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Hypervelocity impacts on satellites or ring particles replenish circumplanetary dusty

rings with grains of all sizes. Due to interactions with the plasma environment and sun-

light, these grains become electrically charged. We study the motion of charged dust

grains launched at the Kepler orbital speed, under the combined effects of gravity and the

electromagnetic force.

We conduct numerical simulations of dust grain trajectories, covering a broad range

of launch distances from the planetary surface to beyond synchronous orbit, and the full

range of charge-to-mass ratios from ions to rocks, with both positive and negative electric

potentials. Initially, we assume that dust grains have a constant electric potential, and,

treating the spinning planetary magnetic field as an aligned and centered dipole, we map

regions of radial instability (positive grains only), where dust grains are driven to escape

or collide with the planet at high speed, and vertical instability (both positive and negative

charges) whereby grains launched near the equatorial plane and are forced up magnetic

field lines to high latitudes, where they may collide with the planet.

We derive analytical criteria for local stability in the equatorial plane, and solve for

the boundaries between all unstable and stable outcomes. Comparing our analytical solu-

tions to our numerical simulations, we develop an extensive model for the radial, vertical

and azimuthal motions of dust grains of arbitrary size and launch location. We test these



solutions at Jupiter and Saturn, both of whose magnetic fields are reasonably well rep-

resented by aligned dipoles, as well as at the Earth, whose magnetic field is close to an

anti-aligned dipole.

We then evaluate the robustness of our stability boundaries to more general conditions.

Firstly, we examine the effects of non-zero launch speeds, of up to 0.5 km s−1, in the

frame of the parent body. Although these only weakly affect stability boundaries, we

find that the influence of a launch impulse on stability boundaries strongly depends on its

direction.

Secondly, we focus on the effects of higher-order magnetic field components on or-

bital stability. We find that vertical stability boundaries are particularly sensitive to a

moderate vertical offset in an aligned dipolar magnetic field. This configuration suffices

as a model for Saturn’s full magnetic field. The vertical instability also expands to cover

a wider range of launch distances in slightly tilted magnetic dipoles, like the magnetic

field configurations for Earth and Jupiter. By contrast, our radial stability criteria remain

largely unaffected by both dipolar tilts and vertical offsets.

Nevertheless, a tilted dipole magnetic field model introduces non-axisymmetric forces

on orbiting dust grains, which are exacerbated by the inclusion of other higher-order

magnetic field components, including the quadrupolar and octupolar terms. Dust grains

whose orbital periods are commensurate with the spatial periodicities of a rotating non-

axisymmetric magnetic field experience destabilizing Lorentz resonances. These have

been studied by other authors for the largest dust grains moving on perturbed Keplerian

ellipses. With Jupiter’s full magnetic field as our model, we extend the concept of Lorentz

resonances to smaller dust grains and find that these can destabilize trajectories on sur-

prisingly short timescales, and even cause negatively-charged dust grains to escape within

weeks. We provide detailed numerically-derived stability maps highlighting the destabi-

lizing effects of specific higher-order terms in Jupiter’s magnetic field, and we develop



analytical solutions for the radial locations of these resonances for all charge-to-mass

ratios.

We include stability maps for the full magnetic field configurations of Jupiter, Sat-

urn, and Earth, to compare with our analytics. We further provide numerically-derived

stability maps for the tortured magnetic fields of Uranus and Neptune.

Relaxing the assumption of constant electric charges on dust, we test the effects of

time-variable grain charging on dust grain motion in two distinct environments. Firstly,

we examine orbital stability in the tenuous plasma of Jupiter’s main ring and gossamer

ring where sunlight, the dominant source of grain charging, is periodically interrupted by

transit through the planetary shadow. This dramatically expands dynamical instabilities

to cover a large range of grain sizes. Secondly, we study the motion of dust grain orbits

in the dense plasma environment of the Io torus. Here dust grain charges deviate little

from equilibrium, and our stability map conforms closely to that of constant, negatively-

charged dust grains.

Finally, we focus on the poorly understood spokes in Saturn’s B ring, highlighting the

observational constraints on spokes, and present our hypothesis for spoke formation.
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Chapter 1

Introduction

1.1 A Renaissance in Dynamics

In recent decades, a plethora of non-gravitational effects on orbital mechanics has ex-

panded the study of how small bodies move. Rotating asteroids with temperature dif-

ferences on the surface experience the gentle thermal radiative thrust of the Yarkovsky

effect. Comets sojourning the inner solar system develop surface jets that provide sig-

nificant orbital impulses. The dust grains sprinkled throughout the solar system by these

bodies are sensitive to radiation pressure, Poynting-Robertson drag, and corpuscular drag

in the Solar wind. Around other stars, gas drag can be a significant force on the dust that

we see in circumstellar debris disks. Near planets, drag from the upper atmosphere be-

comes the dominant cause of orbital decay, and in optically thick ring systems, collisions

and contact forces are crucial to understanding the motions and lifetimes of ring parti-

cles. Each of these processes work on individual particles or planetesimals in addition to

gravity, depending on the environment around the particle as well as its own properties,

particularly its mass. Although dust grains are modest in mass, their presence in great

numbers makes them of particular importance in astronomy. Dusty debris disks around

1



other stars are frequently the only observable clues we have about unseen planets. This

makes the dynamics of dust crucial to interpreting images of systems where planets are

forming. Understanding the motion of dust released by comets or the collisional grinding

of asteroids can help us trace the origins of meteoroids that make their way to the Earth

from elsewhere in the Solar System, or even from other stars. In the dusty ring systems,

the fate of dust grains may determine the lifetime of the rings themselves, or elucidate the

rate of dust replenishment.

1.2 The Electromagnetic Force on Dust

For the dust grains generated in the planetary ring systems, the most important forces

are gravity and the Lorentz force. Dust in space acquires electric charges in several

ways. Moving through the plasma environment produces a negative charge on a grain,

since the plasma electrons are much lighter and swifter than ions and hence are captured

more frequently by orbiting dust grains (Goertz 1989). On the other hand, sunlight ejects

photo-electrons from the surface of a grain, leaving positive charges (Horányi et al. 1988).

Electron or ion impacts will also produce secondary electron emission, which also favors

a net positive equilibrium charge on the grain (Whipple 1981). These currents interact

in complicated ways; the charging of a dust grain depends on the physical properties of

the grain itself and also on its charge history (Meyer-Vernet 1982). Graps et al. (2008)

provide an excellent review of these processes.

Combined with gravity, EM effects determine the morphology of dusty rings, par-

ticularly those of Jupiter and Saturn. At Jupiter, resonant perturbations by the rotating

planetary magnetic field on orbiting dust grains excite their inclinations forming a faint

extended halo that envelops the main ring north and south of the equator plane (Burns

et al. 1985). Furthermore, time resonant charge-variation acting on dust grains in the

2



Thebe ring increases their orbital eccentricities, extending the dusty ring well beyond the

orbit of Thebe (Hamilton and Krüger 2008). Streams of tiny dust grains are expelled

at high speed from both the Jupiter system (Hamilton and Burns 1993a; Horányi et al.

1993a) as well as Saturn (Kempf et al. 2005). These effects are all determined by the

motions of grains dominated by the Lorentz force and gravity. Even in Saturn’s B ring, an

optically thick belt of boulder sized particles, EM effects are at the heart of the mysterious

spokes of dust. It is to explain these diverse phenomena that motivates this thesis on the

dynamics of charged dust.

In our Solar System, the planetary magnetic field configurations are as diverse as the

planets themselves. Saturn has the simplest magnetic field, well modelled by a simple ax-

isymmetric dipolar field slightly offset northwards from the center of the planet. Jupiter,

with by far strongest planetary magnetic field, has a more general configuration, but one

that is dominated by an offset and moderately tilted magnetic dipole. A similar configura-

tion exists at Earth, however, at the current epoch, the Earth is unique in the Solar System

for having its dipolar magnetic field component anti-aligned with the planetary rotation.

Hence, at the Earth, the magnetic north pole is very close to the geographic south pole.

Voyager 2 measured the magnetic fields of both Uranus and Neptune, and in both cases

found complex configurations that conform poorly to a tilted or offset dipole model.

Our goal is to develop an understanding of how dust grains of all sizes in the cir-

cumplanetary environment, move under the forces of planetary gravity and the Lorentz

force. To isolate the important physics in this problem, we shall first look at the motion

of EM-dominated grains in the simplest magnetic field configuration possible, a dipole.

We shall then extend our analysis to cover the entire spectrum of dust grain sizes, from

ions dominated by EM forces to rocks controlled by gravity. The next step is to exam-

ine the effects of general magnetic field configurations on the dynamics of charged dust.

Beyond these effects, we study time variable grain charging and its influence on orbital

3



stability. And finally, we will have the tools and insights necessary to understand such

diverse phenomena in the rings the Jovian dust stream and Saturn’s spokes.

1.3 Outline of Chapters

The Lorentz force applies only where particles carry electric charges and move relative

to a magnetic field. In Chapter 2 we introduce the motion of charges in a simple dipolar

magnetic field with the Lorentz force acting in isolation. This will serve not only to

review an important limiting case for our problem, to which we shall add complexity in

later chapters, but we shall obtain results in this regime that do not appear in the literature.

In Chapter 3, we explore the stability of Kepler-launched grains for all charge-to-

mass ratios and for all launch distances in a centered and aligned dipolar magnetic field

model for Jupiter. We consider the motion of grains launched from ring particles or from

satellites in a collisionless environment, and assume that dust grains maintain a constant

charge-to-mass ratio. This study determines the boundaries between launch conditions

that permit stable orbits from those that result in trajectories that where dust grains are

either expelled from planet or coerced to crash into the planet immediately after launch.

For the stable grains, our analysis includes solutions to the fundamental orbital frequen-

cies in the epicyclic model of dust grain motions. Chapter 3 is based largely on the paper

Jontof-Hutter and Hamilton (2012a), and the solutions are applicable wherever an aligned

dipole approximation can be defended.

In chapter 4, we test the stability boundaries of Chapter 3 to non-zero launch impulses

in the frame of the parent particle. These launch conditions are appropriate for material

released from parent bodies by high speed impacts. We then consider the effects of higher-

order magnetic field terms on the fate of grains. We isolate the effects of Jupiter’s offset

and tilted dipolar magnetic field terms, then we explore the higher-order field components,

4



and study the destabilizing effect of Lorentz resonances over all charge-to-mass ratios.

Finally, we compile stability maps for dust grains in the general magnetic fields of Jupiter,

Saturn, Uranus, Neptune and Earth.

In chapter 5, we relax our assumption of constant charge-to-mass ratio on a dust grain.

Here we review the grain charging equations and discuss the assumptions adopted in our

numerical models. We then explore the effects of time-varying electric charges on dust

grains due to transit through planetary shadows, in two distinct charging environments:

the tenuous plasma of Jupiter’s main and gossamer rings, and the dense plasma in the Io

torus. The latter motivates our discussion of the origin and dynamics of the Jovian high

speed dust stream.

In chapter 6, we investigate the spokes in Saturn’s B ring, summarizing the observa-

tional constraints and existing theoretical challenges presented by these ghostly appari-

tions. We then develop a hypothesis for the spokes using the results of chapters 3, 4 and 5

to highlight the relevant dynamics in our collisional cascade model for spoke formation.
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Chapter 2

Planetary Magnetic Fields

Motivated by the aurora borealis, the Norwegian physicist Carl Störmer pioneered studies

of the motion of charged particles in the Earth’s magnetosphere in the early twentieth

century. His development of analytical and numerical techniques to model the trajectories

of charges in the geomagnetosphere were an intellectual achievement matched by his

practical creativity. Using cameras deployed around Norway linked by early telephone

communications, Störmer was the first to measure the latitudes and altitudes of aurorae

in 1910. His work made him the world’s leading authority on aurorae, and he also made

major contributions in the study of cosmic rays.

It was not long before the technology to lift scientific instruments high above the

ground permitted direct experiments in space, with the mysterious cosmic rays being one

of the first targets. On the eve of the Space Age, James Van Allen led experiments using

balloons, rockets and ultimately balloon-launched rockets to observe cosmic rays in the

upper atmosphere. His results led him to predict the existence of high energy plasma

trapped in the Earth’s magnetic field.

Following the launch of Sputnik by the Soviet Union, Van Allen argued to include

a Geiger Counter aboard the first artificial satellite launched by the United States, Ex-

plorer 1. This enabled the discovery of the radiation belts that bear his name. It also
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heralded the age of interplanetary exploration. Within just 30 years, the Pioneer and Voy-

ager missions had revealed the magnetospheres of all four of the giant planets. In the ring

systems of these distant worlds, charged dust grains are significantly perturbed by elec-

tromagnetic forces, arising from rotating magnetic fields. Our aim is to study the motion

of such grains. We assume that dust grains are launched from parent particles in planetary

rings at the Kepler orbital speed, and we seek to understand their orbital motions for all

sizes and launch distances.

The results of Störmer (1955) and Thomsen and van Allen (1980) implicitly assume

that all other perturbations are negligible, an excellent assumption in the regime of high

energy plasma in radiation belts or aurora, or equivalently, since the particles we are inter-

ested in are launched at the local Kepler orbital speed, that the rotation rate of the plane-

tary magnetic field is much less than the Kepler frequency. We begin here by considering

the motion of highly charged particles in the simplest magnetic field configuration pos-

sible, the magnetic dipole. In chapter 3, we will test to what extent the equations in this

chapter apply to orbiting dust grains.

2.1 The Magnetic Dipole

For an aligned magnetic dipole in a spherical coordinate system (r,λ,φ), where λ, the

latitude, is the angle from the dipolar equator;

~B =
3( ~mB· r̂)r̂− ~mB

r3 . (2.1)

Here mB = g10R3
p is the scalar strength of the dipole moment at the planetary equator,

Rp is the planetary radius, and g10 is the equatorial magnetic field strength in Gauss. To

express the field strength as a scalar B(mB,r,λ), we take the dot product of equation 2.1

with itself and find

B(mB,r,λ) =
mB

r3 (1+3sin2
λ)1/2. (2.2)
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Note that due to axial symmetry there is no dependence on the azimuthal angle φ, and it

is a simple matter to consider the same geometry in cylindrical coordinates (ρ,z), where

ρ = r cos(λ), and z = r sin(λ). For a particular point in this system, it is conventional to

keep track of the radial distance r0 at which a local field line crosses the equatorial plane.

Each field line is given by the equation

r = r0 cos2
λ (2.3)

(Lew 1961). Thus the magnetic field strength at latitude λ on a field line crossing the

equatorial plane at a distance r0 becomes

B =
mB

r3
0

(1+3sin2
λ)1/2

cos6 λ
(2.4)

(Lew 1961). The magnetic field is weakest at the equator and increases rapidly towards

the poles. For λ = 30◦, the field is already more than three times its strength at the equator.

Motion in an aligned dipole occurs on three timescales; rapid gyromotion around mag-

netic field lines, slower bounce motion up and down field lines, and still slower azimuthal

drift.

2.1.1 Gyromotion

The Lorentz force acting on a charge q moving at velocity ~v through a magnetic field is

given by

~FB =
q
c
~v×~B (2.5)

where c is the speed of light. Note that we use CGS units here and throughout. Only

the velocity component perpendicular to the magnetic field v⊥ contributes to the Lorentz

force, and the force itself is perpendicular to both ~v⊥ and ~B. The grain rapidly spirals

about the field lines with gyroradius rg. Equating the electromagnetic force with the

centrifugal force mv2
⊥

rg
, then in the frame of the guiding center a gyrating particle of mass
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m, experiences gyrations at frequency:

Ωg =
v
rg

=
qB
mc

. (2.6)

2.1.2 Mirror Motion

Consider a charged particle rapidly gyrating due to the Lorentz force. The particle is free

to drift parallel to the magnetic field lines. Following Eq. 2.4, the magnetic field strength

increases rapidly along a field line moving away from the magnetic equator.

Any force oriented at right angles to a particle’s motion can do no work on that parti-

cle. Thus, in the frame rotating with the guiding center, the Lorentz force does no work

and a dust grain’s speed v remains constant:

v2 = v2
⊥+ v2

‖ = constant, (2.7)

where v⊥ and v‖ are the speeds perpendicular and parallel to the magnetic field lines,

respectively. The v⊥ component determines the radius of the gyrocycle, while the v‖

component moves the center of gyration to regions of differing magnetic field strength.

If changes to a non-rotating magnetic field ~B are small over the size and time scales of

gyromotion, the ratio
v2
⊥
B

= constant, (2.8)

is an adiabatic invariant (de Pater and Lissauer 2010). These two conditions provide an

important constraint on the grain’s motion parallel to the field lines. As a grain with

a vertical velocity component climbs up a magnetic field line away from the equatorial

plane, the field strength B increases in accordance with Eq. 2.4, and the adiabatic invariant

(Eq. 2.8) implies that v⊥ also increases. Hence, by conservation of energy (Eq. 2.7), v‖

must decrease. There is thus a restoring force directed towards the equatorial plane where

the magnetic field strength is a local minimum, and the motion parallel to the field lines
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takes the form of bounce oscillations between mirror points north and south of the equator

(Störmer 1955).

To calculate the bounce period in this regime, we evaluate the integral

TB =
Z ds

v||
= 4

Z
λm

0

ds
v||

(2.9)

where ds is an increment in the path of the grain as it climbs a magnetic line, at velocity v||

(Thomsen and van Allen 1980), and λm is the latitude at the mirror point. Equations 2.7

and 2.8 allow us to isolate v||.

v2
|| = v2

(
1− B

Bm

)
, (2.10)

where Bm is the magnetic field strength at the mirror point (Lew 1961).

Figure 2.1 illustrates the path along a dipolar field line that crosses the magnetic equa-

tor at r0. An increment along this path, ds, satisfies the following equation:

ds2 = (rdλ)2 +dr2. (2.11)

Differentiating equation 2.3 to put dr in terms of dλ, we find

ds = r0 cosλ(1+3sin2
λ)1/2dλ, (2.12)

and finally, substituting equations 2.12 and 2.10 into Eq. 2.9, and assuming small vertical

oscillations from the magnetic equator (λm << 1), we expand Eq. 2.4 to order λ4, and

evaluate the integral to find

TB =
2
√

2π

3
r0

v

(
1+

23
16

λ
2
m +

5165
3072

λ
4
m +O(λ6

m)
)

. (2.13)

The latitudinal range of the mirror motion depends on the pitch angle of motion α0

at the magnetic equator, defined as the angle between ~v and ~B. The pitch angle directly

determines the mirror point via the following relation:

sin2(α0) =
cos6 λm√

1+3sin2
λm

. (2.14)
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ds

z

r = r0c
os

2 (λ)

r0λ ρ

Figure 2.1: Geometry of a dipole magnetic field. The circle centered at the origin repre-
sents the planet, and the solid curve permeating the planetary surface denotes a magnetic
field line. The dotted curve marks a circular arc at the distance that the field line crosses
the equator. A small increment along the length of the field line ds is illustrated, defined
by equation Eq. 2.11.

To test the accuracy of Eq. 2.13, we modeled the bounce period in hours, for grains dom-

inated by Lorentz forces in a slowly rotating magnetic dipole field. Figure 2.2 compares

the bounce period of Eq. 2.13 with an empirical model of Thomsen and van Allen (1980)

based on the work of Lenchek et al. (1961). Alongside these solutions we plot numerical

results for grains launched at the Kepler speed at Saturn.

As the vertical oscillations increase in amplitude and become non-linear, the bounce

period increases. Figure 2.2 also shows that for small vertical oscillations, where α≈ 90◦,

the bounce period is fairly constant over a range of amplitudes, and all three models are

in close agreement with our simulations. For higher bounce amplitudes, however, our

second and fourth-order approximations do not match the data as well as the Lenchek
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Figure 2.2: The bounce period TB between mirror point latitudes λm in a slowly rotating
magnetic dipole. The points are numerical data for a planet, identical to Saturn in mass
and size but with a leisurely 10,000 hour rotation period. The grains, launched at 1.9Rp

at the Kepler speed, collide with the planet if λm ≥ 42◦. The dotted curve is an empirical
solution following Thomsen and van Allen (1980), and the lower solid curve marks the
fourth order approximation of Eq. 2.13. The upper dashed curve denotes just the second
order terms in Eq. 2.13.

et al. (1961) empirical model.

As a gyrating particle climbs up a magnetic field line, the curvature of the field line

also determines the tilt of the gyroloop. Figure 2.3 illustrates the attitude of a gyroloop

at its maximum latitude λm, with tilt angle ψ at right angles to the field line at the mirror

point. Along a magnetic field line described by Eq. 2.3, and near the magnetic equator

where λm is small;

ρ = r0 cos3(λ)≈ r0

(
1− 3λ2

2

)
(2.15)
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z

ρ

Figure 2.3: The tilt of a gyroloop at a mirror point λm, seen as a line of length 2rg from
the side. Here the size of the gyroloop is exaggerated for illustrative purposes. For small
latitudes, the tilt angle Ψ≈ 3λ.

and

z = r0 cos2(λ)sin(λ)≈ r0λ. (2.16)

Evaluating ∂z
∂ρ

= dz
dλ

/dρ

dλ
, and ignoring terms of order λ2,

ψ≈−
(

∂z
∂ρ

)−1

≈ 3λm. (2.17)

Thus, for small bounce oscillations, the tilt of the gyroorbit is three times its instantaneous

latitude at the mirror point.
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2.1.3 Azimuthal Drift

Even the most highly charged dust grains are not tied to magnetic field lines, but rather

drift azimuthally due to other perturbative forces or a non-uniform magnetic field. For

a complete survey of all such effects, we recommend Nicholson (1983) or de Pater and

Lissauer (2010). Here we focus on the drifts that are relevant for particles launched near

the magnetic equator.

Consider an arbitrary force acting on a charged particle in addition to the Lorentz

force. The component parallel to the magnetic field will cause unchecked acceleration

along the field, but the part perpendicular to the field will cause a drift at speed

~v f =
c
q

~F⊥×~B
B2 , (2.18)

relative to the magnetic field lines.

If F⊥ is an electric field, the drift rate is

~vE =
c~E×~B

B2 . (2.19)

Electric fields can arise near the ionosphere at the Earth, but more relevantly for our

purposes, a spinning magnetic field can be treated as a stationary magnetic field plus an

electric field with magnitude

~E =−
(~Ωp×~r)×~B

c
, (2.20)

where Ωp is the rotation rate of the planet on its axis. This electric field causes charged

grains to accelerate radially across magnetic field lines and adds a contribution to the

azimuthal drift. Since the electric field is independent of the charge on the grain, the drift

is in the same direction for both positive and negative charges. The effect in the high q/m

limit is that charged particles are nearly tied to magnetic field lines in the rotating frame,

or alternatively, drift at speed Ωpr, the rotation speed of the magnetic field in the inertial

frame.
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Near the magnetic equator, the force of gravity is always perpendicular to the magnetic

field. Hence, the gravitational drift

~vg =
mc~g×~B

qB2 , (2.21)

has a similar form to Eq. 2.19. With gravity acting alone, the drift on a positive ion is

retrograde, or clockwise as viewed from the north. Negative grains go the opposite way.

The radial gradient in a dipolar magnetic field also causes an azimuthal drift:

~v∇ =
1

2B2
v2

Ωg
(~B×~∇B). (2.22)

Note that the gyrofrequency Ωg from Eq. 2.6 is a signed quantity, hence electrons and

again, ions drift in opposite directions.

The vertical motion along the magnetic field lines causes a centrifugal force

Fcent =
mv2

||
Rc

, (2.23)

where Rc is the radius of curvature of the field line (Fig. 2.3). For small vertical excur-

sions, the radius of curvature of a field line is simply Rc = r0
3 . Substituting this force into

Eq. 2.18 yields

~vcurv =
v2
||

ΩgRc
(R̂c× B̂). (2.24)

The curvature drift is the weakest contribution of the drift rates we consider here, since

we are assuming only small vertical excursions from the magnetic equator.

These drift rates are strictly valid only in the electromagnetically-dominated regime.

Furthermore, the equations implicitly assume that the rotation speed of the planetary mag-

netic field is negligible compared to the motion of individual charges. We shall return to

consider how these drift rates are affected with both gravity and planetary rotation on

Kepler-launched grains in the following chapter.
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Chapter 3

The Dynamics of Charged Dust Grains

in Aligned Dipolar Magnetic Fields

3.1 Introduction

1 The discoveries of the faint dusty ring systems of the giant planets beginning in the late

1970s greatly changed our understanding of planetary rings. Unlike Saturn’s classical

rings, which are most likely ancient (Canup 2010), dusty rings are young and are con-

tinually replenished from source satellites. Individual ring particles have short lifetimes

against drag forces and other loss mechanisms, and because dusty rings are so diffuse,

they are essentially collisionless. Furthermore, dusty rings are affected by a host of non-

gravitational forces including solar radiation pressure and electromagnetism, which can

sculpt them in interesting ways.

Since the giant planets are far from the Sun and dusty rings are normally near their

primary, radiation pressure is usually a weak perturbation to the planet’s gravity. The elec-

tromagnetic force arising from the motion of charged dust grains relative to the planetary

1This chapter is based on published work of Jontof-Hutter and Hamilton (2012a).
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magnetic field, however, can be quite strong. In particular, with nominal electric charges,

dust grains smaller than a fraction of a micron in radius are more strongly affected by

electromagnetism than gravity.

Many authors have investigated detailed aspects of the motion of charged grains in

planetary magnetic fields, but no study has yet determined the orbital stability of grains

for all charge-to-mass ratios launched at all distances in a systematic way. In this chapter,

we explore the local and global stability of both positive and negative dust grains launched

from ring particle parent bodies which themselves orbit at the local Kepler speed.

3.1.1 Motion in the Kepler and Lorentz Limits

As grains with radii greater than several microns have small charge-to-mass ratios, elec-

tromagnetic effects are weak, and the grains orbit the planet along nearly Keplerian el-

lipses. In the frame rotating with the mean motion of the dust particle, the orbits appear

as retrograde elliptical epicycles with a 2:1 aspect ratio (Mendis et al. 1982). When

gravity acts alone, the vertical, radial and azimuthal motions all have precisely the same

frequency. Equations governing the slow changes to the ellipse’s orbital elements due

to weak electromagnetic perturbations from a rotating aligned dipole magnetic field are

given by Hamilton (1993a). These equations show that the three frequencies diverge

slightly and are functions of the sign and magnitude of the charge as well as the distance

from the planet and from synchronous orbit.

Conversely, the very smallest dust grains approach the Lorentz limit, discussed in

Chapter 2, where the electromagnetic force dominates over gravity. In this regime, the

frequencies of radial, vertical and azimuthal motions differ significantly. The radial oscil-

lation is fastest and, as the electromagnetic force is perpendicular to the rotating magnetic

field, particles gyrate about local field lines on typical timescales of seconds for dust,

and microseconds for ions. Vertical motions are slower and azimuthal drift rates are the

17



slowest of all as discussed in Chapter 2.

3.1.2 Dust Affected by both Gravity and Electromagnetism

For a broad range of grain sizes from nanometers to microns, both gravity and the Lorentz

force are significant, and their combined effect causes a number of dynamical phenomena

that are distinct from either limiting case. As dust in this size range predominates in many

planetary rings (Burns et al. 1999; de Pater et al. 1999; Krüger et al. 2009; Showalter et al.

2008), their dynamics have attracted much attention.

Schaffer and Burns (1994) provide a general framework for the motion of dust started

on initially Keplerian orbits. Since the radial forces on a dust grain at launch are not bal-

anced as they are for a large parent body on a circular orbit, these dust grains necessarily

have non-zero amplitude epicyclic motion. For the magnetic field configurations of the

giant planets, a negatively-charged dust grain gyrates towards synchronous orbit while

positively-charged dust initially moves away from this location. In fact, some positively-

charged grains are radially unstable and either crash into the planet if launched inside

synchronous orbit, or are expelled outwards if launched from beyond this distance. The

latter have been detected as high-speed dust streams near Jupiter (Grün et al. 1998, 1993)

and Saturn (Kempf et al. 2005). Theoretical explanations for the electromagnetic acceler-

ation process have been given by Horányi et al. (1993a,b), Hamilton and Burns (1993b)

and Graps et al. (2000).

Mendis et al. (1982) explored the shape and frequency of epicycles for negatively-

charged grains in the transitional regime, where both EM effects and gravity are compa-

rable. The epicycles make a smooth transition from perfectly circular clockwise (retro-

grade) gyromotion in the Lorentz limit, to 2:1 retrograde elliptical epicycles in the Kepler

limit. Mitchell et al. (2003) studied the shapes of epicyclic motion for positive grains

and found that there is not a similarly smooth transition from prograde gyromotion to
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retrograde Kepler epicycles, and that the epicyclic motions of intermediately-sized grains

cannot be represented as ellipses. The effects of gravity and electromagnetism compete

for intermediate charge-to-mass values and the resulting motion can be primarily radial,

leading to escape or collision (Hamilton and Burns 1993b; Horányi et al. 1993b).

Northrop and Hill (1982, 1983a) and Northrop and Connerney (1987) studied the ver-

tical motion of negatively-charged dust grains on circular uninclined orbits in a centered

and aligned dipole field, a configuration most closely realized by Saturn. They found that

some small grains on initially centrifugally-balanced circular trajectories inside the syn-

chronous orbital distance are locally unstable to vertical perturbations, climbing magnetic

field lines to crash into the planet at high latitudes. Some motions at high latitude, how-

ever, are stable: Howard et al. (2000, 1999) identified non-equatorial equilibrium points

for charged dust grains, and showed that dust grains can orbit them stably. They charac-

terized these “halo” orbits for positive and negative charged grains on both prograde and

retrograde trajectories. Howard and Horányi (2001) used these analytical results to argue

for a stable population of positively-charged grains in retrograde orbits and developed

numerical models of such halo dust populations at Saturn. Grains that may populate these

halos, however, are unlikely to originate from the equatorial parent bodies considered

here.

If one of the dust grain’s natural frequencies matches a characteristic spatial frequency

of the rotating multipolar magnetic field, the particle experiences a Lorentz resonance

(Burns et al. 1985; Hamilton 1994; Hamilton and Burns 1993a; Schaffer and Burns 1987,

1992). Lorentz resonances behave similarly to their gravitational counterparts and can

have a dramatic effect on a dust grain’s orbit, exciting large radial and/or vertical mo-

tions. These resonances have been primarily studied in the Kepler limit appropriate for

the micron-sized particles seen in the dusty rings of Jupiter. In the idealized problem that

we address in this chapter, with an axisymmetric magnetic dipole, Lorentz resonances

19



cannot occur.

Variations in a dust grain’s charge can also alter its trajectory over surprisingly rapid

timescales. Gradients in the plasma properties, including density, temperature and even

composition affect the equilibrium potential of a grain by altering the direct electron and

ion currents. This can result in resonant charge variation with gyrophase, causing radial

drift. Working in the Lorentz limit, Northrop and Hill (1983a) noted that with large radial

excursions, the grain’s speed through the plasma can vary significantly with gyrophase,

leading to enhanced charging at one extremity. A similar effect occurs in the Kepler limit

where resonant charge variation can cause a dramatic evolution in the orbital elements

of a dust grain (Burns and Schaffer 1989). Northrop et al. (1989) found that the varying

charge has a time lag that depends on the plasma density and grain capacitance. These

time lags can cause grains to drift towards or away from synchronous orbit depending

on the grain speed, and on any radial temperature or density gradients in the plasma.

Schaffer and Burns (1995) explored the effects of stochastic charging on extremely small

grains, where the discrete nature of charge cannot be ignored. They found that Lorentz

resonances are robust enough to survive even for small dust grains with only a few electric

charges.

The dynamics of time-variable charging may play an important role in determining

the structure of Saturn’s E ring (Juhász and Horányi 2004) and Jupiter’s main ring and

halo (Horányi and Juhász 2010). Another example of charge variation occurs when the

insolation of a dust grain is interrupted during transit through the planetary shadow. This

induces a variation in charge that resonates with the grain’s orbital frequency (Horányi

and Burns 1991). Hamilton and Krüger (2008) found that this shadow resonance excites

radial motions while normally leaving vertical structure unaltered. This effect can explain

the appearance of the faint outward extension of Jupiter’s Thebe ring, and the properties

of its dust population sampled by the Galileo dust detector (Krüger et al. 2009).
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3.1.3 Research Goals

In this chapter, we consider the orbits of charged grains launched in planetary ring sys-

tems. Our aim is to explore the boundaries between stable and unstable orbits in aligned

and centered dipolar magnetic fields. Dipolar fields have the advantage of being analyti-

cally tractable while still capturing most of the important physics. Under what conditions

are grains unstable to vertical perturbations? Which grains escape the planet as high speed

dust streams? And which grains will strike the planet after launch? All of these instabil-

ities depend on the launch distance of the grain and its charge-to-mass ratio. We first

explore grain trajectories numerically and then derive analytical solutions for the stability

boundaries that we find.

There are several standard choices for expressing the ratio of the Lorentz and gravita-

tional forces. The charge-to-mass ratio q/m in C/kg (Northrop and Hill 1982) or in stat-

Coulomb/g (Mitchell et al. 2003) may be the most straightforward, but it is cumbersome.

For this reason, converting to the grain potential measured in Volts, which is constant

for different-sized dust grains, is a common choice (Howard et al. 2000; Mendis et al.

1982; Mitchell et al. 2003; Schaffer and Burns 1994). Yet another option is to express the

charge-to-mass ratio in terms of frequencies associated with the primary motions of the

grain, such as the gyrofrequency, orbital frequency and the spin frequency of the planet

(eg. Mendis et al. 1982; Mitchell et al. 2003).

We choose a related path, namely to fold q/m and key planetary parameters into a

single dimensionless parameter L∗ following Hamilton (1993a). Consider the Lorentz

force in a rotating magnetic field:

~FB =
q
c
(~v− ~Ωp×~r)×~B, (3.1)

where c is the speed of light, ~r and ~v are the grain’s position and velocity in the in-

ertial frame, ~Ωp is the spin vector of the planet, and ~B is the magnetic field rotating
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with the planet. Note that Eq. 3.1 differs from Eq. 2.5 by introducing the motion of the

magnetic field itself in inertial space. The second component of Eq. 3.1 is q~E, where

~E =−1
c ( ~Ωp×~r)×~B is the so-called co-rotational electric field. In Chapter 2, we saw that

a rotating magnetic field is equivalent to a stationary magnetic field in the rotating frame

with a radial electric field, which acts to accelerate charged grains across magnetic field

lines. Since a dipolar magnetic field obeys ~B = −g10R3
p/r3ẑ in the midplane (with g10

the magnetic field strength at the planet’s equator), ~E, like gravity, is proportional to 1/r2

there (Hamilton 1993a). Thus the ratio of the electric force to gravity is both independent

of distance and dimensionless:

L∗ =
qg10R3

pΩp

GMpmc
. (3.2)

Here, Mp is the planetary mass, m is the dust grain mass and G is the gravitational con-

stant. Note that the sign of L∗ depends on the product of two signed quantities, q and

g10. For all of the giant planets, the magnetic north pole is in the northern hemisphere,

and g10 > 0. However, for the Earth at the current epoch, g10 < 0 and the magnetic and

geographic poles are in opposite hemispheres.

We have made a slight notational change L → L∗ from Hamilton (1993a), Hamilton

(1993b), to avoid confusion with the L-shell of magnetospheric physics. Choosing L∗ as

an independent variable takes the place of assuming a particular electric potential, grain

size and grain density. We focus our study primarily on Jupiter, the planet with by far the

strongest magnetic field, but also apply our results to Saturn and to the Earth.

3.2 Numerical Simulations

Approximating Jupiter’s magnetic field as an aligned dipole by including just g10 = 4.218

Gauss (Dessler 1983), we have tested the stability of dust grain orbits over a range of

grain sizes and launch distances both inside and outside synchronous orbit. We used a
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Runge-Kutta fourth-order integrator with a step-size chosen to satisfy a minimum accu-

racy threshold, set at one part in 1010. We launched grains at the local Kepler speed with

a small initial latitude of λ = 0.01◦. This tiny nominal value ensures a launch close to

the midplane, whilst avoiding any potential numerical problems from launching a grain

precisely at λ = 0. Non-zero launch speeds from the parent particle do have a small effect

on the stability boundaries, one that we will explore in more depth in a Chapter 4.

Our models treat the grain charge as constant and neglect the gravitational effect of

Jupiter’s oblateness (the J2 term) and other higher-order components of the gravitational

field, and radiation pressure. For both negative and positive grains, we ran simulations for

a grid of 80 values of L∗ and 100 launch distances (rL). The charge-to-mass ratio spans

four decades from the Lorentz regime where EM dominates (|L∗| >> 1), to the Kepler

regime where gravity reigns (|L∗|<< 1). The range of launch distances extends from the

planetary surface to well beyond the synchronous orbital distance (Rsyn), and trajectories

were followed for up to 0.1 years. With some experimentation, we determined that all

relevant dynamical timescales are < 0.1 years and that for longer integration times, the

appearance of our stability plots does not change significantly.

In Fig. 3.1 we plot the fate of 8000 negative and 8000 positive dust grains and find

complex regions of instability. The negatively-charged dust grains in Fig. 3.1a display

only vertical instability at moderate to high L∗ and inside Rsyn. Some are bound by high

latitude restoring forces (locally unstable, light grey) whilst others crash into the planet at

high latitude (both locally and globally unstable, darker grey). To separate these globally

stable grains from locally stable ones, we choose a latitude threshold at λm = 5◦. Although

5◦ is a small latitude, it is far greater than the launch latitude of 0.01◦; any grains excited

beyond λm are clearly locally unstable, and we determined that our results were fairly

insensitive to actual value of λm.

Northrop and Hill (1982) derived a boundary for the threshold between locally sta-
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Figure 3.1: Stability of Kepler-launched a) (negative) and b) (positive) dust grains at
Jupiter. We model the planet with a spherically-symmetric gravitational field, and a
centered and aligned dipolar magnetic field. All grains were launched with an initial
latitude of λ = 0.01◦ and followed for 0.1 years. The horizontal dashed line in both
panels denotes the synchronous orbital distance at Rsyn = 2.24Rp. The grain radii (ad) in
microns along the upper axis are calculated assuming a density of 1 g cm3 and an electric
potential of ±5 V so that |L∗|= 0.0284/a2

d . Dust grains in the white regions and lightest
grey areas survive the full 0.1 years, with the latter reaching latitudes λ in excess of 5◦.
Grains in the moderately-grey areas are vertically unstable and strike the planet, also at
high latitudes (λ > 5◦). The darkest regions, seen only in panel b, are radially unstable
grains that crash into the planet (those with launch radius rL < Rsyn), or escape to beyond
resc = 30Rp (from rL > Rsyn) at latitudes less than 5◦. We overplot three analytically-
derived stability boundaries, obtained by Northrop and Hill (1982) for negative grains,
by Horányi et al. (1993b) for small positive grains, and by Hamilton and Burns (1993b)
for large positive grains. Each point on the plot is a trajectory, four of which (marked by
filled squares), are illustrated in detail in Figs. 3.2 to 3.5.
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ble and unstable trajectories for negatively-charged dust and found that grains launched

within a certain distance should leave the equatorial plane (NH82 curve in Fig. 3.1a). In

the Lorentz limit, the vertical instability allows grains to climb up local magnetic field

lines into regions of stronger magnetic field, while for smaller L∗ the path taken by these

grains follows the lines of a pseudo-magnetic field, which includes the effects of plane-

tary rotation (Northrop and Hill 1982). The Northrop curve however, is not a good match

to our data, which reveal additional stable orbits (white areas) immediately inside this

boundary and also close to the planetary surface. These differences arise from the fact that

Northrop and Hill (1982) assumed that grains are launched at their equilibrium circular

speeds, which differ from the circular speeds of parent bodies when L∗ 6= 0. Conversely,

we launch our grains at v =
√

GMp/r, the circular speed of the parent body, which is

appropriate for debris produced by cratering impacts into these objects. In section 3.5, we

develop a vertical stability criterion appropriate for our launch conditions. (In Chapter 4,

we shall relax our assumption on launch conditions and test non-zero launch speeds from

parent bodies for impact ejecta.)

The situation for positive grains is quite different. Figure 3.1b shows a less extensive

region of vertical instability than Fig. 3.1a, and one that is not active close to Jupiter.

More dramatic, however, are the two regions of radial instability (darkest grey areas),

separated by the synchronous orbital distance. Grains inside Rsyn are driven to strike

Jupiter, while those outside escape the planet. If grains move beyond resc = 30Rp, the

inner magnetosphere, we consider them to have escaped. As with λm, our numerical

results are fairly insensitive to the exact value chosen for resc, so long as it is large.

To characterize the individual trajectories that make up Fig. 3.1, we explore a few

examples in detail, focusing on the positively-charged dust grains and proceeding from

smaller to larger grains. Figure 3.2 shows the trajectory of a dust grain that becomes

vertically unstable and crashes into the planet at high latitude. These smallest grains
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Figure 3.2: The trajectory of a positively-charged grain orbiting Jupiter after launch at
rL = 1.74Rp, with L∗ = 31.31 (ad = 0.03 µm). We plot the scaled distance and latitude of
the dust grain against time. The small, rapid radial gyrations are just visible in the upper
plot. The dust grain is vertically unstable on a much longer timescale and ultimately
crashes into the planet. This trajectory is represented by the left-most filled square in
Fig. 3.1b.

spiral up magnetic field lines, which for a dipole are given by r/cos2 λ = rL (Eq. 2.3);

collision with the planet or reflection from a high latitude mirror point typically occurs

within a few tens of hours. By contrast, Fig. 3.3 shows an electromagnetically-dominated

grain that remains stable at low latitude.

A more subtle interplay between radial and vertical motions is illustrated in Fig. 3.4.

This grain is outside the radial instability region in which grains collide with the planet at

low latitude (darkest grey). Instead, large radial motions lead to instability in the vertical

direction, and ultimately, the grain strikes the planet at high latitude. Notice the two white

dots near (L∗ = 1.34, rL/Rp = 2.2) in Fig. 3.1b, signifying grains that survive the full 0.1
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Figure 3.3: The trajectory of a stable positively-charged grain orbiting Jupiter after
launch at rL = 1.74Rp, with L∗ = 3.04 (ad = 0.097 µm). The grain undergoes radial
oscillations much larger than in Fig. 3.2 but its latitude remains low. Here the bounce
period is ∼ 7 times longer than the gyroperiod.

year integration. These trajectories are indeed stable (for at least 100 years) and, as the

effect is much more prominent for the Earth, we discuss it in more detail in section 6.

Finally, Fig. 3.5 shows a dust grain just inside the Hamilton and Burns (1993b) L∗ = 1
2

stability limit. Although the dust grain does not escape, the non-linearity of its radial

oscillation is large enough to excite substantial vertical motions.

A glance at Fig. 3.1 shows that most stability boundaries are unexplained. The Northrop

and Hill (1982) vertical stability boundary does not match the numerical data especially

well, and only applies to negative grains. For positive grains, Horányi et al. (1993a) pro-

vided an approximate criterion for radial escape, which they applied far from synchronous

orbit near Io. Their criterion is based on a comparison between the radius of gyromotion
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Figure 3.4: The trajectory of a positive grain inside Rsyn (rL = 2.0Rp,L∗ = 1.908, ad =
0.122 µm). Here, unlike Fig. 3.3, large radial motions ultimately excite vertical motions,
forcing the trajectory to end with a collision at the planetary surface after just a few orbits.

rg, and the length scale over which the magnetic field changes substantially, namely where

|B/(rg∇B)| ≈ 10, with the gyroradius calculated in the Lorentz limit. Although not in-

tended for use near synchronous orbit where rg → 0, we nevertheless plot it on the left

side of Fig. 3.1b. Finally, the Hamilton and Burns (1993b) L∗ = 1
2 limit, derived from an

energy argument, is a good match to the largest escaping grains. There is however, no

analytical model for the broad class of grains that strike the planet. Accordingly, we seek

to develop a unified theory that can cleanly determine all of these boundaries. We take up

this task first for radial and then for vertical motions.
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Figure 3.5: The trajectory of a positive grain outside Rsyn (rL = 2.7Rp,L∗ = 0.419,
ad = 0.26 µm). As in Fig. 3.4, large radial oscillations eventually excite large vertical
oscillations. Since the dust grain has L∗ < 1

2 , it is energetically required to remain bound
(Hamilton and Burns 1993b). Here T is measured in Earth days.

3.3 Local Radial Stability Analysis

Consider a centered magnetic dipole field that rotates with frequency Ωp around a vertical

axis aligned in the z-direction. Northrop and Hill (1982) derived the Hamiltonian for a

charged dust grain in the rotating frame in cylindrical coordinates:

H = U(ρ,z)+
ρ̇2 + ż2

2
(3.3)

where ρ̇ and ż are the radial and vertical velocity components. The potential is given by

U(ρ,z) =
1

2ρ2

(
pφ

m
−

GMpρ2L∗
Ωpr3

)2

+
GMp

r

(
L∗ρ2

r2 −1
)

(3.4)

where the spherical radius r satisfies r2 = ρ2 + z2 (Howard et al. 2000; Mitchell et al.

2003; Northrop and Hill 1982; Schaffer and Burns 1994). Equation 3.4 is the sum of two
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energetic components: first the azimuthal specific kinetic energy, which can be expressed

as a function of r using the conservation of angular momentum, and then the potential

associated with both the corotational electric field and gravity. Note that we have chosen

the zero of our potential to be approached as ρ → ∞. Because U(ρ,z) is independent of

φ, the azimuthal coordinate, the canonical conjugate momentum pφ is a constant of the

motion. For our launch condition from a large parent body on a circular orbit at r = rL:

pφ

m
= r2

L(nL +ΩgL) (3.5)

(Schaffer and Burns 1994), where nL and ΩgL are the Kepler frequency and gyrofrequency

evaluated at the launch distance rL:

nL =

√
GM
r3

L
, (3.6)

and

ΩgL =
qB
mc

=
n2

LL∗
Ωp

. (3.7)

Notice that in the gravity limit (L∗ → 0), Eq. 3.5 reduces to r2
LnL, the specific angular

momentum about the planet, while in the Lorentz limit (L∗→±∞), it is r2
LΩgL, the specific

angular momentum about the center of gyromotion that moves with the magnetic field.

If the motion of the particle is radially stable, it exhibits epicyclic motion about an

equilibrium point determined from Eq. 3.4. The existence of equilibrium points requires

that ∂U
∂ρ

= ∂U
∂z = 0, both in the equatorial plane (Northrop and Hill 1982) and at high

latitudes (Howard et al. 2000, 1999). The local stability of the equilibrium points, defined

as whether oscillations about these points remain small, is then determined by considering

the second derivatives of the potential. Given our launch condition, we focus on the

equatorial equilibrium points which are of greatest interest. For these, ∂2U
∂ρ∂z

∣∣∣
ρ=ρc,z=0

= 0,

r → ρ, and radial and vertical motions are initially decoupled and may be considered

separately (Mitchell et al. 2003; Northrop and Hill 1982).
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The equilibrium point is the guiding center of epicyclic motion. Grains launched at

the guiding center have canonical conjugate momenta that are different from our Kepler-

launched grains: namely, pφ

m = ρ2
c(ωc +Ωgc), where ωc is the orbital frequency of a grain

at the guiding center, Ωgc is the gyrofrequency at the guiding center, and ρc is the guiding

center distance in the equatorial plane. A local radial stability analysis is most relevant

for our Kepler-launched grains if an equilibrium point is not too distant. Accordingly, it

is important to distinguish between quantities evaluated at the Kepler launch position and

those determined at the guiding center. Here and throughout, we use the subscript c for

the guiding center and the subscript L for the launch position. At the equilibrium point,

∂U
∂ρ

∣∣∣
ρ=ρc,z=0

= 0, which evaluates to:

ω
2
cρc +

GMpL∗
ρ2

c

(
1− ωc

Ωp

)
−

GMp

ρ2
c

= 0. (3.8)

Physically, Eq. 3.8 just implies a balance of forces in the rotating frame, whereby the

centrifugal force, the Lorentz force and gravity sum to zero. We solve Eq. 3.8 for the

angular speed of the guiding center ωc, and find two real roots for L∗ < 1, which includes

all negative charges. For L∗ > 1 conversely, two equilibrium points exist only if

ρ3
c

R3
syn

≤ L2
∗

4(L∗−1)
. (3.9)

Two equilibria always exist inside Rsyn and everywhere for L∗ >> 1 and L∗ << 1. There

are no equilibrium points in a region starting at (L∗ = 2, ρc = Rsyn) in Fig. 3.1b, and

opening upward to include an increasing range of L∗ values for increasing distance ρc.

In this region, with no equilibrium, grains are guaranteed to escape. Not surprisingly,

this region is fully contained within the unstable portion of Fig. 3.1b (darkest grey region

outside Rsyn). The existence of an equilibrium point, therefore, is a necessary prerequisite

for stability.

Additional instability in Fig. 3.1b comes from two sources: i) the intrinsic instability

of the equilibrium point, if it exists, and ii) large amplitude motions about a locally stable
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equilibrium point. Large oscillations are beyond the scope of a local stability analysis and

so we focus on small amplitude radial motion near an equilibrium point, which takes the

form

ρ̈+
∂2U
∂ρ2 ρ = 0. (3.10)

Small radial motions are stable when ∂2U
∂ρ2

∣∣∣
ρ=ρc,z=0

= κ2
c > 0, which, from Eq. 3.4 can be

written as:

κ
2
c = ω

2
c −4ωcΩgc +Ω

2
gc (3.11)

(Mendis et al. 1982; Northrop and Hill 1982; Mitchell et al. 2003). Note here that

the gyrofrequency Ωgc is evaluated at the guiding center, and is given by Eq. 3.7 with

the subscript change: L → c. The epicyclic frequency κc reduces to the Kepler orbital

frequency nc at the guiding center rc in the gravity limit, and to the gyrofrequency Ωgc in

the Lorentz limit. Radial excursions in both of these cases are small and, since κ2
c > 0,

are guaranteed to be stable.

Radial motions are also initially small near synchronous orbit where electromagnetic

forces are very weak (Eq. 3.1), and so a local stability analysis is also applicable. At

synchronous orbit, ωc = nc = Ωp and Eq. 3.11 reduces to κ2
c = Ω2

p(1−4L∗+L2
∗), which

is positive for small or large L∗. For 2−
√

3 < L∗ < 2+
√

3, however, Eq. 3.10 shows that

radial motions near synchronous orbit are locally unstable. Comparing this analysis with

Fig. 3.1b, we see that all orbits with rL ∼ Rsyn that are locally stable are, not surprisingly,

also globally stable. The converse, however, does not hold: although most of the locally

unstable orbits are also globally unstable, some are in fact globally stable (e.g. L∗ < 1
2

just outside Rsyn in Fig. 3.1b). In conclusion, the local analysis is consistent with our

numerical experiments but cannot fully account for our stability boundaries. Accordingly,

we turn to a global analysis, pausing first to put the potential of Eq. 3.4 into a more useful

form and to derive the radius of gyration, rg.
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3.3.1 Radius of Gyration

With our launch condition, grains are often far enough from an equilibrium point that the

small oscillation approximation of Eq. 3.10 is invalid. This is particularly true far from

Rsyn and for L∗ ≈ 1. Returning to the effective potential of Eq. 3.4 with the canonical

conjugate momentum determined by launching the grain at the Kepler speed (Eq. 3.5),

and limiting our attention to planar orbits for which z = 0 and r = ρ, we express the

potential as a quartic polynomial function of distance and a quadratic function of L∗:

U(r,L∗) =
GMp

rL

(
A

r4
L

r4 +B
r3

L
r3 +C

r2
L

r2 +D
rL

r

)
, (3.12)

with dimensionless coefficients

A =
n2

LL2
∗

2Ω2
p

B = −nLL∗
Ωp

(
nLL∗
Ωp

+1
)

C =
1
2

(
nLL∗
Ωp

+1
)2

D = L∗−1.

To determine the radius of the epicycles (rg) induced by a Kepler launch, we follow the

procedure of Schaffer and Burns (1994), and solve for the distance to the potential mini-

mum where ∂U
∂r

∣∣∣
ρ=ρc,z=0

= 0. Note that this is only valid to first order in small quantities,

since we are effectively assuming that the potential is symmetric about the equilibrium

point. Evaluating the derivative, multiplying by r5, setting r = rL + rg, and assuming

rg << rL, we obtain the epicycle radius for a grain launched at rL in terms of parameters

known at launch:

rg =
rL(Ωp−nL)ΩgL

Ω2
gL−ΩgL(3Ωp +nL)+n2

L
. (3.13)

In this limit, the radial range of motion of a dust grain is simply 2|rg|, and the grain

reaches a turning point at rt = rL +2rg. Note the sign conventions used here; rg and ΩgL
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may be either positive or negative. Equation 3.13 corrects a sign error in Schaffer and

Burns (1994) which led to an artificial disagreement between the numerical and analytical

model in their Fig. 6. Equation 3.13, by contrast, shows excellent agreement with our

numerical data for negative grains (Fig. 3.6a). The peak in Fig. 3.6a, for oscillations

towards synchronous orbit, occurs at

rg =
rL

3

(
nL−Ωp

nL +Ωp

)
, L∗ =−

Ωp

nL
. (3.14)

Equation 3.14 predicts that grains with L∗ =−Ωp
nL

launched near Rsyn reach about halfway

to the synchronous orbital distance, in agreement with Fig. 3.6a.

For the positive grains, Eq. 3.13 gives the proper radial range about stable local min-

ima in both the Lorentz limit and in the Kepler limit (Fig. 3.6b). At critical values of

L∗, however, |rg| → ∞ and the assumptions under which Eq. 3.13 was derived are vio-

lated. This is readily apparent in the decreasing quality of the match between the theory

and the data for intermediate-sized grains in Fig. 3.6b. Note that this is the same region

where Mitchell et al. (2003) find large non-elliptical gyrations. Nevertheless, the rela-

tively close agreement between theory and numerical data in Fig. 3.6 confirms that the

epicyclic model is usually a good assumption in planetary magnetospheres.

3.4 Global Radial Stability Analysis

Our local radial stability analysis makes a number of successful predictions, but cannot

fully account for the boundaries in Fig. 3.1b, primarily because of the large radial excur-

sions experienced by the positive grains. Nevertheless, the quartic potential within the

equatorial plane given by Eq. 3.12 contains all the information necessary to determine

which grains strike the planet and which escape into interplanetary space.
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Figure 3.6: The radial range of (a) negative and (b) positive grains launched azimuthally
with the Kepler speed v =

√
GM/rL at 2.0Rp. Both numerical data (points) and the

analytical results (curves from Eq. 3.13) are included. The total radial excursion is twice
the epicyclic radius rg.
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3.4.1 Escaping Grains

Close to the planet, the A/r4 term of Eq. 3.12 dominates the potential, and U(r→ 0,L∗)→

+∞, while for the distant particles we have U(r → ∞,L∗)→ 0. Accordingly, the quartic

potential can have at most three stationary points (one local maximum and two local

minima). Setting r = rL in Eq. 3.12 gives a simple form for the launch potential

U(rL,L∗) =
GMp

rL

(
L∗−

1
2

)
. (3.15)

Energetically, a particle is able to escape if U(rL,L∗) > U(r → ∞,L∗) = 0 and we

immediately recover the L∗ < 1/2 stability criterion of Hamilton and Burns (1993b). Note

that only positive grains can escape from a dipolar magnetic field with g10 > 0 and that,

in principle, grains with L∗ > 1
2 at all launch distances, both inside and outside Rsyn are

energetically able to escape. Whether or not they do so depends on the form of U(r,L∗), in

particular, on the possible existence of an exterior potential maximum with U(rpeak,L∗) >

U(rL,L∗).

Analysis of Eq. 3.12 shows that the potential prevents all grains launched with Ke-

pler initial conditions from crossing Rsyn. Positive grains gyrate away from Rsyn, while

negative grains cannot reach Rsyn (Eq. 3.13, Fig. 3.6).

Outside Rsyn, for all moderately charged grains U(r,L∗) decreases monotonically for

L∗ & 1
2 . Thus L∗ = 1

2 is a global stability boundary and it matches Fig. 3.1b very well.

For larger L∗ (smaller grains), the topography of the potential includes local extrema, as

illustrated in Fig. 3.7. For these trajectories, stability is determined by the height of the

distant peak in the potential. For L∗ ∼ 1 no such peak exists. For larger L∗, however, the

radial potential decreases with distance from rL, then increases to the distant peak, and

finally declines to zero as r → ∞.

Consider the quartic equation U(r,L∗)−U(rL,L∗) = 0, which by construction, has

one root at r = rL, and one root at a more distant turning point r = rt . The critical quartic,
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Figure 3.7: Potential wells for positive grains launched just outside Jupiter’s synchronous
orbit, at rL = 2.4Rp, marked with a solid point. For L∗ = 8.00 (ad = 0.0596 µm), a distant
local maximum bounds the motions. If L∗ = 7.72 (ad = 0.0607 µm) the distant peak in the
potential is at the radial turning point, and the potential is equal to the launch potential;
this is the stability threshold. For smaller L∗, the peak is lower and escape occurs.

where the turning point is also a local maximum (as in Fig. 3.7) has a double root at

r = rt . By factoring out (r− rL), and then differentiating with respect to r, we find a

quadratic equation for the location of the turning point; rt varies smoothly from rt = rL

at synchronous orbit to rt = 3
2rL for rL >> Rsyn. The stability boundary, rL(L∗) starts at

(r = Rsyn,L∗ = 2+
√

3) and asymptotes to

rL

Rsyn
=
(

2L∗
27

) 1
3

(3.16)

for rL >> Rsyn. Equation 3.16 for r >> Rsyn is a useful approximation for the boundary far

from Rsyn, which nicely compliments the exact value we have found at the synchronous

orbital distance. The full solution for the boundary rL(L∗) is given by a rather messy
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cubic equation and so we resort to numerical methods for its solution, which we plot on

Fig. 3.9b.

3.4.2 Grains that Strike the Planet

Inside Rsyn, the surface of the planet presents a physical boundary to radial motion. Par-

ticles that strike the atmosphere are slowed and removed from orbit. The potential at the

planet’s surface U(ρ,z) varies with latitude, and so for simplicity, we restrict our atten-

tion to planar motions where Eq. 3.12 applies. Since, for positive grains in the equatorial

plane, the potential declines as the grain moves inwards from its launch distance rL, it can

have at most one local maximum within rL. There are thus two ways in which a grain can

be prevented from striking the planet: i) the potential U at the surface is greater than the

launch potential, or ii) a potential peak exists between the surface and the launch position

and its value is greater than or equal to the launch potential. These two scenarios are

illustrated in Fig. 3.8. For case i), the stability criterion is where U(Rp,L∗) = U(rL,L∗).

Using Eq. 3.12, we find a quadratic expression in L∗ that implies two boundaries:

n2
Lr2

L
2Ω2

pR2
p

(
rL

Rp
−1
)

L2
∗+

(
1− nLr2

L
ΩpR2

p

)
L∗+

1
2

(
rL

Rp
−1
)

= 0. (3.17)

The two quadratic roots of Eq. 3.17, L1 and L2, may be obtained analytically and are

plotted on Fig. 3.9b. The roots obey the simple expression

L1L2 =
rLR2

p

R3
syn

< 1. (3.18)

Equation 3.18 conveniently highlights several features of the lower curves in Fig. 3.9b:

The two curves marking the grains on the threshold of collision with the planet are cen-

tered on L∗ < 1, as required by Eq. 3.18. In addition, for smaller rL, the center of the

instability shifts to smaller L∗, hence the left-most curve is steeper than the right-most.

Finally, a planet with a larger Rsyn (eg. the Earth) will have roots that shift to very low L∗

near the planet.
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Figure 3.8: Potential wells for two planar trajectories launched from the solid points,
which are inside Jupiter’s synchronous orbit. Distances are in planetary radii, and the
potential is scaled to the launch value. Curve (i) (rL = 1.6Rp,L∗ = 0.0991, ad = 0.53µm)
has a potential peak higher than the launch potential inside the planetary surface. Equat-
ing U(rL) = U(Rp) gives an analytic solution (Eq. 3.17) for the stability boundary in
Fig. 3.9b. Curve (ii) (rL = 1.8Rp,L∗ = 0.1277, ad = 0.48µm) has a potential peak outside
the planetary surface. In this case, the stability boundary is best obtained numerically.
Both grains depicted here are poised on the stability threshold.

The curves determined by Eq. 3.17 match our numerical data cleanly with two im-

portant exceptions. Firstly, because our method is only valid for grains that collide with

the planet in the equatorial plane (recall our assumption z = 0), it misses the high latitude

collisions near (rL = 2Rp, L∗ = 2) in Fig. 3.9b. All collisions exterior to the boundaries

given by Eq. 3.17 necessarily involve substantial vertical motions, and the greyscale shad-

ing of Fig 3.9b shows that they do. Secondly, our criterion predicts instability for a small

region near (rL = Rsyn, L∗ = 0.2) that our numerical data show, in fact, are stable. These

grains encounter a high peak, similar to curve (ii) in Fig. 3.8, that prevents them from

39



reaching the planetary surface. Thus U(rL,L∗) > U(Rp,L∗) is a necessary condition for

radial instability in the equator plane, but it is not sufficient.

The additional requirement for instability is that U(rL,L∗) >U(rpeak,L∗), where rpeak

is the location of an interior maximum. Just as for the escaping grains exterior to syn-

chronous orbit, evaluation of this condition necessarily involves a cubic and a semi-

analytic method. We find that no corrections to Eq. 3.18 are needed for the high L∗

radial boundary and for all grains near the planet. Only for the right-most curve near Rsyn

is there a discrepancy. Our new curve is plotted in Fig 3.9b and it perfectly matches the

numerical instability boundary. Although the stability curve in this region can only be ob-

tained semi-analytically, the point at which it becomes necessary occurs when the poten-

tial maximum is located at the planetary surface; ∂U
∂r

∣∣∣
r=Rp

= 0 and U(rL,L∗) = U(Rp,L∗).

Evaluating these conditions, we find

L∗ =
( rL

Rp
−1)2

R3/2
syn r3/2

L
R3

p
+2− 3rL

Rp

. (3.19)

For Jupiter, the critical point that satisfies both Eqs. 3.17 and 3.19 is at L∗ = 0.112,rL =

1.694Rp (solid point in Fig 3.9b). The stability curve meets rL = Rsyn at L∗ = 2−
√

3,

a result suggested by our local stability analysis of section 3.3. Note that our energy

arguments yield analytic expressions both inside and outside Rsyn. Arguments involving

the location of potential maxima, conversely, require semi-analytic methods.

3.5 Local Vertical Stability Analysis

The stability of grains against vertical perturbations was first explored by Northrop and

Hill (1982). In their model, a grain is launched on a circular orbit at the equilibrium orbital

frequency ωc in the potential of Eq. 3.4 so that there is no gyromotion around magnetic

field lines. If the grain orbit at the equilibrium point is stable to vertical perturbations, the
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Figure 3.9: Our new analytic results (heavy solid lines) are plotted over the numerical
data from Fig. 3.1. a) Northrop’s solution (dotted line) is superseded by our two semian-
alytic boundaries where Ω2

b = 0 from Eq. 3.29. The new boundaries are a significantly
better fit to the data and indicate an inner stability zone. The |κc|= 2Ωb curve indicates
the 2:1 resonance between the epicyclic and the vertical bounce frequencies; it matches
the data points well. b) We extend our vertical stability boundary to positive grains. The
radial stability boundaries for grains that escape or crash into the planet are discussed
in the text (section 4). Between the open circles at rL = Rsyn and L∗ = 2±

√
3, orbits

are locally, radially unstable. The solid circle is the critical point defined by Eqs. 3.17
and 3.19.
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square of the bounce frequency Ωb, given by

Ω
2
b =

∂2U
∂z2

∣∣∣
ρ=ρc,z=0

=
GMp

ρ3
c

(
3L∗φ̇c

Ωp
+1
)

= 3ω
2
c −2n2

c (3.20)

(Northrop and Hill 1982) is positive. Here φ̇c = ωc −Ωp is the dust grain’s azimuthal

frequency in the frame rotating with the magnetic field. When multiplied by z, Eq. 3.20

gives the centrifugal (first term), and gravitational (last term) accelerations along a mag-

netic field line.

For Ω2
b < 0, the vertical motion is unstable. Note that the gravitational acceleration

is negative and thus destabilizing. This follows from the fact that the dipolar magnetic

field curves toward the planet (see Fig. 2.1) and so a grain leaving the equatorial along

a field line plane moves downhill in the gravitational potential. The Northrop and Hill

(1982) solution for the boundary where Ωb = 0 is plotted in Figs. 3.1a and 3.9a. At

distances closer to the planet than a critical distance ρcrit , the Northrop solution predicts

that gravity will force grains to leave the equatorial plane.

3.5.1 Vertical Instability in the Lorentz Limit

In the limit of high charge-to-mass ratio, Eq. 3.20 can be solved exactly:

ρcrit

Rsyn
= (2/3)

1
3 ≈ 0.87. (3.21)

The effect of our initial condition, launching grains at the Kepler speed, however, neces-

sarily causes epicyclic gyromotion as the grain orbits the planet. This leads to a stabiliz-

ing magnetic mirror force, in which the grain resists moving out of the equatorial plane to

regions of higher magnetic field strength as discussed in section 1.1. Following the pro-

cedure of Lew (1961) and Thomsen and van Allen (1980), the magnetic mirror force for

equatorial pitch angles near 90◦ adds a component of strength 9r2
gΩ2

gc/2ρ2
c to Eq. 3.20. In

the Lorentz limit, Eq. 3.13 simplifies to rgΩgc = ρc(Ωp−nc), and the bounce frequency
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Figure 3.10: The bounce period for L∗ = −104 grains at Jupiter over a range of launch
distances. Northrop’s solution (Eq. 3.20, dotted line) and our solution (Eq. 3.29, solid
lines) with Tb = 2π/Ωb, are plotted alongside numerical data (points). Note that in our
solution Tb is smaller than in Northrop’s solution everywhere except at Rsyn = 2.24Rp.

In the limit where rc << Rsyn, Eq. 3.22 shows that grains satisfy Ωb →
√

5
2 nc, while for

rc >> Rsyn, Ωb →
√

15
2 Ωp and Tb → 3.62 hours.

can be found from:

Ω
2
b = 3Ω

2
p−2n2

c +
9
2
(nc−Ωp)2. (3.22)

As above, the first two terms are due to the centrifugal and gravitational forces on a grain

tied to a nearly vertical magnetic field line. The third term of Eq. 3.22 is the magnetic

mirror term, generalized to account for a rotating magnetic field. The three vertical accel-

erations add linearly, and are valid in the limit that L∗→±∞ and rg → 0.

Fig. 3.10 compares the Northrop and Hill (1982) bounce period (Eq. 3.20) with our

Eq. 3.22 which accounts for epicyclic motion for small dust grains at Jupiter. The Northrop

formalism erroneously predicts bounce periods that are too long both inside and outside
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synchronous orbit and, more seriously, misses the second solution near the planet.

The third term in Eq. 3.22 is positive everywhere inside the Northrop boundary and

thus leads to enhanced vertical stability. The stability boundaries in the high |L∗| limit are

determined by Eq. 3.22; setting Ωb = 0, we find:

rL

Rsyn
=
(

5
9±

√
6

)2/3

≈ 0.58,0.84. (3.23)

These limits are valid for both positive and negative grains with |L∗| → ∞. Between

these limits, Ω2
b < 0 and grain orbits are locally unstable; the enhanced stability from the

mirroring force moves the vertical stability boundary inwards from Northrop’s 0.87Rsyn to

0.84Rsyn. A more important change, regained stability inside 0.58Rsyn, is due to the higher

launch speeds relative to the field lines, larger gyroradii, and a stronger magnetic mirror

force. For Jupiter these distances are at 1.29Rp and 1.87Rp respectively (see Fig. 3.9).

Hints of this inner stability zone were seen numerically by Northrop and Hill (1983a) and

by Northrop and Connerney (1987); here we have derived analytical solutions for vertical

stability in the Lorentz limit.

3.5.2 Vertical instability for all charge-to-mass ratios

To extend our model for bounce motion over all charge-to-mass ratios we must, in princi-

ple, account for the variation in the strengths of the vertical gravitational, centrifugal and

electromagnetic accelerations over one gyrocycle. Extending the electromagnetic mir-

ror acceleration requires breaking the assumption of perfectly circular gyrocycles, and is

beyond the scope of this work. The remaining two accelerations, however, can be ex-

tended to second order in rg/ρc while retaining circular gyrations. We begin by writing

the vertical acceleration as a function of the epicyclic phase θ (see Eq. 3.20):

∂2U
∂z2 z =

GMpz(θ)
ρ3(θ)

(
3L∗φ̇(θ)

Ω
+1
)

. (3.24)
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To first order in rg, the epicycles are circles in the guiding center frame. Setting θ = 0 at

the closest point to the planet, we find

ρ(θ) = ρc−|rg|cosθ, (3.25)

and

φ̇(θ) = φ̇c−κc
|rg|
ρc

cosθ. (3.26)

Due to the geometry of a dipole near its equator, an epicycle is tilted by an angle ≈ 3λ,

where λ is the latitude (Eq. 2.17). Hence the vertical offset is given by:

z(θ) = zc−
3|rg|
ρc

cosθ, (3.27)

To calculate the bounce frequency, we average the restoring acceleration over an epicycle,

a procedure that is valid as long as κc >> Ωb:

Ω
2
b =

〈
z∂2U

∂z2

〉
〈z〉

=
1

2πzc

Z 2π

0

∂2U
∂z2 z(θ)dθ. (3.28)

Using Eqs. 3.25 and 3.26 to eliminate ρ(θ) and φ̇(θ) in Eq. 3.24, we expand to O(r2
g),

integrate Eq. 3.28, and add in the magnetic mirroring term from Eq. 3.22 to obtain:

Ω
2
b = 3ω

2
c −2n2

c +
9
2
(nc−Ωp)2−

r2
g

ρ2
c

(
9
2

Ωgcφ̇c +
3
2

n2
c

)
. (3.29)

The frequencies in Eq. 3.29, ωc (Eq. 3.8), nc (Eq. 3.6), Ωgc (Eq. 3.7), and φ̇c = ωc−Ωp,

are all evaluated at the guiding center of motion ρc = rL + rg, which is determined by

Eq. 3.13. Our calculation adds two additional destabilizing terms that are strongest for

intermediate values of L∗, where gyroradii are largest (Fig. 3.6).

How does our solution compare to numerical data? In Fig. 3.9, we plot our theoretical

curves against the numerical data for both negative and positive grains launched at the

Kepler rate in an aligned dipole field for Jupiter. We find the curves tracing the unstable

zone semi-analytically by setting Ωb = 0 in Eq. 3.29. Within the regions bordered by
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the curves, trajectories are locally unstable but may remain globally bound due to high-

latitude restoring forces.

Our model closely matches the outer stability boundary for negative grains but is less

successful for the inner boundary, especially for moderate L∗. This is precisely where

our derivation is weakest; recall that we have not accounted for higher-order corrections

for the magnetic mirror force which are strongest closest to the planet and for |L∗| ∼ 1.

Near |L∗| = 1 epicycles become large and distorted for negative grains and even more

so for positive grains (Mendis et al. 1982; Mitchell et al. 2003). Figure 3.6b shows that

the epicyclic model matches the radial range of positively-charged grains well for values

L∗ > 10. This is exactly where the numerical data depart from the theory in Fig. 3.9b.

Apparently, large gyroradii and interference from the proximate radial instability strip

lead to unmodeled effects and excess vertical instability.

The curvature of the outer boundary in Fig. 3.9a is similar to that for the Northrop

curve, albeit displaced to locations closer to the planet. Notice that, with decreasing |L∗|,

the instability region curves towards the planet for negative grains, and away from it for

positive grains (Fig. 3.9). This is primarily due to the 3ω2
c − 2n2

c term that determines

the Northrop boundary. For negative grains inside synchronous orbit, nc > ωc, and ωc

increases with decreasing |L∗| due to a weakening outwardly-directed electromagnetic

force. It thus takes a greater value of nc to make 3ω2
c−2n2

c change sign and destabilize the

vertical motion. Hence, the boundary curves move to lower launch distances in Fig. 3.9a.

For the positive grains in the Lorentz limit, by contrast, ωc decreases as L∗ decreases, and

a smaller nc will destabilize the grain. Thus with decreasing L∗ this boundary in Fig. 3.9b

curves up to higher launch radii.

Finally, notice the band of locally unstable but globally stable points that stretches

from |L∗| ≈ 0.1 at the surface of the planet to |L∗| ≈ 1 at large distances in Figs. 3.1a and

3.9a. These grains are affected by a |κc| = 2Ωb resonance that couples their radial and
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vertical motions. Energy is transferred from the radial oscillation to a vertical oscillation

and back again. Near synchronous orbit, gyroradii are initially small and therefore there

is not as much radial motion to transform into vertical motion; these grains do not reach

our λm = 5◦ threshold and appear as white space in Fig. 3.9a.

The existence of stable trajectories within the Northrop boundary is an important re-

sult, particularly for small slowly-rotating planets with distant synchronous orbits like

Earth. Small dust grains generated by the collisional grinding of parent bodies on Keple-

rian orbits can remain in orbits near the planetary surface. High energy plasma, like that

found in Earth’s Van Allen radiation belts, is more stable than we have calculated here by

virtue of exceedingly rapid gyrations and a greatly enhanced mirroring force.

3.6 Azimuthal Motion

For completeness, we return to the azimuthal motion of highly charged dust-grains. In

Chapter 2 we explored azimuthal drift rates non-rotating magnetic field due to additional

forces beyond the Lorentz force. Here, we have a rotating magnetic dipole and gravity.

In the epicyclic approximation, we now have accurate expressions for the radial, verti-

cal and azimuthal motions in the inertial frame. In the Kepler regime, these three frequen-

cies all converge to the Kepler orbital frequency. In Fig. 3.11, we highlight the divergence

of these three timescales as |L∗| increases.

Here we test these equations in the Lorentz limit for Kepler launched grains. Fig. 3.12

compares drift rates numerically and analytically with Jupiter’s gravity and rotation ini-

tially switched off. We find that the azimuthal drifts of Chapter 2 are in the opposite

direction if Jupiter’s gravity and rotation are accounted for.

Our analysis to this point is completely general and, although we have focused on

Jupiter, can be easily applied to other planets. Saturn and Earth are logical choices, as their
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Figure 3.11: The radial, vertical and azimuthal periods for negatively-charged grains
launched at 2.5Rp around Jupiter. The three curves constitute the full epicyclic solution
for the radial period (top curve; Eq. 3.11), the latitudinal bounce period (middle curve;
Eq. 3.29), and the azimuthal orbital period (lower curve, Eq. 3.8). The numerical points
from integrated trajectories closely match the analytic curves.

magnetic fields are also dominated by the g10 aligned dipolar component. The appearance

of the stability map for any planet depends on only the parameters Rsyn and Rp, and not on

the substantially different magnetic field strengths which, due to our use of L∗, only affect

the conversion to grain radius ad . The synchronous orbital distance is somewhat closer

to the planetary surface at Saturn (Rsyn = 1.86Rp) than at Jupiter (Rsyn = 2.24Rp), while

at Earth (Rsyn = 6.61Rp) it is much further away. This leads to interesting differences

between the planets, as we shall see below.
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Figure 3.12: Analytical and Numerical Drift rates, in degrees per hour, relative to mag-
netic field, for highly charged Kepler-launched dust grains in Jupiter’s magnetic field. All
drift rates are in the frame of the magnetic field lines. The curves are analytical solutions
from Eq. 2.22 (upper curve marking the ∇B drift), Eq. 2.18 (middle curve denoting the
drift due to the gravitational force perpendicular to the magnetic field lines) and Eq. 3.8
(lower curve), the azimuthal motion of the guiding center with gravity in a rotating mag-
netic field. In this configuration with grains launched in the magnetic equator, the motion
parallel to the magnetic field lines which would cause curvature drift, was negligible. The
open circles mark numerical data with Jupiter’s gravity and rotation both switched off,
so that only ∇B drift remains. The triangles are numerical data with gravity on but the
rotation switched off, and the filled circles show numerical data with the Jupiter’s gravity
and rotation both on.
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3.7 Saturn and Earth

A centered and aligned dipole is an excellent approximation for Saturn’s magnetic field.

We take g10 = 0.2154 Gauss from Connerney et al. (1984) and plot both our numerical

data and analytical stability boundaries in Fig. 3.13. The more recent Cassini measure-

ment of g10 = 0.21162 Gauss does not vary significantly from the older value that we

use (Burton et al. 2009). A lower synchronous orbit at Saturn pushes the local vertical

instability inward, as expected from Eq. 3.23. Comparing Fig. 3.13 to Fig. 3.9, we see

that the proximity of the surface at Saturn causes all the locally vertically unstable grains

to physically collide with the planet. This is true for both negative and positive grains.

Outside synchronous orbit in Fig. 3.13b, the solutions derived for positive escaping

grains in section 4 apply at Saturn to very high accuracy, for both the low L∗ and high

L∗ boundaries. As in Fig. 3.9b, grains with L∗ . 1
2 do not have enough energy to escape

despite achieving large radial excursions (light grey region outside Rsyn in Fig. 3.13b).

For these grains, vertical motions are excited over several orbits, as in Fig. 3.5.

Within synchronous orbit, the condition U(Rp) = U(rL) (solved in Eq. 3.17) bounds

most of the unstable grains. As at Jupiter, a small set of large grains near Rsyn require the

semi-analytical analysis of the potential between the launch position and the surface to

determine global stability. This analysis yields the curve connecting the filled black circle

at (rL = 1.568Rp, L∗ = 0.14) to the open circle (rL = Rsyn, L∗ = 2−
√

3) in Fig. 3.13b.

Compared to Jupiter and Saturn, Earth’s magnetic field is “inverted” at the current

epoch, with magnetic north near the geographic south pole, with g10 = −0.3339 Gauss

Roberts and Soward (1972). Thus at Earth, L∗ > 0 for negative grains. This causes

positive grains to be radially stable, gyrating between the launch position and synchronous

orbit, and negatively-charged grains to be radially unstable. The Earth is also far smaller

on the scale of its own synchronous orbit than the gas giants, and so serves as an excellent

50



 1

 1.5

 2

 2.5

 3

r L
/R

p

Lorentz regime Kepler regime

Rsyn

|κc| = 2Ωb

q < 0

a)

0.01 0.1
ad (µm)

 1

 1.5

 2

 2.5

 3

 0.01 0.1 1 10 100

r L
/R

p

|L*|

q > 0

b)

Rsyn

Figure 3.13: Stability of charged grains at Saturn modeled with a centered and aligned
dipole field. All initial conditions and theoretical curves are as in Fig. 3.9. Also as in
Fig. 3.9, the darkest shade of grey signifies low latitude collision or escape, the mid-
dle shade indicates high latitude collisions, and the lightest grey signifies large verti-
cal excursions. For negative charges, a) only a tiny stable region exists near (rL = Rp,
L∗ = −50) due to Saturn’s smaller Rsyn. Furthermore, due to the proximity to Saturn,
nearly all grains that are locally vertically unstable do in fact hit the planet, unlike their
counterparts at Jupiter. For positive charges, too, plotted in b), nearly all the vertically
unstable grains hit Saturn. Saturn’s radial instability region (darkest grey) looks much
like Jupiter’s.
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test of the accuracy of our analytical solutions far from Rsyn.

For the Earth, Fig. 3.14a shows the radial global instabilities. Outside Rsyn, the bound-

aries are in excellent agreement with our analytical results for large and small grains.

Inside Rsyn, grains are globally radially unstable and all the grains that collide with the

planet at low latitudes are launched between our two solutions given by Eq. 3.17. The set

of grains for which Eq. 3.17 is an insufficient criterion for collision with the planet, how-

ever, is much larger at the Earth than at Jupiter or Saturn. For Earth, just like for the gas

giants, the global solution for radial stability inside synchronous orbit perfectly matches

the numerical data and meets Rsyn at the local stability solution (rL = Rsyn,L∗ = 2−
√

3).

Furthermore, the solutions of Eq. 3.17 have shifted to much lower L∗ (see Eq. 3.18), re-

ducing, at least near Rsyn, the total range in L∗ for grains which collide with the planet at

low latitude.

The local vertical stability boundary matches the numerical data well, although in the

Lorentz limit, all grains are globally stable since the high latitude restoring forces become

much stronger close to the planet (Howard et al. 2000). Only at |L∗| ≤ 1 do the positive

grains collide with the planet. As in Figs. 3.9 and 3.13 the vertical stability curves match

very well for large L∗ and deviate from the data for L∗ ≈ 1. The |κc| = 2Ωb resonance

also matches the data well.

Earth has a much larger class of grains that experience large radial excursions, which

in turn excite vertical motions. Most of these grains, from the medium-grey areas on

the stability map of Fig. 3.14a that link the disjoint dark grey regions of global radial

instability, collide with the planet at high latitudes. An example of a trajectory in this

class is shown in Fig. 3.15.

At Saturn all of the grains in this region collided with the planet, but at the Earth

we see three white tracks of orbits that never leave the equatorial plane, and hence are

energetically prevented from striking the planet. We plot an example in Fig. 3.16. A
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Figure 3.14: Stability of charged grains at Earth, modelled with a centered and anti-
aligned dipole field. Theoretical curves and initial conditions are the same as in Figs. 3.9
and 3.13. Since Rsyn is much larger than for Jupiter and Saturn, we extend the radial
range of the integrations to rL = 10Rp and the distant threshold signifying escape to
resc = 100Rp. The open circles at (rL = Rsyn, L∗ = 2+

√
3) and (rL = Rsyn, L∗ = 2−

√
3)

are as in Fig. 3.9, and the solid circle, marking the transition from the analytical to semi-
analytical boundary for the larger grains is at L∗ = 0.0248,rL = 2.074Rp. The two solid
squares in a) are individual grain trajectories illustrated in Figs. 3.15 and 3.16.

53



 1
 2
 3
 4
 5

r/
R

p

-60
-30

 0
 30
 60

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

λ 
(o )

T (days)

Figure 3.15: A grain with large radial excursions that gradually excite substantial vertical
oscillations at the Earth, (rL = 4.51Rp, L∗ = 0.948, ad = 0.0149 µm).

few of these trajectories are also apparent for Jupiter (small white spots in Figs. 3.1b

and 3.9b.) We suspect, based on the similarity of the white stable tracks in Fig. 3.14a and

the |κc|= 2Ωb line in Fig. 3.14b, that these are resonant phenomena.

3.8 Conclusion

For Kepler-launched grains in centered and aligned dipole planetary fields, we have em-

ployed both local and global stability analyses to provide solutions for stability boundaries

that match numerical simulations for Jupiter, Saturn and the Earth. Figure 3.17 provides

a summary of the various analytical results discussed in this work for positive grains at

Jupiter.

We find that local radial stability is very useful in the immediate vicinity of syn-
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Figure 3.16: A grain with large radial motions like that depicted in Fig. 3.15 that never-
theless always remains near the equatorial plane (rL = 4.51Rp, L∗ = 0.419, ad = 0.0224
µm).

chronous orbit, since rg → 0 there (Eq. 3.13). More importantly, our restriction of the

global radial analysis to equatorial orbits is justified by the excellent agreement between

analytics and numerics. Radial instability has important implications for depleting parti-

cles near the surface of a planet but beyond the reach of atmospheric drag forces. At Earth,

for example, the radial instability eliminates negatively-charged particles with rg . 0.2

µm from low Earth orbit, and . 0.1 µm from within 2000 km. For Jupiter, this instability

sweeps positive grains with rg < 1 µm from the region within 10,000 km from Jupiter’s

cloud-tops.

Our local vertical analysis of grains launched on Kepler circles in the equatorial plane

adds the effect of the magnetic mirror force and is a major improvement to the equilibrium

model of Northrop and Hill (1982). We do not undertake a fully global analysis which
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Figure 3.17: Local and global stability boundaries for positive grains at Jupiter. The
dashed line is Rsyn, and the shaded region highlights local radial instability near Rsyn. The
white circles bounding this region on Rsyn (L∗ = 2±

√
3 for all planets) also show where

our semi-analytical curves for grains that escape or collide with the planet meet Rsyn. The
solid circle is where the potential at the planet’s surface is a local maximum and equals to
the launch potential. Outside Rsyn, entirely within the global instability boundaries, lies
the region in which local radial instability is precluded, following Eq. 3.9.

would seek to distinguish grains that strike the planet from those that simply sustain large

amplitude oscillations in latitude.

Although the magnetospheres of Jupiter, Saturn and the Earth are all nearly dipolar,

each planet has additional components that make the field more complicated. Saturn has

the simplest field and is well represented by a dipole offset northward by a few thousand

km. Jupiter and the Earth have non-zero dipole tilts that cause the magnetic field seen by

an orbiting grain to fluctuate periodically. Nevertheless, since tilts and offsets are gen-

erally small, we expect that the radial forces will be only slightly affected, and that the

radial instability region will remain nearly the same. Vertical motions, by contrast, should
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be strongly affected since a circular orbit in the equatorial plane is no longer an equilib-

rium point. The global radial analysis, which included the effects of radial oscillations,

led to a much larger instability region than the simple local analysis (top of Fig. 3.17); in

exactly the same way, we expect the region of vertical instability to expand substantially

when dipole tilts or offsets are included. We will take up the study of more complicated

magnetic field configurations and more general launch conditions in Chapter 4.
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Chapter 4

The Dynamics of Dust in Multipolar

Magnetic Fields

4.1 Introduction

1 When Voyager 1 encountered Jupiter in 1979, the discovery of the tenuous dusty ring

system came as a complete surprise. Although the earlier Pioneer missions found some

hints of a ring system, many thought that dust close to Jupiter would rapidly spiral in by

gas drag (Owen et al. 1979). Voyager 2 confirmed the existence of the ring, as well as the

tiny satellites Metis and Adrastea that orbit inside the classical Roche limit, and are the

most likely source of the ring material.

High speed impacts with small moons, as well as unseen large parent bodies replenish

the dusty rings with debris of all sizes. Similar sources of material for Saturn’s tenuous

inner D ring have not been found, though massive particles in narrow ringlets with en-

hanced local densities could serve as these sources (Hedman et al. 2007; Showalter 1996).

In both environments, dust ejected by impacts from parent bodies have essentially colli-

1This chapter is largely based on Jontof-Hutter and Hamilton (2012b), in press.
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sionless trajectories. As debris particles acquire electric charges through interactions with

the plasma environment and solar radiation, the smallest reach significant charge-to-mass

ratios and, as a consequence, experience strong electromagnetic (EM) forces as they orbit

through the magnetic field of their host planet.

For grains smaller than ∼ 1µm in radius, the EM force exceeds perturbations from

large satellites, the planetary oblateness and solar radiation pressure (Horányi et al. 1992).

Even smaller dust grains may have orbits that are immediately unstable to either radial

motion if the grains are positively-charged (Hamilton and Burns 1993a; Horányi et al.

1993a), or vertical motion (both positively- and negatively-charged: Northrop and Hill

1982). Many authors have studied various aspects of charged-particle dynamics. For

a recent review, see Jontof-Hutter and Hamilton (2012a), who derived analytic stability

boundaries for the idealized case of grains with constant charge, launched at the Kepler

speed in an aligned dipolar planetary magnetic field. As in that study, (Chapter 3), the

boundaries between stable and unstable orbits are of particular interest to us here. These

depend on the launch distance from the planet, and the charge-to-mass ratio of an indi-

vidual dust grain.

The aim of this chapter is to explore the sensitivity of these stability boundaries to

more realistic situations. We relax our idealized assumptions above by considering i) non-

zero ejecta speeds from the parent body, and ii) higher-order magnetic field components.

In Chapter 5, we study a third effect, namely, variable electric potentials on dust grains.

We use Jupiter as our model planet in these investigations since it has both a complex

multipolar magnetic field and a well-studied dusty ring system (Brooks et al. 2004; Burns

et al. 1999; de Pater et al. 1999; Ockert-Bell et al. 1999; Showalter et al. 2008; Throop

et al. 2004). In this chapter, after a detailed study of Jupiter, and the effects of its offset

and tilted dipole magnetic field components, we present stability maps for motion in the

complex magnetic fields of Earth, Saturn, Uranus and Neptune. We begin by recapping
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Planet Volts µm−2 → L∗ Coulomb kg−1 → L∗
Jupiter 5660×10−6V/a2

dρd 0.21381×Q/m
Saturn 538×10−6V/a2

dρd 0.020321×Q/m
Uranus 92×10−6V/a2

dρd 0.0034676×Q/m
Neptune 62×10−6V/a2

dρd 0.0023415×Q/m
Earth −42×10−6V/a2

dρd −0.0015839×Q/m

Table 4.1: L∗ calculator for the planets. The middle column converts a given potential
V (in Volts), grain radius ad (in µm), and density ρd (g cm−3) to L∗. The right column
converts a charge-to-mass ratio in C kg−1 into L∗ for each planet.

the relevant stability results for a simple dipolar planetary magnetic field from Jontof-

Hutter and Hamilton (2012a).

4.2 Motion in an Aligned Dipolar Magnetic Field

The charge-to-mass ratio for Kepler-launched grains can be conveniently described by

the ratio of the force induced by the corotational electric field of the planet with gravity,

given by

L∗ =
qg10R3

pΩp

GMpmc
(4.1)

(Hamilton 1993a,Hamilton 1993b,Jontof-Hutter and Hamilton 2012a). Here, q and m are

the electric charge and mass of a dust grain, g10 is the aligned dipolar magnetic field

strength at the equator, Rp and Mp are the planetary radius and mass respectively, Ωp is

the spin frequency of the planet, and G and c are the gravitational constant and speed of

light. As a dimensionless independent variable, L∗ accounts for all the relevant planetary

parameters and avoids undue focus on the grain’s size, shape, density and electric poten-

tial, which are all poorly constrained. The sign of L∗ depends on the product qg10, and its

value can easily be converted to a grain radius ad for specified grain properties.

Table 4.2 provides a simple calculator between dust grain radius and L∗, for a given

electric potential, material density, and grain radius.
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For large grains in the Kepler limit orbiting with semi-major axis a, azimuthal, radial,

and vertical motions have the same frequency

nc =
(

GMp

a3

) 1
2

, (4.2)

but for higher charge-to-mass ratios, these frequencies differ. As the charge-to-mass ratio

is raised, these frequencies slowly diverge from one another (Hamilton 1993a), and for

an aligned dipolar magnetic field, explicit expressions valid for all charge-to-mass ratios

are available (Jontof-Hutter and Hamilton 2012a), as illustrated in Fig. 3.11. Since these

expressions will prove useful in this chapter, we reproduce them here.

General motions in this problem can be conveniently separated into epicycles about a

guiding center which circles the planet at an azimuthal angular speed ωc. Where radial

epicycles are small on the scale of the grain’s orbit, balancing the forces of gravity, EM

force and the centrifugal force yields an expression for ωc:

0 = ω
2
c +

GMpL∗
r3

c

(
1− ωc

Ωp

)
−

GMp

r3
c

. (4.3)

(Jontof-Hutter and Hamilton 2012a; Mitchell et al. 2003; Northrop and Hill 1982). Here

and throughout, the subscript c refers to the guiding center of motion. The distance to the

guiding center of motion, rc, is the semi-major axis a in the Kepler limit. Note that for

gravity-dominated grains (L∗→ 0), we have ω2
c = GMp

r3
c

= n2
c in agreement with Eq. 4.2.

In the strong EM limit, ωc → Ωp and the grains are nearly locked to the magnetic field

lines.

The radial or epicyclic frequency κc satisfies

κ
2
c = ω

2
c −4ωcΩgc +Ω

2
gc, (4.4)

(Jontof-Hutter and Hamilton 2012a; Mendis et al. 1982; Mitchell et al. 2003) at the guid-

ing center, where Ωgc = qB
mc = n2

cL∗
Ωp

is the frequency of gyromotion. In the EM-dominated,
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Lorentz regime, κc = Ωgc. In the gravity-dominated, Kepler regime, Ωgc→ 0 and κc→ nc,

the Kepler orbital frequency, as expected.

Most grains are radially confined, suffering excursions of

rg =
rL(Ωp−nL)ΩgL

Ω2
gL−ΩgL(3Ωp +nL)+n2

L
(4.5)

where rg, the gyroradius, is much smaller than rL, the launch distance. Here nL =
√

GMp

r3
L

and ΩgL = n2
LL∗
Ωp

are the Kepler frequency and the gyrofrequency as determined at the

launch distance (Jontof-Hutter and Hamilton 2012a; Schaffer and Burns 1994). The

epicyclic model fails only for positively-charged grains with L∗ ∼ 1, where the denomi-

nator in Eq. 4.5 becomes very small (see Fig. 3.6b).

Finally, the vertical motion of grains with stable epicycles in the equatorial plane has

frequency Ωb, where

Ω
2
b = 3ω

2
c −2n2

c +
r2

g

ρ2
c

(
9
2

Ω
2
gc−

9
2

Ωgcφ̇c−
3
2

n2
c

)
(4.6)

(Jontof-Hutter and Hamilton 2012a). Here, φ̇c = ωc −Ωp is the azimuthal motion of

the guiding center in the frame rotating with the planet. Equation 4.6 is valid as long as

rg/rL << 1 which holds in both the Kepler (L∗→ 0) and Lorentz (L∗→±∞) limits. In the

Kepler limit, all three terms in brackets are negligible, ωc → nc, and hence Ωb → nc. In

the Lorentz limit, only the last two terms can be ignored and Ω2
b →

15
2 Ω2

p−9Ωpnc + 5
2n2

c .

Where Ωb tends to zero, grains become locally vertically unstable in the equatorial

plane. Equation 4.6 provides good agreement with numerical data on the location and

charge-to-mass ratio of boundaries between vertically stable and unstable grains, with

two important caveats.

Firstly, in applying the epicyclic approximation, Eq. 4.6 assumes that radial motions

are very small on the scale of the orbit (rg << rL). In addition, Eq. 4.6 is averaged over

one gyrocycle, so the epicyclic motion must be on a much shorter timescale than any

62



stable vertical oscillations (κc >> Ωb). Both of these assumptions are met in the Lorentz

limit, but both lose accuracy as L∗ decreases, particularly for the positively charged grains

which become radially unstable as L∗→ 1.

Secondly, setting Ωb = 0 determines local vertical stability in the equatorial plane of

the spinning planet and its aligned magnetic field. Local instability is a necessary con-

dition for global instability (whereby grains collide with the planet at high latitude), but

it is not always sufficient. High latitude forces lead to high latitude oscillations (HLOs),

which are globally but not locally stable. This class of orbits is more important for slow

rotators like the Earth where (Rsyn >> Rp), than it is at Jupiter or Saturn, but they do

occur for the smallest grains inside 1.5Rp at Jupiter.

With these two caveats in mind, we include the local and global stability boundaries

found from numerical integrations in Chapter 3 for Jupiter with an aligned dipolar mag-

netic field model. In Fig. 4.1, we highlight these regions for a range of charge-to-mass

ratios spanning four orders of magnitude and a suite of launch distances from Jupiter’s

surface to beyond its synchronous orbital distance, with grains all launched at the local

circular speed of the large parent bodies.

4.3 Jupiter

We focus most of our attention on Jupiter as its magnetic field has been well studied, and

is known out to octupole order (we adopt the O4 model of Acuna and Ness 1976; Dessler

1983). The planet’s magnetic field is dominated by the dipolar terms: g10, g11 and h11

Gauss; these can be combined to determine the dipole tilt angle: arctan
(

(g2
11+h2

11)
1
2

g10

)
=

9.6◦. The g20 = -0.203 Gauss component can be interpreted as a southward vertical offset

to the dipole field. Four additional quadrupolar and seven octupolar terms are known,

and the upcoming Juno mission will measure higher-order magnetic field coefficients for
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Figure 4.1: Stability boundaries for a) negative (L∗ < 0) and b) positive (L∗ > 0) grains
in an aligned dipole magnetic field for Jupiter. This figure summarizes numerical data
from Jontof-Hutter and Hamilton (2012a), explored in detail in Chapter 3. Here, the
top axis shows characteristic grain radii corresponding to a −5V or +5V potential on a
spherical grain of material density 1 g cm−3. The vertically unstable grains depart from
the equatorial plane and climb to high latitudes immediately after launch, ultimately col-
liding with the planet. Directly below this unstable region are grain trajectories with high
latitude oscillations (HLOs). The radially unstable grains (L∗ > 0) escape if launched
outside synchronous orbit (Rsyn), or hit the planet if launched from within Rsyn. Two re-
gions of high radial and latitudinal oscillation zones (HRLOs) abut the radial instability
region. Within Rsyn, large inward radial excursions lead to vertical oscillations (roughly
along magnetic field lines) which increase in amplitude until the grains strike the planet
at high latitude. Outside Rsyn, near L∗ = 1

2 , some grains experience HRLOs indefinitely.
For L∗ < 0, a curve traces grains that experience HRLOs following the 2:1 resonance
between the epicyclic (κc) and vertical (Ωb) frequencies.
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the first time. In this section, we add various effects to a simple aligned dipole model

to elucidate their importance. We begin with non-zero launch speeds in the frame of the

parent particle, as likely occurs with impact ejecta.

4.3.1 Varied Launch Speed

Typical ejecta velocities from an impact are tens to hundreds of meters per second in

the rest frame of the parent body, in a cone centered on the impact velocity vector (de

Pater and Lissauer 2010). Do these non-circular speeds significantly affect the stability of

charged dust grains?

To highlight the effect, we consider large initial velocities of 0.5 km s−1 in the pro-

grade azimuthal (Fig. 4.2a) and radial (Fig. 4.2b) directions. Even with these large speeds,

we note that EM-dominated grains on the left side of the plots are hardly affected. The

Kepler speed at rc = 2.0Rp is vk =29.8 km s−1, while the local magnetic field lines rotate

at ΩprL= 25.1 km s−1. The azimuthal impulse that we add, therefore, is only ∼10% of

the Ωgcrg = 4.7 km s−1 gyrospeed and decreases the gyroradius rg by a corresponding

10%. Although important, this effect is not noticeable in Fig. 4.2. On the other hand,

grains in the Kepler regime experience large radial excursions following a launch im-

pulse. For an azimuthal boost, we can solve for the semi-major axis a and eccentricity e

from rL = a(1− e), and

v2 = GMp

(
2
r
− 1

a

)
. (4.7)

For a small azimuthal impulse, ∆vφ

vk
<< 1, the radial motions extend outward from the

launch position by 2ae≈ 4rL
∆vφ

vk
≈ 0.134Rp for the parameters of Fig. 4.2a. Although the

intermediate-sized grains have the largest radial excursions in Fig. 4.2a, the grains in the

Kepler limit are most strongly affected by a ∆vφ kick.

Figure 4.2b shows that a radial impulse produces a more modest radial range of motion

than an azimuthal boost. In this case, the impulse is perpendicular to the velocity of the
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Figure 4.2: Radial range of motion for negatively-charged grains on initially circular
orbits subject to an a) azimuthal (∆vφ) and b) a radial (∆vr) velocity impulse. The small
filled circles indicate particles launched on circular orbits with ∆v = 0, while the large
open triangles denote those launched with ∆v = 0.5 km s−1.
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parent body. For the smallest grains, in the Lorentz limit, this has almost no effect on

the motion perpendicular to the field lines, and is akin to altering the initial phase but not

the size of the gyrocycle. As with the azimuthal kick, a radial impulse has the largest

effect for the largest grains. To first order in ∆vr
vk

, the orbital energy and semimajor axis

are unchanged. The range of motion is therefore centered on the launch distance and has

magnitude 2ae = 2rL
∆vr
vk
≈ 0.067Rp for the parameters in Fig. 4.2b.

Figure 4.3 highlights the effect of velocity impulses on the stability boundaries of

Fig. 4.1 for positively-charged grains in three orthogonal directions: a prograde azimuthal

impulse (∆vφ = +0.5 km s−1); a radial boost (∆vr = +0.5 km s−1); and the vertical

direction (∆vz = +0.5 km s−1). In each case, the orbital stability boundaries are only

moderately affected by variable launch speeds; circular orbits are thus an excellent ap-

proximation when considering stability. Only the azimuthal impulse appreciably affects

the orbital energy, and hence shifts the stability boundary (larger grains on the right in

Fig. 4.3a). In this case, the positive ∆vφ increases the Kepler orbital energy significantly,

thereby preventing grains near the right-most radial stability boundary from falling into

Jupiter. A negative ∆vφ would destabilize grains near this boundary, permitting additional

grains to fall into the planet. The left side boundary of the radially unstable zone is basi-

cally unaffected by all impulses, in agreement with Fig. 4.2.

The vertical stability boundaries are moderately affected by the ∆vφ (Fig. 4.3a) and

∆vz (Fig. 4.3c) initial impulses, but a radial impulse (Fig. 4.3b) has almost no discernable

effect. Note that although in the Lorentz limit, the radial range of motion is too small to be

significantly altered with a ∆vφ launch impulse, the change in the area of a gyroloop still

noticeably affects the high L∗ stability boundary in Fig. 4.3a. Since ∆vφ > 0 in Fig. 4.3a,

the increased gyrospeed expands the gyroloop, leading to a stronger mirror force and

hence a reduced region of vertical instability. Enhanced instability results for ∆vφ < 0.

A vertical impulse ∆vz of either sign also leads to additional instability (Fig. 4.3c). For
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Figure 4.3: Stability of positively-charged grains launched with a) an azimuthal launch
speed ∆vφ = 0.5 km s−1 faster than the local Kepler speed, b) ∆vr = 0.5 km s−1, and c)
∆vz = 0.5 km s−1, integrated over 0.1 years. The solid curves are the stability bound-
aries of Fig. 4.1 where grains are launched at the local circular Kepler speed. The
greyscale matches Fig. 3.1b with the darkest points denoting grains that escape or collide
with Jupiter near the equator plane, the moderate grey marks collisions at high latitudes
(λ > 5◦), the light grey shows HLO grains that were locally unstable and achieved large
vertical oscillations, but were otherwise bound globally. The white regions denote tra-
jectories that were locally stable. With these launch impulses, the radial stability is only
significantly affected by ∆vφ while the vertical stability is affected by both ∆vφ and ∆vz.
A radial perturbation, ∆vr, has discernable effects.
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moderate values of L∗ in particular, the ∆vz impulse causes the vertical instability region

to dramatically expand near L∗ = 3,rL = 2Rp, and merge with the HRLO region of large

radial and vertical oscillations. Negatively-charged grains (cf. Fig. 4.1) are similarly

affected by 0.5 km s−1 impulses.

Overall, since the majority of real debris particles have much smaller speeds relative to

their parent satellites, we conclude here that the stability boundaries are fairly insensitive

to grain launch conditions. We note that new stability boundaries appropriate for non-

circular initial orbits could be derived analytically using Hamiltonian methods (Jontof-

Hutter and Hamilton 2012a; Mitchell et al. 2003; Northrop and Hill 1982; Schaffer and

Burns 1994), but as the effect is unimportant for our purposes, we turn instead to more

complicated magnetic field geometries.

4.3.2 Vertically Offset Dipole

In this section we isolate the effect of Jupiter’s dipole offset, modelled by the g10 and

g20 magnetic field terms, on orbital stability. The maps in Fig. 4.4 show that the offset

field exacerbates the vertical instability for both negative and positive grains but has little

effect on the radial stability boundaries. For the positive grains, the vertically unstable

and HRLO zones overlap as in Fig. 4.3c.

In the equator plane, the g20 magnetic is radial, and the corresponding ~v×~B force is

vertical. Thus the g20 magnetic field term primarily adds a vertical force, thereby expand-

ing the vertical instability. In fact, the stability map in Fig. 4.4b resembles Fig. 4.3c, which

modelled a vertical impulse on the grains at launch in a centered and aligned dipole; com-

parison of the two figures shows that g20 is a far more important effect. Note also that,

unlike the effect of a ∆vz impulse, the offset dipole is effective at destabilizing grains

near the planet, causing an initial vertical bounce oscillation and expanding the vertical

instability.
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Figure 4.4: Stability of Kepler-launched negative grains (a) and positive grains (b) in a
vertically offset dipole field for Jupiter, modelled with just the g10 and g20 magnetic field
terms, and integrated over 0.1 years. The curves indicate the stability boundaries for the
centered and aligned dipole configurations from Fig. 4.1. In this map, the dark areas are
radially unstable grains that either hit the planet or escape at low latitude (|λ|< λm = 5◦).
The moderately grey regions are vertically unstable grains that collide with the planet at
high latitude (|λ| > λm), and the light grey regions show HLO stable grains that exceed
λm in latitude; the same criteria we have adopted for the aligned dipole magnetic fields
of Fig. 4.3.
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Coefficients Strength (Gauss)

g10 g11 h11 4.218 −0.664 0.264

g20 g21 g22 −0.203 −0.735 0.513
h21 h22 −0.469 0.088

g30 g31 g32 g33 −0.233 −0.076 0.168 −0.231
h31 h32 h33 −0.588 0.487 −0.294

Table 4.2: Jupiter’s Magnetic Field.

4.3.3 Tilted Dipole

In testing the effect of a tilted dipole field, we include the g10, g11 and h11 terms in our

numerical models, setting g20 and all higher-order terms, (reproduced here in Table 4.2)

to zero. Both g11 and h11 are dipolar magnetic field components, orthogonal to the aligned

g10 field, as well as to each other. The sum of all three is a simple tilted dipole.

Since the magnetic and gravitational equators do not coincide, we consider two sepa-

rate equatorial launch phases: (i) φ0 = 0◦, the ascending node of the magnetic equator on

the geographic equator and (ii) φ0 = 90◦, where the magnetic equator reaches its highest

northern latitude of 9.6◦. At this launch phase, grains can reach latitudes ≈ 20◦ north

and south of the equator, even if their trajectories are stable. Our stability results for

negatively-charged grains are plotted in Fig. 4.5.

Although slight differences with launch phase are apparent, Figs. 4.5a and 4.5b are

quite similar. Jupiter’s tilt is a stronger effect than its offset (see Fig. 4.4a), extending

the vertical instability boundary significantly outwards and close to Rsyn. The dramatic

outward expansion of the vertical instability can be understood as follows. For an aligned

dipole, as synchronous orbit is approached, both the velocity relative to the magnetic

field and the electromagnetic forces tend toward zero. For a tilted dipole, however, the

magnetic field lines cross the equator plane with a radial component, causing a substantial

~v×~B vertical force as with the offset dipole. These forces push particles out of the plane

71



 1

 1.5

 2

 2.5

 3

r L
/R

p

φ0 = 0oa)

0.1 1.0
ad (µm)

Rsyn q < 0

 1

 1.5

 2

 2.5

 3

 0.01 0.1 1 10 100

r L
/R

p

-L*

φ0 = 90o

Rsyn q < 0

b)

Figure 4.5: Stability of negative grains integrated over 0.1 years in a tilted dipole field
for Jupiter, with the launch longitude at two locations; a) where the magnetic equator
crosses the planetary equator plane (φ0 = 0◦), and b) where the magnetic equator reaches
its highest geographic latitude (φ0 = 90◦). As before, the curves are the numerically
determined stability boundaries for the aligned dipole case from Fig. 4.1a. The grey scale
is similar to Figs. 4.3 and 4.4: dark points are grains that collide with the planet at low
latitudes, the moderate grey region denotes grains that were vertically unstable to collide
with the planet at latitudes higher than λm = 20◦, the lightest grey marks trajectories that
were excited to higher latitudes but remained bound, and the white areas represent grains
that were locally stable. The only difference from Fig. 4.3 and 4.4 is that here we define
the low latitude to be |λm|< 20◦ rather than 5◦.
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along field lines, leading to enhanced instability. Interestingly, the inner boundary at

(L∗ =−50, rL/Rp = 1.4) is far less affected.

One key difference in the two panels of Fig. 4.5 occurs for high L∗ along rL/Rp = 1;

launching at the node (φ0 = 0◦) leads to collisions while launching at φ0 = 90◦ does not.

This difference is due to the curvature of the field lines in a dipole. In an aligned dipole

magnetic field, stable mirror motion causes EM-dominated grains to oscillate about the

magnetic equator, whereby the turning points or mirror points confine the latitudinal range

of the grain. Launching from φ0 = 90◦ in the tilted magnetic field ensures that the launch

point is at one of the mirror points, and this vertical turning point is relatively close to

Jupiter. Thus grains launched near 1Rp initially move radially outward and do not collide

with the planet. By contrast, for grains launched at the node where φ0 = 0◦, the mirror

points are necessarily closer to the planet than the launch distance and, accordingly, we

see that grains launched within 1.06Rp are forced to collide with Jupiter.

Another, more subtle difference between Figs. 4.5a and 4.5b, is that in the Lorentz

limit, grains launched at the node (φ0 = 0◦) are slightly more stable close to Rsyn than

those launched at φ0 = 90◦ e.g. at (L∗ = −100, rL/Rp = 2.21). In fact, both the inner

and outer vertical stability boundaries in the Lorentz limit are shifted slightly outwards

for φ0 = 90◦ compared to launches at φ0 = 0◦. Positively-charged dust grains are simi-

larly affected by the addition of the dipole tilt. As with negative grains, we present two

launch phases in Fig. 4.6, and find differences in orbital stability similar to those already

discussed for Fig. 4.5. In particular, the azimuthal dependencies for highly-charged dust

grains (|L∗| >> 1) are almost identical for both negative and positive charges (Fig. 4.6).

For all launch longitudes, the vertical instability expands greatly outwards nearly to syn-

chronous orbit. For both phases of φ0, the vertical instability expands very little towards

the planet. As in Fig. 4.5a trajectories are unstable for φ0 = 0◦ immediately above the

planet (Fig. 4.6a).
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Figure 4.6: Stability of positive grains integrated over 0.1 years in a tilted dipole field
for Jupiter, with two different launch longitudes: φ0 = 0◦, where the magnetic equator
crosses the planetary equator plane, and φ0 = 90◦, where the magnetic equator reaches its
highest geographic latitude. The solid black curves mark the stability boundaries for the
aligned dipole case from Fig. 4.1b. As in Fig. 4.5, the darkest points denote grains that
strike the planet at low latitude (|λm|< 20◦, within twice the tilt angle), the moderate grey
marks grains that strike the planet at high latitudes, the lightest grey marks grains that
remain bound between high latitude mirror points, and the white area represents grains
that are vertically stable.
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As in Fig. 4.5, both the inner and outer vertical stability boundaries in the Lorentz

limit are shifted slightly outwards for the φ0 = 90◦ launches of Fig. 4.6b compared to the

φ0 = 0◦ launches of Fig. 4.6a. The two boundaries have slightly different explanations.

For the outer boundary near Rsyn, launching at φ0 = 90◦ allows the initially larger vertical

electromagnetic forces to drive the grain to higher latitudes where the gravity of the planet

can overwhelm the centrifugal force and cause instability (Jontof-Hutter and Hamilton

2012a). Near the inner vertical boundary, grains launched at the node φ0 = 0◦ have a

higher latitudinal range and are slightly less stable.

The radial stability boundaries are largely unaffected by the tilt in the magnetic field,

although some slight differences are evident to the left of the radial instability region.

Note the subtle difference along the left-most radial stability boundaries between Fig. 4.6a

and Fig. 4.6b, where grains launched at φ0 = 90◦ inside Rsyn, are slightly more stable than

those with φ0 = 0◦. Outside synchronous orbit, however, the reverse holds true. This is

most easily understood as an overall outward shift of the instability region from φ0 = 90◦

to φ0 = 0◦. Thus φ0 = 90◦ grains behave almost exactly like φ0 = 0◦ grains that have been

launched a bit further from the planet. Note that this difference with launch phase was

seen for the negative grains near the planet as well (Fig. 4.5), and the explanation is the

same.

Until now we have only considered instabilities that remove a grain typically within

hours. However, the tilted dipolar field causes further instabilities acting over weeks to

months, and over a greater range of launch distances than the aligned dipolar case. These

longer-term effects are explored below.
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4.3.4 Resonant Effects in a Tilted Dipole Field

In an aligned dipole field, it can be shown that negative grains launched from outside Rsyn

at the Kepler speed are permanently confined between their launch distance and Rsyn; they

are energetically unable to escape (Jontof-Hutter and Hamilton 2012a). The tilted dipole

field however, permits radial motion away from Rsyn, and actually enables some negative

grains to depart the planet, as was first seen by Hamilton (1996).

In Fig. 4.7, we show the stability maps for Jupiter modelled with the g10 and g11

magnetic field components for dust grains with both negative and positive charges whose

trajectories were integrated for one Earth year. We seek to highlight the motion away

from synchronous orbit for the negative grains, and towards Rsyn for the positive grains,

motions precluded by a simple aligned dipolar magnetic field.

Within synchronous orbit, the negatively-charged grains of Fig. 4.7a shows the same

short term instabilities seen in Fig. 4.5b. Notice in Fig. 4.7a, however, the large finger of

instability outside synchronous orbit. This feature traces grains that suffer significant and

unusual motions away from Rsyn, and it points towards rL/Rp = 3.55 which happens to

be the location of the outer 1:2 resonance (Hamilton 1994; Hamilton and Burns 1993b;

Schaffer and Burns 1987, 1992; Showalter et al. 2008). Furthermore, the highly detailed

dark grey structures near |L∗|= 1 outside Rsyn (Fig. 4.7a) indicate significant numbers of

negative grains that escape within one year.

These results are important for escape from the Io plasma torus, the most likely source

of the Jovian high-speed dust streams (Graps et al. 2000; Horányi et al. 1993b). Dust

streams are comprised of radially-accelerated positively-charged dust grains, although in

the plasma torus itself, dust grain electric potentials are likely to be negative, even in

sunlight (Bagenal 1994; Krüger et al. 2003a). Lorentz resonances can provide a rapid

escape mechanism for negatively-charged grains launched in the plasma torus. Once dust
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Figure 4.7: Destabilizing effects of a tilted dipole magnetic field for Jupiter, with launch
at φ0 = 90◦. Integrations are for one Earth year, and we show a greater radial range than
in Figs. 4.5 and 4.6. Note that the greyscale that we use here is different from the earlier
figures. Here, the darkest region denotes grains that either escape or crash into Jupiter
within 1 year of launch. For the negative grains, the light grey marks grains with radial
motions away from Rsyn (in the direction opposite that expected for gyromotion), by at
least 0.04rL, revealing the destabilizing effect of the tilted magnetic field. For positive
grains, the light grey indicates trajectories with radial motions towards Rsyn of at least
0.02rL. As always, the white indicates stability.
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grains is free of the torus, charging currents become positive and the grains are accelerated

to escape. We shall discuss this in detail in Chapter 5.

For the positive grains, Fig. 4.7b shows an increased number of grains that are un-

stable, compared to Fig. 4.6b. The most striking difference is that in Fig. 4.7b, there are

rough patches of additional radial instability just outside Rsyn near (L∗ ≈ 0.2, rL/Rp = 3).

These unstable patches transition smoothly to become thin tracks of bound grains with

excited radial ranges in the Kepler regime which, like the negative grains in Fig. 4.7a,

point towards discrete integer ratios of the planetary spin and Kepler orbital frequencies.

Accordingly, we look to extend the concept of Lorentz resonances, (much studied

in the Kepler limit by authors including Burns et al. 1985; Hamilton 1994; Hamilton and

Burns 1993b; Schaffer and Burns 1987, 1992), to cover the entire range of charge-to-mass

ratios. To determine the location of these Lorentz resonances, we start with the resonant

equation

Ψ̇ = Aωc +BΩp +CΩ̇node +Dϖ̇peri, (4.8)

where the coefficients A, B, C and D are integers that must sum to zero (Hamilton 1994).

Here ωc is the orbital frequency of the guiding center, Ωp is the planetary spin rate, Ω̇node

is the precession rate of the ascending node, ϖ̇peri is the precession rate of the pericenter,

and Ψ is the resonant argument; Ψ̇ equals zero at a Lorentz resonance.

Next, we rewrite ϖ̇peri and Ω̇node in terms of our general frequencies from Eqs. 4.3-

4.6 which cover all charge-to-mass ratios. The precession rates are simply

ϖ̇peri = ωc−|κc| (4.9)

and

Ω̇node = ωc−Ωb (4.10)

where κc, the epicyclic frequency of motion, is negative by convention for retrograde

epicycles. Recall that in the gravity limit, ωc = |κc| = Ωb = nc and hence ϖ̇peri =
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~B-field terms Res. name rL (L∗→ 0) Res. frequency Ψ̇ Corotating form

g11 1:4 5.64Rp 4ωc−Ωp−2ϖ̇peri− Ω̇node φ̇c +2|κc|+Ωb

g11 1:3 4.66Rp 3ωc−Ωp− ϖ̇peri− Ω̇node φ̇c + |κc|+Ωb

g11 1:2 3.55Rp 2ωc−Ωp− Ω̇node φ̇c +Ωb

g21 1:3 4.66Rp 3ωc−Ωp−2ϖ̇peri φ̇c +2|κc|
g21 1:3 4.66Rp 3ωc−Ωp−2Ω̇node φ̇c +2Ωb

g21 1:2 3.55Rp 2ωc−Ωp− ϖ̇peri φ̇c + |κc|
g22 2:4 3.55Rp 4ωc−2Ωp− ϖ̇peri− Ω̇node 2φ̇c + |κc|+Ωb

g22 2:3 2.93Rp 3ωc−2Ωp− Ω̇node 2φ̇c +Ωb

g22 2:1 1.41Rp ωc−2Ωp + Ω̇node 2φ̇c−Ωb

Table 4.3: Selected Lorentz resonances at Jupiter (column 2), driven by the magnetic
field coefficient in column 1, appear, for small charge-to-mass ratios, at the locations
given in column 3. The resonance frequency is given in its most general form (column
5) and in a second form most useful when gravity dominates (column 4) .

Ω̇node = 0, as expected. As an illustration, we focus on radial resonances for which

C = 0.

Setting Eq. 4.8 to zero and using Eq. 4.9, we find:

−Bωc +BΩp−D|κc|= 0 (4.11)

or

Bφ̇c +D|κc|= 0, (4.12)

since in the frame corotating with the magnetic field, the azimuthal frequency of the

guiding center is given by φ̇c = ωc−Ωp.

Equation 4.12 shows that a Lorentz resonance affecting radial oscillations reduces

to a simple ratio between the epicyclic frequency |κc|, and the motion of the guiding

center relative to the rotating magnetic field (φ̇c). Our approach thus shows how to extend

classical Lorentz resonances to remain valid at arbitrary charge-to-mass ratios.

In Table 4.3, we show select Lorentz resonances for all charge-to-mass ratios and

their driving magnetic field terms, taken from Hamilton (1994). In the Kepler limit, these
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Lorentz resonances act to slowly increase eccentricities and/or inclinations, destabilizing

trajectories over many orbits. The resonances that include multiple instances of ϖ̇peri or

Ω̇node such as the three 1:3 resonance in Table 4.3, are weaker since their strengths in

the Kepler regime depend on higher powers of the small quantities e (eccentricity) and i

(inclination). At higher charge-to-mass ratios, however, all of these resonances increase

in strength, and their effects on grain orbits occur on much shorter timescales than in the

Kepler regime. Some negative grains at 6.0Rp in Fig. 4.7a escape in as little as a few days.

Figure 4.8 overlays the g11 Lorentz resonances of Table 4.3 on the stability map for a

tilted dipolar field (the data from Fig. 4.7)a. For negative grains outside synchronous orbit,

the Lorentz resonances curve upwards directly into the region of escape for increasing L∗.

This occurs because the epicyclic frequency |κc| increases rapidly with L∗ (Eq. 4.4), hence

φ̇c must also increase to maintain the same resonance (Eq. 4.12). Since φ̇c increases away

from Rsyn, remaining in resonance as |κc| increases necessitates a greater launch distance

from synchronous orbit. Although these curves are determined from frequencies that are

valid strictly for an aligned dipole field, they nevertheless show an impressive match to

our data, despite the more complex magnetic field.

For the positive grains, the resonant tracks in Fig. 4.8b begin at the same locations

in the Kepler limit, but curve towards synchronous orbit as L∗ increases. The resonant

instabilities are all on the right side of the short-term radial instability of Fig. 4.1, and all

resonant solutions converge to a single point at (L∗ = 2−
√

3, rL = Rsyn). This is the point

at synchronous orbit where |κc| = φ̇c = 0, and grain orbits are locally unstable in even

a simple aligned dipolar field (Jontof-Hutter and Hamilton 2012a). The convergence to

synchronous orbit as L∗ increases occurs because for positive grains with L∗ << 1, |κc|

decreases as L∗ increases (Eq. 4.4), and in the resonance φ̇c must also decrease (Eq. 4.12),

driving distances towards Rsyn.

The Lorentz resonances destabilize the motion of grains, and hint that a non-axisymmetric
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Figure 4.8: The tilted dipole stability map of Fig. 4.7 with theoretical curves Ψ̇ = 0 from
Table 1 superimposed as solid curves. The theoretical curves fall atop the instability
”fingers” seen in Fig. 4.7, attesting to the accuracy of the theory. The 2:1 resonance
between epicyclic frequency |κc| and vertical Ωb motions is also shown in the upper
panel, as a dotted curve. In the lower panel, the open circles mark the point (L∗ = 2±

√
3,

rL/Rsyn = 1), where all the resonant tracks for positive grains converge. For large L∗, all
radial resonances lie nearly atop one another in panel b).
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field allows the negative grains to tap into the planetary rotation, making escape energet-

ically favorable. The detailed structure in the stability map of Fig. 4.8, including the

escaping negatively-charged grains, is due only to the effects of g10 and g11. The theory,

however, can only explain the 1:N resonances (Table 4.3) and not the instability of the

2:3 and 2:1 resonances, which nevertheless are definitely present in Figs. 4.7 and 4.8. We

will return to explain this discrepancy shortly.

In addition to Lorentz resonances of the type shown in Eq. 4.8, there are also res-

onances between the dust grain’s radial and vertical motions, analogous to the Kozai

resonance experienced by highly-inclined orbits. The dominant resonance of this type

satisfies: ωc − 2Ω̇node + ϖ̇peri = 0, such that |κc| = 2Ωb. This 2:1 resonance between

radial and bounce motions is the strongest of its type since during one bounce period,

north-south symmetry ensures that the dust grain experiences two cycles in magnetic

field strength (Jontof-Hutter and Hamilton 2012a). The resonance track also passes close

to the high charge-to-mass boundary of the resonant structure in Fig. 4.8a. We turn now

to investigate the effects of the individual asymmetric quadrupolar magnetic field terms,

which should also power resonances (Table 4.3).

4.3.5 Quadrupole Terms

In this and the following sections, we focus on the escaping negative grains outside syn-

chronous orbit, because these escapes are the most fundamental new effect added by a

non-axisymmetric magnetic field. In the stability maps of Fig 4.9, we isolate the effects

g21 and g22 to highlight their respective Lorentz resonances, as compared to the stability

boundaries of the tilted dipole from Fig. 4.7a (solid curves). For stable negatively-charged

grains in an aligned dipole field, radial motion is always confined between the launch dis-

tance and synchronous orbit. Thus, as in Fig. 4.7a, the light grey data in Fig. 4.9 trace

where grain trajectories show motions away from Rsyn that are significant on the scale of
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Figure 4.9: Quadrupole-order terms isolated in stability maps for negatively-charged
dust: To g10 we add just g21 in panel a) and just g22 in panel b), with a 1-year simulation
for each dust grain. The light grey marks stable grains whose radial excursions away
from Rsyn exceeded 4% of the launch distance, while dark grey indicates collision just as
in Fig. 4.7a and 4.8a. The dark curves mark the envelope of instability when just the g10

and g11 coefficients are included, from the numerical data of Fig. 4.7a.

the launch distance.

The g21 and g22 terms studied in Figs. 4.9a and 4.9b clearly cause less overall in-

stability than g11 in Fig. 4.7a. Consider first, motion within synchronous orbit. The g21

term (Fig. 4.9a) is nearly as effective as g11 in inducing vertical instability, and in fact is
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better able to clear out the region just above the planet’s cloudtops. The effect of the g22

term (Fig. 4.9b) is similar to, but typically weaker than, g11 with one important exception.

Note the long, horizontal feature extending towards the 2:1 inner Lorentz resonance in

the Kepler regime (small L∗). These stable grains are strongly stirred by the 2:1 vertical

Lorentz resonance excited by g22. A similar effect can be seen on the right-hand side of

Fig. 4.9a; a small trail of points near (rL/Rp ≈ 1.05, L∗ ≈ −0.03) hints that g21 causes

a weak 2:1 inner Lorentz resonance. However, the first-order theory of Hamilton (1994)

predicts that g32 rather than g21 should excite this resonance!

Outside Rsyn, the situation is more straightforward. Figure 4.9a shows that the g21

term strongly excites the 1:3 and 1:2 Lorentz resonances, as expected from Table 4.3.

Notice that the 1:2 resonance is significantly stronger than the 1:3 resonance because, in

the Kepler limit, the former has a strength proportional to the small orbital inclination i

while the latter’s strength depends on the product of two small quantities e and i, where

e is the orbital eccentricity (Hamilton 1994). Interestingly, in one way the g21 term has a

stronger effect on radial motion than the g11 term, extending the 1:2 and 1:3 resonances

further into the Kepler limit. This can be understood from Table 4.3 and Hamilton (1994),

which show that the g21 term should strongly excite both of these resonances.

Figure 4.9b shows two main features from the g22 term outside Rsyn, which tend to-

wards 1:2 and 2:3 in the Kepler limit. The g22 term excites vertical motions (Hamilton

1994), which are not traced directly in Fig. 4.9, but which clearly couple to radial motions.

This causes the outer 1:2 and 2:3 resonances seen in Fig. 4.9b, as well the strong inner 2:1

resonance that reaches far into the Kepler regime. A glance at Table 4.3 shows that g22

excites a first-order 2:3 inclination resonance and a second-order mixed 2:4 resonance,

accounting for the differing responses of grains near these resonances visible in Fig. 4.9b.

We are left with a few paradoxes. First, how does the g11 magnetic field term excite the

2:3 and 2:1 Lorentz resonance? And how does the g21 term excite the 2:1 resonance? To
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answer these questions, we require a second-order expansion of the Gaussian perturbation

equations (Danby 1988), for the electromagnetic force. The first-order Fourier series

expansion in the small parameter L∗ was obtained by Hamilton (1994) for each magnetic

field coefficient by treating the orbital elements as constants. To extend this to second

order, we take the Fourier series first-order solution for each orbital element and insert

it on the right-hand side of the Gaussian perturbation equations. Simplifying requires

identities for the product of two trigonometric functions and we end up with second-

order L2
∗ corrections to the time rates of change of the orbital elements. Thus the power

in each resonant frequency in Table II of Hamilton (1994) is augmented by a second-

order correction. Calculating the strength of these corrections is a straight-forward but

unenlightening exercise which we do not undertake here, as the calculation is clearly

invalid for L∗ > 1 when the third- and higher-order terms cannot be ignored. Indeed, the

very concept of orbital elements also breaks down for L∗ > 1 when electromagnetism is

no longer a small perturbation to gravity.

Instead, we explore the form of the corrections and show how magnetic field coef-

ficients can excite resonant terms other than those shown in our Table 4.3 and in Ta-

ble II of Hamilton (1994). Consider first the g10g11 simulation of Figs. 4.7 and 4.8.

To second order, this combination of coefficients excites two relevant 2:3 resonances:

Ψ̇ = 3ωc−2Ωp− ϖ̇peri and Ψ̇ = 3ωc−2Ωp + ϖ̇peri−2Ω̇node, both with amplitude pro-

portional to L2
∗(Rp/r)6g2

11ei2. In addition, a 1:2 resonance, Ψ̇ = ωc−2Ωp + ϖ̇peri is also

excited, with amplitude also proportional to L2
∗(Rp/r)6g2

11ei2. These resonances show up

in Figs. 4.7 and 4.8 near the planet where the radial term is relatively large, near insta-

bility boundaries where e and/or i are large, and for particles where L∗ itself is relatively

large. Comparison of Figs. 4.7b and 4.8b shows that these resonances are weaker than the

already-discussed first-order resonances, as expected.

In a similar manner, the second-order theory shows that g21 drives the 2:1 resonance
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with frequency Ψ̇ = ωc − 2Ωp + ϖ̇peri and amplitude L2
∗g

2
21(Rp/r)8e3 (Fig. 4.9a). The

rest of Figs. 4.9a and 4.9b appear to be well explained by the linear theory of Hamilton

(1994), which predicts both pairs of instability outside Rsyn.

The second-order corrections, however, should excite the resonant frequency Ψ̇ =

5ωc − 4Ωp + ϖ̇peri − 2Ω̇node with amplitude proportional to L2
∗(Rp/r)8g2

22ei2; the very

weak feature just below the 2:3 track and near the center of Fig. 4.9b may be due to this

resonance. Furthermore, the frequency Ψ̇ = 3ωc− 2Ωp− ϖ̇peri with amplitude propor-

tional to L2
∗(Rp/r)8g2

21e3, should excite particle motions in Fig. 4.9a, but no evidence for

these motions is seen. This may be due to the fact that horizontal resonances driven by g21

are intrinsically weaker than the vertical resonances driven by g22 (Hamilton 1994). In

any case, given the strong drop in the strength of second-order corrections with distance,

their effects outside Rsyn are minimal.

4.3.6 Realistic Full Magnetic Field Models

Figure 4.10a combines the effects of all dipolar and quadrupole terms for negative grains.

Within synchronous orbit, all grains in the Lorentz limit are now unstable, as are all

grains within the g11 envelope. Furthermore, g22 powers a 2:1 vertical resonance with

frequency Ψ̇ = ωc−2Ωp +Ω̇node, seen as the dominant horizontal feature extending from

the instability region. Adding the octupole term g32 strengthens this feature by exciting

a 2:1 radial resonance Ψ̇ = ωc−2Ωp + ϖ̇peri. These resonances have the most dramatic

effect on large dust grains due to the strength of the magnetic field near the planet. The

g33 octupole term adds a spike of instability at the 3:2 resonance as well (Ψ̇ = 2ωc −

3Ωp + Ω̇node).

Outside Rsyn, a large region of escaping negative grains exceeds the sum of the effects

of g11 (Fig. 4.7a), g21 (Fig. 4.9a) and g22 (Fig. 4.9b), although the main resonant tracks

are easily identified. In particular, a huge swath of grains centered on L∗ = 5 at rL/Rp = 5
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Figure 4.10: Resonant quadrupolar and octupolar effects in stability maps for negative
dust grains: To the tilted dipole model of Fig. 4.7a, shown here as the solid curves, we add
all quadrupole terms (panel a), and all terms out to octupole order (panel b). The darkest
regions mark grains that collide with the planet or escape during a 1-year integration. The
lighter grey indicates stable grains whose radial excursions away from Rsyn exceeded 4%
of the launch distance, as in Figs. 4.7a, 4.8a and 4.9.

escapes here, but is bound for the simpler field geometries of Figs. 4.7a, 4.9a, and 4.9b.

Adding the octupole magnetic field coefficients (Fig. 4.10b) presents only subtle dif-

ferences from the quadrupole mode of Fig. 4.10a outside Rsyn. In particular, the locations

of the resonant tracks appear to be unchanged. The three narrow fingers in the center of
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Fig. 4.10b, however, are noticeably more prominent than the corresponding structures in

Fig. 4.10a. The outer 2:3 resonance is driven by the g22 term (Ψ̇ = 3ωc−2Ωp− Ω̇node),

but the other resonances cannot be excited by quadrupole terms in the linear theory. The

3:4 resonance is driven by the g33 coefficient, but also by a second-order term proportional

to g11g22. Both are active in the lower plot, while only the latter affects the upper plot.

Similarly, the 5:4 resonance is excited by the non-linear g2
22 term (both plots) and by the

g11g33 term (bottom plot only). As always, when multiple resonances are active, chaos

ensues and escape becomes more likely. Note that these differences between Figs. 4.10a

and 4.10b are confined within ∼ 4Rp, due to the rapid radial weakening of the high-order

magnetic field terms.

In general, we see that Lorentz resonances widen in launch distance and charge-to-

mass ratio as L∗ increases. This causes the resonances to overlap and destabilize most

of the grains near L∗ = −1 if grains are launched beyond the immediate vicinity of syn-

chronous orbit. As |L∗| increases, higher-order dependencies on the charge-to-mass ratio

permit even more resonances to emerge and vie for control of dust grain dynamics. In

Fig. 4.11, the vertical and radial Lorentz resonances for negative and positive grains are

plotted atop the stability map for Jupiter’s full magnetic field modeled out to octupole

order. For the negative grains of Fig. 4.11a, as L∗ increases going from right to left, all

the radial resonances diverge rapidly from Rsyn. Most of the vertical resonances however,

diverge from synchronous orbit more slowly as |L∗| increases, and in the Lorentz regime

these pile up on the vertical stability boundary inside Rsyn (Fig. 4.1a), where Ωb → 0 and

hence, by the resonant condition, φ̇c → 0. The combined effects of many vertical reso-

nances near this boundary destabilizes all grains in the Lorentz regime out to synchronous

orbit in Fig. 4.11a.

For the positive grains of Fig. 4.11b, all radial resonances converge on the two locally

unstable points along Rsyn. In the Lorentz regime, the curve outside synchronous orbit
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Figure 4.11: Theoretical resonance curves over all charge-to-mass ratios superimposed
on a stability map of Jupiter’s full magnetic field for a) negative grains (from Fig. 4.10b)
and b) positive grains. The dark grey marks dust grains that escaped or crashed into
Jupiter during the 1-year integration. The faint grey points denote grains that experience
radial motions away from synchronous that exceeded 4% of the launch distance for the
negative grains, and towards Rsyn by at least 2% of rL for the positive grains. The thick
bold curves mark radial Lorentz resonances, and the thin curves track the vertical Lorentz
resonances. At synchronous orbit φ̇c = 0, and the white circles mark the local stability
threshold from Jontof-Hutter and Hamilton (2012a) where κc → 0.
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satisfies κc → 0. This is further to the left of the stability boundary for an aligned dipole

(Fig. 4.1b), ensuring that resonances pile up and further destabilize grains with the addi-

tional magnetic field terms in the Lorentz regime. Physically, it means that smaller grains

are likely to be expelled for a particular positive electric potential than calculated using

the aligned dipolar approximation. For the larger grains, in the Kepler regime, the verti-

cal Lorentz resonances asymptote near the L∗ = 1/2 boundary where the guiding center

distance rapidly increases and the bounce frequency Ωb → 0.

For both positive and negative grains where L∗ << 1, the outer 1:3 radial and vertical

resonances coincide implying ϖ̇peri = Ω̇node. This is indeed the case to first order in

L∗ as was first deduced by Hamilton (1993a). The result can also be obtained from our

Eqs. 4.3, 3.11 and 4.6.

In the Kepler regime, N:N+1 resonances pile up at synchronous orbit (like the 5:6

resonance marked in Fig. 4.11a); for higher N, these are driven by gNN magnetic field

terms beyond the octupole that we have considered here. Our model of Jupiter’s magnetic

field out to octupole order is incomplete; inclusion of higher-order terms would lead to

additional escapes. Given the strong radial dependence of higher-order magnetic field

components, we expect changes to be limited to regions close to the planet and at high L∗,

just like the differences between Figs. 4.10a and 4.10b. Nevertheless, we eagerly await

the improved magnetic field model that the Juno spacecraft will soon provide.

4.4 Other planets

After our detailed investigation of Jupiter, we are now in a position to map and interpret

stability results for each of the planets in the Solar System. We begin with the planet with

the simplest magnetic field, Saturn.
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Coefficients Strength (Gauss)

g10 0.21535
g20 0.01642
g30 0.02743

Table 4.4: Saturn’s Magnetic Field.

4.4.1 Saturn

Saturn’s full magnetic field can be described by an aligned dipole with a slight vertical

offset; the magnetic field coefficients from Connerney et al. (1984) are given in Table 4.4.

Figure 4.12a shows the stability map for negatively-charged grains in Saturn’s full

magnetic field, with the numerically determined stability boundaries for an aligned and

centered dipole included for comparison, as in Fig. 4.4.

As at Jupiter, (see Fig. 4.4) Saturn’s dipole offset increases the instability of grains

to vertical perturbations. This eliminates the stable zone close to the planet that we saw

for the aligned dipole case, and moves the outer vertical stability boundary significantly

further from the planet. The effect is stronger at Saturn due to its relative large g20 term

and to the larger Rp/Rsyn at Saturn, making the planet a bigger target. By contrast, at

Jupiter (see Fig. 4.4), a locally stable region in the Lorentz limit close to the surface

survives the inclusion of g20.

For positively-charged grains, in Fig. 4.12b, the offset dipolar field causes the vertical

instability to join the radial instability, as in Fig. 4.4b. However, a small island of globally

stable grains survives near (L∗ = 3, rL/Rp = 1.3). The radial stability boundaries for an

aligned dipole field for Saturn (solid curves in Fig. 4.12b), match Saturn’s full magnetic

field remarkably well.

At Saturn we also see a slightly wider range of charge-to-mass ratios excited by the 2:1

resonance between epicyclic and vertical motions, when compared to Jupiter (Fig. 4.4a).
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This is due to the range of launch distances extending further out in units of Rsyn in

Fig. 4.12a.

The transition from grains that are lost to the vertical instability to those that remain

bound in the B ring is at 1.70Rp or ≈ 102,000 km in the Lorentz limit (Fig. 4.12). This

is close to the increase in optical depth in the B ring that begins around 1.65Rp, and

losses to erosion may play a role in ring evolution across this boundary. Northrop and

Connerney (1987) argued for a link between the inner edge of B ring and the vertical

stability boundary. Their model for vertical motion predicted all highly-charged grains to

be unstable within 1.54Rp at Saturn, close to the sharp inner edge of the B ring. However,

their model did not provide a detailed mechanism and also invoked poorly understood

electrostatic effects (Northrop and Connerney 1987; Northrop and Hill 1983b). Voyager

2 data revealed the transition in optical depth between 1.63Rp and 1.65Rp (98,000 - 99,000

km), a few thousand kilometers inside the vertical stability boundary at Saturn with its full

magnetic field configuration. While the proximity of this transition to the vertical stability

boundary is intriguing, a detailed model to explain this congruency remains elusive.

Vertical Equilibrium in an Offset Dipole Field

We have seen that even in the Lorentz limit, gravity and the planetary rotation are of

crucial importance in the vertical motion of Kepler-launched dust. Here, whilst studying

orbital stability in Saturn’s full magnetic field, we make a brief digression to consider the

location of the vertical equilibrium point for dust grains in an offset dipolar field. In an

aligned dipolar magnetic field, grains launched in the equator plane are at equilibrium

initially, even if that equilibrium is unstable at certain distances. The additional magnetic

field terms g20 and g30 cause the equator to shift to a vertically-offset position. The g20

magnetic field term shifts the magnetic equator to:

z
Rp

=
g20

2g10
. (4.13)
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Figure 4.12: Stability of a) negative and b) positive Kepler-launched grains, followed for
0.1 years in Saturn’s full magnetic field. The greyscale matches that of Figs. 4.3 and 4.4.
The darkest region denotes grains that are radially unstable to escape or strike the planet
(positive charges only), the moderate grey scale marks trajectories that were vertically
unstable to climb out of the ring plane and strike the planet at high latitude, the light grey
scale marks grains that are vertically unstable in the equatorial plane but remain globally
bound with mirror points further than |λm| = 5◦ from the equator, and the white area
marks locally stable orbits. Superimposed on the data are the numerically determined
stability boundaries for an aligned and centered dipolar magnetic field model for Saturn
(Jontof-Hutter and Hamilton 2012a), as well as the curve marking the analytical 2:1
resonance between epicyclic and vertical motion, which closely tracks band of grains
that reach high latitudes but remain bound. The white circles mark the local stability
threshold at Rsyn, where L∗ = 2±

√
3.
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We obtain this result analytically, by finding the location where ~B is entirely in the ẑ direc-

tion. Adding g30 complicates the analytics substantially. Using numerical data with both

the planetary gravity and rotation switched off, however, we find the following empirical

expression for the offset magnetic equator:

z
Rp

=
3g20

6g10−g30

(
Rp
r

)2 . (4.14)

This reduces to Eq. 4.13 if g30 is neglected, as well as in the distant limit, since the effect

of g30 declines rapidly with distance. At the planetary surface, the extra g30 term at Saturn

increases the vertical shift by only ≈ 2%, and at Jupiter the effect of g30 is even weaker.

Vertical oscillations are centered on the offset equator in the distant limit, which at Saturn

is 0.038Rp northwards. At Jupiter, g20 < 0, hence the dipolar field is shifted southwards,

by 0.024Rp.

Including the effects of gravity and planetary rotation, we seek vertical equilibrium

point for grains launched in the dusty rings. Our launch condition makes synchronous

orbit a unique location where the Lorentz force disappears, independent of the magnetic

field configuration. Thus at this location, vertical equilibrium remains in the ring-plane.

In Fig. 4.13, we determine the vertical equilibrium location in the EM regime, compar-

ing Saturn’s full magnetic field to a comparable g10g20g30 model for Jupiter, and simple

g10g20 magnetic field models for both planets. In each case, the equilibrium point is in

the ring-plane at Rsyn, and asymptotes to the offset magnetic equator in the distant limit.

As suggested by Eq. 4.14, the addition of g30 in the numerical simulations of Fig. 4.13

have only a modest influence.

Inside synchronous orbit, the vertical equilibrium points switch to the opposite hemi-

sphere of the magnetic equator. This change in the direction of the vertical force across

synchronous orbit is due to the added Lorentz force from the g20 magnetic field on a dust

grain launched in the ring-plane, drifting azimuthally in the rotating frame. The direc-
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Figure 4.13: Numerically-determined vertical equilibrium points in the EM regime at
a) Jupiter and b) Saturn comparing g10g20 (filled circles) and g10g20g30 (open circles)
magnetic field models. For all trajectories, |L∗| = 105. The horizontal line in each plot
is the offset magnetic equator due to g20, in the absence of rotation and gravity. The
points mark the midpoints between vertical extrema for Kepler-launched dust grains from
λL = 0◦, and asymptote towards the magnetic equator with increasing distance. The
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Coefficients Strength (Gauss)

g10 g11 h11 −0.30339 −0.02123 0.05758

g20 g21 g22 −0.01654 0.02994 0.01567
h21 h22 −0.02006 0.00130

g30 g31 g32 g33 0.01297 −0.02036 0.01289 0.00843
h31 h32 h33 −0.04093 0.00242 −0.00176

Table 4.5: Earth’s Magnetic Field.

tion of the additional force (Eq. 3.1) depends on the sign of product qVdri f tg20. Following

Eq. 3.8, inside Rsyn if L∗ < 0, the azimuthal drift in the Lorentz regime is prograde. In Sat-

urn’s ring-plane, the magnetic field lines due to g20 are directed radially inwards. Hence

the vertical Lorentz force is directed southwards, and the equilibrium points in Fig. 4.13b

are offset in that direction. Furthermore, all vertically unstable grains at Saturn crash in

the southern hemisphere. By contrast at Jupiter, g20 < 0, and (ignoring its other magnetic

field terms), vertically unstable grains crash in the northern hemisphere. Note that the

azimuthal drift rate changes sign if the grain charge changes sign, hence the vertical force

is in the same direction for both negative and positive grains. The drift speed, Vdri f t , also

changes sign across synchronous orbit. Hence the vertical equilibrium location switches

hemispheres at Rsyn.

4.4.2 Earth

The Earth’s magnetic field is dominated by a dipole tilted by a moderate 11.4◦ from the

axis of rotation. For our full field models, we use the magnetic field coefficients out to

octupole order (Table 4.5) taken from Roberts and Soward (1972). For the Earth, g10 < 0

and the magnetic field is inverted compared to all of the giant planets. Thus for the Earth,

L∗ > 0 for negatively-charged grains, and it is these negative grains that suffer the radial

instability (Jontof-Hutter and Hamilton 2012a).
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Figure 4.14 compares the stability of grains in Earth’s full magnetic field to an aligned

dipolar model. With an aligned dipolar field, the vertical instability at Earth in the Lorentz

limit is local, leading to a region of high-latitude globally-stable oscillations. For the

positive grains (L∗ < 0, Fig. 4.14b) this locally vertically unstable region curves towards

the planet as |L∗| decreases, and only from within a small range of launches near the

surface between L∗ ≈ −0.1 and −1.0 do grains actually collide with the planet. This

changes very little with the inclusion of Earth’s higher-order magnetic field terms, as

Fig. 4.14 indicates. More dramatically, the higher-order terms (primarily g11) expand the

vertical instability in the Lorentz limit to further distances, almost to Rsyn. In this region,

grains do in fact collide with the planet. The feature is very similar to what we saw at

Jupiter in Figs. 4.5 and 4.6, except that the transition from high-latitude oscillations to

globally unstable is further from the planet (relative to Rsyn) in the case of the Earth. Just

as at Jupiter, tilting the magnetic field does not move the inner vertical stability boundary

significantly. For the negative grains, Fig. 4.14a shows that the vertical instability is also

displaced towards Rsyn and curves slightly upwards to merge with the region of radial

instability. The expansion of the vertical instability for both positive and negative charges

nearly to synchronous orbit has a unique benefit in assisting the removal of dusty space

debris from this crowded region of Earth orbit (Horányi et al. 1988; Juhász and Horányi

1997; Valk and Lemaı̂tre 2008).

The radial instability however, is very different at Earth than at Jupiter. Outside syn-

chronous orbit, the higher-order magnetic field terms have little effect and the radial sta-

bility boundaries of Jontof-Hutter and Hamilton (2012a) match the data remarkably well.

Inside synchronous orbit, Earth has a larger area of HLROs that abut the disjoint regions

of equatorially-confined radial instability. Thus Earth’s full magnetic field barely alters

the radial instabilities expected for an aligned dipole: The few unstable grains that exceed

the radial stability boundary on the right side of Fig. 4.14a may be associated with Lorentz
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resonances. In particular, the small cluster of points near (L∗ = 0.01, rL/Rp = 2.0) closely

corresponds to the inner 6:1 Lorentz resonance. All else being equal, the Lorentz reso-

nances are more important close to the planet where the magnetic field irregularities are

strongest.

As an exercise, we compared the results displayed in Fig. 4.14 with a simpler tilted-

dipole model, including just the g10 and g11 terms (figure not shown). The only noticeable

difference that arises is that the positive and negative grains that are excited to high lat-

itudes, near (|L∗| = 10, rL/Rp = 1.3) are not excited in the tilted dipole model. A more

subtle difference is the extra set of collisions to the right of the radial instability bound-

ary on the right-hand side of Fig. 4.14a marking grains that were lost because of Lorentz

resonances. These grains survive in the simple tilted dipole model. Deviations at greater

distances are not expected due to the steep radial dependence of the quadrupole and oc-

tupole terms, and indeed, they are not seen. All in all, a tilted magnetic dipole is a robust

model for the motion of charged dust grains at the Earth.

4.4.3 Uranus

Uranus’ complex magnetic field destabilizes grains for a much wider range of charge-

to-mass ratios than Jupiter, Saturn or Earth. Figure 4.15 shows the stability of grains

launched at Uranus, with magnetic field coefficients out to octupole order (Table 4.6)

taken from Ness et al. (1991). This figure highlights the significant dependence of launch

azimuth on grain lifetimes. Grain orbit stability was modeled for 12 equally-spaced az-

imuthal launch positions, and trajectories were followed for 1 year.

Beyond Rsyn, Uranus’s full magnetic field causes a large class of grains to escape

rapidly, for both negatively- and positively-charged dust. In general the stability maps for

negative and positive grains are very similar, especially inside synchronous orbit. Within

Rsyn all trajectories in the Lorentz limit appear unstable for both negative and positive
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Figure 4.14: Stability of Kepler launched negative (a) and positive (b) grains in Earth’s
magnetic field complete to octupole order, integrated over 1 year, with launch at φ0 = 0.
The solid curves mark the numerical stability boundaries for the Earth with its anti-
aligned g10 component alone (Fig. 12 from Jontof-Hutter and Hamilton 2012a). Grains
in the darkest region, (negative charges only) crashed into the planet or escaped at a
latitude less than twice Earth’s 11.4◦ tilt angle. The moderate grey region marks grains
that struck the planet at latitudes higher than twice the tilt angle, the light grey marks
grains with stable vertical oscillations with mirror points exceeding twice the tilt angle
in latitude, and white regions are the remaining stable orbits. The white circles mark the
points L∗ = 2±

√
3, at rL = Rsyn, where grains are on the threshold of radial instability.

99



Coefficients Strength (Gauss)

g10 g11 h11 0.11893 0.11579 −0.15684

g20 g21 g22 −0.06030 −0.12587 0.00196
h21 h22 0.06116 0.04759

g30 g31 g32 g33 0.02705 −0.01188 −0.04808 −0.02412
h31 h32 h33 −0.07095 −0.01616 −0.02608

Table 4.6: Uranus’ Magnetic Field.

charges, which significantly constrains the low-energy plasma environment in the Uranian

inner ring system. Furthermore, both Figs. 4.15a and 4.15b show far more dependence

on launch phase at high charge-to-mass ratio, on the left side of the stability maps, than

on the right, consistent with our results for Jupiter (Fig. 4.6).

Uranus’s magnetic tilt as well as its quadrupole and octupole magnetic field coeffi-

cients are far more important when compared to its g10 term than at Jupiter or Saturn,

causing strong Lorentz resonances, and hence a dramatic expansion of escaping negative

grains over that seen at Jupiter in Fig. 4.10b. Furthermore, at Uranus, grains as close

as Rsyn can escape, unlike at Jupiter. In Fig. 4.15a, a spike at (L∗ = −0.03,rL/Rp = 2)

appears to be associated with the 2:1 inner Lorentz resonance that approaches the Kepler

limit at 2.04Rp. Oddly, this resonance appears stronger for negative grains than for posi-

tive ones. At Jupiter, two spikes in Fig. 4.10b distinguish the inner 2:1 vertical and radial

resonances. At Uranus, Fig. 4.15a hints at a similar pairing of destabilizing resonances,

one curving downward towards the planet as |L∗| increases, arcing slightly upward.
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Figure 4.15: Stability of Kepler-launched grains in Uranus’ full field over one year. There
are three shades of grey, plus white to highlight the effect of azimuthal launch position
on grain orbit stability. The darkest grey marks grains that were unstable for all of 12
equally-spaced launch longitudes. The intermediate grey denotes unstable trajectories
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stable for all launch positions. The embedded curves mark the Uranian equivalent of
those in Fig. 4.1, the stability boundaries for an aligned dipole magnetic field model. The
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√
3.
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Coefficients Strength (Gauss)

g10 g11 h11 0.09732 0.03220 −0.09889

g20 g21 g22 −0.07448 −0.00664 0.04499
h21 h22 0.11230 −0.00070

g30 g31 g32 g33 −0.06592 0.04098 −0.03581 −0.00484
h31 h32 h33 −0.03669 0.01791 −0.00770

Table 4.7: Neptune’s Magnetic Field.

4.4.4 Neptune

We model Neptune’s magnetic field configuration (Table 4.7) with data taken from Con-

nerney et al. (1991). As for Uranus, above, the stability map includes the effect of launch

longitude on grain-orbit stability. As with Fig. 4.15, Fig. 4.16 indicates the number of 12

equally-spaced launch azimuths that survive a 1-year integration.

Figure 4.16a maps the stability of negatively-charged dust at Neptune, and includes a

large region of escaping negative grains, though this range is slightly smaller at Neptune

than at Uranus (Fig. 4.15a). However, the escape region is still much more significant at

Neptune than at Jupiter (see Fig. 4.10b), and it too reaches Rsyn. As at Uranus, grain orbit

stability on the Lorentz-dominated side of Figs. 4.16a and 4.16b is strongly dependent on

the launch phase. Inside synchronous orbit, much of the Lorentz limit is unstable but in

a small region, around rL/Rp = 2.2 for both positive and negative grains, stability varies

significantly with launch phase. This contrasts with Uranus, where all grains inside Rsyn

in the Lorentz regime were unstable. Again, however, the instability at Neptune vastly

exceeds that of Jupiter.

In the Kepler-dominated regime of Fig. 4.16a, two spikes most likely associated with

the inner 2:1 Lorentz resonance feature prominently. Just as we saw at Uranus for positive

grains, in Fig. 4.16b, this inner 2:1 resonance appears to be weaker. For negative grains,

the stable zone on the gravity-dominated side of Fig. 4.16a reaches to higher L∗ values
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than we saw for Uranus (Fig. 4.15a). For both planets, the dependence on azimuthal

launch position for stability is only important for |L∗| > 1. In the Kepler regime, grains

move rapidly across magnetic field lines, and instabilities are effectively averaged over all

launch phases. All evidence points to greater instability at Uranus than at Neptune. This

is consistent with the Uranian dipole tilt of 59◦ exceeding Neptune’s 47◦.

4.5 Discussion

In this chapter, we have studied two main effects on charged particle motion: i) non-zero

launch velocities from orbiting parent bodies and ii) complex magnetic fields. We shall

address one remaining major effect, time-variable electric charges, in Chapter 5.

Non-zero launch impulses relative to the Kepler flow, whether radial, vertical or az-

imuthal, have very little effect on charged-grain dynamics. Only an azimuthal kick can

cause a noticeable effect on the radial stability boundaries. Vertical instability, by con-

trast, is affected by both azimuthal and vertical impulses. Finally, a radial kick barely

affects dust grain motions at all.

When considering the stability of grains in the wide variety of planetary magnetic

fields in the Solar System, we have shown in that an aligned and centered dipolar magnetic

field provides the maximum stability possible at each planet. The simplest full magnetic

field that we have considered, that of Saturn, is well-described as a moderately-offset

dipole. With its northward dipole offset, Saturn’s magnetic field noticeably expands the

vertical instability but has little discernable effect on radial motions.

Jupiter’s magnetic field is substantially more complex than Saturn’s with a moderate

tilt, a southward offset, and sizeable higher-order field coefficients. The tilted dipole

strongly affects vertical stability boundaries, and the loss of axisymmetry powers Lorentz

resonances. These act to destabilize dust grains, allowing even negative grains at Jupiter
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Figure 4.16: Stability of Kepler-launched grains in Neptune’s full magnetic field, for
twelve equally-spaced azimuthal launch positions, and integrated over one year. The
greyscale is as in Fig. 4.15 with the darkest grey unstable for all launch longitudes and
grains in the white areas surviving for all launch positions. As in previous figures, we
superpose numerically-determined stability results for an aligned dipole as solid curves,
and mark the local radial stability threshold at Rsyn, where L∗ = 2±

√
3 with white circles.
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to escape. Extending the concept of Lorentz resonances from the Kepler regime to cover

all charge-to-mass ratios, we have derived analytical solutions for their locations under

the epicyclic model for radial, vertical and azimuthal orbital frequencies.

Like Jupiter, the Earth also has a magnetic field that is dominated by a moderately-

tilted dipole. Two important differences, however, distinguish charged-particle motion at

Earth from that at Jupiter. Firstly, due to its inverted magnetic dipole, the radial instability

at Earth affects negative not positive charges. Secondly, the Earth is very small compared

to the size of its synchronous orbital distance, making a local stability criteria poor at pre-

dicting global stability boundaries. Because of its small relative size and the rapid decay

with distance of higher-order magnetic field terms, Earth’s full magnetic field differs little

from a simple tilted dipole in destabilizing dust grain trajectories.

Uranus and Neptune both have complex magnetic field configurations which render

aligned or even simple tilted dipolar models inapplicable. Both of these planets have

substantial quadrupolar and octupolar components, which act to destabilize both negative

and positive grains across the synchronous orbital distance, and over a far greater range

of charge-to-mass ratios than at the other planets that we have studied. These planets

highlight how increases in magnetic field complexity dramatically exacerbate dynamical

instabilities. Although future spacecraft missions may provide more detailed planetary

magnetic field configurations than we have adopted, any changes to the stability maps we

provide here for constant-charge dust grains are likely to be negligible.
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Chapter 5

Time Variable Grain Charging

5.1 Introduction

1 In Chapter 3 we considered the motion of charged grains for the idealized case of an

aligned dipolar magnetic field, with a simple Kepler launch origin. In Chapter 4 we

tested the robustness of these results against non-zero launch impulses, and studied the

wide variety of actual magnetic field configurations that exist in the Solar System. We

now relax the assumption of a constant charge-to-mass ratio on a dust grain. We begin

by introducing the charging currents that determine the electric potential of a dust grain,

and then apply this charging model to determine new stability maps at Jupiter. Charging

effects are quite complicated and model dependent— our goal here is to elucidate the

important physical processes rather than to have the last word on stability at Jupiter.

There are two applications of interest to us here. Firstly, we shall consider the effect

of charge variation due to transit through Jupiter’s shadow. This has been shown to sculpt

the Thebe ring just beyond synchronous orbit (Hamilton and Krüger 2008), and here, we

shall study the effect of the shadow resonance on dust in the main ring inside synchronous

1This chapter is partially based on results from (Jontof-Hutter and Hamilton 2012b), in press.
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orbit. In this tenuous plasma environment, the equilibrium electric potential on a dust

grain in the planetary shadow differs substantially from that in sunlight. This can cause

the charge to switch between positive and negative sign and back again with each transit

of the shadow. Below we shall explore the stability of grains in the main ring and the

gossamer rings covering distances from 1-3Rp.

Our second application is to the Jovian dust streams, whose likely source is the Io

plasma torus covering 5-7Rp. The relatively dense plasma of the Io torus keeps dust grain

charges strongly negative even in sunlight; and we shall explore the effect of the planetary

shadow on these dust grains.

5.2 Spherical Dust Grain Model

Grains orbiting in space acquire electric charges from a variety of sources. These equa-

tions are implemented in our numerical simulations, where we allow the grain charge

to vary with time. We assume throughout that grains act as spherical capacitors in free

space, such that

C = 4πε0εrad = q/V, (5.1)

where ad is the grain radius, q is the charge and V is the electric potential of the grain.

Here, ε0 is the permittivity of free space, and εr, the dielectric constant of the medium

equals unity in a vacuum. This is a good approximation for the sparse plasmas that we

are concerned with, and we shall maintain the assumption that εr ≈ 1 throughout.

An important caveat to note here is that for the smallest grains, at nanometer scales,

the total charge corresponds to a small excess or lack of electrons, and hence the charging

currents are quantized and stochastic. Furthermore, real dust grains have complex shapes

and inhomogeneities. Nevertheless, the simple spherical capacitor model will serve the

purpose of enabling detailed dynamical studies.
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Unfortunately, there is no standard set of units amongst authors of papers on charged

grains in planetary magnetic fields. We have found the parameter L∗ (Hamilton 1993a,Hamilton

1993b) particularly useful, however, other authors frequently refer to grain size and elec-

tric potential. Schaffer and Burns (1994), for example, express V in volts, and ad in µm

which gives

q(statC) = 3.218×10−6
(

ad

µm

)(
V

volts

)
(5.2)

The mass of a grain equals its volume multiplied by its density ρd; for simplicity, we

adopt ρd = 1 g cm−3 throughout.

5.3 Plasma Effects

5.3.1 Direct Capture of Electrons and Ions

We begin by assuming a conducting sphere immersed in a plasma that has a Maxwellian

velocity distribution. Now this assumption is almost certainly false in a strong magnetic

field, where the motion of ions and electrons perpendicular to the magnetic field lines

involves tightly bound gyrations, whilst the motion parallel to magnetic field lines is un-

encumbered. Nevertheless, with a brief reminder that all model-dependent results should

be treated with caution, we continue to describe such models.

A Grain at Rest

For a grain at rest in a Maxwellian plasma, the current density from the surrounding

plasma is

Je = neqe
< cs >

4
f (ϕ) (5.3)

where ne is the number density of electrons, qe and me are the charge and mass of an

electron, ϕ is the electric potential of the dust grain, and the mean speed < cs >=
√

8kTe
πme

,
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is a measure of the sound speed through the plasma. Here, Te is the electron temperature,

and the Boltzmann constant k = 1.38× 10−16 erg K−1 relates temperature to thermal

energy. The dimensions of Je are current per area, since a grain at rest can intercept

electrons from all directions. A negatively-charged grain will repel electrons from being

captured, preventing some of them from being captured, hence the function

f (ϕ) = exp
[
− qϕ

kTe

]
(5.4)

which reduces the current as the charge increases. The argument of the exponential in

Eq. 5.4 is a ratio of two energies, the potential of the dust grain, and the thermal energy

of the electrons in the plasma. Whilst a higher negative potential on the dust will act to

reduce the current, at high temperatures some electrons will overcome this barrier.

A positively-charged dust grain on the other hand will attract more plasma electrons;

thus if the charge ϕ > 0, then

f (ϕ) = 1− qϕ

kTe
. (5.5)

For an initially neutral grain ϕ = 0 and f (ϕ) = 1.

Note that Eqs. 5.3, 5.4 and 5.5 are easily adapted to calculate the capture of ions Ji

from the plasma, for a given ion density ni, charge qi, mass mi, and temperature Ti. In all

of our numerical models, we shall assume that the plasma is in full thermal equilibrium

with Ti = Te.

In general, since the ions are much more massive than the electrons and move more

slowly, ion capture currents for a neutral grain at rest in a plasma composed purely of

electrons and protons are a small fraction of the electron currents. Since the mass ratio of

an electron to a proton is ∼ 1800, the ratio of sound speeds for each species is ∼ 43, and

hence, for an initially neutral dust grain, the most that ions can reduce the net current by

charge capture is ∼ 2.3%. For heavier ions, the positive currents are reduced even more.
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The net current on the dust grain of size ad due to electron and ion capture is simply:

Inet = 4πa2
d(Je + Ji). (5.6)

Since the negative currents dominate Inet , the dust grain approaches an equilibrium po-

tential that is negative. This causes a region of positive charge to build up near the grain,

known as the positive-ion sheath, or more generally, the Debye sheath. The Debye length

is defined as the distance to the outer boundary of the sheath

λD =
(

ε0kT
nee2

)1/2

(5.7)

(Nicholson 1983), where the net electric field from the charged grain is cancelled by

intervening opposite charges. The diffusion of currents into the Debye sphere from the

external plasma would favor electrons since they move faster, hence a weak electric field

is invoked to balance this bias, attracting ions and repelling electrons (Kanal 1962).

A Grain in Motion

The currents to a grain are complicated by the grain’s motion through the plasma. We as-

sume that despite this motion, the Debye sheath remains spherical. Kanal (1962) derived

a formula for the charging current on a grain with repulsive potential qeϕ < 0 moving

with respect to plasma at speed vrel , sweeping up electrons:

Imov =
1
2

πa2
dneqevrel

[
a1

(
erf(a2)+ erf(a3)

)
+

cs√
πvrel

(
a4e−a2

3 −a5e−a2
2

)]
(5.8)

(Kanal 1962, Whipple 1981, Graps et al. 2008), where cs =
√

2kTe
me

=
√

π

4 < cs >, another

measure of the sound speed, is the most probable velocity of the incoming electrons, at

the peak of the Maxwell-Boltzmann distribution.

Here, the dimensionless coefficients are:

a1 = 1+
c2

s

2v2
rel
−

U2
q

v2
rel
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a2 =
vrel +Uq

cs

a3 =
vrel −Uq

cs

a4 =
Uq

vrel
+1

a5 =
Uq

vrel
−1

where Uq = (2qeϕ/me)1/2. Note that equation 5.8 is easily adapted to the capture of ions

with mass mi, and temperature Ti. For negatively-charged grains, the quantity Uq is a

measure of the minimum radial velocity required by an electron to overcome the potential

of the dust grain and reach the surface, that is, to climb up the potential gradient in the

Debye sheath. If cs << Uq, the plasma is too cold for the electrons to reach Uq in large

numbers. Since an electric field is conservative, the electron current is independent of the

Debye sheath radius.

In Eq. 5.8, the error function erf(), is related the cumulative sum of a Gaussian distri-

bution, except that the summation begins at zero, not at −∞:

erf(x) =
2√
π

Z x

0
exp(−y2)dy. (5.9)

Many of the terms in Eq. 5.8 depend on the ratio vrel/cs (the Mach number), a measure

of the importance of the grain’s motion through the plasma. Note that in the limit that the

grain is not moving relative to the plasma, vrel << cs, and Imov → Ie.

For a grain that is electrically neutral, ϕ = Uq = 0 Eq. 5.8 simplifies substantially:

Imov,0 = πa2
dneqevrel

[(
1+

c2
s

2v2
rel

)
erf
(vrel

cs

)
+

cs√
π

vrel exp
(
−

v2
rel
c2

s

)]
(5.10)

If vrel << cs, the exponential approaches unity, and erf
(

vrel
cs

)
→ 2vrel√

πcs
. In this limit,

Eq. 5.10 reduces to Eq. 5.6. For dust grains in planetary magnetospheres, this approx-

imation is reasonable over a broad range of plasma temperatures. For example, suppose
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a Kepler-launched dust grain orbits through a rotating magnetic field at vrel ∼ 10 km s−1.

For the electron sound speed to exceed 10 km s−1 requires Te & 2 K, and for ions Ti & 6000

K, whereas even in the cold plasma torus just inside of Io’s orbit, measured energies ex-

ceed ∼ 5 eV corresponding to Te ≈ 5×104 K.

Nevertheless, for completeness, we include the limit of a grain traveling much faster

than the sound speed. In this case, vrel >> cs, all the error function terms in Eq. 5.8

approach unity and the exponentials tend to zero, leaving:

Imov(vrel >> cs) = πa2
dneqevrel. (5.11)

This is exactly what is expected for stationary plasma particles. Given charge neutrality,

Eq. 5.6 predicts that ϕ→ 0 in this limit.

And finally, with an attractive potential on the dust, considering ion currents to a

negative grain,

Imov,i = πa2
dniqivrel

((
1+

c2
s

2v2
rel

)
erf
(

cs

vrel

)
+

cs√
π

vrel exp

[
−
(

vrel

cs

)2
])

(5.12)

(Kanal 1962). This is much simpler than Eq. 5.8 because the minimum speed requirement

for ions to reach the negatively-charged grain is zero; for them, the grain is not repulsive.

If the Debye sheath is thin compared to the size of the dust grain ( ad
λD
≈ 1), essentially all

ions that enter the sheath are captured by the grain. If the Debye length is much greater

than the grain radius (λD >> ad), however, then the capture probability depends on λD,

the incident angle of the incoming ion, and its speed. Equations 5.8 and 5.12 are the

result of integrating incoming ions over all velocities (in a Maxwellian) and all incident

directions for each area element at the Debye surface. We assume here and throughout

that the Debye sphere is much larger than the dust grain. This assumption is fairly simple

to justify for the problem that motivated Kanal (1962), namely, large spherical probes in

Earth’s very high temperature inner Van Allen belt, but its applicability for sub-micron

dust grains with small numbers of individual charges is unknown. Thus once more, we
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caution the reader. As we shall soon see, other charging currents also have significant

uncertainties.

5.3.2 Secondary Electron Emission

The next charging process we shall include is the effect of secondary electron emission,

whereby incident electrons excite secondaries within the dust grain. Some of the sec-

ondary electrons escape causing a net positive current to the dust grain. This becomes

important in warm plasma where the thermal energy of electrons is enough to eject elec-

trons from the surface of a grain.

Secondary electron emission depends on a number of factors. Firstly, the energy

of the incoming electron determines the yield δ, or the number of secondary electrons

created for each incident primary. Low energy incoming electrons have a yield δ < 1, and

hence produce no secondaries. At the other extreme, high energy electrons have a greater

penetration depth and can even pass through the grain without losing much energy. There

is thus a characteristic primary electron energy, Em, between these extremes which results

in a maximum yield δm (Dionne 1975). The most widely used expression for secondary

electron yields assumes incoming electrons interact with a planar slab of material.

δ(E) = 7.4
(

E
Em

)
exp
[
−2
√

E
Em

]
(5.13)

(Sternglass 1954, Meyer-Vernet 1982, Goertz 1989, Graps et al. 2008). Nevertheless,

secondary electron emission models are not settled in the literature. More recent models

for secondary electron emission attempt to account for the finite depth of small dust grains

(Chow et al. 1993). If the stopping distance of an electron within a dust grain is small

compared to its overall size, the number of secondaries that reach the surface and escape

declines exponentially with depth, and surface yields using the expression of Sternglass

(1954) should suffice. However, in small grains, secondary electrons may escape the far
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end of a grain from the primary electron incidence location. Chow et al. (1993) found

that this increases yields substantially for grains smaller than 0.1 µm.

To apply either model for secondary electron yields to orbiting dust grains, we rely on

experimentalists to measure Em and δm for each type of material. Nevertheless, since the

details of experimental yields are still disputed, we adopt a far simpler secondary electron

emission model in our numerical simulations. Whipple (1981) lists typical values for δm

near or just above unity for a diverse range of materials, thus we adopt δm = 1 throughout.

Typical incident energies that provide the maximum yield are∼ 0.3 keV (Whipple 1981),

which we adopt throughout. Integrating Eq. 5.13 over a Maxwellian primary electron

distribution, the current is

Isec = 3.7δm f5

(
Em

4kTe

)
Ie, (5.14)

(Meyer-Vernet 1982). Here we assume that the electron capture current Ie (Eqs. 5.3

and 5.6) is in the slow-moving regime, and that the charge on the dust grain is negative.

In Eq. 5.14, the function,

f5(x) = x2
Z

∞

0
u5 exp[−(xu2 +u)]du. (5.15)

has a simple iterative solution (Meyer-Vernet 1982):

fn+1(x) =
n fn−1(x)− fn(x)

2x
(5.16)

given the initial solutions:

f1(x) =
x2− f0(x)

2x
(5.17)

and

f0(x) =
1
2

x2
√

π

x
exp
[

1
4x

](
1− erf

[
1

2
√

x

])
(5.18)

For positively-charged dust grains, the secondary electron current becomes

Isec = 3.7δm f5ϕ

(
Em

4kTe

)
Ie, (5.19)
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where

f5ϕ(x) = x2
Z

∞

B
u5 exp[−(xu2 +u)]du. (5.20)

Here, the definite integral begins at B = qeϕ

kTe
, because positively-charged grains attract

electrons, thus preventing low energy secondaries from escaping. For an initially neutral

grain, ϕ = 0 and Eqs. 5.15 and 5.20 are equal.

We shall compare the competing effects of electron capture and secondary electron

emission after introducing our final source of current, the photoelectric effect.

5.4 Insolation

The ultraviolet radiation in sunlight ejects photoelectrons from the surface of a grain,

causing a positive current. For a grain with a negative potential, currents are limited only

by the flux of UV photons and the work function of the material. Hence,

Iν =−πa2
dqeχ

f1AU

d2
AU

, (5.21)

where πa2
d is the cross-sectional area of the grain, χ, the yield, is related to the work

functions, and dAU is the distance from the Sun in astronomical units. Here f1AU = 2.5×

1010 is the flux of UV photons at 1 AU from the Sun.

A positively-charged dust grain, on the other hand, reduces the number of escaping

electrons, and thus the current depends on the electric potential of the grain:

Iν =−πa2
dqeχ

f1AU

d2
AU

exp
(
−qeϕ

kT

)
. (5.22)

Note that a high yield to incoming electrons has no bearing on a material’s yield to

incoming photons. Typical yield values for solar UV are 0.1 for dielectrics and 1.0 for

conductors, under the rather simple assumption that in conductors, loose charges congre-

gating at the surface are more readily freed (hence χ = 1), whereas in insulators, charges
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are spread uniformly throughout the grain and the estimate for χ is reduced by one order

of magnitude. Here and throughout, we adopt the value χ = 1.

5.4.1 Charging Timescale

All of the charging currents discussed above depend on the surface area of the dust grain

(I = dq/dt ∝ a2
d). Hence smaller grains charge up more slowly. Given that the time

constant for a capacitor τ = RC, then, following Ohm’s law, the resistance R = V/I, and

recalling Eq. 5.1, τ ∝ V/ad . We therefore find that time for a dust grain to charge to

equilibrium is inversely proportional to its size (Horányi and Juhász 2010).

We now have the tools to model variable grain charge in two very different charging

environments. First, we shall consider dynamics in an environment where tenuous plasma

currents compete with sunlight in determining the equilibrium charge on a dust grain. This

regime applies directly in the main and gossamer rings at Jupiter, inside and immediately

exterior to the synchronous orbital distance. Secondly, we shall consider variable grain

charging effects in a relatively dense plasma environment, like in the Io plasma torus.

5.5 The Shadow Resonance in the Main and Gossamer

Rings

We have seen that the plasma environment, the flux of solar radiation and the physical

properties of a dust grain all play a role in its electric charging. Since the nature of

the grains in the dusty rings of the outer planets, and the plasma environment in which

they reside are poorly constrained, the motion of any particular grain with varying charge

is highly model dependent. Our goal in this section is not to pick the best model for

Jupiter’s dusty rings, but rather to elucidate the physics of orbital changes driven by charge

variations. Possibly the simplest non-trivial model which, nevertheless, must occur in
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circumplanetary applications, is the shutoff of the photoelectric current during planetary

shadow passages (Horányi and Burns 1991). This effect will be present even if all other

model-dependent charging effects are absent. The azimuthal asymmetries that the shadow

induces have a profound effect on dust grain motions, as we shall soon see.

Returning to our aligned dipolar magnetic field model, and assuming that the plasma

distribution is perfectly axisymmetric, the effect of the planetary shadow transit is to

introduce a strong azimuthal asymmetry in the charging environment for a dust grain. In

the shadow, the photoelectric effect of sunlight is absent, and interactions with the plasma

cause a net negative charge on the grains (Schaffer and Burns 1987). In the sunlight, by

contrast, equilibrium typically favors a slight positive electric potential.

In Fig. 5.1, we plot the contribution by the different charging mechanisms on an ini-

tially neutral grain in tenuous plasma over a range of plasma temperatures. The sec-

ondary electron emission Isec is the least important source of charge in this plasma, and it

only becomes important at high temperatures where Te & 100 eV ≈ 106 K. The capture

of electrons and ions by a moving dust grain, Imov, would cause a net negative current on

the dust grain. It is superseded at typical temperatures, however, by the positive current

of the photoelectric effect in sunlight (Iν). The result is that the equilibrium charge on this

grain in sunlight would be positive, but each transit through the planetary shadow halts

the photoelectric charging, and the currents become negative. This constant switching

between positive and negative charge has important dynamical consequences.

Fig. 5.2 highlights the differing effect of charge variation with grain size, given the

same launch distance. Here, we have chosen two example grains launched inside syn-

chronous orbit at a location that avoids the short term vertical instability in an aligned

dipole model for Jupiter (Fig. 4.1).

Firstly, we note from Fig. 5.2 that the equilibrium charge on a sunlit dust grain is 2.75

Volts, whereas in the shadow, the equilibrium electric potential is -27 Volts. The large
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Figure 5.1: The charging contribution, in Volts/sec, on an initially-neutral 10 nm dust
grain launched in Jupiter’s main ring at 1.70Rp. We have adopted a tenuous plasma den-
sity (ne = 1.4 cm−3), and plot the various charging currents over a range of temperatures,
expressed in electron-volts (eV). The electron capture by a moving dust grain, Imov, is
marked with a solid curve, the photoelectric effect Iν is shown as the dashed line, and the
secondary electron emission Isec is marked as the dotted curve.

grains reach equilibrium potential far more rapidly than the smaller grains. Indeed, the

charge response is typically inversely proportional to the size of the dust grain (Horányi

and Juhász 2010). For the larger grain in Fig. 5.2a, the increasing amplitude of the ra-

dial oscillations is caused by the fact that charge variation repeats each dust grain orbit,

thereby resonating with the epicyclic frequency for grains in the Kepler regime. This

is the destabilizing shadow resonance (Horányi and Burns 1991; Hamilton and Krüger

2008) which we will find strongly affects our stability map.

In Fig. 5.2b, the smaller dust grain does not have enough time to reach charge equilib-

rium during the shadow transit. This dust grain experiences stochastic kicks both inwards
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Figure 5.2: The charge response of a dust grain in plasma and sunlight depends on grain
size: a) 10 µm and b) 0.0527 µm grains, launched at 1.4Rp at local noon, with an aligned
dipole magnetic field for Jupiter, in a uniform plasma with density ne = 1.4 cm−3 and
temperature Te = 10 eV. The grains initially carry no charge. Each panel shows that
grain’s radial trajectory and instantaneous electric potential in Volts. The large grain
experiences three 1-hour long shadow passages during which the charge decreases, while
the smaller grain has a single 3-hour eclipse.
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and outwards from its launch distance and eventually becomes vertically unstable and

crashes into the planet at high latitude after 14 hours. Each kick in the guiding cen-

ter distance rc occurs when the electric potential on the dust grain is ∼1 Volt, when the

instantaneous value L∗ places the grain near the left-most radial stability boundary of

Fig. 4.1b (L∗ ≈ 2). When the potential is higher than 2 Volts or negative, the grain ex-

periences stable radial oscillations with a slow decline in radial range. This decreasing

amplitude is due to the grain reaching higher charge-to-mass ratios (|L∗|), and hence ex-

periencing tighter gyrations. After several random steps in rc due to the grain’s periodic

encounters with the radial instability, it moves into the vertical instability zone, spirals up

the magnetic field and is lost to Jupiter.

In Fig. 5.3 we present stability maps for a large range of grains sizes from 0.001µm to

10µm, over a broad range of launch distances, to test the effect of charge variations on or-

bital stability. In these models, dust grains are free to vary their charge as the environment

allows, both with the shadow present (Fig. 5.3b), and explicitly ignored (Fig. 5.3a).

Without the planetary shadow, grain charges quickly converge to equilibrium values,

and the stability map in Fig. 5.3a looks very similar to one for a constant (positive) charge

(Fig. 4.1b). In Fig. 5.3a, the superimposed boundaries, corresponding to a +2.75 Volt con-

stant potential, match the data very closely on the right-hand side of the radial instabilities.

Since the large grains rapidly converge on their electric potential, the Kepler-regime side

of the radial instability closely conforms to the analytical boundaries developed in Chap-

ter 3. The smaller grains, however, take significant amounts of time to reach charge equi-

librium. The grains on the left side of the left-most radial stability boundary in Fig. 5.3a

either escape (outside Rsyn) or fall into the planet (inside Rsyn), before they have enough

time to reach their equilibrium charge. During the time that these tiny dust grains experi-

ence modest electric charges, a different set of stability curves shifted to the left of those

in Fig. 5.3a applies. Within 1.2Rp, 0.01-µm sized grains collide with Jupiter within a few
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Figure 5.3: Stability of grains with variable charge response to plasma for two grain
charging models: a) constant photoelectron emission, and b) a more realistic photoelec-
tric response which is interrupted during shadow transit. We adopt an aligned dipole
for Jupiter’s magnetic field, and neglect its 3.12◦ obliquity. Grains, all launched at local
noon, begin with zero electric potential and are integrated over 1 year, a timescale long
enough to cover the orbital precession in the Kepler regime due to J2, which is included
in our model of the gravity field. Consistent with the greyscale in Figs. 4.3 and 4.4,
the darkest region denotes radial instability— either collision with the planet or escape
within λm = 5◦ of the equator plane, the moderate grey represents high-latitude collisions
with Jupiter, and the lightest grey marks surviving grains with high-latitude oscillations.
The two filled squares correspond to the trajectories illustrated in Fig. 5.2. Note that the
horizontal axis, now marking increasing grain radius, spans twice the range as in pre-
vious figures. In both a) and b), the numerical boundaries are included for an assumed
electric potential of Φ =+2.75 Volts.
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hours while the characteristic charging time is a day. Similarly, outside synchronous orbit,

0.01-µm sized grains just to the left of the radially unstable zone for constant +2.75 Volt

grains escape the planet. These grains, initially neutral, charge up slowly in the sunlight.

Hence, even if their equilibrium charge would permit stable motion, the time spent in the

radially unstable regime causes them to collide with Jupiter or escape before reaching

charge equilibrium. Some tiny grains near the inner boundary of the vertical instability

are saved by a shift closer to Jupiter whilst charging up immediately after launch.

With the planetary shadow turned on, the shadow resonance acts to increase eccentric-

ities, destabilizing grains over a far broader range of sizes than those that remain at their

equilibrium potential (Fig. 5.3b). For the largest of these grains (ad & 1 µm), the change in

electric potential induced by the shadow causes a radial impulse at the same phase in each

orbit. This shadow resonance destabilizes grains more than an order of magnitude larger

than those unstable without the shadow. The shadow resonance increases eccentricities on

gravity-dominated grains that move outwards during the shadow transit. This continues

until either the grain collides with Jupiter, or until the precession of the orbit causes grains

to approach Jupiter during the shadow transit, thereby damping the eccentricity (Horányi

and Burns 1991; Hamilton and Krüger 2008). Since the dominant component of orbital

precession for larger grains is due to the planetary oblateness, we include the J2 term in

our models for Fig. 5.3, and adjust our initial conditions to ensure launch from a circular

orbit.

The smallest grains in Fig. 5.3b respond to changes in the charging environment over

a longer timescale. Thus, grains that survive the initial charging process (the stable grains

of Fig. 5.3a) reach an electric potential that deviates little from its mean over the orbital

period, and hence the shadow has little effect on grains smaller than 0.01 µm in size. This

region of Fig. 5.3b essentially matches Fig. 4.1b in the Lorentz limit, with either vertical

instability or stable high latitude oscillations between 1.29Rp and 1.70Rp.
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Grains between 0.01 µm and 0.1 µm launched outside 1.2Rp, but within Rsyn, experi-

ence charge variations that cause them to spend brief moments during each orbit entering

a radially-unstable regime. Eventually they strike the planet, although the timing for this

is unpredictable. As we saw in Fig. 5.2b, such grains experience random walks in radial

location but do not cross synchronous orbit. Roughly half the grains in this region of

Fig. 5.3b collided with the planet at high latitudes.

Grains larger than 0.5 µm launched outside Rsyn in Fig. 5.3b experience excited radial

motions and vertical motion close to the radial stability boundary of Fig. 5.3a (L∗ = 1
2 ,

Hamilton 1993a; Jontof-Hutter and Hamilton 2012a), which extends the Thebe ring away

from Jupiter (Hamilton and Krüger 2008). Inside Rsyn, Fig. 5.3b shows that the shadow

resonance destabilizes grains more than 10 times as large as those than the largest grains

destabilized with the shadow switched off. The boundary between stable and unstable

here is determined not by the time of the integration but by the precession timescale. This

has several components, including one due to the Lorentz perturbations on the dust, but for

the largest grains the timescale is dominated by the higher-order gravity field components

at Jupiter, specifically, J2. The precession time due to J2 is approximately 0.25 years in the

main ring, and longer further out. For our particular choice of grain charging parameters,

grains larger than roughly 5 µm in the main ring are saved from colliding with Jupiter by

orbital precession.

We emphasize that resonant charge variation on dust grains due to the photoelectric

current clearly has an important effect on grain dynamics, although the shadow reso-

nance is by no means the only destabilizing process that may be important in the main

ring. Epicyclic motion also provokes resonant charge variations due to both radial gra-

dients in the plasma properties and the varying collision speed between dust and plasma

with gyrophase. Of the effects studied so far in the previous chapter and here: launch

speeds, realistic magnetic fields and the shadow resonance, the latter appears to be the
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most important. Non-zero launch impulses, by contrast, are a minor effect on grain-orbit

stability. The relative importance of the different effects, however, will vary dramatically

with plasma properties. The charging environment that we have adopted here, namely a

fairly sparse plasma, is appropriate for the dusty main ring and gossamer rings at Jupiter.

Our primary result is that the removal of dust is dominated by the basic dipolar radial

instability for positive grains, substantially extended to both larger and smaller particles

by variable charging.

We now turn our attention to the dense plasma environment of the Io torus, the likely

source of the high-speed dust streams.

5.6 The Io Plasma Torus and Jovian Dust Stream

Prior to its Jupiter flyby in 1992, and from as far as 1 AU in distance from the giant

planet, the Ulysses spacecraft detected dust grains streaming from the Jupiter system at

high speed. Grün et al. (1993) estimated the characteristic size of the dust grains at 0.1

µm, though this value was based on an under-estimate of the sensitivity of Ulysses dust

detector. The effect of Jupiter’s corotational electric field acting on positively-charged

dust grains was soon invoked as a mechanism to accelerate the dust grains (Hamilton and

Burns 1993a; Horányi et al. 1993b, see Section 3.4.1). This eliminated potential sources

of the dust inside the synchronous orbital distance, including the main ring, which is fully

contained within Rsyn, but did not initially distinguish between production models based

in the Gossamer ring, (Hamilton and Burns 1993a), and Io’s volcanic plumes (Horányi

et al. 1993b). Zook et al. (1996) reviewed the Ulysses data, and taking into account the

modulating effect of the interplanetary magnetic field on dust streams, concluded that the

grains were far smaller than previously thought, with sizes ranging between just 5 and

15nm. This size implies high charge-to-mass ratios, that permits grains to accelerate to
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∼200 km s−1.

The rate of dust detections during Ulysses’ Jupiter encounter was highly variable,

with peaks three orders of magnitude above the nominal impact rate. Hamilton and Burns

(1993a) identified the periodicity to be due to the solar wind, which varies periodically

with the Sun’s rotation. They found that the interplanetary magnetic field, modulated

by the solar rotation period, strongly accelerates the dust streams explaining the 28±3

day period in dust stream detection rates. Further periodicities were resolved in the

Galileo data during its six-year sojourn deep inside the Jovian magnetosphere. Galileo

detected variations in dust impact rates of up to five orders of magnitude, strongly corre-

lated with Jupiter’s rotation period (Krüger et al. 2003a). Graps et al. (2001) produced a

periodogram of Galileo dust detection data from the first two years of the mission: 1996

to 1997. They found that the strongest signal had a period between 9.6 and 10.4 hours,

consistent with Jupiter’s rotation period of 9h55m, and a weaker signal with a period of

4.8-5.0 hours, or half of Jupiter’s rotation period. They also found strong periodicities

at: 27-48 hours (consistent with Io’s 42 hour orbital and rotational period), as well as a

peak at 12.6-16 hours, most likely modulated by Io’s motion relative to Jupiter’s rotating

magnetic field (13 hours), with sidelobes repeating at 7.5-8.0 hours, and 5.6-6.5 hours.

Hence, Graps et al. (2001) interpreted the clear signal with Io’s orbital period and motion

in the frame co-rotating with Jupiter as dynamical evidence for Io as the source of the

dust.

The Cassini flyby of Jupiter en route to Saturn, in 2000, provided an opportunity

for Cassini’s Cosmic Dust Analyzer to record mass spectra of impacting dust grains.

Postberg et al. (2006) found that the detections of sodium chloride and sulfur in the dust

implicated Io’s volcanic plumes as the source. Furthermore, the tiny size of the dust

grains already favors Io as a potential source. This is because the radial instability that

expels positively-charged dust grains at high speed extends to smaller grain sizes farther
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Figure 5.4: Radial speeds of expelled 10nm dust grains launched near Io at 6.0Rp, with
charge-to-mass ratios L∗ ranging from 57 (thin solid curve), to 226 (thick solid curve),
equivalent to a range in potential from 1 to 4 Volts on a 10-nm sized grain. A 5 Volt
potential is enough to keep a 10-nm grain (L∗ = 283) bound to Jupiter. Although escaping
grain speeds plateau beyond ∼ 30Rp, the accelerations from 10Rp to 30Rp can have an
important effect on the speed of detected grains, and even more significantly affect their
energies. The dotted lines are the minimum speeds for detection by the Galileo Dust
Detector, for 5nm grains (171 km s−1), 10 nm (95 km s−1), and 15 nm (67 km s−1),
assuming spheres of material density 2 g cm−3. Only beyond 12Rp are all 10-nm grains
detectable.

out from synchronous orbit, (Hamilton and Burns 1993a, see Fig. 3.1b).

In Fig. 5.4, we model the acceleration of radially unstable constant-charge grains

launched at Io’s distance from Jupiter, and compare the results to the Galileo dust de-

tector threshold (Grün et al. 1994). The detection threshold for the smallest grains, 5 nm

in radius, is 170 km s−1, and for the larger 15-nm grains, the minimum speed for de-

tection is 70 km s−1. Fig. 5.4 shows that accelerating grains cover large radial distances

before reaching Galileo’s detection threshold. For the modeled trajectories, we assumed a
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single grain size of 10nm and varied the electric potential from 1 to 4 Volts (or following

Table 4.1, L∗ varied from 57 to 226) to see the effect of charge-to-mass ratio on the speed

of an escaping grain. At 5 Volts, 10nm-sized dust grains are trapped (L∗ = 283). There

is thus some sorting of grains by detectability: beyond 16Rp most grains larger than 5nm

can be detected, but within 8Rp, no grains 10nm or smaller can be detected. Note that the

grain with the highest charge-to-mass ratio (L∗ = 226 or a 10-nm grain with a 4V poten-

tial), slows down shortly after launch before accelerating beyond 8Rp, only superseding

the other grains in speed beyond 15Rp. This complex trajectory is due to the shape of

the potential well near the radial stability boundary, illustrated in Fig. 3.7. The required

distance covered by escaping grains to achieve high speeds is consistent with the low rates

of dust detection by Galileo at perijove (Krüger et al. 2003b). Note that this interpretation

is not without controversy. Krüger et al. (2003b) hypothesize that the dust stream rate is

modulated by local solar time in the plasma torus. The observed dawn-dusk asymmetry

in the plasma torus (Schneider and Trauger 1995) in turn causes charging conditions in

the plasma to vary with longitude. In the Krüger et al. (2003b) model, dust grains achieve

positive electric potentials around 6:00 and 18:00 due to secondary electron emission,

which they invoke to explain the observed dust stream rates detected by Galileo during

its six-year mission orbiting Jupiter. In their study, however, Krüger et al. (2003b) did

not account for the radial distance of Galileo and the detectability of dust. We shall re-

turn to discuss charging models in the plasma torus shortly. The problem arises because

dust grains must be positively charged to escape. Here therefore, we digress briefly to

summarize the charging environment near Io.

Dust from Io’s volcanoes soon encounters the environment of the Io plasma torus,

which is roughly 2 Jupiter radii thick, and ranges from 5-7Rp. Although the structure of

the plasma torus varies with longitude and local solar time, our aim here is to estimate an

average charging potential for a grain embedded in the plasma near Io.
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The gas near Io has various components. Herbert et al. (2008) describe the inner “cold

torus” as washer-shaped, with a large radial extent from 5.0 to 5.6Rp, and a vertical thick-

ness roughly 0.25Rp that has little azimuthal variation. Between this cold plasma and Io’s

orbital distance is a gap of low density plasma, first observed by Voyager I (Bagenal and

Sullivan 1981). Beyond the gap lies a narrow ribbon of warm plasma at Io’s orbital dis-

tance (5.9Rp). A diffuse warm plasma extends both vertically and outwards radially from

the ribbon, filling a torus roughly 2Rp thick vertically, and extending out to 7Rp radially.

The electron temperature in the ribbon (Te ≈ 5 eV) is significantly lower than the ion

temperature (Ti ≈ 20− 50 eV). Herbert et al. (2008) invoke inelastic collisions between

electrons and ions with orbiting electrons to explain the absence of thermal equilibrium.

The ions with orbiting electrons absorb energy in collisions and relax by radiating pho-

tons. The observed difference in temperature between ions and electrons complicates

charging models. Furthermore, the temperatures parallel to the magnetic field lines differ

significantly from the perpendicular temperatures. Voyager 1 also measured the number

density of electrons in the plasma torus, finding a peak of roughly 3000 cm−3 at 5.7Rp

declining slightly to 1500 cm−3 at 6.4Rp (Bagenal 1994; Gurnett et al. 1996; Smyth et al.

2011). This high density makes even tiny dust grains of order 10nm in size reach charge

equilibrium within minutes. In our charging models below, we adopt an average electron

density of 2000 cm−3, and a uniform temperature of Te = Ti = 5 eV.

Fig. 5.5 compares the charging currents on a 10-nm sized dust grain in Io’s warm

plasma torus. With densities up by a factor of ∼ 1400, Imov and Isec are correspondingly

higher than in Fig. 5.1. With electron capture being the dominant charging term, dust

grains are likely to be strongly negatively charged. Note that although the net current is

negative for temperatures near 5 eV, secondary electron emission is far more important

than the photoelectric effect in the warm torus. Nevertheless, the grain is drenched in

electrons, and will remain so both in sunlight and in shadow, in stark contrast to the
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Figure 5.5: The rate of change in electric potential, in Volts per second, for an initially
neutral 10nm sized dust grain in Io’s plasma torus, as a function of electron temperature,
(Te). The dashed line labelled Iν marks the photoelectric emission in sunlight, and the
dotted curve, labelled Isec, denotes the secondary electron emission. These are both pos-
itive currents. The solid curve is the negative electron capture current for a grain moving
through plasma (Imov) which dominates the charging. Thus grains launched in the warm
plasma torus, where Te ≈ 5 eV, are likely to be strongly negatively charged.

tenuous plasma model shown in Fig. 5.1. The net negative charge here makes dust grain

orbits, in the short term, radially stable (see Fig. 3.6a). To join a high speed dust stream,

however, dust grains must escape from the high density plasma torus, where, beyond 7Rp,

the photoelectric effect in sunlight may become the dominant charging current.

In Fig. 5.6, we present the stability map for grains from the surface of Jupiter out to Io,

in a uniform plasma environment consistent with the dense warm plasma that is observed

near Io. The grains in Fig. 5.6, initially neutral, all rapidly charge to equilibrium: Φ =

−14.3 V in sunlight and Φ = −14.6 V in Jupiter’s shadow. The tiny difference between

the potential equilibria from sunlight to shadow dramatically weakens the destabilizing
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effect of the shadow that dominates the dynamics in a tenuous plasma. Thus, in dense

plasma, grains essentially behave as if their charges remain constant, even with periodic

transits through the planetary shadow. Accordingly, the stability map Fig. 5.6a strongly

resembles the constant charge stability map of Jupiter with its magnetic field configured

out to octupole order (Fig. 4.10b). There, we saw that constant charge negative dust grains

are primarily destabilized by Lorentz resonances.

Note that Krüger et al. (2003b) posit that dust grains reach positive potentials in the

plasma torus. This difference highlights just how model-dependent variable charge dy-

namics can be. In their study, Krüger et al. (2003b) employ a plasma torus model with

detailed radial and azimuthal structure. Nevertheless, the escape of negative dust grains

under the destabilizing effects of Jupiter’s full magnetic field, that we invoke here, pro-

vides a simple and robust escape mechanism without the need for additional physics.

Once negative grains have escaped the plasma torus, the photoelectric effect is strong

enough to cause a net positive charge on the grains, and they can accelerate radially to

high speeds.

In Fig. 5.6b, our numerical simulations include the additional effect of radiation pres-

sure. Note that in our numerical models we neglect Jupiter’s contribution to the radiation

experienced by the dust grain. This factor depends on the solid angle of Jupiter in the dust

grain’s frame, which decreases rapidly with distance even as the relative strength of solar

radiation pressure compared to Jupiter’s gravity increases. Reflected Jovian radiation is

also a function of local time, peaking for grains at the subsolar longitude, where Jupiter

appears as a full disk. Finally, reflected light from Jupiter is reduced by the geometric

albedo of 0.52 (de Pater and Lissauer 2010). Thus Jupiter reduces solar radiation pressure

by ∼ 18% at local noon in the main ring, down to just ∼ 1.4% near Io.

Solar radiation pressure causes the eccentricities to increase for grains in the Kepler

regime, on the right side of Fig. 5.6b. For smaller dust grains, as the influence of the
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Figure 5.6: The stability of initially neutral grains launched in a uniform plasma of elec-
trons and O+ ions, with a density of ne = ni = 2000 cm−3, at temperature Te = Ti = 5 eV,
consistent with Voyager 1 data of the Io plasma torus. In the top panel, a), we include
charging currents from electron and ion capture, the photoelectric effect and secondary
electron emission. The small black squares mark two trajectories that are illustrated in de-
tail in Fig. 5.7. In the bottom panel, b), we include all of these and include the additional
effect of radiation pressure acting on dust grains. Jupiter’s magnetic field is modelled
out to octupole order, and the gravitational field includes J2 and other higher-order terms.
All the grains rapidly charge up to strong negative potentials, hence we have adopted
a greyscale matches that of Fig. 4.10, with excursions away from synchronous orbit by
more than 0.02rL depicted in light grey, and grains that escape or collide with Jupiter
marked in dark grey. Along the vertical axis on the right-hand side, Lorentz Resonance
locations in the Kepler limit are shown.
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electromagnetic force increases, radiation pressure becomes far less important. The effect

of radiation pressure on the right side of Fig. 5.6b clearly increases in scope to include

smaller grains with increasing distance from Jupiter. This is due to the decline in Jupiter’s

gravitational influence with distance compared to the essentially constant force of solar

radiation pressure.

Even without the additional physics of radiation pressure, there are important differ-

ences between Figs. 4.10 (constant charges) and Fig. 5.6a. On the right of Fig. 5.6a,

we see a near vertical strip of unstable trajectories. This feature disappears at Rsyn and

curves to encompass smaller grains, or higher charge-to-mass ratios, closer to the planet.

These grains are unstable due to the shadow resonance. Two grain trajectories, one just

inside this feature and one just outside it are depicted in Fig. 5.7. For the 7 µm grain,

the precessions due to Lorentz perturbations (retrograde) and the gravitational effect of

Jupiter’s oblateness (prograde) are almost in balance, enabling the shadow resonance to

steadily increase the dust grain’s radial range over four years. A slightly larger dust grain

in Fig. 5.7 has a slower EM precession rate, and the destabilizing effect of the shadow

resonance is limited primarily by the J2 precession timescale.

Another important difference between the stability maps of Fig. 5.6 and the constant

charge model of Fig. 4.10 is the region of instability in the Lorentz regime for the small-

est dust grain on the left side of both Figs. 5.6a and b. An example is plotted in Fig. 5.8.

This tiny grain remains stable, confined between its launch location and Rsyn for over

three years, as its latitudinal range slowly increases. Eventually however, the grain be-

comes unstable. There are various dynamical effects that we have not addressed here,

that may cause this long term instability. Northrop et al. (1989) identified the slow “gy-

rophase drifts” in EM-dominated dust grains, due to changes in the charging currents with

epicyclic phase. These can be due to gradients in the plasma temperature or density, but

even in a uniform plasma will be present since the speed of the dust grain moving through
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Figure 5.7: Two dust grains precessing due to Lorentz perturbations and the gravitational
effect of Jupiter’s oblateness, with charge varying due to the planetary shadow. Following
launch at 1.56Rp, we plot the radial range of a 7 µm dust grain (a) and a marginally larger
9 µm dust grain (b).

plasma varies around the epicycle. Northrop et al. (1989) found that highly-charged dust

grains migrate slowly toward Rsyn, consistent with the initial evolution of the trajectory

seen in Fig. 5.8. However, the gradual and concurrent increase in latitudinal range ul-

timately brings the grain orbit to a regime that is chaotic but still globally bound. This

phenomenon certainly merits more attention, but for our purposes, the extreme delay in

the onset of this instability and its probable cause puts the effect beyond the scope of this

thesis. Many other physical effects that we have neglected, including plasma density or

temperature gradients, as well as drag forces, will likely have an effect on a ever shorter

timescales.
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Figure 5.8: A 10-nm dust grain launched in a uniform plasma with ne = 2000 cm−3, and
Te = Ti = 5 eV.

5.7 Discussion

Relaxing the assumption of constant charge-to-mass ratios leads to a substantial increase

in the range of dust-grain sizes that are destabilized in tenuous plasma. Results are highly

model dependent, and for simplicity we adopted a sparse plasma with constant spatial

density and photoelectric charging. The time-variable charging currents on a dust grain

due to passage through the planetary shadow significantly expands the range of grain

sizes that are globally unstable, particularly inside synchronous orbit. Larger dust grains

respond rapidly to changes in the charging environment and hence stability is determined

by comparing the destabilizing timescale of variable Lorentz forces with the orbital pre-

cession time (Horányi and Burns 1991; Hamilton and Krüger 2008). For our nominal

model, this increases the threshold radius for destabilized grains by more than an order
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of magnitude. For smaller grains, by contrast, charging is slow with the result that differ-

ent stability curves apply at different times, expanding the zone of instability by an order

of magnitude over that expected for a constant charge. The sparse plasma that we have

adopted here is appropriate for the dusty main ring and gossamer rings at Jupiter. We find

that the removal of dust at Jupiter is dominated by the basic dipolar radial instability for

positive grains, substantially extended to both larger and smaller particles by the effects

of variable charging.

In the far denser plasma environment in the Io plasma torus, dust grains rapidly reach

strongly negative electric potentials and behave much as constant charge, negative dust

grains. This permits the destabilizing effects of Jupiter’s non-axisymmetric magnetic field

to determine grain orbit stability, and thus Lorentz resonances emerge as the destabilizing

effect that acts on the shortest timescale. With the parameters chosen here, this leads to

the escape of particles nominally larger than those found in the high-speed dust streams.

It remains to be seen whether this discrepancy is due to inaccuracies in our assumed grain

parameters or if this truly means that Lorentz resonances do not populate dust streams.
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Chapter 6

Saturn’s Spokes

6.1 Introduction

Four hundred years have passed since Galileo first struggled to understand Saturn’s ma-

jestic ring system, and while the quality of our observations and our understanding of the

rings have improved immeasurably, phenomena that are surprising, unsought and novel

have been discovered in our time too.

As Voyager 1 approached Saturn in November 1980, the first high resolution im-

ages of the optically-thick B ring revealed dark radial features against the lighter B ring

background. Named “spokes”, the features had not been seen by the earlier Pioneer 11

encounter with Saturn, due to the poorer quality of the Pioneer cameras. By maintaining a

long, well-defined radial profile for hours, the spokes clearly resisted the rapid Keplerian

shear that should separate ring particles within tens of minutes (Hill and Mendis 1981).

As Voyager 1 moved behind Saturn, the spokes seen in forward scattered light appeared as

bright features on a dark background, indicating a characteristic dust grain size of∼1 µm.

Because the radial edge of the features corotated with Saturn, the intrinsic magnetic field

of the planet was implicated as having a crucial role in spoke formation (Terrile et al.
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1981). This premise gained further support when Porco and Danielson (1982) found a

strong correlation between periodic spoke activity and Saturn’s 10h39m rotation period as

measured in kilometric wavelength radiation (the so-called Saturn Kilometric Radiation,

or SKR, Desch and Kaiser 1981). Porco and Danielson (1982) proposed that the spoke

activity is likely associated with the magnetic field sector that gives rise to the SKR.

Despite the observational constraints on spokes, a detailed working model proved

elusive. Less than a year later, Voyager 2 arrived at Saturn ready to scrutinize the B ring,

taking far more images of the spokes than its predecessor. These new data permitted

detailed studies of spoke formation and evolution, challenging theorists and constraining

their models. Many theories to explain the spokes have been proposed. The biggest

challenge to theorists, then and now, is the fact that micron-sized dust grains are massive

enough to make rapid radial excursions covering large distances extremely unlikely, (see

Fig. 3.6a). The Goertz and Morfill (1983) model, for two decades, was the most detailed

and became the most widely accepted. In their model, a plasma cloud initially triggered

by an impacting meteoroid induces the electrostatic levitation of dust above the ring plane.

The radial progression of the plasma cloud explained the active edge of the spokes, and the

Keplerian shear of the dust explained the wedge-shaped spoke morphology. Farmer and

Goldreich (2005), however, found that the radial progression of the released plasma in the

Goertz and Morfill (1983) model could not be rapid enough to match certain observations.

We shall address the Goertz and Morfill (1983) model in more detail below.

After the Voyager probes left Saturn, there were no instruments capable of seeing Sat-

urn’s spokes until the Hubble Space Telescope was serviced in 1993. The HST monitored

Saturn and observed spokes from 1996 until 1998 when they disappeared completely

(McGhee et al. 2005). The lack of spokes was confirmed when the Cassini orbiter ar-

rived at Saturn in 2004. One year after Cassini’s arrival, the mysterious spokes returned

(Mitchell et al. 2006), and have been observed extensively since then. It appears that the
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spoke phenomenon is seasonal, with peak activity near Saturn’s solar ring-plane crossing.

Despite thirty years of work, there are no models for spoke formation that fully satisfy

all of the observations. In this chapter, we will summarize the observations of the spokes

phenomenon and review some of the theories that have been proposed to explain the data.

The fundamental dynamics that we have explored in previous chapters will serve as a

foundation for both evaluating the theoretical basis of the various proposed hypotheses

for the spokes and for building a robust alternative. We evaluate all models for the spokes

phenomenon critically, considering both observational and dynamical constraints.

6.2 The Radial Spokes in Saturn’s B-ring

6.2.1 Spoke Particles are Dust

In backscattered light, the spokes appear as dark features on the lighter B-ring back-

ground. In forward-scattered light, the spokes appear as bright features (Smith et al.

1982). This was the first hint that the spoke particles are distinct from those in the main

rings, and that the characteristic size of spoke particles is commensurate with optical

wavelengths.

Thomsen et al. (1982) considered the constraints on spoke particles imposed by their

azimuthal progression between images taken by Voyager 1. They found that a small

deviation from the Kepler orbital frequency seen in the spoke patterns implied a charge-

to-mass ratio of q/m =−7 C kg−1 or L∗ =−0.14 (see Table 4.1). Thomsen et al. (1982)

identified this as requiring very high electric potentials (∼ 1 kV) if the grains indeed

are 1 µm in size, as indicated by the light scattering properties. More recently, Mitchell

et al. (2011) found that spoke growth, if due to the motions of individual micron-sized

dust grains, would require a potential ∼ −1 kV, equivalent to a charge-to-mass ratio of

L∗ ≈−0.5.
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Figure 6.1: First seen by the two Voyager spacecraft, the spokes have peculiar
properties— their morphology, formation times and locations, as well as their season-
ality are all well-constrained but poorly understood.

Eplee and Smith (1987) argued that the timescale for radial growth in a spoke was

determined by the charge decay timescale on a dust grain, and on this basis argued for

a characteristic grain size of 0.1 µm for the spoke particles. A detailed analysis of the

Voyager color data by Doyle and Grün (1990) constrained the grain size to 0.6±0.2 µm.

This slightly lower estimate for the grain size was supported by HST observations of the

spokes in the 1990s (McGhee et al. 2005). They also found a rather narrow size distribu-

tion, with an effective grain size of 0.57±0.05 µm. Cassini IR spectra of spokes, however,

indicate a larger model grain size, at 1.9 µm (D’Aversa et al. 2010). Notwithstanding this

discrepancy, the spoke particles are clearly large enough to be in the gravitational regime
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whereby their charge-to-mass ratios are small (|L∗|< 0.1).

6.2.2 Morphology and Formation

Spokes have a radial edge corotating with Saturn, and a leading edge rotating at the Ke-

pler orbital frequency. Terrile et al. (1981) interpreted this morphology as indicative of

an active radial edge corotating with Saturn’s magnetic field as the source of the spoke

particles, with the tilted edge marking the azimuthal extent of Kepler shear. This also

explained why both edges reach a vertex at the synchronous orbit, where the two periods

are equal. The width of the Keplerian shear reveals the age of an extended spoke, which

range from 16 minutes to 4 hours, with an average age of ∼1 hour. Most of the spokes

form on the morning ansa of the ring, with the oldest ones originating in shadow. Note

that even the widest spokes never appear to reach half a rotation period (i.e. half of 10.7

hours) in age.

Grün et al. (1983) describe three types of spokes. As the most prominent and well-

defined, the extended spokes are wedge-shaped features within the synchronous orbit at

Rsyn = 1.86Rp. These are typically older than 1 hour, and exhibit optical depths τ ∼ 0.1.

Narrow spokes with sharply defined edges are just 500 km wide and typically 5000 km

long, and many were observed straddling the corotation distance, keeping the same width

all along their length. They remain active for between 16 and 67 mins, and continue to

undergo Keplerian shear, tilting from a purely radial attitude over time. In total, they con-

tribute roughly 10% of the spoke particles by number compared to the extended spokes.

Filamentary spokes are the narrowest type. They are only seen outside the corotation dis-

tance, and have active ages of less than 16 mins. They are usually connected to narrow

or extended spokes further in, and occasionally merge with wider spokes. Their contrast

and hence optical depth is much lower than for extended or narrow spokes; τ∼ 0.05, and

the total number of particles in one is ∼ 0.5% of that seen in an extended spoke.
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In a movie of consecutive images taken by Voyager 2, Smith et al. (1982) identified

the rapid appearance of a narrow spoke that could not be seen in previous frames. The

spoke was∼ 6000 km in length, and in subsequent frames, its length appeared unchanged

although its contrast (and its width) increased. The frame rate of the Voyager 2 movie thus

had constrained the formation timescale of this spoke to just 5 minutes, which implies a

minimum radial progression of 20 km s−1. Although one might argue that an isolated

spoke may appear spontaneously due to changing viewing effects as both the spacecraft

and the ring are in constant motion, the rapid appearance of the narrow spoke within a

pattern of neighboring spokes made the Smith et al. (1982) discovery more compelling.

Grün et al. (1983) identified another example of a new spoke forming between older

spokes, with a total length of 8000 km. It must be stressed that these isolated observations

are somewhat controversial. If valid, they place an important dynamical constraint on

spoke formation models, which we shall explore in the next section. More importantly,

Mitchell et al. (2011) have not found evidence for such rapid spoke formation in the

Cassini data. They limit the radial growth rate of spokes to be ∼ 1 km s−1. Eplee and

Smith (1985) conducted a detailed investigation of the radial progression of a single spoke

in the Voyager 2 low-resolution movie. They estimate speeds of up to 0.7 km s−1 over a

50-minute period, with a charge-to-mass ratio of -60 C kg−1 (L∗ ≈−1.2).

Smith et al. (1982) noted that some spokes can be traced as they rotate through 360◦.

It is unknown if this indicates that an individual spoke can survive a rotation period, or if

there was rather an active corotating region that happened to be fertile ground for spoke

formation, but at least one recurring spoke was seen in two frames at the same location

10h37.6m apart. The angle between the radial edge and the Kepler shear on the later

observation implied a spoke age of 3.3 hours. We shall return to this apparent age limit of

spoke shear despite extended periods of spoke activity later.

Spokes appear most prominently on the dawn ansa of the ring, with roughly four
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times as much spoke activity seen by Voyager 2 on the morning ansa than the evening

ansa (Grün et al. 1992), and a peak in spoke activity between 03:00 and 07:00 local time,

with a few spokes having formed in the shadow. For both the morning and evening ansae,

spoke activity peaked near two corotating longitudes, at 120◦ and 300◦ SLS (the Saturn

Longitude System). The peaks in activity at the morning ansa are 2.2σ and 1.3σ above

the mean at these longitudes (Grün et al. 1992). Given the near-perfect axisymmetry of

Saturn’s intrinsic magnetic field, both the longitudinal dependence of spoke activity, and

indeed the SKR, are poorly understood.

Radially, there seems to be a strong correlation between spoke activity and the optical

depth of the B ring (Grün et al. 1992), with almost all of the spoke activity occurring

beyond 1.72Rp, where the B ring is thicker. Within this distance, spoke activity covers

∼ 1% of the ring area from 1.62Rp and the increase to ∼ 12% at 1.72Rp is immediate.

Hill and Mendis (1982) attributed the inner boundary of spokes to the Northrop instability

at 1.63Rp (see Chapter 3). Note that our revised location for this boundary, including the

effects of the stabilizing mirror force and Saturn’s g20 and g30 magnetic field terms, is at

1.70Rp, very close to the observed spoke boundary (Fig. 4.12). Further out in the B ring,

spoke activity smoothly declines to zero towards the outer edge of the B ring at 1.95Rp.

Interestingly, this smooth decline seems unaffected by the synchronous orbital distance at

1.86Rp.

6.3 Spoke Formation Theories

The spoke phenomenon has proven to be a rich source for speculation and theory since

the Voyager encounters. Thirty years on, after more observation and analysis, the spokes

continue to inspire creativity and create puzzlement. A full understanding of spokes must

explain 1) the morphology and rapid spoke formation timescale, 2) the longitudinal de-
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pendence of spoke activity, and 3) the seasonal variation in spoke activity. Even before the

Voyager 2 encounter with Saturn, theories about spokes formation began appearing in the

literature. In summarizing these theories below, we will concentrate on two broad themes

which have been developed by spoke theorists. The first involves the radial alignment

of prolate dust grains due to magnetic or electric field effects, while the second involves

the levitation of dust above the ring plane along the radial active edge of a spoke, due to

plasma processes.

6.3.1 Grain Orientation Models

Bastin (1981) proposed that albedo changes on orbiting dust grains passing through local

magnetic field anomalies cause spokes. In their model, there was no need for bulk motions

of dust relative to the larger ring particles. Forming spokes simply required a fraction of

dust grains to be reoriented by the local magnetic field lines. As an alternative to the

magnetic field, Bastin (1981) suggested electrostatic forces on clustering dust grains to

change their albedos. Their model did little to address the wedge-shaped morphology of

the spokes, with the apex near synchronous orbit, or even why the spokes had long radial

active edges. Bastin (1981), however, correctly identified what has proved to be the major

challenge in all spoke models. Although EM effects are somehow causing the spokes,

the spoke particles are too large to be moved in bulk by the Lorentz force. Bastin (1981)

realized that the growth of spokes is due to the emergence of high contrast between the

dust and the B ring background, rather than the motion of the dust itself. In other words,

it is not the dust but rather the optical properties of the dust that propagates radially.

Bastin (1981) provided little detail about their idea that electric fields could polarize

the orientation of dust grains. The suggestion of electric fields, however, was picked up

and developed in more detail by Carbary et al. (1982). They dismissed the corotational

electric field as a cause for the spokes since such fields would be uniform, would not
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be time variable, and would not be confined to the B ring. However, they proposed that

viscous drag from zonal winds in Saturn’s atmosphere causes super-rotation in the iono-

sphere, resulting in south-to-north electric fields in the ionosphere. For currents flowing

down the magnetic field lines to the ring-plane, this translates to a radial potential differ-

ence across the B ring. As orbiting 1 to 10-µm sized dust grains pass through this electric

field, their orientations are polarized radially, altering their light scattering properties.

In the Carbary et al. (1982) model, the spokes dissipate whilst undergoing Keplerian

shear as radiation pressure from sunlight randomizes the dust grain orientations. They

proposed that spokes are the visible manifestation of Saturn’s electrostatic discharges

(SEDs). These have a typical episodic period of 610 minutes (Warwick et al. 1981) and

were originally thought to originate in the rings, but eventually equatorial storms in Sat-

urn’s atmosphere became the favored model (Fischer et al. 2006). In any event, the link

between spokes and SEDs was at odds with the findings of Porco and Danielson (1982);

namely that spoke activity peaked at the same longitude as the SKR, with its 639 minute

periodicity. However, since the spoke activity itself from the Voyager data showed a pe-

riodicity of 621±22 min, neither the SED nor the SKR period could be ruled out as the

determinative timescale for spokes. Nevertheless, Cassini observations have laid at least

this particular aspect of the spokes phenomenon to rest. Cassini revealed two character-

istic SKR periodicities, one in each Saturnian hemisphere. Mitchell et al. (2011) have

significantly reduced the uncertainty of spoke periodicity which favors the northern SKR

on the north side of the rings, and may vary with both the northern and southern SKR on

the south side of the rings.

Weinheimer and Few (1982) identified more fundamental problems with the Carbary

et al. (1982) electric field model. Firstly, the torques expected from the electric field

on prolate spheroidal dust-particles are small compared to the rotational kinetic energies

typical in cold grains, even if we ignore collisions. Although ferroelectric materials exist
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which could react to the proposed electric field with enough torque to polarize dust grains,

the pure water ice of the B ring is not such a material. Furthermore, the poor electrical

conductivity of ice grains would make the polarization timescale too long to form spokes.

In response to this challenge, Handel and James (1983) proposed a “polarization catas-

trophe” model to align dust grains in a weak electric field. They found that contrary to the

assumptions of Weinheimer and Few (1982), ice at T . 70−100 K is indeed a ferroelec-

tric material. Close to this temperature threshold is the temperature of the B ring itself

(68K, Hanel et al. 1982). Handel and James (1983) proposed that in Saturn’s shadow,

a portion of the crystalline ice grains make the transition to a ferroelectric state and are

spontaneously polarized. The electric dipole moment of the ice crystals aligning with the

electric field increases the local electric field strength, making the polarization of other

dust grains more likely, and therefore leading to the polarization catastrophe. Upon leav-

ing the shadow, the crystallites experience an increase in temperature and the polarization

disappears. Handel and James (1983) posited that a small initial polarization due to the

corotational electric field is enough to ensure that the polarization catastrophe proceeds ra-

dially, but one consequence of this is that the spokes would only be able to grow outwards

from their trigger point, since the corotational electric field is directed radially outwards

(Eq. 2.20, Chap. 2). Handel and James (1983) freely admit that in their model, grains

have far lower charge-to-mass ratios than calculated by Thomsen et al. (1982). They also

proposed that a tilted dipole model for Saturn’s magnetic field should cause two maxima

in SED and spoke activity 180◦ apart in the B ring. Although the Voyager data permit-

ted an upper limit of 1◦ for a magnetic dipole tilt (Smith et al. 1981), the more recent

Cassini data has reduced this upper limit substantially (Cao et al. 2011). Furthermore, the

Cassini spoke observations do not find strong evidence for two maxima in spoke activity

(D’Aversa et al. 2011).

Despite these disagreements, it appears that the critique from Weinheimer and Few
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(1982) had convinced most authors that the grain alignment model could not work. More-

over, the “polarization catastrophe” attempted to link spoke activity with the electrostatic

discharges that we now know originate in Saturn’s atmosphere and not the rings. Ulti-

mately, the grain alignment models faded from the literature.

6.3.2 Grain Levitation Models

Hill and Mendis (1981) also published a theory on spoke formation even before the Voy-

ager 2 flyby of Saturn, and their model, too, invoked magnetic field effects on charged

dust grains. In their theory, currents from Saturn’s magnetosphere charge up ring parti-

cles with loosely-bound fine dust on their surfaces. As the boulder-sized ring particles

become electrically charged by this electron stream, a small fraction of the dust on the

particles also acquire negative potentials, until they are levitated out of the ring plane.

Reaching even higher charge-to-mass ratios in the free space outside the ring plane, the

dust grains are quickly brought to corotation with Saturn’s magnetic field. In their model,

Hill and Mendis (1981) attempted to address the increased spoke activity at the morning

ansa. They proposed that in sunlight, dust grains discharge to a low charge-to-mass ratio

and the spoke dust begins to move at the Kepler speed. Their model required the electron

currents to follow field-aligned filaments, otherwise, the levitated grains would appear in

broad sectors instead of in discrete spokes. The Hill and Mendis (1981) theory is dis-

tinct from the Carbary et al. (1982) model in its proposed source of charging currents to

the B ring. The former proposed currents originating in the solar wind flowing from the

magnetotail into the auroral regions, while the latter assumed Saturn’s ionosphere as the

source.

One critique of the Hill and Mendis (1981) model was that the source current to make

a radial spoke would have to be highly extended in latitude and confined in longitude,

which is difficult to explain (Tagger et al. 1991). Moreover, the low conductivity of ice
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grains identified by Weinheimer and Few (1982), initially invoked as a critique of the

Carbary et al. (1982) grain alignment model, is a challenge to the Hill and Mendis (1981)

model too, since the grains can only levitate from the B ring after they have charged up

sufficiently from contact with a ring particle.

Another problem with the Hill and Mendis (1981) theory is that it involves large dust

grains sustaining corotational motion along the radial active edge, requiring unreason-

ably high electrostatic potentials on dust grains. Nevertheless, the authors developed their

model further in Hill and Mendis (1982). They hypothesized that the wedge-shaped mor-

phology of spokes was due to the dynamical sorting of dust by grain size. They assumed

that each grain size forms its own “rib” radiating out from the apex of the spoke at Rsyn.

Following Eq. 3.8 (Chap. 3, Northrop and Hill 1982), the guiding centers of positively-

charged dust grains inside Rsyn for L∗ < 1 move slower than the rotating magnetic field,

while the negative grains orbit faster than the magnetic field inside corotation. In the Hill

and Mendis (1982) interpretation, the spokes are fan-shaped populations of negatively-

charged dust, with a whole range of charge-to-mass ratios at the radial active edge, but

only larger grains |L∗| << 1 at the Kepler leading edge as the spoke ages. Their model

argued against the possibility of positively-charged dust in spokes, since while negative

grains could explain the observed leading spoke edges, positively-charged grains would

succumb to the radial instability (Fig. 3.6b). The Hill and Mendis (1982) model posits

that the radial spreading of the spokes is strongly dependent on grain size, and it predicts

multi-modal size distributions of dust in spokes at different radial distances.

A concurrent theory involving the levitation of dust grains from B ring particles was

proposed by Goertz and Morfill (1983). This model ultimately became the most success-

ful in the Voyager era, although, as we shall see, it has been challenged more recently.

In the Goertz and Morfill (1983) model, a meteor impact on the B ring generates a dense

plasma cloud above the ring plane. Although most of the plasma is reabsorbed by the
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ring, some escapes out of the ring plane and can survive a half-bounce period as the

plasma particles climb magnetic field lines to mirror points before returning to the ring

plane. Under ordinary conditions, fine dust on ring particles do not readily reach electric

potentials high enough to escape from the surfaces of ring particles and the gravity of the

ring plane. However, under the influence of much denser, localized plasma, dust grains

become charged enough to levitate against the gravity of the ring. Those that escape the

ring plane rapidly increase their charges in the plasma cloud and attain heights above

the ring plane well beyond the Debye length. (This is the distance over which the elec-

tric field of a charged grain can act before being shielded by intervening charges in the

plasma that cancel the electrostatic potential.) Goertz and Morfill (1983) calculate that

the dust grains reach several kilometers out of the ring plane, enabling them to charge up

to an equilibrium potential. In their model, the positively-charged plasma cloud begins to

move radially due to the corotational electric field, lifting negatively-charged dust grains

out of the ring plane in its wake. In sunlight, the negatively-charged grains produce a

cloud of electrons which, after one bounce period, interact with ring particles, charging

the surfaces to elevate more fine dust (Morfill et al. 1983).

In the Goertz and Morfill (1983) model, the motion of the plasma determines the

radial active edge of the spoke. They posit that the plasma cloud moves inwards if it is

created inside synchronous orbit, and outwards from beyond Rsyn. Plasma clouds that

initially straddle this location can create spokes that grow in both directions. The spoke

formation ceases when the plasma density becomes too low to elevate dust grains. Goertz

and Morfill (1983) noted that the plasma cloud they invoke in their model would not

survive long enough to form a long radial spoke if the plasma were on the south side of

the rings. Since the magnetic equator at Saturn is north of the ringplane, plasma south of

the ring plane would be reabsorbed within a bounce period.

Morfill et al. (1983) note that since the process they invoke is initiated by insolation,
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spokes can only begin to evolve radially at the morning ansa, explaining the strong vari-

ation in spoke activity with local solar time. The meteor-impact model was bolstered by

Cuzzi and Durisen (1990) on the basis of a solar-time bias in ring bombardment by mete-

oroids. They found impact speeds in the B ring should peak around local midnight, with

a concurrent increase in dust generation.

Both the Hill and Mendis (1981) and Goertz and Morfill (1983) theories involved the

levitation of dust grains resting on ring particles with charging processes; the former with

external currents in the magnetosphere guided to the ring plane, and the latter with dense

plasma clouds induced by meteor impacts. Meyer-Vernet (1984) found that centrifugal

disruption of spinning grains 1 mm to 10 cm in size would eject loosely bound 0.1 to

1 µm particles, making the electrostatic expulsion of dust from the surfaces of boulder-

sized ring particles arguably unnecessary.

One of the reasons that the Goertz and Morfill (1983) model was preferred by au-

thors including Eplee and Smith (1984) was that the spokes were seen to form primarily

on the morning ansa but also, to a lesser extent, in the afternoon, whereas in the Hill

and Mendis (1981) scenario, spoke formation is suppressed in sunlight as the photoelec-

tric effect rapidly discharges the negatively-charged spoke grains. More importantly, the

Weinheimer and Few (1982) critique examining the torques in the Carbary et al. (1982)

scenario had convinced most authors that the grain alignment hypothesis was unworkable

(Horányi et al. 2004). This was how things stood as Cassini approached Saturn, when

interest in the spokes was rekindled.

Farmer and Goldreich (2005) offered a strong critique of Goertz and Morfill (1983).

They showed that the plasma motion invoked in the Goertz and Morfill (1983) model

would be limited to the difference in Kepler and corotation speeds, (a few kilometers

per second), whereas Goertz and Morfill (1983) invoked speeds of 23 km s−1 at 1.9Rp

to explain the apparent rapid spoke formation time. In answer to Farmer and Goldreich

149



(2005), Morfill and Thomas (2005) defended the original model. They conceded that the

science of dusty plasmas had evolved substantially since the early 1980s, and they adapted

their original idea by invoking a multi-layered structured plasma cloud with differential

radial plasma speeds.

Recently, Jones et al. (2006) revived the Carbary et al. (1982) theme of ionospheric

currents affecting the B ring with a new theory invoking spoke production by lightning

from Saturn’s atmosphere. In this model, grains are levitated from B-ring particles by

electrostatic forces, but instead of invoking magnetospheric currents (Hill and Mendis

1981) or micrometeoroid induced plasma clouds (Goertz and Morfill 1983), Jones et al.

(2006) invoke currents from Saturn’s atmosphere flowing down magnetic field lines to

the ring plane. In this theory, a cosmic ray triggers an upward electron avalanche above a

thunderstorm. The planetary magnetic field guides electron beams from the storm to the B

ring, inducing a negative charge on ring particles. Large ring particles then shed the dust

grains, which are electrostatically levitated out the ring plane. In this model, the electron

beam footprint would be the active edge of the spoke. Jones et al. (2006) point out that a

circular storm feature in Saturn’s atmosphere would have an elliptical footprint on the B

ring with an aspect ratio of≈ 1 : 2.8, and the apparent linearity of spoke edges is the result

of a low-inclination view of this ellipse. In their model, the apparently sharp active edge

is an illusion accentuated by Kepler shear. Jones et al. (2006) attribute the abundance of

spokes near the morning ansa to the minimum density of Saturn’s ionosphere at dawn,

which favors the electron avalanche.
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6.3.3 Other Theories for Spoke Formation

There are a few other theories about spoke formation. Tagger et al. (1991) suggested

magnetosonic compression waves in the B ring. In their model, a standing wave in the

dusty plasma forms a bar that straddles synchronous orbit between the inner and outer

Lindblad resonances. They ignore electrostatic effects since their mechanism has no need

for spoke particles to leave the ring plane. One problem with their model is that it assumes

Keplerian shear in the standing wave. This explains the tilt of narrow spokes, but cannot

explain the persistent radial active edge of an extended spoke without extremely high

charge-to-mass ratios in the dust.

Finally, in a one-sentence abstract, Perov (2012) invokes the unstable points of li-

bration in the ten-body problem, with the planet Saturn, 8 satellites and spoke-dust. We

anticipate more details from him in the future.

6.3.4 Comments on Spoke Seasonality

The disappearance and reappearance of spokes over time has been a source of much

speculation in the literature. The phenomenon is clearly seasonal, with spoke activity at

its peak near years of solar ringplane crossing, which occurs twice per Saturn’s 29 year

orbital period, most recently in 1980, 1995, and 2009. McGhee et al. (2005) proposed that

the viewing geometry favors spoke observations when the ring opening angle is small.

This contrasts with the model of Farrell et al. (2006) that attributes the seasonality of the

spokes to the plasma condition in the B ring and its effect on how easily grains can be

levitated from the ring plane. Farrell et al. (2006) examined Cassini data on the electron

density in rings and modeled the effect of opening angle on the charge of the ring. They

found that a low solar elevation angle favors a net negative charge on the ring, modeled

as a sheet, supporting the electrostatic levitation of negatively-charged dust.
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On the other hand, a high solar elevation angle positively charges the ring on the sun-

lit side, strongly attracting negatively-charged dust back to the ring-plane, and therefore,

suppressing the Goertz and Morfill (1983) mechanism. Farrell et al. (2006) found that a

solar opening angle of 11◦ or more would prevent spoke formation, although the accu-

racy of this number is clearly dependent on many poorly-constrained parameters. How-

ever, their result was broadly consistent with the results of McGhee et al. (2005), who

found that the spokes disappeared when the ring opening angle reached ∼ 15◦. Jones

et al. (2006) also proposed a hypothesis on spoke seasonality that did not involve viewing

geometry. They attribute the presence or absence of spokes to seasonal changes in storm

latitudes on Saturn, as well as solar activity.

The Cassini observations appear to rule out the possibility of viewing geometry in-

fluencing apparent spoke activity. Mitchell et al. (2006) found that spoke activity occurs

independently of viewing angle and concluded that varying plasma effects are the most

likely cause of spoke seasonality.

6.4 Collisional Cascade Model

None of the spoke models that have been proposed comply fully with all observational

constraints. Here we present an alternative, relying on the dynamics that we have explored

in this thesis, and then assess its viability. This project is ongoing.

We propose that a collisional cascade of charged dust grains in the B ring causes the

spokes. An initial trigger, which we assume is a meteor collision, creates dust grains

covering a broad spectrum of grain sizes in the B ring, and hence a wide range of charge-

to-mass ratios. Most grains are launched out of the ring plane, reach their mirror point at

high latitude, and return after half a bounce period. There is a high probability of colliding

with a ring particle when the grain returns, because of the high optical depth of the B ring.
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If these grains experience an integer number of epicycles during the bounce period, the

collision speed of the grain with the ring will be moderate. However, for other gyrophases

at the moment the grain re-enters the ring plane, collisional impact speeds of up to ∼5

kilometers per second can result, with enough impact energy to release more charged

grains over a range of grain sizes. Figure 3.6 shows that depending on L∗, the radial ex-

cursions of such grains can be thousands of kilometers, away from synchronous orbit if

the grains are positively charged, and towards that location if negatively charged. The

grains with the highest impact speeds are much smaller than the visible spoke-particles

that follow Keplerian motion. We hypothesize that spoke particles are the visible evi-

dence of a cascade of hypervelocity impacts involving smaller, unseen dust grains. The

high charge-to-mass ratios of these unseen grains keeps the cascade confined azimuthally

as the gyrating grains drift slowly in longitude. However, the radial ranges vary im-

mensely, with grains of |L∗| ∼ 1 potentially landing at any radial location within epicyclic

range after a half bounce period, and grains with |L∗|>> 1 landing close to their launch

location. This might explain the long and narrow radial active edge of a spoke. In our

model, the potentially rapid formation timescale for spokes is not due to the radial motion

of the observed spoke particles, but rather is due to the phase speed at which the particles

become visible, after generations of collisions in a confined longitudinal range, but over

a broad radial range in the B ring. While alternative theories in the literature have strug-

gled extensively with the problem of sustaining dense plasma in the B ring to charge up

grains resting on larger ring particles, a collisional cascade model has no need for grain

levitation.
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6.5 Strategy

In this section we map out a strategy to evaluate the collisional cascade model. A direct

simulation of a collisional cascade with all the relevant physics discussed in Chapters 3, 4

and 5 would be prohibitively expensive. Even if the size distribution of ejected dust

from hypervelocity impacts were known, and all parameters to determine grain charging

currents were known, simulating the trajectories of the released grains as their numbers

increase exponentially is unfeasible.

Instead, we shall develop and verify the numerical tools required to follow a simple

cascade model in controlled numerical experiments. Firstly, we shall introduce the equa-

tions, using the epicyclic model, that predict the impact locations and kinetic energies of

grains launched in the B ring. We shall use these results to verify our numerical scripts

that trace the creation of dust at an impact location. Then we can use these scripts on the

simple cascade models involving variable-charge dust grains. Finally, we can test simple

cascade models to test the effects of plasma conditions and the planetary shadow on a

chain of collisions in the B ring. We assume that spokes are driven by the impacts with

the highest kinetic energies. As we shall see below, the impact energy is a trade-off be-

tween mass (favoring large grains), and impact speeds which tend to zero in the Kepler

limit.

6.5.1 Measuring Impact Energies Numerically

For negatively-charged grains with a constant charge-to-mass ratio, the epicyclic model

accurately predicts the radial, vertical, and azimuthal motions (see Fig. 3.11). Our aims

in this section are: i) to elucidate the relevant dynamics in our spokes model, and ii) to

critically test our scripts that measure the impact location and kinetic energy for grain

trajectories simulated numerically.
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We begin by introducing new equations that we shall use to determine impact loca-

tions. Firstly, we assume that the impact occurs half a bounce period after launch, at a

time

Timpact =
π

Ωb
. (6.1)

Note that at Saturn, the critical distance for the vertical instability is in the B ring, and

hence is of crucial importance to our spoke model. As |L∗| → ∞, this crucial distance

is at 1.70Rp using Saturn’s full magnetic field configuration. This is very close to the

observed distance within synchronous orbit where spoke activity sharply declines (Grün

et al. 1992). Note however, that impacts in a collisional cascade can still occur within this

distance. Following Fig. 4.12a, the vertical stability boundary moves closer to the planet

for larger grains, suggesting that the cascade may continue for a narrower range of grain

sizes.

The gyrophase at impact

θimpact = κcTimpact , (6.2)

determines the relative speeds at the impact location, where the epicyclic frequency κc

(Eq. 3.11) is evaluated at the guiding center distance, ρc = rL + rg. The radial position of

the impact is simply

Rimpact = ρc− rg cosθimpact , (6.3)

noting that rg is a signed quantity (Eq. 3.13). Given a longitudinal launch location φL, the

impact longitude depends on the azimuthal drift rate φ̇, and the gyrophase, such that

φimpact = φL +(φ̇+Ωp)Timpact −
rg

ρc
sinθimpact . (6.4)

To determine the kinetic energy of the impacting grain, we measure its impact speed in

the frame of the ring particle, which we assume is on a zero-eccentricity Kepler ellipse.

The radial impact velocity is given by:

vr,impact = κcrg sinθimpact . (6.5)
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For the azimuthal impact velocity, we assume the grain is launched at vL =
√

GMp
rL

, and

that gyromotion is uniform and circular. This approximation is valid in the Lorentz limit,

but since the epicycles are not circular at low |L∗|, it loses accuracy for larger grains.

Nevertheless, to first order:

vφ,impact = vc +κcrg cosθimpact −

√
GMp

rimpact
, (6.6)

where the first term is the speed of the guiding center (Eq. 3.8), the next term has κcrg =√
GMp

rL
−vc, the speed of gyration, and the final term is the Kepler speed of the target ring

particle. All of these equations can be tested using L∗ as an independent variable, without

making any assumptions about the model-dependent electric potential on a dust grain in

equilibrium. Thus we plot these equations against numerical data, for grains launched

at 1.8Rp, comparing impact parameters measured from dI output with these analytical

predictions.

Figure 6.2 traces the impact locations of negatively-charged grains with a constant

charge-to-mass ratio both azimuthally and radially. Each grain is confined radially be-

tween the launch location and Rsyn. The minima in radial range correspond to grains that

land in the ring plane after a half-bounce period with an integer number of epicycles and

hence an epicyclic phase matching the launch phase. For the larger grains, the epicyclic

timescale matches the bounce period and the exact impact phase can be accurately calcu-

lated. For the small grains, where κ >> Ωb, the impact phase is essentially random. Near

L∗ =−1, the last term in Eq. 6.4, a first order approximation, causes small periodic devi-

ations between the numerics and the analytical impact longitude, as seen in the top panel

of Fig. 6.2. Nevertheless, the close agreement between the data points and the curves

verifies the accuracy our numerical tools to measure impact locations for trajectories that

cannot be solved analytically. In addition to impact location, we seek the impact kinetic
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Figure 6.2: Impact longitudes (top) and radial locations (bottom) for dust grains with
constant negative charges, launched at rL = 1.8Rp, φL = 0◦, in the B ring and within Rsyn.
The points are data read from outputs to dI, and the curves are the analytically-calculated
impact locations (Eqs. 6.4 and 6.3). While the impact longitude varies smoothly with L∗,
the radial impact location has periodic dips due to the epicyclic phase.

157



0.0

0.2

0.4

0.6

0.8

1.0

 0.01 0.1 1 10 100

E
im

pa
ct

 [
x1

0-6
 e

rg
]

-L*

Figure 6.3: Impact energies for dust grains with constant negative charges, launched at
1.8Rp over a range of charge-to-mass ratios. We calculate the impact energies (curves,
following Eqs. 6.5 and 6.6) and compare them to numerical data (points). The non-
circular epicycles in the Kepler regime leads to an underestimate of impact energies.

energy of a dust grain of mass m:

Eimpact =
m
2

(
v2

r,impact + v2
φ,impact

)
. (6.7)

Figure 6.3 shows the impact energies for negatively-charged grains of constant L∗. In

both the Kepler and Lorentz regimes, impact energies are low due to small speeds and

masses respectively. Between these two regimes, where L∗ ∼−1, if the gyrophase θ≈ π,

high impact energies occur.

The epicyclic model accurately predicts impact energies in the Lorentz limit and in the

transition near L∗ ∼−1. The agreement, which closely follows the change in impact en-

ergy with gyrophase, verifies our accuracy in measuring impact energies numerically. The

disagreement between the numerical data and the epicyclic model in the Kepler limit is
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due to the approximation of circular epicycles which loses accuracy in the Kepler regime.

For the largest grains, the epicycles are ellipses with a 2:1 aspect ratio, and in the guiding

center frame, the azimuthal speed at phase θ = π is non-zero, unlike the predictions of

Eq. 6.6.

6.6 A Simple Cascade

For our numerical models, we now permit grain charges to vary in a tenuous plasma

model with plasma density ne = 1 cm−3, temperature Te = 10 eV, and with solar UV

light interrupted during shadow transit. Note that since no plasma detector has ever been

placed in the B ring, this choice is little more than a starting point for testing the colli-

sional cascade hypothesis. Our aim here is to examine one possible cascade model and

understand its properties in detail. Thus, we construct the simplest cascade possible in

this plasma, whereby an impacting grain creates just one new, initially electrically neutral

grain of identical size at the time and place of the impact. We follow the orbit of the grain,

as its charge-to-mass ratio varies, until it collides with the ring plane after a half-bounce

period, launching an identical grain. We shall assume that wherever the cascade proceeds,

larger tracers of these collisions would be released as observable spoke particles.

We have done this numerical experiment for a range of grain sizes and present some

preliminary results using Saturn’s full magnetic field below. We begin with a choice of

grain size that illustrates the possibility of a cascade traversing the radial width of the B

ring within just a few collisions. Later, we shall consider an alternative cascade, one with

many short steps in radial progression.
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6.6.1 Leaping Across the B Ring

The presence of Saturn’s shadow introduces azimuthal asymmetry to the grain dynamics,

hence in Fig. 6.4 below, we show separate cascade chains for 12 equally-spaced initial

launch longitudes. This causes the time taken for a cascade chain to traverse the B ring to

vary substantially, from 20 to 30 hours depending on launch longitude. We see that all of

the cascade chains accelerate away from Rsyn. The cascades all progress radially inwards

from Rsyn because the equilibrium charge in sunlight is positive. Nevertheless, some

grains move outwards if launched soon after sunset; they spend a few hours in the shadow

collecting negative charges, and discharge after emerging on the morning ansa. These

grains spend their entire short lifetimes negatively charged and hence move outwards,

towards Rsyn. All of the cascade chains that last at least 15 hours have one or more grains

that are negative most of the time.

Note that some grains launched inside 1.7Rp land inside the inner edge of the B ring,

ending the cascade chain. Most, however, do not. This is surprising since in the Lorentz

limit, grains launched from within 1.7Rp are vertically unstable. The grains in Fig. 6.4,

however, charge up to just L∗ ∼ 10 and remain vertically stable. For the grains that move

outwards, the vertical stability boundary for negative grains applies (Fig. 4.12a), and for

moderately-charged grains, this boundary curves downwards to distances inside the inner

edge of the B ring, and hence these dust grains can keep the cascade going for at least one

extra leap.

The energetics of these collisions is plotted in Fig. 6.5 below. Firstly, we see that

impact energies can span two orders of magnitude at any particular radial location, and

four orders of magnitude overall. The impact energy is likely to have a crucial bearing on

the amount of dust produced in any particular collision, something that our simple model

neglects. We also see that impact energies increase substantially with distance from Rsyn.
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Figure 6.4: The progression of a simple model cascade, in which each grain of size ad =
0.001 µm produces an identical grain at impact. We initiate the cascade at 12 equally-
spaced azimuthal positions, plotting the radial position of impact after cumulative time
given in hours. The radial distance of the initial trigger in each case is 1.85Rp, just
interior to the synchronous orbital distance at Saturn (Rsyn = 1.865Rp).

Coupled with the slow progression of the cascade near Rsyn, these two plots hint at an

interesting trade-off in the cascade chain between the time for multiple collisions to build

up near Rsyn, and the strength of the collisions far from Rsyn. The latter probably produce

more dust per collision, but much less of the resulting dust lands in the B ring.

The data in these models also provide useful information on the longitudinal progres-

sion of a cascade chain. We plot the azimuthal spread of the same simple cascade chains

in Fig. 6.6. The total azimuthal spread is a measure of how narrow a spoke formed by

a cascade can be. Here, most of the collisions take place within 2 degrees of the trigger

in the rotating frame, although, amongst the grains that are generated within 1.7Rp, the
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Figure 6.5: Following the same 12 cascade chains of Fig. 6.4, here we plot v2
impact as a

measure of specific impact energy at the end of each dust grain’s trajectory. The curved
envelope to the upper right marks the theoretical maximum for v2

impact , for small epicycles
using Eq. 6.7.

large epicycles cause some grains to stray more than 5◦ in the rotating frame. Note that

an azimuthal spread of just 5◦ would be difficult to reconcile with spoke observations,

for the following reason. At a distance of ∼ 1.8Rp from Saturn, this angle translates to

an azimuthal distance of ≈ 0.15Rp, resulting in a spoke with roughly the same width

its radial length. Thus, if a cascade is to produce a narrow spoke with a suitably high

length-to-width ratio, the total azimuthal range of the cascade should be, say, ∆φrot . 1◦.

We follow the individual trajectories of the dust grains in one of the cascades from

Fig. 6.6 in Fig. 6.7, below. In this sequence, each grain’s epicycle slowly winds into

a tighter spiral over the course of its half-bounce lifetime, as the charge-to-mass ratio
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Figure 6.6: The azimuthal spread in the same simple model cascade, for 12 equally-
spaced initial longitude positions. The horizontal axis marks the total azimuthal range
∆φrot , in degrees, in a frame rotating with Saturn, with prograde motion to the left.

increases, reaching a maximum value of L∗ ∼ 10 after a few hours. Each individual dust

grain trajectory ends on a tight epicycle, and a new grain, initially neutral, begins with a

wide gyrocycle that moves it to a new radial location.

At the top of Fig. 6.7, the first few grains have very tight epicycles because of their

proximity to Rsyn (Eq. 3.13). One of the grains enters Saturn’s shadow and switches from

spiralling prograde to retrograde as it becomes negatively charged. Nevertheless, for most

of the time during this cascade, grains are positively charged and have enormous epicycles

which give them both the radial depth to cover the B ring in a few steps, and the azimuthal

range that makes this particular cascade a poor analog for a spoke.

We turn now to an alternative grain size for our simple model, one that will have much
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Figure 6.7: Tracing the path of a cascade chain leaping across the B ring. Plotted here are
the azimuthal and radial positions of grains in a cascade chain. This particular cascade is
triggered at 1.85Rp at local noon, in sunlight. The trajectory of each grain in the cascade
is followed in the rotating frame (with prograde motion to the left), until the last grain
lands beyond the inner edge of the B ring.

shorter radial steps for each half-bounce period.

6.6.2 Tip-toeing Across the B Ring

In the following set of cascade chains, we adopt a smaller grain size, 0.4 nm. Although

this is probably too small to dominate a real cascade chain that leaves micron-sized debris,

the actual choice of grain-size here is determined by our plasma model. A different set of

plasma parameters could produce similar dynamics for a larger characteristic grain size.

In Fig. 6.8, we plot the radial progression of a cascade chain. Here, far more collisions

take place before the cascade chain reaches the inner edge of the B ring. Most launches

trigger a cascade that lasts between 20 and 40 hours, although one cascade chain takes
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Figure 6.8: The progression of a simple model cascade, in which each grain of size
ad = 0.4 nm produces an identical grain at impact. We initiate the cascade at 12 equally-
spaced azimuthal positions, plotting the radial position of impact after cumulative time
given in hours. The radial distance of the initial trigger in each case is 1.85Rp, just
interior to the synchronous orbital distance at Saturn (Rsyn = 1.865Rp).

much longer. This is in contrast to the larger grain size of Fig. 6.4, where the cascade

progressed far more rapidly.

The azimuthal range of the cascade chains illustrated in Fig. 6.9 initially appear more

confined, at least for all the collisions outside 1.7Rp. Inside this location, the epicycles

are large both in radial and azimuthal extent, and the collisional cascade broadens sub-

stantially in longitude. One of the cascade chains in this dataset is traced in Fig. 6.10,

highlighting the effect of compact epicycles in keeping the collisions closely confined in

azimuth. Being smaller, these grains charge up more slowly, but they still reach higher

charge-to-mass ratios. In Fig. 6.10, each grain reaches L∗≈ 70, after a half bounce period,
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Figure 6.9: The azimuthal spread in the same simple model cascade, for 12 equally-
spaced initial longitude positions. The horizontal axis marks the total azimuthal range
∆φrot , in degrees, in a frame rotating with Saturn, with prograde motion to the left.

(L∗ ≈−44 in the shadow).

6.7 Discussion and Prospects

We have considered two possible models for a collisional cascade to create the radial

active edge of a spoke. The tip-toeing model, involving the slow radial progression of

small grains with compact epicycles appears to be more narrowly confined in azimuthal

range than the leaping model which spans the ring with just a few collisions (Figs. 6.7

and 6.10).

The tip-toeing model has the additional advantage of naturally confining the spokes
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Figure 6.10: Tracing the path of a cascade chain tiptoeing across the B ring. Here we
plot the azimuthal and radial positions of grains in a cascade chain. The initial trigger for
this is at 1.85Rp at local noon, in sunlight. The trajectories of each grain are followed in
the rotating frame (with prograde motion to the left), until the last grain lands beyond the
inner edge of the B ring.

to the B ring. If dust grains with large radial ranges dominate the collisional cascade,

we would expect to see spokes crossing the Cassini Division into the A ring. On the

other hand, if collisional cascades are responsible for the spokes, then the size of the

Cassini Division hints at the maximum size for epicycles in the trajectories of the dust

grains that dominate the cascade. One problem with the tip-toeing model is that, for the

choice of plasma parameters that we have adopted, it requires sub-nanometer-sized grains,

which would make the production of micron-sized spoke particles difficult to explain.

Nevertheless, the plasma model that we have adopted here is an initial estimate only.

Increasing the plasma density reduces the time for small dust grains to reach charge

equilibrium in the shadow, but may also lead to a negative equilibrium charge in sunlight
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(compare Figs. 5.1 and 5.5). This would make a collisional cascade converge on syn-

chronous orbit from an initial trigger far from that location, in contrast to the models in

Figs. 6.4 and 6.8. Negatively-charged dust would be consistent, however, with investi-

gation by Eplee and Smith (1985) who found the radial progression of a spoke was in

accordance with a charge-to-mass ratio of L∗ ≈−1.2, as well as the findings of Mitchell

et al. (2011). The latter found radial growth rates in Cassini data consistent with charge-

to-mass ratios around L∗ =−0.5.

Although this work is still in progress, there is nevertheless much that we can glean

about prospects for the collisional cascade model. In both the leaping and tip-toeing cas-

cade models that we have introduced here, (see Figs. 6.7 and 6.10) most of the azimuthal

spread occurs in the first epicycle, as each grain charges up from its initially-neutral elec-

tric potential. This is because the charging timescale and the epicyclic period are com-

parable. We also see that as each grain charges up in sunlight, its charge-to-mass ratio

increases from L∗ = 0 to L∗ ≈ 10 in the leaping model and L∗ ≈ 30 in the tiptoeing model.

Thus each grain spends several hours in the instantaneously radially unstable regime dur-

ing its half-bounce lifetime. This causes a large radial shift in the guiding center or mean

distance of the dust grain, very much like the grain trajectory illustrated in Fig. 5.2b,

where we saw a tiny grain experience chaotic kicks in radial distance due to Jupiter’s

shadow. This radial shift is large on the scale of an epicycle, and is the main contribution

to both the radial and azimuthal range of the grain.

To further evaluate our collisional cascade hypothesis, our strategy is twofold. Firstly,

we shall perform numerical simulations of the cascade over a range of plasma densi-

ties. The main outcome that we anticipate from this is that denser plasma will lead to

faster charging times and a smaller azimuthal and radial range for each grain in the cas-

cade chain. The equilibrium potential on grains in these models may be negative, which

would cause the cascade to converge towards Rsyn from an initial trigger, although this is
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consistent with observations. Nevertheless, if grains are strongly negatively charged, the

azimuthal asymmetry caused by the shadow will be damped (Fig. 5.5).

Secondly, we shall enhance the treatment of grain creation in our simulated collisions.

In the simple cascade model that we have performed here, each grain creates an identical

daughter following a collision in the B ring. This neglects that fact that collisions have

higher impact energies at gyrophase θ = π, where the azimuthal range is a minimum

and the radial range is a maximum. This would naturally increase the aspect ratio of the

cascade footprint. One way to implement this numerically is to create multiple grains in

each collision with the total proportional to v2
impact .

Besides the large radial-to-azimuthal aspect ratio of the spokes, many other observa-

tional constraints demand explanation. For example, the observed maximum wedge-angle

in the spokes, corresponding to an age of ∼ 5 hours is seemingly at odds with the obser-

vation that some spokes remain active for an entire rotation period of 11 hours (Smith

et al. 1982). In the collisional cascade model, this is likely due to the reabsorption of

grains in the B ring after a half bounce period, even as collisions sustain the radial ac-

tive edge of a spoke. This contrasts with the grain levitation models including Goertz

and Morfill (1983), who posit that spoke particles are suspended above the ring plane

by electrostatic forces. Their model provides little detail about how the additional force

alters the expected lifetime of a dust grain. In our model, electromagnetism and gravity

are the only forces acting on dust and hence grains have no need to be levitated; they all

live for a half-bounce period irrespective of whether or not they contribute to future dust

production.

The increase in spoke activity at the morning ansa suggests that a strong azimuthal

asymmetry exists in the spoke formation mechanism. Saturn’s shadow, and its effect on

grain charging, is an obvious source of asymmetry, however, as we have seen in Chapter 5,

the influence of the shadow strongly depends on the plasma density. We look forward
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to garnering more insights into the potential for azimuthal asymmetry in the collisional

cascade model over a range of plasma properties.

One outstanding uncertainty in spoke observations is the spoke formation timescale.

Smith et al. (1982) found one spoke appear between successive Voyager 2 images which

required radial motions of at least 20 km s−1 which, as Farmer and Goldreich (2005)

pointed out, cannot be achieved by the plasma invoked in the Goertz and Morfill (1983)

model. Nevertheless, Mitchell et al. (2011) see no evidence for such rapid spoke forma-

tion in the Cassini dataset. In the collisional cascade hypothesis, dust grains in the leaping

model are created along the entire length of the active radial edge after just a few gener-

ations of collisions. Here the possible rapid formation time for spokes would be due to

the time it takes for the collisions over a long radial distance to build up enough debris to

make spokes visible. Thus the emergence of visible spoke dust could appear at the same

time over a distance of thousands of kilometers. On the other hand, in the tiptoeing model,

the collisional cascade would progress radially at roughly the radial speed of individual

dust grains, without the need to invoke potentials of order 103 Volts.

Finally, we consider the seasonality of the spokes phenomenon in light of the colli-

sional cascade theory. This too is an area in which there is no consensus in the literature.

It may be the spoke visibility is an artifact of viewing geometry (McGhee et al. 2005),

although Cassini has found no preferred viewing angle for spoke observations. Alterna-

tively, the spoke formation process itself may be seasonal (Farrell et al. 2006; Mitchell

et al. 2006). Since the plasma conditions are crucial in determining the trajectories of

grains in the collisional cascade model, seasonal variation in the charging environment

may have a dramatic effect on the progression of a cascade chain.
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6.8 Conclusion

The collisional cascade hypothesis for the spokes is a promising work in progress. We

know that collisions in the B ring must produce debris of all sizes, and that some of the

dusty debris will re-enter the B ring at a different radial location and collide at high speed

with a ring particle. Much of the physics that we have explored in this thesis plays a role in

how dust grains in such a cascade move. Beyond the spokes phenomenon, the dynamics

that we have explored in this dissertation will certainly further enlighten the curious on the

motion of dust in the dusty rings of the giant planets, and perhaps in contexts as diverse as

circumstellar dust and white dwarf debris disks. Nobody can anticipate where the study

of dust grain dynamics will take us next, but we eagerly await the voyage.
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Mitchell, C. J., Horányi, M., and Howard, J. E. (2003). Accuracy of epicyclic description

of dust grain orbits about Saturn. Journal of Geophysical Research (Space Physics),

108:1179–1188.

Morfill, G. E., Grün, E., Goertz, C. K., and Johnson, T. V. (1983). On the evolution of

Saturn’s ’Spokes’ - Theory. Icarus, 53:230–235.

Morfill, G. E. and Thomas, H. M. (2005). Spoke formation under moving plasma

clouds—The Goertz Morfill model revisited. Icarus, 179:539–542.

Ness, N. F., Connerney, J. E. P., Lepping, R. P., Schulz, M., and Voigt, G.-H. (1991).

The magnetic field and magnetospheric configuration of Uranus. In Bergstralh, J. T.,

Miner, E. D., and Matthews, M. S., editors, Uranus, pages 739–779. University of

179



Arizona Press.

Nicholson, D. (1983). Introduction to Plasma Physics. Wiley.

Northrop, T. G. and Connerney, J. E. P. (1987). A micrometeorite erosion model and the

age of Saturn’s rings. Icarus, 70:124–137.

Northrop, T. G. and Hill, J. R. (1982). Stability of negatively charged dust grains in

Saturn’s ring plane. J. Geophys. Res., 87:6045–6051.

Northrop, T. G. and Hill, J. R. (1983a). The adiabatic motion of charged dust grains in

rotating magnetospheres. J. Geophys. Res., 88:1–11.

Northrop, T. G. and Hill, J. R. (1983b). The inner edge of Saturn’s B ring. J. Geo-

phys. Res., 88:6102–6108.

Northrop, T. G., Mendis, D. A., and Schaffer, L. (1989). Gyrophase drifts and the orbital

evolution of dust at Jupiter’s Gossamer Ring. Icarus, 79:101–115.

Ockert-Bell, M. E., Burns, J. A., Daubar, I. J., Thomas, P. C., Veverka, J., Belton, M. J. S.,

and Klaasen, K. P. (1999). The Structure of Jupiter’s Ring System as Revealed by the

Galileo Imaging Experiment. Icarus, 138:188–213.

Owen, T., Danielson, G. E., Cook, A. F., Hansen, C., Hall, V. L., and Duxbury, T. C.

(1979). Jupiter’s rings. Nature, 281:442–446.

Perov, N. I. (2012). On a Model of Spokes Origin in the Celestial Mechanical Systems.

In Lunar and Planetary Institute Science Conference Abstracts, volume 43 of Lunar

and Planetary Institute Science Conference Abstracts, page 1002.

Porco, C. A. and Danielson, G. E. (1982). The periodic variation of spokes in Saturn’s

rings. AJ, 87:826–833.

Postberg, F., Kempf, S., Srama, R., Green, S. F., Hillier, J. K., McBride, N., and Grün, E.

(2006). Composition of jovian dust stream particles. Icarus, 183:122–134.

Roberts, P. H. and Soward, A. M. (1972). Magnetohydrodynamics of the Earth’s Core.

Annual Review of Fluid Mechanics, 4:117–154.

180



Schaffer, L. and Burns, J. A. (1987). The dynamics of weakly charged dust - Motion

through Jupiter’s gravitational and magnetic fields. J. Geophys. Res., 92:2264–2280.

Schaffer, L. and Burns, J. A. (1992). Lorentz resonances and the vertical structure of

dusty rings - Analytical and numerical results. Icarus, 96:65–84.

Schaffer, L. and Burns, J. A. (1994). Charged dust in planetary magnetospheres: Hamilto-

nian dynamics and numerical simulations for highly charged grains. J. Geophys. Res.,

99:17211–17223.

Schaffer, L. and Burns, J. A. (1995). Stochastic charging of dust grains in planetary rings:

Diffusion rates and their effects on Lorentz resonances. J. Geophys. Res., 100:213–234.

Schneider, N. M. and Trauger, J. T. (1995). The Structure of the Io Torus. ApJ, 450:450–

462.

Showalter, M. R. (1996). Saturn’s D Ring in the Voyager Images. Icarus, 124:677–689.

Showalter, M. R., de Pater, I., Verbanac, G., Hamilton, D. P., and Burns, J. A. (2008).

Properties and dynamics of Jupiter’s gossamer rings from Galileo, Voyager, Hubble

and Keck images. Icarus, 195:361–377.

Smith, B. A., Soderblom, L., Batson, R., Bridges, P., Inge, J., Masursky, H., Shoemaker,

E., Beebe, R., Boyce, J., Briggs, G., Bunker, A., Collins, S. A., Hansen, C. J., Johnson,

T. V., Mitchell, J. L., Terrile, R. J., Cook, A. F., Cuzzi, J., Pollack, J. B., Danielson,

G. E., Ingersoll, A., Davies, M. E., Hunt, G. E., Morrison, D., Owen, T., Sagan, C.,

Veverka, J., Strom, R., and Suomi, V. E. (1982). A new look at the Saturn system: The

Voyager 2 images. Science, 215:505–537.

Smith, B. A., Soderblom, L., Beebe, R. F., Boyce, J. M., Briggs, G., Bunker, A., Collins,

S. A., Hansen, C., Johnson, T. V., Mitchell, J. L., Terrile, R. J., Carr, M. H., Cook,

A. F., Cuzzi, J. N., Pollack, J. B., Danielson, G. E., Ingersoll, A. P., Davies, M. E.,

Hunt, G. E., Masursky, H., Shoemaker, E. M., Morrison, D., Owen, T., Sagan, C.,

Veverka, J., Strom, R., and Suomi, V. E. (1981). Encounter with Saturn - Voyager 1

181



imaging science results. Science, 212:163–191.

Smyth, W. H., Peterson, C. A., and Marconi, M. L. (2011). A consistent understanding of

the ribbon structure for the Io plasma torus at the Voyager 1, 1991 ground-based, and

Galileo J0 epochs. Journal of Geophysical Research (Space Physics), 116:A07205.

Sternglass, E. J. (1954). The Thoeory of Secondary Electron Emission. Sci. Pap. 1772,

Westinghouse Res. Lab., Pittsburgh, Pa.

Störmer, C. (1955). The Polar Aurora. Oxford University Press.

Tagger, M., Henriksen, R. N., and Pellat, R. (1991). On the nature of the spokes in

Saturn’s rings. Icarus, 91:297–314.

Terrile, R. J., Yagi, G., Cook, A. F., and Porco, C. C. (1981). A Morphological Model for

Spoke Formation in Saturn’s Rings. In Bulletin of the American Astronomical Society,

volume 13 of Bulletin of the American Astronomical Society, page 728.

Thomsen, M. F., Goertz, C. K., Northrop, T. G., and Hill, J. R. (1982). On the nature of

particles in Saturn’s spokes. Geophys. Res. Lett., 9:423–426.

Thomsen, M. F. and van Allen, J. A. (1980). Motion of trapped electrons and protons in

Saturn’s inner magnetosphere. J. Geophys. Res., 85:5831–5834.

Throop, H. B., Porco, C. C., West, R. A., Burns, J. A., Showalter, M. R., and Nicholson,

P. D. (2004). The jovian rings: new results derived from Cassini, Galileo, Voyager, and

Earth-based observations. Icarus, 172:59–77.

Valk, S. and Lemaı̂tre, A. (2008). Semi-analytical investigations of high area-to-mass

ratio geosynchronous space debris including Earth’s shadowing effects. Advances in

Space Research, 42:1429–1443.

Warwick, J. W., Pearce, J. B., Evans, D. R., Carr, T. D., Schauble, J. J., Alexander, J. K.,

Kaiser, M. L., Desch, M. D., Pedersen, M., Lecacheux, A., Daigne, G., Boischot, A.,

and Barrow, C. H. (1981). Planetary radio astronomy observations from Voyager 1

near Saturn. Science, 212:239–243.

182



Weinheimer, A. J. and Few, Jr., A. A. (1982). The spokes in Saturn’s rings - A critical

evaluation of possible electrical processes. Geophys. Res. Lett., 9:1139–1142.

Whipple, E. C. (1981). Potentials of surfaces in space. Reports on Progress in Physics,

44:1197–1250.

Zook, H. A., Grun, E., Baguhl, M., Hamilton, D. P., Linkert, G., Liou, J., Forsyth, R., and

Phillips, J. L. (1996). Solar Wind Magnetic Field Bending of Jovian Dust Trajectories.

Science, 274:1501–1503.

183


	Abstract
	Title Page
	Copyright
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	A Renaissance in Dynamics
	The Electromagnetic Force on Dust
	Outline of Chapters

	Planetary Magnetic Fields
	The Magnetic Dipole
	Gyromotion
	Mirror Motion
	Azimuthal Drift


	The Dynamics of Charged Dust Grains in Aligned Dipolar Magnetic Fields 
	Introduction
	Motion in the Kepler and Lorentz Limits
	Dust Affected by both Gravity and Electromagnetism
	Research Goals

	Numerical Simulations
	Local Radial Stability Analysis
	Radius of Gyration

	Global Radial Stability Analysis
	Escaping Grains
	Grains that Strike the Planet

	Local Vertical Stability Analysis
	Vertical Instability in the Lorentz Limit
	Vertical instability for all charge-to-mass ratios

	Azimuthal Motion
	Saturn and Earth
	Conclusion

	The Dynamics of Dust in Multipolar Magnetic Fields
	Introduction
	Motion in an Aligned Dipolar Magnetic Field
	Jupiter
	Varied Launch Speed
	Vertically Offset Dipole
	Tilted Dipole
	Resonant Effects in a Tilted Dipole Field
	Quadrupole Terms
	Realistic Full Magnetic Field Models

	Other planets
	Saturn
	Earth
	Uranus
	Neptune

	Discussion

	Time Variable Grain Charging
	Introduction
	Spherical Dust Grain Model
	Plasma Effects
	Direct Capture of Electrons and Ions
	Secondary Electron Emission

	Insolation
	Charging Timescale

	The Shadow Resonance in the Main and Gossamer Rings
	The Io Plasma Torus and Jovian Dust Stream
	Discussion

	Saturn's Spokes
	Introduction
	The Radial Spokes in Saturn's B-ring
	Spoke Particles are Dust
	Morphology and Formation

	Spoke Formation Theories
	Grain Orientation Models
	Grain Levitation Models
	Other Theories for Spoke Formation
	Comments on Spoke Seasonality

	Collisional Cascade Model
	Strategy
	Measuring Impact Energies Numerically

	A Simple Cascade
	Leaping Across the B Ring
	Tip-toeing Across the B Ring

	Discussion and Prospects
	Conclusion

	Bibliography

