
Abstract

Title of Dissertation: Accretion onto Black Holes from Large Scales

Regulated by Radiative Feedback

KwangHo Park, Doctor of Philosophy, 2012

Dissertation directed by: Professor Massimo Ricotti

Department of Astronomy

This thesis focuses on radiation-regulated gas accretion onto black holes (BHs)

from galactic scales emphasizing the role of thermal and radiation pressure in lim-

iting gas supply to the BH. Assuming quasi-spherical symmetry, we explore how

the gas accretion depends on free parameters such as radiative efficiency, BH mass,

ambient gas density/temperature, and the spectral index of the radiation. Our nu-

merical simulations show an oscillatory behavior of the accretion rate, and thus the

luminosity from the BH. We present a model for the feedback loop and provide

analytical relationships for the average/maximum accretion rate and the period of

the accretion bursts. The thermal structure inside the Strömgren sphere is a key

factor for the regulation process, while with increasing ambient gas density and mass

of BHs, eventually the accretion rate becomes limited by radiation pressure. The

period of the luminosity bursts is proportional to the average size of the ionized hot

bubble, but we discover that there are two distinct modes of oscillations with very

different duty cycles, and that are governed by different depletion processes of the

gas inside the ionized bubble. We also study how angular momentum of the gas

affects the accretion process.

In the second part of the thesis, we study the growth rate and luminosity of

BHs in motion with respect to their surrounding medium. We run a large set of



two-dimensional axis-symmetric simulations to explore a large parameter space of

initial conditions and formulate an analytical model for the accretion. Contrary to

the case without radiation feedback, we find that the accretion rate increases with

increasing BH velocity v reaching a maximum value at v = 2cs,in, where cs,in is the

sound speed of the photo-ionized gas, before decreasing as v−3. The increase of the

accretion rate with v is produced by the formation of a D-type (density) ionization

front (I-front) preceded by a standing bow-shock that reduces the downstream gas

velocity to nearly sub-sonic values. Since the ionization front is beyond the classical

Bondi radius for the hot ionized gas, in the BH frame of reference the accretion

flow is similar to the stationary case. Interestingly, there is a range of densities

and velocities in which the dense shell downstream of the bow-shock is unstable; its

central part is destroyed and reformed intermittingly, producing a periodic accretion

rate with peak values about 10 times the mean. This effect can significantly increase

the detectability of accreting intermediate mass BHs from the interstellar medium

(ISM) in nearby galaxies. For v > 2cs,in the central part of the bow-shock is not

able to regenerate, the I-front becomes R-type and the accretion rate approaches

the classical Bondi-Hoyle-Lyttleton solution. We find that the maximum accretion

rate for a moving BH is larger than that of a stationary BH of the same mass,

accreting from the same medium if the medium temperature is T < 104 K. This

result could have an important impact on our understanding of the growth of seed

BHs in the multi-phase medium of the first galaxies and for building and early X-ray

background that may affect the formation of the first galaxies and the reionization

process.
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Preface

The content of this thesis is drawn from three papers in a series published or to be

soon published in the Astrophysical Journal. The main results of Park and Ricotti

(2011) and Park & Ricotti (2012a) were presented as an oral dissertation presenta-

tion titled Radiation-regulated Accretion onto Intermediate-Mass Black Holes at the

219th Winter Meeting of American Astronomical Society in Austin, Texas (2012).

Below is the list of the papers, where the first two have been published while the

third paper is waiting to be submitted (as of May 30th, 2012) to the same journal.

• Park, K. and Ricotti, M., 2011, Accretion onto Intermediate-Mass Black Holes

Regulated by Radiative Feedback. I. Parametric Study for Spherically Symmet-

ric Accretion, ApJ, 739, 2.

• Park, K. and Ricotti, M., 2012a, Accretion onto Black Holes from Large Scales

Regulated by Radiative Feedback. II. Growth Rate and Duty Cycle, ApJ, 747,

9.

• Park, K. and Ricotti, M., 2012b, Radiation-Regulated Accretion onto Black

Holes in Motion. III. Bondi-Hoyle-Lyttleton Accretion with Radiative Feed-

back, in preparation.

Chapter 1 and 2 of this thesis are an introduction and numerical methods, re-

spectively relevant for all three papers. Chapter 3 and 4 present the results in Park
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and Ricotti (2011) and Park and Ricotti (2012b) on accretion onto stationary BHs,

while Chapter 5 presents the results for moving BHs in Park and Ricotti (2012b) in

preparation. Summary and discusstion of the results from all three papers are given

in Chapter 6.
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Chapter 1

Introduction

The occurrence of gas accretion onto compact gravitating sources is ubiquitous in

the universe. The Bondi accretion formula (Bondi 1952; Bondi and Hoyle 1944), de-

spite the simplifying assumption of spherical symmetry, provides a fundamental tool

for understanding the basic physics of the accretion process. Angular momentum

of accreted gas, in nearly all realistic cases, leads to the formation of an accretion

disk on scales comparable to or possibly much greater than the gravitational radius

of the BH, rg ∼ GM/c2, thus breaking the assumption of spherical symmetry in the

Bondi solution. However, the fueling of the disk from scales larger than the circular-

ization radius rc ∼ j2/GM , where j is the gas specific angular momentum, can be

approximated by a quasi-radial inflow. Thus, assuming that numerical simulations

resolve the sonic radius, rs, the resolved gas flow is quasi-spherical if rc � rs. The

Bondi formula, which links the accretion rate to the properties of the environment,

such as the gas density and temperature, or Eddington-limited rate are often used

in cosmological simulations to model the supply of gas to the accretion disk from

galactic scales (Alvarez et al. 2009; Di Matteo et al. 2008; Greif et al. 2008; Kim

et al. 2011; Pelupessy et al. 2007; Volonteri and Rees 2005).

However, the Bondi formula is a crude estimation of the rate of gas supply to
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the accretion disk because it does not take into account the effect of accretion feed-

back loops on the surrounding environment. Radiation emitted by BHs originates

from gravitational potential energy of inflowing gas (Shapiro 1973) and a substantial

amount of work has been performed to understand the simplest case of spherical

accretion onto compact X-ray sources or quasars. Several authors have used hy-

drodynamical simulations to explore how feedback loops operates and whether they

produce time-dependent or a steady accretion flows. A variety of feedback processes

have been considered: X-ray preheating, gas cooling, photo-heating and radiation

pressure (Bisnovatyi-Kogan and Blinnikov 1980; Cowie et al. 1978; Krolik and Lon-

don 1983; Milosavljević et al. 2009a; Novak et al. 2011; Ostriker et al. 2010, 1976;

Vitello 1984; Wandel et al. 1984). Typically, the dominance of one process over

the others depends on the BH mass and the properties of the gas accreted by the

BH. The qualitative description of the problem is simple: gravitational potential

energy is converted into other forms of energy such as UV and X-ray photons or

jets, which act to reduce and reverse the gas inflow, either by heating the gas or

by producing momentum driven outflows (Ciotti and Ostriker 2007; Ciotti et al.

2009; Proga 2007; Proga et al. 2008). In general, these feedback processes reduce

the accretion rate and thus the luminosity of the accreting BH (Begelman 1985;

Ostriker et al. 1976; Ricotti et al. 2008). Consequently, the time averaged accretion

rate differs from Bondi’s solution. There have been works on self-regulated accretion

of supermassive black holes (SMBHs) at the center of elliptical galaxies (Ciotti and

Ostriker 2007; Ciotti et al. 2009; Lusso and Ciotti 2011; Sazonov et al. 2005) and

radiation-driven axisymmetric outflow in active galactic nuclei (AGNs; Kurosawa

and Proga 2009a,b; Kurosawa et al. 2009; Proga 2007; Proga et al. 2008).

Recently, there has been extensive work on radiative feedback by intermediate-

mass BHs (IMBHs;for a review Miller and Colbert 2004; van der Marel 2004) moti-
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vated by cosmological simulations which predict massive BHs as Population III star

remnants (Abel et al. 1998, 2000; Bromm et al. 1999; Jeon et al. 2011; Johnson et al.

2012; Madau and Rees 2001; Oh and Haiman 2002; Schneider et al. 2002; Stacy et al.

2012; Whalen and Fryer 2011) or from direct collapse of primordial gas (Begelman

et al. 2006; Carr et al. 1984; Fryer et al. 2001; Haehnelt et al. 1998; Johnson et al.

2011; Mayer et al. 2010; Omukai et al. 2008; Regan and Haehnelt 2009; Volonteri

et al. 2008). The qualitative result is that radiation limits the gas supply to the BH

from large scales, temporarily lowering its luminosity and hence allowing more gas

accretion. This is clearly a self-regulated feedback loop that produces either a steady

or a periodic variation of the BH luminosity (Li 2011; Milosavljević et al. 2009a,b;

Park and Ricotti 2011, 2012a). However, Eddington-limited Bondi accretion rate is

widely used as a typical accretion rate in cosmological or galaxy merger simulations

(Alvarez et al. 2009; Blecha et al. 2011, 2012; Greif et al. 2008; Kim et al. 2011; Pelu-

pessy et al. 2007; Volonteri and Rees 2005), sometimes with a proper introduction

of free parameter which is a fraction of energy of in the form of feedback to match

observations (Di Matteo et al. 2008, 2005; Springel et al. 2005). Recent theoretical

(Milosavljević et al. 2009a, hereafter MBCO09) and numerical (Milosavljević et al.

2009b, hereafter MCB09) works explore accretion of protogalactic gas onto IMBHs

in the first galaxies. MCB09 describes the accretion onto a 100 M� black hole from

protogalactic gas of density nH,∞ = 107 cm−3 and temperature T∞ = 104 K. Our

study, which complements this recent numerical work, is a broader investigation of

accretion onto IMBHs for a set of several simulations with a wide range of radiative

efficiencies, BH masses, densities and sound speeds of the ambient gas. Our aim is

to use simulations to provide a physically motivated description of how radiation

modifies the Bondi solution and provide an analytical formulation of the problem

(see MBCO09).
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The rate of gravitational inflow onto stationary or moving point masses such as

BHs or neutron stars has been described analytically in the 40s by Bondi-Hoyle-

Lyttleton (Bondi 1952; Bondi and Hoyle 1944; Hoyle and Lyttleton 1939). The

generalized formula for the accretion onto a point mass moving with velocity v is

obtained from the Bondi formula by replacing the gas sound speed with an effective

speed veff = (c2
s,∞ + v2)1/2. The accretion rate Ṁ ∝ ρveffσeff is then calculated the

gas flux through an effective cross section σeff = πr2
eff , where reff = GM/v2

eff is the

size of the impact parameter where the effective velocity equals the escape velocity.

The formula reduces to the Bondi case for subsonic motions and to the Lyttleton

formula for supersonic motions. Despite the similarities between the Bondi and

Lyttleton formulae, in the second case the accretion onto the BH is not spherical:

the gas streams past the BH and is gravitationally focused on the axis of symmetry

of the problem. The component of the gas kinetic energy perpendicular to the

BH velocity is converted into thermal energy and dissipated, thus the gas becomes

gravitationally bound to the BH and is accreted from the downstream direction.

Hence, the generalized Bondi-Hoyle-Lyttleton formula is

ṀBHL =
ṀB

(1 + v2
∞/c

2
s,∞)3/2

, (1.1)

where ṀB is the Bondi accretion rate for spherically symmetric accretion onto non-

moving BHs ṀB = πe3/2ρ∞G
2M2

bhc
−3
s,∞ (assuming isothermal equation of state: γ =

1). Here, Mbh is the BH mass, ρ∞ is the density, and cs,∞ is the sound speed of the

ambient gas. The term in the denominator of Equation (1.1) is the only term that

accounts for the motion of the point mass.

It is well known that this formula fails to describe realistic accretion rates when

the effect of radiation emitted by the BH is included. Indeed, the maximum accretion

rate that can be achieved under most realistic cases is the Eddington rate. In this

limit the outward acceleration on the gas due to Compton scattering of radiation
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with free electrons equal the gravitational acceleration. The effect of radiation

feedback on non-moving BHs has been studied extensively, but to the best of our

knowledge the present study is the first to consider radiation feedback effects on

moving BHs.

Two mechanisms summarized above are the main factors which make the accre-

tion deviate from Bondi accretion and both of the processes are expected to reduce

the accretion rate far lower than the Bondi accretion rate. However, interesting

questions arise when we consider the effect of the two processes together since the

modified accretion rate creates a loop of self-regulation. This is the main motivation

of Chapter 5.

The results of this thesis will help to better understand the accretion luminosities

of IMBHs at high z and in the present-day universe (Ricotti 2009). Cosmological

simulations show that massive BHs may have formed in metal-free minihalos as

Population III star remnants in the early universe (Abel et al. 1998, 2000; Bromm

et al. 1999; Madau and Rees 2001; Oh and Haiman 2002; Schneider et al. 2002) or

from direct collapse of primordial gas (Begelman et al. 2006; Carr et al. 1984; Fryer

et al. 2001; Haehnelt et al. 1998; Johnson et al. 2011; Mayer et al. 2010; Omukai

et al. 2008; Regan and Haehnelt 2009; Volonteri et al. 2008). Estimating the accre-

tion luminosity of IMBHs (for a review, see Miller and Colbert 2004; van der Marel

2004) is important to understand their cosmological importance at high z and in

the local universe (Mack et al. 2007; Ricotti 2009). Since the luminosity of IMBHs

is directly related to their accretion rate, these studies are also relevant for better

understanding the mass growth of primordial massive BHs in the early universe

(Alvarez et al. 2009; Johnson and Bromm 2007; Madau and Rees 2001; Pelupessy

et al. 2007; Volonteri et al. 2003; Volonteri and Rees 2005; Yoo and Miralda-Escudé

2004). For example, different scenarios have been proposed for the formation of
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quasars at z ∼ 6 (Fan et al. 2003): growth by mergers, accretion onto IMBHs, or

direct formation of larger seed BHs from collapse of quasi-stars (Begelman et al.

2006; Carr et al. 1984; Fryer et al. 2001; Haehnelt et al. 1998; Mayer et al. 2010;

Omukai et al. 2008; Regan and Haehnelt 2009; Volonteri et al. 2008) that may form

from metal free gas at the center of rare dark matter halos (Oh and Haiman 2002).

Understanding the properties which determine the efficiency of self-regulated accre-

tion onto IMBHs is important to estimate whether primordial black holes produced

by Population III stars can accrete fast enough to become SMBHs by redshift z ∼ 6

(Alvarez et al. 2009; Johnson and Bromm 2007; Madau and Rees 2001; Pelupessy

et al. 2007; Volonteri et al. 2003; Volonteri and Rees 2005; Yoo and Miralda-Escudé

2004). Applications of this work also include studies on the origin of ultra-luminous

X-ray sources (ULXs) (Krolik and Kallman 1984; Krolik et al. 1981; Mack et al.

2007; Ricotti 2007; Ricotti et al. 2008; Strohmayer and Mushotzky 2009) and the

build up of an early X-ray background (Madau et al. 2004; Ricotti and Ostriker

2004; Ricotti et al. 2005; Venkatesan et al. 2001).

This thesis is organized as follows. In Section 1.1 we introduce basic concepts and

definitions in the problem. Numerical procedures and physical processes included

in the simulations are discussed in Chapter 2. In Chapter 3 ,we focus on simulating

accretion onto IMBH regulated by photo-heating feedback in 1D and 2D hydrody-

namic simulations, assuming spherically symmetric initial conditions. We provide

fitting formulas for the mean and peak accretion rates, and the period between ac-

cretion rate bursts as a function of the parameters we explore, including radiative

efficiency, BH mass, gas density, temperature and spectrum of radiation. We lay out

a physically motivated model that describes the results of the simulations. In Chap-

ter 4, we relax most of the simplifying assumptions in Chapter 3 and discuss the

effects of helium heating/cooling, radiation pressure, and gas angular momentum
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on the accretion rate. It has been noted that not only electron scattering but also

radiation pressure on H i may be important (Milosavljević et al. 2009a). We explore

how the radiation pressure regulates the gas accretion by transferring momentum

to the inflowing gas, and whether these physical processes become important com-

pared to the pressure gradients inside the Strömgren sphere. In Chapter 5, we

discuss how the motion of BHs relative to surrounding medium affects accretion

when regulated by radiative feedback showing the results from axis-symmetric 2D

simulations. Finally, summary and discussion are given in Chapter 6.

1.1 Basic Definitions

1.1.1 Bondi Accretion

Accretion of gas from ambient ISM onto a massive object occurs throughout astro-

physics ranging from protostars to BHs. Although spherical symmetry is not valid

any more in real cases such as close binary systems or AGN it is still useful to as-

sume spherical symmetry which makes it possible to to treat this accretion problem

in a fairly exact analytic manner. This has been called Bondi accretion. What can

we learn from this classical treatment of spherical accretion? First, we can calculate

the steady accretion rate onto BHs, given the ambient conditions (the density ρ∞

and the temperature T∞ far from the BH. Second, we can estimate how big a region

of the gas cloud is influenced by the gravity of the object.

In treating the problem mathematically, it is advantageous to take spherical

coordinate (r,θ,φ) system with origin at the center of the massive object. Physical

quantities are independent of angles θ and φ by definition of spherical symmetry.

For steady flow, the continuity equation is given as
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1

r2

d

dr
(r2ρv) = 0. (1.2)

The accretion rate will be Ṁ = 4πr2ρ(−v). In the Euler equation, the only con-

tribution to the external force is from gravity and this has only a radial component:

ρ
∂v

∂t
+ ρv∇v = −∇P + f, (1.3)

1

2
v2 +

γ

γ − 1
Kργ−1 − GM

r
= constant. (1.4)

We have assumed a polytropic equation of state P = Kργ. We have γ = 5/3

for an adiabatic mono-atomic gas and γ = 1 for isothermal gas. Since Kγργ−1 =

γP/ρ = c2
s and we have v2 → 0 as r →∞ we obtain the Bernoulli integral:

1

2
v2 +

c2
s

γ − 1
− GM

r
=

c2
s,∞

γ − 1
(1.5)

where cs,∞ is the sound speed in the gas far away from the BH. The sonic condition

now relates cs,∞ to cs(rs) since v2(rs) = c2
s(rs), GM/rs = 2c2

s(rs), and the Bernoulli

integral gives

c2
s(rs)

[
1

2
+

1

γ − 1
− 2

]
=

c2
s,∞

γ − 1
, (1.6)

cs(rs) = cs,∞

(
2

5− 3γ

) 1
2

. (1.7)

Now the accretion rate Ṁ can be written as:

Ṁ = 4πr2ρ(−v) = 4πr2
sρ(rs)cs(rs). (1.8)

Using c2
s ∝ ργ−1 we find

ρ(rs) = ρ∞

[
cs(rs)

cs,∞

] 2
γ−1

, (1.9)
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ṀB = πG2M2 ρ∞
c3

s,∞

[
2

5− 3γ

] 5−3γ
2(γ−1)

= 4πλBρ∞
G2M2

bh

c3
s,∞

= 4πλBr
2
bρ∞cs,∞ (1.10)

where we have introduced the Bondi radius rb = GM/c2
s,∞ and the dimensionless

mass accretion rate λB, which depends on the polytropic index, γ, of the gas equation

of state P = Kργ such as

λB =
1

4

[
2

5− 3γ

] 5−3γ
2(γ−1)

=
ṀB

4πr2
bρ∞cs,∞

.

The solution (Bondi 1952) provides the typical length scale rb at which gravity

affects gas dynamics and the typical accretion rate as a function of the BH mass

Mbh, ambient gas density ρ∞ and sound speed cs,∞.

1.1.2 Luminosity and Radiative efficiency

A fraction of the gravitational potential energy of the inflowing gas is necessarily

converted into radiation or mechanical energy when it approaches the BH, signif-

icantly affecting the accretion process. Photons emitted near the BH heat and

ionize nearby gas, creating a hot bubble which exerts pressure on the inflowing gas.

Radiation pressure may also be important in reducing the rate of gas inflow (see

MBCO09). These processes may act as self-regulating mechanisms limiting gas sup-

ply to the disk from larger scales and, thus, controlling the luminosity of the BH.

We quantify the reduction of the accretion rate with respect to the case without

radiative feedback by defining the dimensionless accretion rate

λrad ≡
Ṁ

ṀB

, (1.11)
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where ṀB is the Bondi accretion rate for isothermal gas ( ṀB = e3/2πG2M2
bhρ∞c

−3
s,∞).

This definition of λrad is consistent with the one adopted by MBCO09.

The Eddington luminosity sets an upper limit on the luminosity of a BH. In this

limit the inward gravitational force on the gas equals the radiation pressure from

photons interacting with electrons via Compton scattering. Although this limit can

be evaded in some special cases, observations suggest that BH and SMBH luminosity

is sub-Eddington. The Eddington luminosity is thus,

LEdd =
4πGMbhmpc

σT
' 3.3× 106L�

(
Mbh

100 M�

)
. (1.12)

The luminosity of an accreting BH is related to the accretion rate via the radiative

efficiency η: L = ηṀc2. From the Eddington luminosity, we define the Edding-

ton gas accretion rate ṀEdd ≡ LEddc
−2, and the dimensionless accretion rate and

luminosity as

ṁ ≡ Ṁ

ṀEdd

and l ≡ L

LEdd

. (1.13)

Hence, in dimensionless units, the bolometric luminosity of the black hole is l = ηṁ,

where ṁ is the accretion rate onto the black hole. Note, that our definition of ṀEdd

is independent of the radiative efficiency η. Therefore, if we impose sub-Eddington

luminosity of the BH, the dimensionless accretion rate ranges between 0 < ṁ ≤ 1
η
.

The radiative efficiency, η, depends on the geometry of the accretion disk and on

ṁ. For a thin disk, η ' 0.1, whereas η ∝ ṁ for an advection dominated thick disk

or for spherical accretion (Park and Ostriker 2001; Shapiro 1973). In this study

we consider two idealized cases for the radiative efficiency. The case of constant

radiative efficiency η = const; and the case in which the radiative efficiency has

a dependence on the dimensionless accretion rate and luminosity: η = const for

l ≥ 0.1 and η ∝ ṁ for l < 0.1. The second case we explored accounts for the

lower radiative efficiency expected when the accreted gas does not settle into a thin
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disk. In both formulations the the radiative efficiency is one of the free parameter

we allow to vary and we do not find important differences between the two cases.

Observations of Sgr A*, the best studied case of low accretion rate onto a SMBH,

suggest that the radiative efficiency is indeed low but not as low as implied by the

scaling η ∝ ṁ. Recent theoretical work by (Sharma et al. 2007) demonstrates that

there is indeed a floor on the radiative efficiency.

Because the Bondi rate, ṀB does not include radiation feedback effect, it pro-

vides an upper limit on the accretion rate from large scales to radii near the BH.

The Eddington rate provides the maximum accretion rate onto the BH, limited by

radiation feedback at small radii. Thus, numerical simulations are necessary to ob-

tain realistic estimates of the accretion rates. If the accretion rate onto the BH is

lower than the gas accretion from large scales, the accreted material accumulates

near the BH, creating a disk whose mass grows with time. We cannot simulate

such a scenario because it is too computationally challenging to resolve a range of

scales from the Bondi radius to the accretion disk in the same simulations. Here we

assume that accretion onto the BH is not limited by physical processes taking place

on radial distances much smaller than the sonic radius. For instance, even if angular

momentum of accreted gas is small and the circularization radius rc � rs, further

inflow will be slowed down with respect to the free-fall rate. The rate of inflow will

be controlled by angular momentum loss (e.g. torques due to MHD turbulence)

and there will be a delay between the accretion rate at the inner boundary of our

simulation (rmin) and the accretion luminosity associated with it. The effect of the

aforementioned time delay on the feedback loop is considered in Chapter 4. We also

assume that the effect of self-gravity is negligible (see Li 2011) in our simulations

since we have estimate that the mass within the H ii region around the BH is

smaller than the BH mass for Mbh < 1000 M�.
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If the rate of gas supply to the disk is given by the Bondi rate, accretion onto

the BH is sub-Eddington for BH masses

Mbh <
c3
s,∞

GnH,∞σT cη
∼ 40M� T

1.5
∞,4n

−1
H,5η

−1
−1, (1.14)

where we use the notations of T∞,4 ≡ T∞/(104 K), nH,5 ≡ nH,∞/(105 cm−3) and

η−1 ≡ η/10−1. Thus, in this regime we may assume that the accretion is quasi-

steady in the sense that the mean accretion rate onto the BH equals the gas supply

from large scales when the accretion rate is averaged over a sufficiently long time

scale.
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Chapter 2

Numerical Simulations

2.1 ZEUS-MP and Radiative Transfer Module

We perform a set of hydrodynamic simulations to understand accretion onto IMBHs

regulated by radiation feedback. Numerical simulations of radiative feedback by

BHs are challenging because they involve resolving a large dynamical range in length

scales. In this study we use ZEUS-MP (Hayes et al. 2006), a modified parallel version

of the non-relativistic hydrodynamics code ZEUS (Stone and Norman 1992). For the

present work we add a radiative transfer module (Ricotti et al. 2001) to ZEUS-MP

to simulate radiative transfer of UV and X-ray ionizing photons emitted near the

BH. A detailed description of the numerical methods used to solve radiative transfer

and tests of the code are presented in the Appendix A.

As X-ray and UV photons ionize the surrounding medium, different reactions

take place depending on the density and composition of the gas. Photo-ionization

changes the ionization fraction of H and He. The detailed evolution of the Strömgren

sphere depends on the cooling function Λ(T, Z) of the gas and thus on the metal-

licity, Z, and the fraction of gas in the molecular phase. For a gas of primordial

composition, the cooling rate depends on the formation rates of H− and H2, which
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depend on both the redshift and the intensity of the local dissociating background

in the H2 Lyman-Werner bands (e.g. Abel et al. 1998; Ricotti et al. 2002a,b; Shapiro

and Kang 1987). In addition, the cooling function may depend on redshift due to

Compton cooling of the electrons by CMB photons. In Chapter 3 we adopt atomic

hydrogen cooling for temperatures T > 104 K, and use a simple parametric function

to model complicated cooling physics of gas at T < 104 K. Thus, the temperature

structure inside the ionized bubble is appropriate only for a low metallicity gas.

In Chapter 4 we also include the effect of helium photo-heating and cooling. We

assume that gas cooling at temperatures below T∞ is negligible in order to achieve

thermal equilibrium in the initial conditions far from the BH. For the parameter

space in which we can neglect the effect of radiation pressure we find (see Chap-

ter 3) that the accretion rate is a function of the temperature both outside and inside

the H ii region. The temperature outside the H ii region depends on the cooling

function of gas at T < 104 K and on the heating sources. The temperature inside

the H ii region depends on the spectrum of radiation and cooling mechanism of gas

at T > 104 K. Thus, it depends on the gas metallicity and the redshift at which

Compton cooling might become important. However, for the parameter space we

have explored we find that Compton cooling has a minor effect on the temperature

inside and outside the Strömgren sphere.

The gas heating rate depends on flux and spectral energy distribution (SED) of

the radiation emitted near the BH. We assume a luminosity of the BH l = ηṁ, where

ṁ is calculated at the inner boundary in our simulation (typically rmin ∼ 3×10−5 pc).

We adopt a single power law ν−α for the SED, where the spectral index α is one of

the parameters we vary in our set of simulations.

We use an operator-split method to calculate the hydrodynamic step and the

radiative transfer and chemistry steps. The hydrodynamic calculation is done using
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ZEUS-MP, then for the radiative transfer calculation we use a ray tracing module

(Ricotti et al. 2001). The radiative transfer module calculates chemistry, cooling

and heating processes along rays outgoing from the central BH, and thus is easily

parallelized in the polar angle direction.

We perform 1D and 2D simulations in spherical coordinates. In both cases we

use a logarithmically spaced grid in the radial direction typically with 256 to 512

cells to achieve high resolution near the BH. The size ratio between consecutive grids

is chosen according to the free parameters of the simulation to resolve the ionization

front and resolve the region where the gas is in free fall. In the 2D simulations we

use evenly spaced grids in the polar angle direction and compute radiative transfer

solutions in each direction. Flow-out inner boundary conditions and flow-in outer

boundary conditions are used in the radial direction (r), whereas in polar angle

directions (θ), reflective boundary conditions are used.

To determine the optimal box size of the simulations we make sure that we

resolve important length scales in the problem: the inner Bondi radius, rb,in, the

outer Bondi radius, rb,∞, the sonic radius, rs and the ionization front, Rs. We select

the value of the inner boundary (typically ∼3 × 10−5 pc for Mbh = 100 M�) to be

smaller than the sonic point or the inner Bondi radius (both still far larger than the

Schwarzschild radius of the BHs). We find that once the sonic radius is resolved,

reducing the inner boundary box size does not create significant differences in the

results. In most cases the ionization front is located outside of the outer Bondi radius

and the box size is selected to be large enough to cover both length scales. We select

a box size that achieves the highest possible resolution with a given number of grids,

making sure that the physical quantities around boundaries remain constant during

the simulations. The box is sufficiently large to minimize the effect of spurious wave

reflections at the outer boundary.
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In Chapter 3 and 4, we adopt idealized initial conditions of uniform density and

temperature, zero velocity and zero angular momentum of the gas relative to the

BH. We also consider the effect of a time-delay between the accretion rate at the

inner boundary of our simulations and the accretion luminosity in Chapter 4. In

Chapter 5, we relax some of these assumptions by considering the effect of BH motion

with respect to the ambient medium. We assume monatomic, non-relativistic ideal

gas with γ = 5/3 which is initially neutral (electron fraction xe ∼ 10−5).

In Chapter 3, we also neglect the effect of radiation pressure. Our goal is to add to

the simulations one physical process at a time to understand which feedback loop is

dominant in a given subset of the parameter space. We take this approach to attempt

an interpretation of the simulation results in the context of a physically motivated

analytical description of the accretion cycle. We explore the effect of radiation

pressure due to H i ionization and Lyman-alpha scattering in Chapter 4. However,

a simple inspection of the relevant equations suggests that radiation pressure is

increasingly important for large values of the ambient gas density (nH,∞ ∼ 107 cm−3,

see MBCO09) since accretion rate approaches Eddington limit.

2.2 Radiation Pressure and Time Delay

In Chapter 4, we include the effects of helium heating/cooing in addition to hy-

drogen. Therefore, we simulate photo-ionization, photo-heating and cooling for six

species H i, H ii, He i, He ii, He iii, and e−.

We also calculate the radiation pressures both on e− and H i to interpret the effect

of momentum transfer to the inflowing gas by the ionizing photons. The magnitude

of acceleration at a given radius due to radiation pressure depends on the luminosity,

the ionization fraction of hydrogen and helium, and the cross section of the species
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to photon-ionization. The specific flux Fν ∝ e−τ/r2 at a given radius (r), assuming

a power-law spectrum with a spectral index α, depends on the optical depth τν , and

the cross section σν . Thus, the accelerations due to momentum transfer to H i and

e− can be written as

arad,H i =
xH i

mpc

∫
σH i,νFνdν, (2.1)

arad,e− =
xe−

mpc

∫
σTFνdν, (2.2)

where xH i and xe− are H i and e− fractions, respectively, σT is the Thomson cross

section, and mp is the proton mass. The radial component of the acceleration at a

given radius is updated as a = agrav + arad, where arad = arad,H i + arad,e− .

In Section 4.3, we study the effect of non-zero angular momentum of gas which

leads to a time delay between the accretion rate at the sonic radius and the luminos-

ity output, due to the formation of an accretion disk. In order to estimate realistic

values of the time delay we assume that the gas conserves angular momentum and

settles into an accretion disk of radius Rdisk. We then assume an alpha model for

the thin disk to estimate the timescale for the gas to lose angular momentum and

fall into the BH.

Numerically, it is convenient to express the time delay in units of the free-

fall timescale tff calculated at the simulation’s inner boundary (typically Rmin ∼

10−5 pc). The free-fall timescale we have defined can be very large compared to tff

calculated at the radius of the accretion disk near the BH (at tens of gravitational

radii RSch ≡ 2GMbh/c
2). Approximately, the gas is accreted at the viscous timescale

tvisc, that compared to tff is

tvisc(Rdisk)/tff(Rdisk) ∼ α−1
diskM

2 ∼ α−1
diskc

−2
s,diskGMbhR

−1
disk ∼ 0.5 α−1

disk(c/cs,disk)2R−1
disk,

(2.3)

where αdisk is the dimensionless parameter for a thin disk (Shakura and Sunyaev
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1973), cs,disk is the sound speed of the gas in the disk, and we define Rdisk ≡

Rdisk/RSch. The dependence of the free-fall time on radius is tff ∝ R1.5, while

the viscous timescales as tvisc ∝ R−1tff ∝ R0.5 assuming constant sound speed due

to effective cooling (note that since we are considering a gas of zero or very low

metallicity, the gas in the disk will not easily cool to temperature below 104 K if the

gas is atomic). Thus, the infall time at the disk radius Rdisk is

tvisc(Rdisk)

tff(Rmin)
∼ 0.5

αdisk

v3
min

c c2
s,disk

Rdisk
1/2 ∼ 0.3

αdisk

(
Tdisk

104 K

)−1

R1/2
disk. (2.4)

To estimate the parameters in Equation (2.4) we have defined vmin ≡ (GMbh/Rmin)1/2 '

260 km s−1. Assuming αdisk ∼ 0.01–0.1, Tdisk ∼ 104 K, and Rdisk . 102–104, we find

time delays of . 300 free-fall times at Rmin, that is the parameter space we explore

in Section 4.3.

In our code, the accretion rates calculated at the inner boundary of the simula-

tions are stored in an assigned array about 1000 steps for each tff . Stored accretion

rates with a given time delay are then read from the array and used to estimate the

luminosity at the current moment.

2.3 Axis-symmetric Accretion

In Chapter 5, axis-symmetric geometry is applied to all simulations unlike the spher-

ical symmetry used in Chapter 3 and 4. We use logarithmically spaced grid in the

radial direction (r) and evenly spaced grid in the polar angle direction (0 ≤ θ ≤ π)

with BHs centered at the origin r = 0. Axis-symmetric configuration is necessary

to simulate BHs in motion relative to ambient gas which is assumed to be moving

parallel to the polar axes. We apply flow-in boundary conditions for outer radial

direction for the first half of the polar angle (0 ≤ θ ≤ 0.5π) and flow-out boundary

conditions for the second half (0.5π < θ ≤ π) for outer radial direction and inner
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boundary in the radial direction for the entire polar angle. Reflective boundary con-

ditions are applied for the polar axis θ = 0 and θ = π to satisfy the axis-symmetric

configuration.

We assume uniform density and constant velocity for initial conditions. For

supersonic cases (M > 1), we start simulations with an assumption of fixed accretion

rate (〈λrad〉 = 0.001) to reduce the effect of oscillation observed at early phase of

the simulations. We select typical parameters of radiative efficiency η = 0.1 from

thin disk model (Shakura and Sunyaev 1973), BH mass Mbh = 100 M�, and the

temperature of the ambient gas Tin = 104 K. We run simulations for the range of

Mach numbers up to M = 10 for gas densities nH,∞ = 102–106 cm−3.
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Chapter 3

Spherically Symmetric Accretion

3.1 Qualitative description of accretion regulated

by radiative feedback

Our simulations show that UV and X-ray photons modify the thermal and dynam-

ical structure of the gas in the vicinity of the Bondi radius. A hot bubble of gas

is formed due to photo-heating by high energy photons and sharp changes of phys-

ical properties such as density, temperature, and ionization fraction occur at the

ionization front. Figure 3.1 shows 8 snapshots from one of our 2D simulations.

Top half of each snapshot shows the gas density and the bottom half shows the

hydrogen ionization fraction. We show the periodic oscillation of the density and

the ionization fraction from a 2D simulation in Figure 3.1. The time evolution of

the density, temperature and ionization fraction profiles for the 1D simulation are

shown in Figure 3.2. We can identify 3 evolutionary phases that repeat cyclically:

1. Once the Strömgren sphere is formed, it expands and the gas density inside

that hot bubble decreases maintaining roughly pressure equilibrium across the

ionization front. At the front, gas inflow is stopped by the hot gas and the
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Figure 3.1: Evolution of the gas density and ionization fraction in a simulation

of an accreting BH of mass Mbh = 100 M�, gas density nH,∞ = 105 cm−3,

and temperature T∞ = 104 K. In each panel the top halves show the density

(number of hydrogen atoms per cm3) and the bottom halves show the ionization

fraction, xe = ne/nH , of the gas. The evolutionary sequences are shown in a

clockwise direction. Top panels from left to right : A Strömgren sphere forms

fueled by ionizing photons as the BH accretes gas. The higher pressure inside

the Strömgren sphere stops the gas inflow while the BH at the center consumes

the hot gas inside the ionization front. Inflowing gas accumulates in a dense shell

outside the hot bubble while exponential decay of the accretion rate occurs due to

decreasing density inside the hot bubble as gas depletion continues. Although the

number of emitted ionizing photons decreases, the ionized sphere maintains its

size because of the decrease in density inside the hot bubble. Bottom panels from

right to left: The density of hot gas inside the Strömgren sphere keeps decreasing

until pressure equilibrium across the front can no longer be maintained. Middle

left: The dense shell in front of the Strömgren sphere collapses onto the BH and

this leads to a burst of accretion luminosity. Top left: The Strömgren sphere

reaches its maximum size and the simulation cycle repeats.

21



average gas density inside the bubble decreases due to the following two phys-

ical processes. First, the BH continues accreting hot gas within an accretion

radius, racc, defined as the radius where the gravitational force of the BH dom-

inates the thermal energy of the hot gas. The accretion radius is similar to the

Bondi radius defined by the temperature inside Strömgren sphere, but there

exists a difference between them since the kinematic and thermal structure of

gas is modified significantly by the photo-heating and cooling. Second, the gas

between racc and the ionization front moves towards the ionization front due to

pressure gradients. Figure 3.3 shows inflowing gas within racc and outflowing

gas outside racc. A dense shell forms just outside the ionization front. Thus,

the mass of the shell grows because gravity pulls distant gas into the system

at the same time that gas within the the hot bubble is pushed outwards.

2. As the average density inside the hot bubble decreases, the accretion rate

diminishes. During this process the radius of the Strömgren sphere remains

approximately constant since the reduced number of ionizing UV and X-ray

photons is still sufficient to ionize the rarefied hot bubble. Figure 3.6 illustrates

this. Thus, the average gas temperature, ionization fraction and the size of

the H ii region remain constant. As the accretion rate increases during the

burst, it produces a rapid expansion of the Strömgren sphere radius. During

one cycle of oscillation, there are small peaks in the Strömgren sphere radius

which are associated with minor increases in the accretion rate. Rayleigh-

Taylor (RT) instabilities develop quickly when the accretion rate increases. In

these phases, the acceleration of the dense shell is directed toward the BH, so

the dense shell, supported by more rarefied gas, becomes RT unstable.

3. As gas depletion continues, the pressure inside the hot bubble decreases to
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Figure 3.2: Top to bottom : Radial profiles of density, temperature and neu-

tral/ionization fractions in 1D simulation for η=0.1, Mbh=100 M�, nH,∞ =

105 cm−3 and T∞=104 K. Different lines indicates profiles at different times:

t=0.0 (dotted), t=1.13×104 (solid), t=1.28×104 (short dashed), t=1.43×104 (long

dashed), t=1.58×104 (dot-short dashed), t=1.71×104 yr (dot-long dashed). Solid

lines : at the maximum expansion of the Strömgren sphere. Dot-long dashed lines

: at the collapsing phase of dense shell. Physical properties inside the Strömgren

sphere change as a function of time. The number density and temperature of

hydrogen decrease with time after the burst. The neutral fraction increases as a

function of time from the burst.

the point where equilibrium at the ionization front breaks down. The out-

ward pressure exerted by the hot bubble becomes too weak to support the

gravitational force exerted on the dense shell. The dense shell of gas collapses
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Figure 3.3: Gas density and velocity field for the simulation with η = 0.1, Mbh =

100 M�, nH,∞ = 105 cm−3, and T∞ = 104 K. When a Strömgren sphere is formed,

gas inside the hot bubble is depleted by accretion onto the BH and the outflow

toward the dense shell due to pressure gradient.

toward the BH (see Figure 3.4), increasing dramatically the accretion rate and

creating a burst of ionizing photons. The ionization front propagates outward

in a spherically symmetric manner, creating a large Strömgren sphere and

returning to the state where the high pressure inside the Strömgren sphere

suppresses gas inflow from outside.
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Figure 3.4: Gas density and velocity field for the simulation with η = 0.1, Mbh =

100 M�, nH,∞ = 105 cm−3, and T∞ = 104 K. Gas depletion inside the Strömgren

sphere leads to the collapse of the dense shell, creating a burst of accretion.

3.2 Comparison of 1D and 2D simulations

In agreement with previous studies, our simulations show that radiation feedback

induces regular oscillations of the accretion rate onto IMBH. This result is in good

agreement with numerical work by MCB09 for accretion onto a 100 M� BH from a

high density (nH,∞ = 107 cm−3) and high temperature (T∞ = 104 K) gas. Periodic

oscillatory behavior is found in all our simulations for different combinations of

parameters, when assuming spherically symmetric initial conditions and a stationary

BH. This oscillation pattern is quite regular and no sign of damping is observed for
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at least ∼ 10 cycles.

For the same parameters, our 1D and 2D simulations are nearly identical in

terms of oscillatory behavior in accretion rate and Strömgren sphere size. Figure 3.5

shows accretion rate in 1D and 2D simulations for Mbh=100 M�, T∞ = 104 K and

nH,∞ = 105 cm−3. Note the similar pattern in accretion rate and period between

bursts. This indicates that the 1D result adequately represents 2D cases when the

accretion flow does not have significant angular momentum.

Moreover, this result demonstrates that RT instabilities which we observe in the

2D simulations do not affect the mean accretion rate or the period of oscillations.

The RT instability develops during the phase when the dense shell in front of the ion-

ization front is supported against gravitational accretion by the low density medium

inside the hot bubble (Whalen and Norman 2008a,b). The top panels in Figure 3.1

show small instabilities when ionization fronts move outward, which largely decay

over time. The pressure gradient inside the Strömgren sphere creates an outward

force which helps suppress the development of the instability.

In summary, we argue that 1D simulations can be used in place of higher dimen-

sion simulations to determine the cycle and magnitude of the periodic burst of gas

accretion onto IMBH. This allows us to reduce the computational time required to

explore a large range of parameter space.

3.3 Parameter space exploration

In this section we present the results of a set of 1D simulations aimed at exploring the

dependence of the accretion rate and the period of oscillations of the BH luminosity

as a function of the BH mass, Mbh, the ambient gas density, nH,∞, temperature,

T∞, and the radiative efficiency η. In § 5 we present results in which we allow the
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Figure 3.5: Accretion rates as a function of time in 1D and 2D simulations with

η = 0.1, Mbh = 100 M�, nH,∞ = 105 cm−3 and T∞ = 104 K. Both results show

similar oscillation patterns with the same period and average accretion rate.

spectrum of ionizing radiation to vary as well. The accretion can be described by

three main parameters: τcycle, the mean period between bursts, λrad,max, the maxi-

mum value of the dimensionless accretion rate (at the peak of the burst), and 〈λrad〉,

the time-averaged dimensionless accretion rate. These parameters are typically cal-

culated as the mean over ∼ 5 oscillation cycles and the error bars represent the

standard deviation of the measurements.

After reaching the peak, the luminosity decreases nearly exponentially on a time

scale τon, that we identify as the duration of the burst. Both τon and the duty cycle,

fduty, of the black hole activity (i.e., the fraction of time the BH is active), can be
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Figure 3.6: Evolution of Strömgren radius with time for 2D simulation with

η = 0.1, Mbh = 100 M�, nH,∞ = 105 cm−3 and T∞ = 104 K. The solid line

shows the mean size of the Strömgren radius and dotted lines show the minimum

and maximum Strömgren radii. It shows the same period of oscillation seen in

accretion rate as a function of time. In general, the Strömgren radius is pro-

portional to the accretion rate which determines the number of ionizing photons.

When the accretion rate is maximum, the size of the Strömgren sphere also has

its maximum size.

expressed as a function of τcycle, λrad,max and 〈λrad〉:

τon ≡
〈λrad〉
λrad,max

τcycle, (3.1)

fduty ≡
τon

τcycle

=
〈λrad〉
λrad,max

. (3.2)

The values of λrad,max and fduty as a function of the BH mass, the density and the

temperature of the ambient medium are important for estimating the possibility of
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detection of IMBHs in the local universe because these values provide an estimate of

the maximum luminosity and the number of active sources in the local universe at

any time. On the other hand, the mean accretion rate, 〈λrad〉 is of critical importance

for estimating IMBH growth rate in the early universe.

The four panels in Figure 3.8 summarize the results of a set of simulations

in which we vary the free parameters one at a time. We find that, in most of

the parameter space that we have explored, the period of the oscillations and the

accretion rates are described by a single or a split power law with slope β. In the

following paragraphs we report the values of β derived from weighted least squares

fitting of the simulation results. The weight is 1/σ where σ is the standard deviation

of 〈λrad〉 or λrad,max over several oscillations.

a) Dependence on the radiative efficiency

First, we explore how the accretion depends on the radiative efficiency η. This

parameter describes the fraction, η, of the accreting rest mass energy converted

into radiation while the remaining fraction, 1 − η, is added to the BH mass. We

have explored both constant values of the radiative efficiency and the case η ∝ ṁ for

l < 0.1 (see Section 1.1.2). The simulation results shown in this section are obtained

assuming η is constant. We find similar results for 〈λrad〉, λrad,max and τcycle when

we assume η ∝ ṁ. The radiative efficiency for a thin disk is about 10%. Here, we

vary η in the range: 0.2% to 10%. The other free parameters are kept constant with

values nH,∞ = 105 cm−3, Mbh = 100 M� and T∞ = 104 K. Figure 3.7 shows the

accretion rate as a function of time for different values of the radiative efficiency:

η = 0.1, 0.03, 0.01 and 0.003. Panel (a) in Figure 3.8 shows the dependence on

η of the three parameters that characterize the accretion cycle. The maximum

accretion rate increases mildly with increasing η (log slope β = 0.13 ± 0.06). The
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Figure 3.7: Dependence of accretion rate and period of oscillations on the radiative

efficiency η. From top to bottom the evolution of accretion rate is shown for

η = 0.1, 0.03, 0.01 and 0.003. The peak accretion rate does not change much with

η, but intervals between oscillations decrease with decreasing η.

average accretion rate is 〈λrad〉 ∼ 2.9% ± 0.2%, is nearly independent of η (β =

−0.04 ± 0.01). The period of the oscillations increases with η as τcycle ∝ η1/3. We

also show the simulation results including helium photo-heating and cooling, shown

as open symbols in the same panel of Figure 3.8. We find that including helium

does not change the qualitative description of the results, but does offset the mean

accretion rate, that is ∼ 41% lower and the period of the accretion bursts, that is

∼ 42% shorter. This offset of the accretion rate and period with respect to the case

without helium is due to the higher temperature of the gas inside the H ii region

surrounding the BH.
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Figure 3.8: For each panel, peak accretion rate, average accretion rate and period

between bursts are shown from top to bottom as a function of a given param-

eter. Error bars represent the standard deviation around the mean values over

∼ 5 accretion cycles. (a) Dependence on η. 〈λrad〉 ∼ const while τcycle ∝ η1/3.

Open symbols indicate the simulations including helium photo-heating and cool-

ing, which show ∼ 41% lower accretion rate and ∼ 42% shorter period. (b) Same

plots as a function of Mbh. 〈λrad〉 ∼ const while τcycle ∝ M
2/3
bh . (c) Same plots

as a function of nH,∞ of gas. At low densities, τcycle ∝ n
−1/6
H,∞ , whereas at higher

density, τcycle ∝ n
−1/3
H,∞ . (d) Same plots as a function of T∞. Average accretion

rate 〈λrad〉 ∝ T 2.5
∞ . With an exception at lowest temperature τcycle ∝ T−0.5

∞ .

b) Dependence on BH mass

We explore a range in BH mass from 100 M� to 800 M�, while keeping the other
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parameters constant (η = 0.1, nH,∞ = 105 cm−3 and T∞ = 104 K). The results are

shown in panel (b) of Figure 3.8. The mean accretion rate is 〈λrad〉 ∼ 2.7%± 0.4%

and the maximum accretion rate is λrad,max ∼ 42%± 12% (β = −0.26± 0.20). They

are both independent of Mbh within the error of the fit. The period of the bursts is

well described by a power-law relation τcycle ∝M
2/3
bh .

c) Dependence on gas density of the ambient medium

Panel (c) in Figure 3.8 shows the dependence of accretion rate and burst period on

the ambient gas density, nH,∞. We explore a range of nH,∞ from 5 × 103 cm−3 to

107 cm−3, while keeping the other parameters constant at η = 0.1, Mbh = 100 M�

and T∞ = 104 K. For densities nH,∞ ≥ 105 cm−3, 〈λrad〉 and λrad,max are insensitive

to nH,∞ (β = −0.04 ± 0.08 and β = −0.18 ± 0.13, respectively). However, for

nH,∞ ≤ 105 cm−3, 〈λrad〉 and λrad,max are proportional to n
1/2
H,∞ (β = 0.44± 0.02 and

β = 0.37± 0.09, respectively).

The bottom of Figure 3.8(c) shows the effect of density in determining the os-

cillation period. For densities nH,∞ ≥ 105 cm−3, τcycle is fitted well by a power law

with τcycle ∝ n
−1/3
H,∞ and for the densities nH,∞ ≤ 105 cm−3 it is fitted well by a power

law τcycle ∝ n
−1/6
H,∞ . However, τcycle at nH,∞ = 107 cm−3 is lower than predicted by the

power law fit for nH,∞ ≥ 105 cm−3. Although Figure 3.5, 3.7 do not show clearly the

magnitude of accretion rate during the inactive phase, it is evident in a log-log plot

that accretion rate at minima is 4 orders of magnitude lower than during the peak

of the burst. This is the case for all simulations but the ones with nH,∞ = 107 cm−3

in which the accretion rate at minima is 2 orders of magnitude higher than in all

other simulations. The simulations show that the ambient gas density is an impor-

tant parameter in determining the accretion luminosity and period between bursts

of the IMBH. One of the reasons is that the gas temperature inside the hot ionized
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bubble and the thickness and density of the dense shell in front of it depend on the

density via the cooling function. The drop in the accretion rate we observe at low

densities can be linked to an increase of the temperature within the sonic radius

with respect to simulations with higher ambient density. This results in an increase

in the pressure gradient within the ionized bubble that reduces the accretion rate

significantly.

d) Dependence on the temperature of the ambient medium

Panel (d) in Figure 3.8 shows the dependence of accretion rate and period of the

bursts on the temperature of the ambient medium, T∞. We vary T∞ from 3000 K

to 15000 K while keeping the other parameters constant at η = 0.1, Mbh = 100 M�

and nH,∞ = 105 cm−3. We find 〈λrad〉 and λrad,max depend steeply on T∞ as T
5/2
∞

(β = 2.44 ± 0.06). Except for the simulation with T∞ = 3000 K, the period of the

accretion cycle is fitted well by a single power law τcycle ∝ T
−1/2
∞ .

3.4 Analytical Formulation of Bondi Accretion with

Radiative Feedback

In this section we use the fitting formulas for 〈λrad〉, λrad,max and τcycle obtained from

the simulations, to formulate an analytic description of the accretion process. For

ambient densities nH,∞ ≥ 105 cm−3, we have found that the dimensionless mean

accretion rate 〈λrad〉 depends only on the temperature of the ambient medium. It is

insensitive to η, Mbh and nH,∞. Thus, for nH,∞ ≥ 105 cm−3 we find

〈λrad〉 ∼ 3.3% T
5/2
∞,4 n

−0.04
H,5 ∼ 3.3% T

5/2
∞,4, (3.3)

while for nH,∞ ≤ 105 cm−3 we find

〈λrad〉 ∼ 3.3% T
5/2
∞,4 n

1/2
H,5. (3.4)
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As mentioned above, the dependence of 〈λrad〉 on the density is due to the in-

creasing temperature inside the ionized bubble at low densities. The period of the

accretion cycle depends on all the parameters we have investigated in our simulation.

In the range of densities nH,∞ ≥ 105 cm−3 we find

τcycle = (6× 103 yr) η
1
3
−1 M

2
3

bh,2 n
− 1

3
H,5 T

− 1
2

∞,4 (3.5)

where we use the notation of Mbh,2 ≡ Mbh/(102 M�). However, at lower densities

nH,∞ ≤ 105 cm−3, we find

τcycle = (6× 103 yr) η
1
3
−1 M

2
3

bh,2 n
− 1

6
H,5 T

− 1
2

∞,4 (3.6)

in which only the dependence on nH,5 changes. The different dependence of τcycle on

nH,∞ is associated with a change of the mean accretion rate 〈λrad〉 for each density

regime. The deviation of τcycle from the power law fit at nH,∞ = 107 cm−3 is not

associated with any variation of the mean accretion rate. Our value of τcycle for

nH,∞ = 107 cm−3 is in good agreement with the value found by MCB09.

3.5 Dimensionless accretion rate : 〈λrad〉

In this section we seek a physical explanation for the relationship between the mean

accretion rate 〈λrad〉 and the temperature of the ambient medium found in the

simulations. The model is valid in all the parameter space we have explored with

a caveat in the low density regime (nH,∞ < 3 × 105 cm−3) and at low ambient

temperatures (T∞ < 3000 K).

Figure 3.9 shows the time-averaged temperature profiles for simulations in which

we vary η, Mbh, nH,∞ and T∞. In the case of different Mbh the radii are rescaled so

that direct comparisons can be made with the case of 100 M�. Vertical lines indicate

the accretion radius racc, inside of which gas is accreted and outside of which gas
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is pushed out to the ionization front. We find that the value of racc is generally

insensitive to the parameters of the simulation as is the gas temperature at racc.

Accretion onto the BH of gas inside the hot ionized sphere is limited by the

thermal pressure of the hot gas and by the outflow velocity of the gas that is produced

by the pressure gradient inside the Strömgren sphere. Thus, the accretion radius,

racc, is analogous to the inner Bondi radius, rb,in, modified to take into account

temperature and pressure gradient inside the hot bubble.

Let us assume that the average accretion rate onto the BH is

〈Ṁ〉 = 4πλBr
2
accρincs,in, (3.7)

where ρin and cs,in (and the corresponding temperature Tin) are the density and the

sound speed at racc. Based on the results illustrated in Figure 3.9, we expect the

accretion rate to depend only on ρin, since racc and cs,in can be taken to be constants.

When a Strömgren sphere is formed, the gas inside the hot bubble expands

and its density decreases. Inside the ionization front the temperature is about

104− 105K. Thus, assuming pressure equilibrium across the ionization front we find

the dependence of ρin on T∞:

ρin ≈ ρ∞
T∞
Tin

= ρ∞

(
cs,∞

cs,in

)2

. (3.8)

We find f = racc/rb,in ∼ 1.8 and the temperature at racc is Tin ∼ 4 × 104 K

independent of η, Mbh, nH,∞ and T∞ for a fixed spectral index of radiation α = 1.5.

The dimensionless accretion rate inside of the Strömgren sphere normalized by the

Bondi accretion rate in the ambient medium is then :

〈λrad〉 ' λB
r2

accρincs,in

r2
b,∞ρ∞cs,∞

' 1

4
(1.8)2

(
ρin

ρ∞

)(
cs,in

cs,∞

)−3

' 3% T 2.5
∞,4 (3.9)
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Figure 3.9: Time-averaged temperature profiles as a function of simulation pa-

rameters. Different vertical lines indicate accretion radii, racc, for each parameter.

Top left : η ranges from 0.1 (solid line) to 0.003 (long dashed line). Top right :

Mbh ranges from 100 M� (solid) to 800 M� (long dashed). Bottom left : Den-

sity ranges from 104 cm−3 (solid) to 107 cm−3 (long dashed). Bottom right : T∞
ranges from 5000K (solid) to 15000K (long dashed).

where we have used λB = 1/4 appropriate for an adiabatic gas. Thus, 〈λrad〉 ∝ T
5/2
∞

which is in agreement with the simulation result, given that racc and Tin remain

constant when we change the simulation parameters. However, racc and Tin may not

stay constant if we modify the cooling or heating function, for instance by increasing

the gas metallicity or by changing the spectrum of radiation; this result suggests

that the accretion rate is very sensitive to the details of the temperature structure

36



inside the Strömgren sphere which shows a dependence on nH,∞. The temperature

profile changes significantly for nH,∞ < 3×104 cm−3 and this is probably the reason

why our model does not fit perfectly 〈λrad〉 from the simulations in the lower density

regime. In the next section we test whether Equation (3.7) is still a good description

of our results when we change the thermal structure inside the H ii region.

3.6 Dependence on temperature at accretion ra-

dius

In this section we study the dependence of the accretion rate on the time-averaged

temperature Tin at racc. We change the temperature Tin by varying the spectral index

α of the radiation spectrum and by including Compton cooling of the ionized gas by

CMB photons. Here we explore the spectral index of the radiation spectrum in the

range α = 0.5, 1.0, 1.5, 2.0, 2.5 with the energy of photons from 10 eV 100 keV. The

other parameters are kept constant at η = 0.1, Mbh = 100 M�, nH,∞ = 105 cm−3

and T∞ = 104 K.

Figure 3.10 shows the different time-averaged temperature profiles for different

values of α. Spectra with lower values of the spectral index α produce more energetic

photons for a given bolometric luminosity, increasing the temperature inside the

ionized bubble. Simulations show that the averaged accretion rate 〈λrad〉 increases

for softer spectrum of radiation. Different slopes (0.5 ≤ α ≤ 2.5) of the power-law

spectrum lead to different Tin (59000 K to 36000 K) and 〈λrad〉 (0.0076 to 0.0509).

Adopting a harder spectrum (with α = 0.5) instead of the softer (α = 2.5) increases

Tin by a factor of 1.6 and 〈λrad〉 decreases by a factor 6.7. The fit to the simulation

results in Figure 3.11 show that 〈λrad〉 depends on temperature at racc as

〈λrad〉 ∝ T−4
in ∝ c−8

s,in. (3.10)
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Figure 3.10: Average temperature profiles of the H ii region as a function of

spectral index α. Smaller α results in smaller racc and higher Tin.

The dependence on cs,in differs from equation (3.9). However this is not surprising

because in these simulations the values of racc and cs,in do not remain constant while

we vary the value of the spectral index α. This is due to a change of the temperature

and pressure gradients within the H ii region. The accretion radius, racc, can be

expressed as a function of the Bondi radius inside the hot bubble, rb,in = GMbhc
−2
s,in.

From the simulations we obtain the following relationship between these two radii:

f =
racc

rb,in

' 1.8

(
Tin

4× 104 K

)−0.7±0.2

. (3.11)

Thus, if our model for the accretion rate summarized by equation (3.7) is valid,
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Figure 3.11: Relation between temperature at racc and average accretion rate

〈λrad〉. We find 〈λrad〉 ∝ T−4
in .

we should have:

〈λrad〉 '
1

4

r2
accρincs,in

r2
b,∞ρ∞cs,∞

' (1.8)2

4

(
ρin

ρ∞

)
c−5.9

s,in c
3
s,∞

' 3% T 2.5
∞,4

(
Tin

4× 104 K

)−4

, (3.12)

in agreement with the simulation results 〈λrad〉 ∝ T 2.5
∞ T−4

in where the dependence

on Tin was not explored initially. Thus, Bondi-like accretion on the scale of racc is

indeed a good explanation of our results. Given the steep dependence of the value

of accretion rate 〈λrad〉 on Tin it is clear that it is very sensitive on the details of the

thermal structure inside the H ii region. This means that 〈λrad〉 depends on the

spectrum of radiation and gas metallicity.
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3.7 Accretion rate at peaks and duty cycle: λrad,max,

fduty

We estimate fduty by comparing λrad,max and 〈λrad〉 using Equation (3.2). This

quantity gives an estimate of what fraction of BHs are accreting gas at the rate

close to the maximum. Within the fitting errors, the log slopes of λrad,max and

〈λrad〉 as a function of the parameters Mbh, T∞ are zero. Thus, we assume that the

dimensionless accretion rates are independent of these parameters.

For nH,∞ ≥ 105 cm−3, λrad,max can be expressed as λrad,max ∼ 0.55 η0.13
−1 n−0.18

H,5 T 2.0
∞,4

and the dependence of fduty on these parameters can be expressed using equation

(3.3) as

fduty ∼ 6% η−0.13
−1 n0.14

H,5 T 0.5
∞,4 (3.13)

where we include the mild dependence of 〈λrad〉 on the density. For nH,∞ ≤ 105 cm−3,

λrad,max ∼ 0.55 η0.13
−1 n0.37

H,5 T 2.0
∞,4 has a different power law dependence on the density

and we get fduty as

fduty ∼ 6% η−0.13
−1 n0.07

H,5 T 0.5
∞,4 (3.14)

where fduty shows a milder dependence on the gas density. Thus, we expect about

6% of IMBHs to be accreting near the maximum rate at any given time. This value

depends weakly on η, nH,∞ and T∞.
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3.8 Average period between bursts : τcycle

In this section we derive an analytical expression for the period of the luminosity

bursts as a function of all the parameters we tested. Although τcycle shows a seem-

ingly complicated power law dependencies on the free parameters, we find that τcycle

is proportional to the time-averaged size of the Strömgren sphere. This is shown

in Figure 3.12. The linear relation between τcycle and the average Strömgren radius

〈Rs〉 explains the dependence of τcycle on every parameter considered in this work.

The number of ionizing photons created by accretion onto a BH is determined by

the average accretion rate and the radiative efficiency η. The average accretion rate

itself can be expressed as a fraction of the Bondi accretion rate 〈λrad〉. Therefore,

the average number of ionizing photons emitted near the BH can be expressed as

Nion ∝ η〈λrad〉ṀB (3.15)

∝ η〈λrad〉
G2M2

bh

c3
s,∞

ρ∞.

It follows that:

τcycle = tout ≈
〈Rs〉
vout

∝
(

3Nion

4παrecn2
H

) 1
3

∝
(

1

n2
H

) 1
3
(
η〈λrad〉

G2M2
bh

c3
s,∞

ρ∞

) 1
3

, (3.16)

where we find vout ∼ 1
3
cs,in. Ignoring constant coefficients and using equation (3.3)

for nH,∞ ≥ 105 cm−3, we find :

τcycle ∝ η
1
3M

2
3

bhn
− 1

3
H,∞T

− 1
2∞ , (3.17)

or using equation (3.4) for nH,∞ ≤ 105 cm−3, we find :

τcycle ∝ η
1
3M

2
3

bhn
− 1

6
H,∞T

− 1
2∞ (3.18)
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which are exactly as in the empirical fitting formulas in both density regimes and

also in good agreement with the analytical work by MBCO09. This explains the

dependence of τcycle on any tested parameter η, Mbh, nH,∞ and T∞. In Figure 3.12

we also show simulation results assuming η ∝ ṁ. All simulations show the same

relationship between τcycle and 〈Rs〉. However, the simulation with the highest

ambient density (nH,∞ = 107 cm−3) deviates from the linear relationship, but is in

agreement with the numerical simulation by MCB09. It appears that in the high

density regime τcycle decreases steeply with decreasing 〈Rs〉.

We can interpret τcycle as the time scale at which the gas inside H ii region

gets depleted. If the gas depletion inside the Strömgren sphere is dominated by

the outward gas flow, then τcycle ∝ 〈Rs〉/cs,in in agreement with the empirical linear

relation in Figure 3.12. However, the depletion time scale may be different if the

accretion by the BH dominates gas consumption inside the Strömgren sphere. We

can derive this time scale as

tin =
MH ii

Ṁ
=

(
〈Rs〉
racc

)2 〈Rs〉
3 cs,in

∼
(
〈Rs〉
racc

)2
tout

9
. (3.19)

Roughly, we expect τcycle = min (tout, tin). So, for 〈Rs〉/racc ≤ 3, the period of the

cycle scales as 〈Rs〉3. This may explain the deviation of the period for nH,∞ =

107 cm−3 from the linear relation. We see in Figure 3.9 that the ratio 〈Rs〉/racc ∼ 5

for nH,∞ = 107 cm−3 which is much smaller than the ratio found for other densities.

3.9 Rayleigh-Taylor instability

In 2D simulations we find that RT instability develops across the Strömgren radius,

but it decays on short time scales. This can be explained by the pressure gradient

inside the Strömgren sphere which does not allow the RT grow. In the linear regime
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Figure 3.12: Period of accretion bursts as a function of the average Strömgren

radius. All simulation results from all the parameters are plotted together. The

average size of the Strömgren sphere shows a linear relation with the period τcycle.

The only exception happens at the highest density (nH,∞ = 107 cm−3), but this

result is in agreement with the work by MCB09 (symbol with error bar)

the growth time scale of the RT instability of wavelength λ is

τRT '

√
ρsh + ρin

ρsh − ρin

2πλ

g
'

√
2πλ

g

where ρsh is the density of the shell and g ' GMbh〈Rs〉−2 is the gravitational

acceleration at the shell radius. Thus, RT timescale can be expressed as

τRT '
〈Rs〉
cs,in

√
2πλ

rb,in

. (3.20)

So during one cycle perturbations grow on scales:

λRT <

(
τRT

τcycle

)2
rb,in

2π
<
rb,in

2π
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where rb,in is the inner Bondi radius. Thus only instability on angular scales θ ∼

λRT/2π〈Rs〉 ≤ rb,in/(2π)2〈Rs〉 grow in our simulation.
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Chapter 4

Growth Rate and Duty Cycle

In this chapter, we show the results of simulations discussing the effects of helium

heating/cooling, radiation pressures, and angular momentum on the BH accretion

rate. All the simulations in this Chapter include helium heating/cooling but the

gas is metal free. The simulations remain qualitatively the same as in Chapter 3

where we did not include helium; the only noticeable difference with respect to

Chapter 3 is that the accretion rate at peak luminosity shows multiple minor peaks

instead of a well-defined single peak. This is to be expected, as a larger opacity

produces a stronger feedback with respect to the hydrogen only case, leading to

multiple shocks in the gas. This complicate structure – i.e., a burst consisting of

several sub-bursts – is commonly found (e.g., Ciotti and Ostriker 2007). In addition,

the average accretion rate 〈λrad〉 decreases from ∼ 3% to ∼ 1%, but this can be

understood by the increase of the mean temperature inside the Strömgren sphere

to from Tin ∼ 4 × 104 K to ∼ 6 × 104 K. The top panel of Figure 4.1 shows the

accretion rate as a function of η = 0.01-0.1 with Mbh = 100 M�, 106 cm−3, and

T∞ = 104 K. Large symbols show 〈λrad〉 while small symbols show λrad,max. For the

given set of parameters, the luminosity remains in the sub-Eddington regime, thus

the effects of radiation pressures are minor. The bottom panel of Figure 4.1 shows
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the dependence of τcycle on η1/3, the same as found in Chapter 3. However, τcycle for

η = 0.1 is now ∼ 2200 years which is ∼ 60% of the value found in Chapter 3 for

the given set of parameters. This is also well understood (see Equation (3.16) in

Chapter 3) as our model predicts τcycle ∝ 〈λrad〉1/3.

4.1 Effect of Radiation Pressures

In Chapter 3, we have focused on exploring the parameter space in which the mean

accretion rate is dominated by thermal feedback, i.e., radiation pressure can be ne-

glected. We found 〈λrad〉 ∼ 1% for nH,∞ = 105 cm−3, assuming Mbh = 100 M�,

T∞ = 104 K, α = 1.5, and including helium cooling/heating. However, not sur-

prisingly, including the effect of radiation pressure produces a reduction of the ac-

cretion rate when the BH luminosity approaches the Eddington limit. Figure 4.2

shows 〈λrad〉 as a function of gas density for a 100 M� BH, comparing simulations

that do not include radiation pressure (open triangles) to ones including pressure

on H i only (open squares), on e− only (open pentagons), and the total effect of

radiation pressure (solid circles). Compton radiation pressure reduces the accretion

rate below 〈λrad〉 ∼ 1% for nH,∞ & 107 cm−3 while the radiation pressure on H i ap-

pears always negligible with respect to Compton scattering. Both 〈λrad〉 and λrad,max

change from a constant fraction of the Bondi accretion rate to the Eddington rate

λEdd, shown by the dashed line for Mbh = 100 M� and radiative efficiency η = 0.1.

Figure 4.3 shows the dimensionless accretion rates 〈λrad〉 and λrad,max as a func-

tion of the BH mass from Mbh = 102 to 104 M�, keeping the other parameters

constant: η = 0.1, 105 cm−3, and T∞ = 104 K. The simulations include radiation

pressures on H i and e−, and show that the transition to Eddington-limited accretion

happens for Mbh ' 5000 M�.
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Figure 4.1: Top: accretion rate in units of the Bondi rate as a function of radiative

efficiency η for simulations withMbh = 100M�, 106 cm−3, and T∞ = 104 K. Large

symbols indicate mean accretion rate (〈λrad〉 ∼ 1%), while small symbols show

accretion rate at peaks (λrad,max ∼ 20%). Bottom: period between bursts τcycle

as a function η. The dotted line shows τcycle ∝ η1/3. In both panels, triangles

represent simulations neglecting the effect of radiation pressures, while circles

show simulations including radiation pressures. Radiation pressures introduce

a minor difference in both the accretion rate and period of the bursts for this

parameter set.

4.1.1 Transition from Bondi-like to Eddington-limited Ac-

cretion

So far the simulation results have shown that Compton scattering on electrons is

the dominant radiation pressure effect, thus the Eddington-limit applies. Figure 4.4

summarizes the results of a large set of simulations that include radiation pressure.
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Figure 4.2: Comparison of relative importance of radiation pressures in regulating

mean accretion rate (top panel) and the period of bursts (bottom panel) as a

function of the ambient gas density nH,∞. Symbols are explained in the legend of

the figure. Top: long dashed line shows the Eddington limit for a 100 M� BH with

η = 0.1. When the accretion rate is sub-Eddington ( nH,∞ ≤ 106 cm−3 ) radiation

pressures both on electrons and H i do not play an important role and the thermal

structure of the Strömgren sphere regulates the accretion. Radiation pressure is

important in reducing the accretion rate at nH,∞ = 107 cm−3 where the accretion

rate approaches the Eddington rate. The transition of accretion rate from 〈λrad〉 ∼
1% to the Eddington-limited regime happens at nEdd

H,∞ ∼ 4×106 cm−3 for a 100 M�
BH with η = 0.1 and T∞ = 104 K. Bottom: radiation pressures do not produce

significant differences in τcycle. Transition of τcycle from mode-I (dotted line) to

mode-II (short dashed line) happens at the critical density ncr
H,∞ ∼ nEdd

H,∞ (see

Section 4.2). The result shows a good agreement with the work of MCB09.

The top three panels in Figure 4.4(a) shows 〈λrad〉 as a function of gas density

for Mbh = 102, 103, and 104 M�, respectively. For each BH mass, corresponding

Eddington limits are shown by the dashed lines. The panels show the mean accretion
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Figure 4.3: Same as Figure 4.1, but showing 〈λrad〉, λrad,max, and τcycle as a

function of Mbh with η = 0.1, 105 cm−3, and T∞ = 104 K. A similar pattern

which we observe as a function of density is also seen as a function of Mbh. With

increasing Mbh, the transition from 〈λrad〉 ∼ 1% to the Eddington-limited regime

and the transition of τcycle from mode-I to mode-II happen at Mbh ∼ 4×103 M�.

rate 〈λrad〉 (large triangles) and λrad,max (small triangles) transitioning from being a

constant fraction of the Bondi rate at low densities to being Eddington-limited at

higher densities. The period of the accretion τcycle, in the bottom panels, also shows

different dependencies in Bondi-like and Eddington-limited regimes. We will come

back to this in Section 4.2.

Figure 4.4(b) shows the mean accretion luminosity in units of LEdd for Mbh =

102, 103, and 104 M� as a function of gas density. The dotted lines show 1% of the

Bondi accretion rate for each BH mass. Thus, from Figure 4.4 approximately we
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Figure 4.4: Left: same as Figure 4.2, but showing 〈λrad〉, λrad,max, and τcycle as a

function of gas density for Mbh = 102 M� (left panel), 103 M� (middle panel),

and 104 M� (right panel). Long dashed lines in each panel show the Eddington

accretion rate for η = 0.1 and the given BH mass. With increasing gas density,

the accretion rate eventually becomes Eddington limited, but the transition to the

Eddington-limited regime occurs at densities nEdd
H,∞ ∼ 4 × 106 cm3M−1

bh decreas-

ing linearly with increasing BH mass. Right: accretion luminosities normalized

by Eddington luminosities for the same simulations in the left figure. Symbols

(circles: 102 M�, triangles: 103 M�, squares: 104 M�) show the simulations in-

cluding radiation pressures for each BH mass. With increasing gas density, the

accretion rate becomes regulated primarily by Compton radiation pressure.

have

〈Ṁ〉 = min(1%T 2.5
∞,4ṀB, η

−1ṀEdd), (4.1)

where T∞,4 ≡ T∞/(104 K), valid for density nH,∞ & 105 cm−3, and α = 1.5.

It is thus apparent that IMBHs can grow at a rate near the Eddington limit if

the gas density of the environment is larger than the critical density

nEdd
H,∞ ∼ 4× 106 cm−3

(
Mbh

102 M�

)−1(
T∞

104 K

)−1 ( η

0.1

)−1

. (4.2)
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4.1.2 Why is Continuum Radiation Pressure Negligible?

As shown in Figure 4.2-4.4, the simulations show that radiation pressure on H i does

not play an important role when the accretion rate is sub-Eddington. In this section,

we focus on understanding why this is. Figure 4.5 shows the evolution of relative

magnitude of acceleration due to radiation pressures normalized by the gravitational

acceleration at a given radius. Each panel refers to a different density nH,∞ =

105, 106, 107, and 108 cm−3. Within the Strömgren sphere, the relative effect of

Compton radiation pressure remains constant as a function of the radius since the

electron fraction xe− is close to unity and the gas is nearly transparent to ionizing

radiation. Outside of the Strömgren sphere, the rapid decrease of the electron

fraction reduces the effect of Compton scattering. Radiation pressure on H i (thick

lines in Figure 4.5) increases as a function of radius and has its peak value just

inside the Strömgren sphere. This is due to the increase of the H i fraction as a

function of radius. Outside the Strömgren sphere the relative effect of H i radiation

pressure drops quickly because the ionizing luminosity decreases rapidly due to the

increase of the H i opacity.

Continuum radiation pressure on H i is comparable to Compton electron scat-

tering only in a shell just inside the Strömgren sphere, where the H i abundance

starts to increase rapidly as a function of radius and the ionizing radiation is not

fully shielded by H i. With increasing gas density, the peak and mean luminosi-

ties increase, hence the relative effect of Compton pressure on average increases

and eventually becomes comparable to the effect of gravity (i.e., Eddington limit).

Whereas Figure 4.5 shows that the relative effect of continuum radiation pressure

does not increase much with increasing gas density. In addition, the range of vari-

ation of radiation pressures during a period of oscillation decreases with increasing
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Figure 4.5: Radial profiles of the gas acceleration due to radiation pressures

on H i and e− normalized to the gravitational acceleration of simulations for

nH,∞ = 105, 106, 107, and 108 cm−3 with BH mass Mbh = 100 M�, η = 0.1, and

T∞ = 104 K. Thick lines refer to radiation pressure on H i, while thin lines show

Compton scattering radiation pressure. Different line types show the profiles at

different time during the oscillation cycle (e.g., solid lines at the accretion bursts

and dot-dashed just before the bursts). Radiation pressure on H i peaks just

inside the Strömgren sphere with weak dependence on density. While Compton

radiation pressure inside the Strömgren sphere increases on average as a function

of density. At 107 cm−3 the peak values of H i radiation pressure and Compton

radiation pressure become comparable and about 10% of gravity. However, at

higher densities (≥ 108 cm−3) radiation pressure on electrons becomes dominant

everywhere inside the Strömgren sphere.

density. In other words, at low densities radiation pressures display several magni-

tudes of variation which are not seen in the high-density regime. As a result, at low

densities (nH,∞ . 106 cm−3) radiation pressure is significant only near the peaks of

luminosity and generally is negligible compared to gravity; whereas at high densities

(nH,∞ & 107 cm−3) Compton scattering dominates throughout a period of oscilla-

tion reducing the accretion rate to Eddington-limited values. Only at intermediate

densities nH,∞ ' 107 cm−3, the magnitude of H i radiation pressure just behind the
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Strömgren radius becomes comparable to that by Compton scattering.

The weak dependence of the H i radiation pressure on density and its magnitude

with respect to the Compton pressure can be understood analytically. The key point

is that the H i radiation pressure is proportional to the value of the neutral fraction

xH i just behind the Strömgren radius Rs and, assuming ionization equilibrium, it is

easy to show that xH i(Rs) ∝ n
−2/3
H . It follows that the pressure on H i is relatively

insensitive to variations of nH:

P cont
Rad ∝ S0xH i(Rs) exp [−τ(Rs)] ∝ n

1/3
H , (4.3)

where S0 ∝ nH is the ionizing luminosity, and exp [−τ(Rs)] = const. The derivation

of xH i(Rs) is as follows. At Rs = S
1/3
0 n

−2/3
H α

−1/3
R the photoionization rate is Γ(Rs) =

S0σ
eff
H i/4πR

2
s ∝ n

5/3
H . Assuming photoionization equilibrium xH i(Rs)Γ(Rs) = nHαR,

we demonstrate that

xH i(Rs) =
nHαR
Γ(Rs)

∝ n
−2/3
H . (4.4)

4.2 Two Self-regulated Modes of Accretion

: Collapsing versus Quasi-steady I-front

One of the most interesting aspects of the radiation-regulated accretion onto BHs

is the qualitative change of the period and duty cycle of the luminosity bursts ob-

served in the high-density regime. As argued in Chapter 3 and confirmed by further

simulations in this Chapter, the physical reason for this transition is a change of

the dominant mechanism depleting the gas inside the Strömgren sphere between

two consecutive bursts. In the low-density regime, gas is pushed outward toward

the ionization front by a pressure gradient (hereafter, mode-I accretion). At higher-

densities gas accretion onto the BH becomes the dominant gas depletion mechanism
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(hereafter, mode-II accretion). Incidentally, as discussed below, simulations show

that radiation pressure becomes important near the transition from mode-I to mode-

II, at least for most of the initial conditions we have simulated. In Chapter 3,

we have observed mode-II accretion only for our highest density simulation (for

107 cm−3 and Mbh = 100 M�). In this Chapter, to better understand this regime,

we have extended the parameter space to higher densities and higher BH masses.

Figure 4.6 shows snapshots of the density (top halves in each panel) and ionization

fraction (bottom halves in each panel) for 2D simulations including radiation pres-

sure, for 106 cm−3 (top panels) and 107 cm−3 (bottom panels). The snapshots are

taken for each simulation at the moment of a burst of the accretion rate (left panels),

in-between two bursts (middle panels), and just before a burst (right panels). For

ambient density 106 cm−3, the Strömgren sphere collapses onto the BH which leads

to a strong luminosity burst. On the contrary, the size of Strömgren sphere does

not change much during the oscillation period for ambient density 107 cm−3. In

this latter case, the oscillation of the accretion luminosity is driven by density and

pressure waves originating at the I-front, while in the former case, the collapse of

the I-front onto the BH leads to a much more intense accretion burst. In Figure 4.7,

we compare the accretion rate onto the BH as a function of time for 106 cm−3 (top

panel) and 107 cm−3 (bottom panel). For 106 cm−3, the collapse of I-front leads

to strong burst of gas accretion, with λrad,max about ×20〈λrad〉. Hence, the duty

cycle f I
duty ≡ 〈λrad〉/λrad,max is about 6%. The pressure gradient inside Strömgren

sphere supports the gas shell accumulating at the I-front from collapsing until the

accretion rate drops 4-5 orders of magnitude compared to the accretion during the

burst. However, the Strömgren radius remains remarkably constant before its col-

lapse due to the decline of gas density inside the H ii region. In contrast, in the

107 cm−3 simulation the accretion rate peaks at a few times 〈λrad〉 before decreasing
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by about 2 orders of magnitude. The duty cycle approaches f II
duty ∼ 50% for this

mode of accretion. As shown in Figures 4.3 and 4.4, simulations that do not include

radiation pressure also show a rapid decrease of the period τcycle and λrad,max with

increasing gas density and BH mass, but the mean accretion rate 〈λrad〉 does not.

Thus, the reduced value of λrad,max/〈λrad〉 ≡ 1/f II
duty explains the longer duty cycle

observed for mode-II accretion. A more detailed illustration of the qualitative dif-

ference between mode-I and mode-II accretion is shown in Figure 4.8. The figure

shows the time evolution of the gas density profile (top panels), the temperature

profile (middle panels) and the hydrogen ionization fraction (bottom panels) for the

106 cm−3 and 107 cm−3 simulations. Small variations of the density, temperature,

and ionization fraction profiles are observed for 107 cm−3, while clear collapses of

I-front are observed in the evolution of the profiles for 106 cm−3. Note that this

quasi-stationary profile is not produced by the effects of radiation pressures. The

same effect is found for 107 cm−3 without including radiation pressure effects.

Interestingly, for our fiducial case simulations (Mbh = 100 M�, T∞ = 104 K,

η = 0.1, and α = 1.5), the critical density at which the mean accretion rate be-

comes Eddington-limited nearly coincides with the critical density for transition

from mode-I to mode-II accretion. This explains why the mean accretion rate and

the peak accretion rate become Eddington-limited at nearly the same density. In-

deed, if while increasing nH,∞, the duty cycle remained at about 6% as in mode-I

accretion, the mean accretion rate would not be able to approach the Eddington

limit, even though the peak accretion can be mildly super-Eddington. We will show

below that the transition to mode-II accretion depends on the free parameters in

the problem and may take place at much lower densities than the critical density

for Eddington-limited accretion.

The quasi-stationary I-front observed for the 107 cm−3 simulation is also im-
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portant to understand why there exists a clear transition to the Eddington-limited

regime with increasing density or BH mass. For mode-I accretion, radiation pressure

may become comparable to the gravity near the Strömgren radius, but this effect

dominates only for a short time, during the peaks of luminosity. The peak accretion

can indeed become moderately super-Eddington for a short time, also because of the

broken spherical symmetry of the collapsing shell due to Rayleigh–Taylor instability

of the accreting gas. However, for mode-II accretion, the geometry of accretion from

large scales is quasi-spherical and radiation pressure effects are significant during the

most of the duration of oscillations, hence the accretion rate is Eddington limited.

Figure 4.9 shows the relationship between the period of accretion bursts and the

average size of the Strömgren sphere produced by the accreting BH. When the gas

depletion inside the H ii region is dominated by the outward flow of gas toward

the I-front, τ I
cycle shows a linear relation with 〈Rs〉 (solid line). This linear relation

is almost identical to the results in Chapter 3, where helium cooling/heating was

not included. By increasing the ambient gas density, eventually the gas depletion

becomes dominated by accretion onto the BH. In this latter case, assuming that

the dimensionless accretion rate 〈λrad〉 is constant (a valid assumption in the sub-

Eddington regime), τcycle scales as 〈Rs〉3 (dotted line). However, the simulation

results at high ambient gas density shown in Figure 4.9 are not well fitted by τcycle ∝

〈Rs〉3, and indeed seem to follow a linear relationship τcycle ∝ 〈Rs〉, similar to the

low-density one but with an offset. This can be explained because at high densities

the accretion rate becomes Eddington-limited soon after the transition to mode-II

accretion for which τcycle ∝ 〈Rs〉3. It follows that the assumption 〈λrad〉 ≈ const

becomes invalid and instead τ II
cycle ≡ tin ∝ ρ〈Rs〉3/ṀEdd. In this regime, since the

Strömgren radius is 〈Rs〉3 ∝ ηṀEdd/ρ
2, we get ρ ∝ Ṁ

1/2
Edd〈Rs〉−1.5 and

τ II
cycle ∝M−0.5

bh 〈Rs〉1.5. (4.5)
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Figure 4.7: Accretion rates as a function of time for 106 cm−3 and 107 cm−3 as-

suming η = 0.1, Mbh = 100 M�, and T∞ = 104 K. Different modes of oscillations

occur at different density regimes. Mode-I oscillation at 106 cm−3 shows about 5

orders of magnitude range between peak and the minimum accretion rate, while

mode-II oscillation at 107 cm−3 shows only 2 orders of magnitude range.

As shown by the dashed lines in Figure 4.9, this model is in good agreement with

the results of the simulations for different values of Mbh.

Thus, the small offset in τcycle observed in Figure 4.9 when the density is in-

creased, can be understood because ncr
H,∞, at which the transition from mode-I to

mode-II accretion takes place, is nearly equal to nEdd
H,∞, the critical density at which

the mean accretion rate becomes Eddington limited. But, in general, the ratio of

these critical densities may depend on all the free parameters of the model.

Our analytical model of feedback-regulated feeding of the BH, can help under-
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Figure 4.8: Evolution of radial profiles for density (top panel), temperature (mid-

dle panel), and neutral/ionization fractions (bottom panel) of the same simula-

tions in the left figure. Note the change of physical properties inside Strömgren

sphere during a period of mode-I oscillation (106 cm−3), while mild changes are

observed for mode-II oscillation (107 cm−3).

stand the dependence of the critical density on all the parameter space, not fully

covered by the simulations. We found that the cycle period τcycle is the shortest

time between the gas depletion timescales tin = MH ii/Ṁ , where MH ii ∼ ρin〈Rs〉3

is the mass inside the H ii region, and tout ≈ 3〈Rs〉/cs,in (see Chapter 3). Thus, by

definition, when the density approaches the critical density we have tin ' tout, but

this condition also implies that the mean Strömgren radius approaches the effective

accretion radius:

〈Rs〉cr ≈ 10× rb,eff . (4.6)
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Figure 4.9: Relationship between the period of the accretion bursts, τcycle, and

the time-averaged size of Strömgren radius 〈Rs〉. τcycle shows a linear relation

with 〈Rs〉 when the gas depletion inside the Strömgren sphere is dominated by

a pressure gradient inside the H ii region that push the gas toward the I-front.

Instead, τcycle ∝ 〈Rs〉3 (dotted lines for each Mbh) when the gas depletion is

dominated by accretion onto the BH. With increasing density of the ambient

gas, for each Mbh, the transition to mode-II oscillation and the transition to

Eddington-limited regime happen at similar densities nH,∞ = ncr
H,∞ ∼ nEdd

H,∞. In

the Eddington-limited regime τcycle becomes proportional to 〈Rs〉3/2 for each BH

mass (dashed lines).

Equation (4.6), is derived setting Ṁ = 〈Ṁ〉 ≡ 4πρincs,inr
2
b,eff ≡ 〈λrad〉ṀB in the

relationship for tin. Since in our model we have ρinTin ' ρ∞T∞, it follows that

rb,eff ≈ (Tin/T∞)1/4〈λrad〉1/2rb, and 〈Rs〉cr ' 2T∞,4T
−7/4
in,∗ rb, where rb ≡ GM/c2

s,∞

is the Bondi radius, T∞,4 ≡ T∞/104 K, and Tin,∗ ≡ Tin/6 × 104 K is the mean

temperature at the accretion radius inside the H ii region (normalized to the value
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found for α = 1.5). Thus, 〈Rs〉cr and period of the bursts are

〈Rs〉cr ≈ (0.01 pc)Mbh,2T
−7/4
in,∗ , (4.7)

τ cr
cycle ≈ (1000 yr)Mbh,2T

−9/4
in,∗ , (4.8)

with Mbh,2 ≡Mbh/100 M�.

Applying naively the analytical expression for the Strömgren radius produced by

a source of luminosity L ≡ ηc2〈Ṁ〉 in a gas of density ρ∞ gives 〈Rs〉 ∝M2/3n
−1/3
H,∞ T

1/3
∞ η1/3.

However, using the simulation data, we find that the mean radius of the Strömgren

sphere in the sub-Eddington regime is nearly independent of T∞, and if 〈Rs〉 ∼

〈Rs〉cr, is also independent of η:

〈Rs〉 ≈ (0.015 pc)M
2/3
bh,2

( nH,∞

106 cm−3

)−1/3
(

Ē

41 eV

)−5/8

, (4.9)

where Ē ≡ L0/S0 is the mean energy of ionizing photons, and we have assumed

hydrogen recombination coefficient αR = (4 × 1013 cm3/s)T
−1/2
in,∗ . In addition, we

find that, 〈Rs〉 ∝ η1/3 as expected for 〈Rs〉 � 〈Rs〉cr. The deviation from the

naive expectation is not surprising, as the BH luminosity and the density inside the

Strömgren sphere are not constant with time. Indeed, although both the maximum

and mean luminosities of the BH are ∝ η, the simulations show that the luminosity

at the minimum of the cycle, Lmin, is nearly independent of η. Typically Lmin � L,

but when nH,∞ approaches the critical value Lmin ∼ L. Similarly, assuming an

effective mean density (ρinρ∞)1/2 in the Strömgren radius expression would explain

the temperature dependence in Equation (4.9).

Finally, setting 〈Rs〉 = 〈Rs〉cr we derive the critical density

ncr
H,∞ ∼ (5× 106 cm−3)M−1

bh,2T
7/4
in,∗

(
Ē

41 eV

)−1

. (4.10)

The critical density ncr
H,∞ as well as other scaling relationships in our model

depends on Ē ≡ L/S0 and Tin, but for a gas of zero metallicity (including helium),
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Figure 4.10: Temperature Tin at the effective inner Bondi radius, located inside

the H ii region produced by the accreting BH, as a function of the mean energy

of ionizing photons Ē of the spectrum of radiation emitted near the BH by the

accretion disk. We have assumed a gas of nearly zero-metallicity and a power-law

spectrum Fν ∝ ν−α.

these quantities are determined only by the spectrum of the radiation. Assuming a

power law spectrum with index α is easy to show that

Ē = 13.6 eV



α/(α− 1) if α > 1,

ln(hνmax/13.6 eV) if α = 1

α/(1− α)(hνmax/13.6 eV)α if α < 1.

(4.11)

We have estimated hνmax = 0.2 keV as the frequency at which the mean free path

of the photons equals 〈Rs〉. The points in Figure 4.10 show Tin as a function of Ē

for simulations with α = 0.5, 1, 1.5, 2, 2.5 taken from Figure 3.10 in Chapter 3. The

line shows the fit to the points:

Tin,∗ ≈
(

Ē

41 eV

)1/4

. (4.12)

For our fiducial model, for which Ē ∼ 41 eV, the value of the critical density is
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very close to nEdd
H,∞ given in Equation (4.2):

ncr
H,∞

nEdd
H,∞
≈ η−1T∞,4

(
Ē

41 eV

)−9/16

. (4.13)

From an inspection of Equation (4.13) is evident that the only cases in which ncr
H,∞

can be larger than nEdd
H,∞ are assuming the largest realistic values of unity for T∞,4

and η−1, and assuming a spectrum of radiation from the BH softer than α = 1.5 that

would reduce Ē with respect to the fiducial value. Vice versa a hard spectrum, low

radiative efficiency and accretion from a gas colder than 104 K would decrease the

ratio ncr
H,∞/n

Edd
H,∞ below unity, making mode-II accretion sub-Eddington for a wider

range of densities. For these cases the period of the cycle could become very short

with increasing density as τcycle ∝ 〈Rs〉3 ∝ n−1
H,∞.

4.3 Effect of Non-zero Angular Momentum of Gas

As discussed in Chapter 3, the introduction of small angular momentum in the flow,

which is realistic in most astrophysical problems, can modify the time-dependent

behavior of accretion rate presented in this work. Angular momentum of gas leads

to the formation of an accretion disk near the Schwartzshild radius of a BH. This

disk is not resolved in our simulations. Thus, the accreted gas may experience a

time delay before it is converted to radiation. Here, we test how the introduction of

time delay would affect the feedback loops of accretion.

As mentioned in Section 2, it is important to estimate physically motivated time

delays. Here, we explore the time delay of 1–300 times tff(Rmin) which is large

enough with an assumption of α-disk model. On the other hand, no matter how

long is the time delay, what really matters is how the time delay compares to the

oscillation period, which depends mainly on the gas density for a fixed mass of BH.

We investigate this issue in the low (105 cm−3) and high density (107 cm−3) regimes
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Figure 4.11: Dependence of the period between bursts τcycle on the time delay

between the accretion rate at Rmin and the BH output luminosity. The time

delay is produced by the presence of the accretion disk that is unresolved in our

simulations. The two panels show τcycle in units of τcycle,0 ≡ τcycle(tdelay = 0) as

a function of tdelay for 105 cm−3 (left panel) and 107 cm−3 (right panel). The

bottom axis shows tdelay in units of the free-fall time at Rmin and the top axis

in units of τcycle,0. The introduction of a time delay does not change τcycle when

the gas density is 105 cm−3, while τcycle increases by approximately the amount

of time delay introduced for 107 cm−3. In this density regime, the largest time

delays introduced are comparable to the oscillation period τcycle,0. In both cases,

the oscillatory behavior of the accretion luminosity does not disappear.

where the oscillation pattern and the periods are different. At low densities a time

delay of a few hundred free-fall times is much smaller compared to the oscillation

period, whereas at high densities the maximum time delay that we have tested is

comparable to the oscillation period. In the left panel of Figure 4.11 which shows

the result for 105 cm−3, τcycle does not increase at all as a function of time delay

since the introduced time delay is much smaller than the original oscillation period.

In the right panel of Figure 4.11 for 107 cm−3, the maximum time delay that we

introduce is comparable to the original oscillation period, and we see that τcycle
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increase approximately by the amount of time delay. In both cases, we still observe

oscillations. Thus, only in the case of accretion from a high-density gas which

produces shorter oscillation period, and for an accretion disk with Rdisk ∼ Rmin, the

time delay may have an important effect on the accretion rate.

Indeed, the accretion disk may not only introduce a time delay but also smooth

out the accretion rate on a timescale of the order of the viscous timescale. In this

case for cases in which the disk is large (Rdisk ∼ Rmin) and τcycle is short (i.e., for

mode-II accretion), the disk may further smooth out or completely erase the periodic

low-amplitude oscillations in the accretion rate from large scales.
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Chapter 5

Bondi-Hoyle-Lyttleton Accretion

with Radiative Feedback

Classical Bondi-Hoyle-Lyttleton accretion predicts monotonic decrease of accretion

rate with increasing velocity of ambient gas as in Equation (1.1), however our sim-

ulations of moving BHs with radiative feedback show a totally different dependence

of accretion rate on the Mach number.

5.1 Accretion Rate as a Function of Mach Num-

ber

Early phase of the simulation shows high accretion rate which is due to the accretion

of nearby dense gas since our simulations start from constant gas density nH,∞,

and Strömgren sphere forms around the BHs. Due to the formation of hot and

ionized Strömgren sphere, accretion rate decreases as a function of time. As the

simulations evolve in time, accretion becomes dominated by the motion of the gas.

Figure 5.1 shows time evolution of accretion rate for different Mach numbers M =
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1, 2, 4, 8, and 10 for gas density nH,∞ = 103 cm−3. Most simulations except the

one with M = 4 show steady accretion rates after the motion of BHs dominates

the accretion. Time duration of of the early phase is proportional to the crossing

time scale τcr, and thus inversely proportional to the Mach number which is seen

in Figure 5.1. Simulations with larger Mach numbers show shorter early phase of

decreasing accretion rate as seen in simulations with high Mach numbersM = 8, 10.

When accretion reaches a steady state for the late phase, we take the asymptotic

value as the 〈λrad〉 while time-averaged accretion rate is taken for non-steady cases

such as theM = 4 case. As empirically found in Paper I, in the low density regime,

i.e. nH,∞ . 105 cm−3 for simulations with Mbh = 100 M�, 〈λrad〉 is proportional to

square-root of density such as 〈λrad〉 ∝ n
1/2
H,∞ which is not seen for the higher density

regime nH,∞ & 105 cm−3 for Mbh = 100 M�. Figure 5.2 shows 〈λrad〉 corrected

for the density dependency and shows a similar trend among many simulations

with different gas densities (large symbols for η = 0.1, gas densities nH,∞ = 102 −

106 cm−3) and radiative efficiency (small pentagons for a simulation with η = 0.03,

nH,∞ = 105 cm−3.

Quasi-periodic oscillation of accretion rate for stationary BHs found in Paper I

and Paper II is still observed for low Mach number (M . 0.5) simulations which

maintain the characters of spherically symmetric accretion. This implies that intro-

ducing small systematic subsonic velocity to spherically symmetric accretion does

not break the geometry of spherical symmetry. However, we find that average ac-

cretion rate 〈λrad〉 decreases steeply as a function of Mach number. 〈λrad〉 atM∼ 1

is roughly an order of magnitude smaller than for the non-moving BH when all the

other parameters are fixed. This is qualitatively consistent with the prediction of

Bondi-Hoyle-Lyttleton accretion meaning that the amount of gas not accreted by

the BH in the downstream increases with increasing Mach number.
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The spherically symmetric accretion breaks with increasing Mach number (M &

1), and the shape of the Strömgren sphere makes a transition to a well-defined axis-

symmetric geometry. The shape of the H ii region becomes elongated along the

direction of the gas flow in the downstream direction, while a bow-shaped dense shell

develops in front of the Strömgren sphere in the upstream direction, and significantly

affects the velocity field of gas inflow. In theory, steady state accretion can be

achieved in this range of Mach numbers since gas can be continuously supplied to

the BH without interruption. Surprisingly, in this range of Mach numbers, 〈λrad〉

increases as a function of Mach number which is opposite to the classical Bondi-

Hoyle-Lyttleton description. A Mach number ofM∼ 1 is roughly the turning point

where 〈λrad〉 has a minimum.

Approximately atM∼Mcr, 〈λrad〉 reaches peak values for all simulations with

different parameters. An instability of the dense shell that leads to bursts of accre-

tion rate present in some simulations for this Mach number range will be discussed

in Section 5.3. At higher Mach numbers (M > Mcr), a steady state solution is

achieved once again since the dense shell does not form due to high velocity of gas

inflow (R-type I-fronts). In this range of Mach numbers, 〈λrad〉 shows a monotonic

decrease as a function of Mach number, which is similar to Bondi-Hoyle-Lyttleton

solution shown as a dashed line in Figure 5.2.

5.2 Isothermal Shock and D-type I-Front

5.2.1 Structure of Elongated Strömgren sphere

For Mach numbers 1 <M <Mcr, a dense bow shock forms in front of Strömgren

sphere in the upstream direction, followed by an I-front (see Figure 5.3). Most

of the gas inflow propagates through the bow shock without changing direction
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Figure 5.1: Accretion rate as a function of time for a BH with Mbh = 100 M�,

nH,∞ = 103 cm−3, and Tin = 104 K. Different lines show simulations for BH

moving at Mach number 1,2,4,8 and 10 (see labels under each line). Early phase

of the simulations shows oscillatory behavior which becomes steady later being

dominated by the motion of the gas as the simulations evolve. Simulations with

bigger Mach number show smaller effect of early phase oscillation which is ex-

tremely weak in simulation withM = 8, 10. Average accretion rate as a function

of Mach number increases for Mach number from 1 to 4 and decreases for higher

Mach numbers. Quasi-periodic burst of accretion is seen for the simulation with

M = 4.

while a small fraction of the gas inflow becomes re-directed farther from the axis of

symmetry. The formation of a bow shock in the upstream direction greatly changes

the physical properties behind the shock such as the density and velocity, while

the gas temperature remains relatively unaffected (isothermal shock). Note that

the H ii region has a cometary shape, with overall length increasing linearly with
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Figure 5.2: Accretion rate as a function of Mach number. Classical Bondi-Hoyle

accretion predicts monotonic decrease of accretion rate as 〈λrad〉 ∝ (1 +M2)−1.5

(dashed line). However, our simulations show that 〈λrad〉 decreases with M for

low Mach number M < 1 with minimum 〈λrad〉 at M ∼ 1, increases for 1 <

M . Mcr, and decreases again for M > Mcr. Solid line shows our model

using isothermal (γ = 1) shock and D-type I-front jump condition for the dense

shell in the upstream direction. Density dependence of the mean accretion rate

(〈λrad〉 ∝ n
1/2
H,∞ from Paper I) is applied for comparison between simulations with

various densities (nH,∞ = 102 − 106 cm−3). Dot-dashed line indicates the critical

Mach number Mcr where the 〈λrad〉 peaks.

increasing Mach number. The size of the H ii region in the upstream is not sensitive

to the change of Mach number, while in the downstream direction shows a linear

relationship to the Mach number as shown in Figure 5.3. This is because bow-shock

does not form in the downstream direction and thus the Strömgren sphere becomes

elongated with the gas flow. The upper panels in Figure 5.3 show the changes of
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Figure 5.4: Density, velocity, temperature, and H i abundance (from top to

bottom) profiles along X-axis for simulations in Figure 5.3 for M = 1 (solid

lines), 2 (dotted), and 4 (dashed). Left panels (note that small scale is located

on the right side) show profiles of downstream while right panels show upstream

profiles.

density structure and the Strömgren sphere shape for M = 1, 2, and 4 respectively.

The lower panels show the vector fields over the gas density for each simulation. In

the bottom panels, we use a logarithmic scale for the radial direction to better show

the motion of gas in the vicinity of BH.

ForM = 1 the size of Strömgren in the downstream is roughly ∼ 4 times the size

of the Strömgren in the upstream direction. The density structure in the downstream

direction is very complex as shown in Figure 5.3. The re-directed gas streams form

high density regions and shocks. However, since most of the gas downstream of

the BH is not accreted onto the BH, we will focus on understanding the upstream
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Figure 5.5: Density and velocity of gas in the dense shell in the upstream direction.

Isothermal shock jump condition (nH,shell ∝M2) explains the density in the shell.

structures. The size of the Strömgren sphere in the upstream/downstream directions

will be discussed in greater detail in the next section.

5.2.2 Isothermal Density Shock and D-type I-front

In the simulations, we observe that the density and velocity of gas changes as a

function of Mach number while temperature remains constant (see density and tem-

perature profiles in Figure 3.2), which allow us to model the shock using isothermal

(γ = 1) shock jump condition. The ratio between the densities at infinity and behind

the isothermal shock is,

ρsh

ρ∞
=
v∞
vsh

=M2. (5.1)

Since the density of the shell is approximately proportional to square of Mach num-

ber, the velocity is inversely proportional to the square of the Mach number, assum-

ing mass flux (ρv) is conserved. Left panels of Figure 5.6 show the ratios between
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Figure 5.6: Density and velocity of gas inside the Strömgren sphere. D-type

I-front explains the change of the density inside the Strömgren sphere.

density/velocity of gas at infinity and inside the dense shell. The lines show the

model for an isothermal shock. Applying the isothermal jump condition, the Mach

number in the shell, Msh, can be expressed as

Msh ≡
vsh

cs,sh

=
v∞

cs,∞M2
=M−1 < 1. (5.2)

Across an I-front, the density ratio between the gas in the shell and in the

H ii region can be estimated by solving the mass and momentum conservation

conditions (ρinvin = ρshvsh = Jµ with µ = 1.27mH):

ρin

ρsh

=
(1 +M2

sh)±
√

(1 +M2
sh)2 − 4M2

sh∆T

2∆T

, (5.3)

where ∆T ≡ Tin/T∞. Due to the condition for the density ratio in Equation (5.3)
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to have real positive values, the Mach number must be less than Msh,D where D

stands for dense gas, or greater than Msh,R where R refers to rarefied gas. D- and

R-critical Mach numbers of the shell are respectively:

MD,sh =
√

∆T −
√

∆T − 1 =
√

∆T (1−
√

1− 1/∆T ) ∼ 1

2
√

∆T

(5.4)

MR,sh =
√

∆T +
√

∆T − 1 =
√

∆T (1 +
√

1− 1/∆T ) ∼ 2
√

∆T (5.5)

where MD ≡M−1
D,sh which is equal to MR,sh.

By combining Equation (5.1) and (5.3) we get

∆ρ ≡
ρin

ρ∞
=
ρin

ρsh

ρsh

ρ∞
(5.6)

=
(M2 + 1)±

√
(M2 + 1)2 − 4M2∆T

2∆T

. (5.7)

Similarly, the velocity ratio between H i and H ii region is expressed as vin/v∞ =

∆−1
ρ . The R-critical Mach numbers MR,sh in Equation (5.5) and MR in Equa-

tion (5.7) are identical since they do not form isothermal shock at this Mach number.

Note that D- and R-critical Mach numbers are exactly the same:

Mcr =
√

∆T +
√

∆T − 1 ∼ 2
√

∆T , (5.8)

where Mcr ∼ 4.7 for ∆T ' 6 (i.e. Tin = 6 × 104 K). Thus, we get D-type I-fronts

for M <Mcr while a transition to R-type occurs at M &Mcr.

Right panels of Figure 5.6 show the density and velocity ratios between the gas

at infinity and inside the H ii region for simulations with different gas density and

radiative efficiency as a function of Mach number. We select densities within the

H ii region where the density profiles has a minimum behind the I-front, while

velocities are read at the same radius. Simulations show a good match with our

model shown as solid lines which is a combination of isothermal shock and D-type

I-fronts jump condition. For a plane parallel I-front and shock, mass flux of the
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gas is conserved: ρinvin = ρ∞v∞. However, due to the velocity component of the

gas perpendicular to the direction of the BH motion, smaller values of ρinvin are

observed in the right bottom panel of Figure 5.6. 〈λrad〉 also can be estimated

using the physical conditions outside the H ii region since the density and velocity

inside the Strömgren sphere can be modeled combining isothermal shock and D-

type I-front jump condition. Since the accretion rate inside the H ii region is Ṁ ∝

M2
bhρinc

−3
s,in(1 +M2

in)3/2, we can normalize the accretion rate by ṀB ∝ M2
bhρ∞c

−3
s,∞

such that

〈λrad〉 ≡
Ṁ

ṀB

=
ρin

ρ∞

(
cs,∞

cs,in

)3
1

(1 +M2
in)3/2

(5.9)

= ∆ρ∆
−3/2
T

1

(1 + ∆−2
ρ ∆−1

T M2)3/2
, (5.10)

since Min = vin/cin = ∆−1
ρ ∆

−1/2
T M ' 1. The solid line in Figure 5.2 shows the

model which displays a good match with simulations except for the ones which

exhibit low accretion rates around the critical Mach number Mcr.

5.2.3 Size of Strömgren Sphere in the Up/Downstream Di-

rection

The gas inflow in the direction of the polar axis θ = 0 (upstream) can be approx-

imated by a 1D accretion where the Strömgren sphere is supplied with gas with

constant velocity v∞. This enables us to predict the size of the I-front at θ = 0.

Suppose that the total number of ionizing photons from BHs equals the number of

H recombinations inside a radius 〈Rs〉, where neutral gas flow with density ne and

velocity v∞ is supplied from a neutral gas reservoir:

Nion =
4π

3
〈Rs〉3θ=0αrecn

2
e + 4π〈Rs〉2θ=0nev∞, (5.11)

where Nion is the number of emitted ionizing photons, being directly related to the

luminosity of the BHs (which is a function of Mach number). When the magnitudes
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Figure 5.7: Size of Strömgren sphere in the upstream direction (θ = 0) Rs,0 as a

function of M. Since the recombination time scale τrec, Rs,0 is not sensitive to

the velocity of the flow. Also, it is not sensitive to the density of the ambient

medium Rs,0 ∝ n−1/6
H,∞ . Simulation results show a good match with the model.

of the two terms on the right side of the Equation (5.11) are compared, the first

term is dominant over the second term due to the motion of the BH. Inside the

Strömgren sphere, most of the H/He is ionized (χe ∼ 1), we express the gas number

density inside the H ii region in terms of nH,∞ such as

ne ∼ χenH,in =
1 +M2

2∆T

nH,∞ (5.12)

which is valid for 1 <M <Mcr and can be plugged into Equation (5.11). Consid-

ering that 〈λrad〉 ∝ n0.5
H,∞ for nH,∞ . 105 cm−3 and Mbh = 100 M�, we derive the

dependence of the average size of Strömgren sphere in the upstream direction θ = 0

as

〈Rs〉θ=0 ∝ η1/3n
−1/6
H,∞ . (5.13)

Figure 5.7 shows the size of Strömgren sphere at θ = 0 as a function of Mach number

for various densities (nH,∞ = 102−106 cm−3) and radiative efficiency (η = 0.1, 0.03).

Simulations show a good match with the model.
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Figure 5.8: Size of low density region (θ = π) and 〈Rs〉θ=π in the downstream

direction as a function ofM. Low density region is bigger than the size of ionized

region due to the concentrated gas along the line of θ = π.

Then, we can model the size of the Strömgren sphere in the downstream direction

in a similar manner. However, the structure of the gas flow in the downstream

direction is different from that in the upstream direction due to the ??? of a shock.

The size of the Strömgren sphere in the downstream direction is determined by the

motion of the gas flow

Nion ' 4π〈Rs〉2θ=πnev∞, (5.14)

where ne can be calculated simply using pressure equilibrium condition nH,in =

nH,∞∆−1
T . The size of the Strömgren sphere in the downstream direction is

〈Rs〉θ=π ∝ η1/2n
1/4
H,∞(1 +M2)1/2, (5.15)

where 〈Rs〉θ=π is approximately proportional to Mach number M in the range 1 <

M <Mcr. Figure 5.8 shows that the model shows a good agreement with the simu-

lations for nH,∞ = 105 cm−3. Note that the dominant mechanism which determines

〈Rs〉θ=π is different from upstream case θ = 0 where photo-ionization/recombination

are the main factor. In fact, the size of the Strömgren sphere is smaller than the size

of low density region as seen in Figure 5.3 and 5.8. The velocity of the gas outside
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Figure 5.9: Simulation of a BH with mass Mbh = 100 M�, gas density 103 cm−3,

and temperature T∞ = 104K moving at M = 3.4. As the M approaches the

Mcr, the dense shell in the upstream direction becomes unstable since the recom-

bination time scale τrec becomes comparable to the crossing time scale τcr. The

shell forms and gets destroyed in the quasi-oscillatory behavior. When the dense

shell break and fall onto the BH, accretion rate show peak luminosities which is

an order of magnitude higher than the average (shown as dotted line).

the Strömgren sphere determines the size of density structure. Another factor which

makes 〈Rs〉θ=π smaller than the low density region is that gas gets focused along the

line of θ = π due to the gravity of the BHs. Enhanced density structure in the down

stream makes the Strömgren sphere smaller than the low density region. Figure 5.8

shows the size of low density region and Strömgren sphere in the downstream show-

ing that the size estimation from Equation (5.14) shows a good match with size of

low density region, but the Strömgren sphere size is significantly smaller than the

density structure.

5.3 Stability and Oscillation

As discussed in the previous Section, average accretion rate 〈λrad〉 increases as a

function of Mach number in the range 1 < M < Mcr. In the lower side of this
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Mach number range, all simulations show steady state at the end of the simulation.

Interestingly, as the Mach number approaches Mcr, some simulations in the inter-

mediate densities(nH,∞ = 103− 104 cm−3) become unstable developing intermittent

bursts of accretion rate due to formation/destruction of the dense shell in the up-

stream direction (see Whalen and Norman 2011). Figure 5.10 shows time evolution

of a simulation with BH mass Mbh = 100 M�, gas density nH,∞ = 104 cm−3, and

temperature T∞ = 104 K moving at Mach number M = 2.7. As seen in Figure 5.3

similarly, ionizing photons create axis-symmetric H ii region around the BH. In the

early phase, the structure of dense shell remains relatively steady, however, violent

instabilities develop as time evolves. When dense shell destruction happens, accre-

tion rate increases due to the accretion of dense gas which was originally located

in the dense shell. Thus, increased accretion rate creates more ionizing photons

blowing out the thiner part of the shells. Irregularly shaped dense shells reform and

break in a repetitive manner creating intermittent bursts of accretion luminosity.

In case of a simulation with nH,∞ = 103 cm−3, the interval between the bursts of

accretion rate is ∼ 3000 years, which is very regular as seen in Figure 5.9.

We discuss the period between the bursts of accretion rate by inspecting recom-

bination and crossing time scales such as

τrec ∼
1

nH,inαrec

=
( nH,∞

105 cm−3

)−1 (1 +M2)

2∆T

yrs (5.16)

τcr ∼
〈Rs〉θ=0

cs,in

= 3× 102

(
〈Rs〉θ=0

0.01 pc

)(
v∞

10 km/s

)−1

yrs, (5.17)

where T∞ = 104 K is assumed. For nH,∞ = 103 cm−3 andM∼ 3, the recombination

time scale is τrec ∼ 80 years and the crossing time scale is τcr ∼ 100 years. Obviously,

these time scales are much shorter than the average period between bursts for nH,∞ =

103 cm−3 as seen in Figure 5.9. In the Paper I and Paper II we found a linear

relationship between the average size of the Strömgren spheres 〈Rs〉 and the period
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between oscillations for stationary BHs, which is of a few 1000 years for Mbh =

100 M� and η = 0.1. This time scale is also proportional to the sound crossing

time of the H ii region. The same argument can be applied for interpreting the

period between intermittent bursts for moving BHs since the dense shell breaks

due to the nature of instabilities of propagating I-fronts, but the following burst of

luminosity reconstruct the dense shell arc structures by forming an expanding low

density H ii in the upstream direction.

5.4 Critical Velocity and Peak Luminosity

Our model using isothermal shock and D-type I-front predicts that accretion rate

peaks at the critical Mach number Mcr, in a good agreement with simulations.

However, the accretion rate does not reach the highest peak luminosity expected

in the model. Our model assumes plane parallel gas inflow to estimate the density

and velocity of the gas behind the dense shell. However, the simulations show that

a better match to this assumption holds at lower Mach number M ∼ 1, when

the shape of the dense shock is better approximated with a plane parallel, but

the assumption breaks down with increasing M. We run a complementary set

of simulations to study more precisely the changes of the physical properties as

a function of Mach number, since the simulations with constant velocities have a

coarse sampling in velocity space and show an intrinsic scatter which might be

resulted from the initial conditions. We start the simulation from M ∼ 1 and

increase the velocity of the gas inflow at the boundary. This type of “wind tunnel”

experiments with increasing gas velocity is useful to focus on the changes of physical

properties as a function of M holding the other parameters fixed. Critical Mach

number Mcr and the peak luminosity depend on the temperature ratio ∆T shown
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in Equation (5.8). Figure 5.11 shows the change of accretion rate as a function of

Mach number for different temperatures at infinity T∞ = 7000, 10000, and 13000 K

for Mbh = 100 M�, nH,∞ = 105 cm−3, and η = 0.1. Our model is in good agreement

with simulations with different temperature T∞ as shown in Figure 5.11. The peak

accretion rates in these cases are very close to the model and the critical Mach

number for each ∆T agrees with the model. However, the caveat is that the dense

shell which initially forms at the beginning of the simulations does not change its

location as the velocity of gas increases as observed for the constant v cases.

It is convenient to express the critical Mach number Mcr as a critical velocity.

Since Mcr ∼ 2
√

∆T , the corresponding velocity vcr is independent of T∞:

vcr =Mcrcs,∞ ' 2cs,in. (5.18)

The velocity for peak accretion depends only on the sound speed inside the H ii re-

gion and is vcr = 50 km s−1 for Tin = 6× 104 K (cs,in = 25 km s−1). As explored in

Paper I, Tin depends on the hardness of the spectrum emitted by the BHs and the.
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Figure 5.11: Accretion rates as a function of Mach number for simulations with

Mbh = 100 M�, nH,∞ = 105 cm−3, and η = 0.1. Different lines and symbols show

the models and simulations respectively for temperatures at infinity T∞ = 7000 K

(long-dashed line, open hexagon), 10000 K (solid line, open/solid squares), and

13000 K (short-dashed line, triangles). Solid squares show the simulation with

higher BH mass Mbh = 1000 M� and lower ambient gas density nH,∞ = 104 cm−3

which shows the identical results with the simulation with the same ambient gas

temperature T∞ = 10000 K.
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Chapter 6

Summary and Discussion

6.1 Stationary Black Holes with Radiative Feed-

back

We have presented a systematic study on how the classic Bondi problem of spherical

accretion onto a compact object is modified by the effects of radiation feedback.

We solve radiative transfer equations in the radial direction for the hydrogen and

helium ionizing radiation emitted by the BH. Gas is optically thin inside Strömgren

radius while it becomes optically thick for gas outside the ionized gas. We study

accretion rates and feedback loop periods while varying radiative efficiency, mass

of BH, density and temperature of the medium, and spectrum of radiation. The

aim of this work is to simulate feedback-regulated accretion in a wide range of the

parameter space to formulate an analytical description of processes that dominate

the self-regulation mechanism.

Thus, in this first part (Chapter 3) we keep the physics as simple as possible, ne-

glecting the effect of angular momentum of the gas, radiation pressure and assuming

a gas of primordial composition (i.e. metal and dust free). We find an oscillatory

85



behavior of the accretion rate that can be explained by the effect of UV and X-ray

photo-heating. The ionizing photons produced by the BH near the gravitational

radius increase gas pressure around the BH. This pressure prevents the surround-

ing gas from being accreted. An over-dense shell starts to form just outside the

Strömgren sphere. Due to the decreased accretion rate, the number of emitted ion-

izing photons decreases and the density inside the Strömgren sphere also decreases

with time. Gas accretion onto the BH is dominant in decreasing the density inside

the H ii region only for ambient gas density nH,∞ & 107 cm−3; for lower values of

the ambient gas density the gas inside the H ii region is pushed outward toward

the dense shell by a pressure gradient that develops behind the ionization front.

Eventually, the pressure gradient inside the Strömgren sphere is not able to support

the weight of the over-dense shell that starts to fall toward the BH. The accretion

rate rapidly increases and the Strömgren sphere starts to expand again.

We find that the average accretion rate is sensitive to the temperature of the

ambient medium and to the temperature profile inside the ionized bubble, and so

depends on the gas cooling function and spectral energy distribution of the radiation.

The period of the accretion bursts is insensitive to the temperature structure of

the H ii region, but is proportional to its radius. Our simulations show that 1D

results adequately reproduce 2D results in which instabilities often develop. The

dependencies of 〈λrad〉 and τcycle on our free parameters can be explained analytically.

Assuming pressure equilibrium across the Strömgren sphere is a key ingredient to

derive the dependence of 〈λrad〉 on T∞, whereas the linear relation between the

average size of the Strömgren sphere and τcycle is used to derive the dependence of

τcycle on all the parameters we varied.

The qualitative picture of the feedback loop agrees with the description of X-ray

bursters in Cowie et al. (1978). After extrapolating our analytical formulas to BHs of
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a few solar masses studied by Cowie et al. (1978), we find that the average accretion

rate is in good agreement (L ∼ 2×1035 erg/s). However, the details of the accretion

rate as a function of time, the burst period and peak accretion rates show quali-

tative differences. Cowie et al. (1978) simulations do not show periodic oscillation

while our simulations have well-defined fast rise and exponential decay of accretion

followed by quiescent phases of the accretion rate. This regular pattern of accretion

bursts is possible only when spherical symmetry is maintained on relatively large

scales during oscillations. An axisymmetric radiation source (Kurosawa and Proga

2009a,b; Kurosawa et al. 2009; Proga 2007; Proga et al. 2008) or inhomogeneous

initial condition on scale of the Bondi radius can break the symmetry.

In Chapter 4, we have focused on the effects that radiation pressure and angular

momentum have on the gas supply and accretion rate onto the BH. The simula-

tions focused on accretion onto IMBHs but the analytical scaling relationships we

have derived are rather general, and although the initial conditions are somewhat

idealized, should describe reality more accurately than the classical Bondi formulae.

In our models we have assumed that the BH accretes from a uniform density

and temperature reservoir, significantly larger than the Bondi radius and 〈Rs〉. This

assumption is well motivated for accretion onto stellar and IMBH, but for SMBH

there could be supply of gas to the BH from stars within 〈Rs〉 (stellar winds) or

other astrophysical object (merger-driven accretion, etc). The scaling relationships

can be applied to problems involving a wide range of masses of the accretor, from

stellar mass objects (e.g., Wheeler and Johnson 2011) to supermassive BHs. One

caveat is that we are neglecting the effects of self-gravity of the gas (see Li 2011) and

the gravitational potential due to the dark matter halo of the host galaxy, which

may play an important role for the case of accretion onto supermassive BHs. Indeed,

a simple calculation shows that at the I-front gravity due to the mass of the gas

87



inside the Strömgren sphere exceeds the BH’s gravity if Mbh & 106 M�/(η−1T∞,4).

Our model predicts scaling relationships for the period, duty cycle, peak and mean

accretion onto the BH, as well as relevant critical densities and size of the Strömgren

sphere around the BH. In the following summary of the scaling relationships, we

express Tin in the equations in terms of Ē given by Equation (4.12) that is valid for

a gas of low-metallicity. Ē is related to the spectral index α by Equation (4.11). For

higher values of the gas metallicity, the coefficients in the equations can be different

due to changes in the relationship between Tin and the spectrum of the radiation.

A caveat is that our simulations have explored a large but limited parameter space

for the masses of the BHs, temperature and density of the ambient gas, etc. So, the

proposed scaling relationships, although they are based on a physically motivated

model we inferred from the simulations, should be used with caution for sets of

parameters that are significantly different from the range confirmed by simulations.

The main qualitative result of our study is that radiation feedback produces

periodic oscillations of the accretion rate from large scales onto the BH, and thus

periodic short-lived bursts of the BH luminosity. We found two modes of self-

regulated accretion, determined by

ncr
H,∞ ∼

5× 106 cm−3

Mbh,2

(
Ē

41 eV

)−9/16

. (6.1)

If nH,∞ < ncr
H,∞ (mode-I), the accretion luminosity of the BH has regular bursts

with period τ I
cycle during which the BH increases its brightness by about 5 orders

of magnitude but only for a short fraction of the cycle period: the duty cycle is

f I
duty ≡ τon/τcycle ∼ 6% T

1/2
∞,4. During the quiescent phase in the accretion cycle the

gas accumulates in a dense shell in front of the H ii region rather than accreting

directly onto the BH. As the luminosity decreases after the burst, the density inside

the H ii region also decreases because is pushed outward by a pressure gradient, thus

maintaining the I-front radius nearly constant. Eventually the density and pressure
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inside the H ii region cannot sustain the weight of the dense shell that collapses

producing a burst of accretion. The cycle repeats regularly. If nH,∞ > ncr
H,∞ (mode-

II) the cycle is qualitatively different: the duty cycle is about f II
duty & 50% and the

peak accretion rate is only a few times the mean. There is no collapse phase of the

dense shell and the H ii region remains roughly stationary while the accretion rate

oscillates. The physical motivation for mode-II accretion is that the timescale for

the depletion of the gas inside the H ii region becomes dominated by accretion onto

the BH. Only for mode-II accretion the BH growth rate can approach the Eddington

limit, given that the density exceeds the critical density

nEdd
H,∞ ∼

4× 106 cm−3

Mbh,2

T−1
∞,4η

−1
−1. (6.2)

For nearly all realistic cases nEdd
H,∞ & ncr

H,∞.

For Mbh = 100 M�, at densities 105 cm−3 ≤ nH,∞ ≤ nEdd
H,∞ the mean accre-

tion rate onto the BH, in units of the Bondi rate is 〈λrad〉 ∼ 1%T 2.5
∞,4(Ē/41 eV)−1,

independent of all the other parameters. For nH,∞ < 105 cm−3 instead, 〈λrad〉 ∼

1%(nH,∞/105 cm−3)1/2T 2.5
∞,4(Ē/41 eV)−1, depends weakly on the gas density. One

caveat is that in Paper I the dependence on the free parameters of the transition

density 105 cm−3 has been only partially explored. As shown in Figure 4.4 of the

present paper, the simulation results are consistent with a transition density in-

versely proportional to the BH mass. Hence, if 105M−1
bh,2 cm−3 ≤ nH,∞ ≤ nEdd

H,∞ the

mean accretion rate is proportional to the thermal pressure nH,∞T∞ of the ambient

gas:

〈Ṁ〉 ≈ (4× 1018 g s−1)M2
bh,2

( nH,∞

105 cm−3

)
T∞,4

(
Ē

41 eV

)−1

. (6.3)

If nH,∞ > nEdd
H,∞ then 〈Ṁ〉 = LEdd(ηc2)−1. The duty cycle is

fduty =


f I

duty ≈ 6%T
1/2
∞,4 if nH,∞ ≤ ncr

H,∞

f II
duty & 50% if nH,∞ > ncr

H,∞,

(6.4)
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and the maximum accretion luminosity which depends on the duty cycle thus is,

Lmax

LEdd

≈ min

[
1,Aη−1Mbh,2

( nH,∞

105 cm−3

)
T∞,4

(
Ē

41 eV

)−1
]
, (6.5)

where LEdd = 1.3× 1040Mbh,2 erg s−1, and

A =


AI ≈ 0.5 T

−1/2
∞,4 if nH,∞ ≤ ncr

H,∞

AII ≈ 0.06 if nH,∞ > ncr
H,∞

(6.6)

The cycle of the oscillations also falls into two regimes:

τcycle =


τ I

cycle ≈ (0.1 Myr) M
2/3
bh,2η

1/3
−1 (

nH,∞
1 cm−3 )−1/3( Ē

41 eV
)−3/4, if nH,∞ ≤ ncr

H,∞

τ II
cycle ≈ (1 Gyr) η−1(

nH,∞
1 cm−3 )−1( Ē

41 eV
)−7/8, if nH,∞ > ncr

H,∞.

(6.7)

The astrophysical applications of this model are innumerable and are beyond

the aim of this paper to discuss them in detail. However, one of the most obvious

results is that the luminosity of an accreting BH should be smaller than the value

inferred applying the Bondi formula. Not only because the mean accretion rate

is always . 1% of the Bondi rate, but also because if nH,∞ < ncr
H,∞, 94% of the

time is about 5 orders of magnitude lower than the Bondi rate inferred from the

ambient medium temperature and density. Thus, this simple arguments could have

interesting consequences to interpret the observed quiescence of SMBH in ellipticals

and Sgr A∗. Also, the duty cycle of ∼ 6% T
1/2
∞,4 we found for mode-I accretion is

interestingly close to the fraction of galaxies with AGNs ∼ 3% found deep field

surveys (e.g., Luo et al. 2011; Steidel et al. 2002). For SMBHs of about 106 M�,

ncr
H,∞ ∼ 500 cm−3.

The results of this study provide a first step to estimate the maximum X-ray

luminosity and period of oscillations of an accreting IMBH from a medium with

given physical conditions. In this thesis, we also found that IMBH can grow at near
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the Eddington limit if nH,∞ > max(nEdd
H,∞, n

cr
H,∞). This has potentially important

consequences on the ability of seed IMBH from Population III stars to grow by

accretion into SMBH during the first gigayears of the universe age. This possibility

seemed precluded if the duty cycle of the burst was 6% as found in previous works.

Finally, although the nature of ULXs is unknown, there are indications that they

may host an IMBH (e.g., Strohmayer and Mushotzky 2009). An IMBH accreting

from an interstellar medium (ISM) with high pressure such as dense molecular cloud

(nH,∞T∞ ∼ 105–107 cm−3 K) would be Lmax ∼ 1037–1039 erg s−1 forMbh = 1000M�,

that is comparable to the luminosity of ULXs. However, this assumes that the IMBH

is at rest with respect to the ISM. Clearly, more work is needed to address each of the

aforementioned topics in detail, but the basic ground work presented in the present

paper may allow the re-visitation of a few longstanding problems still unsolved in

astrophysics.

6.2 Radiation-regulated accretion onto Black Holes

in Motion

In Chapter 5, we have focused on the effect of motion of BHs relative to surrounding

gas. The followings are the key findings.

• The quasi-periodic oscillation of the accretion rate and size of the Strömgren

sphere observed for stationary BHs are only observed for subsonic motions, and

we find a distinct axis-symmetric hydrodynamic structure in the supersonic

regime. A dense shell develops in front of the H ii region in the upstream

direction and the size of the H ii region in the downstream direction becomes

elongated, being proportional to the velocity of the gas outside Strömgren

sphere v∞.

91



• We find that the accretion rate decreases as a function of Mach number for

subsonic motion, and surprisingly increases with increasing M in the range

of Mach numbers 1 < M < Mcr. The accretion rates peak at the critical

Mach numberMcr and keep decreasing forM >Mcr becoming similar to the

Bondi-Hoyle-Lyttleton solution, which does not consider the effect of radiative

feedback. We show that the accretion rate as a function of Mach number

can be understood well due to the formation of dense shell in the upstream

direction which changes the density and velocity of the gas behind the I-fronts.

An isothermal shock and a D-type I-fronts are the key elements to model the

accretion.

• The time-evolutionary pattern of accretion rate at different Mach numbers

shows a strong dependence on the ambient gas densities. We find steady so-

lutions for simulations with high density (nH,∞ = 105− 106 cm−3) at all Mach

numbers. For intermediate densities (nH,∞ = 103 − 104 cm−3), we find inter-

mittent bursts of accretion rate in the Mach number range (2.5 .M .Mcr).

The oscillatory behavior of accretion rate is due to formation/destruction of

the dense shell in the upstream direction. We observe the formation of a weak

shell for lower density regime nH,∞ . 102 cm−3. ForM >Mcr at all densities,

the dense shell does not form providing steady accretion rates.

• The critical Mach number Mcr where the accretion rate peaks can be trans-

lated to the corresponding critical velocity which is approximately twice of the

sound speed inside the Strömgren sphere. We find that the critical velocity is

vcr ∼ 50 km s−1 for Tin = 6× 104 K.

As mentioned in Chapter 1, the nature of axis-symmetric flow is not stable.

Interestingly, most of the instabilities developing in the downstream direction dis-
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cussed in the literatures do not affect much the accretion rate onto BHs because the

effective Bondi radius inside the ionized region is smaller than the typical distance

at which these features develop.

Also Rayleigh-Taylor or Kelvin-Helmholtz instabilities or radiation hydrodynam-

ical instabilities of the I-front along the dense shell in the upstream direction does

not grow for low Mach numbers due to the stabilizing effect of a pressure gradi-

ent inside the Strömgren sphere. The pressure gradient stabilizes the dense shell

structure when the accretion rate is steady. However, if the dense shell breaks down

due to instabilities in the I-fronts (see Whalen and Norman 2011) as shown in some

simulation nH,∞ = 103–104 cm−3, clumpy structures develop rapidly as shown in Fig-

ure 5.10 amplified by a fraction of ionizing photons escaping the shell. Then some

of the clumpy structure is accreted onto the BHs boosting the luminosity which

produces an accelerating I-front helping to reform a dense shell. The phenomena is

also interesting since the luminosity at the moment of the bursts is ∼ 5–10 times

larger than the average luminosity depending on the density of the shell, and thus

the Mach number. The stability of dense shell in the upstream direction depends

strongly on the gas density as we have seen in simulations with different densities.

The sharpness of the I-fronts might explain the density dependence of the stability

since higher density gas forms thicker shell with a sharper jump of density, and

thus a stiffer pressure gradient which more efficiently suppresses the development

of instabilities inside the I-fronts. The column density of the shell can also affect

the instability since the column density of the thinner parts of the shell for higher

density is large enough to trap the photons inside the shell.
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Appendix A

Code Evaluation

A.1 Basic Tests of the Code

We test the Bondi accretion formula using ZEUS-MP for the adiabatic indexes

γ = 1.2, 1.4 and 1.6. For a given equation of state, the sonic point where the gas

inflow becomes supersonic must be resolved not to overestimate the accretion rate

λB. Figure A.1 shows the steady accretion rate as a function of the radius at the

inner boundary normalized by the Bondi radius. Different lines show results for

γ =1.2, 1.4 and 1.6.

We also test whether our radiative transfer module produces radii of the Strömgren

spheres in agreement with the analytical prediction: (4π/3)R3
snenHαrec = Nion,

where Rs is the Strömgren radius and Nion is the number of ionizing photons emit-

ted per unit time. Figure A.2 shows the test of the 1D radiative transfer module

without hydrodynamics. Different symbols indicates the radii for the different ion-

ization fractions: xe = 0.99 (circle), 0.90 (square), 0.50 (triangle).

94



Figure A.1: Simulated Bondi accretion rate(λB) as a function of minimum radius

with given adiabatic index γ without radiative feedback. Dashed lines are analyt-

ically estimated values for each γ =1.2, 1.4 and 1.6. In order not to overestimate

accretion rate sonic point should be resolved where the velocity of the inflowing

gas becomes supersonic.

A.2 Radiative Transfer Module and Time Step-

ping

Our hydrodynamic calculation is performed using ZEUS-MP, returning the density

and gas energy at each time step to the radiative transfer module. The operator-

splitting method is applied to mediate between hydrodynamics and radiative transfer

with a photon-conserving method. For each line of sight radiative transfer equations
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Figure A.2: Test of Strömgren radius with given number of ionizing photons.

Solid line is the prediction for the given number of ionizing photons from 1040

to 1050 s−1. Triangle symbols represent location where ionization fraction of nH

(xHI) is 0.50. Squares are for xHI = 0.90 and circles are for xHI = 0.99.

are solved in the following order:

1. At the inner boundary, the average inflow mass flux Ṁ is calculated.

2. The mass flux is converted into accretion luminosity L, and thus into the

number of ionizing photons for a given radiative efficiency η.

3. The photon spectrum is determined using a power law spectral energy distri-

bution with the spectral index α. We use up to 300 logarithmically spaced

frequency bins for photons between 10 eV up to 100 keV.

4. The ordinary differential equation for time-dependent radiative transfer cool-
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ing/heating and chemistry of the gas are solved using a Runge-Kutta or Semi-

Implicit solver for each line of sight with a maximum of 10% error. Photo-

heating, cooling for a given cooling function and Compton cooling are calcu-

lated.

5. The energy density and the abundances of neutral and ionized hydrogen are

updated.

Parallelization is easily implemented in polar angle direction because radiative trans-

fer calculations along each ray are independent of one another.

A.3 Resolution Studies

We perform a resolution study to confirm that the number of grid zones does not

affect the results. Number of zones from 384 to 768 are tested and they all show the

similar outputs in terms of accretion rate at peaks, average accretion rate, decaying

shape and the period between peaks . Figure A.3 shows that the details of the

accretion rate history from simulations are not identical but the physical quantities

which we are interested in (average accretion rate, peak accretion rate and period of

the bursts) do not show significant deviation from each other. In general, a Courant

number of 0.5 is used for most simulations, but we try a Courant number which

is one order of magnitude smaller to investigate how the results are affected by

reducing the hydro-time step by an order of magnitude. The chemical/cooling time

steps are calculated independently by the radiation transfer module.
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Figure A.3: Comparisons between simulations of η = 0.1, Mbh = 100 M�, nH,∞ =

105 cm−3 and T∞ = 104 K with various resolution. Solid : 384 grid run. Dotted

: 512 grid run. Long dashed 768 grid run. Short dashed : 512 grid with Courant

number of 0.05.
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