb. The associated

correlation functions are denoted CP , CK ′, and CB respectively.

Prior to the presentation of the full data, we consider the two-point correlation

functions for simulation BzZ32. Figure 6.7 shows the correlation functions CP (Top),

CB (Middle), and CK ′ (Bottom). Immediately obvious is the hierarchy of scales

exhibited in the turbulent energy partition in which the decorrelation lengthscale

of the gas pressure is much larger than that of the magnetic pressure, which in

turn is much larger than that of the turbulent kinetic energy. Additionally, while

the contours of the gas and magnetic pressure are highly eccentric, those of the

kinetic energy are nearer to circular in nature. As we will see, this hierarchy of

scales and differing eccentricity between the pressure and kinetic energy terms is
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characteristic of the behavior over all the simulations considered and identical to

the results presented by Beckwith et al. (2011) (cf. Figure 20). Also of note is the

difference in structure of CP compared to CK ′. Whereas the latter exhibits quite

uniform contours, the former exhibits a “twisting” at large displacement. This point

is returned to below.

The correlation functions associated with the components of the turbulent

energy are shown in Table 6.2 for all the simulations using an isotropic resolution.

The behavior exhibited in Figure 6.7 is broadly applicable; the major axes associated

with the gas pressure are larger than those associated with the magnetic pressure

and similarly, the magnetic pressure exhibits a larger lengthscale than the turbulent

kinetic energy. While the ratio of major to minor axis (λM/λm) is roughly ten for the

pressure terms, this ratio is approximately between four and five for the turbulent

kinetic energy. Guan et al. (2009) interpret the large scale correlations associated

with the gas pressure as a manifestation of acoustic waves that act to set the largest

scale of the turbulence.

Independent of the eccentricity of the two-point correlation functions is the

orientation of the principal axis, specifically the angle θ. In this case, the comparison

to be made is between the gas pressure and perturbed kinetic energy and there is

a contrast between these and the magnetic pressure. The principal axis of the gas

pressure and perturbed kinetic energy are, in general, comparable and (at the highest

resolutions) differ appreciably from the principal axis associated with the magnetic

pressure. This is in contrast to the results of Guan et al. (2009) in which the gas

pressure exhibits a larger angle than the perturbed kinetic energy, although their
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results also indicate the largest angle is associated with the magnetic pressure. The

cause of this discrepancy is unclear, but may be a consequence of the reduced domain

considered in their local models. Overall, with increased resolution the principal axis

is rotated further from ŷ and appears to be slowly converging although this can not

be conclusively demonstrated with the data at hand. It is noted by Guan et al.

(2009) that the angle associated with the magnetic pressure is consistent with the

magnetic tilt angle θB and this is approximately the case for the results presented

here. While the magnetic tilt angle appears to converge to θB ≈ 13◦, the principal

axis of the magnetic pressure is θ ≈ 15◦ which is closer to the value expected from

the estimate αβ ≈ 1/2.

Next, we consider in more detail the magnitude of λM/H0 given in Table 6.2.

Beckwith et al. (2011) consider only one model for which λM = (3, 2, 1)H for the gas,

magnetic pressure, and kinetic energy respectively and note the similarity of their

results to those of Nelson & Gressel (2010). The results here, however, suggest that

resolution is likely a concern. The values of λM observed by Beckwith et al. (2011)

and Nelson & Gressel (2010) are comparable to run BzZ8 and would likely decrease

further with greater resolution although there remains the possibility that stratifica-

tion in the simulations they consider may act to elongate the planar structure of the

turbulence. Guan et al. (2009) consider a series of local models with both zero net

vertical field and net toroidal field with resolutions (in zones per scale height) rang-

ing from 32 to 256. The correlation scales associated with the former field topology

fail to converge as does the stress. They note, for their non-converging simulations

that both λM and λm decrease in a manner proportional to Nx (Nx = Lx/∆x). Due
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to the lack of convergence for this field topology we instead compare our results to

their converged net toroidal field simulations. For their lowest resolution simulation,

they find λM/H ≈ 0.63 and λm/H ≈ 0.11 for the magnetic pressure which is almost

identical to the values observed for simulation BpN32. That these values are compa-

rable is quite encouraging as it suggests that these global simulations are not only

able to access the large-scale structure inaccessible to local models but also match

local models in the intermediate- and small-scale regimes.

Regarding the resolution dependence of the correlation lengthscales we com-

pare our results to Guan et al. (2009) and their thorough resolution study. Overall,

we find broad agreement between their results and the data presented here at in-

tersecting resolutions (Guan et al. 2009, Table 2). Of particular concern is the

resolvability of λm, which they find to converge (using the 8-zone criterion) at a

resolution of 128 zones per scale height. Using a fiducial value of λm/H0 ≈ 0.10

from our global simulations we find that this corresponds to (for a 32 zone per scale

height simulation) λm/∆ ≈ 3. Assuming a negligible reduction in λm for increasing

resolution, this suggests that a resolution of 128 zones per scale height would also

resolve the minor axes of the correlation functions for our global simulations.

Finally, our attention turns to the turbulent structure of the Maxwell stress,

and as always specifically the component MRφ. The correlation function associated

with this will be denoted CM and a fiducial example is shown in Figure 6.8 with

data taken from simulation BzZ32. Similar to the energy quantities, save for the

gas pressure, the stress is ellipsoidal in nature. The two-point correlation functions
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Figure 6.7: Two-point correlation functions of the turbulent energy components
for simulation BzZ32. (Top) Gas pressure (Middle) Magnetic pressure (Bottom)
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Simulation Gas Pressure Magnetic Pressure Kinetic Energy (K’)

λM λm θ λM λm θ λM λm θ

BzZ8 3.78 0.35 8.37◦ 1.74 0.17 8.37◦ 1.04 0.22 7.66◦

BzZ16 1.86 0.20 10.30◦ 0.86 0.12 12.62◦ 0.52 0.16 9.20◦

BzZ32 1.42 0.14 10.25◦ 0.51 0.07 14.98◦ 0.32 0.10 10.10◦

BzZ32W 1.03 0.12 11.62◦ 0.55 0.08 14.90◦ 0.31 0.10 10.38◦

BzZ64W 0.81 0.10 11.31◦ 0.44 0.07 15.60◦ 0.23 0.07 10.66◦

BzN8 2.06 0.30 10.16◦ 1.63 0.23 11.39◦ 0.86 0.26 9.36◦

BzN16 1.27 0.21 12.39◦ 1.09 0.18 13.66◦ 0.59 0.19 10.56◦

BpN8 2.19 0.30 9.27◦ 1.84 0.24 10.18◦ 0.88 0.23 9.18◦

BpN16 1.37 0.20 11.61◦ 1.05 0.16 12.82◦ 0.55 0.17 10.37◦

BpN32 0.96 0.14 12.61◦ 0.69 0.11 14.21◦ 0.35 0.11 10.75◦

Table 6.2: Structure of the correlation functions associated with the partition of turbulent energy for all simulations. Note, the
major and minor axes of the correlation function are scaled by H0.
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of the stress for all the isotropic resolution simulations are quantified in Table 6.3.

Broadly, the stress structure is similar to the other quantities considered in that

as resolution increases both the major and minor axes decrease and the angle of

the principal axis increases. Regarding the specific lengthscale associated with the

stress, it can be placed in the previously described hierarchy between the magnetic

pressure and perturbed kinetic energy with an angle larger than the other quantities

considered. It is interesting to note that the calculated angle of the stress correlations

is approximately 19◦, while this is much larger than the fiducial magnetic tilt angle

(θB ≈ 13◦) it is approximately consistent with the peak magnetic tilt angle at

saturation (Figure 5.13) for the models initialized with vertical magnetic fields.

This may suggest that the saturation of the MRI imposes a specific anisotropy on

the spectral structure of the magnetic stress, however connecting the principal axis

of the spectral structure to the planar anisotropy of the magnetic field is murky and

this analysis is well beyond the scope of this work.

Finally, we return to the point regarding the disparate character of the gas

pressure ACF compared to the other quantities considered. As a first step, the

variation of the principal axis with displacement is quantified in Figure 6.9. Using

a series of contours of the ACF, spaced between 0.2 and 0.8, the angle of the ellipse

fit to each contour is plotted. From Figure 6.9 we note that with the exception of

the gas pressure all the quantities considered exhibit minimal variation of principal

axis with displacement. In contrast to this, the gas pressure at large displacements

exhibits a similar principal axis to the kinetic energy whereas at small displacement
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Figure 6.8: Two-point correlation function of the Maxwell stress (MRφ), denoted
CM for simulation BzZ32.

Simulation Maxwell stress (MRφ)

λM λm θ

BzZ8 1.00 0.18 11.83◦

BzZ16 0.65 0.12 16.02◦

BzZ32 0.40 0.08 18.85◦

BzZ32W 0.42 0.08 19.02◦

BzZ64W 0.32 0.07 20.32◦

BzN8 1.12 0.26 15.09◦

BzN16 0.76 0.19 18.28◦

BpN8 1.10 0.25 14.41◦

BpN16 0.71 0.16 17.49◦

BpN32 0.48 0.11 19.42◦

Table 6.3: Two-point correlation functions of the Maxwell stress for all simulations.
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the ACF has a more tilted principal axis. This behavior is well-documented, showing

up in previous studies of correlation functions of MRI-driven turbulence except

in the work of Guan et al. (2009). Beckwith et al. (2011) attribute these features

to the excitation of spiral density waves as described by Heinemann & Papaloizou

(2009) and further note that this excitation of spiral density waves is predicted to

be suppressed in simulations with an azimuthal domain of less than 6H , like those

considered by Guan et al. (2009).

6.5 Discussion and Conclusions

The use of shearing box models, while necessary to explore turbulence at

small scales, is predicated on a series of significant assumptions. Testing that the

predictions of local simulations hold in the context of global models is an important

validation of the local model. Towards this end, we have demonstrated that sat-

uration predictors from the local regime correspond to instantaneous correlations

between magnetic flux and stress in the global regime. This, combined with an un-

derstanding of flux distributions in global simulations would allow simpler statistical

treatments of disk turbulence. However, the conservation of magnetic flux on small

scales implicit in local models is not realized in global disks. Indeed, local statistics

derived from global simulations seeded with a magnetic field topology possessing

net flux are characterized by significant migrations in the space Qz ×Qφ in contrast

to the assumption of conserved flux implicit in the shearing box formalism. Addi-

tionally, these migrations appear to be consistent with the magnetic flux evolving
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to values independent of initial field topology. Simulations with larger temporal

domains will need to be done to verify this point.

The intermediate- and small-scale structure of the MRI-driven turbulence is

probed through the use of two-point correlation functions. It is found that the par-

tition of turbulent energy between the gas and magnetic pressures and the kinetic

energy in the rotating frame exhibits a hierarchy of associated scales and tilted prin-

cipal axes. The observed hierarchy is in agreement with previous results exploring

both local unstratified models and global stratified disks. Further, the intermediate-

(λM) and small- (λm) scale structure agree quite well with results obtained from lo-

cal models. Resolvability of the smallest scales, the minor axes of the correlation

functions, can be estimated to occur for simulations using an isotropic resolution of

128 zones per scale height. Given the cost of simulation BzZ64W, using a reduced

temporal and azimuthal simulation domain, at approximately 150×103 CPU-hours

this would suggest a cost of approximately 2.5M CPU-hours to run BzZ128W (al-

most 40M CPU-hours without orbital advection). While this expense is fairly high,

it is not outside the bounds of the current generation of supercomputers. This sug-

gests that the resolvability of the minor axes, suggested by Guan et al. (2009) as a

precondition for the formation of an inertial range, is within reach.
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Chapter 7

Conclusions and Future Work

While the majority of the issues discussed here are primarily technical in na-

ture, the connection to astrophysical systems should not be forgotten. The use of

the magnetic tilt angle as a convergence metric has the potential to greatly simplify

the often difficult task of running simulations from which astrophysically-relevant

quantities can be confidently measured. That the magnetic tilt angle is indepen-

dent of initial field topology, in the unstratified simulations presented, suggests an

important point of unification between the often disparate phenomenologies ob-

served for MRI-driven turbulence induced by various field topologies. However, it

is unlikely that MRI-driven turbulence can be characterized by a simple scalar in

the presence of more complex physics. The smaller volume-integrated value of θB

obtained from stratified simulations (e.g. Beckwith et al. 2011) suggests that the

magnetic anisotropy is suppressed in the corona. Additionally, recent numerical

evidence (John Hawley, private communication) indicates that the use of a pseudo-

Newtonian potential results in a magnetic tilt angle that exhibits radial dependence.

The existence of a connection between the fiducial magnetic tilt angle and the sat-

uration of the MRI by parasitic modes (Pessah, 2010) would further imply that the

tilt angle depends on dissipative coefficients. The development of a new generation

of simulations will have to be undertaken that can simultaneously include these
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more complicated physics at resolutions comparable to those used in local models

to study the converged behavior of the spatial and dissipative dependence of θB.

The difficulty inherent in these types of simulations will be returned to below.

The use of the shearing box model has been tremendously influential and im-

portant in advancing the goal of studying MRI-driven turbulence in differentially-

rotating systems through the use of computational simulations. The use of this

approximation relies on the assumption that a shearing box accurately models a

small co-rotating region of a global accretion disk. The results present here sug-

gest that the veracity of this assumption is subtle. The small-scale structure of

MRI-driven turbulence more efficiently modeled using the shearing box formalism

is found, through the study of two-point correlation functions, to be accurately re-

produced in high-resolution global disks. We also find that the presence of magnetic

flux stimulates stress in a manner analogous to that understood from shearing box

simulations. Quantifying this relationship between magnetic flux and stress results

in a lengthscale, ℓz and ℓφ, that can be interpreted as measuring the “locality” of

global turbulence. These lengthscales are found to be remarkably similar to the

computational domain sizes that are often used in local studies of accretion disk

turbulence. While this is encouraging, it is precisely this relationship between mag-

netic flux and stress that has the potential to cause difficulties. Magnetic flux is

conserved on small scales in local models, whereas consideration of the local statis-

tics derived from global models suggests that the magnetic flux threading a small

subdomain is quite volatile and displays considerable temporal evolution. This evo-

lution, while volatile, is in general towards smaller values of magnetic flux and thus,
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due to the flux-stress relationship, towards smaller values of stress. Because the

accurate modeling of this evolution is impossible in local models, one would ex-

pect them to exhibit an artificially-enhanced amount of stress. It should be noted,

however, that the addition of stratification could potentially affect this last point

as the use of open boundary conditions along with magnetic buoyancy would al-

low the expulsion of magnetic flux from the computational domain. Local models

will undoubtedly remain important to facilitate the study of MRI-driven turbulence

and its small-scale properties, but care must be taken when making astrophysical

inferences from these models.

As computational power increases and the sophistication of algorithms grows

global models will likely come to largely displace local models. The use of orbital

advection for the first time in simulations of global disks represents an important

step towards that. Its use has allowed the simulation of global disks at comparable

resolutions to local models and demonstrated that global simulations can accurately

model small-scale features of MRI-driven turbulence while capturing large-scale fea-

tures and temporal evolution inaccessible to local models. In addition to the simple

performance enhancement orbital advection provides there is the additional benefit

that orbital advection allows the use of high azimuthal resolution without the sig-

nificant cost that azimuthal resolution normally entails. It has often been argued

that the strong shear of accretion disks acts to “smear” azimuthal features over a

larger lengthscale and thus coarse azimuthal resolution is adequate. The evidence

presented here contradicts this belief and demonstrates that an azimuthal resolu-

tion nearly identical to the vertical resolution is required to adequately capture the
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details of MRI-driven turbulence.

The use of orbital advection provides numerous benefits with almost no asso-

ciated costs and as such will likely become an important feature of the landscape of

global accretion disk simulations. However, there are complications involved in using

orbital advection in the context of more astrophysically-relevant accretion disk sim-

ulations, specifically the inclusion of stratification or the use of a pseudo-Newtonian

gravitational potential. The former causes the development of a strongly magne-

tized corona that exhibits supersonic Alfven speeds whereas the latter includes a

“plunging” region within the ISCO in which matter falls into the central potential

at supersonic speeds. Because of these regions, the performance benefit of orbital

advection is limited, although preliminary evidence suggests that there remains a

performance boost of a factor of approximately four. The Athena algorithm is cur-

rently limited to linear grids, in which the grid spacing is uniform throughout the

computational domain. Current work is near completion to extend the Cartesian

geometry to allow non-uniform grids, and the next phase of this work will be to

adapt this to cylindrical geometry through the extension of the prolongation and re-

striction operators (Tóth & Roe, 2002) required to reconstruct magnetic fields while

preserving the solenoidal constraint. Using coarser grids within the plunge region

or the corona will allow a more significant speed-up when combined with orbital

advection while still allowing appropriate resolution in the body of the disk. The

sophisticated algorithm of Athena coupled to the flexibility of a non-uniform grid

and the efficiency of orbital advection combined with next-generation supercomput-

ers will provide an unprecedented platform through which to study the details of
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MRI-driven turbulence at all spatial and temporal scales simultaneously. Leveraging

this platform and the lessons learned here regarding proper resolution to simulate

more astrophysical accretion disks will be the focus of the next phase of this work.
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