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maximum emission radius r, and observer colatitude ζ) by modeling > 100MeV

light curves of four bright γ-ray pulsars with geometrical representations of the slot
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spectra, measuring the power law cutoff energy Ec with phase. Assuming curvature

radiation reaction (CRR) is the dominant emission process, I use Ec to compute the

accelerating electric field strength, E‖.

The original contributions of this thesis to astrophysical research are the use of

the force-free magnetic field solution in light curve modeling, the inclusion of an off-

set polar cap in the slot gap geometry, and the calculation of E‖ from observationally

determined quantities (i.e., Ec).

The simulations reproduce observed light curve features and accurately match

multi-wavelength ζ measurements, but the specific combination of best-fit emission

and field geometry varies between pulsars. Perhaps pulsar magnetospheres contain

some combination of slot gap and outer gap geometries, whose contributions to the



light curve depend on viewing angle. The requirement that, locally, E‖/B < 1 rules

out the vacuum field as a valid approximation to the true pulsar field under the

CRR assumption. The E‖ values imply that the youngest, most energetic pulsar

has a near-force-free field, and that CRR and/or narrow acceleration gaps may not

be applicable to older pulsars.
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companion, suggestive of past companion exchanges and an exotic nature of the
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rate and the system mass, yielding neutron star mass constraints.
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Preface

This thesis is presented in two parts. The first part contains the majority of my

thesis work, which focuses on the emission geometry of young gamma-ray pulsars.

I use Fermi Large Area Telescope (LAT) data to model the pulsars’ light curves

and phase-resolved spectra. The second part involves searching for and timing

millisecond pulsars. This portion of my thesis was largely the result of my own

initiative, especially the searches of globular clusters.

There were a number of contributors to the light curve modeling that I did for this

thesis. J. Dyks and A. Harding developed the code used to simulate the light curves,

C. Kalapotharakos provided the force-free magnetic field solution data, and M. C.

Miller allowed me to use his Markov chain Monte Carlo (MCMC) likelihood code. I

used these contributions to model the light curves. I constructed the observed LAT

light curves used in this analysis, I ran the light curve simulations, and I wrote the

code to calculate χ2 between the observed and modeled light curves, which was then

passed to the MCMC code. One outcome of my thesis is that this process has been

automated, so that it will be straightforward to model the light curves of many more

pulsars in the future. I also performed the spectral analysis of three of the pulsars

considered here, automated a phase resolved spectral fitting routine, and wrote the

codes and scripts to calculate the electric field under the assumptions described in

the thesis. The results presented here have previously been presented (incompletely)
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in the conference proceedings DeCesar et al. (2011a), DeCesar et al. (2011b), and

Harding et al. (2011). Some of the results for PSR J0007+7303 were presented in

Abdo et al. (2012). An upcoming paper (DeCesar et al. 2013a, in preparation) will

contain all of the geometrical constraint results presented in this thesis.

I worked more independently in the second part of my thesis. My main collab-

orators were S. Ransom, P. Ray, and M. Roberts. For the first pulsar discovery, I

searched data that was proposed for and taken by M. Roberts, J. Hessels, and M.

McLaughlin. Its discovery was first published in Hessels et al. (2011) (of which I

am a co-author), and the analysis presented in this thesis will be published along

with similar analyses of three other millisecond pulsars in Bangale et al. (in prepara-

tion). The second pulsar was discovered through observations that I proposed with

co-investigators S. Ransom and P. Ray. The discovery was presented in DeCesar

et al. (2011c), and the results given in this thesis will be published in DeCesar et al.

(2013b, in preparation).

This thesis is outlined as follows. In Chapter 1, I introduce the reader to rotation-

powered pulsars, gamma-ray astronomy, the LAT instrument, and LAT data analy-

sis. Chapter 2 describes interactions between photons and matter that are important

in gamma-ray astronomy, and then describes the pulsar emission and magnetosphere

models used to explain high-energy pulsar observations. In Chapter 3, I explain the

light curve modeling procedure and give my modeling results with some interpre-

tation. Chapter 4 begins with the phase-resolved spectral modeling of the pulsars

whose light curves were modeled in Chapter 3. I then go on to present the method of

calculating the magnitude of the accelerating electric field using the phase-resolved

spectra—the first time this calculation has been done using real observations—and

discuss the results and their implications. Chapters 5 and 6 comprise the second

part of my thesis. In Chapter 5, I describe the procedures of searching for and tim-
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ing radio pulsars (these methods can be applied to other wavelengths). In Chapter

6, I present my discoveries of two millisecond pulsars. I summarize and conclude

my thesis in Chapter 7.
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Chapter 1

Introduction to Gamma-ray

Pulsar Astronomy

The discovery of a “bit of scruff” that turned up in graduate student Jocelyn Bell’s

dataset during an observing run in 1967 marked the birth of observational pulsar

astronomy. What initially appeared as oscillating noise in her radio-frequency ob-

servations turned out to be, upon further inspection, a periodic signal with period

∼ 1.3 s (Hewish et al. 1968). More discoveries of narrowly pulsed radio signals with

extremely stable periods of order 0.01–1 s followed, (e.g., Large et al. 1968), implying

an astrophysical origin. It was quickly proposed that small, dense, rapidly rotating

objects, supported against gravitational collapse by neutron degeneracy pressure—

neutron stars—were responsible for the observed radio pulses, the periods of which

corresponded to the neutron stars’ rotation periods (Gold 1968). Measurements of

a slight increase in pulse period with time, combined with the fact that the emission

was pulsed, was consistent with emission from an inclined rotator with a strong

magnetic field.

Almost 50 years later, the field of pulsar astronomy is thriving, especially since
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the launch of the Fermi Gamma-ray Space Telescope, which is directly or indirectly

responsible for the detections or discoveries of over 120 γ-ray pulsars and 50 mil-

lisecond pulsars. A recent review by Harding (2013) describes the current state of

pulsar astronomy. A more in-depth discussion on γ-ray pulsars can be found in the

second Fermi Large Area Telescope pulsar catalog (The Fermi-LAT Collaboration

2013). Two excellent references for both pulsar observation and theory are Lorimer

& Kramer (2005) and Shapiro & Teukolsky (1986).

1.1 Rotation Powered Pulsars

Rotation-powered pulsars (RPPs) are rapidly rotating, highly magnetized neutron

stars, with typical surface magnetic field strengths of Bs ∼ 1012G for young RPPs.

Misalignment between the magnetic and rotation axes produces a time-dependent

magnetic moment, extracting rotational energy from the neutron star. Emission

produced in the vicinity of the magnetic poles appears to pulsate as the radiating

region sweeps past the observer’s line of sight. The specific mechanism or mech-

anisms by which pulsars radiate are uncertain, but must involve charged particle

acceleration in the extremely large electric field induced by the time-varying mag-

netic field. In the case of pure magnetic dipole braking, all of the rotational energy

loss would be converted into magnetic dipole radiation, and the pulsar luminosity

would be that of a rotating magnetic dipole. The total luminosity measured from

the pulsed emission is much lower than that expected from magnetic dipole braking,

suggesting that a large portion of the energy is carried away from the pulsar by a

particle wind, forming the surrounding pulsar wind nebulae observed in many young

systems.

Most of the ∼ 2000 known pulsars (Manchester et al. 2005) have been observed
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to emit only at radio wavelengths (within current multi-wavelength detection limits),

but emission in bands across the electromagnetic spectrum has been detected from

a significant portion of the population. In particular, more than 120 RPPs have

been detected at high gamma ray (γ-ray) energies (The Fermi-LAT Collaboration

2013). There are over 100 RPPs with X-ray pulsations (Harding 2013), and nearly 30

pulsars have been detected at optical, ultraviolet, or infrared wavelengths (Mignani

2012). The very young and energetic Crab pulsar, the compact remnant of SN1054

(the supernova observed in 1054 A.D.), emits across the electromagnetic spectrum,

including at TeV energies (Albert et al. 2008; VERITAS Collaboration et al. 2011).

Unlike other young pulsars, the peaks in its pulse profile, or light curve, are aligned

in phase at all wavelengths.

RPPs are divided into two main subclasses. Normal pulsars are younger than

∼ 100Myr and have rotation periods ranging from tens of milliseconds (the Crab

has spin period ∼ 0.033 s) to a few seconds. Millisecond pulsars (MSPs) are older

than 100Myr and have spin periods ∼ 1–10ms. The fastest known MSP rotates

with spin frequency 716Hz (Hessels et al. 2006). This is well below the break-up fre-

quency. It has been suggested that the rotation speed of MSPs is limited by another

physical process, likely magnetic torques, with the small but intriguing possibility

of gravitational wave radiation contributing somewhat due to slight deviations from

axisymmetry (Chakrabarty 2008, and references therein).

Pulsars are the stellar remnants of core-collapse supernovae with progenitor

masses > 8M⊙. Young pulsars have strong magnetic fields (Bs ∼ 1011–1013G),

high spin-down rates (Ṗ ∼ 10−15–10−12 s s−1), and a large energy output from rota-

tional losses (typical values of Ė are ∼ 1034–1038 erg s−1), much of which is released

as a particle wind that cools in the surrounding interstellar medium by synchrotron

radiation, observed as pulsar wind nebulae (PWNe; Gaensler & Slane 2006). Mil-
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Figure 1.1: A P − Ṗ diagram for rotation-powered pulsars. The black and grey

points show radio pulsars that are not also γ-ray pulsars. The green and blue

points are respectively RL and RQ γ-ray pulsars, while the red and orange points

are MSPs. The orange dotted lines are lines of constant Ė, the blue lines are of

the characteristic age, and the green lines show constant Bs. The normal γ-ray

emitting RPPs all lie at Ė ≥ 5 × 1033 erg s−1, above the spindown energy of the

majority of the population. The MSPs lie in a very different part of P − Ṗ space,

but have Ė values that overlap with that of the less energetic young population.

Figure reproduced from The Fermi-LAT Collaboration (2013).

lisecond pulsars instead have Bs ∼ 108G, Ṗ ∼ 10−20 s s−1, and Ė ∼ 1033 erg s−1.

They are referred to as “recycled” because they were spun up to millisecond periods

by accretion from a binary companion. As will be discussed in Chapter 6, they are

orders of magnitude more common by mass in globular clusters than in the field

because of the increased probability of capturing a companion in the dense stellar

environment (e.g., Camilo & Rasio 2005). They are very stable rotators, unlike

young pulsars, which often have noisy residuals in their timing solutions. Young
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pulsars also experience large glitches, events in which the period suddenly decreases

and the spindown rate temporarily increases before returning to its pre-glitch value

(although small glitches can occur in millisecond pulsars; Mandal et al. 2009). The

P − Ṗ diagram in Figure 1.1 shows where these populations fall in terms of spin

parameters, field strength, and energetics.

Rotation-powered pulsars are natural laboratories for extreme physics, partic-

ularly for the study of particle physics in strong electromagnetic fields, physics of

very dense matter, and gravitational theory. Young pulsars have surface magnetic

field strengths Bs ∼ 1012–1013G, much larger than fields that can be reproduced

on Earth. Thus, the study of pulsar emission allows us to probe physical processes

in these strong-field regimes. Some of these processes are discussed in Chapter 2.

Millisecond pulsars in particular are interesting in terms of placing limits on the

maximum neutron star mass and on the neutron star equation of state, and hence

on the maximum mass that can be supported against gravity. A neutron star mass

of 2M⊙ rules out many non-nucleonic equations of state. Because MSPs gained

some amount of mass during their accretion and spin-up phase, they are good can-

didates for constraining the maximum mass. Additionally, they usually are found in

binary systems, a necessary condition for mass measurements (Chapters 5 and 6).

Two pulsars with precisely measured masses in the range of 2M⊙ have been found

(Demorest et al. 2010; Antoniadis et al. 2013). The details of neutron star structure

and equations of state are reviewed in Lattimer & Prakash (2004). Finally, pulsars

can be used to detect gravitational radiation. Taylor & Weisberg (1982) measured

the rate of orbital period decay in the Hulse-Taylor pulsar, PSR B1913+16, and

found it matched exactly with the prediction from general relativistic gravitational

radiation (within error bars), thus indirectly detecting gravitational radiation. Di-

rect detections could be made in the near future with the use of a “pulsar timing
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array,” in which the timing residuals of many pulsars are searched for correlations

indicating the passage of a gravitational wave (Foster & Backer 1990; Hellings &

Downs 1983; Lommen 2012).

1.1.1 Observational Properties of Gamma-ray Pulsars

The population of γ-ray pulsars detected by the LAT falls into three categories

∼ equal in number: radio-loud γ-ray pulsars (RL), radio-quiet γ-ray pulsars (RQ),

and γ-ray MSPs (The Fermi-LAT Collaboration 2013). Pulsars in the first group

were detected by folding the LAT photon’s arrival times with the pulsars’ timing

solutions (Section 1.3) and binning the photons in phase. The exceptions are PSR

J1741−2054 (Camilo et al. 2009), PSR J1907+0602 (Abdo et al. 2010e), and PSR

J2032+4127 (Camilo et al. 2009), which were discovered in blind γ-ray searches and

later detected at radio wavelengths. The RQ pulsars were also discovered in such

blind γ-ray searches (e.g., Abdo et al. 2009a) using the time-differencing technique

of Atwood et al. (2006). The MSPs were also found by folding the LAT count

arrival times with the timing solution (Abdo et al. 2009b). MSPs are usually found

in binary systems, and the number of parameters to cover with a blind search of

the γ-ray counts is prohibitively large. However, MSPs can be detected in pseudo-

blind searches, in which the orbital parameters are known from independent multi-

wavelength observations. One MSP has been blindly detected in the γ-rays in this

way (Pletsch et al. 2012), and was found to be a radio emitter afterward (Ray et al.

2013).

Overall, the γ-ray light curves of these pulsars (Figure 1.2) show two narrow

peaks with separation 0.1–0.5 in phase. (There are a few pulsars with single γ-ray

peaks.) The γ-ray peaks of RL pulsars trail the peak in the radio profile; this phase

lag between the radio and first γ-ray peak increases as the γ-ray peak separation
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Figure 1.2: Two examples of the radio and γ-ray light curves of γ-ray pulsars.

On the left is a young pulsar, PSR J2240+5832, with spin period P ∼ 0.14 s.

Its light curve displays the “classic” features of two γray peaks trailing a single

radio peak. The black line shows the γ-ray profile, the red line shows the radio

profile, and the blue line shows an analytical fit to the light curve (this fit is

unrelated to the light curve modeling in Chapter 3). On the right is a MSP,

PSR J0034−0534 (P = 1.88ms). This MSP has aligned radio and γ-ray peaks,

indicating co-located emission regions. The light curves were made using weighted

count binning, described in Section 1.3. Figures reproduced from The Fermi-LAT

Collaboration (2013).

increases (The Fermi-LAT Collaboration 2013). The very different light curve shapes

from radio to γ-ray energies indicates that the emission in these bands originates

from different locations in the magnetosphere. The radio emission is thought to

come from low altitudes above the polar cap, while the γ-rays are produced in the

outer magnetosphere. As a consequence, the γ-rays are observable from a wide range

of viewing angles, while the radio is only seen if the observer’s line of sight passes

close to the magnetic pole. This geometrical argument explains the observations of

RQ pulsars.

The above is true for most, but not all, pulsars. The Crab pulsar, along with

several millisecond pulsars, displays pulsations that are aligned in phase from radio

to TeV energies, suggesting co-location of the emission regions for these objects. In

this case, it is likely that the radio emission is located at a higher altitude relative

to the light cylinder than it is in non-aligned pulsars, and thus is caustic in origin,

the same as the γ-ray peaks. Radio polarization measurements provide evidence for
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a caustic origin of radio peaks: the peaks show no linearly polarized light, which

is expected for photons arriving at the same time (phase) from a wide range of

locations in the magnetosphere (Dyks et al. 2004; Venter et al. 2012).

The phase-averaged γ-ray pulsar spectrum is well described by a power law

of spectral index Γ ∼ 1–2 and an exponential cutoff above a cutoff energy Ec ∼

1–5GeV. The phase-resolved spectrum shows significant variation in the spectral

parameters, and is therefore a much better probe of the magnetospheric physics

than is the phase-averaged spectrum.

1.1.2 Pulsar Energetics and Magnetic Field Strength

The energy output by a pulsar due to rotational losses is

Ė ≡ −dErot

dt
= − d

dt

(

IΩ2

2

)

= 4π2IṖP−3 (1.1)

The true moment of inertia of a neutron star is unknown. Assuming a neutron star

is a uniformly dense sphere, the moment of inertia is I = (2/5)MR2. Using typical

values of R ∼ 106 cm and M ∼ 1.4M⊙, the spin-down luminosity can be expressed

as

Ė ≃ 3.95× 1031 erg s−1

(

Ṗ

10−15

)

(

P

s

)−3

(1.2)

If a pulsar’s magnetic field is well approximated by an inclined, rotating magnetic

dipole with magnetic moment |m|, then we can equate the power emitted by the

dipole,

Ėdipole =
2

3c3
|m|2Ω4 sin2 α, (1.3)

with the spindown power of Equation 1.2.

Ω̇ = −
(

2|m|2 sin2 α

3Ic3

)

Ω3, (1.4)

where α is the magnetic inclination angle.
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The magnetic field strength is related to the magnetic moment as B ≈ |m|/r3.

Assuming that the spin-down process is dominated by dipole braking, and rearrang-

ing Equation 1.4, yields the surface magnetic field strength (r = RNS),

Bs =

√

3c3

8π2

I

R6
NS sin

2 α
P Ṗ (1.5)

The surface field strength is typically evaluated assuming α = 90◦, and that I and

RNS are as given above. Under these assumptions, the field strength is

Bs = 3.2× 1019G
√

PṖ ≃ 1012G

(

Ṗ

10−15

)1/2
(

P

s

)1/2

(1.6)

The energetics of a pulsar can also be used to estimate its age. Equation 1.4 can

be rewritten in terms of rotation frequency ν = 1/P as

ν̇ = Kνn, (1.7)

or in terms of the pulse period P as

Ṗ = KP 2−n, (1.8)

where K is a constant and n is the braking index; for spin-down that is purely due

to magnetic dipole braking, n = 3. The age T of the pulsar is then

T =
P

(n− 1)Ṗ

[

1−
(

P0

P

)n−1
]

, (1.9)

where P0 is the original (birth) period of the pulsar. Assuming P0 ≪ P and n = 3

yields the characteristic age of the pulsar,

τc ≡
P

2Ṗ
≃ 15.8Myr

(

P

1 s

)

(

Ṗ

10−15

)−1

. (1.10)

The characteristic age assumes that the birth period of the pulsar was negligible

compared to its current observed period, and can therefore be inconsistent with the

true pulsar age. It is important to have independent measurements of the age, for

example from the age of the supernova remnant associated with the neutron star,

to determine the accuracy of the characteristic age estimate.
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1.1.3 Pulsar Magnetosphere

The pulsar magnetosphere, illustrated in Figure 1.3, is described as follows. The

very strong electric field induced by the rotating magnetic field of the neutron star

pulls charges from the stellar surface (Chapter 2; Goldreich & Julian 1969), forming

the plasma magnetosphere that corotates with the neutron star. This corotation

breaks down as the corotation velocity approaches the speed of light. The light

cylinder is defined as the cylindrical radius RLC from the neutron star’s rotation

axis where the corotation velocity is c:

RLC =
c

Ω
≈ 5× 109 P cm (1.11)

Magnetic field lines that close within the light cylinder are referred to as closed

field lines. The outermost closed field line defines the boundary of the closed field

line region. Beyond this boundary, the field lines remain open as they cross RLC.

Charges within the closed field line region are trapped, and corotate with the star.

Charges outside the closed field region flow freely outward as a pulsar wind.

The emission models considered in this thesis allow radiation to be produced

very near the light cylinder. The magnetic field at the light cylinder is therefore an

interesting quantity for these models. It is given by

BLC = Bs

(

ΩR

c

)3

≃ 9.2G

(

P

s

)−5/2
(

Ṗ

10−15

)1/2

(1.12)

The boundary between the open and closed field lines (also referred to as the

last open field line), projected onto the neutron star surface, defines the rim of the

magnetic polar cap. For a static dipole field in vacuum, the magnetic field lines

follow the relation

sin2 θ

r
= constant (1.13)
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Figure 1.3: Illustration of the pulsar magnetosphere. The white circle in the center

of the figure is the neutron star. Its rotation axis is labeled with Ω. Its magnetic

axis is labeled with B, and is offset from the rotation axis by the magnetic inclina-

tion angle α. The light cylinder radius, the cylindrical distance from the neutron

star at which the corotation velocity is the speed of light, is labeled RLC and

marked by the vertical lines. The curved lines emanating from the neutron star

are the magnetic field lines. Field lines that close within the light cylinder make

up the closed field line region, colored gray in this figure. The field lines that do

not close within the light cylinder cross RLC and remain open, allowing particles

to flow outward into the surrounding medium. The polar cap is the boundary

between the open and closed field line regions at the neutron star surface.

where θ is the angle between the magnetic axis and a point along the magnetic field

line, and r is the distance to that line from the neutron star center. The polar cap

radius is defined by

rpc = RNS sin θpc (1.14)

where θpc is the angular radius of the polar cap. From the boundary condition

r = RLC at θ = 90◦, the angular radius is

sin θpc =

(

RNS

RLC

)1/2

. (1.15)

It follows that

rpc =

(

R3
NS

RLC

)1/2

(1.16)
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These expressions can be used to approximate the true field structure. In re-

ality, the magnetic field lines of a rotating neutron star are swept back near the

light cylinder, forming a toroidal component of the field. This sweepback leads to

distortions in the polar cap that are discussed further in Chapters 2 and 3.

1.1.4 Gamma Rays as Probes of Emission Physics

As noted above, the observed emission from pulsars accounts for a small fraction of

the total spin-down luminosity, Ė. The efficiency, η = L/Ė (where L is the measured

luminosity of the observed electromagnetic radiation), with which the total energy

loss is converted into observable radiation is ∼ 10−7–10−5 in the radio and optical

bands. At higher energies, η increases: η ∼ 10−4–10−3 in the X-ray band, and

∼ 10−2–10−1 at γ-ray energies (Becker & Truemper 1997). Pure dipole radiation

would imply a braking index n = 2 − PP̈ Ṗ−2 = 3, while braking indices observed

thus far are < 3. The measured braking indices and efficiencies suggest that a large

fraction of the rotational energy is carried away by a pulsar wind, consistent with

the observations of pulsar wind nebulae surrounding many young pulsars.

Therefore, a key question in pulsar astrophysics is: What is the mechanism by

which a fraction of the rotational energy, which is lost as the pulsar spins down,

is converted into the electromagnetic radiation observed from these objects? Given

the large electric fields that are induced by the time-varying magnetic moments of

neutron stars, particle acceleration to very high energies must occur in pulsar mag-

netospheres, and it is the radiation from these particles that is observed. However,

the details of where the particles are accelerated, and what the specific acceleration

and radiation mechanisms are for a given photon energy (e.g., inverse Compton,

synchrotron, or curvature radiation), are not well known. These details are poten-

tially important for probing the physics of strong magnetic fields. Additionally, the
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location and mechanism of acceleration and radiation are ingredients in pulsar pop-

ulation synthesis models, which calculate the total number of pulsars in the galaxy

given the number that we are able to detect. At radio frequencies, where the beam

is typically narrow and is thought to originate at low altitudes, there is a restricted

range of observer lines of sight that will cross close enough to the magnetic pole to

allow detection of a radio pulse. At γ-ray energies, where the beam is wider and

generally thought to originate at higher altitudes, there is a larger range of viewing

angles for which a γ-ray pulse will be seen. Differences between γ-ray emission mod-

els, described in Chapter 2, affect the observed pulse shapes (light curves) and result

in different predictions from pulsar population synthesis simulations (e.g., Harding

et al. 2007).

The fact that the γ-ray luminosity and hence η is so much higher than at other

energies (for pulsars that display γ-ray emission) suggests that the study of this high-

energy emission is more likely than other energies to provide clues to the underlying

mechanism by which the rotational energy loss is converted into electromagnetic

radiation. Additionally, physically motivated models of γ-ray emission exist (Chap-

ter 2), while models of radio emission remain empirical. Thus, studying the γ-ray

properties of pulsars within the context of these physically motivated models may

result in a better understanding of the emission mechanism. The approach taken

in this thesis is to infer the emission geometry by modeling light curves observed

by the LAT with simulated light curves from geometrical representations of outer

magnetosphere emission models.
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1.2 Gamma-ray Astronomy with the Fermi Large

Area Telescope

Gamma-rays are produced by non-thermal processes like those described in Chap-

ter 2. All involve high-energy particle interactions, typically particle acceleration,

inverse Compton scattering, and/or a particle traversing a magnetic field (usually a

very strong one). Sources that produce γ-ray emission include active galactic nuclei

(AGN), especially blazars, gamma-ray bursts (GRBs), supernova remnants (SNRs),

pulsar wind nebulae (PWNe), high-mass binaries like Cyg X-3, and rotation-powered

pulsars. Important sources of diffuse γ-ray emission are cosmic ray interactions with

the Galactic interstellar medium and radiation fields, especially pronounced in the

Galactic plane. There is also an isotropic extragalactic background from many un-

resolved γ-ray sources plus any diffuse component that may be present (Atwood

et al. 2009). A map of the γ-ray sky above 100MeV from three years of LAT data

is shown in Figure 1.4.

The field of γ-ray astronomy began with the Explorer XI satellite in 1961, which

detected fewer than 100 γ-ray photons during a four-month mission. The Vela satel-

lites discovered GRBs two years later. Gamma-ray emission from the Crab pulsar

was found in a balloon experiment in 1971 (Browning et al. 1971). It had origi-

nally been discovered in the radio shortly after the first pulsar was discovered. The

SAS-2 satellite flew one year later, discovering γ-ray pulsations from the Vela pulsar,

which was also known previously from the radio (Albats et al. 1974; Thompson et al.

1975). COS-B operated from 1975-1982, improving the pulsed detections of these

pulsars. The field took a leap forward with the launch of the Compton Gamma-ray

Observatory, which had onboard the Imaging Compton Telescope (0.8-30 MeV) and

the Energetic Gamma Ray Experiment Telescope (EGRET; 20 MeV - 30 GeV).
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Figure 1.4: The γ-ray (E > 100MeV) sky, as seen with three years of data from

the Fermi Large Area Telescope. The bright band across the center of the figure

is diffuse emission from the Galactic plane, caused by cosmic rays interacting with

neutral hydrogen gas. There are ∼ 1870 point sources in this map (Nolan et al.

2012), most of which are associated with blazars. Right of center, the Vela pulsar

stands out prominently from the diffuse emission as the brightest point source in

the LAT sky.

EGRET discovered four more high-energy γ-ray pulsars. The detected pulsars are

shown in Figure 1.5.

The Fermi Gamma-ray Space Telescope was launched on June 11, 2008. It has

two instruments onboard, the Gamma-ray Burst Monitor (GBM), which is sensitive

in the energy range 150 keV–30MeV, and the Large Area Telescope (LAT), which

covers the energy range between 20MeV and ∼ 300GeV. The LAT has detected

over 120 rotation-powered pulsars at the time of writing, all but six of which were

new detections of γ-ray pulsations, and a third of which were new pulsar discoveries.

The γ-ray analysis in this thesis is solely based on LAT observations, and will be

the focus of the remainder of this work.

The Fermi LAT is ∼ 30 times more sensitive to γ-rays than EGRET was, largely
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Figure 1.5: The pulse profiles of the seven pulsars observed by the Compton

Gamma-ray Space Observatory. Six of these (PSR J1509−58 being the sev-

enth) were detected at > 20MeV by EGRET. Figure reproduced from Thompson

(2008).

due to a combination of increased effective area and angular resolution1. The spatial

resolution is energy-dependent, with the 68% angular containment radius for a single

photon detection improving from ∼ 3.5◦ at 100MeV to ≤ 15′ above 10GeV, for

reasons discussed in Section 1.2.1. EGRET, in contrast, had an angular resolution

of 5.8◦ at 100MeV. Its peak effective area was 1500 cm2. In comparison, the LAT

1A comparison of instrument specifications between the LAT and EGRET can be found at

http://fermi.gsfc.nasa.gov/science/instruments/table1-1.html.
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effective area peaks at 9500 cm2 in the energy range ∼ 1 − 10GeV (Atwood et al.

2009).

The LAT is by far the most sensitive γ-ray instrument ever to be flown, and it

has hugely impacted every field of γ-ray astronomy. It has revolutionized the field

of pulsar astronomy, both in terms of the number of pulsars it has discovered and

the excellent statistics for studying individual sources.

1.2.1 Gamma-ray Detection with the Fermi Large Area

Telescope

The LAT is a pair-conversion telescope, which means it indirectly detects γ-rays via

direct detection of the positron-electron pairs that are produced in the instrument

by incident high-energy photons. From these detections, the directions, energies,

and arrival times of the original γ-ray photons are measured. At any given moment,

the LAT is sensitive to photons arriving from within a 30◦ field of view, and it maps

the entire sky once every two orbits (three hours).

The detector consists of a converter-tracker, within which an incoming γ-ray

initiates a particle shower that is tracked by the LAT, and a calorimeter underneath

the converter-tracker, which measures the γ-ray energy. The tracker is covered by an

anticoincidence detector. Signals from the tracker, calorimeter, and anti-coincidence

detector together are used to form online triggers, for example in the case where

many γ-rays are detected from the same direction due to a γ-ray burst. A schematic

of the LAT is shown in Figure 1.6.

The LAT is constructed as a 4×4 modular array, where each module consists of

an 18-layer tracker (or converter-tracker) set atop an eight-layer calorimeter. The

tracker layers, or “trays,” consist of two single-sided silicon strip detectors (SSDs)

that record the time and position of incident charged particles resulting from pair
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Figure 1.6: Illustration of the Large Area Telescope (LAT), one of two instruments

on the Fermi Gamma-ray Space Telescope. The dimensions of the LAT are 1.8m×
1.8m×0.72m. The top part of the instrument is the tracker (dark gray), and the

bottom is the calorimeter (light gray); the instrument is surrounding by the tiles

of the anti-coincidence detector, or ACD. The diagram shows two cut-outs, the

top one of the tracker and the bottom one the calorimeter. The red line shows

a γ-ray traveling through the tracker and pair converting in a lower layer. The

resulting electron and positron (blue lines) deposit their energy in the calorimeter.

This figure was reproduced from Atwood et al. (2009).

production from incident γ-rays. Charged particles ionize the SSD and produce a

current, which is read by electronics on the sides of the trays, thereby detecting the

particles. The top 16 layers also contain a tungsten (W; Z = 74) layer that lies 2mm

above the bottom SSD in the tray; this high-Z layer promotes pair conversion, and

after conversion the pairs are immediately tracked by the SSDs below. The top and

bottom trays contain only one SSD, so a γ-ray incident at the top of the converter-

tracker will encounter a W layer before a SSD. Neighboring trays are perpendicular

to each other, allowing the (x, y) positions of the e± to be measured.
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Figure 1.7: This diagram shows the arrangement of the trays in the tracker. The

top layers have a tungsten (W) layer immediately followed by a silicon (Si) layer.

The high Z of the W layer encourages pair conversion, so that the particle pair

will be detected by the subsequent Si layers and its track can be accurately re-

constructed. The letters in the diagram show the following: (a) This is the ideal

conversion of a γ ray in the W layer. The pairs are immediately detected in the

Si layer below, which is placed so close to the W layer to minimize multiple scat-

terings and constrain the particles’ tracks. As a result, scattering in subsequent

W layers will have little effect on the final track measurement. (b) It is possible

to detect both particles separately in the Si layers, which improves the PSF and

background rejection. (c) This demonstrates the way the W converter layers are

set up to cover only the active part of the Si detectors, so that pair conversion in

places where a close-by measurement from a Si detector is not possible is mini-

mized. (d) This photon did not pair convert in the first W layer. As a result, the

PSF can be degraded by up to a factor of 2. (e) This photon converted into a pair

in material outside the W layers. Conversion in the Si or other structural layers

gives the opportunity of multiple scattering, so material that is not actively used

in the instrument is minimized. This figure was reproduced from Atwood et al.

(2009).
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The tracker (Figure 1.7) is used to reconstruct the direction of the incident γ-

ray from a point source, the probability distribution of which is the point-spread

function (PSF). The LAT’s angular resolution is limited by multiple scatterings and

bremsstrahlung. These phenomena are minimized for photons that pair convert

in the first W layer and are immediately detected by the SSDs below, as there is

little opportunity for scattering before that point. Multiple scattering, the effect of

which is proportional to 1/E, dominates the uncertainty in direction at lower γ-ray

energies, resulting in the LAT’s energy-dependent PSF that must then be taken into

account in all analyses. Scattering of low-energy γ-rays increases with the effective

area, while high-energy γ-rays are more rare and thus require a larger effective area

to be sufficiently detected. To balance these effects, the top twelve tungsten layers

are thin (0.03 radiation lengths thick) and are referred to as the “front tracker”; the

bottom four, the “back tracker”, are ∼ 6× as thick. Note that many analyses can

be done using events from both trackers, but there are cases when selecting events

detected only in one tracker or the other is useful.

The calorimeter measures the energy deposited in its layers by the e± pair and

images the profile of the shower produced by the particles, the latter of which aids in

background rejection. Each of the 16 modules is composed of eight layers of twelve

CsI(Tl) crystals, which scintillate in response to incoming particles. The crystals are

long, having dimensions of 2.7 cm× 2.0 cm× 32.6cm; Carlson et al. (1996) showed

that these long crystals can be used to measure photon energy and incident angle

with good resolution. Additionally, calorimeters in which the showering material is

also the detecting medium, as is the case for scintillating crystals, result in the best

energy resolution, as low as ∼ 1%. The crystals lie horizontally in each layer, and

neighboring layers are again rotated by 90◦ with respect to each other. Photodiodes

at the ends of the crystals measure the scintillation light. The difference in intensity
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gives a position of energy deposition in the crystal. The position measurement is

more precise for higher energies (ranging from a few mm at 10 MeV to less than 1

mm above 10 GeV).

The tracker and calorimeter are used together to measure the incident γ-ray’s

energy and direction. The energy measurement comes primarily from the energy

deposited in the calorimeter and from the shower profile. At low energies, a sig-

nificant fraction of the photon energy can be deposited in the tracker as well, and

must be added to the energy measured in the calorimeter. Energy deposited in the

tracker is estimated from the number of silicon strips that are hit in each tracker

layer. The tracker is primarily used to reconstruct the tracks of the e± pair and

hence direction of the photon, but energy information from the calorimeter helps to

constrain the particles’ tracks.

While both the reconstructed tracks from the converter-tracker and the shower

profile from the calorimeter are used to reject cosmic rays, an anti-coincidence de-

tector (ACD; details in Moiseev et al. 2007) is used to shield the LAT from the high

cosmic ray background with 0.9997 efficiency. The ACD is also designed to suppress

the “backsplash effect.” Secondary particles, typically 100–1000 keV photons, are

created in the EM shower from the incident γ-ray and are Compton scattered to

hard X-ray energies in the ACD, causing false veto signals coincident with the true

γ-ray event. In order to suppress this effect, the ACD is segmented so that only the

segment near the photon’s entrance to the LAT contributes to backsplash (Moiseev

et al. 2004). Also, veto signals are not used if the energy deposition in the calorime-

ter is greater than ∼ 10–20GeV. The ACD is surrounded by a micrometeoroid shield

to prevent penetration of the ACD and subsequent light leakage.
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1.2.2 LAT Data Analysis

As mentioned above, the angular resolution (or PSF) of the LAT is energy-dependent,

with the PSF decreasing with increasing energies. This introduces a major compli-

cation in the data analysis: how is one to know with any certainty that a given

detected event originated from a given source, when there are several sources whose

position error ellipses overlap with that of the event? Simple background subtrac-

tion, for example with an annulus around the source of interest, cannot be performed

because sources are larger at low energies than at high energies. Additionally, the

bright Galactic diffuse emission is clumpy enough that a background estimate ob-

tained a few degrees away from a source will likely not represent the background at

the source’s position.

The solution is to perform a likelihood analysis within a region of sky surround-

ing the source of interest, through which each event is assigned a likelihood of being

associated with one source or another. Each point source in the region of interest

(ROI) is given an initial model for its position and spectrum, usually a power law.

(Extended sources are given a model for their shape, for example a uniform or Gaus-

sian disk, rather than a single position.) In this way, source positions and spectra

can be obtained. The source position can be estimated to within an error circle of

size ∼ 0.1–0.5◦, despite the PSF being ∼ 1◦ at 1GeV, depending on the number of

photons and on the source spectrum (the position can be determined to higher ac-

curacy for harder sources.) An important component in this analysis is the use of an

accurate spatial and spectral model for the Galactic and extragalactic backgrounds.

These models are constructed and made available by the LAT collaboration, and

there is always work being done to improve the current diffuse models.

The likelihood analysis of LAT data follows that of EGRET data, which is
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detailed in Mattox et al. (1996). The likelihood L of a LAT image, or counts map

(essentially a two-dimensional array containing the number of counts detected in

each pixel), given a model of the γ-ray emission that includes the sky coordinates

and spectrum, is the product of the probability for each pixel in the image,

L =
∏

ij

pij . (1.17)

Because the LAT is a photon counting instrument, Poisson statistics define the

probability. In this case, pij is the Poisson probability of observing nij counts in

pixel ij, given a model that predicts the number of counts to be θij . This probability

is given by

pij =
θ
nij

ij e−θij

nij !
. (1.18)

It is more straightforward to calculate the logarithm of the likelihood, such that

Equation 1.17 becomes

lnL =
∑

ij

ln pij (1.19a)

lnL =
∑

ij

nij ln (θij)−
∑

ij

θij −
∑

ij

ln (nij !) . (1.19b)

The last term is not model dependent and therefore is not useful for parameter

estimation or model comparison via the likelihood ratio test. Mathematically, the

likelihood ratio test becomes a subtraction of two likelihoods in logarithm space, so

the last term will cancel out. The final expression for the likelihood is then

lnL =
∑

ij

nij ln (θij)−
∑

ij

θij . (1.20)

In practice, all of the above is done using various LAT Science Tools that are

distributed and updated by the collaboration. After data preparation, the likelihood

analysis is performed using the gtlike tool, which maximizes the likelihood and

computes best-fit model parameter values and uncertainties for all free parameters
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in the fit. The analysis is typically done within a ROI at least 10◦ × 10◦ in size,

with a pixel scale ∼ 0.1◦ per pixel. Each source within the ROI is given a spatial

model (usually fixed at a known best position) and spectral model. The likelihood is

calculated at the initial parameter values, and then source’s parameters are fit in an

iterative fashion using Newton-Raphson iteration until the likelihood is maximized.

1.3 LAT Pulsar Light Curve Construction

Young, energetic rotation-powered pulsars display γ-ray pulsations, likely due to

the formation of caustics (Section 2.4) in the outer magnetosphere. Detecting these

pulsations requires recording the arrival time of each photon at the detector with

high accuracy. The timing accuracy of the LAT is < 10µs, making it an excellent

instrument for the study of pulsar light curves and phase-resolved spectra.

Pulsar light curves are constructed by assigning a rotation phase to each photon

and binning the photons in phase. The phase φ is assigned by defining a time t0

corresponding to φ0 and using the timing solution of the pulsar to calculate φ(t)

of each photon after that. The timing solution consists of the spin frequency ν0,

spindown rate ν̇0, and other parameters (for example, parameters describing binary

motion) that together predict the time ti of the i
th pulse relative to the fiducial time

t0. Then φi is calculated by

φi = φ0 + ν0(ti − t0) +
1

2
ν̇0(ti − t0)

2 + . . . (1.21)

The process of pulsar timing is discussed in Chapter 5.

As discussed above, it is not possible to know a photon’s originating source with

certainty. This makes it difficult to choose which photons to include in a pulsar’s

light curve. Ray et al. (2011a) used the “cookie cutter” method, in which all photons

within a certain radius from the pulsar position and within a certain energy range
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are included in the light curve. The radius and energy range are determined by

maximizing the signal-to-noise of the light curve.

In this thesis, the light curves were constructed using an energy-dependent in-

clusion radius optimized for bright pulsars (e.g., Abdo et al. 2010b),

θ < max[1.6− 3log10(EGeV), 1.3], (1.22)

where EGeV is the photon energy measured in GeV. All counts falling within an

angular distance θ from the given pulsar were binned in pulse phase to make the

light curves.

Another method developed by Kerr (2011) is to first model the spectrum of the

pulsar and then determine, for each photon, the probability that it originated from

the pulsar of interest. The light curves are then constructed by weighting each

photon in the region with its probability (photons that are far from the pulsar will

have essentially zero probability, and will not contribute to the light curve). This

method was used to construct light curves for the second LAT pulsar catalog (The

Fermi-LAT Collaboration 2013).
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Chapter 2

High-Energy Pulsar Emission

2.1 High-Energy Particle and Photon Interactions

2.1.1 Particle Acceleration

Charged particles are accelerated in the presence of an electric field E. Across a

potential drop Φ, a particle of charge q will gain energy ǫ = qΦ, and as it accelerates

it will emit electromagnetic (EM) radiation. In the non-relativistic regime, in which

the magnitude of the particle’s velocity v ≪ c, the power emitted by the particle is

given by the Larmor formula,

P =
2

3

q2a2

c3
(2.1)

where a is the magnitude of the particle’s acceleration.

Particles must be accelerated to extremely high (GeV–TeV) energies in order

to emit high-energy γ-ray photons like those detected by the Fermi LAT, which is

most sensitive to photons in the energy range 0.02MeV < ǫ < 300GeV. At these

particle energies, β ≡ v/c ≫ 1, and the particle’s Lorentz factor

γ ≡ 1
√

1− β2
≫ 1 (2.2)
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The relativistic Larmor formula, or Liénard formula, must be used to calculate the

power emitted by such highly accelerated particles:

P =
2

3

q2

c3
a′ · a′ =

2

3

q2

c3
(a′‖

2
+ a′⊥

2
)

=
2

3

q2

c3
γ4(a2⊥ + γ2a2‖) (2.3)

The primed frame is the particle’s instantaneous rest frame, which is related to the

inertial frame by a Lorentz transformation, such that

a′‖ = γ3a‖, a′⊥ = γ2a⊥ (2.4)

Pulsar magnetospheres contain enormous potential drops, with Φ ∼ 1013V in-

duced by the rapidly rotating magnetic field with surface strength B ∼ 1012G.

The induced electric field E has a component E‖ that is parallel to the magnetic

field (Deutsch 1955) along which particles are accelerated to GeV energies. Particle

acceleration, and subsequent EM radiation, in pulsar magnetospheres is a natural

explanation for the γ-ray emission observed from these objects. Additionally, it

provides a means of converting the rotational energy lost by the pulsar, which is

essentially a rotating magnet, into observed radiation.

2.1.2 Synchrotron Emission

Synchrotron radiation is a special case of curvature radiation, discussed in the fol-

lowing section, in which a relativistic particle’s acceleration is perpendicular to the

magnetic field. Neglecting radiation losses, the particle’s equations of motion are

d

dt
(γmv) =

q

c
v×B, (2.5a)

[1ex]
d

dt
(γmc2) = qv · E = 0. (2.5b)

where m is the particle mass. In this case, γ and |v| are constant, and

mγ
dv

dt
=

q

c
v×B (2.6)
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The velocity components parallel and perpendicular to the magnetic field evolve

according to

d

dt
v‖ = 0 (2.7a)

d

dt
v⊥ =

q

γmc
v⊥ ×B (2.7b)

The particle therefore travels at a constant velocity parallel to the magnetic field

and with acceleration perpendicular to the field, resulting in a helical motion of the

particle through the field. The frequency of gyration (rotation around a field line)

is

ωs =
qB

γmc
=

qBc

ǫ
(2.8)

and the gyroradius (radius of curvature) is

ρ =
v

ωs
=

ǫ

qB
for v ≈ c (2.9)

Because the particle is accelerated, it radiates and deviates from the assumption

of zero radiation losses used above. Substituting the magnitude of the acceleration

a⊥ = ωcv⊥ into the Liénard formula (Equation 2.3) yields the total power emitted

by synchrotron emission from a population of particles with an isotropic velocity

distribution:

P =
2q2

3c3
γ4 q2B2

γ2m2c2
v2⊥ (2.10a)

=
2

3
r20cβ

2
⊥γ

2B2 (2.10b)

where r0 = e2/(mc2) is the classical radius of a charged particle (r0 ≈ 2.8×10−13 cm

for an electron and 1.5 × 10−16 cm for a proton) and e = 1.602 × 10−16C is the

fundamental unit of charge. On timescales shorter than the energy loss timescale,

Equations 2.5–2.7 are adequate, and the particle’s motion will follow the helical

motion described. As it radiates, it will deviate from this simple case.
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The relativistic motion of the particle causes its radiation to be beamed into a

cone of half-angle θ = 1/γ. An important outcome of the beaming of synchrotron

radiation is that, because the particle is accelerated in a circular pattern in a direc-

tion perpendicular to its velocity, the radiation that reaches the observer is pulsed

within a time interval a factor of γ3 smaller than the gyration period and has a

broad spectrum (Rybicki & Lightman 1979). The total synchrotron power radiated

per unit angular frequency by a single particle is

P (ω) =

√
3

2π

q3B

mc2
sin (χ)F

(

ω

ωc

)

, (2.11)

where the critical frequency ωc ≡ (2/3)γ3ωs sin (χ), χ = tan−1 (β⊥/β‖) is the pitch

angle between the electron’s velocity and B, and

F (x) = x

∫ ∞

x

K5/3(ξ)dξ (2.12)

K5/3 is the modified Bessel function of second order with n = 5/3. For ω ≪ ωc,

F ∝ ω1/3, while for ω ≫ ωc, F ∝ ω1/2 exp (−ω/ωc).

For γ ≫ 1 (commonplace in pulsar magnetospheres), the pitch angle χ and the

parallel velocity β‖ are constant, and χ is equivalent to the (also constant) half-angle

of emission 1/γ. In this limit, Equation 2.11 can be rewritten in terms of γ (e.g.,

Yadigaroglu 1997):

P (ω) =

√
3

2π
q2
(

γ

ρ

)

F

(

ω

ωc

)

(2.13a)

ωc =
3cγ3

2ρ
(2.13b)

ρ =
E

qB⊥

=
γmc2

qB⊥

(2.13c)

The spectrum of a population of particles with some distribution of γ factors can

then be found by integrating Equation 2.11 or 2.13a over the γ distribution. Astro-

physical sources are often found to have a power law distribution of energies, such
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that the number of particles with a given γ is

N(γ)dγ ∝ γ−pdγ (2.14)

where p is the power law index. Integrating the synchrotron spectrum yields another

power law spectrum, P (ω) ∝ ω−s, with spectral index s related to the particles’

power law index p by

s =
p− 1

2
. (2.15)

Free electron energy levels are quantized in the presence of a magnetic field. For

B ≪ γ(γ − 1)Bc, where Bc = m2
e/(c

3eh̄) = 4.414 × 1013G, these quantum effects

can be ignored as in the discussion above. However, in pulsar magnetospheres, the

field strength can be comparable to or greater than Bc. The classical treatment

of synchrotron radiation breaks down for field strengths B > γ(γ − 1)Bc because

the critical radiation frequency exceeds the electron kinetic energy, violating energy

conservation (e.g., Brainerd & Lamb 1987). To not violate energy conservation,

electrons lose all of their energy in single emission events as the peak of the photon

energy spectrum approaches the electron kinetic energy, resulting in a sharp cutoff

at this energy (e.g., Harding & Preece 1987). For magnetic fields approaching Bc,

quantum synchrotron formulae (Sokolov et al. 1968; Harding & Preece 1987; Harding

& Lai 2006) must instead be used.

2.1.3 Curvature Radiation

Synchrotron radiation is a form of curvature radiation (CR) in which the particle’s

momentum has a significant component perpendicular to the magnetic field. In the

case where v⊥ = 0, a particle travels along a field line with pitch angle χ = 0.

To maintain such motion, the particle must be continuously accelerated along the

field line by an electric field, E‖. In the case of synchrotron radiation, the radius of
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curvature ρ was the gyroradius of the particle’s circular motion around the magnetic

field line. For curvature radiation, ρ = ρc is instead the instantaneous radius of

curvature of the field line. The power emitted by a particle via CR is

P =
2

3

q2c

ρ2c
β4γ4 (2.16)

which is again beamed forward in a cone of half-angle 1/γ.

Similarly to the synchrotron spectrum, the energy spectrum of CR has a critical

energy

ǫCR =
hωCR

2π
=

3

2

ch̄

ρc
γ3 . (2.17)

where h = 6.626 × 10−27 erg s−1 is Planck’s constant and h̄ = h/(2π). This critical

energy is often instead expressed as

ǫCR =
3

2

λ̄c

ρc
γ3mc2 (2.18)

where h from the previous equation has been replaced by λcmc, λ̄c = λc/(2π), and

λc ≡ h/mc = 0.02426 Å is the Compton wavelength.

The spectrum is essentially the same as Equation 2.11. The power emitted at

photon energy ǫ from a single charge accelerated along a field line with instanta-

neous radius of curvature ρc is essentially Equation 2.11. Expressing the power as a

function of energy, and using ω = cβ/ρc (Jackson 1975), the single-particle spectrum

is:

PCR(ǫ) = −
√
3
q2

h̄c

γc

2πρc
F

(

ǫ

ǫCR

)

(2.19)

Again, for ǫ ≪ ǫc, F ∝ ǫ1/3, and for ǫ ≫ ǫc, F ∝ ǫ1/2 exp (−ǫ/ǫc).

High-energy pulsar emission is thought to be from curvature radiation of elec-

trons that are accelerating in the pulsar magnetosphere in the radiation reaction

(RR) regime. In the radiation reaction limit, the energy a particle loses by radia-

tion is equivalent to that gained by acceleration, so the particle has a steady-state
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γ. The energy balance is (e.g., Yadigaroglu 1997)

d

dt
(γmc2) = −PCR + qE‖c (2.20)

where the second term represents the acceleration of the particle by the electric field

parallel to the magnetic field line. In steady state, dγ/dt = 0. For β ≈ 1,

γRR =

(

3

2

E‖

q
ρ2c

)1/4

(2.21)

In a pulsar magnetosphere, where the surface magnetic field strength B ∼ 1012G,

the electric potential Φ ∼ 1013V results in E‖ ∼ 104Vcm−1. In such a strong field,

particles are accelerated to a steady-state γ ∼ 3× 107 (e.g. Yadigaroglu 1997) on a

timescale ∼ 10−4 s. The cutoff energy of CR in the radiation reaction regime is

ǫCR,RR =
3

2

λ̄c

ρc
γ3
RRmc2 ∼ 5GeV (2.22)

This cutoff energy is consistent with that measured in pulsars’ γ-ray spectra, suggest-

ing that radiation from particles accelerated in pulsar magnetospheres is dominated

by CR in the RR limit.

It is useful to note here that these extremely high Lorentz factors result in the

cone of radiation from the particle having a half-angle θ = 1/γ ∼ 0, i.e. the radiation

is emitted almost tangent to the field line. This approximation is used in Chapter 3,

in which pulsar emission is simulated for photons emitted tangent to B.

2.1.4 Inverse Compton Scattering

Compton scattering refers to the general process by which radiation is scattered off

of free electrons. A photon that undergoes Compton scattering changes its direction

of propagation by an angle θ relative to its original direction, and undergoes a change

in its energy ǫ. The post-scatter photon energy ǫ1 is related to the initial photon
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energy ǫ by (Rybicki & Lightman 1979)

ǫ1 =
ǫ

1 + ǫ
mc2

(1− cos θ)
(2.23)

The difference in wavelengths

λ1 − λ = λc(1− cos θ), (2.24)

where the Compton wavelength λc ≡ h/mc = 0.02426 Å for electrons. For long

wavelengths λ ≫ λc (low photon energies, hν ≪ mc2), scattering is nearly elastic,

so ǫ1 ∼ ǫ. Thus, at low photon energies, Compton scattering is approximated by

classical Thomson scattering, for which the scattering cross section is

σT =
8π

3
r20 = 6.65× 10−25 cm2 (2.25)

where r0 = e2/(mc2) ≈ 2.8 × 10−13 cm is the classical electron radius. At higher

photon energies, quantum effects become important, resulting in the differential

cross section for unpolarized radiation given by the Klein-Nishina formula (Heitler

1954),

dσ

dΩ
=

r20
2

ǫ21
ǫ2

(

ǫ

ǫ1
+

ǫ1
ǫ
− sin2 θ

)

(2.26)

As ǫ increases, the scattering cross section decreases from its classical size. The total

Klein-Nishina cross section is

σ =
3

4
σT

[

1 + x

x3

(

2x(1 + x)

1 + 2x
− ln (1 + 2x)

)

+
1

2x
ln (1 + 2x)− 1 + 3x

(1 + 2x)2

]

(2.27)

where x ≡ hν/mc2. For x ≪ 1, σ ∼ σT, while for extremely high energies,

σK =
3

8
σTx

−1

(

ln 2x+
1

2

)

, x ≫ 1 . (2.28)

In high energy astrophysics, often the kinetic energy of the electron is comparable

to or greater than the photon energy, in which case net energy can be transferred
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from the electron to the photon. This process is inverse Compton scattering. In the

electron’s (primed) frame, the initial energy of the photon is

ǫ′ = ǫγ(1− β cos θ) (2.29)

where ǫ and β are the photon energy and electron velocity in the lab frame. The

post-scatter energy of the photon, in the lab frame, is

ǫ1 = ǫ′1γ(1 + β cos θ′) (2.30)

The result is that, for highly relativistic electrons, the final photon energy is ǫ1 ∼ γ2ǫ.

The total power from inverse Compton scattering of an isotropic radiation field

incident on an isotropic electron distribution is

P =
4

3
σT cγ

2β2Urad (2.31)

where Urad is the energy density of the radiation field, and it is assumed that each

photon is scattered once by each electron. The energy spectrum of inverse Compton

radiation is again a power law with spectral index s = (p − 1)/2, assuming an

electron population with γ distributed as a power law with index p.

The above equations all assume photon energies ≤ 100 keV, for which the treat-

ment is classical and the Thomson cross section is valid. At higher photon energies

like those probed by the Fermi LAT, it is necessary to include quantum effects

through use of the Klein-Nishina cross section, which is smaller than σT .

The next three sections focus on high-energy processes in very strong magnetic

fields, and closely follow Sections 5.4 and 5.6 of Harding & Lai (2006).
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2.1.5 Single Photon Pair Production

Single photon pair production is the process by which an individual photon produces

an electron-positron pair. In a field-free space, this process cannot occur because

energy and momentum cannot both be conserved. However, in the presence of a

strong magnetic field with a nonzero transverse component to the photon direction,

the field absorbs the extra momentum, and single photon pair production can oc-

cur. As will be seen in the following sections, single photon pair production is an

important process in pulsar magnetospheres. In this and the next two sections, it

is assumed that c = h̄ = 1 and that all energies are in units of mc2.

In strong magnetic fields, the quantization of energy states becomes important

for free particles, and as a result, a photon can only produce an electron and positron

in these discrete states (Landau states). The energy and momentum conservation

equations are

En + En′ = ǫ (2.32)

p+ q = ǫ cos θ (2.33)

where ǫ is the photon energy and θ is its angle to B; p is the electron momentum

parallel to the photon’s direction of propagation and q is the parallel momentum of

the positron; and En = (1+p2+2nB/Bc)
1/2 and En′ = (1+q2+2n′B/Bc)

1/2 are the

electron and positron energies. To produce a pair with parallel momentum in the

ground state (n = n′ = 0), the photon must have energy at or above the threshold

energy,

ǫ0 = 2/ sin θ (2.34)

Single photon pair production is an important process for B ≥ 0.1Bc. Additionally,

for high photon energies and low magnetic fields, single photon pair production
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becomes important when ǫB sin θ/(2Bc) ≥ 0.1, and the probability of one-photon

pair production increases exponentially with increasing ǫ and transverse B.

The above assumes that the particles’ momenta are parallel to the photon’s

motion, i.e. E = 0. In the presence of a perpendicular electric field, these equations

are modified slightly (see Harding & Lai 2006).

The inverse process of single photon pair production is single photon pair an-

nihilation, in which an electron-positron pair annihilates to form a single photon.

This process is also allowed only in very strong magnetic fields (B ≥ 0.1Bc). The

rate of one-photon pair annihilation increases exponentially with increasing B, and

surpasses two-photon pair annihilation at B ∼ 1013G (Wunner 1979; Daugherty &

Bussard 1980).

2.1.6 Two-Photon Pair Production

Pair creation by two photons conserves both energy and momentum and therefore

can occur in the absence of a magnetic field, for sufficiently high photon energies.

For this process to occur, the product of the photon energies must exceed ≈ (mec
2)2

in the center of momentum (c.o.m.) frame, where me = 511 keV is the electron rest

mass. The exact expression defining the c.o.m. energy ǫCM is ǫ1ǫ2 ≥ 2ǫ2CM/(1−cos θ),

where all energies are in units of mec
2. For two-photon pair production to occur,

the threshold condition ǫCM > 1 must be met.

In a strong magnetic field, the energy and parallel momentum must be conserved:

ǫ1 + ǫ2 = En + En′ (2.35)

ǫ1 cos θ1 + ǫ2 cos θ2 = p+ q (2.36)

where θ1 and θ2 are the angles of the photons’ propagation relative to B. The
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requirement for production of a ground state pair is (Daugherty & Bussard 1980)

(ǫ1 sin θ1 + ǫ2 sin θ2)
2 + 2ǫ1ǫ2[1− cos (θ1 − θ2)] ≥ 4. (2.37)

The first term comes from the fact that only parallel momentum, and not perpendic-

ular momentum, must be conserved. This means that photons propagating parallel

to each other can pair produce, in contrast to a field-free space.

As for single photon pair production, the inverse of two-photon pair production

is the annihilation of a pair into two photons. This process is sharply cut off above

B ∼ 0.2Bc. Additionally, as B increases, an asymmetry in the energies of the

produced photons grows so that the process begins to resemble single photon pair

annihilation (Wunner 1979; Daugherty & Bussard 1980).

2.1.7 Photon Splitting

Photon splitting is a process by which one photon propagating through a strong

magnetic field divides into two or more photons. Although it conserves energy and

momentum in the absence of a field, photon splitting only occurs due to quantum

electrodynamical (QED) effects that are beyond the scope of this discussion. In

a weakly dispersive medium, three photon polarization modes are permitted by

QED: ⊥→‖‖, ‖→⊥‖, and ⊥→⊥⊥. The attenuation coefficient for each of these

polarization modes goes as

Rsp ∝ α3
fsǫ

5

(

B

Bc

)6

sin6 θ (2.38)

where αfs ≈ 1/137 is the fine structure constant, ǫ is the incident photon energy,

and θ is the angle of propagation relative to the field (Adler 1971; Baring 1991).

Photon splitting can occur at any photon energy, unlike pair production, which has

an energy threshold. At field strengths B ≫ Bc, (B/Bc)
6 → 1 and the rate becomes

essentially independent of B (Harding & Lai 2006).
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The fine structure constant is included in Equation 2.38 in order to point out the

dependence of the photon splitting rate on αfs. The rate is ∝ α3
fs, making photon

splitting a third-order process. Single photon pair production is instead a first-order

process; therefore, above the pair production energy threshold, in general the rate

of photon splitting is a factor of α2
fs ∼ 0.5× 10−4 smaller than that of single photon

pair production. However, because Rsp is so sensitive to B, in very strong magnetic

fields photons may split before reaching the pair production threshold (Baring 1991;

Harding et al. 1997). This is an important effect for particle acceleration and radi-

ation in the low-altitude, polar cap region of pulsar magnetospheres. Attenuation

via photon splitting becomes a dominant mechanism for B ≥ Bc (Baring & Harding

1998).

2.2 Pulsar Emission Models

According to Faraday’s law, a rotating magnetic field will induce an electric field,

∇×E+
∂B

∂t
= 0. (2.39)

For a star, rotating in a vacuum, whose magnetic field axis is inclined to the rotation

axis, the induced E has parallel and perpendicular components, E‖ and E⊥, to the

magnetic field. This result was shown by Deutsch (1955), who derived analytic

expressions for the electromagnetic field of a non-axisymmetric dipole field of a

finite-radius star rotating in a vacuum. Given this result, Goldreich & Julian (1969)

showed that for a fast-spinning pulsar with a typical surface field strength Bs ∼

1012G, the induced electric potential parallel toB exceeds the gravitational potential

and the work function of the surface material by many orders of magnitude. Particles

are pulled from the neutron star surface and accelerated along magnetic field lines

by the parallel component of the electric field, E‖ = E ·B/B. Thus, a neutron star
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cannot exist in a vacuum. If this process continues until the magnetosphere becomes

filled with charge, then E‖ = 0. The Lorentz force vanishes, and it follows that

E+ β ×B = 0, (2.40)

where

β =
v

c
=

Ω× r

c
(2.41)

is the normalized velocity of a point in the magnetosphere as it corotates with the

neutron star. Equation 2.40 is the condition defining the ideal force-free magne-

tosphere (Goldreich & Julian 1969). The accelerating field vanishes at the critical

charge density (Goldreich & Julian 1969)

ρGJ =
∇ · E
4π

≈ −Ω ·B
2πc

, (2.42)

commonly known as the Goldreich-Julian charge density.

In the Goldreich & Julian (1969) model, charge separation occurs due to the

outflow of negative charges in regions where Ω · B > 0 and the outflow of positive

charges elsewhere. The magnetosphere is split into four quadrants populated with

particles of the same charge, which alternates between quadrants. The regions are

separated by null charge surfaces (NCS) of Ω ·B = 0.

The force-free magnetosphere is fully conductive, and E‖ = 0; as a result, no

charge acceleration or radiation occurs in a force-free magnetosphere. However,

radiation is of course observed from pulsars, suggesting that regions of non-zero E‖

must exist and remain stable over long timescales. Several qualitatively different

emission models predicting the locations of these regions have been proposed, three

of which (Figure 2.1) will be discussed here. In the polar cap model, acceleration

takes place near the surface, over the polar cap. The outer gap model instead invokes

a narrow vacuum gap lying along the boundary between the open and closed field
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Figure 2.1: Illustration of the geometries of three emission models, two of which

are considered in Chapter 3. The polar cap (yellow) is a low-altitude model in

which particles are accelerated near the surface. The particles emit γ-rays, which

pair produce in the strong magnetic field; those particles then accelerate and

radiate, leading to further pair production. A pair production front is formed

above the polar cap, screening the electric field and preventing acceleration and

subsequent radiation at higher altitudes. Thus far, the LAT has only detected

emission from the outer magnetosphere, and the polar cap was therefore not

considered in this work. The slot gap (magenta) is an extension of the polar cap.

Emission occurs within the slot gap from altitudes near the neutron star surface

out to near, or perhaps even beyond, the light cylinder. The outer gap (cyan)

model has a different physical motivation, depending on a vacuum that forms

between the null charge surface, the boundary across which the net charge changes

sign (see Section 2.2.3), and the light cylinder, rather than on pair cascades and

electric field screening as in the polar cap and slot gap models. Figure provided

by A. K. Harding.
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lines (the “last open field lines”) at very high emission altitudes, near the light

cylinder. The slot gap model extends the polar cap accelerator to high altitudes, so

that acceleration and radiation occur in a narrow gap lying along the the last open

field lines. An emission model not discussed here that has gained traction in recent

years is that of the “separatrix layer,” or “annular gap” (Bai & Spitkovsky 2010a;

Du et al. 2010).

2.2.1 Polar Cap Accelerator

In polar cap emission models, charges are accelerated near the pulsar surface, above

the polar cap. Sturrock (1971) first proposed acceleration above the polar cap as a

means for producing γ-ray pulsar emission. He noted that little or no current density

should exist along the magnetic axis, and that at the outer edge of the polar cap,

where the open and closed field zones meet, there would be a high charge and current

density. Thus, E‖ 6= 0 above the polar cap, and E‖ → 0 along the last open field line

boundary. Although Goldreich & Julian (1969) found that the electric field induced

by the changing magnetic moment of a rotating neutron star would be sufficiently

large to pull charges from the surface and populate the magnetosphere, the lattice

structure of the neutron star surface (due to the strong surface magnetic field) leads

to the requirement that the surface temperature exceed the thermionic temperature

in order for particles to escape into the magnetosphere (Usov & Melrose 1995). Thus,

two main types of polar cap accelerators have been proposed: vacuum gaps, in which

the surface charge density ρ = 0 and E‖ 6= 0(Ruderman & Sutherland 1975), and

space-charge limited flow (SCLF) gaps (Arons & Scharlemann 1979; Harding &

Muslimov 1998), within which ρ = ρGJ at the surface. In the SCLF accelerator,

the surface E‖ = 0. The true charge density decreases with radius as ρ ∝ r−3,

faster than ρGJ, resulting in an electric field that grows with altitude according to
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Figure 2.2: A schematic showing the polar cap emission region, from Harding

(2009). In this figure, space-charged limited flow (SCLF) is illustrated: particles,

in this case electrons, are pulled from the neutron star surface by the very strong

E‖ (the electric field component parallel to the magnetic field lines). This builds

up a charge density ρ until ρ = ρGJ and E‖ = 0 at the surface. Above the

surface, ρ < ρGJ, and E‖ increases, accelerating the electrons along the magnetic

field lines. The electrons radiate γ rays, which propagate a short distance before

pair producing in the strong magnetic field. A pair cascade results as particles

produced in pairs also accelerate and radiate γ rays, which subsequently produce

new pairs. The pink curve marks the pair formation front (PFF), where the

particles that were formed in the cascades act to screen E‖ at higher altitudes.

This prevents acceleration and radiation above the PFF, allowing emission to

occur only near the neutron star surface.

∇ · E‖ = (ρ − ρGJ)/ǫ0. Measurements of neutron star surface temperatures find

T ∼ 106K (e.g., Pavlov et al. 2009), above the thermionic temperature for both

electrons and ions for surface magnetic fields Bs ≤ 1013G, suggesting SCLF is valid

at the polar caps of most pulsars.

The SCLF accelerator is populated with charges from the surface. For Ω ·B > 0,

electrons accelerate upward, while positrons accelerate downward (and vice versa

for Ω · B < 0). The upward-accelerating charges reach high enough Lorentz factors

to radiate γ-rays, which are beamed with a very small opening angle θ = 1/γ.

In very strong magnetic fields, γ-rays can pair produce if they cross the magnetic
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field lines. Because the photons are emitted essentially parallel to the field, they

must propagate a certain distance until the magnetic field line curvature becomes

significant, at which point the photons pair produce. The resulting particles are

then accelerated and radiate γ-rays, which also produce pairs. The net effect is a

cascade of pair production above the acceleration region, forming a pair formation

front (PFF) above which E‖ is screened (Arons & Scharlemann 1979; Harding &

Muslimov 1998). For Ω ·B > 0, electrons that reach the PFF continue outward into

the pulsar wind, while positrons formed near the PFF accelerate toward the pulsar

surface, heating the polar cap.

The pair cascades can result from pair production by photons that have gained

enough energy through inverse Compton scattering in the magnetosphere (IC; Sturner

et al. 1995), or by curvature radiation (CR; Daugherty & Harding 1982) photons

emitted by charged particles. The latter require much larger Lorentz factors in or-

der to pair produce, because for a given γ the peak CR energy, ǫ = 3λcγ
3/(2ρc) is

much lower than that of the IC peak energy (Harding & Muslimov 1998). Only in

the magnetospheres of very young and energetic pulsars can CR-emitting charges

achieve high enough energies to radiate photons that will pair produce in the field

(Harding & Muslimov 2001). The polar cap, heated by returning particles (Harding

& Muslimov 2001, 2002), radiates thermal X-ray emission at kT ∼ 0.2 − 0.3 keV

and has been observed for a number of pulsars (e.g., Pavlov et al. 2009).

There is a chance that photons emitted in the polar cap region, where the mag-

netic field is strongest, will undergo photon splitting before reaching the pair creation

threshold. The attenuation of γ-rays by photon splitting results in a reprocessed

phase-averaged γ-ray pulsar spectrum that has a sharper cutoff than the purely

exponential cutoff expected from CR (Harding et al. 1997). Phase averaged pulsar

spectra from the Fermi LAT instead show a sub-exponentially cutoff power law.
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This does not necessarily rule out γ-ray emission from the polar cap, but implies

that if polar cap emission is present, it is not dominant at LAT energies. The emis-

sion seen by the LAT must come from the outer magnetosphere so as to not be

attenuated. For this reason, we do not include the polar cap model in our light

curve fits of Chapter 3.

2.2.2 Slot Gap Accelerator

The slot gap model extends the low-altitude polar cap acceleration region to higher

altitudes in a narrow gap that follows the last open field lines to radii near the light

cylinder. The original model (Arons & Scharlemann 1979) did not include general

relativistic effects, and was able to produce radiation only along certain preferred

field lines for relatively high inclination angles. This model was revised by Muslimov

& Harding (2003) to include relativistic frame dragging (Muslimov & Tsygan 1992a)

and to correctly treat the boundary conditions of the gap (E‖ = 0 along both edges).

The slot gap emission region was extended to near the light cylinder by Muslimov

& Harding (2004). Preferred field lines were found to be no longer required for

high-energy radiation to be produced in the slot gap.

The physical motivation for a slot gap rather than only a polar cap acceleration

region is that, because E‖ = 0 at the polar cap boundary, there must be a tapering of

E‖ near the polar cap rim rather than a sudden drop to zero (Arons & Scharlemann

1979). As a result of the decreasing E‖ toward the polar cap rim, charges that are

accelerated near the edge of the polar cap must travel to higher altitudes in order

to achieve Lorentz factors sufficient for the emission of γ-ray photons. The PFF

produced by pair production cascades is thus extended to much higher altitudes,

and γ-rays are emitted across a broad range of emission radii.
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Figure 2.3: A schematic showing the slot gap emission region, from Muslimov

& Harding (2003). The outer-most boundary is the boundary between the open

and closed field line regions, defining the polar cap on the neutron star surface.

The vertical arrow labeled µ is the magnetic moment. The pair formation front,

labeled PFF, is formed from pair production of γ-rays in the strong magnetic

field. The PFF occurs at low altitudes across most of the polar cap, but extends

to higher altitudes near the polar cap rim, forming the region of nonzero E‖

which is the slot gap. The central magnetic field line is labeled ξ0,SG, and the

width of the gap is ∆ξSG (Muslimov & Harding 2003). The gray cylinder at

low altitudes shows emission from polar cap pair cascades, while the gray ring at

higher altitudes shows a cone of emission from the slot gap.
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Figure 2.4: A schematic of the pulsar magnetosphere, with null charge surfaces

(NCSs, dotted lines) and outer gaps (shaded regions). Charge separation occurs

along the NCS (Goldreich & Julian 1969). Oppositely charged particles on oppo-

site sides of the NCS are attracted, while particles of the same charge are repelled,

opening a vacuum region called an outer gap. The outer gap extends from radius

ri, the intersection between the NCS and the last closed field line, out to the light

cylinder (RL in this figure). This figure was modified from the original Figure

18.2 of Cheng (2009).

2.2.3 Outer Gap Accelerator

The outer gap model (Cheng et al. 1986a,b; Romani 1996) is fundamentally different

from the previous models, as it does not rely on particle acceleration near the stellar

surface. In this model, particles are accelerated in a narrow region that begins near

the intersection of the null charge surface (NCS), defined by Ω · B = 0) and the

open field line region. The NCS forms a boundary between regions of oppositely
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charged particles in the magnetosphere. Figure 2.4 illustrates the four neighboring

regions of opposite charge that are separated by NCSs, shown as dotted lines, and

the resulting outer gaps (shaded regions). The gap forms as follows: Part of the

open field zone lies below the NCS and above the closed field line region. In the

region on the right-most side of the figure, for example, Ω ·B < 1 and the charges

contained in the region are positive (positrons). The positrons are drawn to the

electrons in the neighboring region. Any electrons in the region will be repelled and

flow away from the NCS. This causes a vacuum to form between the NCS and the

closed field line region. This vacuum region is the outer gap; it extends from the

intersection of the NCS and the last closed field line out to the light cylinder.

Particles that cross into the outer gap are accelerated to high energies and ra-

diate through curvature radiation. The radiated γ-rays produce pairs that radiate

synchrotron and inverse Compton-scattered photons (Cheng et al. 1986b). Alter-

natively, the pairs produce γ-rays through inverse Compton scattering of thermal

photons from the surface. The pair production front that forms limits the width of

the gap.

2.3 The Pulsar Magnetosphere

The true pulsar magnetosphere has a field structure that is intermediate between the

two extremes of the vacuum and force-free fields. In the absence of a self-consistent

solution describing the physical E and B in a pulsar magnetosphere, the vacuum

and force-free field solutions are used as approximations.
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2.3.1 Vacuum Approximation

Before the force-free solution was found, the vacuum field was used as an approx-

imation to the field of a charge-filled magnetosphere. The static vacuum dipole is

the same as the non-rotating dipole field, and is rigidly attached to the rotating

pulsar:

B =
1

r3
[3(µ · r)r− µ] (2.43)

where µ is the dipole moment and r is a radial unit vector. For pulsar rotation

about the z axis, µ evolves as

µ(t) = µ(sinα cosΩtx̂+ sinα sin Ωtŷ + cosαẑ) (2.44)

where Ω is the angular rotation velocity and α is the magnetic inclination (the angel

between the magnetic and rotation axes). This solution is not valid as r → RLC,

because in order to corotate with the pulsar, the rotation velocity must exceed the

speed of light outside RLC. Thus, the magnetic field lines must be swept back at

large radii, introducing a toroidal component to the field.

The full solution of the dipole rotating in a vacuum is that of the retarded dipole,

B = −
[

µ(t)

r3
+

µ̇(t))

cr2
+

µ̈(t)

c2r

]

+ rr ·
[

3
µ(t)

r3
+ 3

µ̇(t)

cr2
+

µ̈(t)

c2r

]

(2.45)

At low altitudes, the retarded field is approximately that of the static dipole.

The finite size of the star slightly alters the magnetic field structure. The vacuum

retarded dipole field of a star with finite radius R and misaligned rotation and

magnetic axes was solved analytically by Deutsch (1955). The Deutsch solution for

B is generally used as an approximation to the pulsar magnetic field in light curve

simulations, including those of Chapter 3.

The polar cap rim is defined as the location of the boundary between the open

and closed field lines at the stellar surface. Because of rotational sweepback, the
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Figure 2.5: The polar cap is distorted due to magnetic sweepback of the field

lines near the light cylinder. The distortion is more apparent in the vacuum field,

the polar caps of which are plotted with dot-dashed lines. At large inclination

angles, the notch and other critical point become more pronounced. The polar

cap of the force-free field is shown with the solid line. The color shows the current

to flux ratio on the pulsar surface, which is not discussed here. This figure was

reproduced from Bai & Spitkovsky (2010a).

polar cap is distorted. Specifically, the polar cap shape is that of two different curves

that meet at critical points on the star surface: the field lines emerging from each

curve form a different spiral pattern tangent to the light cylinder (Yadigaroglu 1997;

Dyks et al. 2004). The critical points were resolved by Dyks et al. (2004), and one

was shown to be a discontinuous “notch” that is likely smoothed out in the physical

magnetosphere (Figure 1 of Dyks et al. 2004). The polar cap shapes for different

magnetic inclinations are shown in Figure 2.5 (Bai & Spitkovsky 2010a).

2.3.2 Ideal Force-free Field Solution

Goldreich & Julian (1969) postulated that the electric field induced by a rapidly

rotating, highly magnetized neutron star will pull charges from the surface of a

neutron star, populating the magnetosphere to a maximum charge density. They

introduced a series of force-free equations to describe the pulsar magnetosphere. In
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particular, the ideal force-free solution requires

E+ (β ×B) = 0, (2.46)

ρE+
j×B

c
= 0 (2.47)

where the second equation is referred to as the “force-free condition”, and satisfies

E · B = 0 everywhere; β ≡ (Ω × B)/c. In the force-free field, the critical charge

density is (Gruzinov 2006; Bai & Spitkovsky 2010a)

ρ =
∇ ·E
4π

= −Ω ·B
2πc

+
β · (∇×B)

4π
(2.48)

which equals the value of the Goldreich-Julian charge (Goldreich & Julian 1969)

under the assumption of charge separation (Bai & Spitkovsky 2010a).

In seeking a solution to the force-free field, Scharlemann & Wagoner (1973) and

Michel (1973) derived the pulsar equation, which specifies the poloidal magnetic

flux of an axisymmetric rotator and thus the structure of the (time-independent)

axisymmetric magnetosphere:

(1− x2)

(

∂2Ψ

∂x2
− 1

x

∂Ψ

∂x
+

∂2Ψ

∂z2

)

− 2x
∂Ψ

∂x
= −R2

LCA
∂A

∂Ψ
(2.49)

where x ≡ R/RLC and z ≡ Z/RLC in a cylindrical coordinate system (R, φ, z); Ψ is

the magnetic flux; and A(Ψ) is a function describing the current distribution in the

magnetosphere. Note that the vacuum field is a special case of the pulsar equation,

in which A(Ψ) = 0. A self-consistent solution to this equation remained elusive for

many years due to an apparent discontinuity in the magnetic field across the light

cylinder (Michel 1982). The time-independent solution of the ideal force-free field

was finally found by Contopoulos et al. (1999), and was reproduced and revised

by a number of authors (Goodwin et al. 2004; Gruzinov 2005; Contopoulos 2005;

Timokhin 2006).
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Time-dependent force-free field solutions were explored by, e.g., Komissarov

(2006) and McKinney (2006). Spitkovsky (2006) was the first to find a solution

to the three-dimensional, time-dependent force-free equations. He treated force-

free electrodynamics (FFE) as the low-inertia limit of magnetohydrodynamics, as

in (Komissarov 2002). In this limit, Equation 2.47 is satisfied. For a perfectly

conducting plasma satisfying the force-free condition, Maxwell’s equations are (e.g.,

Blandford 2002):

1

c

∂E

∂t
= ∇×B− 4π

c
j,

1

c

∂B

∂t
= −∇×E, (2.50a)

j =
c

4π
∇ · EE×B

B2
+

c

4π

(B ·∇×B− E ·∇×E)B

B2
. (2.50b)

Spitkovsky (2006) solved these equations using a finite-difference time domain

method (FDTD; Yee 1966), but did not run the simulations long enough to reach a

steady-state solution. Kalapotharakos & Contopoulos (2009) implemented the same

FDTD method, with the additional use of the Perfectly Matched Layer technique

(Berenger 1994, 1996). Their simulations were able to run for a longer time and

converge to a steady state; their results agreed qualitatively with those of Spitkovsky

(2006).

Some notable features of the force-free solution are that an aligned rotator with

a force-free magnetosphere has a non-zero Poynting flux due to the current, unlike

the aligned rotator in the vacuum field; the poloidal field lines in the open field

line zone are straightened by current loading; the force-free toroidal fields are more

tightly wound than in the vacuum field; and |B| falls off more slowly with radius in

the force-free field than for the vacuum dipole.
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2.3.3 Realistic Pulsar Magnetospheres

Recently, finite-conductivity fields were introduced as self-consistent solutions to

the pulsar equation by Kalapotharakos et al. (2012b) and soon after by Li et al.

(2012). These resistive solutions lift the requirement that E · B = 0 everywhere.

One prescription for the current density is

j = cρ
E×B

B2
+ σE‖ (2.51)

(Case B of Kalapotharakos et al. 2012b), introducing a finite conductivity σ and

nonzero E‖ to Equation 2.47. Kalapotharakos et al. (2012b) find that the resistive

solution naturally introduces a non-zero E||.

2.4 High-Energy Pulsar Light Curves from Outer

Magnetosphere Models

In the next chapter, I present model light curves that were simulated from geomet-

rical representations of the slot gap and outer gap models, using both the vacuum

(Deutsch 1955) and force-free (Kalapotharakos & Contopoulos 2009) prescriptions

for the magnetic field. The light curves are formed from emission occurring over a

wide range of altitudes. Morini (1983) showed that the combined relativistic effects

of light travel time and aberration of the direction of photon propagation result in

photons, with different phases in the corotating frame, spreading out in phase on

the leading side of the polar cap and bunching in phase on the trailing side, in the

observer frame. (The “leading side” refers to the side of the polar cap where the

direction of the magnetic field lines is the same as the direction of rotation, while the

“trailing side” has field lines pointed in the opposite direction to the rotation. In the

open volume coordinates introduced in Chapter 3, these respectively correspond to
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azimuthal angle φ = 90◦ and 270◦ around the polar cap rim.) Aberration and light

travel time each alter the photons’ phases by −rem/RLC, where rem is the radius

from the neutron star center at which a photon is emitted; together, they change

the photons’ phases by −2rem/RLC. These combined changes in phase cancel the

changes in phase resulting from emission along the curved dipole field on the trail-

ing edge of the polar cap. The outcome of this is the formation of light curves with

caustic peaks, in which the photons from the trailing edge are observed to arrive at

the same rotational phase.

Modeling the light curves from different emission models, assuming geometry is

the most important effect for the light curve shapes, allows constraints to be placed

on the emission geometry, in particular the magnetic inclination angle and observer

viewing angle. This method has been used by a number of authors (Dyks & Rudak

2003; Dyks et al. 2004; Watters et al. 2009; Venter et al. 2009; Romani & Watters

2010; Johnson 2012) for both young/normal and millisecond pulsars. Incorporating

radiation physics into the simulations allows modeling of the energy-dependent light

curves and spectra (Harding et al. 2008).

The emission models described above have the following limitations. The polar

cap model requires the observer to have a small viewing angle β relative to the

magnetic axis in order for high-energy pulses to be observed. This implies that

almost all γ-ray pulsars would also be radio pulsars, which is not the case. The

outer gap model has no low-altitude emission, which results in the need for high

inclination angles in order to observe emission from outer gaps over all observer

angles ζ . The outer gap does produce lower off-peak emission than the slot gap as

a result of the absence of low-altitude emission. However, it tends to be unable to

reproduce wings seen at the edges of light curve peaks. The slot gap over-predicts

the level of off-peak emission because it has emission at low altitudes in addition
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to the high altitudes. It produces emission over the full (α, ζ) space, so there is no

inherently preferred magnetic inclination or viewing angle.
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Chapter 3

Modeling the Light Curves of

Fermi LAT Pulsars

The high-energy pulsar emission models discussed in Chapter 2 produce a variety of

light curve shapes. A way of testing which emission model is correct is to compare

pulsar light curves predicted by the models to those that have been observed by

the Fermi LAT. A physical emission model that correctly characterizes the gener-

ation and propagation of γ-rays in the pulsar magnetosphere should reproduce the

high-energy light curves and spectra (phase averaged and resolved) observed from

γ-ray pulsars. Such a model would include the physics of pulsar magnetospheres, for

example magnetospheric currents, particle acceleration, and radiation. These pro-

cesses are not well understood. An alternative approach to studying pulsar emission

is to assume that the geometry of the emission region in the pulsar magnetosphere

and its orientation relative to the observer’s line of sight is largely responsible for the

major features in the energy-integrated HE light curves. This is the approach taken

by, e.g., Venter et al. (2012) and Romani & Watters (2010) and Johnson (2012)

in order to constrain pulsar emission geometries, and is the approach taken here.
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Geometrical modeling simplifies the problem and allows one to study the size and

location of the emission region. Knowledge of the emission geometry can later be

used to guide physical models of pulsar emission.

In this chapter, I describe modeling the light curves of four bright γ-ray pulsars,

Vela, Geminga, Crab, and PSR J0007+7303, the pulsar in the CTA 1 supernova

remnant. These light curves were modeled using geometrical representations of

the slot gap and outer gap emission models; for the slot gap, both azimuthally

symmetric and asymmetric geometries (offset dipole; Harding & Muslimov 2011a,b)

were used. The geometries of both the vacuum and force-free magnetic fields were

used as well. As will be described in the results sections, there are multi-wavelength

constraints on the viewing geometry of the Vela and Crab pulsars, as well as other,

looser constraints on other emission geometry parameters for the other pulsars. In

modeling the light curves, no prior knowledge of the emission or viewing geometry

is included. Instead, the best-fit geometrical parameters are found from the γ-ray

light curve fits, and are then compared with the multi-wavelength constraints. In

this way, an independent estimate of the emission geometry is found, and it is then

possible to determine how well or how poorly light curve modeling reproduces the

results found from other methods. Additionally, some groups (e.g., Venter et al.

2012) model both the radio and γ-ray light curves. To do this, an empirical model

of the radio emission is used. In this work, only the γ-ray light curves are modeled.

The γ-ray emission geometries are motivated by physical models, and may be biased

toward unphysical geometries through the use of empirical radio emission models.

Modeling only the γ-ray emission may lead to more accurate determinations of the

emission geometry, which may pave the way for improved, possibly physical, models

of the radio emission.

The light curve modeling results of PSR J0007+7303, using only the vacuum
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field and the outer gap and symmetrical slot gap geometries, were published in

Abdo et al. (2012). The new results for PSR J0007+7303, as well as the modeling

results for the other three pulsars, will be presented in DeCesar et al. (2013a, in

preparation).

3.1 Light Curve Modeling Procedure

To model LAT pulsar light curves, I simulated high-energy light curves from geo-

metrical representations of the outer gap and slot gap emission models using a code

developed by J. Dyks and A. Harding. These simulations were performed within two

magnetic field geometries: the vacuum retarded dipole field, the analytic solution of

which is given by Deutsch (1955), and the force-free field, for which a solution was

found by several authors (Spitkovsky 2006; Kalapotharakos & Contopoulos 2009).

We incorporated the force-free solution of Kalapotharakos & Contopoulos (2009)

into the simulations. The model light curves were fit to light curves of γ-ray pulsars

observed by the Fermi LAT using a Markov Chain Monte Carlo maximum likelihood

fitting routine.

Light curves generated in the force-free field have not been fit to observed light

curves prior to this work. Thus, we obtain the first geometrical parameters for

pulsars with force-free magnetospheres, the configuration of which is believed to be

more physical than the vacuum dipole approximation (Goldreich & Julian 1969).

We also fit light curves from the slot gap with offset dipole for the first time. Addi-

tionally, our light curve modeling differs from efforts like those of Romani & Watters

(2010) in that we have more free geometrical parameters, particularly the gap width

and the maximum emission radius. Recent work by, e.g., Johnson (2012) allows sim-

ilar freedom in the parameters; they also employ a MCMC to explore the parameter
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space.

The details of our modeling are described in the following sections.

3.1.1 Light Curve Construction

I constructed the light curves of the Vela, Geminga, and Crab pulsars using 30

months of LAT data, taken between 2008 August 4 and 2011 February 12 (MJD

54682.6–55064, or MET 239557417–319161600), which had been processed with the

Pass7 V6 instrument response functions (IRFs). Only “source” class events within

< 100◦ from the LAT zenith were used in the dataset; this zenith cut was used to

avoid contamination of the dataset by photons from the Earth limb. The events were

filtered using gtmktime to determine good time intervals; the filter used was that

recommended by the Fermi Science Support Center 1 (FSSC), DATA QUAL==1 &&

LAT CONFIG==1 && ABS(ROCK ANGLE)<52. The Tempo2 fermi plug-in was used to

assign a pulse phase to each event in the dataset of each pulsar, based on the pul-

sar’s timing solution. The timing solutions were derived using only LAT counts, as

described in Ray et al. (2011b), and were valid for the full length of our observations.

The energy-dependent Region of Interest (ROI) for bright pulsars, adapted by,

e.g., Abdo et al. (2010b), was used to determine which γ-ray events would be con-

tained in the light curves. This ROI is given by

θ < max[1.6− 3log10(EGeV), 1.3] . (3.1)

All counts falling within an angular distance θ from the given pulsar were binned in

pulse phase to make the light curves.

The Vela pulsar light curve was made using fixed count binning as in Abdo et al.

(2010b), in which phase bin edges are defined such that each phase bin contains the

1http://fermi.gsfc.nasa.gov/ssc/
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same number of γ-ray counts. For Vela, each bin contains ∼ 3000 counts. The bins

are narrowest in the peaks, allowing very fine features of the light curve to be seen.

The phase resolved spectrum of Vela (Chapter 4) has the same fixed-count bins as

the light curve used in the modeling in this chapter. Fixed-count light curves of

Geminga and Crab were also made in order to model their phase resolved spectra.

However, these light curves had many fewer bins than Vela, so light curves with

fixed-width bins were used for the light curve modeling. Geminga’s light curve was

binned in order to match the phase bins of the simulated light curves, which have

180 bins of width 0.005556, and the Crab’s light curve has 90 bins such that the

simulated light curves are easily re-binned to match the data.

For PSR J0007+7303, I used the light curve from Abdo et al. (2012). This light

curve was made from 2 years of data (2008 August 4 to 2010 August 4) that had

been processed with the Pass6 V11 IRFs. The same zenith and good time interval

cuts as described above were made to this dataset. All γ-ray events within 1.6◦ of

the pulsar’s timing position were used to make the light curve; this angular radius

was chosen because it maximized the signal-to-noise of the pulse. The light curve

was binned into 32 fixed-width phase bins.

The background level for each pulsar light curve was found using gtsrcprob,

which calculates the probability that a given event originated from the pulsar of

interest. The probability is based on the radial distance from the event to the

source position and on the source’s phase averaged spectrum (Section 4.1). This

value is important for light curve modeling, as it defines the number of counts that

are not due to pulsed magnetospheric emission, and must be subtracted from the

light curve prior to fitting. Table 3.1 lists the background count level and other

relevant information about the pulsar light curves.
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Table 3.1. Light Curve Characteristics

Pulsar Nbins Background Level

Vela 156 88430.8a

Crab 90 656.9
Geminga 180 182.1

PSR J0007+7303 32 195.0

Note. — The number of bins and the
background count level, determined using
gtsrcprob, for each pulsar light curve. aThe to-
tal counts and background level of Vela are not
really in units of γ-ray counts, but rather in units
of counts per bin width. The Vela light curve has
fixed-count bins of ∼ 3000 counts per bin, so the
phase bins are defined in this way and therefore
have different widths. To build the light curve,
the counts must be divided by the width of the
bin.

3.1.2 Light Curve Simulations

We simulated the high-energy light curves with geometrical representations of the

slot gap and outer gap emission zones within the vacuum retarded dipole and ideal

force-free field geometries, described above. The simulations were performed for a

neutron star with radius R = 106 cm and spin period 0.1 s, using the toypol code

developed by Dyks & Rudak (2003) and Dyks et al. (2004) and modified by A.

Harding to allow for magnetic field configurations other than the vacuum retarded

dipole. The spin period does not have a significant effect on the phase plots, so

a single set of simulations can be used for comparisons with any young/normal

pulsar (millisecond spin periods do significantly change the emission pattern, so

these simulations cannot be used for light curve modeling of millisecond pulsars).

The code is described below, but more details can be found in Dyks et al. (2004).
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The simulations begin with a Runge-Kutta integration along the magnetic field

lines to determine the boundary between open and closed field lines, i.e., field lines

that respectively close outside or inside the light cylinder radius, RLC. (This bound-

ary is also referred to as the last open field line. In reality, field lines that do not

close within the light cylinder may remain open and extend outward to connect

with the pulsar wind.) The rim of the polar cap (PC), which separates the open

and closed zones, is found in this way. One or more rings of open field lines, which

are anchored to the surface of the star along and/or interior to the PC rim, are

defined as the field lines along which the emission will be calculated.

The polar cap rim and the “footpoints” (Dyks et al. 2004) of the field lines are

defined in open volume coordinates. This coordinate system is defined in terms

of the PC rim rather than the magnetic pole, as the symmetry of the magnetic

field around the dipole axis breaks down with the introduction of rotation. Such

coordinate systems were introduced by Yadigaroglu (1997) and Cheng et al. (2000),

but these still contained reference to the magnetic pole. Dyks et al. (2004) redefined

the open volume coordinate system with the coordinates (rovc, lovc), which are used

to identify points on the stellar surface independently of the magnetic pole’s location.

The first coordinate rovc = 1±dovc, where dovc is the minimum distance from a given

point on the stellar surface to the PC rim, normalized by the standard PC radius

rPC = (ΩR3
NS/c)

1/2. The second coordinate lovc of a point at rovc is the length of the

arc “measured along the deformed ring of fixed rovc at which the point lies” (Dyks

et al. 2004) in the direction of increasing azimuth angle φm, where lovc = 0 at φm = 0.

The “deformed ring” refers to the shape of the polar cap, which is circular for an

aligned rotator but is distorted and shifted with respect to the magnetic pole for

non-zero magnetic inclination angles α (Section 2.3; Yadigaroglu 1997; Dyks et al.

2004).
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The photon emission from electrons traveling along each field line is calculated

in the corotating frame (CF) and then transformed to the inertial observer’s frame

(IOF). The field lines are divided into small segments, and their positions correspond

to the positions of emission, r′em. The direction of the emission, η̂′
em is assumed to

be the same direction as the electron’s velocity, and is therefore defined as tangent

to the magnetic field line in the CF. The emissivity is assumed to be uniform along

the magnetic field lines, which is reasonable given that the electron energy will

be ∼ constant over a wide range of emission altitudes in the regime of curvature

radiation reaction. To obtain uniform emissivity, the intensity of emission from a

given segment is defined as the length of that segment. The emission is calculated

from field line segments out to a user-defined maximum radius r, measured in units of

RLC, beyond which the emissivity is zero. The emission calculation is also restricted

in the direction perpendicular to the rotation axis within a cylinder of radius rcyl

from the neutron star center, such that the emissivity drops to zero for r > rcyl.

To assign an observed rotation phase to the photons, the emission direction must

be transformed from the CF to the IOF, and the photon travel time from different

positions in the magnetosphere must be taken into account. In the IOF, the position

of an emission point is rem and the photon direction is η̂. The observed photon phase

is

φ = −φem + φd (3.2)

where φem is the phase of η̂ and φd is the delay in rotational phase due to light travel

time,

φd = −rem · η̂/RLC . (3.3)

62



−100 0 100
Phase

0

50

100

150

O
bs

er
ve

r 
C

ol
at

itu
de

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.1: Left: An example of an emission pattern from a pulsar with α = 80◦.

Right: A cut across the emission pattern at observer angle ζ = 50◦ yields a

double-peaked light curve.

The IOF and CF are related by a coordinate transformation in rotation,

x′ = x cos Ωt+ y sinΩt,

y′ = −x sin Ωt + y cosΩt,

z′ = z,

t′ = t .

To account for special relativistic aberration of the direction of photon propagation,

a Lorentz transform is used to find η̂ in the IOF,

η̂ =
η̂′ + [γ + (γ − 1)(β · η̂′)/β2]β

γ(1 + β · η̂′)
(3.4)

where β = v/c is the local corotation velocity and γ = (1− β2)−1/2.

Once the photons have been assigned a phase, they are accumulated in bins

of phase φ and observer viewing angle (colatitude) ζ = (ηem)z. The resulting two-

dimensional emission intensity pattern I(φ, ζ) is shown in Figure 3.1. Cutting across

a single line of sight ζ results in a light curve.
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3.1.3 Emission Geometries

We use geometrical representations of the outer gap (OG; Romani 1996) and slot gap

(SG; Muslimov & Harding 2003, 2004) models in our light curve simulations. Two

versions of the slot gap are used—the standard slot gap with azimuthal symmetry in

emissivity around the polar cap rim (sSG), and a slot gap with an offset dipole that

has azimuthally asymmetric emissivity (aSG; Harding & Muslimov 2011a,b). Both

the OG and SG models were motivated by the need for regions of charge depletion

in an otherwise charge-filled magnetosphere so that particle acceleration can take

place. These models are described in Chapter 2.

For the outer gap model, the emission occurs along the inner edge of the vacuum

gap. In this work, this emission is treated as lying along a single field line in the

simulations. The slot gap geometry used here is the same as the two-pole caustic

(TPC) model (Dyks & Rudak 2003), which is a geometrical rendition of the slot

gap model, and was used by Dyks et al. (2004) to reproduce the γ-ray light curve of

Vela. Dyks et al. (2004) allowed emission out to a cylindrical radius rcyl = 0.95RLC.

More recently, Romani & Watters (2010) fit 1-year LAT light curves of some of the

brighter pulsars from the first Fermi pulsar catalog (The Fermi-LAT Collaboration

2013) with the TPC model, but they used rcyl = 0.75RLC and were not able to obtain

a good fit to the light curve. In our simulations, we return to rcyl = 0.95RLC, and

we refer to the model as the slot gap rather than the TPC to avoid confusion.

The differences between the OG and SG geometries in our simulations are (1)

the SG extends from the neutron star surface, while the OG begins at the null

charge surface, defined by Ω · B = 0 for the vacuum field and ∇ · E = 0 for the

force-free field (see Chapter 2); (2) there is emission throughout the gap in the SG,

while emission from the OG is restricted to a single field line on the inner edge of
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the gap (the field line closest to the magnetic pole that is still contained within the

gap width); and (3) the emission extends closer to the light cylinder in the OG than

in the SG.

The azimuthally asymmetric slot gap geometry represents the slot gap with an

offset polar cap from Harding & Muslimov (2011b) (their Case “B”). Physically,

the polar cap is shifted or offset in the trailing direction (opposite the direction of

rotation) due to the sweepback of the magnetic field lines near the light cylinder.

This property of the polar cap was noted by Dyks & Harding (2004), and its effect

on E|| was explored by Harding & Muslimov (2011a,b). They found that particles

can reach higher Lorentz factors from a larger E|| on the trailing side of the polar

cap, which affects the light curves by enhancing the peaks and reducing the off-peak

emission (Harding et al. 2011). Note that because the dipole offset is a surface and

low-altitude phenomenon, the azimuthal asymmetry is considered only in the slot

gap geometry and not in the outer gap.

In the limit of curvature radiation reaction (CRR), the emissivity E ∝ E||. The

emissivity varies with the azimuthal magnetic field coordinate φ as

E ∝ θ 2a
0

(1 + a)2
(3.5)

where a = ǫ sinφ and 0 ≤ ǫ < 1 is the offset parameter (Harding & Muslimov

2011a). The amount ∆rPC by which the polar cap is shifted/offset is not a free

parameter in the light curve fits, but rather is determined numerically by the light

curve simulation code, and increases with increasing magnetic inclination angle α.

Its value is given by

∆rPC ≃ RNSθ0(1− θǫ0) (3.6)

(Harding & Muslimov 2011a). Here θ0 = (ΩRNS/c)
1/2 is the half-angle of the static

polar cap, Ω is the rotation rate, and RNS the neutron star radius. As described

65



in Section 3.1.2, the first step in the light curve simulation is to trace the magnetic

field lines to the surface to find the polar cap rim, which is naturally distorted due

to the sweepback of the field lines at higher altitudes; rPC is determined by this

calculation of the polar cap rim. The offset parameter is then given by

ǫ = − log (Rφ/RPC)/ log θ0 (3.7)

where Rφ is the radius of the polar cap at azimuthal angle φ. The maximum offset

occurs at φ = 270◦, corresponding to the trailing edge of the polar cap where the

caustic peaks are formed; rPC and ǫ are therefore evaluated at φ = 270◦.

3.1.4 Magnetic Field Geometries

In this work, we model the LAT light curves with the geometrical emission regions

discussed in Section 3.1.3 and with two magnetic field geometries, those of the vac-

uum retarded dipole (VRD, Deutsch 1955) and of the ideal force-free (FF) field

solution from Kalapotharakos & Contopoulos (2009). The core differences between

the VRD and FF solutions that affect the simulations’ output are that the magnetic

field strength along a field line is larger for a given radius in the FF field than in

the VRD; the FF field lines are straighter in the poloidal frame due to current load-

ing, causing the larger magnetic field strength as well as larger radii of curvature

of the magnetic field lines; and the FF field has more tightly wound toroidal field

lines, leading to a larger polar cap offset and therefore γ-ray peaks arriving later

in phase. The true configuration of the pulsar magnetic field must lie somewhere

between the VRD and ideal FF solutions. In using the VRD and ideal FF solutions

in our simulations, we are treating them as the two extremes of pulsar magnetic field

structures, and we are testing whether one field leads to better predictions of the

observed light curves than the other. For the vacuum field, we employ the Lorentz
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transformation of the field from the inertial observer to the corotating frame pointed

out by Bai & Spitkovsky (2010b). The FF field was incorporated into the toypol

code by reading numerical tables of the B and E field components and performing

3D interpolation to obtain the field vector at a given point. The numerical tables

were generated by C. Kalapotharakos, using the method of Kalapotharakos & Con-

topoulos (2009). Below an altitude of 0.2RLC, the field was defined to be a vacuum

retarded dipole, which was then smoothly connected to the FF solution between

altitudes 0.2–0.4RLC. We note that our modeling done with the force-free solution

is distinct from the modeling presented in Romani & Watters (2010), in which a

“pseudo-force-free” solution was used.

3.1.5 Geometrical Parameters and Simulated Light Curves

The light curve simulation code takes as input the magnetic inclination angle α,

the maximum allowed emission altitude r, the maximum cylindrical radius rcyl, and

the width of the emitting gap w. These geometrical parameters are illustrated in

Figure 3.2. The radii are in units of RLC. The width corresponds to the distance,

in units of the open volume coordinate rovc, between the polar cap rim and the

innermost ring of emitting magnetic field lines rin, thus w = 1−rin. For the slot gap

geometry, all of the field lines within the gap emit photons, while in the outer gap

geometry the gap is a vacuum and only the innermost field line produces emission.

The implementation of these emission model geometries and of the vacuum and

force-free magnetic fields are described in the following sections.

The light curves were simulated for magnetic inclinations 0◦ ≤ α ≤ 90◦ with

resolution 1◦ in the vacuum field and 5◦ in the force-free field; in the latter case, the

minimum α is 5◦. The FF simulations, for which the magnetic field data points were

provided by C. Kalapotharakos, have lower resolution in α because the numerical
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Figure 3.2: A schematic showing the geometrical emission regions and parameters

used for the light curve simulations. The red region along the boundary between

the open and closed field lines represents the slot gap emission zone, while the

blue regions show the outer gap. The slot gap width, shown by w at the top

left of the figure, extends from the polar cap rim to an open field line specified

in a given simulation; emission occurs throughout the slot gap width. In the

outer gap case, w is the width of the blue regions, extending from the polar cap

rim to a given open field line. The dark blue region shows the location of the

outer gap emission region, which in our simulations has zero width, meaning the

emission occurs along a single field line at the outer edge of the gap. The light

blue region is the remainder of the gap, which is a vacuum. For both emission

geometries, the width was held constant with emission radius. Four parameters

were varied in the simulations: the magnetic inclination angle α, the observing

viewing angle (or pulsar colatitude) ζ, the width of the acceleration gap w, and

the maximum height to which emission is followed by the simulation, r. The fifth

fitting parameter, not shown here, is the amount by which the simulated light

curve is shifted in order to best match the observed light curve, as described in

Section 3.1. The additional parameter shown here is the cylindrical radius rcyl,

which was fixed at 0.95RLC for the slot gap geometry and as close to 1RLC as

was possible for the outer gap (see the text in Section 3.1.2 for details).
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Figure 3.3: A light curve atlas demonstrating the many shapes of light curves over

the α-ζ space. These light curves were simulated using w = 0.05 and r = 1.0RLC.

magnetic field simulations from which we obtained the B were very computationally

intensive. The range of α was chosen because the emission patterns of simulations

with α and 180− α are identical, save for a 180◦ phase shift.

The model gap widths were w = [0, 0.01, 0.02, . . . , 0.09, 0.1, 0.12, 0.14, . . . , 0.3],

corresponding to rin = [1, 0.99, 0.98, . . . , 0.91, 0.9, 0.88, 0.86, . . . , 0.7]. For the OG

model, the maximum emission radius r = [0.9, 1.0, . . . , 2.0]RLC, while for the SG

models r = [0.7, 0.8, . . . , 2.0]RLC in order to probe the effects of low- vs. high-
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altitude emission. The value of rcyl is fixed at 0.95RLC for the slot gap geometry,

and ranges from 0.97–1.0RLC for the outer gap. This range in values is due to

intricacies of the code: at large values of r, the cylindrical radius must be decreased

in order to find the polar cap rim.

The intensity pattern I(φ, ζ) is output every 2◦ in phase for −180◦ ≤ φ ≤ 180◦

(simply due to a convention in the code) and with 1◦ resolution in observer colatitude

for 0.5◦ ≤ ζ ≤ 179.5◦. The light curves have a similar symmetry in ζ as the emission

pattern has in α—they are identical except for a 180◦ phase shift between light

curves of ζ and 180◦ − ζ . For this reason, we only considered the range of observer

colatitudes 0◦ ≤ ζ ≤ 90◦.

The simulations were run over a grid of (α, ζ, w, r) with the above parameter

ranges. Varying the model parameters yields a suite of light curve shapes, some of

which are shown in Figure 3.3.

3.1.6 Estimation of Geometrical Model Parameters

The best fit geometrical model parameters were determined using a Markov chain

Monte Carlo (MCMC) maximum likelihood algorithm. The MCMC code was writ-

ten by M. C. Miller, and the algorithm follows that of Verde et al. (2003). The

MCMC draws parameter values from the posterior probability distribution, P(M|D),

of a set of model parameters M given the data D. The posterior distribution, from

Bayes’ theorem, is

P(M|D) =
P(D|M)P(M)

∫

P(D|M)P(M)dM
(3.8)

where P(D|M) is the likelihood of D given M and P(M) is the prior probability

density (i.e., information about the model parameters that is known prior to the

calculation of the posterior distribution). Applied to light curve modeling, D repre-

sents the LAT light curve andM is the set of parameters (α, ζ, w, r) of the simulated
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light curves. No prior knowledge of M is applied to the likelihood calculation, so

P(M) is constant and its integral is 12.

The MCMC begins at a randomly selected point in parameter space M1 and

calculates the likelihood L1 there. A new point M2 is chosen from a proposed dis-

tribution Pp(M2|M1) based on the current parameters, as described in Lo et al.

(2013). The proposed value for each new parameter is drawn from a normal distri-

bution N(M1 −M2,σ), for which the standard deviations σ of the parameters are

defined by the user. If L2/L1 ≥ 1, then the parameters M2 are stored; the stored

parameters make up a “chain.” If L2/L1 < 1, then a random number x is drawn

from a uniform distribution between 0 and 1. If x < L2/L1, then M2 are saved in

the chain. If x ≥ L2/L1, then M2 are not saved, and a step from M1 is again taken

to a new set of parameters. It is unlikely that the MCMC will randomly choose

a first M near the global maximum in L. The first half of each chain is therefore

deemed the “burn-in” phase, and only parameters in the second half of the chain

are used in the final analysis.

The LAT light curves have high counts in each bin, allowing the use of Gaus-

sian rather than Poisson statistics in the likelihood calculation. For the Gaussian

probability distribution, the likelihood is

L ≡ P(D|M) =
∏

i

1√
2πσi

e−[di−mi(M)]2/2σ2
i (3.9)

where di is the number of counts in the ith phase bin of the LAT light curve, mi(M)

is the number of counts in the same bin of the model light curve simulated from

the parameters M, and σi =
√
di is the error on di. For the Gaussian probability

2There are independent, multi-wavelength constraints on some parameters which could be used

as priors. We chose to instead perform a blind search of the parameter space so as to not bias our

results, and ultimately to test the validity of the models.
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distribution, Wilks’ Theorem (Wilks 1938) states that

∆ lnL = −∆χ2

2
. (3.10)

Because the acceptance of a set of parameters into a chain depends on the likelihood

ratio and hence on the difference in lnL, Equation 3.10 allows us to treat L as if it

were equivalent to −χ2/2 (see Appendix C for details).

The parameter space is large, and the light curve simulations take between a

few seconds and ∼5minutes each, depending on the gap width. To minimize com-

putation time, we first performed all the simulations, using the grid of parameters

described above, and then applied the MCMC routine. The MCMC chooses a posi-

tion in parameter space from a continuous distribution of parameters, so the chosen

parameters M were mapped to the closest parameter values Mg in the (α, ζ, w, r)

grid. The simulated light curve corresponding to Mg was then compared with the

observed light curve as follows: The background count level of the observed light

curve was subtracted from the counts in each phase bin so that only the pulsed

emission would be compared with the model light curve. The model light curve

was then normalized so that the total number of simulated “counts” (in quotation

marks because the intensity is dimensionless) was equal to the total number of pulsed

counts in the LAT light curve. If necessary, the simulated light curve was rebinned

to match the binning of the LAT light curve, which has N bins in rotation phase

0 ≤ φ ≤ 1. The phase φB of the magnetic pole in the simulation corresponds to

φ = 0; φ = 1 corresponds to 360◦, or one full rotation. The simulated light curve

was shifted by one phase bin N times, and the new phase of the magnetic pole was

recorded for each phase shift. The χ2 between the simulated and observed light

curves was calculated for each phase shift (effectively, for each φB). This introduced

a fifth parameter, φB, in the likelihood space. The minimum χ2 found via the light

curve shifting was used to compute L, which was fed back to the MCMC code. If
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the conditions for recording the parameters in a chain were met, then the φB at

which χ2 was minimized was recorded along with the four geometrical parameters.

The MCMC chains tended to converge quickly toward a local maximum in the

5-dimensional parameter space. Because the parameter space is not smooth, there

are many local maxima; additionally, because the pulsars considered here are very

bright, it is difficult to move away from a given local maximum enough to satisfy the

chain acceptance criteria of a new set of parameters. By the same token, if a point

in parameter space lies near the global maximum, then the global maximum will be

found quickly. The problem of convergence to a (non-global) local maximum can be

mitigated by dramatically increasing the allowed step size from the current location

in parameter space; however, smaller steps are useful for sampling the space near a

local maximum and building confidence intervals. Our compromise was to run many

MCMC chains. This ensured that the full parameter space was adequately sampled,

such that the global maximum should be contained in multiple chains, while also

allowing adequate exploration of the regions surrounding local maxima. We con-

firmed that the space had been adequately sampled by recording all the parameter

values “tried” by the MCMC, including those that were not saved in chains, and

plotting the values that were tried. In all cases, the MCMC sampled the full range of

parameter values, meaning that it would have found all local maxima. Additionally,

we confirmed that multiple chains converged to the same global maximum L.

To find the absolute global maximum and to create confidence contours, we

identified local maxima in the parameter space whose likelihoods fell within 3σ of

the global maximum likelihood. We performed scans over the complete parameter

set within the regions surrounding these local maxima, calculating L at each point.

More details about the creation of confidence intervals, specific to the pulsars mod-

eled here, are described in the results section below.
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3.1.7 Quality of Light Curve Fits

Light curve modeling of bright pulsars yields qualitatively good fits between simu-

lated and observed light curves, but usually not good statistical fits. Because there

are so many counts and the features in the light curves are so well defined, models

with few parameters usually cannot match detailed light curve features. (For faint

pulsars, because the statistical errors in each phase bin are much larger, it is possible

to achieve reduced χ2 values of ∼ 1.) Models with a larger number of parameters

may be able to reproduce more details of the light curves, with the trade-off of re-

duced fit significance. Another effect for bright pulsars is that there is only a small

region in the phase space of the geometrical parameters where the fit is acceptable,

because a small deviation from the best fit values will lead to a much larger χ2.

Despite its large value for bright pulsars, χ2 minimization (likelihood maximiza-

tion) is used to constrain the best-fit geometrical parameters of the model light

curves. Because it is difficult to quantify the absolute goodness of fit, it is useful

to also consider what qualitative features of the light curve are important. First

and foremost, a qualitatively well-fitting model light curve should have peaks at

the same phases as the observed light curve. It is also desirable to have peaks that

have similar heights and generally the same shape as the observed light curve. For

example, the peaks are typically wider at the base than at the highest point, and

often have wings connecting the peak emission with the emission on either side of

the peak. A second feature is the level of the off-peak and bridge (between peaks)

emission. As will be seen below, the outer gap and slot gap models give very differ-

ent results for the emission outside the peaks—light curves simulated in the outer

gap geometry typically have little or no off-peak emission, while the slot gap geom-

etry tends to over-predict the off-peak emission level. Additionally, the azimuthally
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asymmetric slot gap geometry yields a lower level of off-peak emission. The emis-

sion at phases outside the peaks can therefore be used to qualitatively discriminate

between emission geometries.

The geometrical parameters of the model light curve with the lowest χ2 can

be compared with the same parameters obtained from observations at other wave-

lengths. A number of pulsars have independent measurements of α, ζ , and/or

β = |α− ζ | from multi-wavelength observations. Constraints on the emission geom-

etry can be determined using, for example, X-ray torii in pulsar wind nebulae, or

by performing a Rotating Vector Model (RVM; Radhakrishnan & Cooke 1969a) fit

to the phase-varying position angles of polarized radio pulse profiles. Additionally,

loose constraints can be placed on the expected value of β by considering whether

or not the pulsar is radio-loud. Radio-loudness and -quietness are usually attributed

to viewing geometry, particularly to β, which is the angle between the observer’s

line of sight and the magnetic pole. If the observer’s line of sight crosses near the

magnetic pole (small β), then the radio emission will be observed and the pulsar will

be radio-loud. The larger β is, the less likely it is that the observer will view radio

emission from the magnetic pole. Therefore, a qualitative comparison between the

modeled and observed light curve is the value of β, which should be large (∼ 20◦ or

more) for radio-quiet pulsars and small for radio-loud pulsars. Note that this geo-

metrical explanation breaks down for pulsars that are inherently faint radio emitters

at radio frequencies above ∼ few hundred MHz, at which radio pulsars are often

observed. Pulsars that have extremely steep spectra may be radio-quiet to within

detection limits at these radio frequencies.

Finally, for radio-loud pulsars, the phase of the main radio peak (often defined

to be φ = 0) should occur near the phase of the magnetic pole, φB, in the model

light curve. (The model light curves are shifted in order to best fit the observed

75



light curves, so φB is not necessarily zero.) To be more exact, the phase of the radio

peak should coincide with φB or else precede it by ∼ 2r/RLC in phase (Dyks &

Harding 2004), where r is the emission height and RLC is the light cylinder radius.

The radio peak phase must be considered because the radio pulse profiles are not

fit jointly with the γ-ray profiles in this work. While it is common to fit the radio

cone as well as the γ-ray light curves (e.g., Venter et al. 2012), we chose to only

fit the HE light curves and consider multiwavelength constraints afterward. This is

because the radio emission location is uncertain, so we do not want to bias our HE

models with a radio model.

3.2 Results: Four Bright Gamma-ray Pulsars

The best fit light curves and their confidence intervals are shown in Figures 3.5–3.11

and given in Table 3.2. The flux correction factor fΩ is also given for each fit, for ease

of comparison with other work. This factor accounts for the fact that the measured

γ-ray flux Fobs is not necessarily the true flux averaged over the sky (Harding et al.

2007; Watters et al. 2009). Using each best fit geometry, we calculate the factor as

fΩ(α, ζ⊕) =

∫ ∫

Fγ(α, ζ, φ) sin ζdζdφ

2
∫

Fγ(α, ζ⊕, φ)dφ
(3.11)

where α and ζ⊕, the observer’s viewing angle, are found from light curve modeling.

The true γ-ray luminosity is then

Lγ = 4πfΩFobsD
2 (3.12)

where D is the distance to the pulsar. For high-altitude, high-energy pulsar beaming

models, fΩ ∼ 1 for many observer viewing angles (Watters et al. 2009).

Asymmetric confidence intervals were determined by exploring the parameters

in the vicinity of a local maximum in the likelihood L. We first identify regions of
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maximum L in our MCMC results—the MCMC routine finds local maxima, but by

design it does not calculate L for every combination of parameters. We “zoom into”

these regions and calculate χ2 for every contained set of (α, ζ, w, r,∆φ). Within

these completely explored regions, we use ∆χ2 to find the 68%, 90%, 95%, and

99.7% confidence intervals (∆χ2 = 5.86, 9.24, 11.07, and 17.96, respectively). This

approach assumes Gaussian errors, and can result in patchy confidence intervals

because the parameter space near a local maximum in L is not necessarily smooth

(for example, a shift of 1◦ in α or ζ can change whether or not a peak is observed).

Statistically good fits cannot be obtained for the light curves of these bright

pulsars using simplified, purely geometrical models, as will be discussed further in

the sections below. The reduced χ2
ν values for the fits are therefore very large. As

a result, the ∆χ2 test yields very small confidence regions, falsely suggesting that

the fits are excellent. We therefore normalize the χ2 values with the best fit χ2

to estimate the confidence intervals for the fit parameters. Then the new statistic

ξ2 = χ2/χ2
best, such that the best fit geometry yields ξ2ν = 1, and replace ∆χ2 with

∆ξ2 to calculate the confidence intervals.

For most of the models, there are multiple regions in parameter space with light

curve fits falling within 99.7% (3σ) of the best ξ2. In the confidence interval plots

(Figures 3.4, 3.6, 3.8, and 3.10), we show all regions in the parameter space that

contain best fit light curves whose ξ2 values are within 3σ of the absolute best fit.

From these regions, we choose the best fit light curve (shown for each pulsar and

emission/field geometry in Figures 3.5, 3.7, 3.9, and 3.11) to be that which yields

the lowest ξ2, except for cases where the best statistical fit is missing one of the

peaks. In those cases, we do not include the absolute statistical best fit in Table 3.2

or the light curve figures, and instead choose another light curve with a higher ξ2

that does reproduce the peaks at the correct phases of the LAT light curve.
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Table 3.2. Best Fit Geometrical Parameters

Vacuum Retarded Dipole Ideal Force-Free

Parameter Outer Gap Slot Gap Asymmetric Outer Gap Slot Gap Asymmetric
Slot Gap Slot Gap

Vela

α(◦) 88+2
−3

44+4
−1

65+1
−2

80+0
−0

15+0
−0

55+10
−20

ζ(◦) 66.5+0.0
−0.0 54.5+1.0

−5.0 65.5+2.0
−1.0 52.5+0.0

−0.0 68.5+0.0
−0.0 54.5+4.0

−14.0

w(rovc) 0.00+0.00
−0.00 0.14+0.06

−0.02 0.09+0.03
−0.03 0.04+0.00

−0.00 0.00+0.00
−0.00 0.04+0.02

−0.03

r(RLC) 0.9+0.0
−0.0 0.7+0.0

−0.0 1.2+0.2
−0.0 1.6+0.1

−0.1 0.9+0.0
−0.0 0.9+1.1

−0.0

φB −0.028+0.000
−0.006 0.450+0.011

−0.006 0.044+0.011
−0.006 −0.039+0.000

−0.000 −0.089+0.000
−0.000 0.028+0.117

−0.017

χ2/151 372.1 977.3 1046.7 309.5 1080.4 1180.8

fΩ 1.0 1.4 1.0 1.1 0.6 0.8

Crab

α(◦) 10+9
−6

58+12
−23

67+7
−13

90+0
−35

70+5
−25

65+5
−15

ζ(◦) 84.5+1.0
−4.0 72.5+4.0

−5.0 57.5+12.0
−11.0 64.5+25.0

−6.0 64.5+12.0
−14.0 60.5+11.0

−11.0

w(rovc) 0.14+0.02
−0.05 0.04+0.04

−0.04 0.16+0.04
−0.09 0.00+0.14

−0.00 0.08+0.06
−0.06 0.30+0.00

−0.08

r(RLC) 1.1+0.8
−0.1 1.1+0.2

−0.1 1.0+0.2
−0.2 1.6+0.4

−0.6 1.3+0.7
−0.4 0.7+0.1

−0.0

φB −0.078+0.006
−0.011 −0.072+0.006

−0.017 −0.039+0.006
−0.017 −0.372+0.283

−0.000 −0.100+0.006
−0.006 −0.050+0.006

−0.006

χ2/85 243.7 197.0 146.9 199.5 224.8 168.4

fΩ 0.1 0.9 1.0 0.7 1.1 0.9

Geminga

α(◦) 10+0
−2

82+3
−12

83+2
−12

85+0
−0

15+5
−5

55+10
−5

ζ(◦) 83.5+0.0
−0.0 80.5+4.0

−2.0 80.5+4.0
−2.0 24.5+2.0

−0.0 72.5+0.0
−2.0 85.5+3.0

−5.0

w(rovc) 0.12+0.00
−0.00 0.10+0.02

−0.02 0.10+0.02
−0.02 0.04+0.00

−0.00 0.03+0.01
−0.03 0.30+0.00

−0.10

r(RLC) 1.4+0.6
−0.3 1.2+0.1

−0.2 1.1+0.2
−0.0 1.6+0.4

−0.0 1.0+1.0
−0.1 0.7+0.1

−0.0

φB 0.022+0.000
−0.000 0.067+0.006

−0.006 0.067+0.006
−0.006 −0.039+0.000

−0.000 −0.050+0.006
−0.006 0.078+0.006

−0.017

χ2/175 119.9 105.6 106.8 115.2 103.1 117.8

fΩ 0.2 1.0 1.0 0.5 0.5 0.9

PSR J0007+7303

α(◦) 6+5
−5

8+4
−0

8+4
−0

85+5
−15

20+35
−15

10+15
−5

ζ(◦) 74.5+15.0
−4.0 69.5+0.0

−0.0 69.5+0.0
−0.0 8.5+19.0

−1.0 65.5+3.0
−13.0 68.5+1.0

−4.0

w(rovc) 0.04+0.18
−0.04 0.00+0.01

−0.00 0.00+0.01
−0.00 0.02+0.03

−0.02 0.03+0.07
−0.03 0.03+0.02

−0.03

r(RLC) 1.0+1.0
−0.1 1.0+1.0

−0.0 1.0+0.7
−0.0 1.1+0.9

−0.2 1.0+1.0
−0.1 0.9+1.1

−0.0

φB 0.006+0.083
−0.028 −0.011+0.011

−0.000 −0.011+0.011
−0.000 0.328+0.000

−0.322 −0.028+0.033
−0.017 −0.056+0.028

−0.000

χ2/27 22.5 11.3 11.0 26.6 16.2 19.5

fΩ 0.2 0.4 0.4 0.6 0.6 0.4

Note. — The light curve fit parameters, with confidence intervals denoted as error bars, within each geometry. For
all, α and ζ are measured in degrees, w in open volume coordinates (Section 3.1.2), and r in RLC. We include the best
reduced χ2 (χ2/Ndof ) for each model. Some parameters have error bars of value zero, which is due to the error being
smaller than the resolution in that parameter.
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We note it may be surprising that the best fit found by the MCMC routine can

in some cases miss one of the peaks, but this can be explained by the fact that

the bridge and off-peak emission in these light curves also contribute significantly

to the likelihood. Poorly modeled off-peak emission can therefore direct the fits

away from strongly peaked model light curves. This can be a problem for these

geometrical models, as it is typical that the slot gap model will over-predict the

off-peak emission, while the outer gap often produces no off-peak emission. This

issue was addressed by Romani & Watters (2010) with their use of the new χ3

statistic, which was designed to give more weight to the light curve peaks. Another

method that may be considered is to only fit the peak and bridge emission for

pulsars that have no off-peak emission. We chose to continue fitting the full phase

light curves because the off-peak emission is also an important diagnostic of the

emission models—it may be a geometrical effect that some pulsars, like Geminga,

have detectable magnetospheric off-peak emission, while others do not. The use

of fixed count, as opposed to fixed width, binning of the light curve leads to more

bins in the peaks than in the bridge and off-peak regions. This results in the peaks

contributing more to the likelihood than the rest of the light curve, and is used for

Vela (see Section 3.2.1). Finally, for the slot gap model, applying the asymmetry

in E from the offset dipole decreases the off-peak emission. In general, we find that

this improves the prediction of the off-peak emission, giving more emphasis to the

peaks in the slot gap light curves.

We chose to use fixed count binning for Vela’s light curve, and used the same

bins as for the phase resolved spectral fitting. For the other three pulsars, we used

fixed width bins. In principle, fixed count bins could be used for Geminga and Crab

as well, but it was deemed necessary for Vela because it is so much brighter than

the others. The fixed count bins lead to sharper features in the light curve. There
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are more bins in the peaks, which in principle naturally gives more weight to the

peaks than the off-peak emission when fitting. It does happen that some of the LAT

light curve phase bins are smaller than those in the light curves output from the

simulations. When rebinning the simulated light curves, if the new bin is smaller

than the old bin, it keeps the (dimensionless) intensity value of the original bin.

The Crab and Vela pulsars have multiwavelength constraints, in particular fits to

the X-ray torii in their nebulae which provide the viewing angle to the rotation axis ζ .

Vela also has polarimetric radio observations giving a constraint on β = |α− ζ |, the

angle between the observer line of sight and the rotation axis. For these radio-loud

pulsars, we plot the best fit light curve in Figures 3.5 and 3.7; in the contour plots,

we mark its geometrical parameters with a star, and we mark the multiwavelength

constraints as well.

3.2.1 Vela

Vela is a radio-loud pulsar that lies within the pulsar wind nebula Vela X. The

orientation of the X-ray torus, observed by Chandra in the inner part of the nebula,

implies an observing angle of 63.6+0.07
−0.05±0.6 degrees (Ng & Romani 2008). The torus

is assumed to be perpendicular to the pulsar’s rotation axis, so this provides a strong

constraint on the value of ζ . From radio polarimetry, for which the Rotating Vector

Model (RVM) for surface or low-altitude emission is used to fit the polarization

angle swing, β = |α−ζ | is constrained to 6.5◦ by Johnston et al. (2005). They deem

the PA swing of Vela’s polarized profile to be compatible with the RVM, in which

case the geometry obtained from this model can be considered reliable.

We find that the outer gap emission geometry, within the force-free field geome-

try, produces the best statistical fit. Examining the light curves by eye, we identify

the asymmetric slot gap emission geometry, within the vacuum field geometry, as
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the model that best reproduces the qualitative features of the Vela LAT light curve

as well as several quantitative multi-wavelength constraints such as the values of ζ

and φB. We discuss these findings below. Additionally, an important result is that,

regardless of the geometrical model, the best-fit values of ζ are within ∼ 10◦ of that

found by Ng & Romani (2008).

The results of the light curve fits are shown in Figures 3.4 and 3.5. In Figure 3.4,

contours for intervals of ∆ξ2 = 5 are shown in color, while the 68.3, 95, and 99.7%

contours are given by the dashed lines. The location of the best statistical fit is

shown with a star. The confidence contours give some indication of the patchiness

of the likelihood surface. In some cases, there are multiple regions with comparably

good statistical fits; some regions are fairly smooth, while others are misshapen.

The best fit values of w and r vary from one point in (α, ζ) space to another, and

marginalizing over (holding constant) single fixed values of w and r can lead to

even patchier confidence intervals. For this reason, we “marginalize” over ranges

of w and r that correspond to the 99.7% confidence intervals for each parameter.

More specifically: at each (α, ζ), we find the best-fit (w, r) lying within the 99.7%

confidence intervals listed in Table 3.2. To plot confidence contours, a grid of χ2 at

each (α, ζ) is needed. We assign the χ2 of the best fit for (α, ζ, w, r) to the two-

dimensional array of χ2 values in (α, ζ) space. These ranges are determined after a

scan over all possible values of (α, ζ, w, r) is done in the regions in parameter space

identified by the MCMC to contain local maxima.
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Figure 3.4: Confidence intervals for Vela. The pink star shows the location of the

absolute best fit for each model. The constraint on ζ is ζ = 63.5± 1.0. Johnston

et al. (2005) finds β = 6.5◦, meaning α = 70.5 or 57.5.

3.2.1.1 Outer Gap Light Curves in the VRD and FF Fields

In both the vacuum and force-free field geometries, the outer gap geometry results

in the best statistical fits, with the FF field giving the best fit overall. The VRD

OG misses most of the first peak, as was also found by Romani & Watters (2010),

while the FF OG reproduces both peaks relatively well. The OG in both fields has

no off-peak emission at this geometry (this is common for most OG geometries),

matching the observed light curve well in this regard.

For the VRD OG, the best fit is found at (88, 66.5, 0, 0.9). The light curve is

shifted to earlier phase such that the magnetic pole falls at φB = −0.0278 (or, one

cycle later, 0.9722). For low-altitude emission (below ∼ 2r/RLC), it is physically

realistic for φB > φradio (Dyks et al. 2004), where φradio = 0 as defined by the timing
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Figure 3.5: Best fit Vela light curves made using the Pass 7 phase bin definitions

(same bins as in the phase resolved spectra of Figure 4.2). The top panel shows

light curves simulated in the vacuum field, and the bottom panel shows those from

the force-free field. The black line is the Crab’s light curve as observed by the

LAT, and is repeated three times to show all the fitted light curves. From left to

right are the best fits for the OG (blue), sSG (red), and aSG (green) models. These

fits were found after multiplying the likelihoods obtained from the MCMC fitting

routine by the prior on ζ. They correspond to the confidence intervals containing

the best fit light curves (68%, purple confidence intervals) in Figure 3.4. The

light curve for the VRD aSG is the exception: the lower-confidence region from

Figure 3.4 was chosen because φB has a sensible value there (near the radio peak),

and the first peak is more prominent than in the highest-confidence region. This

reasoning was not used for the VRD sSG because there was no other region with

a high enough likelihood to show up as a confidence interval.
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model used to produce these light curves. For caustic HE emission, the first peak will

occur at a larger phase than φB. The VRD OG therefore finds a best fit geometry

in which the phase of the magnetic pole is not physically realistic.

In the FF case, the best fit is found at (α, ζ) = (80, 52.5). There is a second

region that barely reaches a significance of 3σ, at (α, ζ) = (30, 89.5). This fit lies

farther from the expected ζ , and under current understanding, β = |α− ζ | yields a

radio-quiet or -faint pulsar, so we do not include this second region of high likelihood

here. As in the vacuum case, the value of φB is again too low to be physically realistic

for this model.

3.2.1.2 Slot Gap Light Curves in the VRD Field

For the symmetric SG geometry, the confidence contours show two connected regions

containing model light curves that match the LAT light curves to within 3σ. The

best fit light curve in Figure 3.5 (b) has too low a first peak, and does not reproduce

the bridge emission between the peaks. It has very low off-peak emission, as in

the OG case. The phase of the magnetic pole is φB = 0.45. This is not physically

realistic, as we know the phase of the radio peak to be φradio = 0; therefore, for radio

emission below an altitude of −2r/RLC, φB should occur after φradio, but precede

the phase of the first HE peak (Dyks et al. 2004), as discussed for the OG cases.

The same region in phase space containing the best fit geometry for the sSG

model is statistically preferred in the aSG model. However, the same issues with

the lack of a strong first peak and a physically unrealistic φB remain. A second

region, at (α, ζ) = (65, 65.5) is also significant in the aSG. While this region does

not give as good a statistical fit as does the region near (α, ζ) = (44, 54.5), the peaks,

inner peak, and bridge emission are qualitatively reproduced much better than for

the best statistical fit. Unlike φB associated with the statistical best fit, the value of
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φB in this second region is physically realistic, falling between the phases of the radio

peak and the first γ-ray peak. Additionally, the value of ζ = 65.5◦ that we obtain

with this geometry is very close to the independent measurement of ζ ∼ 63.6◦. For

these reasons, we chose this model light curve as the best aSG fit, and show it in

Figure 3.5(c) rather than the light curve resulting from the same statistically best

fit geometry as found in the sSG case.

The light curve with the same parameters in the sSG geometry has higher off-

peak emission relative to the peak emission. The fact that the aSG lowers the

off-peak emission and enhances the peak emission results in this new best fit in

the aSG geometry. It is also the only model that produces an emission shoulder

reminiscent of that seen in the LAT light curve of Vela.

3.2.1.3 Slot Gap Light Curves in the FF Field

The sSG and aSG geometries in the force-free field give comparable, but slightly

worse, statistical fits than in the vacuum field. The FF sSG gives a qualitatively

good fit in the peaks, but does not match the bridge emission leading up to the

second peak. It also again over-predicts the off-peak emission. The value of φB

is much too large to be physical (Dyks et al. 2004), as discussed above for other

models. Most condemning to this geometry is that it produces a radio-quiet pulsar

(large β), which is of course in conflict with observations. The FF aSG model misses

the first peak almost completely; we find a diminished first peak to be a common

feature of the slot gap geometry in the force-free field. The second peak matches the

LAT light curve quite well, and the off-peak emission following the second peak is

nearly consistent with what is observed. This again points to the off-peak emission

being suppressed in the aSG geometry. The value of φB is consistent with the radio

constraints.
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In former fits (DeCesar et al. 2011b) with different bin definitions, background

estimation, and the Pass6 V8 rather than Pass7 V6 instrument response function,

it was found that the VRD tended to have more physically acceptable values of φB

than the FF field. The more recent fits presented in this paper do not find this

result because we find slightly different emission geometries than we had previously.

This is likely due to the subtle differences in the analysis listed above. In particular,

a change in background level can lead to different results (Abdo et al. 2012), so it

is possible that the more recent background estimate with the Pass7 V6 IRF is the

cause of this discrepancy.

In general, the FF field does tend to shift the first peak to later phases than

does the VRD, such that the phase of the magnetic pole in the model may not be

consistent with the phase of the radio peak (Harding et al. 2011). However, the

shift can vary depending on the specific geometry. For our best fits, we find that the

magnetic pole occurs at too late a phase in the VRD OG, FF OG, and FF sSG. In

the VRD sSG, it occurs at an unrealistic phase of 0.45. In the VRD and FF aSG, it

occurs at a physically realistic phase; between the two, the light curve matches the

VRD aSG best.

We note that the fact that the value of φB has changed in some cases demon-

strates how sensitive the fits are to differences in binning, background estimation,

instrument response function, and other choices made within the analysis.

3.2.2 Crab

Like Vela, the Crab pulsar is radio-loud and lies within an X-ray nebula. From a

fit to the X-ray torus of the Crab Nebula, our viewing angle to the rotation axis of

the Crab pulsar is ζ = 61.3◦ ± 0.1 ± 1.1 (Ng & Romani 2008). The pulsar peaks

are aligned from radio to γ-ray energies, and the radio peaks are thought to result
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Figure 3.6: Confidence intervals for Crab. The pink star shows the location

of the absolute best fit for each model. The vertical lines show the constraint

ζ = 61.5◦ ± 2.0◦ from the X-ray torus fit (Ng & Romani 2008), with the error

convolved to the resolution in ζ of our simulations.

from high-altitude, caustic emission like that which forms the γ-ray peaks (Harding

et al. 2008). This means the constraint on φB discussed for Vela does not apply to

the Crab pulsar’s main peaks, nor does the RVM apply to their PA sweeps, and

the value of β has no bearing on the pulsar’s observed radio-loudness. However, the

radio profile of the Crab shows a precursor located ∼ 0.1 in phase before the first

main peak. This precursor may be low-altitude emission from near the magnetic

pole, in which case we expect 0.9 ≤ φB ≤ 1.0. Whether or not the precursor marks

a phase near that of the magnetic pole, we do expect that the magnetic pole would

come at an earlier phase than the first γ-ray peak (or a later phase than the second

γ-ray peak).

The confidence contours and light curve fits are shown in Figures 3.6 and 3.7.
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Figure 3.7: Absolute best fit light curves for the Crab pulsar; also see Table 3.2.

The lines and colors are the same as in Figure 3.5. For the FF aSG light curve,

we obtain the same best fit for the torus constraint as for the absolute fit. The

horizontal dashed line shows the background level estimated with gtsrcprob.

The vertical lines show the location of the magnetic pole, or phase zero, for the

model light curves, so that one can see how much the model light curves were

shifted in the fits. For radio-loud pulsars like the Crab and Vela, the first radio

peak falls at phase 0.
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The best statistical fit is given by the aSG model in the VRD field. The aSG in

both the VRD and FF fields give best fits that are already close to or consistent

with the torus constraint, and in both field geometries the aSG model light curves

give the best overall fits.

The sSG light curves are similar to their asymmetric counterparts, giving slightly

higher χ2 values due to the effect of enhanced peaks and reduced off-peak emission

in the aSG geometry. The best ζ in the FF sSG geometry is close to the torus

constraint, with the VRD sSG having ζ within ∼ 10◦ of the expected value.

The OG in the VRD field finds a best fit light curve more reminiscent of Geminga

than the Crab, and too high a ζ value. However, the FF OG model light curve fits

the LAT light curve very well qualitatively, reproducing the location and relative

heights of the peaks, but introducing excessive off-peak emission. Its confidence

contours are very patchy, with only very small regions that produce fits within 3σ

of the best fit.

For all but the VRD OG geometries, ζ ∼ 61◦ falls within the 99.7% confidence

intervals. The uncertainty range on ζ from Ng & Romani (2008), accounting for

(convolved to) our resolution in ζ of 1◦, is 61.5◦±2.0◦, and is plotted where applicable

in the contour plots (Figure 3.6). All the best fit geometries have φB slightly before

the first γ-ray peak, or after the second peak in the case of the FF OG. All but

the FF OG are consistent with the constraint on φB imposed by a low-altitude

precursor. In the FF OG case, φB precedes the radio precursor. We note that for all

but the VRD OG parameters, β is small enough that we might expect to see such

low-altitude radio emission from the Crab.
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3.2.3 Geminga

Geminga is considered a radio-quiet pulsar, as it has not been definitively detected

by a radio telescope. However, there have been claims of radio detections from

this pulsar at 102.5MHz (e.g., Malofeev & Malov 1997; Vats et al. 1999). If these

detections are real, then Geminga must have a very soft radio spectral index, with a

lower limit of 2.7 (McLaughlin et al. 1999). It is therefore unclear whether Geminga

has little or no radio emission due to geometry, such that the observer’s line of sight

is far from the magnetic pole and radio emission site (implying a large value of

β = |α − ζ |), or to inherent radio faintness at typical observing frequencies above

∼ few hundred MHz. In the latter case, if our line of sight were to cross the radio

emission zone, radio observations could still yield non-detections. Thus, we cannot

rule out geometries with similar α and ζ (small β).

A loose constraint can be placed on ζ by considering the geometry of the pulsar

bow shock. Caraveo et al. (2003) find that the inclination of the bow shock, and

therefore its direction of travel, to the plane of the sky is i < 30◦. If the rotation

axis and velocity vectors are aligned, as has been suggested (Johnston et al. 2005;

Rankin 2007), then ζ > 60◦ (Pierbattista et al. in preparation).

The location of the magnetic pole is less important here because there is no

firm detection of radio emission to use as a constraint. We still expect the pole

to fall shortly before the first peak, judging from the location of the radio peak in

radio-loud pulsars.

The confidence intervals for the Geminga light curve fits are shown in Figure 3.8,

and the light curves in Figure 3.9. We find that all geometries give similarly good fits,

with the reduced χ2 ranging between 103–120, despite the geometrical parameters

being quite different from one model to the next. The OG model in the VRD field
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Figure 3.8: Confidence intervals for Geminga. The pink star shows the location

of the absolute best fit for each model, while a yellow star shows a secondary

geometry that has been chosen for other reasons as the best fit. (Top) the VRD

OG model finds a geometrically radio-quiet pulsar. In the VRD sSG and aSG

models, we choose a formal best fit geometry (yellow star) other than the sta-

tistical best fit (pink star). This choice was made because the statistical best fit

light curve lacks the first peak and has an unreasonable φB ∼ 0.5. Additionally,

the statistical best fit lies at a lower ζ than is predicted by Caraveo et al. (2003).

As noted in the text (Section 3.2.3), either of the two regions at high ζ with 3σ

confidence contours may be the true best fit, as it is unknown whether or not

Geminga is radio-loud. (Bottom) For the FF OG case, the best statistical fit is

shown by the pink star. A second-best fit is shown with the black-outlined yellow

circle. This secondary geometry lies within the range of ζ assumed given the

work by Caraveo et al. (2003); since that ζ constraint depends on assumptions

about the system, we do not formally choose it as the best fit, hence being marked

with a circle rather than a star. The range on α and ζ lie within their respective

simulation resolutions, hence the lack of contours. The FF sSG geometry finds a

geometrically radio-quiet pulsar, while the geometries in the FF aSG may imply

intrinsically faint radio emission.
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Figure 3.9: The best fit light curves for Geminga. The lines and colors are the

same as in the previous figures.

finds a geometrically radio-quiet pulsar, with a large β, and ζ > 60◦. The best fit

in the FF OG geometry is found at high α and low ζ , again giving a radio-quiet

pulsar from geometry. However, while we take these parameters to give the best

fit, if the constraint of ζ > 60◦ is correct, then these parameters are ruled out. In

that case, the secondary fit found at (15◦, 89.5◦) would become the best fit. This fit

is shown with a circle rather than confidence contours because, even after rescaling

the χ2 values, this point in (α, ζ) space was the only one lying above 3σ. The circle
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is colored the same as other secondary fits that have been chosen as best fits (e.g.,

the aSG geometry in the VRD field for Vela); it is a circle rather than a star because

the constraint on ζ was not determined as directly as in Vela and the Crab, and

therefore we have not chosen it as the best fit geometry.

The VRD sSG finds a statistically best fit at (α, ζ, w, r)= (50◦, 44.5◦, 0.18 rovc, 1.1

RLC) with χ2/175 = 104.1, shown by the star in the confidence contour plots (Fig-

ure 3.8). However, the light curve for these parameters completely misses the first γ-

ray peak, and additionally, the value of φB = 0.5333 for this geometry is not sensible.

We therefore choose the best fit to lie in the second-best region (χ2/175 = 105.6), at

(82◦, 80.5◦, 0.1 rovc, 1.2RLC). This light curve has two peaks and a reasonable value of

φB = 0.0667, and ζ is consistent with the constraint from Caraveo et al. (2003). This

geometry would lead to radio loudness, which cannot be ruled out due to the possible

radio detections discussed above. However, if Geminga is radio-quiet, then the ge-

ometry may instead lie near (11◦, 72.5◦, 0.01 rovc, 1.0RLC), for which the model light

curve gives a qualitatively different but statistically similar fit (χ2/175 = 108.5).

The large β ensures a radio-quiet pulsar, and φB = −0.0222 is a reasonable phase

for the magnetic pole.

The results are nearly identical between the sSG and aSG geometries in the

VRD field. For the same reasons as above, for the aSG we choose the region in

parameter space giving the second best statistical fit, (83◦, 80.5◦, 0.1 rovc, 1.1RLC),

as the location of the best fit. The third significant region again appears in the aSG,

at (11◦, 72.5◦, 0.01 rovc, 1.1RLC), with the same φB and χ2.

The sSG model in the FF field finds a similar best fit geometry, (α, ζ, w, r) =

(15◦, 72.5◦, 0.03 rovc, 1.0RLC), as the third significant region in the VRD aSG. In the

FF aSG geometry, there are two statistically similar regions in Figure 3.8, with the

best fit lying at (α, ζ) = (55◦, 85.5◦). The second region has best-fit parameters
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(85◦, 57.5◦, 0.22 rovc, 0.8RLC), with φB = 0.0722 and χ2/175 = 117.8. The lower β

in the aSG model may allow viewing of part of the radio emission zone, depending

on its size, hence this geometry is more consistent with intrinsic radio faintness (but

may still allow for radio quietness due to geometry).

3.2.4 PSR J0007+7303

The “CTA 1 pulsar,” PSR J0007+7303 in the CTA 1 supernova remnant, is also

radio-quiet to within current detection limits. All the fits give large β values, con-

sistent with expectations for a pulsar that is radio-quiet because of geometry, as was

found in vacuum OG and sSG fits by Abdo et al. (2012). The best fit is found in

the vacuum sSG and aSG geometries; because of the very low α, the symmetric and

asymmetric SG light curves are very similar, and the best geometrical parameters

are identical. The aSG model does find the second region of high likelihood seen in

Figure 3.10 (b) and (c), near (α, ζ) = (12, 69.5), to be more significant than this

same region for the sSG model, meaning that the increase in asymmetry with α

leads to improved fits in that part of phase space.

Moving to the slot gap geometries in the FF field, we find larger values of α for

both the sSG and aSG geometries than in the vacuum field; this may be due in part

to the lower resolution in α of the FF simulations. The vacuum field light curves

give much better fits than those of the FF field, but this may again be an effect

of missing the best FF fit because of the lower α resolution relative to that in the

VRD.

For the CTA 1 pulsar, the OG model results in the statistically worst light curve

fits. For the VRD OG, the likelihood surface is very patchy, but there are two main

regions at opposite corners in phase space that result in similar statistical fits. The

best fit light curve has a shape similar to that of the LAT light curve, but with

94



0 20 40 60 80
α (°)

80

60

40

20

ζ 
(°

)

0.0 ≤ w ≤ 0.22

0.9 ≤ r ≤ 2.0

0.0 ≤ w ≤ 0.1

0.9 ≤ r ≤ 2.0

PSR J0007+7303
VRD, OG

w ≤ 0.01

1.0 ≤ r ≤ 2.0

PSR J0007+7303
VRD, sSG

7 8 9 10 11 12 13 14
α (°)

70.5

70.0

69.5

69.0

68.5

ζ 
(°

)

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

∆ χ2

w ≤ 0.01

1.0 ≤ r ≤ 1.7

PSR J0007+7303
VRD, aSG

7 8 9 10 11 12 13 14
α (°)

70.5

70.0

69.5

69.0

68.5

ζ 
(°

)

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

∆ χ2

w ≤ 0.05

r ≥ 0.9

PSR J0007+7303
FF, OG

65 70 75 80 85 90
α (°)

30

25

20

15

10

5

ζ 
(°

)

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

∆ χ2

w ≤ 0.1

r ≥ 0.9

PSR J0007+7303
FF, sSG

10 20 30 40 50 60
α (°)

70

65

60

55

50

ζ 
(°

)

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

∆ χ2

w ≤ 0.05

r ≥ 0.9

PSR J0007+7303
FF, aSG

5 10 15 20 25 30
α (°)

72

70

68

66

64

62

ζ 
(°

)

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

∆ χ2

Figure 3.10: Confidence intervals for PSR J0007+7303. The pink star shows the

location of the absolute best fit for each model. For the VRD OG, there was

one slightly better fit at (2◦, 89.5◦), but it was an outlier compared to all points

around it, had only a slightly lower χ2 than the best fit chosen (21.8 vs. 22.4), and

had only one peak as opposed to two closely separated peaks. For these reasons,

the fit at (α, ζ) = (2◦, 89.5◦) was not considered as a best fit. Also for the VRD

OG, the χ2 contours are very messy, hence plotting the 1, 2, and 3σ contours

without the underlaid χ2 contours. The open contours in the FF sSG and aSG

result from the fact that the lowest α considered was 5◦.

too shallow a dip between peaks and too low off-peak emission. The FF OG has a

somewhat smoother phase space, with a few regions lying within 99.7% confidence

of the best fit. The light curve is essentially a single, rounded peak rather than two

closely spaced peaks. While φB was not a consideration in the other geometries, for

this geometry it falls within the first peak of the LAT light curve, which is likely

not physical; we expect that the magnetic pole will precede the first peak.

In Abdo et al. (2012), it was noted that the best fit geometrical model changes

depending on whether the detected off-peak emission is considered to be magne-
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Figure 3.11: The best fit light curves for the CTA 1 pulsar, PSR J0007+7303.

The lines and colors are the same as in the previous figures.

tospheric or PWN emission. In the second LAT pulsar catalog (The Fermi-LAT

Collaboration 2013), this off-peak emission is classified with a “U” for its “Uniden-

tified” origin. If from a PWN, then it would be considered part of the background,

and the pulsed emission would go to zero in the off-peak. If it is magnetospheric,

then the background level lies below the observed off-peak level. We have therefore

interpreted the off-peak emission in this pulsar to be magnetospheric in origin. If we

were to assume the emission is from a PWN, the OG would have lower χ2 values and
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may fit the light curves better than the SG models as it did in Abdo et al. (2012),

simply because it matches low-level or nonexistent off-peak emission better than

the SG. The authors also related the best-fit values of φB to X-ray observations by

Caraveo et al. (2010): the X-ray peak falls ∼ 90◦ − 110◦ before the first γ-ray peak,

while φB fell 36◦ − 94◦ before the first peak. In the best fit light curves presented

in this paper, φB lies within a similar range (∼ 90◦) of the first peak, except in the

FF OG geometry.

3.3 Discussion

We modeled the observed LAT light curves of the four pulsars with geometrical rep-

resentations of the outer gap, slot gap, and offset dipole slot gap emission models,

and the vacuum retarded dipole (Deutsch 1955) and ideal force-free magnetosphere

(Contopoulos & Kalapotharakos 2010) magnetic field models (Section 2.3). Using a

Markov chain Monte Carlo maximum likelihood fitting routine (Verde et al. 2003) as

in Section 3.1, we found the best fit values of the parameters (α, ζ, rmax, w,∆φ) for

each combination of emission and field geometries, listed in Table 3.2. When com-

paring models, there is not a particular emission or field geometry that stands out as

clearly the best. The light curve modeling finds best fits for different combinations

of emission and field geometries for each pulsar.

It is interesting and somewhat unexpected to find that the vacuum retarded

dipole field leads to better fits than the FF in some cases. As discussed in Sec-

tion 4.4.2, the FF field leads to more physical values of E||, the accelerating electric

field. Those pulsars for which the VRD best predicts the light curves may have mag-

netic field that are closer to the VRD than FF field, and the small amount of current

that is present straightens the field lines enough to get large radii of curvature to
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lower E||/B.

There are a few overall conclusions we can draw from the light curve model-

ing. The first is that for geometrical representations of the slot gap to successfully

reproduce LAT light curves, emission must be allowed at higher altitudes than

has been typical for the geometrical analog of the slot gap, the two-pole caustic

(TPC). Watters et al. (2009) and Romani & Watters (2010) use a cylindrical ra-

dius rcyl = 0.75RLC, and in many cases do not reproduce one or both of the peaks

in the pulsar light curves they model. In this work, we extended this radius to

rcyl = 0.95RLC, and in general we recover the peaks.

Secondly, introducing azimuthal asymmetry along the polar cap rim in the SG

geometry as in Harding & Muslimov (2011a,b) leads to lower off-peak emission and

enhanced peak emission, consistent with their findings. This result implies that a

more realistic emission zone structure, with some azimuthal asymmetry, will better

match the observed light curves.

Finally, in most cases, some emission below the null charge surface is needed to

replicate the low-level off-peak emission, for example in the phases between the peaks

(or, in the case of Geminga, the persistent magnetospheric emission). This emission

is over-predicted by the slot gap models, even with some azimuthal asymmetry, and

under-predicted by the outer gap, as has been known from prior modeling attempts.

A more physical representation of the slot gap, a slot gap with weaker low altitude

emission, or an extended outer gap as has been proposed by Takata et al. (2007),

may better produce this common light curve feature. Another scenario that one

might imagine is that a pulsar magnetosphere can have both a slot gap and an

outer gap, so that the emission we observe comes from a blend of these two regions.
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Chapter 4

Phase Resolved Spectroscopy of

LAT Pulsars and Implications for

the Strength of the Accelerating

Electric Field

It has been found that the spectral parameters, in particular the power law spectral

index and cutoff energy, vary significantly with pulse phase. In this chapter, I

model the phase-resolved spectra of the same pulsars whose light curves I modeled

in the previous chapter. I use the phase-resolved cutoff energy values to estimate

the magnitude of the accelerating electric field, E‖, which leads to constraints on

the magnetic field geometry.
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4.1 Phase Averaged Spectroscopy

We modeled the phase-averaged 0.1–300 GeV spectrum of each pulsar with a sub-

exponentially cut-off power law. The differential photon flux is given by

dN

dE
= N0

(

E

E0

)−Γ

exp

[

−
(

E

Ec

)b
]

ph cm−2 s−1 MeV−1, (4.1)

where the flux prefactor N0 is the differential flux (photons cm−2 s−1MeV−1) at

energy E0, E0 is the pivot energy provided by the second (2FGL) Fermi source

catalog (Nolan et al. 2012), Γ is the photon index, Ec is the cutoff energy, and b

is the exponent determining the exponential (b = 1), super-exponential (b > 1) or

sub-exponential (b < 1) shape of the cutoff. As stated above, for the phase-averaged

spectral fits, we used b < 1, corresponding to a sub-exponential cutoff. A 20◦ × 20◦

region of sky centered on the pulsar of interest was modeled using the P7SOURCE V6

instrument response function (IRF). Included in the spectral and spatial model were

all 2FGL sources in a 20◦ radius from the central pulsar. The spectral parameters

of all sources within a 10◦ radius of the pulsar were left free, while those of sources

outside 10◦ and within 20◦ were fixed. After an initial phase-averaged fit to an

absolute tolerance of 0.01, all sources with TS ≤ 0 were removed from the model.

The spectral fit was repeated, to an absolute tolerance of 0.001, until the values

converged. We used the phase-averaged fit to estimate the background count level,

given in Table 4.2, using the Fermi tool gtsrcprob1.

The purpose of the phase-averaged spectral fits was to establish a good back-

ground model for the phase resolved fits. Examination of the residual σ maps allows

us to determine whether or not the phase averaged fit provides a sufficient descrip-

1Usage notes for gtsrcprob can be found at http://fermi.gsfc.nasa.gov/ssc/data/

analysis/scitools/help/gtsrcprob.txt
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Table 4.1. Phase Averaged Spectral Parameters

Pulsar N0 Γ Ec b F100 G100 TS

Vela 18.85± 0.06 1.16± 0.01 0.52± 0.01 0.54 ± 0.01 11.0± 0.03 58.0± 0.14 1268669
Crab 1.56 ± 0.57 1.69± 0.13 1.51± 1.34 0.58 ± 0.15 2.0± 0.02 8.2± 0.08 85056

Geminga 5.0± 0.29 0.96± 0.03 0.84± 0.09 0.69 ± 0.02 4.1± 0.01 26.4± 0.09 771308

Note. — The phase averaged spectral parameters of the three pulsars for which we performed spec-
tral fits. N0 is in units of 10−9 photons cm−2 s−1 MeV; Ec is in GeV; F100 is the photon flux in units of
10−6 photons cm−2 s−1; and G100 is the energy flux, in units of 10−10 erg cm−2 s−1. The parameters for
Vela X and the Crab Nebula are given in the text in Sections 4.2.1.1 and 4.2.1.2. The parameters for PSR
J0007+7303 are found in Abdo et al. (2012).

tion of the background. The map is calculated as

σi,j =

(

Ci,j −Mi,j

Mi,j

)1/2

(4.2)

where σi,j is the residual value of the pixel at image coordinate (i, j), Ci,j is the

number of observed γ-ray counts in that pixel, and Mi,j is the number of counts

expected in the pixel, given the spectral and spatial model of the region. The residual

map of the Crab is shown in Figure 4.1 as an example of the desired background

residuals.

Any details on the phase averaged or off-peak fits relevant to individual pulsars

follow in Sections 4.2.1.1–4.2.1.3, in which we describe our phase resolved spectral

fits. The best fit parameters for the phase averaged spectra are provided in Table 4.1.

4.2 Phase Resolved Spectroscopy

4.2.1 Data Analysis

For the phase-resolved spectral analysis, a similar approach was taken. Either the

phase-averaged or off-peak spectral fit was used as the initial model of the back-

ground sources. All parameters of sources farther than 5◦ from the pulsar were
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Figure 4.1: The residual σ map from the phase averaged spectral fit of the Crab

pulsar and nebula. The color scale ranges from σ = −0.9 (dark blue) to σ = 0.6

(yellow), where σ2 = (counts−model)/counts. The residuals are fairly flat, with

variations due to fluctuations in the diffuse background relative to the background

model. The green circles are of radius 2◦ and 5◦, and are centered on the Crab pul-

sar’s location. Especially within these circles, the residuals are flat and sufficient

for phase resolved spectral modeling.

fixed, while the normalizations of sources within a 5◦ radius were left free (all other

parameters of these sources were fixed). The LAT events were grouped into bins

defined as having ∼ 3000 pulsed events per bin, where a pulsed event was defined

as an event falling within the energy-dependent angular radius given above. The

source prefactors (N0) were renormalized according to the width of each phase bin.

An exponentially cutoff power law, with b = 1, was fit in each bin using the Fermi

LAT tool gtlike2.

2http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtlike.txt
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Above, I discussed the need for b < 1 in the phase-averaged spectral fits. In the

case of poor statistics, it is not possible to constrain b, so it must be fixed in order

to obtain meaningful constraints on the other parameters. Additionally, the phase-

averaged value of b < 1 is believed to result from the blending of different values

of the spectral parameters as they vary with phase, and hence does not represent

the true physical spectrum at any particular phase. For curvature radiation, which

is expected to dominate the radiation spectrum at energies > fewMeV, b = 1; in

small phase bins where blending of spectral parameters is diminished, the curvature

radiation spectrum should be recovered. For these reasons, we fixed b = 1 in the

phase resolved spectral fits.

Following are details of the phase resolved spectral fits for each pulsar.

4.2.1.1 Vela

The Vela pulsar lies on top of faint γ-ray emission from the Vela X pulsar wind

nebula. Because the nebula and pulsar contributions may be degenerate in the

spectral model, we first modeled the nebula only, using data from the off-peak

phases of the pulsar light curve. We modeled the spatial extent of the nebula as

a uniform disk, using the extended template of Vela X from Abdo et al. (2010b).

The spectrum was fit with a power law, fixing the spectral parameters of the nebula

to N0 = 4.73 × 10−7 cm−2 s−1MeV−1 and Γ = 2.41 as in Abdo et al. (2010b), and

followed the procedure described above to obtain a phase-averaged fit. The phase-

averaged background spectrum was used as the starting point for the phase-resolved

spectral fits.
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4.2.1.2 Crab

The Crab pulsar sits within the Crab nebula, a point source in the LAT. In order to

accurately describe the nebula’s spectrum we first fit the unpulsed emission in the

phase window 0.535 ≤ φ ≤ 0.885, as defined by Abdo et al. (2010c). We modeled

the nebula as in Buehler et al. (2012): the synchrotron component is modeled as a

power law (Powerlaw2 in the LAT tools), while the inverse Compton component is

modeled with a smoothed broken power law. The spectrum of the nebula is therefore

modeled as

dN

dE
= Ns

(

E

E0

)−Γs

+ NI

(

E

E0

)−ΓI1

(

1 +

(

E

Eb

)

ΓI1−ΓI2
β

)−β

cm−2 s−1MeV−1 . (4.3)

For the synchrotron component, NS is the 0.1–300GeV integral flux and ΓS the

power law index. We found best fit values for these parameters of NS = 2.36 ±

0.08× 10−7 cm−2 s−1 and ΓS = 3.8± 0.1 in the off-peak phase window (∆φ = 0.35);

normalizing the integral flux to all phases (∆φ = 1), NS = 6.76 ± 0.23 cm−2 s−1.

For the inverse Compton component, NI is the flux prefactor, ΓI1 and ΓI2 are

the pre- and post-break power law indices, Eb is the break energy, and β = 0.2

(fixed) is the smoothing factor. Our best-fit values for these parameters were

NI = 2.2 ± 0.5 × 10−10 cm−2 s−1MeV−1 for the off-peak phase window (6.2 ± 1.4 ×

10−10 cm−2 s−1MeV−1 for the full phase window); ΓI1 = 1.52±0.06; ΓI2 = 2.18±0.16;

and Eb = 15.3 ± 5.7GeV. For both components, the scale factor E0 was fixed at

100MeV. While there may be some concern about the degeneracy of the two spectral

components, it has been shown in previous work (Abdo et al. 2010c) that the syn-

chrotron and IC components clearly contribute separately to the nebula emission,

and the specific model parameters used were taken from the spectrum published by

104



Buehler et al. (2012). Also included in the fit was the nearby supernova remnant

IC 443, for which we used a Gaussian disk extended source template as in Abdo

et al. (2010c); only the normalization of this extended source was left free. We fit

the Crab nebula spectrum with and without contribution from the pulsar and found

that the addition of a source with a cutoff power law spectrum at the pulsar position

did not significantly improve the fit, confirming the nondetection of magnetospheric

emission in this phase range.

After fitting the off-peak spectrum, we renormalized all the source flux prefactors

N0 to the full phase and fit the pulsar phase-averaged spectrum. The spectral

parameters of the two nebula emission components were fixed at the values obtained

in the off-peak fit, with their normalizations corrected to the full phase interval. The

flux prefactors and power law indices of all other sources within 5◦ of the pulsar were

left free. The Crab pulsar spectral and spatial model was added to the model, at

the same position as the nebula, with its spectral parameters free, and its spectrum

was fit using gtlike. We chose to use the off-peak fit as the starting point for our

phase-resolved analysis.

4.2.1.3 Geminga

Geminga has magnetospheric emission at all phases (Abdo et al. 2010d), so no off-

peak phase range exists for this pulsar. We modeled the phase averaged spectrum,

using the same extended source template for IC 443 as in the Crab fit, and used the

resulting model (with renormalized source fluxes) in the phase resolved spectral fits.
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4.2.1.4 PSR J0007+7303

The phase resolved parameters for PSR J0007+7303 were taken directly from Abdo

et al. (2012).

4.2.2 Results: Phase Resolved Spectroscopy

Here we describe the results of the phase resolved spectroscopy of each pulsar, and

compare their features in Section 4.2.3. The phase resolved Γ and Ec are shown in

Figures 4.2–4.5 and listed in Appendix D. We note that the data points used to

make Figure 4.5 were taken directly from Table 2 of Abdo et al. (2012) in which the

phase resolved parameters of PSR J0007+7303 are listed, hence we do not replicate

the table in this thesis.

4.2.2.1 Vela

There is a clear rise in the photon index before the first peak, also observed in the γ-

ray (this work) and X-ray (Weisskopf et al. 2011) phase-resolved index of the Crab.

There was some evidence for this spectral softening in Abdo et al. (2010b), which

we are now able to confirm with our longer dataset. The index reaches a maximum

of Γ ∼ 1.8 and then decreases (hardens) through the first peak. The minimum

occurs at the phase of the inner peak, P3; the index then rises slowly through the

bridge toward the second peak, stays ∼ constant at Γ ∼ 1.5 through the peak, and

rises to a second maximum of Γ ∼ 1.86 at φ ∼ 0.62. It falls immediately afterward.

The errors on the remaining points are too large to determine whether or not this

downward trend continues.

The cutoff energy results match overall with those in Abdo et al. (2010b). The

largest values of Ec have decreased slightly, but are consistent within the errors. We
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Figure 4.2: The phase resolved spectral index (top) and cutoff energy (bottom)

of the Vela pulsar, determined over the energy range of 0.1MeV ≤ E ≤ 300GeV.

The black dotted lines show the Vela light curve, while the red points show the

spectral parameters. Displaying the light curve and spectral parameters together

is done to guide the eye, so that one can see what features of the phase-resolved

spectra correspond to features in the light curve. The insets show zooms of the

peaks for clarity. The spectral parameters, especially the cutoff energy, vary

dramatically with pulse phase, with the cutoff energy being highest at the phases

of the light curve peaks, especially P2. The phase of the middle peak in Ec is

consistent with that of the inner peak in the > 8.0GeV light curve at high energies

(Abdo et al. 2010b). A more detailed discussion of the spectral features is given

in the text of Section 4.2.1.1.
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no longer see a dramatic rise and fall at φ ∼ 0.1. Ec rises through P1, declines at

φ ∼ 0.15, and reaches a minimum at φ ∼ 0.23, in the middle of P3. There seems to

be some structure in the phase-resolved parameters between 0.25 ≤ φ ≤ 0.3, where

the variation in both Ec and Γ appears to be slightly concave down. The phase

range of this structure corresponds to the location of P3 in the > 8ĠeV light curves

in Figure 2 of Abdo et al. (2010b) (in these light curves, P3 clearly moves to later

phase with increasing energy).

Ec varies between 2.5 and 3.6 GeV in the phase range 0.3–0.45, as seen in Abdo

et al. (2010b). As noted in that paper, the location of the peak in Ec corresponds

to the location of P3 in the 3–20 GeV light curves (again shown in Figure 2 of

Abdo et al. 2010b). There is more variation through this structure than was seen

previously; for example, the dramatic fall and subsequent rise in Ec between 0.325 <

φ < 0.35 can also be seen in the photon index. We note that the Crab pulsar may

also have a peak in Ec in its bridge emission, though it is not as significant as what

is observed for Vela.

From φ ∼ 0.45 through P2, Ec increases to a maximum of ∼ 5.5GeV. There are

at least three rapid rise-and-fall components in Ec in this phase range. After P2,

the cutoff energy decreases to its pre-P1 value, save for another small rise and fall at

φ ∼ 0.6. Coming out of P2, the photon index increases slightly as Ec is falling, and

rises more dramatically along with Ec at φ ∼ 0.6. Beyond this phase, both Γ and

Ec return to values consistent with those measured before P1. There is definitely

interplay between Γ and Ec, and the fact that in most cases they have the same,

rather than opposite, behavior suggests that their simultaneous variation is real as

opposed to originating from covariance in the two spectral parameters.
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4.2.2.2 Crab

As stated in Section 4.2.2.1, the power law index increases prior to P1 in the Crab,

matching the behavior seen by Weisskopf et al. (2011) in the X-ray phase resolved

spectra. In the peaks of the Crab’s light curve, the spectrum gets harder as the

cutoff energy increases. This trend may continue in the bridge emission, but the

errors are larger there, so it is difficult to make a concrete statement about this.

There is a dip-like feature in both index and cutoff in the first peak at the phase of

the maximum photon counts; in Ec, this may be analogous to the rise and fall of Ec

in Vela’s phase resolved spectrum.

In P2, the index reaches its hardest value as the cutoff energy increases to a

maximum. At the center of P2, Ec > 10GeV, but the error on the measurement is

large as well. This large uncertainty on Ec may be due to the cutoff energy varying

very quickly across the phase bin containing the peak flux, so that if the phase

bins were sufficiently small, we would measure a single Ec in each bin with high

enough counts. In practice, the spectra may be better fit with a sub-exponential

cutoff (b < 1). A slightly different case is one in which the peak emission is caustic

in nature (as predicted by the models we examine in this paper), such that the

emission is composed of photons emitted from a large range of radii and therefore

samples a blend of cutoff energies at every phase, also resulting in b < 1. As an

attempt to test the origin of the large error in the measurement, we split the peak

phase bin in half and fit the spectra in these bins. We found that the cutoff increases

even more in these smaller bins, but the errors increase as well due to the decrease

in counts. With current statistics, it is not possible to determine whether or not the

cutoff energy is “well-behaved” in much smaller phase bins.

We note that the very high value of Ec in P2 may be related to the VHE pul-

sations discovered by MAGIC (at E > 60GeV) (Albert et al. 2008) and VERITAS
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Figure 4.3: The phase resolved spectra parameters, as in Figure 4.2, for the Crab

pulsar, discussed in Section 4.2.1.2.

(E > 400GeV) (VERITAS Collaboration et al. 2011). The VHE peaks are very

narrow and are coincident in phase with the highest points in the LAT peaks, and

therefore coincident, in P2, with the phase of the largest value of Ec. However, if

this high value of Ec is related to the VHE mission, then it is curious that we only

see this sudden increase in Ec in P2 and not in P1.
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Figure 4.4: The phase resolved spectral parameters of the Geminga pulsar (Sec-

tion 4.2.1.3), with zooms of the peaks inset in the plot.

4.2.2.3 Geminga

Geminga is the only pulsar of the four considered here for which a cutoff energy can

be measured at all rotation phases, meaning that we are observing magnetospheric

emission throughout the pulsar’s rotation. The values of both Γ and Ec measured

before P1 match those after P2, serving as a consistency check considering the

arbitrary nature of the phase definition (if the phases were shifted and the spectra
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measured in differently defined bins, the results would be consistent with those

measured here).

The first peak is softer and has a lower cutoff than the second peak, consistent

with the phase resolved spectral results and energy-dependent light curves of Abdo

et al. (2010d). The dipping behavior of Γ and Ec seen in the first peak of the Crab

is seen even more strongly in Geminga’s peaks. The index and cutoff move together,

again suggesting the variation is real. The bridge emission hardens from P1 to P2,

while the cutoff remains nearly constant (with some variation, mostly within the

errors).

4.2.2.4 PSR J0007+7303

This pulsar has significant off-peak emission (Abdo et al. 2012), but the statistics

are too poor to determine whether the emission is of magnetospheric or nebular

origin. If magnetospheric, the spectrum would be better fit with an exponentially

cutoff power law (Equation 4.1) than a power law. Like Geminga, it is radio-quiet to

within detection limits (Halpern et al. 2004), but judging from the dissimilar light

curve and phase-resolved spectra, the emission and viewing geometries are likely

quite different.

The phase-variant spectral parameters shown in Figure 4.5 are taken directly

from Abdo et al. (2012); we replot them here for completeness and ease of comparison

between figures.

The photon index hardens through the first peak and softens through the second,

returning to near the same value after P2 as before P1. Although the peaks are

much closer together, the cutoff is still higher in the second peak. This suggests

that we are dealing with the same general emission region and mechanism as for the

other pulsars, but with a different particular geometry (viewing and/or inclination
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Figure 4.5: The phase resolved spectral parameters of PSR J0007+7303 (Sec-

tion 4.2.2.4), replotted from Table 2 and Figure 4 of Abdo et al. (2012).

angle). In P2, there is a sudden dip and rise in Ec similar to that seen in the

Crab and Geminga pulsars, matched by a smaller but similar variation in Γ, at

0.475 < φ < 0.525.
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4.2.3 Comparison and Interpretation of Spectral Results

For Vela and Crab, the peaks are softer than the bridge, with a range of Γ = 1.5−1.8

in Vela’s peaks and Γ = 1.6− 2.1 in the Crab’s. For Geminga, the peaks are harder

or as hard as the bridge; P1 has 1.2 ≤ Γ ≤ 1.4, and P1 has 0.9 ≤ Γ ≤ 1.2. It is

difficult to say for sure what is peak vs. bridge emission (if there is any) for PSR

J0007+7303, but the photon index varies between 1 ≤ Γ ≤ 1.6 within the phases

containing the peak emission, more similar to Geminga than to the two radio-loud

pulsars. In all cases, P2 has a higher cutoff energy than P1.

In general, for short-timescale features like dips in the peaks, the index and cutoff

move together. There is not a clear trend like this for longer-timescale features,

partly because the only pulsar with significant emission outside the peaks and bridge

is Geminga. In its case, the index rises as the cutoff falls outside the peaks—there

are many fewer high-energy photons outside the peak and main bridge regions. In

the bridge, Ec stays nearly constant or falls slightly as Γ falls (hardens). So in the

case of Geminga, outside the peaks the emission softens and the cutoff decreases,

while within and between the peaks, the emission hardens, the cutoff stays relatively

constant, and the parameters move together in short intervals, for example within

the dips in the peaks.

As noted in Abdo et al. (2010b), the bridge emission of Vela has a very obvious

peak in Ec at φ ∼ 0.34, matching the rightmost location of P3 in the energy-

dependent light curves of this pulsar (Abdo et al. 2010b). There may be one or two

small bumps similar to this in the bridge emission of the Crab (at φ ∼ 0.24 and

0.6), though the errors are just large enough for Ec to be consistent with a constant

value. There are no structures like this seen in the bridge emission of Geminga

or PSR J0007+7303; though for the latter, the statistics are too poor to see small
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features in the spectral parameters, and additionally it is difficult to discern the

peak from the bridge emission well enough to determine whether such features are

present.

There were hints of dipping behavior in Geminga’s peaks in Abdo et al. (2010d),

but the behavior is quite obvious with our longer dataset. The same behavior is

seen in P1 of the Crab, and possibly in P2 of PSR J0007+7303. It is not possible

to say whether or not there is a dip in the first peak of PSR J0007+7303 at this

time. There may be dipping in Vela’s peaks as well; there is definite variation, but it

seems more complex than one or two clear dips through each peak, so it may or may

not be the same phenomenon seen in the other cases. It is interesting that in the

Crab, the first peak has a clear dip at the same phase in index and cutoff energy, but

the second peak is completely different—instead of a dip, both parameters increase,

especially with the drastic increase in cutoff energy. This leads to the question

of whether or not there could be some fundamental difference between the γ-ray

production in the two peaks. Both peaks are seen in VHE data, yet the LAT cutoff

energy is very high only in P2, suggesting that the cutoff energy measured by the

LAT is not necessarily connected to the VHE emission. Alternatively, a power law

or a sub-exponential cutoff may give a better fit to the P2 spectrum.

4.3 Geometrical Constraints from Phase Resolved

Spectroscopy

Knowledge of the accelerating electric field, E||, is needed in order to model the ac-

celeration of charges in pulsar magnetospheres and to calculate the resulting γ-ray

luminosities. It is calculated by solving Poisson’s equation within the acceleration

gap (Muslimov & Tsygan 1992b), which is bounded by surfaces of E|| = 0 along
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the closed field line region and along the inner edge of the gap of width w. Some

information on the value of E|| can be deduced by comparing observed pulsar lumi-

nosities with those predicted from model-dependent E|| calculations (Harding et al.

2002), for example those of Harding & Muslimov (2001, 2002).

Because of the excellent sensitivity of the LAT, phase resolved spectroscopy is

possible at energies > 100MeV, as shown in the previous sections. My collaborators

and I suggest that the phase resolved cutoff energies can be used to estimate E||

from observational measurements for the first time. In the remainder of this chapter,

I describe our method and show how tighter constraints on the emission and field

geometries can be obtained by using Ec to calculate E||.

4.3.1 Calculation of Accelerating Electric Field

In many HE pulsar emission models, the GeV emission is dominated by curvature

radiation. The accelerated particles are found to be at the curvature radiation

reaction (CRR) limit in both the outer gap (Romani 1996) and slot gap (Muslimov

& Harding 2004) models. In this limit, the particles reach a steady-state Lorentz

factor (Daugherty & Harding 1982)

γCR =

(

3

2

E||ρ
2
c

e

)1/4

(4.4)

that is estimated to be γCR ∼ (2 − 3) × 107 for outer magnetosphere models. The

cutoff energy of the particles’ emission is

ECR =
3

2

λ

ρc
γ3
CR = 0.32λc

(

E||

e

)3/4

ρ1/2c ∼ 1− 5GeV (4.5)

Thus, E|| at a given point along a field line can be estimated with knowledge of the

field line radius of curvature ρc and the cutoff energy of the curvature radiation ECR

emitted from that point.
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We make two assumptions about the high-energy emission in order to estimate

E|| within the context of our models: 1) The high-energy emission is dominated

by curvature radiation in the radiation-reaction limit. Therefore, ECR = Ec from

Section 4.2. 2) The optimal set of parameters for each combination of emission (OG,

SG, or aSG) and field (VRD or FF) geometries obtained through light curve fitting

describes the true geometry of the pulsar’s emission region and magnetic field. As

described in Section 3.1, the simulations from which we obtained the model light

curves also calculate the minimum and maximum emission radii (rmin and rmax) and

radii of curvature (ρmin and ρmax) sampled by the field lines in each rotation phase

bin φ.

Rearranging equation 4.5, equating ECR with the measured cutoff energies Ec

of the pulsars considered in this paper, and equating ρc with the radii of curvature

ρmin,max from the best fit light curve modeling geometries, gives us an equation for

E||:

E|| = e

(

Ec

0.32λC

)4/3

ρ−2/3 (4.6)

The minimum E|| sampled in a given phase bin is obtained using the maximum ρmax

output by the toypol code in that bin, and the maximum E|| from the minimum ρmin.

To obtain the extrema of the magnetic field strength, Bmin and Bmax, at each φ, we

re-ran the simulations for the best-fit geometries, and input the measured surface

field strengths, spin periods, and period derivatives, listed in Table 4.2. We next

discuss our estimates of E|| for each pulsar.
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Table 4.2. Physical Characteristics of Modeled Pulsars

Pulsar P Ṗ Ė BS BLC

(ms) (10−15 s s−1) (1035 erg s−1) (1012 G) (104 G)

Vela 89.4 125.0 69.0 3.322 4.381
Crab 33.6 420.0 4360.6 3.742 95.9

Geminga 237.1 11.0 0.33 1.6 0.113
PSR J0007+7303 315.9 357.0 4.48 10.7 0.313

Note. — P and Ṗ are the spin period and period derivative of each pulsar,
and Ė is the total rotation energy output. These values were taken from the
ATNF pulsar catalog (Manchester et al. 2005) and the second Fermi LAT pulsar
catalog (The Fermi-LAT Collaboration 2013). BS and BLC are the surface and
light cylinder magnetic field strengths, and were calculated using Equations 1.5
and 1.12.

4.3.2 Results: E|| Estimates

4.3.2.1 Vela

Figure 4.6 shows the results for Vela. Panel (a) provides the observed light curve and

cutoff energies to help guide the eye in the plots below. Panels (b) and (c) correspond

to the vacuum retarded dipole, and (d) and (e) to the force-free magnetosphere.

Results for the outer gap, slot gap, and asymmetric slot gap are shown from left to

right.

In panel (b), the minimum and maximum emission radii are plotted respectively

as blue and purple dashed lines, while the minimum and maximum radii of curvature

are the green and red solid lines. Because the outer gap light curve has zero emission

in the first and last two bins with a cutoff energy measurement, the emission and

curvature radii in those bins are not plotted here.

The maximum strength of the local magnetic field, Bmax, is plotted with the blue
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line in panel (c), along with the minimum and maximum |E||| (|E||,min| and |E||,max|,

in units of the light cylinder field strength BLC from Table 4.2) in the red and green

points, respectively. |E||| was calculated with equation 4.6; the minimum values

correspond to the maximum ρ, and maximum to the minimum ρ, from panel (b).

Bmax was calculated numerically in the light curve simulation code, for which the

parameters were the same as the best fit geometrical parameters given in Table 3.2.

In panel (d), the emission radii and radii of curvature are plotted as in panel (b),

here for the force-free field geometry. Panel (e) shows Bmax, |E||,min|, and |E||,max|

for the force-free field. From this point on, E|| = |E||| unless otherwise noted.

For an electric field induced by the motion of a magnetic field, the magnetic field

strength must exceed that of the electric field. To test our model fits, we compared

the E||,min with the local Bmax, the latter of which must physically be larger than

the induced local parallel electric field. This comparison accounts for the fact that

the maximum E|| possible in a given phase bin (or at a given radius) may be larger

than the local |B|, but the true E|| may be smaller (as small as E||,min). Comparing

the extreme values therefore gives the most room for a given geometrical model to

produce physically acceptable values of E||.

We find that, for Vela, the necessary condition E||,min < Bmax is just barely

satisfied in the OG and aSG geometries of the VRD field (panel c). More realis-

tic would be the scenario where E||,min lies well below Bmax. The sSG geometry

satisfies this more stringent condition, but as discussed in Section 3.2.1, the param-

eters of the best sSG fit are thought to be unrealistic. The FF field significantly

lowers E||,min/Bmax for the slot gap geometries (panel e). The OG still just meets

E||,min/Bmax < 1 in the FF case.

These results can also be seen in Figure 4.7, which shows the minimum values of

E|| (again in units of BLC) and the ratio E||,min/Bmax plotted against the minimum
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Figure 4.6: Vela: The calculation of E||. From left to right, the results in panels

(b)-(e) correspond to the OG, SG, and aSG geometries. (a) The phase-varying

cutoff energy is plotted in red, with the shape of the LAT profile underlaid in

purple to guide the eye. (b) This panel shows the radii output by the toypol

code for the VRD field geometry. The minimum and maximum emission radii in

each phase bin are plotted respectively in blue and purple dot-dashed lines. The

minimum and maximum field line radii of curvature are shown with the green and

red solid lines. (c) The maximum |B| in each bin, where the vacuum retarded

dipole B field was input to the simulations, is plotted in blue. The maximum

and minimum values of |E|||, calculated from the cutoff energies in (a) and the

minimum and maximum ρ in (b), are plotted in green and red, respectively.

(d) Same as (b), for the force-free geometry. (e) Same as (c), for the force-free

geometry.
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Figure 4.7: The points show the values of E||,min/BLC and E||,min/Bmax, where

Bmax is the maximum strength of the local magnetic field, for Vela: (a)

log (E||,min/BLC) for the three models in the VRD field; (b) log (E||,min/Bmax)

for the three models in the VRD field; (c) same as (a), for the FF field; (d) same

as (b), for the FF field. In panels (a) and (c), the predicted values of E||,min/BLC

(see Section 4.3.3) are plotted as colored bands. In each panel, the values corre-

sponding to the OG, sSG, and aSG emission geometries are shown in blue, red,

and green, respectively. The blue points with black outlines in panel (a) have

been outlined only in order to be visible within the blue band of predicted values.

In the y-axis labels, “E||,min” has been shortened to “E||” for aesthetic purposes.
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emission radius calculated in each light curve phase bin. The E|| we obtain is slowly

varying with emission radius. The FF field lowers E||,min/Bmax significantly for the

slot gap geometries. The OG in the FF field still has E||,min that is marginally

high at radii beyond the light cylinder. It is difficult to compare one geometry to

the next, as the parameters are different in each case, hence it is not immediately

obvious why the FF field consistently lowers this ratio. Generally speaking, the

decrease in E||,min/Bmax for the sSG and aSG geometries can be explained in part

by the fact that the lowest values of Bmax are larger in the FF field than in the VRD,

because B falls off more slowly than 1/r3. Also, ρmax tends to have larger values

in the FF case because the field lines are straighter than those of the VRD due to

current loading, therefore decreasing E||,min. Finally, for the particular geometrical

parameters considered here, the emission from the FF geometry originates at lower

altitudes in the sSG and aSG compared to the emission altitudes in the VRD field,

as can be seen in Figure 4.7. This means that the B sampled by the emission regions

is stronger in the FF than VRD field.

4.3.2.2 Crab

In Figures 4.8 and 4.9, we clearly see that E||,min >> Bmax at most rotation phases for

all three emission models in the VRD field geometry. E||,min/Bmax drops dramatically

in the FF field. The general explanation is the same as above. The maximum ρc is

larger in the FF case, which lowers E||,min; and |B| is larger at a given radius in the

FF field than in the VRD. For the particular geometrical parameters considered here,

it appears that the former effect of increasing ρc in the FF field is the main driver

in decreasing E||,min/Bmax from the VRD to FF in the sSG and aSG geometries, as

Bmax does not increase significantly in the FF field in this case.

E||,min/Bmax is again large but acceptable for the OG model in the FF field.
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Figure 4.8: Crab: Same as figure 4.6 for the Crab pulsar.
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Figure 4.9: Same as Figure 4.7 for the Crab pulsar. The predicted E‖ are shown

in cyan so that the blue OG points in the FF field are still visible.

Because the OG only allows emission at higher altitudes (as opposed to the SG,

which allows emission down to the neutron star surface), the magnetic field strength

is lower in the OG emission region. This leads to E||,min/Bmax being larger for the

OG than the SG. Neither ρmax nor Bmax changed substantially from the VRD to

the FF field in the OG geometry, for the best fit parameters of the Crab; the small

increase in ρmax in the FF field did decrease E||,min just enough to be physically

possible.
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For the SG geometries in both fields, the maximum ρc seems to peak near the

light curve and Ec peaks. This is slightly suggestive of a more direct relationship

between ρc and Ec. A similar relationship is seen for the Vela SG models.

In Figure 4.9, E|| is fairly constant with rmin for the VRD case (panels a and

b), but increases slightly with rmin in the FF field (c and d). The dramatic drop in

E||,min/Bmax can again be seen between the VRD and FF fields.

4.3.2.3 Geminga

The reduction of E||,min/Bmax by the FF field is less dramatic, though still present,

for Geminga. In Figure 4.10(c), Bmax < E||,min in the VRD/OG geometry, and Bmax

dips below the minimum and maximum values of E|| in the VRD/SG geometries.

The models have very different best fit parameters in the FF case, which makes

it difficult to compare with the VRD geometries. In the FF field, E||,min < Bmax

at all φ for the SG models, but E||,min > Bmax at most phases for the OG model

(Figure 4.10(e)).

In the SGmodels of both the VRD and FF fields, we see some correlation between

the locations of the peaks in the γ-ray light curve, Ec, and ρmax, as was also noted

in the Crab results in the previous section. In the VRD case, the peaks also show

up in ρmin, though they are lower. In the FF aSG case, the dips in the centers of

the ρmax peaks may be connected with the dips in the peaks of Ec.

We again find E||,min varying slowly with emission radius in Figure 4.11. The

two sets of slot gap model parameters in the VRD field are nearly identical because

the best fit α and ζ values are almost the same, so the values of E||,min for the sSG

and aSG (red and green) also have almost identical values in panel (a). Panels (b)

and (d) show E||,min/Bmax reaching much higher values in the OG model than in the

SG models. E|| has similar values in the VRD and FF geometries, as one can see

125



0

1

2

3

4
E

c 
(G

eV
)

0
1

2

3

4

R
ad

ii 
(R

LC
)

0
2
4
6
8

lo
g 

E
||,

 |B
| m

ax
 (

B
LC

)

0.0

0.5

1.0

1.5

2.0

R
ad

ii 
(R

LC
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Pulse Phase

0

1

2

3

lo
g 

E
||,

 |B
| m

ax
 (

B
LC

)
(a)

(b)

(c)

(d)

(e)

Figure 4.10: Same as figure 4.6 for the Geminga pulsar.
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Figure 4.11: Same as Figure 4.7 for the Geminga pulsar. The range of E|| is not

shown for the FF sSG model in panel (c) because it lies too far below the other

points on the plot: −6.6 ≤ log (E||,min/BLC) ≤ −3.4 for the FF sSG model.

from panels (a) and (c). The drop in E||,min/Bmax seen in the SG geometries of the

FF field is caused by a decrease in both Bmax and E||,min, along with an increase in

the minimum values of Bmax, seen in panels (c) and (e) of Figure 4.10.
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Figure 4.12: Same as figure 4.6 for PSR J0007+7303.
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Figure 4.13: Same as Figure 4.7 for the CTA 1 pulsar.

4.3.2.4 PSR J0007+7303

In the case of the pulsar in the CTA 1 supernova remnant, the values of E|| change

little from the VRD to FF field in panels (c) and (e) of Figure 4.12, but Bmax

increases in the FF field. This increase in Bmax results from emission being produced

at lower radii in the FF field (Figure 4.12, panels (b) and (d), and Figure 4.13). The

maximum ρc also increases from the VRD to FF fields in the SG geometries, lowering

the minimum of E|| with which we compare Bmax in Figure 4.13. The emission radii
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are lowered in the FF field, causing the increase in Bmax. Only the aSG geometry

in the FF field meets the requirement that E||,min/Bmax < 1.

4.3.3 Comparison of E|| Estimates with Theoretical Values

Previous calculations of E|| in the vacuum field geometry include those of the outer

gap (Cheng et al. 1986a; Hirotani 2008), of the azimuthally symmetric slot gap

(Muslimov & Harding 2004), and of the azimuthally asymmetric (offset dipole) slot

gap (A. Harding, private communication; Harding & Muslimov 2011b). Except for

the comparison of my OG results with Hirotani (2008), I used analytic expressions

for all of the calculations of predicted E||.

For the OG model, Cheng et al. (1986a) derive the parallel electric field to be

E||,OG ≈ ΩB

cρc
a2, (4.7)

where Ω = 2π/P is the angular spin frequency, P is the pulsar spin period, B = B(r)

is the local magnetic field strength at radial distance r, ρc is the radius of curvature

of the magnetic field line along which E|| is evaluated, a = wRLC is a physical gap

thickness, and w is the dimensionless width of the gap, measured as a fraction of

the polar cap radius, for which I use the best-fit OG gap widths from Table 3.2.

Using RLC = c/Ω, this expression reduces to

E||,OG ≈ Bw2

ρc/RLC
. (4.8)

Note that E|| is dependent on r in this expression, as both B and ρc vary with radius

from the neutron star.

For the sSG model, Muslimov & Harding (2004) calculate the value of E||,high at

large radii and connect it to the value at smaller radii, E||,low (Muslimov & Harding

2003). They find that for α = 45◦, the altitude where E||,high and E||,low are smoothly
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connected is ∼ 1.4R, very close to the star’s surface and below the emission radii

of our simulations in most cases. We therefore compare our calculated E||,min only

with E||,high from Equation 54 of Muslimov & Harding (2004),

E||, sSG ≈ 1

4

(

R

RLC

)3

BS w
2, (4.9)

where BS is the surface magnetic field strength, given in Table 4.2, R is the neutron

star radius, RLC is the light cylinder radius, and w is the best-fit sSG gap width

from Table 3.2.

The predicted value of E|| varies with azimuth angle φ around the polar cap in the

aSG model. The light curve peaks are produced from emission on the trailing side,

where the angular distance from the dipolar magnetic pole is largest and E|| reaches

its maximum value; in the coordinate system of Harding & Muslimov (2011a,b) and

this work, E|| is maximum at the polar cap angle φ = 270◦. The value of E|| can be

approximated by

E||,aSG ≈ EE||, sSG, (4.10)

E =
xa

(1 + a)2
, (4.11)

where E is the φ-dependent emissivity of the gap, x = r/RLC, a = ǫ sin φ, and ǫ

is the offset parameter of Harding & Muslimov (2011a,b). Note that for r = RNS,

Equation 4.11 reduces to Equation 3.5, since θPC ≈ (RNS/RLC)
1/2.

The offset parameter ǫ is determined from the amount ∆rPC by which the polar

cap is offset from the center of the star (Equation 3.6); ∆rPC is found from the

numerical calculation of the polar cap rim in the light curve simulations. At φ =

270◦, ∆rPC and ǫ are at their maximum values, and a = −ǫ. The value of ǫ, and

hence a, was calculated from ∆rPC(φ = 270◦) in the light curve simulations using

Equation 3.6; its absolute value increases with increasing magnetic inclination α,
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and is larger in the FF field than the VRD field for the same α. To plot bands

of E||,min for the aSG model as in Figure 4.7, I used r = rmin from the models.

The value of E used to plot the predicted E||,min/BLC in these figures, for the aSG

geometry, was therefore calculated as

E =

(

rmin

RLC

)−ǫ
1

(1− ǫ)2
. (4.12)

I calculated E|| predicted by the above analytic expressions for each of the four

pulsars, in each emission and field geometry. In Figures 4.7, 4.9, 4.11, and 4.13, I

have plotted the ranges of the predicted E||,min/BLC for each model. Where appli-

cable, E|| was calculated using ρmax, Bmax, w, and/or ǫ corresponding to the best-fit

model light curve. The ranges of E|| values result from the fact that there is a range

of gap widths w for which I calculated E||. I have, in effect, ignored the confidence

intervals of the other three parameters, as I am only considering how E|| may change

with gap width under the assumption that the other best-fit geometrical parameters

are correct; note that the range of E‖ presented here is narrower than it would be

if all parameters were varies. In models with w = 0, I used w = 0.001 to calculate

E||. For all of the models, a larger w will result in a higher E||. For the same w, the

aSG model will yield a higher E|| compared to that of the sSG model.

One consideration specific to the OG model is that the predicted E|| depends

on ρc and Blocal, and its values may change depending on whether the minima or

maxima of these parameters are used. I first calculated E||(ρc = ρmax, B = Bmax) for

the OG model, where ρmax and Bmax were numerically calculated in the light curve

simulations. The E|| evaluated at these values of ρ and B corresponds to E||,min. I

also calculated E||(ρc = ρmax, B = Bmin), and found there was very little difference

between these and the former values of E||. Because I have plotted E||,min against

rmin in the aforementioned figures, I chose to use E||(ρmax, Bmax) for this comparison.

I note that I could also have calculated E||(ρmin, Bmax) and E||(ρmin, Bmin); these
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would be more appropriately compared with E||,max, which is not plotted.

I find that for all of the pulsars, except the Crab in the FF field, the predicted

values of E|| are orders of magnitude lower than the measured values. (“Measured”

values of E|| refer to those calculated using Ec from the phase resolved spectroscopy

and ρmax from the best-fit geometrical light curve parameters, while “predicted”

values refer to E|| as calculated from Equations 4.8, 4.9, and 4.11.) This finding

is consistent with the under-prediction of γ-ray luminosities, calculated from e−e+

pair multiplicities in acceleration gaps, compared to those measured by the Fermi

LAT (e.g., Harding & Muslimov 2011a).

The predicted and measured E|| values are consistent for the Crab pulsar for all

emission geometries in the FF field. The Crab is the youngest of the four pulsars

considered here, and it differs from the others in several ways. It is 100 times more

energetic than Vela, with Ė ∼ 4.4 × 1038 erg s−1 compared to Vela’s Ė ∼ 6.9 ×

1036 erg s−1; PSR J0007+7303 and Geminga have still lower Ė values (Table 4.2).

Its pulses are aligned across the electromagnetic spectrum, implying co-location of

the emission regions at all wavelengths. It is also the only pulsar currently known to

display pulsations at > 100GeV (Albert et al. 2008; VERITAS Collaboration et al.

2011). It is interesting to find agreement in E|| only for the case of this already

unique pulsar.

In addition to the agreement in E||, the model light curves in the FF geometry

reproduce most of the qualitative features of the Crab light curve, the geometrical

parameters are similar for the three emission geometries in the FF field, and the best-

fit ζ agrees with the independent measurement from Ng & Romani (2008). Together

with the E|| results, these findings suggest that the Crab pulsar has a near-force-

free magnetosphere in which narrow acceleration gaps form. It may be that models

invoking narrow acceleration gaps are more applicable to the Crab than to the other
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older pulsars considered here. The consistency between the predicted and measured

E|| also lends support to the assumption that the Crab’s γ-ray emission in the LAT

energy range is dominated by curvature radiation in the CRR limit, such that it is

valid to estimate E|| from Equation 4.6. The origin of the higher-energy emission

at E > 100MeV is not clear, but may be another mechanism, perhaps synchrotron

self-Compton. The lack of consistency in E|| for the other pulsars suggests that for

those objects, the assumption of CRR is not valid, and/or that narrow gap models

do not work as well for older pulsars, perhaps because their fields are farther from

force-free. Recently, Breed et al. (2013, in preparation) have found that CRR is

not reached in the magnetosphere of Vela due to a low E‖, supporting our findings

that only pulsars as energetic as the Crab may accelerate particles to the curvature

radiation reaction limit.

4.4 Discussion

4.4.1 Phase Resolved Spectra

Wemodeled the phase-resolved spectra of each pulsar in fixed count bins with∼ 3000

counts per bin. The phase-varying Γ and Ec are shown in Figures 4.2–4.5.

We find, consistent with previous results, that the cutoff energy is highest in the

light curve peaks. Vela, and the Crab to a lesser extent, has a peak in the cutoff

energy within the bridge emission that corresponds to the location of P3, the third

light curve peak, above 3GeV. The second Crab peak has a very high cutoff energy

with a large error bar. When we split this phase bin in two and fit the spectra of

each bin individually, the cutoff energy and error both increased. This is suggestive

of a large variation in Ec, and a very high maximum value, within the second peak,

perhaps connected to the > 400GeV emission observed by VERITAS.
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A feature which has come out of modeling these pulsars with improved statis-

tics is the dipping behavior observed in the first peak of the Crab, both peaks of

Geminga, and at least the second peak of PSR J0007+7303. In these peaks, both

the index and the cutoff energy rapidly decrease in value and then return to their

pre-dip value. This behavior was not observed previously, simply due to the lower

number of counts available in earlier analyses. It is not clear if the dips are physical

or artifacts of inadequate spectral fitting. It will be necessary to model the phase-

resolved spectra of more pulsars with high counts to see if this dipping behavior is

a physical feature of pulsar emission, and if it is common in other pulsars.

Finally, we have modeled the phase-resolved spectra with the assumption that

within a small enough phase bin, b = 1. This is satisfactory for the current spectra,

given the number of counts available. However, if Ec is changing very rapidly, or if

within a single bin the true spectrum is a blend of many different spectral shapes,

with improved statistics we may find that even in small phase bins, b < 1; we discuss

this further in Section 4.4.2. We note that the choice of b may contribute to the

dipping behavior discussed above if the dips are related to caustic emission, which

naturally requires b < 1 due to a wide range of Ec. Fitting the phase resolved

spectra with b 6= 1 is another test that must be done on these bright pulsars as the

Fermi mission continues to collect data in the coming years.

4.4.2 E|| Estimation

In radiation models of pulsar emission, the strength of the accelerating electric field

E|| must be calculated from Poisson’s equation with assumed boundary conditions

in order to obtain light curves and spectra. In this paper, we have instead used

purely geometrical models combined with LAT observations to obtain estimates of

E||. Using the measured spectral cutoff energies plotted in Figures 4.2–4.5 and the

135



simulated emission and curvature radii from the best fit parameters of each model

geometry, and assuming curvature radiation reaction, we calculated the (phase- and

emission radius-varying) magnitude of E|| (Equation 4.6) for each of the four pulsars

considered in this paper.

We find that E||,min/Bmax > 1 for all emission model geometries in the VRD

field, and also for the OG emission geometry in both VRD and FF field structure,

except for the Vela pulsar (for which E||,min/Bmax ≃ 1 in the VRD geometry). The

OG emission takes place at higher altitudes than in the SG geometries; the magnetic

field strength is lower at these large emission radii, allowing E||,min > Bmax.

There are two effects that cause E||,min/Bmax to decrease from the VRD to FF

field. First, Bmax in FF magnetospheres falls off more slowly with radius than

the dipolar 1/r3 (Spitkovsky 2006, Figure 1c). Bmax is therefore larger at a given

emission radius in the FF case than it would be in the VRD. Secondly, the poloidal

field lines in the FF field are straighter than in the VRD field (e.g., Figure 1a

in Spitkovsky 2006), resulting in a larger radius of curvature ρc of the field lines.

Assuming the γ-ray-emitting particles satisfy curvature radiation reaction, a larger

ρc will lower E|| (equation 4.6). This indicates that physically, the field lines of

pulsar magnetospheres cannot be as curved as in the VRD field. An interesting

potential outcome of this is that, for a given E||, as particles are accelerated in the

FF field, they lose less energy to radiation. They may therefore be accelerated to

larger energies, and to larger Lorentz factors—the γ for curvature radiation reaction

may be larger in the FF field than in the VRD, producing higher Ec.

As discussed above, the light curve fits do not favor a particular combination of

emission and field geometry. Especially interesting is that in some cases, the best

fit light curve is simulated from the VRD field, both in terms of the pulse profile

shape and the phase lag δ. The pulsar magnetosphere certainly does not satisfy
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the conditions of the ideal force-free magnetosphere, and it may be that in at least

some cases, the field is actually closer to a vacuum retarded dipole than to the

force-free field. With a small amount of current, the field lines become considerably

straighter than in the VRD (Spitkovsky 2006). Additionally, Harding et al. (2011)

find that the phase lag δpole between the model magnetic pole and the first γ-ray

peak increases as the field structure is shifted from VRD to FF. This would explain

how the light curves could appear closer to what is expected from the VRD field,

and δ could be consistent with observations, while ρc could still reach large enough

values to satisfy |E||| < |B| locally.

The radius of curvature tends to reach its largest values at the phases of the

light curve peaks, and also has the largest range of values at these phases. In

particular, we find that the geometrical model parameters that best reproduce the

observed light curves also result in ρmax and E|| peaking where the light curve peaks

as well. This can be understood by the caustic nature of the emission in the peaks—

these photons are emitted over a large range of emission heights, and the particles

from which they were emitted therefore sampled a large range of ρc. The observed

spectral cutoff energies therefore result from a blend of curvature radii. Such an

effect is observed in phase-averaged spectra: The measured Ec is really a blend of

many different cutoff energies (e.g., Abdo et al. 2010b), resulting in a sub-exponential

(b < 1) cutoff power law as the best fit spectral model. For caustic emission, even

the narrowest of phase bins contains photons from many different locations in the

magnetosphere, and therefore samples many different ρc and Ec (where we assume

here that Ec = ECR). We would therefore expect that even for small phase bins,

phase resolved spectra should reveal b < 1 for emission in the peaks. With better

statistics, we can begin to test this hypothesis.
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4.4.3 E|| in the Context of Theoretical Predictions

In each of the gap models considered here, E|| ∝ Bw2, where B may be the surface

field or a radius-dependent field, depending on the model. The proportionality

constant changes depending on what model is used to calculate E||. Calculations

of the acceleration of charges, and subsequent radiation and pair production, in

pulsar magnetospheres yield expressions for the luminosity of primary particles and

hence the luminosities expected from pulsars (Muslimov & Harding 2003, 2004). In

narrow acceleration gaps, the maximum attainable value of E|| is limited by the

requirement that E|| = 0 at the gap boundaries. The smaller the gap width, the

smaller E||. Very narrow gap widths therefore lead to under-predictions of pulsar

γ-ray luminosities when compared with observations. A larger gap width leads to

larger pair multiplicities, and hence larger luminosities; however, a small gap width

is needed in order to reproduce the narrow light curve peaks.

In general, the predicted values of E|| calculated here are orders of magnitude

lower than the E|| calculated from the measured spectral cutoff energies and mod-

eled field line radii of curvature. This is consistent with the expectation that the

predicted luminosity will be lower than that observed. The calculations of predicted

E|| in Section 4.3.3 show that the offset dipole increases E|| on the trailing side of

the polar cap where caustics form. This was first shown by Harding & Muslimov

(2011a), who also found that pair multiplicities increase with increasing dipole offset

and may be able to reconcile theoretical luminosity predictions with observations.

E|| of the slot gap with an offset dipole is further increased in the FF field, for which

the offset is inherently larger. These improvements do not change E|| enough to be

consistent with the measured values, in all cases except that of the Crab in the FF

field.
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For the Crab, the geometrical parameters found from light curve modeling are

similar for all three models in the FF field, and the predicted and measured E||

are consistent. This lends additional support to the constraints on the emission

geometry found from light curve modeling, and suggests that the field structure is

close to that of the FF field. It may be that the assumptions of curvature radiation

reaction and/or of acceleration occurring in narrow gaps are valid for the Crab, but

not for older pulsars (a hypothesis that is supported by the recent work of Breed et

al. 2013, in preparation). This is an interesting prospect that requires much further

examination. Additionally, because all the emission geometries in the FF field have

similar parameters (including a value of ζ that matches X-ray measurements), and

because all have consistent measured and predicted E|| values, it is again not possible

to determine whether only an outer gap or slot gap is present in the Crab pulsar.

These results do not necessarily further support the prospect of both types of gaps

existing simultaneously, but they do allow for that possibility.

Finally, one caveat to note is that in the geometrical models, the gap widths

were held constant. More complex emission regions with variable gap widths may

produce different values of E||(r).
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Chapter 5

Pulsar Searching and Timing

Pulsar studies are inherently dependent on the ability to accurately determine their

spin frequency and spin-down rate, as well as on the ability to increase the sample

of known pulsars with new pulsar discoveries. In this chapter, I describe how pulsar

searching and timing is done. The chapter is focused on the methods that are

applied to radio pulsars, but the concepts, as well as many of the practical aspects,

are similar or identical at other wavelengths. The procedures described here will be

referred to in Chapter 6, in which I describe my own work on pulsar searching and

timing.

Much of this chapter is based on information found in the Pulsar Handbook

Lorimer & Kramer (2005), which is generally regarded as the definitive text on

pulsar observing. I will limit the discussion to the aspects of pulsar observing that

are relevant to this thesis.
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5.1 Effects of the Interstellar Medium on Radio

Pulses

Radio waves in the wavelength range typically used to study pulsars (∼ 100MHz–

5GHz) experience several different effects of propagating through the cold, ionized

interstellar medium (ISM). I describe three of these effects, pulse dispersion, scat-

tering, and scintillation, in this section. It should be noted that dispersion can

be corrected, while scattering and scintillation cannot. Additionally, these effects,

while complicating pulsar studies, can be quite useful for studying the ISM as well

as for obtaining additional information about the pulsar in question (for example,

distance estimates and velocity measurements).

5.1.1 Dispersion

The presence of free electrons in the ISM results in a frequency-dependent index of

refraction,

µ =

√

1−
(

fp
f

)2

(5.1)

where f is the frequency of a radio wave and fp is the plasma frequency fp =
√

e2ne/(πme), where e is the fundamental electrical charge, me is the electron mass,

and ne is the free electron density along the line of sight. For typical values of ne ∼

0.03 cm−3, measured from pulse dispersion in the Galactic plane Gomez-Gonzalez

& Guelin (1974); Ables & Manchester (1976), fp ∼ 1.5 kHz. A broadband pulse

propagating through the ISM will therefore be refracted such that lower-frequency

waves within the pulse will be delayed relative to higher frequencies, thus smearing

the pulse in time. The time by which a wave of frequency f is delayed, compared
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to an infinite-frequency wave (whose propagation time is just d/c), is

t(f) ≡ DDM

f 2
(5.2)

where D is the dispersion constant and DM is the dispersion measure, given respec-

tively by

D =
e2

2πmec
= 4.148808± 0.00003× 103MHz−2 pc cm−3 s, (5.3)

DM =

d
∫

0

ne dl (5.4)

where d is the pulsar distance. The difference in propagation times of two waves

with frequencies f1 and f2 is then

∆t(f1, f2) = D ×DM × (f−2
1 − f−2

2 ) (5.5)

By applying Equation 5.5 to the measured frequencies and arrival times of a pulse,

the frequency-dependent delay is removed, and the pulse is “de-dispersed.”

Pulsars are quite useful in ISM studies because their pulsed emission allows

dispersion to be measured. The S/N of a pulse is maximized when the pulse is

de-dispersed at the proper DM value (Section 5.2.2). If the distance to a pulsar is

known, for example from a measurement of its timing parallax (Section 5.3.1.6), then

the average value of ne along the line of sight can be calculated using Equation 5.4.

Models of the free electron density in the ISM have been constructed in this way; the

model most commonly used in the pulsar community is the NE2001 model Cordes

& Lazio (2002).

Likewise, a pulsar’s distance can be estimated through measurement of its DM

and an estimate of ne along the line of sight to the pulsar. Such distance estimates

can have quite large errors, in some cases ∼ 100%, due to variations in ne that

are not captured in electron density models. For example, in regions of ongoing
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Figure 5.1: Frequency-dependent dispersion of radio pulses from PSR
B1356−60, taken from Lorimer & Kramer (2005) and originally pro-
vided by Andrew Lyne. The time series has been folded on the pul-
sar period of 128ms Manchester et al. (1978, 2005). This pulsar
has a large DM of 295 cm−3 pc, resulting in dramatic pulse disper-
sion. The top panel shows the phase of the pulse arrival time as a
function of spectral frequency—prior to correcting for dispersion, the
pulse is smeared over the timescale of 2 full rotation periods. The
bottom panel shows the pulse profile that results from incoherently
de-dispersing the time series and summing the signal in each time
sample over the spectral window.
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star formation, the density of the ISM is much higher than the average value. A

pulsar lying within or behind the star formation region will have a much larger DM

than an unobstructed pulsar lying at the same distance, and the NE2001 model will

therefore overestimate the distance to the former pulsar.

5.1.2 Scattering

From Equation 5.1, one can see that changes in fp will result in changes in the

refractive index µ. Because fp depends on ne, density variations ∆ne present in

the turbulent ISM cause changes in direction, perturbing or scattering the phases

of radio waves as they propagate.

To first order, the total effect of scattering on a radio pulse can be considered

to occur within a thin screen placed mid-way between the pulsar and Earth; this is

the thin screen model of Scheuer (1968), illustrated in Figure 5.2. The screen has a

thickness a that corresponds to the typical sizes of density inhomogeneities in the

ISM. The root mean square phase variation ∆Φ can be represented as a bending of

the wavefront by an angle θ0 = ∆Φ/(ka), where k = (2π/c)µf is the wavenumber

and, from Lorimer & Kramer (2005),

∆Φ ≃ 2e2

mec

√
ad∆ne

f
. (5.6)

An image of the pulsar through the screen would show the pulsar surrounded by a

diffuse disk of radius θd = θ0/2, due to scatter broadening, with an intensity profile

I(θ) ∝ exp (−θ2/θ2d).

Radio waves that were deflected by an angle θ ≤ θd are delayed by ∆t(θ) = θ2d/c

relative to those that were not deflected. The intensity profile in θ can therefore be

used to derive the intensity of radio waves in the pulse as a function of time,

I(t) ∝ exp

(−c∆t

θ2dd

)

≡ e−∆t/τs (5.7)
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Figure 5.2: Illustration of the thin screen model for pulse scattering
by the ISM. The figure is taken from Lorimer & Kramer (2005) and
Cordes (2002).

The scattering timescale, τs, over which the pulse is broadened, is given by

τs =
θ2dd

c
=

e4

4π2m2
e

∆n2
e

a
d2f−4 (5.8)

The thin screen model is an approximation to the true physical situation—in reality,

turbulent zones have different sizes and densities, and scattering occurs over the full

path length rather than only at the midpoint between the pulsar and observatory.

An example of a more realistic model of turbulence is one in which energy cas-

cades from larger to smaller scales, resulting in a Kolmogorov power law spectrum

Kolmogorov (1941, 1991) with spectral index 11/3. For this model, the scattering

timescale is instead τs ∝ f−4.4.

Radio pulses that have been highly scattered show a signature exponential scat-

tering tail over a timescale of τs. The timescale is strongly dependent on frequency

and distance; for this reason, it can be helpful to use higher frequencies for pulsar

timing, for which sharper pulses provide more accurate arrival time measurements.
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However, pulsars are much weaker at higher radio frequencies because of their steep

spectral index, so there is a trade-off between decreasing scattering and maintaining

sensitivity. This trade-off is a limiting factor in searches for distant pulsars, for

which scattering is larger but the flux is lower due to distance, and for pulsars near

the Galactic Center, where ne is large and pulses may be completely scattered by

the ISM.

5.1.3 Scintillation

The scattering tail seen in some pulsar profiles is composed of signals that have

been delayed in phase relative to the phase of the pulse peak by δΦ ∼ 2πfτs. These

signals interfere, producing an interference pattern along the observer plane. If the

pulsar, ISM density fluctuations, and the Earth were all at rest relative to each

other, this interference pattern would be constant in time. However, because the

relative velocities between each component are non-zero, the interference pattern

changes with time, resulting in the intensity variations, or scintillation, observed on

short timescales and over short frequency bandwidths in many pulsar profiles.

Signals separated by more than 1 radian do not interfere, resulting in the scin-

tillation bandwidth

∆f =
1 radian

2πτs
∝ f 4 (5.9)

Both the scattering timescale and the scintillation bandwidth are calculated using

the NE2001 model, in addition to pulsar DM or distance. To minimize the effects of

scintillation, the observing bandwidth should be larger than ∆f . Scintillation also

decreases with decreasing f , but scattering increases.

Scintillation can be used to study the ISM and pulsar motion. Pulsar intensity

varies in both time and frequency due to scintillation; a dynamic spectrum can be

used to measure the size of an individual scintle, or region of enhanced flux density,
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in time and frequency space. This measurement can be used to calculate the pulsar

velocity transverse to the line of sight.

5.2 Pulsar Searching

A single dish radio observation with the primary purpose of finding a new pulsar,

confirming a pulsar detection, or beginning to determine the timing (spin and orbital,

if relevant) parameters of a newly discovered pulsar will be taken in search mode.

The voltage of the telescope receiver is recorded with very high time resolution,

typically tens of microseconds, so that the sampling time is much shorter than the

millisecond to second periodicities for which the data will be searched. The signal

is recorded with a spectrometer, so that each time sample contains a spectrum over

the instrument bandwidth. To give an example of typical spectral bandwidth and

resolution, the pulsar spectrometer currently in use at the Green Bank Telescope

has a bandwidth of 800MHz at central radio frequency 2GHz; that bandwidth is

split into 2048 frequency channels, each with a channel bandwidth of 0.39MHz.

The raw data are therefore a series of high time resolution spectra. Aside from

exceptionally bright pulsars, any pulsar emission present in the data will not be

obvious by eye. Rather, the data appear as noise, within which various periodicities

are hidden, and the time series must be transformed to the Fourier domain in order

to search for periodic behavior.

There are several methods of searching for pulsars, but the most common proce-

dure is as follows. One begins by excising as much Earth-based radio frequency in-

terference (RFI) from the dataset as is possible. The data are then barycentered and

corrected for frequency-dependent pulse dispersion caused by propagation through

the interstellar medium; after the data have been de-dispersed, the signal within in-
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dividual time samples are summed over frequency, creating a one-dimensional time

series. This de-dispersion step must be done at many different values of dispersion

measure (DM; Sections 5.1.1 and 5.2.2.1), thus many different time series are made.

A fast Fourier transform is performed on each time series and is searched for pulsar-

like periodic signals lying above a user-defined threshold, recording the frequency

ν, frequency derivative ν̇, and DM of all candidate pulsar signals (Sections 5.2.3

and 5.2.4). The time series are folded on each set of these parameters, the result of

which are pulse profiles of each candidate. Promising candidates are then used to

fold the raw data, during which a fine search is done over a small range of ν, ν̇, and

DM in order to obtain more precise parameter values (Section 5.2.5). The profiles

of the raw folds allow further scrutiny to determine whether or not a candidate may

be a pulsar; in particular, the signal from a real pulsar will peak in brightness over

a very narrow range of DM values.

The entire search process can be done using the PulsaR Exploration and Search

TOolkit (PRESTO1), a C and Python package developed by Scott Ransom Ransom

(2001), who has also written a tutorial2 on pulsar searching with PRESTO. Here I

will summarize the main aspects of the search procedure, with reference to PRESTO

routines.

5.2.1 Removing RFI Prior to Searching

It is important to remove as much radio frequency interference as is possible, without

significantly reducing the size of the dataset, in order to be more sensitive to weaker

signals in the data. Strong narrow-band RFI and broadband, short-duration RFI is

masked using the PRESTO routine rfifind. This routine replaces bursts of RFI

1http://www.cv.nrao.edu/~sransom/presto/

2http://www.cv.nrao.edu/\%7Esransom/PRESTO_search_tutorial.pdf
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in the frequency and time domains with median values drawn from data on either

side of the RFI burst.

There are also forms of RFI that are longer lasting, and usually periodic. A good

example of this is the radio emission from electrical lines at 60Hz in the United States

(and 50Hz in the rest of the world). Because RFI is Earth-based, it occurs at DM =

0; the same incoherent de-dispersion method used in a pulsar search (Section 5.2.2.1)

can be used to identify and remove periodic RFI. The data are de-dispersed at

DM=0 and summed over frequency to create a time series (Equation 5.10). The

time series is not transformed to the Solar System barycenter frame, as RFI occurs

in the same reference frame as the observatory (the topocentric frame). The time

series is transformed to the Fourier domain (Equation 5.16) and searched for strong

frequencies. These frequencies, and their harmonics, are then masked so that they

will not be chosen as pulsar candidates later in the analysis.

At this stage, the barycentric frequencies of any known pulsars are also masked

(and labeled in the mask as barycentric rather than topocentric). This is usually

an issue only when searching for MSPs in a globular cluster in which other pulsars

have already been found.

5.2.2 De-dispersion of Time Series

Interstellar dispersion causes low-frequency radio waves from a single pulse to arrive

later than high-frequency waves from that same pulse. In order to detect periodic

pulsations, it is necessary to correct the data for dispersion so that the pulses arrive

in the same time sample across the spectral window of the observation. This is

done by incoherent de-dispersion, in which the data are de-dispersed across the full

bandwidth at many different DM values after the observation is complete. When

the pulsar DM is known or can be estimated with reasonable accuracy, coherent
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de-dispersion can be used during the observation to perform real-time de-dispersion

within individual spectral channels.

5.2.2.1 Incoherent De-dispersion

Because we do not know a priori the pulsar dispersion measure, we must search for

frequencies in the data at many different DMs. The first step is to incoherently de-

disperse the data; the process is “incoherent” because it is done after the observation

is complete, when no information about the signal phase is available. The effect of

de-dispersing at the pulsar’s true DM is that the frequency-dependent delay of the

pulse will be removed, such that the pulse will occur in the same set of time bins

at every frequency; compressing the data in frequency (adding the channels within

each time interval) will then result in detection of the pulse. If the DM used for de-

dispersion is not the correct pulsar DM, then the delay will not be removed properly

and the pulse will still occur in a different time bin in each frequency channel. It

will be smeared out and undetectable when the frequency channels in each time

interval are summed. Near the correct DM, the pulse will appear weakly. The pulse

is therefore detected at several DMs, but is strongest at a particular DM.

Incoherent de-dispersion of a raw dataset is done by summing the signal in time

and frequency bins that are related by the frequency-dependent DM delay from

Equation 5.5. The raw data consist of a 2-dimensional array, with time samples

along the x-axis and nchan observing frequency channels with non-zero bandwidth

∆fchan along the y-axis. Rj,l is the signal in the jth time sample and lth frequency

channel, where l = 1 corresponds to the highest frequency. To obtain a time series

at DM=0 (no de-dispersion), the signals in each frequency channel of a given time

sample are summed:

Tj(DM = 0) =

nchan
∑

l=1

Rj,l (5.10)
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Zero-DM time series are often used to identify and remove Earth-based radio fre-

quency interference (RFI), while a pulsar will have a nonzero DM. To de-disperse

at DM > 0, Equation 5.10 becomes

Tj(DM) =

nchan
∑

l=1

Rj+k(l),l (5.11)

where k(l) is an integer corresponding to the number of time bins by which a signal

has been delayed due to dispersion, given by

k(l) =

(

tsamp

4.15× 106ms

−1
)(

DM

cm−3pc

)

[

(

fl
MHz

)−2

−
(

f1
MHz

)−2
]

(5.12)

To search for a new pulsar, time series are made at many different DM values and

searched for periodicities. The resolution in DM, ∆DM, must be chosen so that a

pulse with true dispersion DM′ = DM+∆DM will not be so dispersed at dispersion

measure DM that it is undetectable by the search. (There is software available to

optimize ∆DM.) Additionally, the dataset must be de-dispersed over the full range

of possible DM values for a given pointing direction, so that very nearby or very

distant pulsars are not missed. In a typical search, one will create time series from

DM = 0− 1000 cm−3 pc with step size ∆DM ∼ 0.1− 0.5 cm−3 pc.

De-dispersion is computationally expensive, and is typically done in parallel.

Each node produces N de-dispersed time series, where N is specified by the user

and must be divisible by the number of processors on the node. The time series are

usually barycentered as well, such that the sample times are corrected to the Solar

System barycenter by removing time delays due to the Earth’s motion and other

effects of light propagation through the Solar System (see Section 5.3.1.4 for more

details). The barycenter is the best suited reference frame in which to search for a

pulsar of unknown velocity relative to the Earth.

In PRESTO, the prepdata and prepsubband commands are used to de-disperse

the raw data into time series (the former is used to de-disperse at a single DM, and
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the latter at many DM values). Prior to running prepsubband, the de-dispersion

plan should be optimized using DDplan.py.

5.2.2.2 Coherent De-dispersion

Incoherent de-dispersion removes pulse smearing over the full observing bandwidth,

but the pulse is still smeared within individual frequency channels. The faster the

pulsar’s rotation and the narrower the pulse, the more significant smearing within

channels becomes. This effect can be removed using coherent de-dispersion Hankins

& Rickett (1975), in which the individual channels are de-dispersed in real time at

a single DM through manipulation of the phase of the incoming voltage. Coherent

de-dispersion results in sharper profiles, often revealing fine structures that would

not otherwise be resolved (Figure 5.3).

Changes to a signal propagating through the ISM can be described with a trans-

fer function, H , which acts as a filter only on the phase of the signal. The complex

voltage v(t) induced in the telescope feed by incoming radiation can be thought of

as the intrinsic complex voltage, vint(t), of the pulsar convolved with the transfer

function. The original pulsar signal can therefore be recovered. For a single spectro-

scopic frequency channel with center frequency f0 and bandwidth ∆f , the Fourier

transforms V (f) and Vint(f) of the raw voltages v(t) and vint(t) can be written as

V (f0 + f) = Vint(f0 + f)H(f0 + f) . (5.13)

The transfer function H used to de-disperse the signal in real time is

H(f0 + f) = exp

[

i
2πD

(f + f0)f 2
0

DM f 2

]

, (5.14)

where D is the dispersion constant from Equation 5.3. This function was derived by

Hankins & Rickett (1975) and is reproduced in Lorimer & Kramer (2005). The end

result is that the intrinsic voltage is converted to a real signal, which is recorded
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Figure 5.3: (a) The pulse profile of PSR J2322+2057. The dashed line
shows the profile recovered using only incoherent de-dispersion, while
the solid line is the profile resulting from coherently de-dispersing
the signal during the observation. The plot is taken from Stairs et al.
(2000). (b) The pulse profile of PSR B1937+21, the second fastest
millisecond pulsar known (P = 1.56ms Backer et al. (1982); Manch-
ester et al. (2005)) and the first millisecond pulsar discovered (Backer
et al. 1982). The top profile shows the total intensity I, and has been
incoherently de-dispersed only. The bottom profile was coherently
de-dispersed, and reveals finer structure than is seen in the top pro-
file. The total intensity is plotted with the solid line, and the linear
polarization with the dotted line. Without the use of coherent de-
dispersion, these features are smeared out by dispersion within the
individual spectral channels. The plot is taken from Stairs (2002).

as raw data and searched with the standard procedure using PRESTO or another

pulsar searching package. Note that incoherent de-dispersion must still be performed

over the full bandwidth, as coherent de-dispersion only corrects for dispersion within

individual channels.

To observe using coherent de-dispersion, a DM must be specified prior to be-

ginning the observation. This means that in most cases, standard (incoherent)

de-dispersion is used to first detect a pulsar and measure its DM. Then coherent

de-dispersion can be used in follow-up search mode observations, which are needed
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to confirm the detection and obtain an initial timing solution (Section 5.3.1.5). In

some targeted searches, the DM of the (thus-far undetected) pulsar for which the

search is targeted may already be known or can be estimated. This is true, for

example, for globular cluster pulsar searches. If some pulsars are already known to

exist in the cluster, then the DM is already known, and searches employing coherent

de-dispersion at that DM may result in additional pulsar discoveries. Alternatively,

in the absence of previously detected pulsars, the DM of a cluster can be estimated

from the NE2001 model given a distance measurement. (Globular cluster distances

can be determined from the turnoff in the main sequence of its stellar population,

RR Lyrae stars, astrometry, and other distance indicators, reviewed in Chaboyer

(1999).) In Chapter 6, I describe the search for and discovery of a new MSP in the

globular cluster NGC 6652, in which coherent de-dispersion at an estimated DM

was used.

5.2.3 Searching for Periodicity in the De-dispersed Time

Series

Periodic signals in the time domain can be reconstructed with Fourier series, in

which sine and cosine wave functions of different frequencies and amplitudes are

summed until the periodic signal is adequately described. The Fourier transform

of a periodic signal contains the frequencies and amplitudes (or power) of those

wave functions. For example, sinusoidal signal in the time domain will appear as a

delta function at a specific frequency in the Fourier domain. Allowing the period to

approach infinity results in the continuous Fourier Transform (FT),

F(f) =

∞
∫

−∞

f(t)e−2πitf dt (5.15)
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where i =
√
−1.

In real data, periodicities are finite and the time intervals are discrete. The

Discrete Fourier Transform (DFT) is used to find periodicities in a discretely sampled

data set like Tj . The kth frequency-domain Fourier component of the DFT is

Fk =
N−1
∑

j=0

Tje
2πijk/N (5.16)

where N is the number of time samples considered in the DFT. For a dataset of total

length T in time and with equally spaced time samples of length tsamp, the width

of each frequency bin in the Fourier domain is ∆νsamp = 1/T , and the frequency of

the kth frequency bin is νk = k/T . The highest frequency sampled is the Nyquist

frequency, νNyquist = 1/(2tsamp).

The computation time to calculate the DFT is of order N2. The Fast Fourier

Transform (FFT) refers to a family of algorithms that reduces this computational

time to order N log2N . The FFT is calculated most quickly when the factors of

N are small integers (e.g., 2, 3, 5, or 7), so time series are often either lengthened

with zero-padding or shortened to a more convenient length. Lengthening short

time series with zero padding has the additional effect of increasing the frequency

resolution and the maximum (Nyquist) frequency in the Fourier domain.

Only purely sinusoidal signals appear as delta functions at a single frequency

in Fourier space. Pulsars typically have narrower pulses, and therefore have many

harmonics in the frequency domain (about P/W harmonics, where P is the pulsar

period and W is the pulse width in time). Summing the power distributed over

these harmonic frequencies results in better sensitivity to the narrow pulsed signals.

For W/P = 0.05, the number of harmonics is ∼ P/W = 20; in a typical search, up

to 16 harmonics are summed in order to increase the pulse S/N. Fourier transforms

of de-dispersed time series are performed in PRESTO using the command realfft.
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5.2.4 Acceleration Searches for Binary Pulsars

The measured pulse frequency ν from pulsars in binary systems appears to vary with

time as the pulsar’s line-of-sight velocity vlos changes through its orbit, according to

the Doppler equation,

ν(t) = ν0(1− vlos(t)/c), (5.17)

where ν0 is the true pulsar spin frequency in its rest frame. This results in the

time interval between pulses changing as the pulsar moves through its orbit. For

orbital periods that are considerably longer than the observation’s integration time,

the changes in pulse frequency can be described by a non-intrinsic, Doppler-induced

frequency derivative |ν̇D| = alosν0/c, where alos is the line-of-sight acceleration. A

substantial ν̇D can cause the signal frequency to change by one or more frequency

bins in the Fourier domain over the course of the observation, spreading the signal

over several neighboring frequency bins and decreasing its S/N in a single bin, as

illustrated in Figure 5.4. The number of bins over which the signal drifts can be

quantified as

Ndrift = ν̇DT/∆ν = alosν0T
2/c, (5.18)

where T is the integration time, ∆ν = 1/T is the width of a single Fourier bin.

Acceleration searches are used to correct for a constant frequency derivative and

thus recover the total power in the frequency-drifting signal.

When searching for a pulsar in a known binary orbit, for which the orbital

parameters and vlos are already known, then the orbital motion can be removed by

Doppler-correcting the time samples to the pulsar’s rest frame prior to performing

an FFT of the time series. If the pulsar exists, its spin frequency will show up in

the Fourier domain. In a blind binary pulsar search, however, any accelerations the

pulsar may experience are not known a priori, and one must search over a grid of
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Figure 5.4: The folded pulse profiles of PSR B1913+16, the first bi-
nary pulsar discovered Hulse & Taylor (1975), as a function of time.
The observation was taken with the Arecibo telescope. The integra-
tion time was 22min, much shorter than the orbital period of 7.75 h
Hulse & Taylor (1975). In panel (a), no acceleration search was done,
so the pulse profile is Doppler shifted as the pulsar moves through its
orbit, and the summed profile is Doppler broadened. In (b), the time
series fold accounts for an acceleration alos = −16m s−1, straighten-
ing and sharpening the profile. This figure was taken from Lorimer
& Kramer (2005).

orbital acceleration values to try to recover a signal. The acceleration is assumed

to be constant over the length of the observation t, so that vlos = alost. The time

series is corrected for each different acceleration in the grid, and if there is a pulsar

with one of those accelerations over the observation interval, its spin period will be

found with a Fourier transform.

In order to avoid performing so many FFTs, Ransom et al. (2002) developed the

“correlation method” for acceleration searches done entirely in the Fourier domain.

The DFT of a signal with varying frequency is a delta function (the ideal response

to a constant frequency) convolved with a finite impulse response (FIR) filter that
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spreads the power over multiple bins in the Fourier power spectrum. In the Fourier

domain, for a constant acceleration throughout the observation, the signal will drift

by ṙ = ν̇DT
2, where r is the Fourier bin, ṙ is its derivative, and T is the total

integration time Ransom et al. (2002). By applying the inverse of the FIR filter

(which is the complex conjugate of the Fourier response) to the DFT, the power

is re-concentrated in a single Fourier bin. If the center frequency of the signal is

in Fourier bin r0, then the Fourier response to the signal can be written as Fk−r0,

where |k − r0|is the frequency offset of the kth bin from r0. The corrected Fourier

component, within which the power is contained in a single bin, is then

Fr0 =

k=r0+m/2
∑

k=r0−m/2

FkF∗
r0−k (5.19)

where m is the maximum number of bins over which the signal is assumed to have

been spread, and F∗
r0−k is the complex conjugate of Fr0−k. The latter is composed

of a phase rotation term and a set of Fresnel integrals that are functions of r0 and its

derivative, ṙ. Fr0 is calculated for a range of ṙ, in the same way that the time series

would be corrected for a range of different alos values, and saves computational time

because it is not necessary to perform many FFTs—only one FFT per de-dispersed

time series is required. Ransom et al. (2001) first used the correlation method to

discover the 1.7 h binary pulsar PSR J1807−2459 in the globular cluster NGC 6544.

The correlation method is commonly used for acceleration searches. In PRESTO,

an acceleration search can be performed using the accelsearch command. The

most important parameter for this routine is zmax; this is the maximum number of

Fourier bins by which the highest harmonic may linearly drift in the power spectrum,

thus setting k for all the lower harmonics and determining the range of frequency

bin offsets to be searched. It is not uncommon to set zmax = 200 bins, or even higher

in some cases, to search for highly accelerated binary pulsars.

It should be noted that over a long observation, a solitary pulsar’s intrinsic
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frequency derivative may cause the spin frequency to change enough that the Fourier

power is contained in more than one frequency bin. It is therefore advisable to

always perform an acceleration search, even if only with a small zmax to search for

an isolated pulsar.

5.2.5 Identifying and Folding Pulsar Candidates

After the time series has been transformed to the Fourier domain, and acceleration

searched if necessary, the Fourier transform must be searched for pulsar-like signals.

A pulsar-like signal is one that appears at the same frequency in several time series

produced at neighboring DMs, and that is most significant at one of those DM

values. A script such as ACCEL sift.py, available with PRESTO, can be used to

identify such signals. Once identified, the time series are folded on the pulse period

of each pulsar candidate found in that time series, as well as on the period derivative

if applicable. The period derivative will be large if, for example, the signal is from

a real pulsar that is in a binary system.

The frequency ν of the signal is the rate of change of the signal’s phase, where

one complete cycle (rotation, if the signal is from a pulsar) occurs through the phase

range 0 ≤ φ < 1. Therefore, ν = dφ/dt. The signal’s phase as a function of time

can be expressed as a second-order Taylor series,

φ(t) = φ0 + ν(t− t0) +
1

2
ν̇(t− t0)

2 (5.20)

where, for the case of folding a new pulsar candidate, φ0 = 0 corresponds to the

observation start time t0, ν is the frequency measured from the Fourier transform,

and ν̇ is the frequency derivative measured from the acceleration search, if appli-

cable. To fold the time series on a candidate ν and ν̇, each time bin in the time

series is assigned a phase, and all signals in equivalent phase bins are summed to
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Figure 5.5: The output plot from a DM = 53.5 cm−3 pc time series
that was folded on a pulsar candidate’s ν and ν̇. While some auto-
matic techniques are used by PRESTO to reduce false candidates,
they cannot match the eye’s ability to pick out likely pulsar candi-
dates, and it is therefore necessary to look through many plots like
these as one of the last steps in a pulsar search.

produce a pulse profile. The parameters of any profiles that may be true pulsars—

typically identified in the time series folds as a signal that is most significant at a

single (ν, ν̇)—are then used to fold the raw data.

Figure 5.5 shows the result of folding a time series, which was de-dispersed

at DM = 53.5 cm−3 pc, on the frequency and frequency derivative of one pulsar

candidate found in an acceleration search. The fold was done using prepfold in

PRESTO. At the top left, two full cycles of the pulse profile are shown; below the

summed profile is the profile over time, showing the stability of the pulse throughout

the observation. On the right of the profile is the cumulative χ2 of the profile; it
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Figure 5.6: The same pulsar candidate’s ν, ν̇, and DM from Fig-
ure 5.5 were used to fold the raw data, resulting in the detection of a
millisecond pulsar, PSR J0102+4839.

increases over the observation, as expected for a steady signal. The plot on the right

shows the χ2 of the signal over a range of ν and ν̇, with the parameters yielding the

highest significance located near the center of the plot. (In practice, many plots like

those of Figure 5.5 will be output by PRESTO, and need to be searched through

by eye.)

The raw data were then folded over a range of ν, ν̇, and DM to produce Fig-

ure 5.6. The plots on the right again show χ2(ν, ν̇). The top plot in the center shows

the pulse profile over the bandwidth, summed within 32 frequency sub-bands. The

bottom center plot shows the χ2 significance over the range of DM values used in the

fold. This highly significant χ2 over a small range of DM is characteristic of a true

pulsar signal. Folding the raw data is necessary in order to inspect the significance
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with DM, and results in a more precise DM value than was achieved in the time

series folds.

Once a pulsar is found, it is necessary to do a follow-up observation to confirm

its detection. After that, a series of observations are done over the course of at

least one year in order to obtain a phase-connected timing solution that adequately

describes the pulsar’s rotation and predicts with high precision the time of each

individual pulse of emission. This procedure will be described in Section 5.3.

5.2.6 Pulsar Searching Strategies and Sensitivity Limits

There are two basic strategies for pulsar searches, pulsar surveys and targeted

searches. Surveys cover a larger portion of the sky, but with short integration

times and relatively low sensitivity. Targeted searches are typically longer, deeper

observations that cover only a few sources of interest in which pulsars are expected

to lie. An updated catalog of all known pulsars is available at the ATNF website3,

and is described in Manchester et al. (2005).

In any pulsar search, be it survey or targeted, it is important to calculate the

search’s sensitivity to pulsations. The minimum detectable flux density Smin, corre-

sponding to a signal-to-noise threshold (S/N)min, is calculated using the radiometer

equation for pulsed signals (Appendix 1.4 of Lorimer & Kramer (2005)),

Smin = β
(S/N)minTsys

G
√

nptint∆f

√

W

P −W
. (5.21)

System imperfections are accounted for with the correction factor β, with typical

values of ∼ 1.05 − 1.25 (e.g., Ray et al. (2011a)). Tsys is the system temperature,

which includes the sky temperature, G is the gain, np is the number of polarizations

(typically np = 2), ∆f is the bandwidth, P is the pulse period, and W is pulse

3http://www.atnf.csiro.au/people/pulsar/psrcat/
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width in time (such that W/P is the duty cycle). By calculating the sensitivity of

an observation to pulsed flux, one can determine the utility of a deeper search, and

can place upper limits on the pulsed radio flux for non-detections (e.g., Ray et al.

2011a).

In a pulsar survey, the ground-based radio observatory records high time reso-

lution data from as many points on the sky as possible, given its elevation limits.

Some examples are the Parkes Southern Pulsar Survey and the Parkes Multi-beam

Pulsar Survey, both performed at the Parkes Observatory in Australia, which re-

spectively discovered 101 Lyne et al. (1998) and 953 Lyne (2008) new pulsars. The

latter survey discovered more pulsars than the 822 that were previously known. Re-

analysis of this survey using acceleration searches has led to the recent discoveries of

16 new pulsars Eatough et al. (2013). Recent northern-hemisphere surveys include

the Pulsar ALFA survey Cordes (2008) at the Arecibo Observatory, and the Green

Bank drift scan survey Boyles et al. (2013); Lynch et al. (2013), for which analysis

is ongoing. A current survey being done at Parkes is the High Time Resolution Uni-

verse survey, the focus of which is millisecond pulsars as well as fast radio transients;

135 new pulsars, including 29 MSPs, have been discovered so far Keith (2013).

While most known pulsars are detected only at radio frequencies, some pulsars

have also been found to emit at higher energies, particularly in the X-ray and γ-ray

bands. Surveys for high-energy pulsar emission are done with satellite instrumenta-

tion, and are therefore performed over the full sky. The EGRET instrument on the

Compton Gamma-Ray Observatory (CGRO) detected seven γ-ray pulsars, and its

successor, the Fermi LAT, has detected more than 120 γ-ray pulsars, 117 of which

are included in the Second Fermi LAT Pulsar Catalog The Fermi-LAT Collaboration

(2013).

In a targeted search, one identifies and searches locations in which pulsars are
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likely to be found. Common locations are globular clusters, which may contain tens

to hundreds of MSPs, and supernova remnants, within which isolated pulsars are

likely to exist given current understanding of stellar evolution. During the CGRO

mission, γ-ray sources were searched for radio pulsations, and this sort of targeted

searching is currently being done again in LAT sources that have no associated

multi-wavelength counterpart. The reasoning behind these searches is that if a γ-

ray source is a pulsar, then radio pulsations may be detected much more easily than

γ-ray pulsations, especially for a pulsar in a binary system; folding on the radio

ephemeris (timing solution) may, however, yield a detection of γ-ray pulsations as

well. These searches have been quite fruitful, especially in discoveries of MSPs, as

will be discussed further in Chapter 6. Additionally, of the ∼ 120 γ-ray pulsars

detected by the LAT, ∼ 1/3 were discovered in blind γ-ray pulsation searches Abdo

et al. (2009a). Targeted radio searches of these pulsars found all but three Camilo

et al. (2009); Abdo et al. (2010e) of them to be radio-quiet within current detection

limits (The Fermi-LAT Collaboration (2013), and references therein).

In Chapter 6, I describe targeted searches with which I was involved, and through

which I discovered two new MSPs. These searches were done using the Green Bank

Telescope, in Green Bank, WV, using the Green Bank Ultimate Pulsar Processing

Instrument (GUPPI) DuPlain et al. (2008).

5.3 Pulsar Timing

“Pulsar timing” refers to the process by which one calculates the precise arrival time

of each pulse of emission from a given pulsar. A phase connected timing solution

will accurately predict the time of each pulse, and the exact number of pulses,

or neutron star rotations, between two separate observations, over long timescales
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(several years, to decades). A timing solution is achieved by fitting measured pulse

arrival times to arrival times predicted from a model of the pulsar rotation and

orbital motion, if in a binary system. Here I describe the process of pulsar timing.

I begin with a description of the physics and mathematics of pulsar timing, largely

drawn from Lorimer & Kramer (2005). I then explain the practical procedure of

extracting pulse arrival times from a time series and fitting a timing solution to

these data points.

5.3.1 Physical Concepts of Pulsar Timing

To accurately predict the arrival time of each pulse, an accurate mathematical de-

scription of the pulsar’s rotation is required. This is achieved by approximating

the unknown function describing the rotation over time with a Taylor series of the

time-dependent rotation frequency and frequency derivatives. The spin frequency ν

is then expressed as

ν(t) = ν0 + ν̇0(t− t0) +
1

2
ν̈0(t− t0)

2 + · · · , (5.22)

where ν0 = ν(t0) at a reference epoch t0, while ν̇0 = ν̇(t0) and ν̈0 = ν̈(t0) are its

time derivatives. The pulse number N changes at rate ν, so the number of pulses

that occur after t0 is

N = N0 + ν0(t− t0) +
1

2
ν̇0(t− t0)

2 + · · · , (5.23)

where N0 is the number of the pulse occurring at t0. A similar equation, in which

phase 0 ≤ φ ≤ 1 rather than pulse number N is used, can be written as

φ = φ0 + ν0(t− t0) +
1

2
ν̇0(t− t0)

2 + · · · , (5.24)

where φ0 is the rotation phase at t0. To maintain 0 ≤ φ < 1, one must take the

modulus of φ with the spin period.
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Consider an isolated (non-binary) pulsar that has zero velocity with respect to

the Solar System barycenter (SSB), so that the SSB and pulsar share the same

inertial reference frame. Imagine further that the interstellar medium (ISM) is a

vacuum. In this special case, the pulse arrival times measured at the SSB are equiv-

alent to the pulse emission times, separated only by the constant light propagation

time d/c, where d is the distance between the pulsar and the SSB. The number of

pulses N counted from t0 is then directly dependent on the pulsar’s rotation, and

can be described with Equation 5.23, where each value of t is a measured pulse ar-

rival time. For an unrealistically (and persistently) bright pulsar, individual pulses

could be recorded and their arrival times measured, such that Ni and ti would be

known. Then ν and its derivatives could be determined from Equation 5.23.

As one might expect, the situation is quite different in reality. Radio pulsars

are very faint sources, and those that are bright enough for individual pulses to be

detected display variation in the pulse profile from one pulse to the next. However,

averaging several hundred to thousand pulses together produces mean pulse profiles

that have been shown to be stable (Lorimer & Kramer 2005, and references therein).

Pulse times of arrival, or TOAs, are therefore extracted from mean profiles, and do

not represent time stamps of individual pulses.

The TOAs must be corrected for several effects before being used to obtain a

timing solution. First, the interstellar medium is not a vacuum, and radio photons

are therefore subject to frequency-dependent scattering by free electrons in the ISM.

Higher-frequency radio waves will reach the observer sooner than lower-frequency

waves, introducing error in the precise pulse arrival time. Second, the TOAs are

measured at telescopes on Earth, not at the SSB. The TOAs therefore must be

transformed to barycentered TOAs by correcting for the motion of the Earth and

other Solar System bodies. The telescope’s location on Earth must also be taken
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into account through clock corrections, especially when timing a pulsar at different

observatories. Third, the SSB is not a perfect inertial frame because the pulsar

has some initially unknown velocity relative to the SSB; the transverse component

of this velocity can be measured in some cases. Finally, the pulsar may be in a

binary system, introducing a varying Doppler shift in the pulse arrival times due

to the changing orbital accelerations and requiring additional orbital parameters in

the timing solution.

The result of taking these effects into account is that clock, observation fre-

quency, and barycentric corrections are applied to Earth-based TOAs extracted

from summed rather than individual pulses. For a solitary pulsar, a barycentric

TOA tsSSB is calculated as

tsSSB = ttopo + tclock −∆D/f 2 +∆R⊙ +∆S⊙ +∆E⊙, (5.25)

where ttopo are topocentric pulse times of arrival, tclock accounts for clock correc-

tions, ∆D/f 2 is the time difference due to the dispersion measure, and ∆R⊙, ∆S⊙,

and ∆E⊙ are the Römer, Shapiro, and Einstein delays experienced by a photon

propagating through the Solar System. In Sections 5.3.1.1-5.3.1.4, I describe the

process of extracting ttopo and each corrective term needed to calculate tsSSB. I then

describe how the corrected tsSSB and the pulse number N (Equation 5.23) are used

to fit for the pulsar’s spin frequency, frequency derivatives, position, and other phys-

ical parameters (Sections 5.3.1.5-5.3.1.6). Timing of binary pulsars is discussed in

Section 5.3.2.
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5.3.1.1 Topocentric Pulse Arrival Times from Summed Pulses

Individual pulses are very faint, if detectable at all, and they display small varia-

tions in profile shape and time of onset from one rotation to the next. As noted

previously, mean profiles composed of several hundreds to thousands of pulses are

stable. Therefore, to increase the S/N and stabilize the pulse profile, several hun-

dred consecutive pulses are summed, and TOAs are extracted from these summed

profiles. Arrival times are extracted by fitting a template of the pulse profile to each

summed profile. The time of the pulse closest to the middle of the interval (which

contains several hundred to thousand pulses) is recorded as the TOA. Each TOA

refers to the same fiducial point in the profile template, which is ideally chosen such

that it coincides with the time at which the pulsar magnetic pole crosses closest to

the observer’s line of sight. Observations are typically planned so that at least a few

TOAs can be extracted (a single observation should be several times longer than

the length of the interval from which TOAs are extracted).

The same template must be used to determine each TOA, even those at different

observing frequencies, so that the time shift between the profile and the template

relates all TOAs to the same fiducial point and starting time. The template can be

a high S/N pulse profile from a previous observation, or more ideally, composed of

Gaussians to reproduce its shape.

The uncertainty in the TOA measurement, from the radiometer equation, is the

ratio of the pulse width to the profile S/N,

σTOA ≃ W

S/N
∝ Ssys√

tobs∆f
× P

Smean

δ3/2, (5.26)

where W is the pulse width, Ssys is the system equivalent flux density, tobs is the

integration time over which the TOA is extracted, ∆f is the observing bandwidth,

P is the pulse period, δ = W/P is the pulse duty cycle, and Smean is the mean pulsar
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flux density. The TOA uncertainty is therefore reduced for narrower, brighter pulses,

larger bandwidths, lower Ssys, and shorter periods. The use of summed pulse profiles

increases the S/N and stabilizes the profile against variation in shape and onset time,

further reducing the uncertainty as σTOA ∝
√

1/Npulses.

5.3.1.2 Clock Corrections to Arrival Times

The second term in Equation 5.25 contains clock corrections that must be applied

to each topocentric TOA. The TOA, defined by the time measured at a fiducial

point on the summed pulse profile, is determined using hydrogen maser clocks at

the observatory. It must ultimately be converted to Terrestrial Time (TT), the

idealized geocentric time Seidelmann et al. (1992), defined by the time that would

be recorded at the geoid (the equipotential surface coinciding with the mean sea

level of Earth). The TT, measured in SI seconds, is on the same timescale as

the International Atomic Time (TAI), which is determined by the average of many

atomic clocks4; the time standards are related by TT = TAI + 32.184 s.

The TAI does not include leap seconds, and is related to the Coordinated Univer-

sal Time (UTC) by TAI = UTC + ∆T , where ∆T is the total sum of leap seconds

since their adoption. The UTC is maintained by the Global Positioning System

(GPS5). The TOA measured in local time is converted to UTC, and then to TT.

4The clocks are chosen, and their time maintained, by the Bureau International des Poids et

Mesures (BIPM).

5The UTC is measured by the US National Institute of Standards and Technology (NIST).
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5.3.1.3 Radio Frequency Corrections to Arrival Times

As discussed in Section 5.1.1, dispersion by the ISM causes radio pulses to be delayed

in a frequency-dependent way, with higher-frequency waves arriving sooner than

lower-frequency waves of the same pulse. Pulse arrival times therefore depend on f ;

in order to allow timing at different observing frequencies, TOAs must be corrected

to the arrival time of a pulse with infinitely high f to remove the dispersion delay.

The correction applied is the ∆D/f 2 term in Equation 5.25. For f expressed in

MHz and DM in cm−3 pc, ∆D = D × DM, where D is the dispersion constant and

DM is the dispersion measure.

5.3.1.4 Transformation of Arrival Times to the Barycenter

The arrival times are transformed to the barycenter by correcting for the Römer,

Shapiro, and Einstein delays. The Römer delay ∆R⊙ is the classical light travel time

between the SSB and the phase center of the Earth-based telescope,

∆R⊙ = −1

c
r · ŝ = −1

c
(rSSB + rEO) · ŝ . (5.27)

The unit vector ŝ points from the SSB to the pulsar position, and r = rSSB + rEO

is the vector from the SSB and the telescope; rSSB points from the SSB to the

geocenter, and rEO from the geocenter to the phase center of the telescope.

The Shapiro delay ∆S⊙ is a relativistic effect that increases the light travel time

due to propagation through the curved spacetime near Solar System objects Shapiro

(1964):

∆S⊙ = −2
∑

i

GMi

c3
log

[

ŝ · rEi + rEi
ŝ · rPi + rPi

]

. (5.28)

Mi is the mass of the ith Solar System body, rPi is the pulsar position relative to

the body, and rEi is the position of the telescope relative to the body at the moment

when the photon is closest to the body.
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As the Earth orbits, the gravitational potential within which it lies, dominated

by the Sun, changes due to its elliptical orbit. This results in a gravitational redshift,

to which the other Solar System bodies contribute, but to a lesser extent (in general,

all bodies but the Sun and Jupiter have negligible contributions). The Einstein delay

accounts for these time-varying effects, and is given by

d∆E⊙

dt
=
∑

i

GMi

c2rEi
+

v2E
2c2

− constant, (5.29)

where rEi is the distance between Earth and body i, and vE is the Earth’s velocity

relative to the Sun. This sum is over all Solar System bodies except the Earth.

Including these effects in Equation 5.25 is necessary to accurately barycenter the

TOAs. They are also used to determine the pulsar position to high accuracy, and

to measure proper motion and parallax for some pulsars (Section 5.3.1.6).

5.3.1.5 Finding a Phase-Connected Timing Solution

The goal of pulsar timing is to obtain a solution that accounts for every rotation that

occurs between one observation and the next. Such a solution is phase-connected.

For young pulsars, which have higher spin-down rates, the solution can go out of

phase within a few months, so continued monitoring is necessary to maintain phase

connection. MSPs are much steadier and have lower spin-down rates; once phase

connection over a > 1-yr timescale is achieved for an MSP, several years may go by

before another set of TOA measurements is needed to update the solution.

To obtain a timing solution, the corrected TOAs of Equation 5.25 are used to

fit for spin parameters (ν and its derivatives), astrometric parameters (e.g., pul-

sar position), and binary parameters if relevant Lorimer & Kramer (2005). These

171



parameters are initialized and fit for by minimizing

χ2 =
∑

i

(

N(ti)− ni

σi

)2

, (5.30)

where the σi are computed from Equation 5.26 In this way, the pulse number N(ti)

(Equation 5.23) is matched to the barycentric TOA ti. The integer nearest to N(ti)

is ni, and σi is the uncertainty in ti in units of the pulse period, or number of pulsar

rotations.

As will be described in the following section, pulsar timing is used to fit for

pulsar position and other astrometric observables, in addition to the more obvious

spin frequency and spin-down rate. To begin timing a solitary pulsar, the pulsar

position is fixed at its discovery position, and all parameters except ν and the

reference epoch are held constant; ν̇ is fixed at zero. The frequency is initialized

with the value similar to that found in the search observations, and t0 typically with

the time of the first TOA, so the fit is likely to converge. TOAs from a few closely

spaced (hours to days) observations are used to establish initial phase connection,

and more TOAs from observations that are increasingly separated in time (days, up

to ∼ 1month) are added, always being careful to maintain phase connection. Post-

fit residuals like those shown in Figure 5.7 are used to test the quality of the fit.

For a valid phase-connected timing solution, the post-fit residuals will consistently

cluster around zero as a Gaussian distribution with a root mean square comparable

to the TOA uncertainty Lorimer & Kramer (2005).

After several months to a year, the error in position will become significant

enough that the RA and/or dec can become free parameters in the fit. The error

resulting from ν̇ being fixed at zero is usually not separable from positional errors

until after a full year of timing, as errors in position cause a 1-year periodicity in the

post-fit timing residuals. The effects of incorrectly modeling some typical timing

parameters are demonstrated in Figure 5.7.
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Figure 5.7: Illustration of residual patterns resulting from incorrect
parameters, or parameters that have not been included, in the timing
solution. (a) Timing residuals of a phase-connected timing solution.
(b) Residuals resulting from setting ν̇ = 0, thus showing the effect of
not including the first frequency derivative. (c) Residuals from tim-
ing a pulsar with an inaccurate position. (d) Residuals from proper
motion.

Binary timing is more complicated and will be discussed in Section 5.3.2.

5.3.1.6 Timing Position, Proper Motion, and Parallax

As stated above, pulsar timing can lead to improved position measurements, and

in some cases to measurements of proper motion and parallax. The position is

determined from the variation of the Römer delay, which causes a variation in pulse

arrival times with a 1-year periodicity. The maximum amplitude of ∆R⊙ is

∆max
R⊙ =

1AU

c
cos β ≃ 500 cosβ s (5.31)
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where β is the ecliptic latitude. The position in ecliptic latitude is therefore poorly

determined for pulsars lying near the ecliptic plane, and radio interferometric ob-

servations, or multi-wavelength observations where applicable (for example, X-ray

observations with Chandra), are necessary to determine the position to higher ac-

curacy.

The Römer delay also contributes to the measurement of proper motion, or

transverse motion, in which the pulsar’s transverse velocity VT relative to the SSB

causes a gradual change in ŝ (Equation 5.27) and an additional time-dependent delay

in Equation 5.25. The proper motion µT =
√

µ2
α + µ2

δ, where µδ ≡ δ̇ is the change in

declination and µα ≡ α̇ cos δ is the change in right ascension. Typical values of µT

are of order ∼ few mas yr−1. Measurements of the radial velocity VR are technically

possible, but require greater timing sensitivity than is currently available Lorimer

& Kramer (2005).

Proper motion also causes the Shklovskii effect Shklovskii (1970) due to the

gradual increase over time in the projected distance to the pulsar from the SSB.

While the time delay introduced is generally too small to be included in timing

analyses, it also increases the observed spin-down rate (and, for a binary pulsar, the

rate of change of the orbital period) as

Ṗ

P
=

1

c

V 2
T

d
= 2.43× 10−21

(

d

kpc

)(

µT

mas yr−1

)2

, (5.32)

where P and Ṗ are the period and period derivative of a given periodicity (spin or

orbital). This effect must be taken into account for nearby MSPs in particular—

MSPs have small intrinsic spin-down rates, and if the distance is also small, then a

significant amount of the measured spindown rate may be due to the Shklovskii effect

rather than to intrinsic pulsar properties. Neglecting to account for this effect causes

errors in the inferred spindown power Ė, ages, and magnetic field strengths of MSPs

Camilo et al. (1994). Additionally, in globular clusters where MSPs are prevalent,
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the line of sight acceleration alos (caused by the cluster potential) experienced by

these MSPs produces an apparent spin period derivative, Ṗ = alosP/c that can be

comparable to or even larger than the intrinsic Ṗ . Some cluster MSPs therefore

appear to have negative Ṗ , such that their rotation speeds seem to be increasing

rather than decreasing.

For nearby pulsars, the parallax and therefore distance may also be measured.

Timing parallax is very different from positional parallax, in that it relies on changes

in the curvature of the wavefront of the pulse at different positions in the Earth’s

orbit. This effect results in a variation of the pulse arrival time with amplitude

l2 cos β/(2cd), where l is the distance from the Earth to the Sun. The delay is very

small (∼µs), hence parallax and d are measured for only a few MSPs.

5.3.2 Binary Pulsar Timing

A comprehensive description of timing binary pulsars is given in Lorimer & Kramer

(2005). In this section, I will cover the aspects that are relevant to this thesis —the

Keplerian and post-Keplerian descriptions of binary motion, and neutron star and

companion mass measurements.

Binary pulsars display periodic variations in their pulse arrival times, which are

used to determine their orbital parameters. The parameters are contained in the

Römer, Shapiro, and Einstein delays (∆Rb, ∆Sb, and ∆Eb, respectively) experienced

by photons propagating through the pulsar’s orbit, as well as an aberration delay

∆Ab introduced by the orbital motion. For a binary pulsar, the corrected TOAs are

then

tbSSB = tsSSB +∆Rb +∆Sb +∆Eb +∆Ab, (5.33)

where tsSSB is from Equation 5.25. Timing of binary pulsars can be used to constrain

or measure the masses of the pulsar and companion, to measure general relativistic
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parameters, and to test and constrain general relativity in some cases.

5.3.2.1 Keplerian Orbits

Non-relativistic orbits can be described in terms of Kepler’s laws. Five Keplerian

parameters enter the TOA correction of Equation 5.33; these are the orbital period

Pb, the projected semimajor axis of the orbit ap sin i (where i is the inclination

of the orbit to the plane of the sky), the orbital eccentricity, e = bp/ap (bp is the

semiminor axis), the longitude of periastron, ω, and the epoch of periastron passage,

T0. Figure 5.8 illustrates the orbital parameters. These parameters are combined to

define a set of angles present in orbits with e > 0, and which help to simplify formulae

of effects resulting in arrival time delays. These angles are the mean anomaly M ,

the eccentric anomaly E, and the true anomaly AT(E):

M = Ωb(t− T0), (5.34)

E − e sinE = Ωb

[

(t− T0)−
1

2

Ṗb

Pb
(t− T0)

2

]

, (5.35)

AT(E) = 2 arctan

(

√

1 + e

1− e
tan

E

2

)

, (5.36)

ω = ω0 +
ω̇

Ωb

AT(E) . (5.37)

Ωb ≡ 2π/Pb is the mean angular velocity of the pulsar in its orbit. For circular orbits

(e = 0), M = E = AT(E); for orbits that are unchanging with time, such that Ṗb

and ω̇ are zero, M = E − e sinE. Most MSP orbits are circular and unchanging

over the timescales of their monitoring observations, so there is often reference to

the mean anomaly rather than the eccentric anomaly. However, as Equations 5.35

and 5.37 indicate, there are effects that can cause a secular change in the orbital

period and the longitude of periastron. In Section 5.3.2.3, I will describe some of

the effects that are specific to general relativity; these effects are relevant to this
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Figure 5.8: Orbital geometry with binary parameters, as described in
the text; (a) shows the orbit as viewed face-on, while the orbit in (b)
is inclined. This figure was taken from Lorimer & Kramer (2005).

thesis in that they may yield MSP mass measurements. Other effects are described

in detail in Lorimer & Kramer (2005).

Provided the number of TOAs is larger than than number of timing parameters,

the Keplerian parameters Pb (or Ωb), e, ap, T0, and ω0 are derived using the Römer

delay that results from the pulsar’s orbital motion Blandford & Teukolsky (1976),

∆Rb = x(cosE − e) sinω + x sinE
√
1− e2 cosω, (5.38)

where x ≡ ap sin i is commonly used to denote the projected semimajor axis of the

orbit. The Römer delay also has a relativistic form, and the Einstein and Shapiro de-

lays only appear as relativistic corrections (Section 5.3.2.3) to the Keplerian orbital

description.
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5.3.2.2 The Mass Function

Mass measurements are important for constraining the maximum neutron star mass,

which gives information on the equation of state of the densest matter known to

exist in the universe. A measurement of the total system mass, or, even better, the

individual masses, also allows study of binary stellar evolution. GR effects must

be measured in order to tightly constrain the masses of the individual pulsar and

companion, but useful constraints can be placed on these masses using the mass

function, derived from Kepler’s Third Law. This function is

f(mp, mc) =
(mc sin i)

3

(mp +mc)2
=

4π2

G

(ap sin i)
3

P 2
b

=
4π2

T⊙

x3

P 2
b

, (5.39)

where G = 6.67 × 10−8cm3 g−1 s−2 is Newton’s gravitational constant, and T⊙ =

GM⊙/c
3 = 4.925490947µs is a conversion factor used to express masses and the

mass function in solar units.

The mass function is used to determine the most likely class of companion

(evolved main sequence star, white dwarf, neutron star, or black hole). For ex-

ample, if the pulsar mass is assumed to be 1.4M⊙, then a low-mass white dwarf

companion (mc ∼ 0.1M⊙) will yield f(mp, mc) ≤ 0.0004. The value of sin i is

unknown in most cases, but the minimum mass of the companion is found by set-

ting i = 90◦, providing another constraint on the object class. In the special case

of eclipsing systems, the inclination is known to be i ∼ 90◦, allowing further con-

straints on the masses in these systems. (Note that for eclipses to imply i ∼ 90◦, the

eclipsing system must not be a black widow system, in which the pulsar irradiates

its companion and may be eclipsed by the resulting wind. The latter can be iden-

tified by observing frequency-dependent eclipse lengths, while the former shows the

same length of eclipse at all frequencies.) The individual masses can be determined

using the mass function along with two or more parameters from relativistic orbits

178



(below).

5.3.2.3 Post-Keplerian Parameters for Relativistic Orbits

If a pulsar is in a relativistic orbit, defined by its periastron velocity being a signif-

icant fraction of c, then additional parameters are introduced to describe the orbit.

These parameters are “post-Keplerian” (PK) corrections to Keplerian orbits, and

are derived from general relativity (e.g., Blandford & Teukolsky (1976)):

ω̇ = 3T
2/3
⊙

(

Pb

2π

)−5/3
1

1− e2
(mp +mc)

2/3, (5.40)

γ = T
2/3
⊙

(

Pb

2π

)1/3

e
mc(mp + 2mc)

(mp +mc)4/3
, (5.41)

r = T⊙mc, (5.42)

s = sin i = T
−1/3
⊙

(

Pb

2π

)−2/3

x
(mp +mc)

2/3

mc
, (5.43)

Ṗb = −192π

5
T

5/3
⊙

(

Pb

2π

)−5/3

f(e)
mpmc

(mp +mc)1/3
. (5.44)

From Equation 5.39, T⊙, mp, and mc are respectively the solar mass conversion

factor, pulsar mass, and companion mass, the latter two being expressed in units of

solar mass; the factor

f(e) =
1 + (73/24)e2 + (37/96)e4

(1− e2)7/2
. (5.45)

These parameters are dependent only on the unknown pulsar and companion masses.

Neutron star masses can be constrained through measurement of one parameter,

while measurement of two PK parameters results in the determination ofmp andmc.

These masses are very interesting quantities that are rarely measured independently

(see Section 5.3.2.2). If more than two of these parameters can be measured, then

the additional measured parameters can be compared with their expected values

as a way of testing Einstein’s theory of general relativity. As is implied here, it
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is difficult to measure even one or two PK parameters. The measurements require

very high timing sensitivity, and with current sensitivity, some parameters are only

measured in “lucky” circumstances; for example, r and s can only be measured via

the PK Shapiro delay if the orbit is highly inclined.

As stated above, the PK parameters are measured using orbit-induced variations

in pulse arrival times, for which Equation 5.33 summarizes the correction terms.

The first PK parameter, ω̇, is the rate of change of the longitude of periastron; ω

changes as the pulsar’s orbit undergoes general relativistic precession. The param-

eter is obtained from the Keplerian Römer delay, ∆Rb—because secular changes in

the orbit can occur classically or relativistically, E and ω̇ are already related in

Equations 5.34–5.37. The Römer delay also has a relativistic modification,

∆Rb = x(cosE − er) sinω + x sin e
√

1− e2θ cosω, (5.46)

in which two eccentricities appear: er = e(1+δr) and eθ = e(1+δθ). The parameters

δr and δθ are additional PK parameters Damour & Deruelle (1986); Damour & Taylor

(1992) that describe periodic corrections to Keplerian motion due to relativistic

deformations in the pulsar orbit. In practice, δr is not measurable; δθ has not been

measured, but a measurement may be possible after many years of timing a system

Lorimer & Kramer (2005). Therefore, the Römer delay of Equation 5.38 is sufficient

for measuring ω̇.

For low eccentricity orbits, it is difficult to constrain the value of ω, and therefore

ω̇. Accurate measurements of ω̇ are therefore restricted to highly eccentric systems.

Such systems are interesting both in terms of their evolutionary histories and in the

possibility of measuring the total system massmp+mc, which can lead to constraints

on the neutron star mass.

The second PK parameter, γ, is measured from the Einstein delay, ∆Eb, oc-

curring within the pulsar’s orbit. For a pulsar in a non-circular orbit, the changes
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in gravitational redshift and time dilation experienced by photons passing through

the companion’s gravitational field cause variations in the pulse arrival time with

amplitude γ (measured in seconds). The Einstein delay term is given by

∆Eb = γ sinE . (5.47)

The parameters r (“range”) and s (“shape”) are measured at once using the

Shapiro delay, which is caused by an increase in the photons’ travel time as they

pass through the gravitational field of the companion:

∆Sb = −2r ln
[

1− e cosE − s
(

sinω(cosE − e) +
√
1− e2 cosω sinE

)]

. (5.48)

Note that s = sin i is simply a rearrangement of the mass function in Equation 5.39—

the Shapiro delay results in a measurement of the orbital inclination, and hence a

measurement of the total system mass. The change in the Shapiro delay over the

orbits allows r and s to be measured. Because the delay also yields r, the masses

mp and mc can be determined individually. The Shapiro delay was used in the

mass measurement of the first M = 2M⊙ neutron star, the binary pulsar PSR

J1614−2230 Demorest et al. (2010).

The maximum Shapiro delay occurs at superior conjunction, when the compan-

ion is directly between the observer and the pulsar. The effect increases dramatically

with orbital inclination, and is only measurable when the system is nearly edge-on

(however, for i = 90◦, the system will be eclipsing, preventing detection of pulses

and hence of the Shapiro delay). Thus, while the Shapiro delay is incredibly useful

for obtaining neutron star masses, it is also elusive in that only a small percentage

of known binary systems are inclined enough to allow its measurement.

The fifth parameter, Ṗb, is the rate of change of the binary period due to orbital

decay via gravitational radiation. The measurement of Ṗb of PSR J1913+16 in the

double neutron star binary system Taylor & Weisberg (1982); Weisberg et al. (2010)
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matched precisely the GR prediction of orbital decay, and was thus deemed the first

indirect detection of gravitational waves. The pulsar was originally discovered by

Russell Hulse and Joseph Taylor, who won the 1993 Nobel Prize for their discovery.

The final term in Equation 5.25 accounts for aberration caused by the rotation

of the pulsar—∆Ab is the difference in pulse arrival times between those expected

from radial oscillations and rotational motion. In practice, this effect is typically

degenerate with the other PK parameters.

Another effect observed in a few relativistic systems is geodetic precession. The

pulsar spin axis precesses around the system’s total angular momentum vector,

which is dominated by the orbital angular momentum of the system. As the pulsar

precesses, the pulse profile changes, indicative of our line of sight crossing over

different parts of the emission region and allowing the emission region to be mapped

over time (e.g., Kramer (1998)). Geodetic precession is observed in several pulsars,

including PSR J1913+16 Weisberg et al. (1989) and the double pulsar system, PSR

J0737−3039 Breton et al. (2008).

5.3.3 Pulsar Timing in Practice

The first step in pulsar timing is to have a properly spaced cadence of observations

so that an initial phase-connected timing solution may be established. Typically,

the pulsar is observed 2-3 times every few hours to every other day, depending on

how accelerated it is and on the observatory schedule; 2-3 times over the following

week; once per week for 2-3 weeks; and then once per month for at least a year. The

densely spaced observations can be taken anytime during that year, but it is best

to do them first if possible, as timing can begin as soon as these observations are

complete.

To extract TOAs, a pulse template is needed. The template is typically made
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Figure 5.9: Example of a pulse template, constructed from three
Gaussians, of PSR J0102+4839 at 820MHz (the pulsar shown in Fig-
ures 5.5 and 5.6).

by fitting one or more Gaussians to the pulse profile of a long observation, such that

the profile has a large enough S/N to ensure that the profile components are all

included in the template. The template is then cross-correlated with profiles made

from each segment of the observation in order to obtain a TOA from eat segment.

If the pulse profile P(t) from the short segment is well represented by the template

T (t) (allowing for re-normalization and shifting in phase), then

P(t) = a+ bT (t− τ) +N (t) (5.49)

where a is an arbitrary offset in phase, b is a scale factor, and N (t) is noise in the

profile. The time shift τ between the profile and template gives the TOA relative

to the zero-point of the template and the observation start time. TOAs can be

extracted using the PRESTO script get TOAs.py, or the PSRCHIVE6 Hotan et al.

6http://psrchive.sourceforge.net
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(2004); van Straten et al. (2012) command pat, if the data is archived in this format.

The output TOAs are saved in a .tim file (e.g., toas.tim).

If the pulsar is isolated, fitting the timing model can begin at this stage. The ini-

tial conditions for the model parameters are saved in a .par file (e.g., timing.par),

with values for all the relatively well known parameters (ν, DM, right ascension,

declination), ν̇ = 0 (F1 in a .par file), and only ν (F0) free.

If the pulsar is instead in a binary system, the orbital parameters can be esti-

mated in some cases. If the pulsar is accelerated over the course of the observation,

then it is reasonable to estimate that the observation was ∼ 20% of the orbital

period if the orbit is circular, and the semi-major axis in light seconds is about the

orbital period in days. A more precise estimate can be obtained using a method

presented by Freire et al. (2001), in which the period and the Doppler-induced pe-

riod derivative (or ν and ν̇D) are fit to an orbital model. For a line-of-sight velocity

vlos << c, the observed Doppler-shifted pulse period can be approximated as

P (AT) ≃ P0

(

1 +
vlos(AT)

c

)

, (5.50)

where P0 is the pulsar’s period in its rest frame. The acceleration alos is found

from the Doppler-shifted period derivative, ṖD = alosP/c. The velocity vlos and

acceleration alos = dvlos/dt are then related to the orbital parameters by

vlos(AT) = Ωb
ap sin i√
1− e2

[cos (ω + AT) + e cosω], (5.51)

alos(AT) = −Ω2
b

ap sin i√
1− e2

(1 + e cosAT)
2 sin (ω + AT) . (5.52)

The orbital parameters can be estimated from vlos and alos. Figure 5.10 shows how

this method can be used to constrain the orbital model, plotting acceleration against

pulse period, with observations that are not spaced closely enough to determine the
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Figure 5.10: (a) The period-acceleration plane from a sparse sampling
of the orbit of the globular cluster binary MSP 47 Tuc S. This pulsar
has a circular orbit. The dashed line shows the best orbital model
that has been fit to the data points. (b) The same plot, this time for
a simulated pulsar in an eccentric orbit with e = 0.9. The pulsar was
“observed” every 10min, as marked by the ‘+’ signs. Apastron is at
the upper right, where alos ∼ 0m s−2 and the orbit is most densely
sampled.

parameters using Tempo7 or TEMPO2 8 Hobbs et al. (2006).

The orbital, spin, DM, and astrometric parameters are initialized in the .par

file with their best estimated values, the position and DM are fixed, and the spin

frequency derivative is again set to zero. The orbital parameters and ν can be left

free, although it may be useful to fix one or more orbital parameters at the best fit

value and iterate until the solution is stable, at which point all parameters may be

freed.

In the .tim file, identify which TOAs should immediately lead to a initial phase-

connected solution. For example, the TOAs extracted from a single observation

must be phase-connected, and may be connected for observations within a few days

of each other. Groups of TOAs that are not expected to be phase-connected are

7http://www.atnf.csiro.au/people/pulsar/tempo/

8http://www.atnf.csiro.au/research/pulsar/tempo2/
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Figure 5.11: Example of timing resid-
uals through the timing sequence, from
http://www.cv.nrao.edu/course/astr534/PulsarTiming.html. (a)
Phase connection is established between a few observations near
MJD 51500. (b) The timing solution is extended until positional
errors dominate; one position parameter is free and fit here. (c) The
other position parameter is fit. (d) The fit now includes ν̇, flattening
the residuals.

separated by typing “JUMP” above and below the TOAs from the disconnected

observations. Then Tempo or TEMPO2 is run to fit an initial solution.

To run Tempo, type

tempo -f timing.par toas.tim .

The timing residuals are contained in timing.resid. It is usually necessary to try

different starting points and different combinations of JUMPs until two or more sets

of TOAs are connected. From there, JUMPs from neighboring TOAs are gradually

removed. After a few months, positional errors typically become significant, so the

RA and/or declination parameter(s) can be freed. A year of timing is needed before

positional errors and the intrinsic ν̇ become non-degenerate, so after a year ν̇ can

be fit reliably. Continued monitoring may yield a parallax, proper motion, or other
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interesting parameters, particularly if the pulsar is in a binary system. An example

of the steps taken in pulsar timing is shown in Figure 5.11.

More details on pulsar timing are given in Lorimer & Kramer (2005), as well as

in the Tempo and TEMPO2 manuals9.

9Manuals for Tempo and TEMPO2 can be found at http://www.atnf.csiro.au/people/

pulsar/tempo/reference_manual.html and http://www.atnf.csiro.au/research/pulsar/

ppta/tempo2/manual.pdf
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Chapter 6

Radio Pulsar Searches Guided by

the LAT

The previous chapters focused on the study of pulsar magnetospheres and high-

energy emission through geometrical modeling of their > 100MeV light curves and

phase resolved modeling of their spectra. The Fermi LAT has advanced this field

dramatically due to its high sensitivity, which has resulted in the discoveries of more

than 100 new γ-ray pulsars and to excellent statistics, allowing quality light curves

and spectra to be obtained for these pulsars. In this chapter, I switch gears to focus

on a different aspect of the discovery space that has been opened by Fermi—that

of targeted searches for, and discoveries of, millisecond pulsars (MSPs). Many LAT

sources that previously had no multi-wavelength associations have since been found

to be radio-loud γ-ray MSPs. Additionally, fourteen globular clusters have been

detected by the LAT, allowing estimates of their MSP populations if the high-energy

emission originates in MSP magnetospheres, as well as targets for MSP searches.

In this chapter, I will describe my discoveries of two MSPs, and the subsequent
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timing and other analysis that I have done. The first MSP was found in a LAT source

in the Galactic field, and was done in collaboration with a group led by Mallory

Roberts1. The second MSP was discovered in a globular cluster that contained no

known MSPs prior to this discovery. This latter pulsar was found as a result of my

initiative to propose Green Bank telescope observations of LAT-detected globular

clusters, in collaboration with Scott Ransom2 and Paul Ray3. Initial timing has

revealed this MSP to be a member of a very interesting and exotic binary system.

Unless otherwise noted, detailed descriptions of all LAT tools used in this work

can be found on the Fermi Science Support Center (FSSC) data analysis website4.

6.1 Radio Searches of Unassociated LAT Sources

Pulsars have been known to be pulsed γ-ray emitters since the detections of the

Crab and Vela pulsars in the early 1970s (e.g., Browning et al. 1971; Grindlay

et al. 1973b,a; Albats et al. 1974). By the end of the Compton Gamma-Ray Ob-

servatory (CGRO) mission, seven γ-ray pulsars had been detected, six of which

were seen at > 100MeV with the Energetic Gamma-Ray Experiment Telescope

(EGRET) (Thompson 2001, and references therein). It was therefore suspected

that some of the unidentified EGRET sources (Hartman et al. 1999) may also be

pulsars (Yadigaroglu & Romani 1995; Harding & Muslimov 2005), prompting multi-

wavelength observations, in particular radio pulsation searches (e.g., searches of the

bright EGRET source 3EG J1835+5918 by Halpern et al. 2002, 2007).

1Eureka Scientific

2National Radio Astronomy Observatory

3Naval Research Lab

4http://fermi.gsfc.nasa.gov/ssc/data/analysis
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The Fermi LAT has similarly produced a list of sources that have no associated

multi-wavelength counterparts (Ackermann et al. 2012; Nolan et al. 2012). The

majority of these sources are blazars or other AGN, which are highly variable in

γ-ray flux and have steep γ-ray power law spectra, but pulsars are expected to be a

significant fraction of the population as well. Unlike AGN, pulsars show little to no

variability, and their spectra are flatter with a cutoff energy Ec ∼ fewGeV. Thus,

sources that display pulsar-like characteristics of low variability and high spectral

curvature (indicative of a cutoff) were and continue to be preferentially searched

for radio pulsations. Similar criteria were used to identify likely pulsar candidates

with EGRET, although the spectral curvature was not as well determined due to

the poorer statistics.

A major advantage the LAT has over EGRET, in addition to much higher sen-

sitivity, is its much smaller point-spread function (PSF), which is ∼ 1◦ at 1GeV

and decreases with increasing energy (Atwood et al. 2009). This results in a smaller

error circle around the best position of a given source than was achievable with

EGRET. The typical angular radius of the 95% error circle of an EGRET source

was ∼ 0.5◦ − 1◦ (Hartman et al. 1999); the radio beam of the GBT at 350MHz is

0.6◦ across. Several pointings were therefore required to search the full error circle

of an EGRET source at low radio frequencies, and many pointings were required

at higher frequencies, as the radio beam decreases in size with increasing spectral

frequency f . LAT sources, on the other hand, have typical error circles of radius

0.1◦ − 0.5◦, and can easily be searched with a single radio observation at common

frequencies for pulsar observing.

Several different groups, all organized under the Pulsar Search Consortium (PSC)

(Ray et al. 2012) associated with Fermi, used telescopes around the world to search

for radio pulsations from “pulsar-like” unassociated LAT sources, and were quite

190



Figure 6.1: The sky positions of many of the MSPs that have been
discovered in LAT-guided searches. Figure provided by Paul Ray.

successful. The large majority of the pulsars that have been discovered in this

way are millisecond pulsars lying at high galactic latitudes (e.g., Ransom et al.

2011). After confirming their detections, the MSPs are timed for at least a year to

establish a phase-connected timing solution that includes a measurement of ν̇. The

sky locations of many of these MSPs are shown in Figure 6.1; several more have

been found since this figure was made. At the time of writing, 50 new radio MSPs

have been discovered in this way, 47 of which are definitely associated with the γ-ray

source, and γ-ray pulsations from 34 of these have been detected by folding the γ-

rays on the radio timing solution (P. Ray, private communication; The Fermi-LAT

Collaboration 2013). Ongoing searches are continuing to find new MSPs.
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6.2 PSR J0102+4839: A MSP in the Galactic

Field

I contributed to a pulsar search program, led by Mallory Roberts, in which 50 faint

LAT sources were searched with the GBT (Hessels et al. 2011). The sources chosen

had no obvious blazar associations at other wavelengths, displayed little flux vari-

ability, and had pulsar-like γ-ray spectra. All sources lay at high galactic latitude,

with |b| > 5◦, specifically chosen because scattering decreases significantly outside

the Galactic plane. Ten MSPs have been discovered in these searches (Hessels et al.

2011). I found one of these MSPs, PSR J0102+4839.

6.2.1 Search Observations and Data Analysis

The unassociated LAT source 1FGL J0103.1+4840 was searched at 350MHz using

the GUPPI pulsar backend at the GBT. The bandwidth was 100MHz, time reso-

lution was 81.92µs, and the integration time was 1 h. The 1FGL error circle had a

radius ∼ 0.1◦ (Abdo et al. 2010a), and easily fit inside the 350MHz beam, which

has a full-width-at-half-maximum (FWHM) of 0.6◦. The beam was centered on the

nominal position of the 1FGL source (RA = 1h 03m 11s.28, Dec = 48◦ 40′ 15′′.6).

The observation was barycentered and de-dispersed at 8800 DMs from 0 −

105.6 cm−3 pc, and the Fourier transforms of the time series were processed with

acceleration searches using zmax = 50 (see Sections 5.2.2.1 and 5.2.4). A very

strong pulsar candidate was found with barycentric P = 2.964ms and Ṗ = −4.4 ×

10−12 s s−1 (Figure 6.2), indicating that it was undergoing acceleration from a binary

orbit. The MSP was confirmed in a follow-up observation, and was incorporated

into an ongoing timing campaign to measure the spin and binary parameters of
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Figure 6.2: The discovery plot of PSR J0102+4839 from PRESTO.
Top left: Two cycles of the 350MHz pulse profile. Left: Two cycles
of the pulse profile with time. Top center: Two cycles of the pulse
profile over the radio frequency bandwidth of the observation. Bottom
center: A search over DM yields a peak in DM, a signature of a real
pulsar rather than a signal from interference, at DM = 53.5 cm−3 pc.
Top right: The peak in reduced χ2 is at the best period derivative
searched. Middle right: The χ2 peak shows the best pulse period.
Bottom right: The χ2 contours in P − Ṗ space, evaluated at the best
DM value, showing the best-fit P and Ṗ .

MSPs discovered in LAT sources.

6.2.2 Timing and Pulse Profiles

Timing observations of PSR J0102+4839 were taken between MJD 55514.7–56093.2

(2010 November 14 to 2012 June 15) by my collaborators and me. The observations

were all performed with the GBT and GUPPI, with the majority of the data taken at
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820MHz with 200MHz of bandwidth; a few observations were also taken at 350 and

1500MHz (with bandwidths of 100 and 800MHz, respectively). Observing at two

or more radio frequencies allows for a more accurate determination of the DM, as it

may then be fit along with the binary and spin parameters in the timing solution.

The pulse template was made by fitting three Gaussians to a long observation

at 820MHz. This template matched the pulse profile at 1500MHz fairly well, but

was different enough from the profile at 350MHz that we chose to only use TOAs

extracted from observations at the higher two radio frequencies. PSRCHIVE5 (van

Straten et al. 2012) was used to archive the data files and extract the TOAs, and

Tempo6 was used to time the pulsar as in Section 5.3.3.

Initial timing using the Tempo binary model BT found that the MSP has a

very low eccentricity e ∼ 10−6 (nearly circular), which led to difficulty in locating

the periastron using the Römer delay given in Equation 5.38. For low eccentricity

orbits, the longitude of periastron, ω, and epoch of periastron passage, T0, are

highly correlated, leading to large uncertainties in their values. The ELL1 binary

model (Lange et al. 2001) in Tempo was therefore used to describe the MSP’s

orbit and complete the timing solution. This binary model provides an alternative

description of Keplerian orbital motion by parameterizing e, T0, and ω with the

epoch of ascending node Tasc and the first and second Laplace-Lagrange parameters

ǫ1 and ǫ2:

Tasc = T0 − ω/Ωb, (6.1)

ǫ1 = e sinω, (6.2)

ǫ2 = e cosω . (6.3)

5http://psrchive.sourceforge.net

6http://www.atnf.csiro.au/people/pulsar/tempo/
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Table 6.1. PSR J0102+4839 Timing Parameters

Timing Parameter GBT Solution LAT+GBT Solution

Start Time (MJD) 55514.7415 54729.7521

End Time (MJD) 56093.1598 56093.1598

NTOAs 298 314

Right ascension 1h 02m 50s.6688(1) 1h 02m 50s.66898(9)

Declination 48◦ 39′ 42′′.7635(6) 48◦ 39′ 42′′.7625(6)

Dispersion measure (cm−3 pc) 53.5036(7) 53.5036a

Spin period, P (ms) 2.9641124215896(7) 2.9641124215878(3)

Spindown rate, Ṗ (s s−1) 1.136(3) × 10−20 1.143(2) × 10−20

Orbital period, Pb (days) 1.672149563(2) 1.672149565(2)

Projected semimajor axis, x (lt-s) 1.8558827(8) 1.8558824(8)

Epoch of ascending node, Tasc (MJD) 55514.5773301(2) 55514.5773300(2)

Laplace-Lagrange parameter, ǫ1 (2.2 ± 0.7)× 10−6 (2.2 ± 0.7) × 10−6

Laplace-Lagrange parameter, ǫ2 (1.6 ± 9.9)× 10−7 (−5.7± 9.9) × 10−7

Eccentricity, e (2.2 ± 0.7)× 10−6 (2.3 ± 0.8) × 10−6

Epoch of periastron, T0 (MJD) 55514.976 ± 0.123 55515.061 ± 0.113

Longitude of periastron, ω (degrees) 85.84 ± 26.42 104.23 ± 24.40

Note. — The best-fit timing solution parameters obtained with TOAs from the GBT
only (center column) and from the GBT and LAT (right column). Sixteen TOAs were
extracted from the LAT pulsations over the course of ∼ 3.75 yr. Because the pulsar
was discovered after the beginning of the Fermi mission, the LAT TOAs are used to
extend the timing solution backward to an earlier start time. The ELL1 binary model
parameters are Tasc, ǫ1, and ǫ2; from these parameters, e, T0, and ω were calculated
using Equations 6.4–6.6. aThe DM cannot be fit using LAT TOAs, so it was fixed at
its best value from the radio timing solution.

The original parameters can then be calculated by

e =
√

ǫ21 + ǫ22, (6.4)

ω = arctan (ǫ1/ǫ2), (6.5)

T0 = Tasc +
Pb

2π
arctan (ǫ1/ǫ2) . (6.6)

The radio timing solution given in Table 6.1 was found using 298 TOAs measured
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Figure 6.3: The light curves of PSR J0102+4839 at E > 100MeV
(top), f = 1500MHz (middle), and f = 820MHz (bottom), made by
folding the LAT and GBT observations on the best LAT+GBT timing
solution. The radio light curve units are arbitrary. The LAT light
curve is in units of LAT counts, or events, that have been weighted by
the probability that the event originated from PSR J0102+4839. This
probability was calculated with the LAT tool gtsrcprob using the
pulsar’s best fit spectral model from The Fermi-LAT Collaboration
(2013).

between MJD 55514.74–56093.16. Using this timing solution, the LAT counts were

folded, resulting in the detection of pulsed γ-rays from this MSP. The LAT pulse

profile was then used to make a γ-ray template, extract 16 additional TOAs from

the LAT counts, and extend the timing solution backward to the beginning of the

Fermi mission. This solution, obtained using radio and LAT TOAs together, is also

given in Table 6.1. The RMS residual for the radio solution is 8.436µs (0.0028 in

phase), and for the LAT+GBT solution is 8.881µs (0.0030 in phase). The 820MHz,

1500MHz, and > 100GeV pulse profiles (light curves) are shown in Figure 6.3.
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These profiles were made using the LAT+radio timing solution, and are available

publicly through the Second LAT Pulsar Catalog (The Fermi-LAT Collaboration

2013).

The mass function (Equation 5.39) derived from the timing solution is f(mp, mc) =

0.0024546(6)M⊙, resulting in minimum, median, and maximum companion masses

of 0.1790M⊙, 0.2095M⊙, and 0.4595M⊙, assuming a pulsar mass of 1.4M⊙. The

characteristic age τc ∼ 4.1Gyr, and the surface magnetic field BS ∼ 1.86 × 108G

(Equation 1.5).

The distance of PSR J0102+4839, estimated from its DM using the NE2001

model (Cordes & Lazio 2002, also see Section 5.1.1), is d ∼ 2.3 kpc. At this distance,

it may be possible to detect the MSP’s proper motion. An attempt to measure

the proper motion using pulsar timing resulted in unconstrained measurements of

motion in both right ascension and declination. Further timing of this pulsar over

several years may yield a proper motion measurement.

6.2.3 Polarization Analysis

Once the timing solution was well-established, an observation of PSR J0102+4839

was taken at 820MHz in full-Stokes mode to allow for an analysis of the MSP’s

polarized emission, resulting in the polarized profile shown in Figure 6.4 (the profile

has been rotated by an arbitrary phase shift in order to show the profile clearly).

The rotation measure (RM, which is a measure of the pulse delay in terms of phase

rotations due to Faraday rotation; see Section 4.1.2 of Lorimer & Kramer 2005)

was fit to the polarized data, yielding RM = −86.3 ± 0.8 radm−2. Calibrating the

polarized profile gave an average flux density of S820 = 0.541± 0.005mJy.

The 820MHz profile in Figure 6.4 is mostly linearly polarized (red), with a hint

of negative circular polarization through the main peak. The main peak is asymmet-
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Figure 6.4: The 820MHz polarized profiles of PSR J0102+4839. In
the bottom panel, the linearly polarized emission is shown with the
red line, circularly polarized with the blue line, and total intensity
with the black line. The P.A. (top panel) is plotted for all bins in
which the linear polarization S/N > 2.5. The P.A. has been corrected
for Faraday rotation, so that the P.A. is what it would be in the
pulsar’s frame rather than at the Earth.

rically shaped, and it appears to contain at least two linearly polarized components,

with a possible third component in the tail of the peak. This is consistent with the

averaged profile (black, and also shown in Figure 6.3), in which the tail of the main

peak seems to be a separate emission component.

The position angle (P.A.) in the top panel of the figure has been corrected for

Faraday rotation, such that the P.A. is that of the pulsar’s rest frame rather than

what is observed at Earth, and is plotted at all phases in which its S/N > 2.5.

The P.A. is maximum at the center of the main peak, and decreases gradually

through the tail of the peak before the S/N of the polarized emission drops below
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the threshold. It becomes measurable again within the smaller peak, and could be

connected with a single line to the P.A. values in the tail of the main peak. In the

rise of the main peak, the P.A. ∼ −80◦; it rises to ∼ 10◦ at the highest point of the

main peak. Thus, there appears to be a 90◦ P.A. jump, indicative of the onset of an

orthogonal polarization mode. This mode change occurs at the same phase as the

onset of the second linearly polarized feature in the main peak, providing additional

evidence for separate emission components within this peak.

Flat P.A. swings and orthogonal modes are fairly common in MSP polarization

data, as evidenced by the polarized profiles compiled by, e.g., Ord et al. (2004)

and Yan et al. (2011). The P.A. swings of MSPs are often difficult to reconcile

with the traditional model of pulsar polarization, the Rotating Vector Model (RVM;

Radhakrishnan & Cooke 1969a), in which the radio emission is assumed to originate

at or near the polar cap surface. Fitting the P.A. swing with a modified version of

the RVM (e.g., Blaskiewicz et al. 1991) may constrain β = |α − ζ |, and might

constrain α as well as the radio emission altitude. A RVM fit was not done for this

thesis.

6.2.4 Gamma-ray Spectrum

The phase averaged spectrum of PSR J0102+4839 was modeled over the energy

range 0.1–300GeV using four years of data from the Fermi LAT. Only counts in

the “Source” event class (in the LAT gtselect tool, evclass= 1) were used to fit

the spectrum. With the gtmktime tool, the counts were filtered using a ROI-based

zenith cut in which counts originating from a zenith angle z > 100◦ from the LAT

zenith were not included in the dataset. Good time intervals were determined using

the filter expression “DATA QUAL==1 && LAT CONFIG==1 && ABS(ROCK ANGLE)<52”,

also using the gtmktime tool.
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Spectral analysis of PSR J0102+4839 was performed with the LAT likelihood

analysis tool gtlike, run within python. The fit was done within a 20◦×20◦ Region

of Interest (ROI) centered on the timing position of PSR J0102+4839, using 34

logarithmically spaced energy bins with 10 bins per logarithmic decade in energy.

The spectral+spatial model, contained in an XML file, included sources within a

20◦ radius of the central pulsar. All spectral parameters of sources lying within a

10◦ degree radius of PSR J0102+4839 were left free, while all parameters of source

outside this radius were fixed at their 2FGL (Nolan et al. 2012) values.

The spectrum was fit with three different spectral models: a simple power law,

dN

dE
= K0

(

E

E0

)Γ

, (6.7)

a broken power law (BPL),

dN

dE
= K0 ×















(E/Eb)
Γ1 if E ≤ Eb

(E/Eb)
Γ2 otherwise

, (6.8)

and a power law with an exponential cutoff (ECPL),

dN

dE
= K0

(

E

E0

)Γ

exp

[

(

E

Ec

)b
]

. (6.9)

In each model, K0 is the differential flux prefactor. E0 in the PL and ECPL models

is a scale factor, for which the 2FGL value of the pivot energy is used; this value

is E0 = 1.372GeV for PSR J0102+4839. Γ in the PL and ECPL represents the

spectral index; in the BPL model, Γ1 is the spectral index at energies lower than

the break energy Eb, while Γ2 is the spectral index at E > Eb. In the ECPL, b

determines whether the roll-off above the cutoff energy Ec is exponential (b = 1),

sub-exponential (b < 1), or super-exponential (b > 1). Pulsars with high count

rates, for example bright pulsars like Vela and the Crab, all show b < 1, caused by

significant variation in Ecutoff with rotation phase.
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The test statistic, or TS, is used as a measure of the significance of a source in a

model, or of a parameter in the spectral model of an individual source. It is defined

as

TS = −2 ln(L1/L2) . (6.10)

In the case of testing whether or not a source should be included in the model of the

region, L∈ is the likelihood of a model that includes the source in question, and L∞

is the likelihood of a model that does not include the source. Sources with extremely

low TS, especially TS < 0, are likely not true sources but rather poorly modeled

fluctuations in the diffuse background that were bright enough to be considered as

sources in the Second LAT Catalog (Nolan et al. 2012). Such sources can alter

a spectral fit, and may result in pockets of significantly negative residuals when

differencing the model and counts map. It is therefore undesirable to include very

low-TS sources in a spectral model. For example, in the Second Pulsar Catalog

(The Fermi-LAT Collaboration 2013), sources with TS < 2 were removed from the

spectral models before obtaining a final spectrum.

In this work, a more conservative value of TS = 0.5 was used as the threshold

for whether or not to include a source in the spectral model. After an initial fit to an

absolute tolerance in likelihood L of 0.01, sources with TS < 0.5 were removed from

the fit. This step was done simultaneously for all spectral models, so that the same

sources were removed from each model, hence preserving the ability to statistically

compare the models. A source was therefore removed only if it met the criterion

TS < 0.5 in each of the model fits, or if its TS < 0 in one or more of the fits. After

removing these low-TS sources, the fits were repeated to an absolute tolerance in L

of 0.001. The spectral parameters are given in Table 6.2.

Pulsars that are bright in γ-rays, and therefore have high count rates, show

a sub-exponential cutoff (b < 1) rather than a purely exponential cutoff (b = 1)
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Table 6.2. Spectral Model Parameters and Comparison

Model Parameter PL ECPL (b = 1) BPL

K0 0.947 ± 0.084 2.232 ± 0.463 0.941 ± 0.390

Γ −2.148 ± 0.054 −1.307 ± 0.238 · · ·
Ec · · · 2.828 ± 0.826 · · ·
Γ1 · · · · · · −1.358 ± 0.277

Γ2 · · · · · · −3.113 ± 0.258

Eb · · · · · · 1.950 ± 0.342

F100 2.289 ± 0.295 1.218 ± 0.306 1.058 ± 0.336

G100 1.233 ± 0.118 0.811 ± 0.091 0.795 ± 0.097

TS 276.6 308.9 307.2

Model Comparison

− lnL 492812.4 492792.6 492791.2

∆TS · · · 39.8 42.4

Nfree 36 37 38

AIC 985696.8 985659.1 985658.4

Note. — The top part of the table lists the best-fit spectral parameters,
as well as the source fluxes and TS, for each of the three models considered
(Equations 6.7–6.9). F100 and G100 are respectively the 0.1–300 GeV pho-
ton flux and energy flux calculated from each model. K0 is given in units
of 10−12 cm−2 s−1MeV−1; energies Ec and Eb are measured in GeV; the
0.1–300 GeV photon flux F100 is in units of 10−8 photons cm−2 s−1; and
the 0.1–300 GeV energy flux is given in 10−11erg cm−2 s−1. The bottom
part of the table provides the values that were used to compare the mod-
els’ goodness of fit. The likelihood − lnL was calculated from gtlike.
∆TS is the change in TS between the ECPL and BPL models, as com-
pared to the PL model, and can be thought of as the TS of the cutoff or
break energy, respectively. Nfree is the number of model parameters that
were left free in each fit, and the AIC is the Akaike Information Criterion,
used to measure the relative goodness of fit of the three models.
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in their phase-averaged spectra. I therefore fit the spectrum of PSR J0102+4839

with the ECPL model again, this time allowing the b parameter to be free. The

improvement to the fit, as compared to the ECPL model with b = 1 fixed, was

insignificant, with ∆TS(b < 1, b = 1) = 1.9. I therefore only included the best-fit

parameters obtained with the ECPL (b = 1) model in Table 6.2.

I used two methods to test the goodness of fit of the models. The first is the like-

lihood ratio test, which can be used to compare nested models. This test calculates

the test statistic as previously given in Equation 6.10,

TS = −2 ln(L1/L2) (6.11)

where, in this case, L1 is the likelihood of the simpler model (with fewer parameters)

computed by gtlike, and L2 is the likelihood of the more complex model. The

significance of the improvement of model 2 over model 1 is σ ≈
√
TS. We use the

TS to test, for example, the significance of the cutoff in the ECPL model, compared

to the lack of a cutoff in the power law model.

The second test is a Bayesian test, the Akaike Information Criterion (AIC),

which determines the relative goodness of fit between different models,

AIC = 2Nfree − 2 lnL (6.12)

where Nfree is the number of free parameters in the fit, and L is the resulting

likelihood from the fit. The model yielding the lowest AIC is the best of the models

considered.

Because the AIC and TS measure relative goodness of fit, they cannot be used

to determine whether the best fit model actually gives a good fit to the data.

That the fit is satisfactory is determined 1) by comparing the full energy range

fit with the spectral energy distribution (SED); and 2) by using the best fit model

to reconstruct the ROI, and then calculating a residual map in units of σ, where
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Figure 6.5: The LAT counts map, model maps, and residual maps of
the region of interest centered on PSR J0102+4839, which are used
to test that the ECPL and BPL spectral models gave satisfactory fits
to the > 100MeV spectrum of this pulsar. (a) The counts map of
the 20◦ × 20◦ region in which the likelihood analysis was performed.
PSR J0102+4839 is at the center of the map. Other sources are
marked with green diamonds. The green reference circles mark radial
distance of 4◦, 8◦, and 10◦ from the center of the map. (b) A model
map of the region, made using the best-fit BPL spectral parameters
of PSR J0102+4839 and surrounding sources. The colors represent
zero counts (black) to 42 counts (white) in panels (b) and (c). (c)
A model map of the region, this time made using the best-fit ECPL
parameters. (d) The (counts−model)/model) residual map obtained
from the BPL model map and the counts map. The colors represent
σ = 0 (black) to 0.83 (white) in panels (d) and (e). (e) The residual
map obtained with the ECPL model map.

σ = [(detected counts −model counts)/(model counts)]1/2 to ensure that the pulsar

has been removed (fluctuations are all at the level of the background, ≤ 1σ). The

latter is done using the LAT tools gtbin and gtmodel, and ftpixcalc from NASA’s

HEASARC FTOOLS7.

7https://heasarc.gsfc.nasa.gov/ftools/
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Both steps were taken to ensure that the fit parameters presented here are valid.

The counts map, model maps, and residual maps are shown in Figure 6.5 for the

ECPL and BPL models. Each map was smoothed with a Gaussian kernel with a

3-pixel radius, where 1 pixel is 0.1◦ across. Figure 6.5(a) shows the counts map

centered on PSR J0102+4839. The sources used in the spectral fit are marked with

diamonds (but not labeled to avoid over-crowding the image). The circles are of

radius 4◦, 8◦, and 10◦. In panels (b) and (d), the model maps made from the best-

fit spectral parameters of the sources are shown for the BPL and ECPL models,

respectively. The residuals between the counts map and model maps of the BPL

and ECPL models are shown respectively in panels (c) and (e), and are in units

of σ = [(detected counts−model counts)/(model counts)]1/2. The highest σ ∼ 4

in the residuals prior to smoothing; in the residual maps shown here, smoothing

has reduced the maximum σ to ∼ 0.8. Continuing to smooth with larger kernels

results in the residuals flattening to σ ∼ 0.03 across the region of the ROI where

PSR J0102+4839 lies. The fact that there is no significant source remaining at the

MSP’s location in the residual maps suggests that both spectral fits are acceptable.

To make SEDs with bdlikeSED.py8, the counts were divided into six energy

bands spaced logarithmically between 0.1–300GeV. The spectrum within each band

was fit with a simple power law, from which the flux was calculated. For these

individual band fits, the normalization factors (e.g., K0) of all sources within 8◦

were left free, while the other parameters (e.g., spectral indices and cutoff or break

energies) were fixed at their best-fit values from the fit over the full energy range.

Outside 8◦, all parameters were fixed. The radius of 8◦ was chosen to be consistent

with the analysis in the LAT Second Pulsar Catalog (The Fermi-LAT Collaboration

8http://fermi.gsfc.nasa.gov/ssc/data/analysis/user/likeSEDmacros_UsageNotes_

v13.pdf
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Figure 6.6: Top: From left to right are shown the SED, counts spec-

trum, and energy band TS of PSR J0102+4839, fit with the ECPL

model. (Bottom) The SED, counts spectrum, and energy band TS

from the BPL model.

2013).

The SEDs for the ECPL and BPL models are shown in Figure 6.6. The spectral

points are similar, but not identical, between the two models. This is because the

parameters of the pulsar and background were based on the best fit parameters for

each type of model, and most of the parameters were fixed in order to fit the SED.

This means the model in each energy band will be different depending on the model

parameters of the other background sources in the ROI. No flux points are shown

above 10GeV, presumably because the lack of counts above this energy prevented

the spectral fit from converging.

I therefore find that for PSR J0102+4839, both the ECPL (b = 1) and BPL

spectral models describe the pulsar’s γ-ray spectrum adequately well. Calculating

the TS and AIC for both models, I find that neither is strongly preferred over the

other. However, it is expected that a sub-exponentially cut-off power law (ECPL
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with b < 1) will fit the spectrum best, as has been seen for very bright pulsars.

With improved statistics, it should eventually be possible to differentiate between

the two models, as well as to fit the ECPL model with a free b < 1.

6.2.5 Discussion

PSR J0102+4839 is a ∼ 3ms MSP that was discovered in an unassociated LAT

source. The radio timing solution yielded a detection of γ-ray pulsations, making it

a new γ-ray MSP. Its radio emission is significantly linearly polarized at 820MHz.

Its γ-ray spectrum is well fit by an exponentially cut-off power law or a broken power

law. As the Fermi mission continues, the detected counts will increase, and it may

be possible to differentiate between these two models, as well as to fit the spectrum

with a sub-exponentially cut-off power law. A measurement of proper motion was

not possible from the current timing solution. However, with continued timing at

radio frequencies, this measurement may become possible in the future.

To date, the primary goal of LAT-guided radio pulsar searches has been to find

and time more pulsars, especially MSPs, and to subsequently increase the number of

known γ-ray pulsars by folding the LAT counts on the radio timing solution. Beyond

cataloguing these new pulsars, there is much science to be done with these MSPs,

including PSR J0102+4839. The vast majority of the pulsars found in these searches

are MSPs. Continued timing of these MSPs can potentially lead to measurements of

proper motion, mass, and other physical quantities of interest. Several of them have

been found to have very stable timing solutions, meaning that timing them over

years to decades will result in nanosecond-scale timing residuals. The NANOGrav

collaboration is therefore continuing to time a subset of these recently discovered

MSPs, with the goal of a direct detection of gravitational radiation using a pulsar

timing array. Another subset of MSPs found in these searches is composed of “black
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widow” (BW) and “redback” (RB) pulsars that are evaporating their companions.

Prior to the Fermi mission, only three such systems were known; the LAT-guided

searches led to the discoveries of 19 new BW/RB systems (Roberts 2013, and refer-

ences therein), allowing the study of a larger sample of these objects. The increased

number of radio and γ-ray MSPs will also allow a study of MSP emission geometry:

the position angle of linearly polarized pulsar emission can be used to constrain the

radio emission geometry and emission altitude (e.g., Radhakrishnan & Cooke 1969b;

Blaskiewicz et al. 1991; Craig & Romani 2012), and γ-ray light curve modeling can

also be used to constrain the emission geometry and the γ-ray emission mechanism.

6.3 PSR J1835−3259: A New Globular Cluster

MSP in NGC 6652

The LAT has guided successful searches for MSPs in the Galactic field, as described

in the previous section. It has also led to the discovery of a new globular cluster

MSP, through the detection of γ-ray emission from globular clusters. Initial timing

of this MSP indicates that its orbit is highly eccentric, and that its companion is

unusually massive, suggesting that this binary system may be very interesting for

constraining the pulsar mass and studying globular cluster binary evolution.

6.3.1 LAT Detections of Globular Clusters

Venter & de Jager (2008) predicted that globular clusters (GCs) would be detected

at γ-ray energies if MSPs were γ-ray emitters; MSPs were confirmed to be pulsed γ-

ray sources in the months following Fermi ’s launch (Abdo et al. 2009b). The shape

of the GC γ-ray spectrum was predicted to be a sub-exponentially cutoff power law,
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Figure 6.7: The > 100MeV LAT counts maps of the globular clusters
NGC 6388 and NGC 6652, from Abdo et al. (2010f). The large maps
show the diffuse emission of the Galactic plane; the faintest emission
is dark blue, and the brightest emission from the central region of the
plane is yellow. The white circles mark the locations of the clusters
in the maps. The insets show maps of the TS of the cluster emission,
which can be thought of as background-subtracted maps of the clus-
ters, made by fitting a spatial and spectral model to the data shown
in the large images. Both clusters are detected with high significance,
and lie within ∼ 10◦ of the Galactic plane.

due to the combined spectra of its MSPs (Venter & de Jager 2008). 47 Tuc and

Terzan 5, the two GCs with the highest number of known MSPs (Ransom et al. 2005;

Camilo & Rasio 2005), were detected by the LAT early in the Fermi mission. Later,

six more GCs were detected, and three marginally detected, in γ-rays by Abdo et al.

(2010f). Two of the latter clusters were then detected with higher significance by

Tam et al. (2011), who also detected γ-ray emission from an additional four clusters.

The spectra of those with high enough counts were fit better with a cutoff power law

than a simple power law, consistent with expectations from a population of MSPs.

Of the detected and marginally detected GCs reported in Abdo et al. (2010f),
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four contained no known MSPs: Omega Cen, NGC 6388, NGC 6541, and NGC 6652.

While these clusters had been searched for MSPs in the past, recent technological

advances in radio pulsar searches (for example, the implementation of the GUPPI

spectrometer backend at the GBT) led to significant increases in sensitivity, making

another search of these sources worthwhile. I led a search for MSPs in two of

these clusters, NGC 6388 and NGC 6652, which are within the GBT sky and were

significantly detected by the LAT.

The LAT counts maps of these clusters from (Abdo et al. 2010f) are shown

in Figure 6.7. Both clusters had significant detections, with high enough counts to

measure a spectral cutoff energy. The spectral parameters, photon and flux energies,

distances, γ-ray luminosities, and number of MSPs predicted by Abdo et al. (2010f)

are given in Table 6.3. NMSP was derived from the Lγ . Note that the Lγ measured

for NGC 6388 is similar to that of Terzan 5, yielding the same NMSP (Abdo et al.

2010f). This is consistent with the fact that NGC 6388 is the most compact cluster

known in the Galaxy—the more compact a cluster is, the higher the stellar encounter

rate, and the more likely it is that a cluster pulsar will obtain a new companion from

which it can accrete and be recycled. The fact that no MSPs have been found in

NGC 6388 can be explained by its large distance, which makes faint MSPs harder

to detect and also leads to more scattering due to a higher DM. A similar argument

can be made for NGC 6652, but fewer MSPs are expected to reside in this cluster.

6.3.2 Observations and Analysis

NGC 6388 and NGC 6652 were observed at S-band (2GHz) with the GBT and

GUPPI backend between 2010 October 19 and 2011 May 6 (MJD 55488–55687).

GUPPI recorded the signal with a time resolution of 40.96µs, using 800MHz (2048

frequency channels) of bandwidth centered on frequency f = 2GHz. The data were
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Table 6.3. Physical Parameters of Globular Clusters

NGC Γ Ec TS F100 G100 d Lγ NMSP

6388 1.4± 0.2 2.2+0.8
−0.5 86.6 1.6+1.0

−0.6 1.6 ± 0.3 11.6 ± 2.0 25.8+14.0
−10.6 180+120

−100

6652 1.0+0.6
−0.5 1.8+1.2

−0.6 54.8 0.7+0.5
−0.3 0.8+0.2

−0.1 9.0± 0.9 7.8+2.5
−2.1 54+27

−25

Note. — Physical characteristics of the two globular clusters that were searched for
radio pulsations. The columns are, from left to right: (1) The globular cluster NGC
name, (2) the spectral index of the cluster’s γ-ray spectrum, fit with an exponentially
cutoff power law, (3) the cutoff energy in GeV, (4) the TS of the LAT source, (5) the
> 100MeV photon flux, in units of 10−8 photons cm−2 s−1, (6) the > 100MeV energy
flux, in units of 10−11 erg cm−2 s−1, (7) the cluster’s distance from Earth, (8) the γ-ray
luminosity, calculated from G100 and d, and (9) the number of MSPs predicted to lie in
each cluster. These values are taken from (Abdo et al. 2010f); only statistical errors are
included. The distance measurements for NGC 6388 and NGC 6652 are originally from
Moretti et al. (2009) and Chaboyer et al. (2000).

taken in coherent search mode, in which the incoming signal is dedispersed in real

time at a pre-determined dispersion measure (DM) to minimize pulse broadening

(see Section 5.2.2.2 for details); we note that these observations also served to test

the coherent dedispersion system on the GUPPI backend. The DM at which the

channels were coherently de-dispersed, as well as the coordinates of the beam center,

are given for each cluster in Table 6.4; the DM was estimated using the NE2001

model (Cordes & Lazio 2002).

These globular clusters are located at low declinations, −45◦ and −33◦ respec-

tively for NGC 6388 and NGC 6652, while the GBT is unable to observe at decli-

nations below ∼ 46◦9 NGC 6388 is therefore observable for only 3 hr per day from

the GBT, while NGC 6652 is observable for 6.5 hr; each cluster was approved by

the GBT Time Allocation Committee (TAC) for ≤ 3 hr pointings at a time. NGC

6388 was observed a total of 8 times, with individual observations lasting between

9GBT guide, https://science.nrao.edu/facilities/gbt/proposing/GBTpg.pdf.
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Table 6.4. Globular Cluster Observations

NGC RA Dec l b DMobs

6388 17h 36m 18s.1440 −44◦ 44′ 0′′.2400 345◦ 33′ 34′′.9 −6◦ 44′ 20′′.1 340

6652 18h 35m 44s.8560 −32◦ 59′ 25′′.0800 1◦ 31′ 59′′.2 −11◦ 22′ 27′′.1 190

Note. — The coordinates and dispersion measure used to observe the globular clusters
in coherent de-dispersion mode. Galactic coordinates are included to show the clusters’
locations relative to the Galactic plane. The observations took place between 2010
October 19 and 2011 May 6.

1.5–2.5 hr, while NGC 6652 was observed 6 times for 2–3 hr each. The observations

for each source were clustered within ∼ 2 week intervals. The sensitivity of each

observation, given by the radiometer equation for a pulsed signal (Equation 5.21),

was limited by its integration time. For the longest observations (∼ 3 hr), the sen-

sitivity to a pulsed signal with a duty cycle of 0.1 is S2 ∼ 20µJy for NGC 6388,

and S2 ∼ 18µJy for NGC 6652, where S2 is the flux density at 2GHz. Converting

to the 2GHz pseudo-luminosity L2 ≡ S2d
2, where d is the distance to the cluster,

yields L2 = 2.7 and 1.5mJykpc2 for NGC 6388 and NGC 6652, respectively. For

comparison, the pulsar with the faintest pseudo-luminosity measured is Pulsar “R”

in Terzan 5, with L2 ∼ 0.4µJy kpc2 (Ransom et al. 2005).

The pulsar search analysis was done using PRESTO, as described in Section 5.2.

The data sets were dedispersed at ∼ 5000 DMs between 0 and 800 cm−3 pc to en-

sure the true cluster DM was included in the range. Acceleration searches with

zmax = 50 and 200 were performed on each dedispersed time series; as described in

Section 5.2.4, acceleration searches are usually necessary to detect MSPs in binary

orbits because of Doppler smearing.

212



6.3.3 Discovery of PSR J1835−3259

One MSP was discovered in these searches—PSR J1835−3259, in NGC 6652. (This

MSP may also be referred to as PSR J1835−3259A or NGC 6652A, as more MSPs

likely exist in this cluster and will eventually be found.) The discovery plot is

shown in Figure 6.8. On the right side of the figure, the χ2 of a null detection is

shown at the spin periods and Doppler-induced period derivatives over which the

pulsar search was performed; the χ2 peaks at the P and Ṗ giving the best (most

significant) pulse profile. The bottom right plot shows P and Ṗ plotted together,

with the brighter central region representing the values that correspond to the most

significant signal. Two cycles of the best pulse profile are shown at the top left of the

plot, and the pulses are shown with integration time in the plot below the profiles.

On the right side of the phase vs. time plot, the steady increase in the cumulative

χ2 with integration time is shown, an indication of persistence of the pulsing source

(as opposed to a burst of radio frequency interference, or RFI, which would cause a

sudden increase and subsequent flattening in the cumulative χ2). The middle panel

shows the strength of the pulses in 32 frequency sub-bands. The bottom middle

plot again shows χ2, this time against the DM; χ2 peaks at the pulsar DM. From

this plot, we see that P ∼ 3.889ms, and the DM ∼ 63.35 cm−3 pc.

The DM is very different from the expected value of ∼ 190 cm−3 pc, and initially

led my collaborators and me to question the pulsar’s association with the cluster.

However, given that there are many more stars contained within the cluster than

along our line of sight to the cluster, a chance coincidence is highly unlikely. The

DM of NGC 6652 is therefore ∼ 63.35 cm−3 pc, and the fact that it is so much lower

than expected can be explained by the large error in the NE2001 model of free

electron density (Cordes & Lazio 2002).
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Figure 6.8: The discovery plot of PSR J1835−3259 from PRESTO.
Top left: Two cycles of the 2GHz pulse profile. Left: Two cycles
of the pulse profile with time. Top center: Two cycles of the pulse
profile over the radio frequency bandwidth of the observation. Bottom
center: A search over DM yields a peak in DM, a signature of a real
pulsar rather than a signal from interference. Top right: The peak
in reduced χ2 is at the best period derivative searched. Middle right:
The χ2 peak shows the best pulse period. Bottom right: The χ2

contours in P − Ṗ space, evaluated at the best DM value, showing
the best-fit P and Ṗ .

6.3.4 Individual Detections

The MSP was detected through the standard acceleration search procedure in five of

the six observations of NGC 6652. It did not appear initially in the observation on

2011 Oct 23, but after folding the data on values of P and Ṗ intermediate between

Oct 22 and 24 with prepfold in PRESTO, the pulsar signal emerged from the

data. Details of the observations are given in Table 6.5, which lists the observation
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Table 6.5. Details of PSR J1835−3259 Detections

Observation Date P Ṗ Best DM
(ms) (10−12 s s−1) (cm−3 pc)

2011-10-19 3.88901426(3) −1.499 ± 0.027 63.350

2011-10-21 3.88879649(3) −1.164 ± 0.023 63.385

2011-10-22 3.88869546(3) −1.183 ± 0.028 63.300

2011-10-23 3.888581(1) −1.57 ± 2.09 63.250

2011-10-24 3.88844125(5) −2.146 ± 0.060 63.300

2011-10-29 3.8888233(1) −1.190 ± 0.286 63.300

Note. — The dates of the observations of NGC 6652, and the best
values of the spin period, Doppler-induced period derivative, and
dispersion measure found for PSR J1835−3259 in each observation.
The P and Ṗ given are the barycentered values. The number in
parentheses in the second column is the error on the last quoted
digit of the spin period.

dates, the values of zmax used in each of the acceleration searches, the measured

spin period P , the measured (Doppler-dominated) spin period derivative Ṗ , and

the best measured DM. For the spin period, the quoted value shows the number of

confidently measured digits, with the error on the last digit given in parentheses; for

example, for the observation on 2011-10-19, P = 3.88937447ms± 3× 10−8ms. The

best P , Ṗ , and DM are the values which yielded the highest χ2 from a grid search

over these parameters in prepfold.

Two interesting characteristics of these observations stand out in Table 6.5. The

first is that the Ṗ is negative in every observation, meaning that every time the

pulsar was observed, its spin period was observed to be instantaneously decreasing.

This effect is caused by a negative velocity between the pulsar and Earth (i.e., the

pulsar’s motion is toward Earth). In a circular orbit with nonzero inclination to the

plane of the sky, the measured Ṗ will be negative for half the orbit and positive for
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the other half. Finding Ṗ < 0 in every observation can be explained by observing a

similar orbital phase each time. This would be possible if the pulsar had an orbital

period Porb ∼ 1 day or (or if it completed a small ∼ integer number of orbits each

day) because the observations were taken at the same time each day. The orbit, if

circular, cannot be much longer than this, as the value of Ṗ shows that the MSP is

highly accelerated. An alternative explanation is that the orbit has a longer period

and is eccentric—quite possible in a GC due to stellar interactions that can perturb

the orbit— such that the MSP spends the majority of the orbit being accelerated

toward the observer.

Second, the optimal DM changes with each observation, varying between 63.250

and 63.385 cm−3 pc. This small variation may be due to error in the DM mea-

surement; a rough estimate of the DM error from the individual observations is

∼ 0.025 pc cm−3. It is therefore not possible to tell from these observations whether

or not the DM variation is real. If it is physical, then it could mean that there is gas

in the system, such that a different column density of free electrons is being sampled

at different orbital phases. Note that if the changing DM is physical, it does not

support the hypothesis that the MSP is in a circular orbit and is being observed at

the same orbital phase each day. Timing the system at two or more wavelengths

is necessary to measure the precise DM and its error, and to determine whether or

not it is varying over the pulsar’s orbit.

6.3.5 Timing Analysis Yields a Highly Eccentric Orbit

Because PSR J1835−3259 is a weak pulsar, ∼ 2 h of integration time are required in

order to detect it with high enough S/N to obtain a set of quality TOAs. A total of

∼ 50 h of observations are needed to time it over the course of one year, an amount

of time that has not been granted by the GBT TAC. I therefore attempted to find
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Figure 6.9: (a) A circular orbit, with optimal parameters x ∼ 8 lt-s
and Pb ∼ 9.1 d, was fit to the measured periods and period derivatives
of PSR J1835−3259 listed in Table 6.5. The circular orbit clearly does
not fit well. (b) P and Ṗ fit to a highly eccentric orbit. A family
of solutions with e > 0.4 gave an acceptable fit. The solution shown
here has x ∼ 17 lt-s, e ∼ 0.88, Pb ∼ 9.24 d.

an initial timing solution by constraining the orbit in the period-acceleration plane

with a method developed by Freire et al. (2001) and described in Section 5.3.3. I

used a script that was originally written by Scott Ransom and later modified to

account for non-zero eccentricity by Ryan Lynch.

Most MSPs are in circular orbits. I therefore began by fitting a circular orbit

model to the measured (Doppler-affected) period and period derivatives (which are

related to the line-of-sight velocities and accelerations by Equations 5.51-5.52) from

each observation. The circular orbit model is shown in Figure 6.9(a).

The circular orbit model did not fit well, suggesting that the orbit is eccentric.

I fit P and Ṗ with a number of different orbital parameters, and found that the

orbital model was able to reproduce the observed P and Ṗ for an eccentricity e >

0.4. Figure 6.9(b) shows the orbital model for e ∼ 0.88, x ∼ 17 lt-s, Pb ∼ 9.24 d,

T0 ∼ MJD55486.3, and ω ∼ 280◦.

Fitting the orbit in this way resulted in determination of the orbital parameters
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with enough accuracy that the fit could be done using Tempo. Because this MSP

has a very eccentric orbit, the BT binary model was used (rather than the ELL1

model of the previous section). The BT model has as parameters the semi-major

axis, x, in light seconds (A1 in the model), orbital period Pb (PB), eccentricity e

(E), epoch of periastron passage T0 (T0), and the longitude of periastron, ω (OM).

I began the fit in Tempo with an orbital model in which the longitude of perias-

tron was fixed at ω = 283.465 and the eccentricity was set to e = 0.914. I allowed e

to be free. The other free fit parameters were the spin frequency ν (Tempo param-

eter F0), x, Pb, and T0; these were set to the best values obtained from the method

of Freire et al. (2001). The spin-down frequency ν̇ (F1) was fixed to zero. Fitting

this model resulted in a small change in the free parameters, in particular e. After

fitting, I altered the value of ω very slightly and fit again.

I stepped through values of ω with step sizes between 0.001 and 0.0001, each time

running Tempo and making sure the fit had converged. When it did not converge,

I would return to the previous orbital model and make the step size smaller. I

automated this procedure when it became clear that it would take thousands of

steps to reach a good solution. I gradually removed “JUMP”s from the .tim file

that contained the TOAs, allowing multiple observations to be phase-connected.

Eventually, all six observations were phase connected, and ω was freed to obtain a

final timing solution. The parameters of this solution are given in Table 6.6, and

the timing residuals are shown in Figure 6.10. This best fit solution has a reduced

χ2 of 368.3/35 = 10.5; such a high χ2 is not surprising, given that only one orbit

was sampled. Further timing will decrease the scatter in the residuals, and hence

χ2, as the solution becomes more accurate. It is important to note that although

χ2 is large, the fact that the solution has converged even to this level suggests that

the spin and orbital parameters are close to correct. Tempo is very sensitive, and
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Table 6.6. NGC 6652A timing solution

Timing Parameter Value

Right Ascension 18h 35m 44s.856

Declination -32◦ 59′ 25′′.08

Dispersion Measure (cm−3 pc) 63.35

Spin period, P (ms) 3.8888289774(4)

Spindown rate, Ṗ (s s−1) 0

Orbital period, Pb (days) 9.2459 ± 0.0005

Projected semimajor axis, x (lt-s) 19.092 ± 0.054

Eccentricity, e 0.9498 ± 0.0013

Epoch of periastron passage, T0 (MJD) 55477.0400 ± 0.0006

Longitude of periastron, ω (degrees) 289.24 ± 0.23

Note. — The spin and orbital parameters of PSR J1835−3259
obtained from an initial timing solution, for which the six obser-
vations are phase-connected. The coordinates were fixed to those
used in the searches, while the DM is fixed to its best value from
the discovery. The spindown rate was fixed at zero; timing over
the course of at least one year is needed in order to measure this
parameter.

χ2 will blow up with incorrect parameters; I find this timing solution to be stable,

and for this reason, I believe the timing parameters I have obtained are valid.

The best timing solution obtained from these 6 observations, which spanned 11

days (just over one orbital period of 9.24 days), requires e ∼ 0.95. This must be

confirmed with further timing observations, but if it is accurate, then this binary

MSP is the most eccentric one known.
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Figure 6.10: Timing residuals from the best-fit solution given in Ta-
ble 6.6. The reduced χ2 = 10.5, but the solution is stable and the
parameters are likely close to their true values (see the text).

6.3.6 Mass Function and Future Mass Constraints

Using the timing parameters in Table 6.6, Equation 5.39 yields the mass function

f(mp, mc) = 0.087378. For sin i = 90◦, the minimum companion mass is 0.736M⊙,

assuming mp = 1.4M⊙. (The mass function is solved using the cubic equation.)

Note that a larger pulsar mass leads to a larger minimum companion mass—for ex-

ample, if mp = 2M⊙, the minimum mass of the companion increases to 0.903M⊙—

and that it is quite possible that this MSP is more massive than 1.4M⊙ due to

gaining mass in its accretion and spin-up phase. The maximum mass can be con-

strained to the 90% confidence level using i ≤ 26◦ (Lorimer & Kramer 2005), and

is ∼ 3M⊙ if mp = 1.4M⊙. This range of mc indicates a true companion mass that

is much higher than the typical low-mass white dwarf (WD) companion, and raises

the possibility that the companion is a massive WD, a NS, or possibly a black hole.

Another possibility is that it is a main sequence star with a mass similar to that of

the Sun, near the cluster turn-off age of 11.7± 1.6Gyr (Chaboyer et al. 2000).

Because the binary is highly eccentric, it will be possible to detect the relativistic
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precession of its orbit and hence to measure ω̇ with a timing campaign. As discussed

in Section 5.3.2.3, a measurement of ω̇ yields the total system mass (Equation 5.40).

This means that by timing the MSP, it will be possible to constrain the mass of

the pulsar and its companion. If one or more other post-Keplerian parameters

(Equations 5.40–5.44) are measured, then the individual masses will be known.

6.3.7 Discussion

PSR J1835−3259 is a highly eccentric binary MSP that has the potential to be an

extremely interesting system. Its rather long orbital period of ∼ 9 days is consistent

with the MSP lying in a low-density globular cluster (Camilo & Rasio 2005). If the

eccentricity of e ∼ 0.95 obtained from initial timing is correct, then it is the most

eccentric binary MSP known; the highest eccentricity of a binary MSP currently

known is PSR J0514−4002A in NGC 1851, with e = 0.89. The high eccentricity

allows a precise measurement of the longitude of periastron ω. Thus, continued

timing will yield a measurement of the rate of periastron advance, ω̇, and hence a

measurement of the total system mass and constraints on the pulsar mass. If one

or more other relativistic parameters can be measured from timing, then the pulsar

mass will be known and may potentially contribute to constraints on the neutron

star equation of state.

The MSP’s orbital eccentricity suggests that the MSP’s original orbit was ex-

tremely perturbed by an encounter with a third body, or alternatively that its

original companion was ejected and the third body was obtained as a new compan-

ion. The high eccentricity implies that the latter scenario is more likely; it is even

possible that multiple companion exchanges took place (Camilo & Rasio 2005, and

references therein). Stellar encounters are highly likely in globular clusters, and can

result in exchange interactions (e.g. Sigurdsson & Phinney 1993). If the MSP ex-
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perienced a companion exchange, then its new companion may be “exotic” in that

it could be a type of star or compact object that rarely or never partakes in binary

evolution. The high minimum mass of the companion lends additional support to

this possibility, and suggests that the companion is a high-mass white dwarf, a main

sequence star, another neutron star, or even a black hole. To date, no neutron star-

black hole binaries have been found; if such binaries exist, they are expected to be

found in globular clusters because of the high stellar encounter rate. The discovery

of such a system may allow for tests of strong gravity, for example by measuring the

orbital decay rate over years to decades (this test can also be done for compact white

dwarf-neutron star and double neutron star systems), and would provide constraints

on the maximum neutron star mass and minimum black hole mass. In the case of a

pulsar-black hole binary, pulsar timing can also be used to measure the spin of the

black hole (Barker & O’Connell 1975; Wex & Kopeikin 1999). Interestingly, high-

eccentricity orbits resulting from multiple companion exchanges are more likely to

be associated with very massive neutron stars, and their companions are more likely

to be massive compact objects than those of neutron stars that have experienced

fewer exchanges (Phinney & Sigurdsson 1991; Sigurdsson 2003).

In addition to potentially yielding a mass measurement, a phase-connected tim-

ing solution is needed in order to fold the γ-ray counts and search for high-energy

pulsations. This raises the question of whether we might expect to detect γ-ray pul-

sations from this MSP, which lies in a cluster at ∼ 9 kpc from Earth. A reasonable

range of Ṗ values for which detection of γ-ray pulsations is feasible can be obtained

through order-of-magnitude estimates using the measured γ-ray luminosity of NGC

6652, LGC
γ ∼ 8× 1034 erg s−1.

The lowest TS of a γ-ray MSP in the Second LAT Pulsar Catalog (The Fermi-

LAT Collaboration 2013), obtained from a likelihood analysis with gtlike, is TS =
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23; I therefore assume TS ∼ 10 or higher is needed in order to detect γ-ray pulsations

from a MSP with the LAT. The TS of NGC 6652, with 1.5 yr of LAT data, was

54.8 (Abdo et al. 2010f); the TS scales ∼ linearly with improved statistics, so after

4 yr of data collection (which is the amount of data used in the pulsar catalog),

the TS would be ∼ 150. If PSR J1835−3259 has TS ≥ 10, then its luminosity

LMSP
γ ≥ LGC

γ × 10/150 ∼ 5× 1033 erg s−1. Assuming the efficiency of converting the

rotational spin-down energy into γ-ray luminosity is η = 0.1, then Ė = LMSP
γ /η ≥

5 × 1034 erg s−1, and Ṗ ≥ 10−21 s s−1. These lower limits on Ė and Ṗ are quite

reasonable for MSPs, and are consistent with the values measured for the γ-ray

MSPs in The Fermi-LAT Collaboration (2013).

An estimate of the upper limit on Ṗ can again be obtained using LGC
γ , this time

considering that the entire γ-ray luminosity originates from PSR J1835−3259. This

is not an unreasonable assumption: one of only two γ-ray cluster MSPs detected

to date, PSR J1823−3021A, is apparently responsible for the entire Lγ of NGC

6624 (Freire et al. 2011). Again assuming η = 0.1, the spindown energy is now

Ė ∼ 8 × 1035 erg s−1, and Ṗ ∼ 10−18 s s−1. A larger value of η will decrease Ė and

Ṗ . While these values are quite high for MSPs, they are consistent with those of the

highly energetic γ-ray MSPs PSR J1823−3021A, for which Ė = 8.3 × 1035 erg s−1

and Ṗ = 3.4×10−18 s s−1 (The Fermi-LAT Collaboration 2013), and PSR B1821−24

in M28 (Ė = 2.2 × 1036 erg s−1 and Ṗ = 1.6× 10−18 s s−1). While the gravitational

potential of the cluster can artificially enhance Ṗ , the observed values of Ṗ have been

found to be mostly intrinsic for both pulsars (Freire et al. 2011; Phinney 1993). It

is therefore feasible that γ-ray pulsations could be detected from PSR J1835−3259.

Much remains to be done with PSR J1835−3259. The MSP must be timed over

the course of at least one year in order to obtain a phase-connected timing solution

and to measure its position and Ṗ accurately. Scheduling timing observations has
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proven to be a challenge. Because the MSP is faint, 1–2 hr integrations at L- or

S-band (1.4 or 2GHz) with the GBT are needed to detect the MSP with high

enough S/N that quality TOAs may be extracted. The total observing time needed,

including a dense set of observations to establish initial phase connection, is ∼ 50 hr

in one year, too large a request for the GBT. The Giant Metre-wave Radio Telescope

(GMRT) in India is a good alternative; if the MSP is detected by the GMRT at

610MHz in upcoming observations, this telescope will instead be used for the timing

campaign. Once a precise position has been determined, it may be possible to

identify its optical companion (if the companion is a WD or MS star) and determine

its spectral type, for example through imaging and spectroscopy with the Hubble

Space Telescope.

Finally, MSPs certainly must exist in NGC 6388, and there are likely more MSPs

in NGC 6652. The fact that no MSPs were detected in NGC 6388 despite its large

stellar encounter rate and γray luminosity may be due to its projected proximity to

the Galactic plane and its large distance. This combination results in much more

pulse scattering than is experienced by MSPs in NGC 6652—the NE2001 model

predicts τscatt ∼ 3µs for NGC 6388, but only∼ 0.08µs for NGC 6652—making MSPs

in NGC 6388 more difficult to detect. There are, however, more search techniques

that can be used on the existing datasets presented here. The observations can

be searched further using shorter integration times and higher zmax values to be

more sensitive to more highly accelerated binary MSPs, and by stacking the Fourier

series from each time series to search for periodic signals that may have too low a

S/N to be detected in a single observation. When the timing campaign of NGC

6652 begins, each of the search mode timing observations will also be searched for

pulsations with the goal of finding more MSPs in this cluster. Because the true

DM is now known, the use of coherent de-dispersion will be especially beneficial in
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recovering faint signals. A natural extension of this work is to search for radio MSPs

in more γ-ray-detected globular clusters. Perhaps Fermi will lead the way to the

discoveries of many more exotic pulsar systems.
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Chapter 7

Summary and Conclusions

The excellent sensitivity and resolution (in time, energy, and sky position) of the

LAT together make it an orders-of-magnitude better instrument for high-energy γ-

ray pulsar studies than any previous γ-ray mission. It has provided a rich dataset of

γ-ray emission from over 120 pulsars, with which there is an endless list of possible

pulsar studies to be done. The LAT has uncovered three distinct populations of

γ-ray pulsars—young radio loud, young radio quiet, and millisecond—from which

clues to the underlying emission mechanism or mechanisms can be drawn. The LAT

also provides targets for pulsar searches in the form of non-variable, unassociated

sources with pulsar-like emission spectra. At the time of writing, 50 new millisecond

pulsars have been found by searching for radio pulsations in these unassociated γ-ray

sources.
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7.1 Millisecond Pulsar Discoveries in GeV Sources

In this thesis, the Green Bank Telescope discoveries of two millisecond pulsars were

presented. The first, PSR J0102+4839, was discovered in a faint, high-latitude LAT

source that had no multi-wavelength counterparts (i.e., was an unassociated source)

and displayed a pulsar-like spectrum at GeV energies. The pulsar was timed with

the GBT over ∼ 1.5 yr, after which γ-ray pulsations were detected by assigning

rotation phases to the LAT events with the radio timing solution. The LAT was

then used to extend the timing solution back to the start of the Fermi mission.

PSR J0102+4839 has spin period P = 2.964ms, period derivative Ṗ = 1.136 ×

10−20 s s−1, and spindown power Ė = 1.722×1034 erg s−1. At a distance of ∼ 2.3 kpc,

derived from the NE2001 model of free electrons in the ISM, its γ-ray flux of ∼ 0.8×

10−11 erg cm−2 s−1 corresponds to a γ-ray luminosity of Lγ ∼ 5 × 1033 erg s−1. This

implies a large efficiency ηγ of converting the spindown energy into electromagnetic

radiation, ηγ = Lγ/Ė ∼ 0.3. However, using the NE2001 model can lead to errors

of up to a factor of ∼ 2 in distance derived from DM; ηγ may be as low as ∼ 0.08 if

the distance to PSR J0102+4839 is half that estimated with NE2001.

The spectrum of PSR J0102+4839 was modeled with a power law, a broken

power law, and an exponentially cut-off power law. The simple power law resulted

in the worst fit, as expected. Because the pulsar is faint, the statistics are too poor

to differentiate between a broken or cut-off power law, nor between an exponential

or sub-exponential cutoff, so for simplicity the cut-off power law was modeled with

a pure exponential cutoff (b = 1 in Equation 6.9). The phase-averaged spectra of

bright pulsars are well fit by the sub-exponentially cut-off power law (b < 1), so as

the γ-ray statistics improve over the lifetime of the Fermi mission, it is reasonable

to expect that this spectral model will be best for PSR J0102+4839 as well.
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The radio emission of this MSP has significant linear polarization, and is almost

100% linearly polarized across the smaller of the two peaks in its 820MHz profile.

The position angle is fairly flat, and displays an orthogonal mode jump at the highest

point of the larger peak. The linearly polarized emission in this peak is suggestive

of radiation being observed from multiple radio cones. Analysis of the position

angle of the polarized emission across the full rotation phase with models like the

Rotating Vector Model (Radhakrishnan & Cooke 1969a) may yield constraints on

the emission and viewing geometries; additional constraints can also be placed on

the geometry through modeling of the γ-ray light curve as in Chapter 3, and may

allow estimation of the radio emission altitude when combined with the polarization

constraints.

The second pulsar discovered, PSR J1835−3259, was found in NGC 6652, which

is one of two globular clusters that were searched for radio MSPs with the GBT

following the clusters’ detections at GeV energies by the LAT. This MSP has turned

out to be quite interesting, as preliminary timing efforts have shown that its orbit is

highly eccentric, with e ∼ 0.95. The initial phase-connected timing solution yields

P = 3.889ms; a timing campaign over the course of a full year is needed in order to

establish the rest of the timing parameters with certainty. With a timing solution

that is phase-connected on long timescales ≥ 1 yr, we can measure the intrinsic Ṗ

and fold the LAT events detected from NGC 6652 with the MSP’s spin and orbital

parameters to search for γ-ray pulsations. We calculate that, despite its distance,

it is feasible to detect γ-ray pulsations from this pulsar, especially if the total GeV

luminosity originates from a small population of cluster MSPs.

Using the timing solution derived over 11 d of search observations, we constrain

the companion’s mass to be 0.7M⊙ < mc < 3M⊙ (for pulsar mass 1.4M⊙), much

larger than typical inferred minimum companion masses of ∼ 0.1M⊙. The high
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companion mass and the extremely eccentric orbit together point to a colorful past

for PSR J1835−3259. It has almost certainly experienced at least one companion

exchange, possibly several, as a result of the dense stellar environment of the cluster,

and it may have an exotic binary companion. Possible companion types include a

massive white dwarf, an evolved main sequence star, another neutron star, or even

a black hole. The MSP experienced at least one accretion phase, during which it

was spun up to millisecond periods, and may have experienced several if it under-

went multiple companion exchanges. The MSP may therefore be very massive like,

e.g., the 2M⊙ neutron star PSR J1614−2230, due to mass gained during accretion.

Because the orbit is highly eccentric, its precession, reflected in the rate of change of

the longitude of periastron, ω̇, will be detectable. From the post-Keplerian parame-

ters of Equations 5.40–5.44, a measurement of ω̇ yields the total system mass, which

can be used to constrain the pulsar mass. Thus, through pulsar timing, we will con-

strain the masses of the MSP and its companion, which will give information about

the companion’s stellar type and the past binary evolution of PSR J1835−3259.

7.2 Emission and Field Geometry Constraints

Particles that are accelerated to extremely high Lorentz factors in pulsar magneto-

spheres radiate at γ-ray energies. The dominant emission process at these energies

is likely curvature radiation. The emission seen by the LAT originates at high al-

titudes (e.g., Abdo et al. 2010d). The effects of the light travel time from different

emission altitudes and the relativistic aberration of photon propagation direction

together result in caustic emission patterns that are seen as peaks in the pulsar

light curves.

The pulsar magnetosphere is largely force-free, with E‖ = 0 (Goldreich & Julian
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1969), and acceleration is confined to narrow gaps along the last open magnetic

field lines within which E‖ 6= 0. The slot gap accelerator extends from the neutron

star surface out to the light cylinder, resulting in acceleration and radiation from

this full range of altitudes. In contrast, the outer gap accelerator is located only at

altitudes above the intersection between the null charge surface and the boundary

of the closed field line region. The presence or absence of low-altitude emission

has a significant effect on the light curve features, in particular on the level of

magnetospheric emission at off-peak rotational phases. The polar cap offset that

naturally results from magnetic field line sweepback introduces an asymmetry in E||

around the polar cap rim, enhancing the ratio of peak to off-peak emission levels in

the slot gap light curves.

Under the assumption that the geometry of the emission region within the pulsar

magnetosphere, and with respect to the observer’s line of sight, is solely responsible

for the observed shapes of high-energy pulsar light curves, we modeled the light

curves of four bright γ-ray pulsars using light curves simulated from the slot gap

and outer gap geometries. We considered two approximations to the true pulsar

magnetic field: the analytic solution of the vacuum retarded dipole field (Deutsch

1955) and the numerical solution of the force-free magnetic field (Kalapotharakos

& Contopoulos 2009). The light curves are affected by the choice of magnetic field,

which determines the direction of light propagation due to the assumption (valid for

v ≈ c) that photons are emitted tangent to B. Therefore, light curve modeling can

potentially constrain both the emission and magnetic field geometries.

It is important to point out here that simulations of light curves within the

force-free geometry are relatively new, as the force-free field solution was found

numerically less than a decade ago (Spitkovsky 2006) and evolved to a steady-state

solution only in the past few years (Kalapotharakos & Contopoulos 2009). The
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light curve modeling in this work is the first to use the full force-free solution.

Additionally, because of the excellent statistics and incredible detail in the LAT

light curves, it is possible to constrain the gap width and maximum emission radius

as well as the traditional geometrical parameters α and ζ . Thus, we fit for these

parameters rather than fixing them as in previous studies (e.g., Romani & Watters

2010), and find the best fit parameters with a Markov chain Monte Carlo routine.

We found that for most combinations of emission and field geometry, the qual-

itative features of each of the observed light curves could be reproduced. For the

Crab and Vela pulsars, the simulations that best reproduced the qualitative light

curve shapes had ζ values that were consistent with ζ measured from the pulsars’

X-ray pulsar wind nebula torii (Ng & Romani 2008), as well as small β = |α − ζ |

as expected for radio-loud pulsars. For the Crab, this was especially true in the

FF field, suggesting its true field may be close to force-free. There are no strong

multi-wavelength constraints on α, ζ , or β for Geminga (it is unknown whether its

lack of radio emission is intrinsic or results from viewing angle), except for ζ > 60

estimated from its velocity vector. All the fits to its light curve were statistically and

qualitatively similar, so no meaningful constraints could be placed on its geometry.

For PSR J0007+7303, a radio quiet pulsar, we find large values of β, in line with

expectations. No particular geometry stood out as being best overall, and we found

that the vacuum field was preferred over force-free for PSR J0007+7303. These

results were somewhat surprising, as we expected that either the slot gap or outer

gap geometry would consistently yield the best fit, and we expected the physically

motivated force-free field to improve the light curves in all cases.

The phase resolved spectra of Vela, Crab, and Geminga were modeled with an

exponentially cut-off power law (b = 1 fixed) in order to measure the spectral index

Γ and cutoff energy Ec as they vary with rotation phase. We identified “dips”
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in both spectral parameters at phases corresponding to the light curve peaks in

Geminga and Crab, and possibly PSR J0007+7303 (for which the phase resolved

spectral parameters were taken from Abdo et al. 2012). The origin of these features

is not known, and will be the subject of further investigation. Another interesting

feature was that of the very high value of, and error on, Ec in the Crab’s second

peak. The large error on the measurement is suggestive of either a very rapid rise

and fall in Ec across the phase bin, which cannot be resolved with current statistics,

or of instantaneous spectral blending from curvature radiation over a broad range

of altitudes and therefore field line radii of curvature.

To further investigate the field geometry, we assumed (1) that the dominant

> 100MeV emission process in pulsar magnetospheres is curvature radiation in the

radiation reaction limit from a population of monoenergetic electrons, so that the

measured phase resolved Ec are equivalent to the curvature radiation cutoff energy

ECR, and (2) that the best fit geometrical parameters of each emission and field

geometry combination, found from light curve modeling, are representative of the

true system geometry. We then calculated E‖ ∝ E
4/3
c ρ

−2/3
c for curvature radiation

reaction (Equation 4.6). Here it is important to state that such a calculation of

E‖, with the use of real measured quantities from pulsar observations, has not been

done previously (except, of course, in order-of-magnitude estimates of E‖, given the

pulsar’s surface field and rotation speed).

For all the pulsars, E‖ is slowly varying over emission radius, for the radii probed

by the models, with a scatter of ∼ 1 order of magnitude. We compared the minimum

values calculated for E‖(r) with the maximum local field strength B(r). In general,

E‖ exceeds the local B in the vacuum field, confirming that the vacuum retarded

dipole is not a physically realistic approximation to the pulsar magnetic field. In

the force-free field, E‖/B ≤ 1, a result of the increased B(r) and ρc compared to
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those of the vacuum case.

There are analytic expressions for E‖ of the slot gap and outer gap models. We

found that our measured E‖ was orders of magnitude larger than the predicted

values, except for the Crab in the force-free field. The Crab light curves were also

qualitatively best in the force-free field, especially in that they find ζ consistent with

that of Ng & Romani (2008).

From these results, we conclude the following.

1. The combination of emission and field geometries yielding the best fit light

curve is not consistent from one pulsar to the next, and in some cases all

combinations yield comparably good fits. This suggests that some pulsars

may have an outer gap and others a slot gap; or, alternatively, that both a

slot gap and outer gap may exist simultaneously in the pulsar magnetosphere.

2. Following from the first point, the field geometry of some pulsars may be closer

to force-free than others.

3. The force-free field tends to lower E‖/B to physical or near-physical values due

to the straightening of field lines from current loading, which results in larger

ρc and B(r) compared to the vacuum field. The vacuum field instead has

E‖/B > 1 in most cases. This shows that, for our assumptions of curvature

radiation reaction and emission geometry, the vacuum field is not a physical

approximation of the true pulsar field.

4. Narrow gap models predict an E‖ that is orders of magnitude below the values

we have calculated. The exception is the force-free E‖ of the Crab. The

agreement in E‖, combined with the qualitatively good light curve fits and

ζ constraints obtained in the force-free field, points to the Crab having a

magnetic field structure that is close to force-free. Because of the agreement in
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E‖, we suggest that the Crab may be the only pulsar of the four considered for

which the assumption of curvature radiation reaction is valid. This hypothesis

is consistent with the result from Breed et al. (2013, in preparation) that Vela

cannot reach curvature radiation reaction. Alternatively, or additionally, it

may be that the Crab is the only pulsar of these four for which narrow gap

models are adequate to describe the magnetospheric emission region.

7.3 Looking Forward

Following from this work, the immediate next step is to model the LAT light curves

of a larger population of young γ-ray pulsars. An interesting test of the emission

models can be done by correcting the γ-ray luminosities Lγ of known pulsars with

the beaming factor, fΩ, that results from the emission geometry, and then fitting a

relationship between Lγ and Ė. This has been done recently by Pierbattista et al.

(in preparation) for the vacuum models, and should be repeated in the force-free

field. GeV emission from pulsar magnetospheres with screened E‖ have Lγ ∝ Ė1/2,

while for magnetospheres without screening, Lγ ∝ Ė (Harding & Muslimov 2002).

The calculation of E‖ can also be done for a larger number of pulsars, especially

as the Fermi mission progresses and the statistics improve. Additionally, there is

increasing evidence that the radio emission from millisecond pulsars is produced at

relatively high altitudes compared to normal pulsars. Light curve modeling of the

now many LAT-detected millisecond pulsars (e.g., Venter et al. 2012; Johnson 2012)

can be combined with modeling of their radio polarization properties to constrain

both the emission geometry and radio emission altitude.

Models for magnetospheres intermediate between the vacuum and force-free

fields have been developed recently (Kalapotharakos et al. 2012b; Li et al. 2012).
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Light curve modeling within these magnetospheres (e.g., Kalapotharakos et al.

2012a) may lead to improved constraints on the emission geometry. Another im-

portant step toward understanding pulsar emission will be to model the emission

using a full radiation code, such that the emissivity can vary with emission radius

and both photon energy and intensity can be calculated with rotation phase. Then,

both the light curves and phase resolved spectra can be modeled.

The Fermi LAT has provided an incredible opportunity to improve our under-

standing of the pulsar population and of the physics occurring in pulsar magneto-

spheres. With continuing pulsar discoveries guided by Fermi, several new pulsar

surveys and/or survey instruments coming online, the accumulation of GeV photon

statistics over time by the LAT, and improvements in theoretical understanding of

pulsar physics, the field of pulsar astronomy will be producing exciting science for

years to come.
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Appendix A

List of Abbreviations and Symbols
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Table A.1. List of Abbreviations and Symbols

Abbreviation Meaning

1FGL First Fermi LAT source catalog
2FGL Second Fermi LAT source catalog
ACD Anti-Coincidence Detector
AGN Active Galactic Nucleus
AIC Aitoff Information Criterion
aSG Asymmetric Slot Gap
BLC Magnetic field strength at the light cylinder
BPL Broken Power Law
Bs Magnetic field strength at the neutron star surface
BW Black Widow pulsar
CF Co-rotating Frame
CGRO Compton Gamma-Ray Observatory
CR Curvature Radiation
CRR Curvature Radiation Reaction
CTA Cherenkov Telescope Array
DFT Discrete Fourier Transform
DM Dispersion Measure

Ė Spindown energy, or spindown luminosity
E‖ Electric field component parallel to the magnetic field
Ec Spectral cutoff energy
ECPL Exponentially Cut-off Power Law
EGRET Energetic Gamma-Ray Experiment Telescope
FDTD Finite-Difference Time Domain
FF Force-Free
FFE Force-Free Electrodynamics
FFT Fast Fourier Transform
GBM Gamma-ray Burst Monitor
GC Globular Cluster
GeV Giga-electronVolt
GHz Gigahertz
GRB Gamma-Ray Burst
GUPPI Green Bank Ultimate Pulsar Processing Instrument
Gyr Gigayear
HE High Energy
Hz Hertz
IC Inverse Compton
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Table A.1 (cont’d)

Abbreviation Meaning

IOF Inertial Observer Frame
IRF Instrument Response Function
ISM Interstellar Medium
keV kilo-electronVolt
LAT Large Area Telescope
MAGIC Major Atmospheric Gamma-ray Imaging Cherenkov telescopes
MCMC Markov Chain Monte Carlo
MeV Mega-electronVolt
MHz Megahertz
MJD Modified Julian Day
MSP Millisecond Pulsar
Myr Megayear
NCS Null Charge Surface
NS Neutron Star
OG Outer Gap
P Pulsar period

Ṗ Time derivative of pulsar period (spindown rate)
P1 Peak 1 in light curve
P2 Peak 2 in light curve
P3 Peak 3 (inner peak) in light curve
PC Polar Cap
PFF Pair Formation Front
PK Post-Keplerian
PL Power Law
PRESTO PulsaR Exploration and Search TOolkit
PSF Point Spread Function
PSR Pulsar
PWN Pulsar Wind Nebula
RB Redback pulsar
RFI Radio Frequency Interference
RL Radio-loud
RLC Light cylinder radius
RM Rotation Measure
RNS Neutron star radius
ROI Region of Interest
RQ Radio-quiet
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Table A.1 (cont’d)

Abbreviation Meaning

SCLF Space-Charge Limited Flow
SED Spectral Energy Distribution
SG Slot Gap
SNR Supernova Remnant
SSB Solar System Barycenter
SSD Silicon Strip Detector
sSG Symmetric Slot Gap
TAC Time Allocation Committee
TAI International Atomic Time
TeV Tera electron Volt
TOA Time of Arrival
TPC Two-Pole Caustic
TS Test Statistic
TT Terrestrial Time
UTC Coordinated Universal Time
VERITAS Very Energetic Radiation Imaging Telescope Array System
VHE Very High Energy
VRD Vacuum Retarded Dipole
WD White Dwarf
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Appendix B

Atlas of Simulated Light Curves

This appendix contains an “atlas” of simulated pulsar light curves. I have included

plots of light curves in (α, ζ) space for twelve combinations of w and r. For all ge-

ometries, w = [0.01, 0.05, 0.1, 0.2]; for the outer gap geometry, r = [0.9, 1.2, 1.7]RLC,

while for the slot gap geometries, r = [0.7, 1.0, 1.5]RLC. This allows the reader to

compare the light curve shapes for different geometrical parameters, without plot-

ting every combination of (α, ζ, w, r). In each plot, the x-axis is the rotation phase

from 0 to 1, and the y-axis is the dimensionless intensity of the simulated emission.
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B.1 Light Curves in the Vacuum Outer Gap Ge-

ometry
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Figure B.1: Light curves from the outer gap geometry in the vacuum retarded

dipole field geometry, with w = 0.01 and r = 0.9RLC.
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Figure B.2: Light curves from the outer gap geometry in the vacuum retarded

dipole field, with w = 0.05 and r = 0.9RLC.
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Figure B.3: Light curves from the outer gap geometry in the vacuum retarded

dipole field geometry, with w = 0.10 and r = 0.9RLC.
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Figure B.4: Light curves from the outer gap geometry in the vacuum retarded

dipole field geometry, with w = 0.20 and r = 0.9RLC.
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Figure B.5: Light curves from the outer gap geometry in the vacuum retarded

dipole field geometry, with w = 0.01 and r = 1.2RLC.
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Figure B.6: Light curves from the outer gap geometry in the vacuum retarded

dipole field geometry, with w = 0.05 and r = 1.2RLC.
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Figure B.7: Light curves from the outer gap geometry in the vacuum retarded

dipole field geometry, with w = 0.10 and r = 1.2RLC.
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Figure B.8: Light curves from the outer gap geometry in the vacuum retarded

dipole field geometry, with w = 0.20 and r = 1.2RLC.
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Figure B.9: Light curves from the outer gap geometry in the vacuum retarded

dipole field geometry, with w = 0.01 and r = 1.7RLC.
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Figure B.10: Light curves from the outer gap geometry in the vacuum retarded

dipole field geometry, with w = 0.05 and r = 1.7RLC.
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Figure B.11: Light curves from the outer gap geometry in the vacuum retarded

dipole field geometry, with w = 0.10 and r = 1.7RLC.
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Figure B.12: Light curves from the outer gap geometry in the vacuum retarded

dipole field geometry, with w = 0.20 and r = 1.7RLC.
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B.2 Light Curves in the Vacuum Symmetric Slot

Gap Geometry
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Figure B.13: Light curves from the symmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.01 and r = 0.7RLC.
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Figure B.14: Light curves from the symmetric slot gap geometry in the vacuum

retarded dipole field, with w = 0.05 and r = 0.7RLC.
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Figure B.15: Light curves from the symmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.10 and r = 0.7RLC.
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Figure B.16: Light curves from the symmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.20 and r = 0.7RLC.
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Figure B.17: Light curves from the symmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.01 and r = 1.0RLC.
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Figure B.18: Light curves from the symmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.05 and r = 1.0RLC.
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Figure B.19: Light curves from the symmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.10 and r = 1.0RLC.
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Figure B.20: Light curves from the symmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.20 and r = 1.0RLC.
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Figure B.21: Light curves from the symmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.01 and r = 1.2RLC.
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Figure B.22: Light curves from the symmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.05 and r = 1.2RLC.
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Figure B.23: Light curves from the symmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.10 and r = 1.2RLC.
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Figure B.24: Light curves from the symmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.20 and r = 1.2RLC.
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B.3 Light Curves in the Vacuum Asymmetric Slot

Gap Geometry
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Figure B.25: Light curves from the asymmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.01 and r = 0.7RLC.
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Figure B.26: Light curves from the asymmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.05 and r = 0.7RLC.
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Figure B.27: Light curves from the asymmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.10 and r = 0.7RLC.
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Figure B.28: Light curves from the asymmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.20 and r = 0.7RLC.
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Figure B.29: Light curves from the asymmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.01 and r = 1.0RLC.
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Figure B.30: Light curves from the asymmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.05 and r = 1.0RLC.
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Figure B.31: Light curves from the asymmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.10 and r = 1.0RLC.
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Figure B.32: Light curves from the asymmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.20 and r = 1.0RLC.
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Figure B.33: Light curves from the asymmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.01 and r = 1.5RLC.
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Figure B.34: Light curves from the asymmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.05 and r = 1.5RLC.
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Figure B.35: Light curves from the asymmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.10 and r = 1.5RLC.
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Figure B.36: Light curves from the asymmetric slot gap geometry in the vacuum

retarded dipole field geometry, with w = 0.20 and r = 1.5RLC.
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B.4 Light Curves in the Force-free Outer Gap Ge-

ometry
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Figure B.37: Light curves from the outer gap geometry in the force-free field

geometry, with w = 0.01 and r = 0.9RLC.
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Figure B.38: Light curves from the outer gap geometry in the force-free field

geometry, with w = 0.05 and r = 0.9RLC.
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Figure B.39: Light curves from the outer gap geometry in the force-free field

geometry, with w = 0.10 and r = 0.9RLC.
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Figure B.40: Light curves from the outer gap geometry in the force-free field

geometry, with w = 0.20 and r = 0.9RLC.
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Figure B.41: Light curves from the outer gap geometry in the force-free field

geometry, with w = 0.01 and r = 1.2RLC.
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Figure B.42: Light curves from the outer gap geometry in the force-free field

geometry, with w = 0.05 and r = 1.2RLC.
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Figure B.43: Light curves from the outer gap geometry in the force-free field

geometry, with w = 0.10 and r = 1.2RLC.
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Figure B.44: Light curves from the outer gap geometry in the force-free field

geometry, with w = 0.20 and r = 1.2RLC.
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Figure B.45: Light curves from the outer gap geometry in the force-free field

geometry, with w = 0.01 and r = 1.7RLC.
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Figure B.46: Light curves from the outer gap geometry in the force-free field

geometry, with w = 0.05 and r = 1.7RLC.
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Figure B.47: Light curves from the outer gap geometry in the force-free field

geometry, with w = 0.10 and r = 1.7RLC.
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Figure B.48: Light curves from the outer gap geometry in the force-free field

geometry, with w = 0.20 and r = 1.7RLC.
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B.5 Light Curves in the Force-free Symmetric Slot

Gap Geometry
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Figure B.49: Light curves from the symmetric slot gap geometry in the force-free

field geometry, with w = 0.01 and r = 0.7RLC.
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Figure B.50: Light curves from the symmetric slot gap geometry in the force-free

field geometry, with w = 0.05 and r = 0.7RLC.
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Figure B.51: Light curves from the symmetric slot gap geometry in the force-free

field geometry, with w = 0.10 and r = 0.7RLC.
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Figure B.52: Light curves from the symmetric slot gap geometry in the force-free

field geometry, with w = 0.20 and r = 0.7RLC.
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Figure B.53: Light curves from the symmetric slot gap geometry in the force-free

field geometry, with w = 0.01 and r = 1.0RLC.
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Figure B.54: Light curves from the symmetric slot gap geometry in the force-free

field geometry, with w = 0.05 and r = 1.0RLC.
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Figure B.55: Light curves from the symmetric slot gap geometry in the force-free

field geometry, with w = 0.10 and r = 1.0RLC.
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Figure B.56: Light curves from the symmetric slot gap geometry in the force-free

field geometry, with w = 0.20 and r = 1.0RLC.
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Figure B.57: Light curves from the symmetric slot gap geometry in the force-free

field geometry, with w = 0.01 and r = 1.2RLC.
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Figure B.58: Light curves from the symmetric slot gap geometry in the force-free

field geometry, with w = 0.05 and r = 1.2RLC.
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Figure B.59: Light curves from the symmetric slot gap geometry in the force-free

field geometry, with w = 0.10 and r = 1.2RLC.
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Figure B.60: Light curves from the symmetric slot gap geometry in the force-free

field geometry, with w = 0.20 and r = 1.2RLC.
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B.6 Light Curves in the Force-free Asymmetric

Slot Gap Geometry
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Figure B.61: Light curves from the asymmetric slot gap geometry in the force-free

field geometry, with w = 0.01 and r = 0.7RLC.
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Figure B.62: Light curves from the asymmetric slot gap geometry in the force-free

field geometry, with w = 0.05 and r = 0.7RLC.
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Figure B.63: Light curves from the asymmetric slot gap geometry in the force-free

field geometry, with w = 0.10 and r = 0.7RLC.
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Figure B.64: Light curves from the asymmetric slot gap geometry in the force-free

field geometry, with w = 0.20 and r = 0.7RLC.

304



α = 15° α = 30° α = 40° α = 50° α = 60° α = 70° α = 80° α = 90°

ζ 
=

 9
0°

ζ 
=

 8
0°

ζ 
=

 7
0°

ζ 
=

 6
0°

ζ 
=

 5
0°

ζ 
=

 4
0°

ζ 
=

 3
0°

ζ 
=

 1
5°

Figure B.65: Light curves from the asymmetric slot gap geometry in the force-free

field geometry, with w = 0.01 and r = 1.0RLC.
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Figure B.66: Light curves from the asymmetric slot gap geometry in the force-free

field geometry, with w = 0.05 and r = 1.0RLC.
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Figure B.67: Light curves from the asymmetric slot gap geometry in the force-free

field geometry, with w = 0.10 and r = 1.0RLC.
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Figure B.68: Light curves from the asymmetric slot gap geometry in the force-free

field geometry, with w = 0.20 and r = 1.0RLC.
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Figure B.69: Light curves from the asymmetric slot gap geometry in the force-free

field geometry, with w = 0.01 and r = 1.5RLC.
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Figure B.70: Light curves from the asymmetric slot gap geometry in the force-free

field geometry, with w = 0.05 and r = 1.5RLC.
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Figure B.71: Light curves from the asymmetric slot gap geometry in the force-free

field geometry, with w = 0.10 and r = 1.5RLC.
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Figure B.72: Light curves from the asymmetric slot gap geometry in the force-free

field geometry, with w = 0.20 and r = 1.5RLC.
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Appendix C

Proof of Wilks’ Theorem

Wilks’ Theorem (Wilks 1938) can be used to relate the difference in the natural

logarithms of the likelihoods of two models with the difference in χ2 between those

models, for the case of data that has Gaussian errors. This theorem was used in the

light curve modeling of Chapter 3. The pulsars studied are bright at γ-ray energies,

and therefore their LAT light curves contained sufficient numbers of counts to have

Gaussian rather than Poisson errors. Here I provide the proof of Wilks’ Theorem,

for completeness.

The likelihood is defined as

L =
∏

i

pi (C.1)

For a Gaussian probability distribution,

pi =
1√
2πσi

exp

[

−(Ci −Mi)
2

2σ2
i

]

(C.2)

where Ci are the data points, in the case the number of counts in light curve bin i,

and Mi is the number of counts expected from a model. Substituting the expression

for pi and taking the logarithm,
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lnL = −
∑

i

(Ci −Mi)
2

2σ2
i

+
∑

i

ln

(

1√
2πσi

)

(C.3)

Note that the second term is model-independent and will not contribute to model

comparison or parameter estimation through use of the likelihood ratio test.

Imagine we are performing the likelihood ratio test between models 1 and 2,

which have likelihoods L1 and L2. In logarithm space, the likelihood ratio is a

subtraction:

lnL2/L1 = lnL2 − lnL1 (C.4a)

= −
∑

i

(Ci −Mi,2)
2

2σ2
i

+
∑

i

ln

(

1√
2πσi

)

+
∑

i

(Ci −Mi,1)
2

2σ2
i

−
∑

i

ln

(

1√
2πσi

)

(C.4b)

= −1

2

[

∑

i

(Ci −Mi,2)
2

σ2
i

−
∑

i

(Ci −Mi,1)
2

σ2
i

]

(C.4c)

Equation C.4c is simply the difference of two χ2 values. Therefore,

∆L = −1

2
∆χ2 (C.5)

Equation C.5 is Wilks’ Theorem.
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Appendix D

Phase Resolved Spectral

Parameters

This appendix contains the phase-resolved spectral parameters, photon and energy

fluxes, and test statistics of the Vela, Crab, and Geminga pulsars. The corresponding

values for PSR J0007+7303 can be found in Abdo et al. (2012).
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Table D.1. Phase Resolved Spectral Parameters of the Vela Pulsar

Phase Bin N0 Γ Ec Photon Flux Energy Flux TS

0.000–0.035 0.00± 0.00 · · · · · · · · · · · · < 1
0.035–0.068 0.47± 0.27 0.00 ± 0.00 0.29± 0.07 0.10 ± 0.03 0.04± 0.01 16.78
0.068–0.088 1.99± 0.25 1.54 ± 0.13 0.94± 0.18 1.94 ± 0.10 0.63± 0.03 1196.87
0.088–0.098 6.07± 0.43 1.64 ± 0.07 1.19± 0.15 6.76 ± 0.21 2.23± 0.07 3957.05
0.098–0.105 9.30± 0.55 1.73 ± 0.06 1.51± 0.19 11.56± 0.31 3.88± 0.10 6644.76
0.105–0.110 13.08 ± 0.66 1.77 ± 0.05 1.68± 0.20 17.07± 0.41 5.75± 0.14 9024.37
0.110–0.114 18.62 ± 0.97 1.67 ± 0.05 1.38± 0.14 21.82± 0.51 7.46± 0.18 8490.54
0.114–0.117 21.24 ± 1.09 1.79 ± 0.05 1.65± 0.20 28.01± 0.64 9.22± 0.22 8922.43
0.117–0.120 26.76 ± 1.35 1.74 ± 0.05 1.53± 0.17 33.52± 0.77 11.24± 0.26 9538.06
0.120–0.122 34.10 ± 1.67 1.65 ± 0.05 1.42± 0.14 39.90± 0.89 13.99± 0.32 10282.50
0.122–0.124 35.00 ± 1.53 1.76 ± 0.04 2.10± 0.25 47.26± 0.99 17.27± 0.41 11023.81
0.124–0.126 39.61 ± 1.55 1.75 ± 0.04 2.16± 0.24 53.63± 1.10 19.85± 0.46 11692.64
0.126–0.128 44.89 ± 1.78 1.75 ± 0.04 2.03± 0.21 59.79± 1.21 21.86± 0.50 12068.10
0.128–0.129 50.64 ± 3.09 1.76 ± 0.03 1.90± 0.15 67.25± 6.02 23.78± 2.19 12075.34
0.129–0.130 54.45 ± 2.12 1.75 ± 0.04 2.16± 0.23 73.44± 1.46 27.33± 0.63 12297.86
0.130–0.131 61.92 ± 2.46 1.67 ± 0.04 1.88± 0.18 77.87± 1.63 29.69± 0.68 12238.39
0.131–0.132 62.10 ± 2.37 1.71 ± 0.04 2.24± 0.24 82.61± 1.71 32.20± 0.76 12999.07
0.132–0.134 66.51 ± 2.57 1.67 ± 0.04 2.09± 0.21 85.38± 1.77 33.84± 0.79 13192.18
0.134–0.135 65.96 ± 2.33 1.65 ± 0.04 2.27± 0.22 85.23± 1.78 35.43± 0.84 13062.81
0.135–0.136 64.78 ± 2.06 1.70 ± 0.03 2.85± 0.29 89.03± 1.77 38.24± 0.92 13747.02
0.136–0.137 62.10 ± 2.05 1.66 ± 0.04 2.97± 0.33 84.34± 1.70 38.27± 0.95 13710.03
0.137–0.138 62.81 ± 1.98 1.64 ± 0.03 2.68± 0.26 83.17± 1.68 37.18± 0.89 13890.72
0.138–0.139 58.41 ± 1.84 1.63 ± 0.03 2.83± 0.28 77.94± 1.61 35.67± 0.88 13403.09
0.139–0.140 54.96 ± 1.80 1.62 ± 0.04 2.59± 0.25 71.86± 1.47 32.17± 0.78 13378.40
0.140–0.141 50.96 ± 1.64 1.61 ± 0.04 2.69± 0.26 66.73± 1.47 30.72± 0.76 13447.10
0.141–0.143 46.45 ± 1.54 1.60 ± 0.04 2.45± 0.23 59.67± 1.31 26.68± 0.65 12665.19
0.143–0.144 39.27 ± 1.24 1.67 ± 0.04 3.05± 0.32 53.83± 1.14 24.37± 0.61 12622.72
0.144–0.146 35.09 ± 1.17 1.65 ± 0.04 2.63± 0.27 46.58± 1.04 20.41± 0.50 12292.77
0.146–0.148 32.68 ± 1.09 1.65 ± 0.04 2.60± 0.26 43.22± 0.92 18.92± 0.46 12065.20
0.148–0.151 27.66 ± 0.94 1.64 ± 0.04 2.63± 0.27 36.49± 0.80 16.23± 0.41 11300.46
0.151–0.153 26.12 ± 0.92 1.55 ± 0.04 2.31± 0.22 32.39± 0.74 14.96± 0.37 11561.92
0.153–0.156 22.08 ± 0.75 1.62 ± 0.04 2.66± 0.27 28.93± 0.66 13.17± 0.34 10910.74
0.156–0.159 21.24 ± 0.73 1.61 ± 0.04 2.73± 0.30 27.92± 0.65 12.89± 0.34 10767.29
0.159–0.162 18.71 ± 0.65 1.55 ± 0.04 2.44± 0.24 23.47± 0.55 11.09± 0.29 10363.20
0.162–0.166 17.57 ± 0.61 1.57 ± 0.04 2.52± 0.25 22.39± 0.53 10.43± 0.27 10069.48
0.166–0.170 17.74 ± 0.64 1.51 ± 0.04 2.19± 0.21 21.48± 0.50 10.03± 0.25 10157.45
0.170–0.173 18.21 ± 0.66 1.47 ± 0.04 2.08± 0.19 21.49± 0.50 10.23± 0.26 10379.80
0.173–0.177 16.86 ± 0.60 1.49 ± 0.04 2.11± 0.19 20.02± 0.47 9.48± 0.24 10039.14
0.177–0.181 16.73 ± 0.62 1.47 ± 0.04 1.97± 0.18 19.44± 0.46 9.06± 0.23 9818.21
0.181–0.185 16.17 ± 0.57 1.54 ± 0.04 2.34± 0.22 20.09± 0.49 9.36± 0.24 11112.76
0.185–0.189 17.06 ± 0.65 1.50 ± 0.04 1.95± 0.18 19.99± 0.49 9.04± 0.23 9726.57
0.189–0.193 17.43 ± 0.67 1.45 ± 0.04 1.80± 0.16 19.70± 0.48 8.95± 0.22 9838.44
0.193–0.197 15.92 ± 0.59 1.47 ± 0.04 1.98± 0.18 18.53± 0.47 8.64± 0.22 9743.81
0.197–0.201 17.05 ± 0.64 1.49 ± 0.04 1.94± 0.18 19.94± 0.48 9.03± 0.23 11403.17
0.201–0.205 18.01 ± 0.70 1.41 ± 0.05 1.74± 0.15 19.88± 0.49 9.24± 0.23 9847.27
0.205–0.209 19.95 ± 0.82 1.36 ± 0.05 1.44± 0.12 20.44± 0.48 9.10± 0.22 9970.88
0.209–0.212 17.61 ± 0.68 1.43 ± 0.04 1.78± 0.16 19.69± 0.48 9.11± 0.23 9933.58
0.212–0.216 18.05 ± 0.73 1.41 ± 0.05 1.61± 0.14 19.48± 0.47 8.79± 0.22 9445.05
0.216–0.220 18.73 ± 0.73 1.31 ± 0.05 1.56± 0.13 19.35± 0.46 9.39± 0.23 10513.55
0.220–0.224 18.63 ± 0.75 1.29 ± 0.05 1.46± 0.11 18.68± 0.46 8.93± 0.22 9846.00
0.224–0.228 18.33 ± 0.69 1.24 ± 0.05 1.51± 0.11 18.35± 0.43 9.33± 0.23 10387.36
0.228–0.232 15.48 ± 0.54 1.39 ± 0.04 2.14± 0.19 17.85± 0.44 9.41± 0.25 10046.84
0.232–0.236 17.47 ± 0.64 1.25 ± 0.05 1.69± 0.13 18.18± 0.45 9.70± 0.24 10682.38
0.236–0.240 17.63 ± 0.62 1.14 ± 0.05 1.57± 0.11 17.43± 0.42 9.96± 0.25 11228.63
0.240–0.244 16.79 ± 0.60 1.17 ± 0.05 1.65± 0.12 16.99± 0.43 9.72± 0.24 10890.01
0.244–0.249 16.20 ± 0.57 1.17 ± 0.05 1.67± 0.12 16.50± 0.42 9.48± 0.24 10838.68
0.249–0.253 15.61 ± 0.51 1.20 ± 0.04 1.92± 0.14 16.72± 0.42 10.17± 0.26 11132.45
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Table D.1 (cont’d)

Phase Bin N0 Γ Ec Photon Flux Energy Flux TS

0.253–0.257 15.41 ± 0.52 1.19 ± 0.04 1.86± 0.14 16.29± 0.41 9.83± 0.25 11125.26
0.257–0.261 14.64 ± 0.45 1.20 ± 0.04 2.18± 0.16 16.30± 0.41 10.65± 0.28 11884.67
0.261–0.266 13.14 ± 0.40 1.19 ± 0.04 2.34± 0.17 14.93± 0.38 10.23± 0.27 11511.90
0.266–0.270 13.10 ± 0.40 1.20 ± 0.04 2.32± 0.17 14.86± 0.38 10.06± 0.27 11515.75
0.270–0.275 13.08 ± 0.39 1.17 ± 0.04 2.27± 0.17 14.69± 0.35 10.15± 0.27 11917.72
0.275–0.279 12.43 ± 0.37 1.18 ± 0.04 2.47± 0.18 14.33± 0.35 10.28± 0.27 11961.96
0.279–0.284 11.76 ± 0.36 1.18 ± 0.04 2.32± 0.17 13.31± 0.34 9.25± 0.25 11424.86
0.284–0.289 11.26 ± 0.33 1.18 ± 0.04 2.63± 0.19 13.23± 0.33 9.84± 0.27 12603.24
0.289–0.294 11.46 ± 0.34 1.14 ± 0.04 2.27± 0.16 12.85± 0.32 9.23± 0.24 12326.24
0.294–0.299 10.89 ± 0.33 1.11 ± 0.04 2.29± 0.17 12.22± 0.32 9.13± 0.24 12353.90
0.299–0.305 9.96± 0.30 1.20 ± 0.04 2.61± 0.20 11.67± 0.31 8.47± 0.23 11715.40
0.305–0.311 8.99± 0.27 1.19 ± 0.04 2.77± 0.21 10.72± 0.29 8.14± 0.23 11658.98
0.311–0.316 9.03± 0.27 1.21 ± 0.04 2.91± 0.23 10.91± 0.29 8.35± 0.24 11575.39
0.316–0.322 8.34± 0.25 1.19 ± 0.04 2.91± 0.22 10.07± 0.27 7.87± 0.22 11233.13
0.322–0.329 7.78± 0.22 1.29 ± 0.04 3.58± 0.30 9.91 ± 0.26 7.69± 0.22 11304.79
0.329–0.336 7.01± 0.21 1.26 ± 0.04 3.14± 0.26 8.66 ± 0.24 6.51± 0.19 10294.66
0.336–0.343 7.32± 0.23 1.13 ± 0.04 2.52± 0.19 8.47 ± 0.24 6.52± 0.18 10626.17
0.343–0.350 6.88± 0.21 1.26 ± 0.04 3.23± 0.28 8.56 ± 0.23 6.53± 0.19 10385.35
0.350–0.357 6.74± 0.20 1.21 ± 0.04 3.32± 0.27 8.43 ± 0.24 6.97± 0.21 10684.03
0.357–0.364 6.48± 0.20 1.17 ± 0.04 2.93± 0.24 7.84 ± 0.23 6.28± 0.18 9934.34
0.364–0.372 6.50± 0.20 1.20 ± 0.04 2.76± 0.23 7.74 ± 0.22 5.75± 0.17 9850.76
0.372–0.380 5.80± 0.18 1.29 ± 0.04 3.44± 0.31 7.33 ± 0.21 5.55± 0.17 8998.66
0.380–0.388 6.30± 0.21 1.20 ± 0.05 2.72± 0.24 7.48 ± 0.22 5.53± 0.16 9271.32
0.388–0.396 5.53± 0.18 1.26 ± 0.04 2.76± 0.24 6.62 ± 0.20 4.62± 0.14 8324.35
0.396–0.405 5.95± 0.20 1.29 ± 0.04 2.61± 0.23 7.05 ± 0.21 4.58± 0.13 8027.01
0.405–0.413 5.94± 0.20 1.24 ± 0.05 2.46± 0.21 6.88 ± 0.20 4.57± 0.13 8285.46
0.413–0.422 6.14± 0.22 1.21 ± 0.05 2.03± 0.18 6.70 ± 0.20 4.13± 0.12 7684.75
0.422–0.431 5.95± 0.22 1.31 ± 0.05 2.18± 0.21 6.76 ± 0.20 3.92± 0.11 7356.77
0.431–0.440 5.91± 0.22 1.33 ± 0.05 2.21± 0.20 6.78 ± 0.20 3.84± 0.11 7200.14
0.440–0.449 6.12± 0.23 1.20 ± 0.05 1.84± 0.16 6.46 ± 0.20 3.84± 0.11 7434.24
0.449–0.457 5.55± 0.19 1.34 ± 0.04 2.75± 0.26 6.71 ± 0.20 4.23± 0.13 7689.20
0.457–0.465 6.24± 0.21 1.25 ± 0.05 2.42± 0.21 7.21 ± 0.21 4.74± 0.14 8245.50
0.465–0.473 6.63± 0.21 1.38 ± 0.04 3.13± 0.31 8.31 ± 0.24 5.34± 0.16 8856.89
0.473–0.480 7.55± 0.25 1.28 ± 0.04 2.58± 0.22 8.91 ± 0.25 5.83± 0.17 9234.69
0.480–0.486 8.67± 0.26 1.40 ± 0.04 3.10± 0.29 10.89± 0.29 6.79± 0.19 10205.42
0.486–0.492 9.43± 0.28 1.43 ± 0.04 3.31± 0.31 12.09± 0.31 7.48± 0.21 10477.47
0.492–0.497 10.62 ± 0.33 1.45 ± 0.04 3.39± 0.34 13.74± 0.36 8.36± 0.24 10522.67
0.497–0.502 11.24 ± 0.33 1.38 ± 0.04 3.17± 0.28 14.13± 0.37 9.15± 0.26 10275.03
0.502–0.506 12.50 ± 0.37 1.51 ± 0.04 3.99± 0.45 16.84± 0.43 10.31± 0.31 11507.52
0.506–0.510 13.49 ± 0.37 1.50 ± 0.03 3.82± 0.37 18.04± 0.43 10.89± 0.30 11015.86
0.510–0.514 14.34 ± 0.40 1.54 ± 0.03 3.85± 0.38 19.38± 0.46 11.24± 0.31 11057.86
0.514–0.517 16.81 ± 0.49 1.44 ± 0.04 2.99± 0.27 21.17± 0.50 12.35± 0.33 11556.53
0.517–0.521 17.35 ± 0.48 1.49 ± 0.03 3.57± 0.33 22.84± 0.55 13.69± 0.37 11935.73
0.521–0.524 18.65 ± 0.53 1.50 ± 0.03 3.54± 0.33 24.63± 0.58 14.39± 0.39 11756.06
0.524–0.527 21.47 ± 0.64 1.43 ± 0.04 2.81± 0.25 26.66± 0.62 15.19± 0.40 12352.19
0.527–0.529 21.98 ± 0.62 1.54 ± 0.03 3.44± 0.33 29.22± 0.64 16.08± 0.43 12236.11
0.529–0.532 24.52 ± 0.69 1.52 ± 0.03 3.40± 0.33 32.37± 0.71 18.11± 0.48 12618.92
0.532–0.534 25.45 ± 0.74 1.51 ± 0.04 3.02± 0.28 32.74± 0.73 17.76± 0.46 12595.98
0.534–0.536 26.03 ± 0.74 1.56 ± 0.03 3.93± 0.42 35.56± 0.80 20.12± 0.56 12604.58
0.536–0.539 27.86 ± 0.74 1.58 ± 0.03 4.10± 0.41 38.56± 0.83 21.59± 0.58 13327.79
0.539–0.541 29.83 ± 0.81 1.54 ± 0.03 3.87± 0.38 40.42± 0.89 23.32± 0.63 13282.40
0.541–0.542 31.68 ± 0.91 1.52 ± 0.03 3.23± 0.31 41.43± 0.89 22.73± 0.59 13296.00
0.542–0.544 33.44 ± 0.91 1.45 ± 0.03 3.27± 0.28 42.98± 0.94 25.73± 0.67 14133.66
0.544–0.546 36.13 ± 1.05 1.56 ± 0.03 3.42± 0.34 48.22± 1.05 25.95± 0.68 13359.93
0.546–0.548 39.08 ± 1.13 1.53 ± 0.03 3.07± 0.28 50.87± 1.08 26.84± 0.68 13496.81
0.548–0.549 40.24 ± 1.11 1.52 ± 0.03 3.33± 0.30 52.96± 1.13 29.29± 0.75 14317.84
0.549–0.551 40.08 ± 1.09 1.57 ± 0.03 3.85± 0.37 54.65± 1.21 30.53± 0.81 13781.17
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Table D.1 (cont’d)

Phase Bin N0 Γ Ec Photon Flux Energy Flux TS

0.551–0.552 44.46 ± 1.25 1.51 ± 0.03 3.15± 0.28 57.61± 1.22 31.77± 0.81 14435.51
0.552–0.553 44.95 ± 1.20 1.55 ± 0.03 3.83± 0.37 60.97± 1.29 34.60± 0.92 14705.16
0.553–0.555 45.34 ± 1.23 1.54 ± 0.03 3.62± 0.34 60.84± 1.29 34.01± 0.89 14469.76
0.555–0.556 43.49 ± 1.13 1.62 ± 0.03 5.42± 0.62 63.01± 1.39 37.58± 1.10 13482.62
0.556–0.557 47.86 ± 1.22 1.56 ± 0.03 4.22± 0.40 65.92± 1.37 38.76± 1.04 14637.14
0.557–0.558 50.06 ± 1.31 1.53 ± 0.03 3.85± 0.36 67.49± 1.43 39.54± 1.05 15405.91
0.558–0.560 50.99 ± 1.31 1.51 ± 0.03 3.96± 0.36 68.68± 1.44 41.69± 1.11 14954.51
0.560–0.561 52.58 ± 1.36 1.51 ± 0.03 3.67± 0.33 69.93± 1.45 41.28± 1.07 15286.55
0.561–0.562 54.27 ± 1.36 1.51 ± 0.03 4.07± 0.37 73.47± 1.51 45.12± 1.21 15375.52
0.562–0.563 51.20 ± 1.28 1.55 ± 0.03 4.66± 0.46 71.42± 1.46 43.97± 1.22 14933.11
0.563–0.564 52.74 ± 1.29 1.51 ± 0.03 4.53± 0.42 72.41± 1.52 46.99± 1.28 15275.66
0.564–0.565 51.87 ± 1.28 1.49 ± 0.03 4.32± 0.39 70.47± 1.46 45.65± 1.24 15389.57
0.565–0.566 53.16 ± 1.28 1.53 ± 0.03 4.86± 0.47 74.11± 1.53 48.04± 1.33 15895.18
0.566–0.567 54.20 ± 1.39 1.46 ± 0.03 3.72± 0.32 71.46± 1.47 44.86± 1.18 15649.29
0.567–0.568 51.92 ± 1.31 1.54 ± 0.03 4.37± 0.41 71.57± 1.49 43.50± 1.17 14962.50
0.568–0.570 51.77 ± 1.30 1.50 ± 0.03 3.75± 0.33 68.87± 1.41 41.71± 1.08 15957.11
0.570–0.571 49.08 ± 1.27 1.52 ± 0.03 3.96± 0.37 66.34± 1.39 39.61± 1.05 15032.66
0.571–0.572 44.73 ± 1.15 1.57 ± 0.03 4.50± 0.45 62.35± 1.38 37.16± 1.02 14611.36
0.572–0.574 41.11 ± 1.11 1.57 ± 0.03 3.96± 0.39 56.35± 1.21 31.71± 0.85 14080.98
0.574–0.575 37.61 ± 1.09 1.55 ± 0.03 3.22± 0.30 49.56± 1.11 26.35± 0.68 13131.56
0.575–0.577 36.17 ± 1.15 1.52 ± 0.04 2.69± 0.26 45.72± 0.98 23.27± 0.59 13284.69
0.577–0.579 32.78 ± 1.14 1.51 ± 0.04 2.14± 0.19 39.50± 0.87 18.27± 0.44 12224.55
0.579–0.582 24.55 ± 0.81 1.62 ± 0.04 2.76± 0.28 32.47± 0.74 14.86± 0.38 11363.83
0.582–0.585 22.46 ± 0.84 1.58 ± 0.04 2.16± 0.21 27.91± 0.63 12.13± 0.30 10486.68
0.585–0.588 19.20 ± 0.82 1.64 ± 0.05 1.94± 0.21 23.91± 0.54 9.48± 0.23 9664.85
0.588–0.593 15.16 ± 0.73 1.64 ± 0.05 1.75± 0.20 18.56± 0.46 7.05± 0.18 9766.56
0.593–0.598 12.36 ± 0.64 1.66 ± 0.05 1.53± 0.17 14.80± 0.39 5.29± 0.14 8013.27
0.598–0.605 8.02± 0.43 1.77 ± 0.05 1.80± 0.24 10.57± 0.29 3.66± 0.10 6364.90
0.605–0.616 4.95± 0.29 1.86 ± 0.06 1.87± 0.28 6.95 ± 0.21 2.26± 0.07 4080.93
0.616–0.630 3.79± 0.36 1.66 ± 0.09 0.98± 0.14 4.02 ± 0.15 1.22± 0.04 2428.43
0.630–0.650 1.88± 0.25 1.83 ± 0.12 0.98± 0.21 2.25 ± 0.11 0.62± 0.03 1152.10
0.650–0.675 1.03± 0.23 1.81 ± 0.20 0.81± 0.25 1.13 ± 0.09 0.30± 0.02 417.22
0.675–0.704 1.29± 0.80 1.32 ± 0.49 0.33± 0.13 0.63 ± 0.08 0.15± 0.01 156.91
0.704–0.733 0.88± 1.49 1.54 ± 1.08 0.26± 0.26 0.43 ± 0.07 0.09± 0.01 56.63
0.733–0.764 0.43± 0.37 1.95 ± 0.64 0.58± 0.55 0.47 ± 0.07 0.11± 0.01 80.19
0.764–0.795 0.69± 1.12 0.00 ± 0.02 0.22± 0.14 0.10 ± 0.07 0.03± 0.01 10.45
0.795–0.828 0.07± 0.09 0.00 ± 0.04 0.41± 0.20 0.02 ± 0.02 0.01± 0.01 2.05
0.828–0.863 0.01± 0.01 0.00 ± 0.02 1.46± 0.75 0.01 ± 0.01 0.01± 0.01 4.76
0.863–0.896 0.00± 0.00 · · · · · · · · · · · · < 1
0.896–0.929 0.31± 4.23 · · · · · · · · · · · · < 1
0.929–0.965 0.00± 0.00 · · · · · · · · · · · · < 1
0.965–1.000 0.00± 0.10 · · · · · · · · · · · · < 1

Note. — An exponentially cutoff power law with b = 1 was used to fit the spectrum in each
fixed-count phase bin of the Vela light curve. The differential flux prefactor N0 is given in units of
10−9 cm−2 s−1 MeV−1; cutoff energy Ec in GeV; photon flux in 10−6 cm−2 s−1; and energy flux in
10−9 erg cm−2 s−1. The phase bins without data had TS < 1; the spectral parameters at these phases
were unconstrained.
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Table D.2. Phase Resolved Spectral Parameters of the Crab Pulsar

Phase Bin N0 Γ Ec Photon Flux Energy Flux TS

0.000–0.006 7.06± 0.28 1.90± 0.04 4.20± 0.72 13.94 ± 0.35 5.46± 0.15 9784.82
0.006–0.014 4.99± 0.21 1.82± 0.04 3.54± 0.58 9.20± 0.24 3.74± 0.11 7964.76
0.014–0.028 2.71± 0.10 1.81± 0.04 4.42± 0.72 5.09± 0.15 2.22± 0.07 5162.01
0.028–0.049 1.27± 0.06 1.76± 0.06 4.71± 1.06 2.32± 0.09 1.10± 0.05 2857.48
0.049–0.080 0.60± 0.03 1.66± 0.07 6.01± 1.57 1.08± 0.06 0.63± 0.04 1417.46
0.080–0.118 0.28± 0.02 1.49± 0.10 7.63± 2.46 0.49± 0.05 0.42± 0.04 668.25
0.118–0.158 0.24± 0.02 1.36± 0.13 4.92± 1.69 0.38± 0.04 0.32± 0.03 559.41
0.158–0.200 0.22± 0.02 1.27± 0.13 4.06± 1.09 0.33± 0.04 0.28± 0.02 467.04
0.200–0.237 0.32± 0.02 1.35± 0.10 5.04± 1.30 0.51± 0.04 0.44± 0.03 846.06
0.237–0.269 0.51± 0.03 1.47± 0.08 5.61± 1.26 0.85± 0.05 0.64± 0.04 1390.03
0.269–0.296 0.81± 0.04 1.56± 0.07 4.94± 1.12 1.35± 0.07 0.84± 0.04 2057.75
0.296–0.319 1.41± 0.07 1.52± 0.06 2.67± 0.41 2.11± 0.09 1.07± 0.04 3024.79
0.319–0.336 1.91± 0.09 1.72± 0.05 3.37± 0.58 3.30± 0.11 1.47± 0.05 3828.25
0.336–0.351 2.33± 0.10 1.76± 0.05 4.18± 0.73 4.23± 0.14 1.92± 0.07 4759.82
0.351–0.364 2.93± 0.12 1.82± 0.04 4.33± 0.77 5.53± 0.16 2.37± 0.08 5412.18
0.364–0.375 3.23± 0.13 1.91± 0.04 5.09± 1.09 6.55± 0.19 2.66± 0.09 5732.17
0.375–0.385 3.32± 0.11 1.99± 0.04 10.84± 3.08 7.43± 0.20 3.24± 0.12 6284.64
0.385–0.396 3.38± 0.12 1.92± 0.04 5.61± 1.02 6.93± 0.19 2.86± 0.09 6066.75
0.396–0.409 2.70± 0.12 2.00± 0.05 5.08± 1.20 5.82± 0.17 2.14± 0.07 5074.27
0.409–0.428 1.68± 0.11 1.97± 0.07 3.29± 0.91 3.42± 0.12 1.17± 0.04 3235.65
0.428–0.455 0.90± 0.09 2.04± 0.09 2.24± 0.67 1.86± 0.08 0.55± 0.02 1524.70
0.455–0.493 0.24± 0.03 2.29± 0.13 9.88± 14.29 0.69± 0.06 0.21± 0.02 320.64
0.493–0.540 0.13± 0.12 2.30± 0.67 0.94± 1.50 0.28± 0.05 0.06± 0.01 55.51
0.540–0.590 0.29± 0.23 0.00± 0.01 0.25± 0.08 0.05± 0.02 0.02± 0.01 8.63
0.590–0.641 0.00± 0.01 · · · · · · · · · · · · < 1
0.641–0.691 0.00± 0.00 0.00± 0.00 6.27± 3.17 0.00± 0.00 0.02± 0.02 1.69
0.691–0.743 0.00± 0.01 · · · · · · · · · · · · < 1
0.743–0.795 0.00± 0.08 · · · · · · · · · · · · < 1
0.795–0.848 0.00± 0.00 · · · · · · · · · · · · < 1
0.848–0.896 0.10± 0.10 0.99± 1.18 0.81± 1.09 0.08± 0.04 0.04± 0.01 24.23
0.896–0.927 0.90± 0.13 1.67± 0.14 1.08± 0.25 1.19± 0.07 0.37± 0.02 993.66
0.927–0.945 2.34± 0.25 1.89± 0.09 1.18± 0.23 3.77± 0.13 1.06± 0.03 3065.68
0.945–0.957 4.06± 0.29 1.91± 0.06 1.47± 0.21 6.98± 0.19 2.05± 0.05 5240.73
0.957–0.965 5.81± 0.34 1.89± 0.05 1.66± 0.22 10.08 ± 0.26 3.09± 0.08 7323.93
0.965–0.972 7.38± 0.37 1.91± 0.05 2.21± 0.31 13.65 ± 0.32 4.45± 0.11 9270.31
0.972–0.977 8.63± 0.40 1.94± 0.04 2.82± 0.43 16.89 ± 0.39 5.72± 0.14 10490.96
0.977–0.982 9.89± 0.41 1.88± 0.04 2.88± 0.39 18.57 ± 0.42 6.67± 0.16 11152.40
0.982–0.986 11.14± 0.49 1.83± 0.04 2.54± 0.34 19.92 ± 0.45 7.22± 0.17 11526.16
0.986–0.991 10.98± 0.45 1.85± 0.04 2.91± 0.40 20.13 ± 0.46 7.51± 0.19 11994.34
0.991–0.995 10.71± 0.41 1.90± 0.04 3.65± 0.54 20.97 ± 0.47 7.87± 0.20 12279.38
0.995–1.000 8.67± 0.31 1.91± 0.04 4.41± 0.69 17.37 ± 0.41 6.80± 0.18 10059.25

Note. — An exponentially cutoff power law with b = 1 was used to fit the spectrum in each
fixed-count phase bin of the Crab light curve. The differential flux prefactor N0 is given in units of
10−9 cm−2 s−1 MeV−1; cutoff energy Ec in GeV; photon flux in 10−6 cm−2 s−1; and energy flux in
10−9 erg cm−2 s−1. The phase bins without data had TS < 1; the spectral parameters in these bins
were unconstrained. In phases 0.641–0.691, TS > 1 and Γ = 0, and there appears to be a constrained
measurement of Ec ∼ 6GeV. This spectral fit is consistent with being part of a flat background with
few photons above ∼ 6GeV, and is not representative of pulsed emission from the Crab.
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Table D.3. Phase Resolved Spectral Parameters of the Geminga Pulsar

Phase Bin N0 Γ Ec Photon Flux Energy Flux TS

0.000–0.040 1.13± 0.10 1.50 ± 0.08 0.97± 0.12 1.39 ± 0.05 0.47± 0.01 3245.81
0.040–0.069 1.61± 0.12 1.57 ± 0.07 1.16± 0.13 2.22 ± 0.07 0.76± 0.02 4707.48
0.069–0.089 2.65± 0.15 1.47 ± 0.06 1.28± 0.12 3.49 ± 0.10 1.35± 0.03 7196.15
0.089–0.102 4.02± 0.19 1.50 ± 0.05 1.60± 0.14 5.75 ± 0.14 2.38± 0.06 9788.51
0.102–0.111 6.21± 0.27 1.35 ± 0.05 1.55± 0.12 8.07 ± 0.19 3.78± 0.09 14367.31
0.111–0.118 7.59± 0.29 1.39 ± 0.04 1.85± 0.15 10.60± 0.24 5.20± 0.12 16184.52
0.118–0.125 8.51± 0.31 1.37 ± 0.04 2.08± 0.17 12.15± 0.27 6.40± 0.15 17972.14
0.125–0.130 10.29 ± 0.38 1.32 ± 0.04 1.82± 0.13 13.85± 0.31 7.21± 0.16 18722.75
0.130–0.136 10.60 ± 0.37 1.28 ± 0.04 1.85± 0.13 14.10± 0.31 7.67± 0.17 18830.17
0.136–0.141 10.58 ± 0.37 1.24 ± 0.04 1.82± 0.13 13.75± 0.31 7.78± 0.18 19289.36
0.141–0.146 10.20 ± 0.36 1.21 ± 0.04 1.72± 0.12 12.88± 0.29 7.25± 0.16 19515.79
0.146–0.153 8.56± 0.30 1.25 ± 0.04 1.88± 0.13 11.28± 0.26 6.43± 0.15 17906.72
0.153–0.160 7.35± 0.25 1.35 ± 0.04 2.21± 0.17 10.54± 0.24 5.89± 0.14 17591.71
0.160–0.168 6.67± 0.25 1.18 ± 0.04 1.65± 0.11 8.23 ± 0.19 4.66± 0.11 16253.58
0.168–0.178 5.10± 0.18 1.36 ± 0.04 2.13± 0.17 7.30 ± 0.18 3.93± 0.10 12803.87
0.178–0.190 4.16± 0.16 1.31 ± 0.04 1.90± 0.15 5.65 ± 0.14 3.02± 0.07 11471.88
0.190–0.205 3.15± 0.11 1.36 ± 0.04 2.20± 0.18 4.54 ± 0.12 2.48± 0.06 10794.21
0.205–0.222 3.07± 0.13 1.25 ± 0.05 1.67± 0.13 3.91 ± 0.11 2.09± 0.05 9963.21
0.222–0.239 2.61± 0.10 1.34 ± 0.05 2.04± 0.18 3.67 ± 0.10 1.97± 0.05 9481.90
0.239–0.258 2.62± 0.11 1.28 ± 0.05 1.78± 0.14 3.44 ± 0.09 1.84± 0.05 9478.95
0.258–0.277 2.65± 0.11 1.26 ± 0.05 1.68± 0.13 3.39 ± 0.09 1.80± 0.05 9344.63
0.277–0.296 2.73± 0.11 1.14 ± 0.05 1.53± 0.11 3.22 ± 0.09 1.83± 0.05 9648.87
0.296–0.314 2.53± 0.10 1.18 ± 0.05 1.75± 0.13 3.18 ± 0.09 1.87± 0.05 9641.17
0.314–0.333 2.87± 0.12 1.08 ± 0.05 1.45± 0.10 3.25 ± 0.09 1.88± 0.05 10078.44
0.333–0.352 2.72± 0.11 1.09 ± 0.05 1.53± 0.11 3.17 ± 0.09 1.87± 0.05 10014.30
0.352–0.370 2.75± 0.11 1.15 ± 0.05 1.70± 0.13 3.39 ± 0.09 2.01± 0.05 10208.90
0.370–0.388 3.12± 0.13 1.02 ± 0.05 1.33± 0.09 3.36 ± 0.09 1.95± 0.05 10428.73
0.388–0.405 3.06± 0.12 1.04 ± 0.05 1.52± 0.11 3.50 ± 0.09 2.16± 0.05 10700.36
0.405–0.422 2.88± 0.11 1.02 ± 0.05 1.53± 0.11 3.29 ± 0.09 2.08± 0.05 10535.29
0.422–0.439 3.09± 0.12 1.00 ± 0.05 1.47± 0.10 3.44 ± 0.09 2.18± 0.05 10918.70
0.439–0.456 3.28± 0.13 1.03 ± 0.05 1.53± 0.10 3.74 ± 0.10 2.36± 0.06 11547.19
0.456–0.472 3.26± 0.13 0.97 ± 0.05 1.40± 0.09 3.54 ± 0.09 2.22± 0.06 11226.16
0.472–0.489 3.13± 0.12 0.95 ± 0.05 1.51± 0.10 3.49 ± 0.09 2.34± 0.06 11752.45
0.489–0.505 3.21± 0.12 1.00 ± 0.05 1.56± 0.11 3.68 ± 0.10 2.39± 0.06 11436.73
0.505–0.521 3.10± 0.11 0.98 ± 0.05 1.62± 0.11 3.58 ± 0.10 2.45± 0.06 11733.79
0.521–0.536 3.21± 0.12 1.07 ± 0.05 1.72± 0.12 3.89 ± 0.10 2.52± 0.06 11710.15
0.536–0.551 3.43± 0.13 0.95 ± 0.05 1.54± 0.10 3.86 ± 0.10 2.64± 0.07 12103.20
0.551–0.566 3.56± 0.13 1.01 ± 0.05 1.62± 0.11 4.14 ± 0.11 2.76± 0.07 12282.91
0.566–0.579 3.60± 0.12 1.06 ± 0.04 2.05± 0.14 4.63 ± 0.12 3.41± 0.09 13575.87
0.579–0.590 4.35± 0.13 1.07 ± 0.04 2.24± 0.15 5.78 ± 0.14 4.43± 0.11 15467.72
0.590–0.598 5.40± 0.15 1.07 ± 0.04 2.42± 0.15 7.36 ± 0.17 5.95± 0.15 18724.10
0.598–0.605 6.20± 0.17 0.93 ± 0.04 2.22± 0.13 8.10 ± 0.19 7.25± 0.18 20708.25
0.605–0.611 7.69± 0.21 1.01 ± 0.04 2.56± 0.15 10.63± 0.24 9.56± 0.24 22498.23
0.611–0.616 8.87± 0.23 1.03 ± 0.04 2.64± 0.16 12.41± 0.27 11.14± 0.27 23710.70
0.616–0.621 10.63 ± 0.29 0.98 ± 0.04 2.27± 0.13 14.04± 0.31 12.07± 0.29 23108.12
0.621–0.625 11.09 ± 0.29 1.05 ± 0.03 2.79± 0.17 15.83± 0.34 14.36± 0.35 25370.38
0.625–0.629 11.67 ± 0.30 1.03 ± 0.03 2.69± 0.16 16.44± 0.35 14.95± 0.37 25506.76
0.629–0.632 12.18 ± 0.32 0.98 ± 0.04 2.57± 0.15 16.85± 0.36 15.66± 0.38 24202.92
0.632–0.636 12.68 ± 0.33 0.96 ± 0.04 2.47± 0.14 17.30± 0.37 16.13± 0.39 26613.65
0.636–0.640 12.78 ± 0.33 0.98 ± 0.03 2.54± 0.15 17.63± 0.38 16.43± 0.40 26267.52
0.640–0.643 12.75 ± 0.34 0.99 ± 0.03 2.47± 0.14 17.42± 0.37 15.62± 0.37 24828.33
0.643–0.647 12.36 ± 0.33 1.00 ± 0.04 2.54± 0.15 17.04± 0.37 15.47± 0.38 25853.23
0.647–0.651 11.07 ± 0.29 1.09 ± 0.03 2.89± 0.18 16.02± 0.35 14.06± 0.35 23601.34
0.651–0.656 10.06 ± 0.27 1.09 ± 0.03 2.66± 0.17 14.19± 0.31 11.86± 0.29 22516.26
0.656–0.661 8.41± 0.23 1.05 ± 0.04 2.51± 0.16 11.59± 0.26 9.77± 0.24 22277.76
0.661–0.668 6.53± 0.18 1.16 ± 0.03 2.93± 0.20 9.56 ± 0.22 7.83± 0.20 20510.87
0.668–0.676 5.53± 0.17 1.10 ± 0.04 2.24± 0.15 7.39 ± 0.17 5.46± 0.13 17998.09
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Table D.3 (cont’d)

Phase Bin N0 Γ Ec Photon Flux Energy Flux TS

0.676–0.688 3.65± 0.11 1.29± 0.04 2.76± 0.21 5.42± 0.13 3.65± 0.09 13188.91
0.688–0.705 2.73± 0.09 1.18± 0.04 2.15± 0.16 3.67± 0.10 2.42± 0.06 11521.43
0.705–0.731 1.68± 0.07 1.13± 0.05 1.77± 0.14 2.08± 0.06 1.29± 0.04 8116.35
0.731–0.765 1.13± 0.06 1.27± 0.06 1.71± 0.17 1.46± 0.05 0.77± 0.02 5485.69
0.765–0.803 0.92± 0.05 1.36± 0.07 1.74± 0.19 1.26± 0.05 0.61± 0.02 4494.97
0.803–0.845 0.88± 0.06 1.28± 0.07 1.39± 0.15 1.07± 0.04 0.50± 0.02 3846.55
0.845–0.893 0.64± 0.04 1.36± 0.08 1.44± 0.18 0.82± 0.04 0.36± 0.01 2715.60
0.893–0.948 0.70± 0.08 1.22± 0.12 0.84± 0.12 0.67± 0.04 0.26± 0.01 1878.69
0.948–1.000 0.66± 0.08 1.56± 0.11 0.95± 0.14 0.85± 0.04 0.27± 0.01 1860.06

Note. — An exponentially cutoff power law with b = 1 was used to fit the spectrum in each
fixed-count phase bin of the Geminga light curve. The differential flux prefactor N0 is given in units
of 10−9 cm−2 s−1 MeV−1; cutoff energy Ec in GeV; photon flux in 10−6 cm−2 s−1; and energy flux
in 10−9 erg cm−2 s−1. Geminga has magnetospheric emission across its entire pulse phase, so the
spectral parameters are constrained at all phases, and the TS is large everywhere (unlike for the Vela
and Crab pulsars, which have off-peak phase bins in which TS < 1 and the spectral parameters could
not be constrained).
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Appendix E

Software and Codes Used

The following software and codes were used in this thesis:

1. PRESTO (Ransom 2001; http://www.cv.nrao.edu:~sransom/presto)

2. PSRCHIVE (Hotan et al. 2004; van Straten et al. 2012; http:psrchive.

sourceforge.net)

3. Fermi LAT science tools, specifically gtselect, gtmktime, gtexpcube2, gtbin,

gtltcube, gtsrcprob, gtlike (with pyLikelihood python wrapper), and

gtmodel (http://fermi.gsfc.nasa.gov/ssc/data/analysis/)

4. Fermi LAT user-contributed tools, specifically bdlikeSED.py, written by Tyrel

Johnson (http://fermi.gsfc.nasa.gov/ssc/data/analysis/user/)

5. NASA’s HEASARC FTOOLS, specifically ftpixcalc (http://heasarc.gsfc.

nasa.gov)

6. Light curve simulation code (“toypol.c”) by J. Dyks and A. Harding, used in

Dyks et al. (2004)
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7. Markov chain Monte Carlo likelihood fitting code by M. C. Miller (e.g., Lo

et al. 2013)
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