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Circumstellar disks are the environments where extrasolar planets are born. De-

bris disks in particular are the last stage of circumstellar disk evolution, the youngest

of which may harbor still-forming terrestrial planets. This dissertation focuses on

examining the properties of dust grains in the youngest debris disks as a proxy to

study the unseen parent planetesimal population that produces the dust in destruc-

tive collisions. The parent planetesimals are important to understanding the late

stages of terrestrial planets because they can deliver volatile material, such as water,

to young terrestrial planets.

We used the Herschel Space Observatory to study young debris disks (ages ∼

10− 30 Myr) in the far-infrared where the thermal emission from the dust grains is

brightest. We constructed spectral energy distributions (SEDs) of 24 debris disks

and fit them with our debris disk models to constrain dust parameters such as

temperature, dust location, and grain size. We also looked for correlations between



the stellar and disk parameters and we found a trend between the disk temperature

and stellar temperature, which we fit as a power-law of Tdisk ∝ T0.85
∗ .

One bright, well studied disk in our sample, HD32297, has a well populated SED,

allowing us to fit it with a more detailed model to determine dust grain composition.

The HD32297 disk has also been imaged in scattered light, so we used the image

to constrain the dust location before fitting the SED. We found the dust grains

are composed of a highly porous and icy material, similar to cometary grains. This

suggests there are icy comets in this system that could deliver water to any terrestrial

planets in the disk.

We followed up this system by observing it with the Hubble Space Telescope to

get simultaneous spatial and spectral data of the disk. These data let us look for

compositional changes with disk radius. We found the disk has a very red color

at optical wavelengths in the innermost radius we probed (∼ 110 AU). This could

indicate the presence of organic material, or it could be a property of the scattering

phase function of large grains. Further analysis of this data is ongoing.
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Preface

Portions of this dissertation have been published elsewhere. Chapter 3 was previ-

ously published in its entirety in The Astrophysical Journal (Donaldson et al. 2012).

Results in Chapter 3 were also presented at the 217th meeting of the American Astro-

nomical Society in January 2011. Chapter 4 will be submitted in its entirety to The

Astrophysical Journal in the near future. Results form Chapter 4 have already been

presented at The Universe Explored by Herschel conference at ESA/ESTEC in Oc-

tober 2013. Chapter 5 was previously published in its entirety in The Astrophysical

Journal (Donaldson et al. 2013) and its results presented at the 4th National Capital

Area Disk Meeting at The Space Telescope Science Institute in July 2012. Prelim-

inary results from Chapter 6 were presented at the 221st meeting of the American

Astronomical Society in January 2013.
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Chapter 1

Introduction

Exoplanets have been the subject of much interest in the last 20 years since the first

detection of an exoplanet around a main sequence star (Mayor and Queloz 1995).

With the launch of dedicated exoplanet spacecraft such as Kepler, we are finding

planets are quite common (Petigura et al. 2013; Swift et al. 2013). These planets

show a startling amount of diversity in their properties, and most planetary systems

are very unlike the Solar System (e.g. Butler et al. 2006).

Hot Jupiters and other strange exoplanet configurations challenge the previously

accepted models of planet formation that were created when the Solar System was

the only example of a planetary system. If we want to understand the origin of exo-

planets, we need to study the environments where they are born – the circumstellar

disk. Habitability, for example, is something that is difficult to currently determine

for today’s known exoplanets. We cannot yet resolve the exoplanets well enough to

search for signs of life or habitability. In a young circumstellar disk, however, the

building blocks for like are spread out over the disk in the form of dust. Using the

circumstellar disk as a tool, we can look for water and organic material that would

likely be incorporated into planets forming in the disk.

This dissertation focuses on constraining the properties of young debris disks.
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These disks are likely sites of the last stages of terrestrial planet formation. Un-

derstanding the geometry and composition of young debris disks is the first step in

determining the potential habitability of terrestrial planets that form in these en-

vironments. This chapter provides background information on the study of planet

formation and circumstellar disks. In Section 1.1, I present the basics of planet for-

mation from the formation of the star to the fully formed planetary system. Section

1.2 reviews the observational characteristics of circumstellar disks, and Section 1.3

provides details on the debris disk.

1.1 Planet Formation

1.1.1 Star Formation

Our picture of planet formation starts with the collapse of a molecular cloud to form

a protostar and its surrounding disk. Molecular cloud cores, where stars are born,

are diffuse clouds of gas and dust (n ∼ 105 cm−3) and are often found in filaments

that have a typical width of 0.1 pc (Arzoumanian et al. 2011). Small rotation of the

molecular cloud carries a large amount of angular momentum, naturally leading to

the formation of a disk as the cloud collapses. Stars form in clusters, and often form

binaries or larger multiple systems (Duquennoy and Mayor 1991). Star formation is

not an isolated process, but is influenced by its environment. However, for simplicity,

we will assume a single isolated star from this point on.

The theory that the Solar System formed from the collapse of a gaseous cloud

was proposed as far back as the 18th century. Kant (1755) and Laplace (1796)

developed theories that a slow rotating gaseous cloud would collapse under its own

self gravity. To conserve angular momentum, the infalling material rotated more

rapidly and flattened along the spin axis, forming a disk.
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The basic modern picture of star formation is summarized in Shu et al. (1987) as

occurring in four main stages. It starts when the molecular cloud core reaches the

critical Jeans mass and begins to collapse. Evidence suggests that molecular cloud

structure is driven by turbulence, a consequence of which is the angular momentum

will be non-zero (Larson 1981; McKee and Ostriker 2007). Even a slowly rotating

cloud will have substantial angular momentum to drive the formation of a disk.

Methods for shedding angular momentum to fuel accretion by the protostar are not

fully understood and is a subject still studied extensively.

The molecular cloud core collapse from the inside out, forming a protostar sur-

rounded by a massive envelope. Material accretes onto the protostar through the

disk, driving a bipolar outflow that clears a cavity in the gaseous envelope. The

surrounding material eventually settles onto the disk or is dispersed, ending the

formation of the star.

The above steps of star formation roughly correspond to the observational classes

of young stellar objects (YSOs) (Andre and Montmerle 1994; Andre et al. 1993; Lada

and Wilking 1984). YSO classes are defined by the slope of their spectral energy

distributions (SEDs) from the near- to mid-IR. Class 0 sources correspond to the

initial collapse of the molecular cloud core. They show no near-IR emission and peak

in the far-IR. Class 1 sources have more near-IR emission and are characterized by

a slope that is flat or rising with increasing wavelength. This is due to the massive

dusty envelope that surrounds the forming protostar. Class 2 sources are the classical

T Tauri stars. Their emission is mostly stellar, with some near-IR emission from

the disk and a decreasing emission out to the mid-IR. Class 3 sources show just the

stellar photosphere in the near- to mid-IR. These sources are either naked stars, or

debris disks with IR excesses that peak in the far-IR.
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1.1.2 From Dust to Protoplanets

Planet formation begins with the growth of dust in the primordial disk. These disks

are gas rich, with a gas-to-dust ratio presumably similar to the Interstellar Medium

(ISM; 100:1). The dust grains begin primordial, then volatiles freeze-out onto the

grains as the disk cools. These grains are small (sub-µm) so grain growth needs

to occur to begin the formation of planetesimals. There are two main paths to

planetesimal formation. Planetesimals form either through slow collisional aggrega-

tion or rapid agglomeration by gravitational instabilities in a thin dust layer at the

mid-plane.

The full process of grain growth is not well understood. Most of what we know

comes from laboratory experiments. Those show the collisions of dust grains lead

to either sticking, bouncing, or fragmentation (Güttler et al. 2010). Growth of

small dust grains by collisional aggregation is easier to understand in laboratory

experiments and numerical simulations (Dominik et al. 2007). Growth from sub-µm

to cm sizes is driven by Brownian motion and is well characterized by laboratory

experiments.

When grains reach sizes of ∼ 1 cm, they decouple from the gas, which orbits

at subkeplerian speeds due to the pressure gradient in the disk. The dust grains

feel a gas drag from the difference in velocities and their vertical movement through

the disk. This leads them to settle toward the midplane, growing through collisions

along the way. Once in the midplane, the density of dust grains is much higher, so

grain growth can proceed more rapidly (Dullemond and Dominik 2005).

Problems occur when grains reach ∼ 1 meter in size, often referred to as the

meter-sized barrier. Meter-sized objects are subject to strong radial drift due to gas

drag leading to large radial velocities. They must quickly build up their mass to
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slow radial drift before they are lost to the star. Additionally, the large speeds due

to radial drift mean that collisions of meter-sized objects are more likely to lead to

fragmentation rather than growth.

One method of solving this problem is through planetesimal formation by grav-

itational instabilities at the midplane after settling (Goldreich and Ward 1973).

There were several problems with the initial theory, including the role of turbu-

lence, which would prevent dust grains from settling to the midplane (Cuzzi and

Weidenschilling 2006). Recent progress in the field has solving some of these prob-

lems. First, the turbulent concentration model showed that turbulence can actually

aid planetesimal formation by concentrating material in eddies (Cuzzi et al. 2008).

In another model of streaming instabilities, the quick radial drift of meter-sized

bodies helps to get them concentrated in towards pressure maxima (Johansen et al.

2006, 2007).

Planetesimals larger than ∼ 1 km are no longer affected by gas drag because

they have a large mass-to-surface area ratio. They are more strongly affected by

mutual gravitational interactions. Large bodies gravitationally focus the trajectories

of passing bodies. This increases the probability of collisions and hence increases

the growth or fragmentation rate.

The mass accretion rate depends on the gravitational focusing strength of the

object, i.e. it is determined by the mass as M4/3 (Weidenschilling et al. 1997). This

begins the regime of runaway growth, where larger bodies grow faster than smaller

bodies (Wetherill and Stewart 1993). Runaway growth ends when the largest bodies

are massive enough to increase the random velocities of nearby planetesimals. This

slows growth and begins the oligarchic growth regime where mass accretion grows

as M2/3 (Ida and Makino 1993).

In the oligarchic growth regime, regions of the disk are dominated by large
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planetary embryos. The spacing between the embryos stays large (∼ 10 Hill Radii),

or they collide with one another (Kokubo and Ida 1998). Planetary embryos continue

to accrete the surrounding planetesimals until they have swept up everything in their

path (Wetherill and Stewart 1989). Their final mass after clearing the planetesimals

is called the isolation mass and depends on the surface density of solids and the

semi-major axis of the orbit.

1.1.3 Giant Planet Formation

There are two main competing theories for the formation of giant planets, core

accretion and gravitational instabilities. Core accretion begins with the build up

of solids as discussed in Section 1.1.2, and later accretion of a gaseous envelope

(Bodenheimer and Pollack 1986; Mizuno 1980; Perri and Cameron 1974). In the core

accretion model, a solid core of ∼ 10 M⊕ must form quickly before the dissipation

of the gas disk. This is easier to achieve beyond the snow line where the isolation

mass exceeds the critical core mass and giant planet formation is more likely.

Gas accretion onto the solid core begins when the gravitational potential energy

of the core exceeds the thermal energy of the surrounding gas. This begins the stage

of slow gas accretion called hydrostatic growth, where the gaseous envelope is in

hydrostatic equilibrium, balancing the gas pressure due to heating by the continued

accretion of planetesimals and the gravitational potential energy. This stage ends

when a critical mass is reached, which triggers hydrodynamic instability that results

in rapid gas accretion (Pollack et al. 1996). This runaway growth is no longer limited

by the cooling properties of the gas envelope, but only by the availability of gas in

the disk. Thus, this rapid growth only ends when the gas disk dissipates (Alibert

et al. 2005; Hubickyj et al. 2005).

In the gravitational instability model, the disk has to be massive enough to be
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unstable due to its own self gravity. This leads to direct fragmentation of the gas

into massive planets (Boss 1997). The disk in this case has to be at the upper end

of the range of observed disks, but not impossible at the early stages of the disk (e.g

Eisner et al. 2005).

The basic theory of giant planet formation by gravitational instabilities says that

the disk becomes unstable when the Toomre parameter Q . 1 (Toomre 1981), i.e.

the disk is cold and massive. In order to have fragmentation into bound clumps, the

cooling time of the gas needs to be short (Gammie 2001). Assuming these conditions

are met, the disk fragments into planets in just a few orbits. This process is top

down, initially rapid, then slowly sweeping up planetesimals, rather than bottom up

and initially slow, like for core accretion (D’Angelo et al. 2010).

Core accretion and gravitational instabilities are two competing models, but

perhaps not all giant planets are formed by the same mechanism. Gravitational

instabilities are unlikely to occur inside of 40-100 AU because any disk that is massive

enough to be unstable is too massive to cool efficiently at those distances (Rafikov

2005). Core accretion is not efficient beyond ∼ 40 AU because of the decreasing

availability of solid material and the increasing dynamical timescales with distance

(Dodson-Robinson et al. 2009). Core accretion may be a good explanation for the

formation of the giant planets in the Solar System, but gravitational instabilities

may better explain some of the directly imaged planets that are far from their stars

(e.g. HR8799; Marois et al. 2008).

At some point, the gas disk is dispersed, and giant planet formation ceases. There

are several mechanisms for disk dispersal, one being photoevaporation. Photoevap-

oration occurs when UV or x-ray radiation heats the disk surface via ionization of

gas particles until the gas thermal speed is greater than the escape speed and the

gas becomes unbound to the star (Hollenbach et al. 1994). Photoevaporation can
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occur from UV or x-ray radiation due to either the central star, or nearby stars,

such as nearby O and B stars, which are important in young clusters like Orion.

The escape of gas begins at the gravitational radius, Rg, where the sound speed is

equal to the orbital velocity. Inside Rg, gas is bound to the system; outside, the gas

is free to escape. Simulations show most of the mass loss occurs at Rg (Hollenbach

et al. 1994). As the gas escapes, a pressure gradient drives the unbound gas away

from the star as a wind (Clarke et al. 2001). Once a gap is formed, the isolated

inner disk accretes onto the star. The inner edge of the outer disk is then directly

irradiated (Alexander and Armitage 2007). Mass loss continues from Rg outwards

until the entire gas disk is gone. What remains is the debris left over from planet

formation - the planetesimals and the planets.

1.1.4 Terrestrial Planet Formation

After the dispersal of the gas disk, there are still ∼ 10 - 100 planetary embryos in

the disk (Chambers 2011). Neighboring embryos pump up each other’s eccentricities

and inclinations until their orbits cross. These bodies continue to evolve through a

series of giant impacts until they reach a configuration where the spacing leads to

long-term stability (Goldreich et al. 2004). This same spacing is seen in exoplanet

systems with multiple planets (Lovis et al. 2011).

Not all collisions lead to mergers. Oblique collisions can lead to breakup into

multiple bodies (Agnor and Asphaug 2004). The Moon likely formed in an oblique

collision where two embryos broke up and recoalesced after an exchange of material

(Canup 2004). This is supported observationally by the fact that the Earth and the

Moon have the same oxygen isotope ratios (Wiechert et al. 2001).

Accretion of volatiles probably occurred in the last stages of terrestrial planet

formation. The location where the Earth formed was too hot for water ice to have
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condensed. Additionally, any volatiles accreted would have escaped when the em-

bryos were heated by impacts and radioactive decay (Pepin 2006). The Earth has

a lot of water on its surface, however, so it must have accreted some of its mass

late in its formation. Water could come from comets or water-rich asteroids formed

beyond the snow-line (Morbidelli et al. 2000). Additional evidence for this theory

comes from highly siderophile elements. They should have sunk to the core with

the iron when the Earth differentiated, but they are found in the mantle (Drake and

Righter 2002).

1.2 Observational Characteristics of Circumstel-

lar Disk Classes

In this section, I will give a brief overview of the observational characteristics of

the three main circumstellar disk classes, primordial, transitional, and debris disks.

Starting with the primordial, or “protoplanetary” disks; these are gas-rich, optically

thick disks around pre-main sequence stars. They usually have strong CO emission

(Thi et al. 2001) and their fractional infrared luminosities are quite bright (∼ 10-

20% Roberge and Kamp 2010). Scattered light images of primordial disks show

they have a flared vertical profile and sometimes have jets that have been attributed

to stellar mass accretion (e.g. HH30, see Figure 1.1; Burrows et al. 1996).

The next class of disks, dubbed transitional disks, were first classified by a deficit

of mid-IR flux. Figure 1.2 demonstrates the changes in the spectral energy distribu-

tion (SED) for the three classes of disks. Transitional disk SEDs are quite similar to

primordial disks, except for a dip in the mid-IR. This dip corresponds to a lack of

small dust grains in the inner portion of the disk. It was proposed that these disks

are “in transition” from the primordial stage to the debris disk stage, possibly due
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Figure 1.1: Left: HST image of the edge-on disk HH30 (Burrows et al. 1996).

The image shows a flared disk profile with a dark center lane obscuring the star.

The jet, driven by accretion onto the star, is also visible on both sides of the

disk. Right: Sub-millimeter continuum image of the transitional disk, LkCa15

(Andrews et al. 2011). The disk shows a large cavity in the central regions of the

disk, cleared of small dust grains.

to planet formation.

Transitional disks still show large quantities of sub-mm CO (e.g. Qi et al. 2004),

so at least the outer disks still contain gas. Some transitional disks still show signs

of weak accretion though, implying the inner regions also contain gas (Najita et al.

2007). But the inner disks are clear of small grains; sub-mm continuum images of

several transitional disks show large cavities that indicate the absence of small dust

grains in these regions (e.g. LkCa15, see Figure 1.1; Andrews et al. 2011; Brown

et al. 2009; Mathews et al. 2012).

These cavities could be cleared out by giant planets; planet formation models

have long shown that giant planets are capable of clearing the material from their

orbits (Dodson-Robinson and Salyk 2011; Paardekooper and Mellema 2004). More

recently, a few planet candidates have been directly imaged inside the cavities of

transitional disks, seemingly validating this theory (e.g. LkCa15 b; Kraus et al.

10



Figure 1.2: Demonstration of how an SED changes as a circumstellar disk evolves

(Roberge and Kamp 2010). The central star is well approximated by a black-

body that peaks at short wavelengths. A primordial disk is surrounded by an

optically thick disk and shows an excess infrared emission over that of the star.

A transitional disk is defined by a drop of excess emission at near-IR wavelengths

that is attributed to a clearing of the inner disk. A debris disk is the last stage,

when the disk is optically thin and has a fractional dust luminosity well below

that of primordial disk. The emission at mid-IR wavelengths is low or completely

missing, and the peak of the emission is in the far-IR. Debris disk SEDs are often

well characterized by a simple blackbody at a low temperature.

2012). However, several mechanisms other than giant planets have also been cited

as explanations for these cavities, such as viscous evolution, grain growth, and pho-

toevaporation (for a detailed review on transitional disks, see Espaillat et al. 2014).

The last disk class is the debris disk. Debris disks are the most long-lived,

lasting from the dissipation of the gas disk at ∼ 10 Myr (Mamajek 2009), through

the lifetime of the star. Debris disks are gas-poor (or gas-free) and optically thin,

with small fractional dust luminosities (LIR/L∗ . 10−3). Their SEDs lack near- and

mid-IR emission and peak in the far-IR. Images of edge-on debris disks show they

are also geometrically thin, not flared like primordial disks (e.g. AU Mic; Krist et al.
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2005). Other images show rings and cleared regions (Kalas et al. 2005; Schneider

et al. 2005, 2006), which explains the lack of mid-IR emission.

1.3 Debris Disks

1.3.1 Origin of dust in debris disks

During the dissipation of the gas disk, the dust grains are expected to be swept

along with the gas and removed from the disk as well. All that will be left are the

planets and planetesimals that have already formed. But debris disks are full of

detectable dust grains. These dust grains are not primordial, but secondary dust

produced from collisions between the planetesimals. We know these dust grains must

be continuously produced from planetesimal collisions because the dust is constantly

removed on short timescales by processes such as Poynting-Robertson (P-R) drag,

radiation pressure, and grain-grain collisions.

P-R drag is a process that causes micrometer-sized grains to spiral in towards

the star due to interactions with stellar radiation. An effect of general relativity, the

small particles essentially feel a headwind from the star’s radiation as they orbit,

leading to a loss of energy by the dust grains, causing them to spiral inwards. In a

typical debris disk, this happens on a timescale of 105.5 - 107.5 yr (Hillenbrand et al.

2008).

Wyatt (2005), however, argues that for most currently detectable debris disks,

the densities are too high for P-R drag to be significant. With high densities, the

dust grains are more likely to be destroyed by grain-grain collisions, which has a

much shorter typical timescale (< 104 − 105.5 yr; Hillenbrand et al. 2008). Grain-

grain collisions are expected to be destructive rather than accreting because of the

high velocities involved.
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Radiation pressure is an extremely effective process that pushes small dust grains

(. 1µm) out of a debris disk system. Radiation pressure will remove grains if the

force of the incident radiation is stronger than the force of gravity. Small grains,

which have a high surface area to mass ratio, will be removed more easily. Small

grains affected by radiation pressure in a typical disk can be removed on timescales

as short as 10− 102.5 yr (Hillenbrand et al. 2008). This timescale is very short, and

therefore, radiation pressure is the dominant mechanism for the removal of small

grains (. 1µm). Grains below the cutoff “blowout” size are not expected to be seen

in a debris disk.

The dust originates from the breakup of planetesimals during collisions. Debris

from the collision event continues to collide, grinding the dust into smaller and

smaller grains. This collisional cascade effect leads to a steady state distribution of

grain sizes (a) of n(a)da ∝ a−κda, with κ ∼ 3.5 as a typical value (Dohnanyi 1969).

1.3.2 Detection Methods

Circumstellar disks were first discovered 30 years ago through the detection of an in-

frared excess above the expected photospheric value with the Infrared Astronomical

Satellite (IRAS; Aumann et al. 1984). At infrared wavelengths, circumstellar disks

are much brighter than their host stars. This is because the dust grains orbiting

the star absorb the stellar radiation at short wavelengths and thermally re-emit the

radiation at long wavelengths.

By observing the system at multiple wavelengths, we can construct a spectral

energy distribution (SED). The stellar signal can be fit with a stellar atmosphere

model fit to the optical and near-IR data. The extension of that model into the

far-IR shows the expected flux of a naked star. The thermal emission of the dust,

being much colder than the star, peaks at longer wavelengths and dominates the flux
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over the star in the far-IR. The shape of the SED provides a wealth of information

about the dust in the disk. Dust temperature, location, grain size, and composition

can all be constrained through modeling the SED.

The infrared excess emission of debris disks had been studied in detail since its

discovery by IRAS, limited only by the need for space based mission to observe in

the far-IR. Debris disk surveys with the Infrared Space Observatory (ISO) discovered

the first evidence that the fractional infrared excesses compared to the stellar pho-

tosphere (LIR/L∗) declines with age. Spangler et al. (2001) and Decin et al. (2003)

found a power-law decrease in LIR/L∗ with age with a slope between −2 and −1.

This is consistent with the expected slope of −1 for dust disks that are replenished

by collisions (Dominik and Decin 2003).

The Spitzer Space Telescope’s MIPS instrument greatly improved the sensitivity

in the mid-IR (Rieke et al. 2004). Several surveys were conducted to search for new

debris disks with Spitzer (e.g. Meyer et al. 2006; Rieke et al. 2005). A few of the

Spitzer surveys indicated that the IR excess of many debris disks were stronger at

70µm than at 24µm (Beichman et al. 2006; Su et al. 2006). This suggests the dust

is cold, and therefore is located farther from the star. Yet some debris disks display

different characteristics, with high 24µm excesses, but little to no 70µm excesses

(Moór et al. 2009). Disks of both types appear around stars of nearly the same age,

with little to no clear dependence on spectral type.

The infrared excess only gives an indirect measure of the disk geometry. Geo-

metrical information is best derived through resolved images of the disk. In fact,

circumstellar dust was not even confirmed to be in a disk until the resolved scattered

light detection of the edge-on disk β Pictoris (Smith and Terrile 1984).

Although debris disks are much brighter than their host stars at far-IR wave-

lengths, far-IR detectors do not have the resolving power that is possible at optical
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Figure 1.3: Left: Three color near-IR image of the HR4796A debris disk (Wahhaj

et al. 2014). Right: HST image of the Fomalhaut disk with a planet candidate,

Fomalhaut b, just inside the main ring (Kalas et al. 2008). These are just two

examples of debris disks that have their dust confined to narrow rings.

and near-IR wavelengths. This is starting to change thanks to interferometers such

as ALMA, but traditionally, optical and near-IR images of scattered light have been

used to map out the geometry of debris disks. IR photometry probes the thermally

reprocessed dust emission, but optical and near-IR images probe the stellar light that

has scattered off small dust grains rather than absorbed. At these wavelengths, the

star is incredibly bright and outshines the disk. A coronagraph is needed to block

the stellar signal so the disk can be imaged. This also has the unfortunate side effect

of blocking the inner portion of the disk.

The geometry of disks imaged in scattered light is affected by several mechanisms.

The dust is produced at the location of the parent planetesimals, which are often

confined to thin rings like the Asteroid and Kuiper belts. This had proved to be

true in many imaged debris disks that show thin rings structures such as HR4796A

(Schneider et al. 2005; Wahhaj et al. 2014), Fomalhaut (Kalas et al. 2008, 2005),

and HD181327 (Schneider et al. 2006)(See Figure 1.3).

But dust also moves from its birthplace through processes such as radiation pres-
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sure and P-R drag. Some disks have even been suspected of interacting with the

surrounding ISM (Debes et al. 2009). Additionally, features such as asymmetries,

clumps, and warps have all been cited as evidence of planets in the disk gravita-

tionally interacting with the planetesimals as well as the dust. For example, one of

the best studied debris disks, β Pictoris, has an inner disk inclined from the main

outer disk, first detected as a warp (Heap et al. 2000). It was predicted this warp

was driven by a planet on an inclined orbit (Augereau et al. 2001; Mouillet et al.

1997). The giant planet, β Pictoris b, was later detected by Lagrange et al. (2010)

as predicted.

A similar, yet more controversial example, is that of the Fomalhaut debris disk.

The disk was imaged by Kalas et al. (2005) with the Hubble Space Telescope ACS

instrument, and it was found to be a thin eccentric ring that is offset from the star.

The offset, eccentricity, and sharp inner edge of the ring led to the prediction of the

presence of a planet orbiting just inside the ring (Quillen 2006).

Kalas et al. (2008) presented a direct detection confirmation of a planet, Fomal-

haut b, just where it was predicted to be. However, the near-IR colors of the planet

appear bluer than expected, causing some to debate whether it is a dust enshrouded

planet, or just a large dust cloud (Currie et al. 2012; Janson et al. 2012). New STIS

observations show the object is on a highly eccentric and inclined, ring-crossing orbit

(Kalas et al. 2013). With such an orbit, Fomalhaut b is unlikely to be shaping the

ring; the planet that is shaping the ring has yet to be found.

In addition of finding planets, scattered light images can also give us information

about the grains themselves. The scattered light images can directly measure how

the grain albedos change with wavelength. As shown in Figure 1.4 from Roberge

and Kamp (2010), this can provide information about the composition of the grains.

Small silicate grains (∼ 0.1µm) show a blue color due to Rayleigh scattering, while
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Figure 1.4: The albedo of grains as a function of wavelength in the optical and

near-IR (Roberge and Kamp 2010). The color of scattered light spectra taken at

these wavelengths can indicate the composition of the grains. Blue colors indicate

small grains (i.e. Rayleigh scattering), while neutral colors indicate large silicate

grains. Organic material, such as tholins, have very red colors and is seen on

Titan and some other Solar System bodies.

larger silicate grains (& 2µm) will scatter neutrally. Tholins, an organic material,

will show a much redder color than silicates.

Debes et al. (2008) used spectrophotometry from seven HST images of the

HR4796A disk in scattered light to show the disk has a red color consistent with

the presence of tholins. However, Köhler et al. (2008) argues that this color could

be due solely to silicate grains with a higher porosity. More detailed information

on the spectral shape of the scattered light is needed to distinguish between these

scenarios.
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1.3.3 Modeling Debris Disk SEDs

Most debris disks have not been resolved, so modeling begins with the SED. A

simple blackbody is a good first approximation of the flux from a thin ring. A better

approximation is the modified blackbody. Small grains are inefficient absorbers at

long wavelengths because the wavelengths are larger than their size. Similarly, they

are also inefficient emitters at long wavelengths. A modified blackbody model takes

this into account by reducing the optical depth at long wavelength (λ > λ0) by a

factor (λ/λ0)−β.

ISM dust has a typical value of β = 2 (Boulanger et al. 1996), but β in debris

disks tend to be closer to 1 (e.g. Dent et al. 2000; Nilsson et al. 2010; Williams

and Andrews 2006). The change in β from 2 to 1 in protoplanetary and debris

disks has been attributed to grain growth (e.g. Draine 2006). As grains grow

by agglomeration in primordial disks, the new larger grains are more efficient at

emitting at long wavelengths and β decreases. Fitting an SED with a modified

blackbody required detections at several wavelengths longer than λ0 (λ0 ≈ 100µm).

Without those data, a simple blackbody is sufficient.

Characteristic temperatures calculated from blackbody fitting can be converted

into blackbody radii to estimate the size of the disk. But blackbody radii are not

always good representations of true disk radii. Real grains are not as efficient at

emitting as blackbodies, so real grains will be hotter farther from the star than

blackbodies. Therefore, blackbody radii are only lower limits. The Herschel DE-

BRIS team were able to resolve several disks they observed with Herschel and were

able to compare blackbody radii with true disk radii. They confirmed that true disk

radii were often several times larger than blackbody radii (Booth et al. 2013).

Blackbodies are only an approximation. It is better to use real grain emissivities
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as a function of grain size and composition to calculate the thermal emission of

grains. The SED can be fit for a range of different radii and grain sizes using full

radiative transfer to calculate the equilibrium temperature of the grains (see Chapter

2 for more details).

Unfortunately, SED fitting is degenerate. SEDs, on first order, give temperature.

But grain temperature is affected by grain size, location, and composition. Dust

grains get hotter as they get closer to the star. But the smaller a grain is, the more

inefficient it is at radiating, so it will end up hotter farther from the star than a

blackbody. So both grain size and location are linked, and the SED fitting can be

degenerate. To break the degeneracy, we need both images of the disk, as well as

good SED coverage. The images constrain the location of the dust, so the SED

fitting can focus on the grain properties, such as grain size and composition.

A good demonstration of this technique is the detailed modeling of the debris

disk HD181327 by Lebreton et al. (2012) as part of the GASPS survey. HD181327

is a nearly face-on disk imaged in scattered light with HST by Schneider et al.

(2006). Lebreton et al. (2012) fixed the radial profile in their model to the one

found by Schneider et al. (2006). They then focused their SED modeling on the

dust composition. They used a cometary grain model (e.g. Greenberg 1998): a

silicate core with a porous mantel of carbon and water ice. Lebreton et al. (2012)

found the HD181327 disk contained grains with a high water ice fraction.

The Herschel DUNES team has also combined resolved images and SEDs to

constrain detailed models of debris disks. Their Herschel PACS observations of the

HD207129 debris disk were well resolved, the first time a resolved ring-like structure

was seen in the far-IR (Marshall et al. 2011). They used the resolved images and

the SED to study the detailed collisional evolution of the disk (Löhne et al. 2012).
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1.4 GASPS – A Herschel Key Programme

The Herschel Space Observatory provided a unique opportunity for sensitive debris

disk surveys. Herschel covered a wide wavelength range in the far-IR to sub-mm of

55−671µm (Pilbratt et al. 2010) and has nearly four times the spatial resolution of

Spitzer at similar wavelengths – 7′′ (λ/100µm) for Herschel and 25′′ (λ/100µm) for

Spitzer. The better spatial resolution greatly improves the sensitivity by avoiding

confusion with interstellar cirrus and background galaxies.

Herschel has two photometric instruments, the Photodetector Array Camera and

Spectrometer (PACS) covering a wavelength range of 55− 210µm (Poglitsch et al.

2010) and the Spectral and Photometric Imaging REceiver (SPIRE) covering the

wavelength range of 194− 671µm (Griffin et al. 2010). Debris disk infrared excess

typically peaks within the PACS wavelength range, so PACS was more sensitive to

faint debris disks than previous instruments. This allowed for detection of fainter

systems that have a lower dust density, and therefore are closer analogs to the more

sparse Solar System Kuiper belt. The addition of longer wavelength data from

PACS at 100 and 160µm and from SPIRE at 250, 350, and 500µm is helpful in

characterizing the cold dust grains in these systems.

Herschel had several large Open Time Key Programmes (OTKP) to survey debris

disks. DUst around NEarby Stars (DUNES; Eiroa et al. 2013) surveyed all F, G, and

K type stars within 20 pc and found 20.2 ± 2% harbored detectable debris disks.

Disc Emission via a Bias-free Reconnaissance in the IR and Sub-mm (DEBRIS)

conducted a flux-limited survey of nearby stars (A through M type). Both surveys

were able to resolve several disks, allowing for a more detailed modeling of those

systems (e.g. Booth et al. 2013; Löhne et al. 2012; Marshall et al. 2011).

The Herschel OTKP GAS in Protoplanetary Systems (GASPS; Dent et al.
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2013) was the only one to specifically target young debris disks. The GASPS survey

targeted young nearby star clusters with well determined ages ranging from 1-30

Myr. The survey aimed to study the evolution of gas and dust over the transition

from a gas-rich protoplanetary disk to a gas-poor debris disk.

The survey consisted of PACS photometry at 70 and 160µm (plus some 100µm

data) with later follow-up of the 160µm detected debris disks with the SPIRE

instrument at 250, 350, and 500µm. A few of the brighter targets were chosen to

search for gas. The PACS Integral Field Spectrometer (IFS) was used to measure

the far-IR fine structure cooling lines of [C II] (157.7µm) and [O I] (63.2µm).

The 24 debris disks in the sample come from four associations with ages ∼ 10 - 30

Myr, the TW Hydrae Association (TWA), the β Pictoris Moving Group (BPMG),

Upper Scorpius (UpSco), and the Tucana-Horologium Association (Tuc-Hor). From

these four associations, 67 stars were chosen for having either a known debris disk,

or no known IR emission. These targets are listed in Table 1.1. Any primordial

disks in these associations were removed from the sample. Additionally, four field

stars with debris disks were also observed by GASPS because they are bright, well

known targets in the GASPS age range. These include HD32297 (Donaldson et al.

2013), 49 Ceti (Roberge et al. 2013), HR1998 and HD158352 (Meeus et al. 2012).

These targets were analyzed separately because their age estimate are less precise

than those in stellar associations.

This dissertation focuses on characterizing the properties of dust in young (∼ 10-

30 Myr) debris disks. These young disks are likely sites of ongoing terrestrial planet

formation as planetesimals are accreted by large bodies. By studying the dust, we

learn about the population of unseen planetesimals that produce the dust in mutual

collisions. In Chapter 2, I discuss our observations and modeling of debris disks in

the 30 Myr association, Tucana-Horologium. Chapter 3 presents an expanded ob-
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servational sample of 10-30 Myr disks, and I analyze trends in the data. In Chapter

4, I present more detailed modeling of one well observed 30 Myr-old debris disk,

HD32297. The wealth of information on this disk allows us to constrain the dust

composition from the SED. In Chapter 5, I use a new coronagraphic spectroscopy

technique to observe the HD32297 disk with HST to look for compositional changes

with distance from the star.

Table 1.1: GASPS Debris Disk Sample

Target Association Stellar Spectral IR

Distance (pc) Type Excess

AT Mic BPMG 10.2 M4.5e N

CD-64 1208 BPMG 36 M0 or K7 N

GJ 3305 BPMG 30 M0.5 N

HD 139084A/B BPMG 40 K0V N

HD 146624 BPMG 43 A0V N

HD 164249 BPMG 47 F5V Y

HD 172555 BPMG 29 A5IV/V+K7 Y

HD 174429 BPMG 50 K0Vp N

HD 181296 BPMG 48 A0Vn+M7 Y

HD 181327 BPMG 51 F5/F6V Y

HD 199143 BPMG 48 F8V N

HD 203 BPMG 39 F2IV Y

HD 29391 BPMG 30 F0V+M0.5 N

HD 35850 BPMG 27 F7V Y

HD 45081 BPMG 39 K6/7 N

HIP 10679/80 BPMG 34 G2V Y

HIP 11437 BPMG 42 K8 Y

HIP 12545 BPMG 41 M0 N

GSC 8056-482 Tuc-Hor 25 M3Ve N

HD 105 Tuc-Hor 40 G0V Y

HD 12039 Tuc-Hor 42 G4V Y

HD 1466 Tuc-Hor 41 F9V Y

HD 16978 Tuc-Hor 47 B9V N

HD 202917 Tuc-Hor 46 G5V Y

Continued on next page
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Table 1.1 continued

Target Association Stellar Spectral IR

Distance (pc) Type Excess

HD 224392 Tuc-Hor 49 A1V N

HD 2884 Tuc-Hor 43 B9V N

HD 2885 Tuc-Hor 53 A2V N

HD 3003 Tuc-Hor 46 A0V Y

HD 30051 Tuc-Hor 58 F2/F3IV/V Y

HD 3221 Tuc-Hor 46 K5V N

HD 44627 Tuc-Hor 46 K2V N

HD 53842 Tuc-Hor 57 F5V N

HD 55279 Tuc-Hor 64 K3V N

HIP 107345 Tuc-Hor 42 M1 N

HIP 3556 Tuc-Hor 39 M1.5 N

TWA02AB TWA 52 M0.5 N

TWA05Aab TWA 50 M1.5 N

TWA07 TWA 38 M1 Y

TWA10 TWA 57 M2.5 N

TWA11 TWA 67 A0 Y

TWA12 TWA 32 M2 N

TWA13AB TWA 38 M2e N

TWA16 TWA 66 M1.5 N

TWA21 TWA 69 K3 N

TWA23 TWA 37 M1 N

TWA25 TWA 44 M0 N

1RXSJ160044.7-234330 UpSco 145 M2 N

HIP76310 UpSco 145 A0V Y

HIP77815 UpSco 145 A5V N

HIP77911 UpSco 145 B9V Y

HIP78099 UpSco 145 A0V N

HIP78996 UpSco 145 A9V Y

HIP79156 UpSco 145 A0V Y

HIP79410 UpSco 145 B9V Y

HIP79439 UpSco 145 B9V Y

HIP79878 UpSco 145 A0V Y

Continued on next page
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Table 1.1 continued

Target Association Stellar Spectral IR

Distance (pc) Type Excess

HIP80088 UpSco 145 A9V Y

HIP80130 UpSco 145 A9V N

USco J160210.9-200749 UpSco 145 M5 N

USco J160245.4-193037 UpSco 145 M5 N

USco J160801.4-202741 UpSco 145 K8 N

Usco J153557.8-232405 UpSco 145 K3 N

Usco J154413.4-252258 UpSco 145 M1 N

Usco J160108.0-211318 UpSco 145 M0 N

Usco J160654.4-241610 UpSco 145 M3 N

Usco J160856.7-203346 UpSco 145 K5 N

Usco J161402.1-230101 UpSco 145 G4 N
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Chapter 2

Absorption and Scattering of

Radiation by Dust Grains in

Debris Disks

2.1 Optical Constants

The response of a material to an applied electric field is characterized by the mate-

rial’s dielectric function, ε, also called the permittivity. In an insulating material,

like a silicate grain, charges are not free like in a conductor, but can only shift

slightly when subjected to an electric field, i.e. the material is polarized. The di-

electric function measures how the electric field interacts with a medium and how

the electric field is affected in turn.

The dielectric function is complex (ε = ε′ + iε′′), where the imaginary part, ε′′,

describes how a wave is attenuated as it propagates through a medium, and the

real part, ε′, describes the phase velocity. The dielectric function is related to the

complex index of refraction, m, as m =
√
ε/ε0, where ε0 is the permittivity of free
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space. The complex functions m and ε are referred to as optical constants, though

they are not constant, but vary with wavelength.

To describe the absorption and scattering of dust grains, we start by defining an

efficiency factor, Q, where Qabs is the absorption efficiency of a dust grain, Qsca is

the scattering efficiency, and Qext = Qsca+ Qabs is the total extinction efficiency. Q

is a dimensionless factor that quantifies the efficiency of the grain’s absorption or

scattered compared to perfect absorption or scattering (Q = 1). For convenience,

we will also define the factor, x = 2πa/λ, the grain size relative to the wavelength

of the photons in question.

There are two important limits for Q, one where the grain size is small com-

pared to the wavelength (x << 1) and one where the grains are much larger than

the wavelength (x >> 1). In the first limit, where grains are small compared to

the wavelength, the efficiencies can be calculated with Rayleigh-Gans theory, and

approximately come out to

Qsca =
8

3
x4

∣∣∣∣m2 − 1

m2 + 2

∣∣∣∣2 , Qabs = 4x Im

{
m2 − 1

m2 + 2

}
. (2.1)

If (m2− 1)/(m2 + 2) is a weak function of wavelength, then Qsca and Qabs vary with

wavelength as

Qsca ∝
1

λ4
Qabs ∝

1

λ
. (2.2)

Short wavelengths are more efficiently scattered and absorbed, which is why ISM

extinction from interstellar dust grains reddens obscured sources.

In the limit of large x (i.e. large grains, small wavelengths), grains are essentially

opaque and act more like blackbodies (Qsca,abs → 1). In the limit of small x (i.e.

small grains, long wavelengths), Qabs can often be approximated as a power-law

with wavelength

Qabs = Q0

(
λ

λ0

)−β
. (2.3)
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Figure 2.1: Absorption efficiency factor, Qabs, for various complex values of m as

a function of |m− 1|x. As |m− 1|x→∞, Qabs → 1. For small values of x, Qabs

is well described by a power-law. Figure 22.1 from Draine (2011).

This is the motivation for the modified blackbody function introduced in Section

1.3.3. For grains with sizes comparable to the wavelength, the absorption and

scattering efficiencies can be calculated more accurately with Mie theory (Mie 1908).

Mie theory gives accurate solutions to Maxwell’s equations for the assumptions of

spherical and homogeneous grains. Figure 2.1 shows Qabs calculated with Mie theory

for several different complex values of m.

Optical constants are determined experimentally by measuring transmission, re-

flectance and refraction angles at a range of wavelengths. Advancements in this field

were led by Draine and Lee (1984) for silicates and graphite and improved upon by

Laor and Draine (1993), and Weingartner and Draine (2001). Optical constants for

other common grain compositions such as water ice and organic compounds have
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Figure 2.2: Extinction efficiency factor, Qext, for spherical astrosilicate grains of

various sizes ranging from 0.01µm (small x) to 10µm (large x) as a function

of wavelength. Small silicate grains (. 1µm) show strong features at 9.7 and

18µm. Once grains reach larger sizes (& 1µm), the grains become opaque at

these wavelengths and the silicate features disappear. Figure 22.6 from Draine

(2011).

also been measured.

There are a few spectral features common to astrophysical dust grains, such as

those in the ISM. Small silicate grains show strong absorption features at 9.7 and

18µm. For a large grain (& 1µm), these features are absent because the grain itself

is optically thick at these wavelengths. Figure 2.2 shows the extinction efficiency,

Qext, for astronomical silicate grains of different sizes vs. wavelength. Small grains

(< 1µm) show strong absorption features while the largest grains (∼ 10µm) are

optically thick (Qsca = Qabs = 1) up to wavelengths of tens of microns.

Polycyclic Aromatic Hydrocarbons (PAHs) also show a number of features at
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3.3, 6.2, 7.7., 8.6, 11.3, and 12.7µm. ISM extinction curves show a strong feature

at 2175Å possibly due to graphite. Some of these features, most notably the silicate

features, are commonly seen in primordial disks. Although a few debris disks do

have silicates features (e.g. β Pic; Telesco and Knacke 1991), most do not. This is

likely because grains have grown too large in typical debris disks.

2.2 Thermal Equilibrium

Debris disks are optically thin, so we can ignore effects such as extinction and

scattering off multiple grains. To characterize the thermal emission of a dust grain in

a debris disk, we only have to calculate the absorption and re-emission by individual

grains depending on their size, distance from the star, and their optical constants.

We will assume spherical, homogeneous grains so we can use Mie theory to calculate

the absorption and scattering efficiencies of the grains from their optical constants.

Dust grains are heated by UV and visible radiation from the central star and

cool through thermal emission in the infrared. Over time, a grain of size, a, and

distance, r, from the star will reach an equilibrium temperature where the absorbed

energy is balanced by the emitted.

A spherical grain with radius, a, absorbs starlight over a projected cross-section,

πa2. The stellar flux, F∗(ν), incident on the grain depends not only on the spectral

type of the star, but also on the distance between the grain and the star, r, as

F∗ ∝ 1/r2. The rate of energy absorbed by the dust grain is then(
dE

dt

)
abs

=

∫
πa2Qabs(ν, a)F∗(ν) dν. (2.4)

The absorbed energy will heat the dust grain and it will emit thermally in all

directions over its surface area, 4πa2. The flux of the thermal emission of the grain

can be described by the flux of a blackbody with dust temperature, Td, modified by
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the efficiency of the grain compared to a blackbody, Q. This gives a total rate of

emitted energy as (
dE

dt

)
emit

=

∫
4πa2Qabs(ν, a) πBν(Td) dν. (2.5)

Equating these two expressions gives us the equation for the thermal equilibrium

of the dust grain∫
Qabs(ν, a)F∗(ν) dν =

∫
4π Qabs(ν, a)Bν(Td) dν. (2.6)

For a given grain size, a, and distance, r, Equation 2.6 can be solved to get the

equilibrium grain temperature. If Qabs does not depend on ν (e.g. blackbody, Qabs =

1), then Equation 2.6 is trivial to solve. If Qabs does not have a simple analytical

form, then Td can be solved iteratively.

2.3 Radiation Pressure

Radiation pressure can have a large effect on a debris disk’s shape and the dust

grain population. If a dust grain is small enough (i.e. it has a large surface area-

to-mass ratio), the force of a star’s incident radiation can push the grain out of the

system. Slightly larger grains will remain bound to the system, but their orbits will

be perturbed outwards. Figure 2.3 from Krivov (2010) illustrates how the structure

of a disk is affected by radiation pressure. Grains produced in a planetesimal belt

will spread outwards over time and grains below a certain size will be lost to the

system.

The repulsive force of a star’s radiation is given by

~Frad =
L∗A

4π c r2
Qpr r̂, (2.7)

where A is the cross-sectional area of the grain, L∗ is the star’s luminosity, c is the

speed of light, and r is the distance between the grain and the star. Qpr is the
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Figure 2.3: Effect of radiation pressure on a dust grain for different values of β,

the ratio between radiation pressure and gravity. Left: Orbits of grains as a

function of β assuming an initially circular orbit. Grains with β < 0.5 will remain

bound to the star on elliptical orbits, and grains with β > 0.5 will be ejected

from the system. Right: A diagram of how grains with different β values will be

distributed in the disk. Figure 1 from Krivov (2010).

radiation pressure efficiency, which includes the effects from both absorption and

scattering, and ranges from 0 (no absorption or scattering) to 2 (backscattering).

Qpr effectively measures the transfer of momentum from the radiation to the grain.

The force of radiation pressure is proportional to the cross-sectional area of the

grain the starlight is hitting, which for a spherical grain of radius, a, is πa2. The

gravitational force on a spherical grain, on the other hand, is proportional to the

grain’s mass, m = 4πρ a3/3. Therefore, the ratio of the force of radiation pressure

to the gravitational force is inversely proportional to the grain size – smaller grains

are blown out more easily.

To calculate the smallest grain size that will be bound to the system, we define

the parameter, β, as the ratio of the radiation pressure, Frad, to the force of gravity,

Fgrav:

β =
Frad
Fgrav

=
3L∗Qpr

16πacGM∗ρ
. (2.8)
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In the case of a perfect absorber (Qpr = 1), Equation 2.8 can be written as

β = 0.574

(
L∗
L�

)(
M�
M∗

)(
1 g cm−3

ρ

)(
1µm

a

)
(2.9)

(Burns et al. 1979).

We can also use β to define the effective gravitational force

~Feff = −GM∗m
r2

(1− β) r̂. (2.10)

For a grain to escape the system, the magnitude of the grain’s kinetic energy must

exceed its effective potential energy

1

2
mv2 >

GM∗m

r
(1− β), (2.11)

where a grain on an initially circular orbit has a velocity v2 = GM∗/r. This gives

β > 0.5 as the condition for a spherical grain on a circular orbit to escape the system

(see also Figure 2.3). Equation 2.9 can then be used to calculate the grain size this

corresponds to, the so-called “blowout size”. This blowout size increases with the

luminosity of the central star.

Grains smaller than the blowout size are not expected to be present in a debris

disk. However, the calculation of the blowout size presented above is only an ap-

proximation. We made several assumptions in the derivation, including spherical

grains, circular orbits, and blackbody grains. Actual small dust grains are likely

non-spherical and inefficient absorbers compared to a blackbody. This can lead to a

large difference between the calculated blowout size and the grain size derived from

the SED.
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2.4 SED modeling code for optically thin disks

Our SED modeling code works by calculating the flux emitted by dust grains of

size, a, in a thin ring of width, dr, at distance, r, from the star and then integrating

over grain size and distance to calculate the flux from the entire disk. For a grain of

size, a, at location, r, the equilibrium temperature, Td, is calculated from Equation

2.6. As Qabs is not a simple function of λ, the equilibrium temperature is calculated

iteratively. A grain of size, a, and temperature, Td, has a luminosity of

Lgrain(ν) = 4πa2Qabs(ν, a) πBν(Td). (2.12)

The density of dust grains with size, a, in a thin ring at distance, r, is a function

of the disk surface density, Σ(r), and the grain size distribution, dn(a). This gives

a total luminosity of the ring of

Lring(ν) ∝ 2πrΣ(r) dr · 4πa2Qabs(ν, a)πBν(Td) dn(a). (2.13)

The total flux from the entire disk is calculated by integrating Equation 2.13 over

grain size and disk radius

Ltotal(ν) ∝
∫ rmax

rmin

2πrΣ(r) dr

∫ amax

amin

4πa2Qabs(ν, a) πBν(Td) dn(a). (2.14)

The disks fit with our SED modeling code in Chapters 3 and 5 are characterized

by three geometrical parameters and three dust grain parameters. The geometry is

characterized by an inner disk radius, an outer disk radius, and a power-law surface

density decreasing with increasing disk radius. The grains have a minimum grain

size, a maximum grain size and a power-law grain size distribution that decreases

with increasing grain size. Disks are thought to have minimum grain sizes close to

the blowout size, but no actual maximum grain size. For computational efficiency,

we fix the maximum grain size to a value beyond the point where grains have a
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significant contribution to the far-IR SED, here 1 mm. The mass of the disk in

grains smaller than amax is given by

Mdisk =

∫ rmax

rmin

Σ(r) 2πr dr

∫ amax

amin

ρ
4π

3
a3 dn(a) , (2.15)

where ρ is the density of the dust grains, assumed to be constant with grain size.

2.5 Scattered light

2.5.1 Phase function

Unlike the thermal emission, scattering off dust grains can be highly anisotropic.

Small dust grains can be highly forward (or back) scattering. Therefore, to calculate

the scattered light of a debris disk, we need to know how the scattered light is

angularly distributed.

The phase function, Φ(φ), characterizes the angular distribution of scattered

light as a function of φ, the angle between the star and the observer, as

Φ =
1

Qsca

dQsca

dΩ
. (2.16)

The integration of the phase function over a sphere is equal to unity (
∫

Φ dΩ = 1),

and the phase function for isotropic scattering has no dependence on angle (Φ =

1/4π). The first moment of the phase function is a measure of the asymmetry

between forward and backscattering and is given by

〈cosφ〉 =

∫
cosφΦ(φ, λ) dΩ. (2.17)

Henyey and Greenstein (1941) came up with an analytic function to model

anisotropic scattering of dust grains. Their phase function is often used characterize

the angular distribution of scattered light for dust grains in various astrophysical
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Figure 2.4: The Henyey-Greenstein phase function as a function of angle for sev-

eral values of the anisotropy factor, g, from 0 from 0.5. As g grows, the phase

function becomes more forward scattering. Negative values of g are backscatter-

ing.

situations. Their function takes the form

Φ(φ) =
1

4π

1− g2

(1 + g2 − 2gcosφ)3/2
, (2.18)

where g = 〈cosφ〉. The parameter g ranges from -1 (pure backscattering) to 1

(pure forward scattering) with g = 0 for isotropic scattering. Figure 2.4 shows the

Henyey-Greenstein phase function for a few different values of g.
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2.5.2 Projection of a 3D inclined disk

To produce a model of an inclined scattered light disk, we need to calculate the

projected image of a three-dimensional disk onto the two-dimensional plane of the

sky. We start by defining two coordinate systems, the observer’s and the disk’s.

The observer’s coordinate system is defined by the plane of the sky, x and y, and

the line-of-sight direction, l. The disk’s coordinate system, shown in Figure 2.5, is

defined by xdisk, ydisk, and zdisk in cartesian coordinates or rdisk, θdisk, and zdisk in

cylindrical coordinates. The origin of both coordinate systems is the central star.

The two coordinate systems are inclined by an angle, i, which is a rotation around

the xdisk axis given by

y = ydisk cos i− zdisk sin i (2.19)

l = ydisk sin i+ zdisk cos i. (2.20)

For simplicity, we assume that the x-axis is aligned with the xdisk axis.

For any point in the disk, the amount of light scattered towards the observer is

determined by the phase function and the angle, φ, between the line-of-sight direc-

tion and the central star (see Figure 2.5). The angle φ is given by φ = cos−1(l/dstar)

where dstar is the distance from the grain to the star (d2
star = x2

disk+y2
disk+z2

disk). The

distance, l, given by Equation 2.20, can also be written in cylindrical coordinates

with the relation ystar = rdisk sin θdisk giving a final value for φ of

φ = cos−1

(
rdisk sin θdisk sin i+ zdisk cos i

dstar

)
. (2.21)

For each point in the disk in (x, y, l) space, the intensity is given by

I3D(x, y, l) ∝ ρ(x, y, l)Φ(φ(x, y, l))

d2
star

, (2.22)

where ρ is the dust density at (x, y, l) and Φ is the phase function. To get the
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Figure 2.5: Coordinate system used from scattered light models for the observer

(x, y, l) and the disk (xdisk, ydisk, zdisk). The two coordinate systems are inclined

by an angle, i, rotated around the x=xdisk axis. The position angle of the disk

is already assumed to be aligned along the observer’s x-axis. The angle between

the observer and the star, φ, is given by φ = cos−1(l/dstar).

projected image on the plane of the sky, Equation 2.22 is integrated along the line

of sight.
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Chapter 3

Herschel PACS Observations and

Modeling of Debris Disks in the

Tucana-Horologium Association

3.1 Introduction

Debris disks are the last stage of circumstellar disk evolution, in which the gas

from the protoplanetary and transitional disk phases has been dissipated and the

dust seen comes from collisions between planetesimals. In the youngest debris disks,

. 100 Myr-old, terrestrial planets may still be forming (Kenyon and Bromley 2006).

Giant planets must form before the gas dissipates; their gravitational interactions

with planetesimals and dust can leave signatures in debris disks. Cold debris disks

may be Kuiper-belt analogs, signaling the location and properties of planetesimals

remaining in the disk.

To be suitable for life, terrestrial planets in habitable zones must have volatiles

such as water brought to their surfaces from beyond the ice line. Planetesimals in
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Kuiper Belt-like debris disks may provide this reservoir of volatiles (Lebreton et al.

2012). We do not yet have the capability to detect the planetesimals in these disks,

but we can detect the smaller dust grains. These dust grains are believed to be

produced through the collisions of the larger planetesimals, and therefore are likely

to have similar compositions to the larger undetected bodies. The properties and

locations of the dust grains in Kuiper Belt analogs can provide clues to the properties

of the hidden planetesimals. Additionally, dust structures in the disk may point to

unseen exoplanets (e.g. β Pic b; Lagrange et al. 2010).

To measure the cold dust in the outer regions of debris disks, we need great

sensitivity at far-infrared wavelengths where the thermal emission from the cold

dust grains peaks (≥ 70µm). The Herschel Space Observatory (Pilbratt et al. 2010)

provides a unique opportunity for sensitive debris disk surveys. Herschel’s PACS

instrument (Poglitsch et al. 2010) is sensitive to the cold dust with a wavelength

range of 55 − 210µm. Additionally, Herschel’s spatial resolution is almost 4 times

better than Spitzer at similar wavelengths, and therefore reducing confusion with

background galaxies and interstellar cirrus and making it easier for Herschel to

detect faint, cold debris disks.

In this chapter, we present results of a sensitive Herschel debris disk survey in

the 30-Myr-old Tucana-Horologium Association. This work is part of the Herschel

Open Time Key Programme “Gas in Protoplanetary Systems” (GASPS; Dent et

al. in prep, Mathews et al. 2010). The GASPS survey targets young, nearby star

clusters with well determined ages, spread from 1-30 Myr. This spread of ages covers

the stages of planet formation from giant planet formation (∼ 1 Myr; Alibert et al.

2005) to the late stages of terrestrial planet formation (10-100 Myr; Kenyon and

Bromley 2006). The targets in each group were chosen to span a range of spectral

types from B to M.
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The 30 Myr-old Tucana-Horologium Association is the oldest in the GASPS sur-

vey. The Tucana-Horologium Association, discovered independently by Zuckerman

and Webb (2000) and Torres et al. (2000), is a group of ∼ 60 stars with common

proper motion and an average distance of 46 pc (Zuckerman and Song 2004). About

∼ 1/3 of the targets have debris disk systems known from previous Spitzer surveys

(Hillenbrand et al. 2008; Smith et al. 2006).

We obtained Herschel PACS photometry of the seventeen GASPS targets in the

Tucana-Horologium Association. We also obtained PACS spectra for two of the

targets. Previously unpublished Spitzer IRS spectra for three targets are presented.

In Section 3.2, we present our methods and results of data reduction and aperture

photometry. In Section 3.3, we fit blackbody and modified blackbody models to the

detections and upper limits to determine dust temperatures and fractional luminosi-

ties. We further analyze some of the disks with our optically thin dust disk model

in Section 3.4. Additionally, we discuss the detection of a marginally resolved disk

in our sample in Section 3.5 and present conclusions in Section 3.6.

3.2 Observations and Data Reduction

The stellar properties of the seventeen Tucana-Horologium stars observed are listed

in Table 3.1. These stars have spectral types ranging from B9-M3 and distances

of 25-64 pc. PACS scan map observations were obtained for all seventeen Tucana-

Horologium targets at 70 and 160µm. Additional observations at 100µm were taken

for five targets. The stars were observed at two scan angles, 70 deg and 110 deg. The

two scans were combined to reduce the excess noise caused by streaking in the scan

direction, as suggested by the Herschel PACS Instrument Calibration Centre (ICC)1.

Each scan map was executed with the medium scan speed (20′′s−1) and consisted
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of 10 legs with scan lengths of 3′ and scan leg separation of 4′′. The number of

repetitions varied from 1 to 4 based on the expected flux density of the star. The

on-source time for each observation is given in Table 3.2. Two targets, HD105 and

HD3003, were also observed in the PACS LineScan mode at 63µm and 190µm,

targeting the OI fine structure line and DCO+ respectively.

Table 3.1: Stellar Properties in the 30 Myr-old Tucana-Horologium Association

Star R.A. Dec. Spectrala T∗
b Distancec

(J2000) (J2000) Type (K) (pc)

HD2884d 00:31:32.67 -62:57:29.58 B9V 11250 43± 1

HD16978 02:39:35.36 -68:16:01.00 B9V 10500 47± 1

HD3003d 00:32:43.91 -63:01:53.39 A0V 9800 46± 1

HD224392 23:57:35.08 -64:17:53:64 A1V 9400 49± 1

HD2885d 00:31:33.47 -62:57:56.02 A2V 8600 53± 10

HD30051 04:43:17.20 -23:37:42.06 F2/3IV/V 6600 58± 4

HD53842 06:46:13.54 -83:59:29.51 F5V 6600 57± 2

HD1466 00:18:26.12 -63:28:38.98 F9V 6200 41± 1

HD105 00:05:52.54 -41:45:11.04 G0V 6000 40± 1

HD12039 01:57:48.98 -21:54:05.35 G3/5V 5600 42± 2

HD202917 21:20:49.96 -53:02:03.14 G5V 5400 46± 2

HD44627d 06:19:12.91 -58:03:15.52 K2V 5200 46± 2

HD55279 07:00:30.49 -79:41:45.98 K3V 4800 64± 4

HD3221 00:34:51.20 -61:54:58.14 K5V 4400 46± 2

HIP107345 21:44:30.12 -60:58:38.88 M1 3700 42± 5

HIP3556 00:45:28.15 -51:37:33.93 M1.5 3500 39± 4

GSC8056-482 02:36:51.71 -52:03:03.70 M3Ve 3400 25

a Spectral types listed are from the SIMBAD Astronomical Database
b Calculated from stellar modeling. See Section 3.3
c Distances from the Hipparcos Catalog (Perryman and ESA 1997)
d Binary or multiple star system

1PICC-ME-TN-036: http://herschel.esac.esa.int/twiki/pub/Public/

PacsCalibrationWeb/PhotMiniScan ReleaseNote 20101112.pdf
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Table 3.2: Herschel PACS Photometry Results

Star Wavelength Obs. Flux Stellar Flux On-source

(µm) (mJy) (mJy) Time (s)

Debris Disks

HD105 70 128.3± 7.0 3.1 72

100 151.2± 5.7 1.7 144

160 81.2± 12.3 0.6 144

HD3003 70 59.7± 3.8 7.6 72

100 19.0± 2.4 4.1 144

160 < 18.2 1.5 144

HD1466 70 13.0± 0.9 2.8 720

160 < 10.6 0.6 720

HD30051 70 23.4± 1.1 3.2 720

160 16.8± 2.4 0.6 720

HD202917 70 33.9± 1.6 1.6 360

100 29.9± 2.5 0.8 144

160 17.7± 3.8 0.3 360

HD12039 70 10.5± 0.8 2.3 720

160 < 15.5 0.5 720

Non-Excess Stars

HD2884 70 7.7± 1.4 12.1 360

160 < 18.6 2.3 360

HD16978 70 15.4± 1.7 15.8 144

160 < 14.4 3.1 144

HD224392 70 8.6± 1.1 8.7 540

160 < 10.0 1.7 540

HD2885 70 16.0± 1.4 16.5 360

160 < 8.5 3.3 360

HD53842 70 9.9± 3.3 2.3 72

100 < 9.2 1.3 144

160 < 15.4 0.5 144

HD44627 70 < 3.5 1.4 360

160 < 10.3 0.3 360

HD55279 70 < 3.1 0.9 360

160 < 8.5 0.1 360

Continued on next page
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Table 3.2 continued

Star Wavelength Obs. Flux Stellar Flux On-source

(µm) (mJy) (mJy) Time (s)

HD3221 70 < 3.7 2.4 360

160 < 10.4 0.4 360

HIP107345 70 < 3.3 0.9 360

160 < 10.8 0.2 360

HIP3556 70 < 16.5 1.3 72

100 < 16.9 0.7 144

160 < 17.4 0.2 144

GSC8056-482 70 < 3.6 1.6 360

160 < 20.4 0.3 360

3.2.1 Photometry

The data were reduced with HIPE 7.2 (Ott 2010) using the standard reduction

pipeline. The final maps have pixel scales of 3.2/3.2/6.4′′pixel−1 in the 70/100/160µm

images respectively, corresponding to the native pixel scales of the PACS detec-

tors. The two scans were reduced separately, then averaged together. The flux

values were measured using an IDL aperture photometry code with apertures of

5.5/5.6/10.5′′ for the 70/100/160µm images respectively, as recommended for faint

sources. Aperture corrections were applied based on the encircled energy fraction

from PACS observations of Vesta provided by the Herschel PACS ICC2. The sky

annulus for error estimation was placed 20-30′′ away from star center for the 70 and

100µm images and 30-40′′ away for the 160µm images. For three of the targets,

HD2884, HD2885 and HD53842, the fields were contaminated by nearby stars and

background galaxies, so the sky annulus was offset to a nearby clean field.

The RMS pixel uncertainty, σpix, was estimated by calculating the standard devi-

2PICC-ME-TN-037: http://herschel.esac.esa.int/twiki/pub/Public/

PacsCalibrationWeb/pacs bolo fluxcal report v1.pdf
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ation of the pixels in the sky annulus. The total statistical error in the measurement

is given by

σtot =
σpix

αcorrxcorr

√
nap

(
1 +

nap
nsky

)
, (3.1)

where αcorr is the aperture correction factor to correct for the flux lost from using a

small aperture, xcorr is the correlated noise correction factor2 (0.95 at 70 and 100µm,

0.88 at 160µm) that accounts for the noise between pixels for our given choice of pixel

size created while processing the projected sky map, and nap and nsky are the number

of pixels in the aperture and annulus respectively. An absolute calibration error was

also added in quadrature with the statistical error to give the total uncertainty

reported in Table 3.2. The absolute calibration errors given by the Herschel PACS

ICC are 2.64/2.75/4.15% for the 70/100/160µm images respectively2. Upper limits

for all non-detections were determined using the 3σ errors from the same aperture

photometry method as above.

The PACS photometry fluxes and upper limits are listed in Table 3.2. Six of the

seventeen targets were determined to have infrared excesses above the photosphere.

A significant excess is defined here as a 70µm photosphere-subtracted flux greater

than 3σ. One of our targets, HD2884, was previously suspected to have an infrared

excess (Smith et al. 2006). In the PACS data, this target seems to have less flux than

the expected photospheric value at 70µm. The Spitzer IRS spectrum also shows no

hint of an IR excess. Smith et al. (2006) notes the possibility of contamination of

HD2884 with a background galaxy, but could not separate the two sources with

Spitzer’s spatial resolution. Figure 3.1 shows the confused field of HD2884 observed

with Herschel and Spitzer at 70µm. Herschel’s improved spatial resolution allows

us to properly resolve the sources and avoid contamination. We determine that

HD2884 has no detectable debris disk.

HD53842 has a photosphere subtracted flux that is only 2.3σ above the noise at
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70µm. The Spitzer IRS spectrum from Moór et al. (2009) also shows a marginal

excess at 14-35µm but may suffer from contamination. The Spitzer 24µm image

shows two nearby stars within 15′′ whose Point Spread Functions (PSFs) appear to

overlap with that of HD53842. These sources are also seen in the PACS images (see

Fig. 3.2) and make an accurate determination of the flux difficult. We are unable

to confirm if HD53842 has a debris disk.

3.2.2 Spectroscopy

Two targets, HD105 and HD3003, were observed in the LineScan mode of the PACS

instrument. The lines targeted were [OI] at 63.185µm and DCO+ at 189.570µm.

The continuum detection limit was 202 mJy at 63µm. The photometry detection

at 70µm was below this limit for both HD105 and HD3003, and the noise levels

in the spectra are comparable to or larger than the flux at 70µm. Therefore, we

conclude that the continuum is not detected in these observations. There are also

no emission lines detected above the noise.

Upper limits to the line fluxes were calculated by integrating over a Gaussian

with a width equal to the instrumental Full-Width Half-Maximum (FWHM) and a

height given by the standard deviation of the noise, placed at the wavelength where

the line is expected. The upper limits are given in Table 3.3.

The three targets with previously unpublished Spitzer spectra (HD1466, HD2884

and HD3003) were observed with the IRS spectrograph (Houck et al. 2004), using

the Short-Low (5.2-14µm) and Long-Low modules (14-38µm; λ/∆λ ∼ 60). These

three systems were observed as part of the Spitzer GTO program 40651 (PI: J.

Houck). We carried out the bulk of the reduction and analysis of our spectra with

the IRS team’s SMART program (Higdon et al. 2004).
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Figure 3.1: The field of HD2884 and HD2885 at 70µm with Herschel (top) and

Spitzer (bottom). The better spatial resolution of Herschel allows the sources to

be cleanly separated and avoids contamination of photometry.
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Figure 3.2: The field of HD53842 at 70µm with Herschel. The star is barely

detected at 70µm (3σ detection). The nearby sources may have contaminated

the Spitzer IRS spectrum of HD53842.

Table 3.3: Herschel Spectroscopy: 3σ Line Upper Limits

Star Line Wavelength 3σ Upper Limit

(µm) (W/m2)

HD105 [OI] 63.185 < 9.63× 10−18

DCO+ 189.570 < 1.18× 10−17

HD3003 [OI] 63.185 < 1.43× 10−17

DCO+ 189.570 < 8.55× 10−18
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3.3 Blackbody and Modified Blackbody Fits

We constructed spectral energy distributions for all sources using data from Hippar-

cos, 2MASS, Spitzer (IRAC, IRS, and MIPS), AKARI, IRAS, the WISE prelimi-

nary release, and our new Herschel data. The SEDs of debris disk stars are shown

in Figure 3.3 and those of non-excess stars in Figure 3.4. The data used for these

figures are listed in Table 3.6. For each target, we fitted the stellar photosphere

with NextGen models of stellar atmospheres (Hauschildt et al. 1999). The best

fitting stellar model was determined through χ2 minimization with effective tem-

perature and the normalization factor as free parameters. The Spitzer IRS spectra

were binned to a resolution of ∆λ/λ ∼ 0.1 and only the data with λ > 8µm were

used to determine the fit of the excess.

For our six disk detections, we fitted the excess emission with a standard sin-

gle temperature blackbody model with two parameters, the temperature and the

fractional disk luminosity. This model is a simplified disk representation that as-

sumes all the dust is at the same temperature, and behaves like a perfect blackbody.

While this model is simple, it gives a good first estimate of the dust temperature

and abundance, and unlike more physical models, one can get a fit even with very

few data points. The best fit was determined through χ2 minimization. We also

calculated the goodness-of-fit for each best fitting model for comparison with more

detailed models described in Section 3.4. The goodness-of-fit, Q, is the probability

that a χ2 value this poor will occur by chance given the error in the data. Q is given

by the normalized incomplete gamma function

Q(a, x) =
Γ(a, x)

Γ(a)
; a =

N

2
x =

χ2

2
, (3.2)

where Γ(a, x) and Γ(a) are incomplete and complete gamma functions respectively,

and N is the number of degrees of freedom. Q varies from 0 to 1, with larger values
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Figure 3.3: Single temperature blackbody fits to the SEDs of the 6 debris disks in the sample. Filled circles are data from

the literature, open squares are the Herschel PACS data. The solid black curve is the fit to the stellar photosphere using the

NextGen models (Hauschildt et al. 1999). The red curve shows the best fitting single temperature blackbody model. The figure

label for each disk displays the best fitting temperature and the fractional IR luminosity LIR/L∗. The dashed red lines show

the best-fitting modified blackbody models. Available MIPS 70µm data are not plotted here, as they are consistent with the

PACS data, which have smaller uncertainties.
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indicating better fits. An acceptable model is one that has a value of Q & 10−3

(Press et al. 1992).

The Q values, however, are largely influenced by the IRS spectrum. The IRS

spectra have more data points compared to the few PACS photometry points. There-

fore, fits that may appear to be just as good, can have very different Q values if

the uncertainties in the IRS spectra are different. The point of the Q value is not

to compare the goodness-of-fit between disks, but to compare between models of a

given disk.

From the fits, we determined the disk temperatures and the fractional infrared

luminosities (LIR/L∗). For the remaining sources, we determined upper limits on

LIR/L∗ by fitting blackbody models to the flux upper limits. Upper limits on LIR/L∗

depend on temperature, so the largest LIR/L∗ value found assuming dust temper-

atures from 10-300 K was adopted. The results of the fits to the disks are given

in Table 3.4. The disks display a large range of temperatures and LIR/L∗ values,

showing no correlation with spectral type.

We also fit the disks with a modified blackbody model. This model assumes that

at longer wavelengths, the grains no longer emit as blackbodies, but instead the dust

emissivity is decreased by a factor (λ/λ0)−β for λ > λ0, due to a lower dust opacity

at longer wavelengths compared to a blackbody. Here λ0 = 2πablow, where ablow is

the blowout size due to radiation pressure. We do not have sub-mm or mm data

to constrain the parameter β, therefore we assume β = 1.0 for these models based

on previous measurements for debris disks (Dent et al. 2000; Nilsson et al. 2010;

Williams and Andrews 2006). ISM dust has β ≈ 2.0 (Boulanger et al. 1996), but

debris disks are expected to have lower values of β due to the presence of larger grains

(Draine 2006). The results of the modified blackbody fits are also shown in Table

3.4. The use of modified blackbody models shifts the characteristic temperatures

50



Wavelength ( Wavelength ( Wavelength (

Wavelength ( Wavelength ( Wavelength (

Wavelength ( Wavelength ( Wavelength (

Wavelength ( Wavelength (

µ µ µ

µ µ µ

µ µ µ

µ µ

m) m) m)

m) m) m)

m) m) m)

m) m)

F
lu

x
 (

Jy
)

F
lu

x
 (

Jy
)

F
lu

x
 (

Jy
)

F
lu

x
 (

Jy
)

F
lu

x
 (

Jy
)

F
lu

x
 (

Jy
)

F
lu

x
 (

Jy
)

F
lu

x
 (

Jy
)

F
lu

x
 (

Jy
)

F
lu

x
 (

Jy
)

F
lu

x
 (

Jy
)

HD3221

GSC8056−482HIP3556

HIP107345HD55279

HD224392HD16978

HD2885 HD44627HD53842

HD2884

100.000

10.000

1.000

0.100

0.010

0.001

1 10 100

100.000

10.000

1.000

0.100

0.010

0.001

1 10 100

10.000

1.000

0.100

0.010

0.001

1 10 100

10.000

1.000

0.100

0.010

0.001

1 10 100

1.000

0.100

0.010

0.001

1 10 100

1.000

0.100

0.010

0.001

1 10 100

1.000

0.100

0.010

0.001

1 10 100

1.000

0.100

0.010

0.001

1 10 100

0.100

0.010

0.001

1 10 100

1.000

0.100

0.010

0.001

1 10 100

1.000

0.100

0.010

0.001

1 10 100

Figure 3.4: Spectral energy distributions for the 11 stars that were not found to

have debris disks. The solid curve is the fit to the stellar photosphere using the

NextGen models (Hauschildt et al. 1999). Upper limits for LIR/L∗ are shown in

Table 3.4. Available MIPS 70µm data are not plotted here, as they are consistent

with PACS data for every source except HD2884, which lies in a confused field

(see Fig. 3.1). HD53842 has only a marginal detection of an excess at 70µm

and also lies in a confused field (see Fig. 3.2). Consequently, we are unable to

determine if HD53842 has a debris disk.
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Table 3.4: Model Fit Results

Debris Disks

Blackbody Fits

Star Temp (K) LIR/L∗ Q

HD105 49.7± 1.4 (2.59± 0.05)× 10−4 0.004

HD3003 207.9± 2.5 (1.21± 0.01)× 10−4 0.00

HD1466 145.5± 6.7 (7.21± 0.11)× 10−5 0.61

HD30051 57.8± 6.4 (3.27± 0.20)× 10−5 0.82

HD202917 80.5± 1.5 (2.50± 0.01)× 10−4 0.93

HD12039 111.6± 6.2 (6.55± 0.39)× 10−5 0.38

Modified Blackbody Fits

HD105 40.3± 1.2 (2.41± 0.90)× 10−4 0.11

HD3003 160.6± 1.6 (1.08± 0.01)× 10−4 0.00

HD1466 106.8± 4.3 (6.33± 0.03)× 10−5 0.002

HD30051 39.8± 2.8 (2.81± 0.05)× 10−5 0.82

HD202917 64.6± 1.1 (2.50± 0.01)× 10−4 0.13

HD12039 85.1± 3.7 (6.33± 0.33)× 10−5 0.43

Non-Excess Stars

Blackbody Modified Blackbody

LIR/L∗ LIR/L∗
HD2884 < 2.9× 10−6 < 6.7× 10−6

HD16978 < 1.9× 10−6 < 8.6× 10−7

HD224392 < 5.0× 10−6 < 1.6× 10−5

HD2885 < 2.7× 10−6 < 1.8× 10−5

HD53842 < 6.4× 10−5 < 2.9× 10−4

HD44627 < 1.9× 10−4 < 1.7× 10−4

HD55279 < 8.6× 10−4 < 2.5× 10−3

HD3221 < 2.4× 10−4 < 1.3× 10−3

HIP107345 < 8.4× 10−4 < 4.2× 10−4

HIP3556 < 1.2× 10−3 < 5.4× 10−4

GSC8056-482 < 1.2× 10−3 < 5.3× 10−4

to lower values, a trend which was also noticed by Carpenter et al. (2009). The

goodness-of-fit was improved for HD105, HD3003, and HD12039 with the use of the

modified blackbody model, but made worse for HD1466 and HD202917.

The blackbody and modified blackbody models provide a first look at the disk

properties. For example, disks with low characteristic temperature such as HD105,

52



HD30051, and HD202917, are likely to have large inner gaps and copious amounts

of cold dust far from the star. To test this idea, we need a more physical model of

the disk.

3.4 Dust Disk Model

To further investigate the disk properties, we fit the disks with an optically thin dust

disk model. Rather than assuming the grains to be perfect blackbodies, the dust

model assumes the grains have a particular emissivity that is dependent on the size

of the dust grains and the wavelength of radiation being absorbed or emitted. For

the Tucana-Horologium disks, we make the assumption that the grains are purely

silicate in composition, specifically, astronomical silicates (Draine and Lee 1984; Laor

and Draine 1993; Weingartner and Draine 2001). The poorly populated SEDs and

lack of resolved imaging prevents us from fitting more complex grain compositions.

The geometry of the disks is described by three parameters: the inner and outer

radius (rmin and rmax) and the radial surface density profile. The azimuthally sym-

metric radial surface density profile is characterized by a power-law with index q,

such that the surface density Σ varies with radius as Σ(r)dr ∝ rqdr. A power-law in-

dex of q = 0 is expected for a transport dominated disk, and an index of q = −1.5 is

expected for a collisionally dominated disk (Krivov et al. 2006; Strubbe and Chiang

2006).

The population of dust grains is also characterized by three parameters: the

minimum and maximum dust grain sizes in the disk (amin and amax), and the dis-

tribution of grains with sizes between amin and amax. The grain size distribution

is typically assumed to be a power-law with index κ such that the number density

varies with grain size a as n(a)da ∝ aκda, where a value of κ ∼ −3.5 is expected for
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a steady-state collisional cascade (Dohnanyi 1969).

As discussed in Section 2.4, the model iteratively determines the equilibrium

dust temperature at each radius for each grain size by balancing radiation absorbed

from the star with radiation re-emitted through the formula∫ ∞
0

Qabs(ν, a)

(
R∗
r

)2

Bν(Teff )dν =

∫ ∞
0

4Qabs(ν, a)Bν(Td(r, a))dν, (3.3)

where Bν(Teff ) is the blackbody flux coming from the surface of the star with

temperature Teff and radius R∗, Bν(Td(r, a)) is the blackbody flux radiating from

the dust grain of size a at a distance r away from the star, and Qabs(ν, a) is the

dust absorption coefficient calculated by Draine and Lee (1984) for an astronomical

silicate grain of size a. The total flux is then determined by summing up over all

radii and grain sizes according to the formula

Fν = A

∫ amax

amin

(
a

amax

)κ
da

·
∫ rmax

rmin

4πa2Qabs(ν, a)πBν(Td(r, a))2πr

(
r

rmin

)q
dr, (3.4)

where A is a normalization constant that includes the distance to the system and

the total amount of material in the disk.

3.4.1 Model Parameters

The Tucana-Horologium debris disks are faint (all are under 150 mJy at 70µm),

so the SEDs of these targets are not well sampled due to lack of detections at the

longer wavelengths. For this reason, we must fix some of the model parameters.

In particular, because of the lack of sub-mm and longer wavelength data, we are

unable to constrain parameters that affect this region of the SED, specifically cold

grains that are larger than 1 mm or farther out than ∼ 120AU. Therefore, we fix the

maximum grain size and the outer radius to these values. For HD202917, we fixed

54



the outer radius to 80 AU to be consistent with HST imaging (Krist 2007; Mustill

and Wyatt 2009). The radial surface density profile also cannot be constrained with

the current data. Hence we fix the power-law index of the radial density profile to

q = −1.5, the value expected for collisionally dominated disks.

The SEDs of HD105, HD3003, and HD202917 are populated enough to get well

constrained fits with only these three parameters fixed. However, HD1466 and

HD12039 were only detected at 70µm with PACS. The models for these disks were

further constrained by fixing the minimum grain size and the grain size distribution.

The grain size distribution was fixed to a power-law index of κ = −3.5, the value

expected for a steady-state collisional cascade, and the minimum grain size was fixed

to the expected blowout size for astronomical silicates. This is the size at which the

radiation pressure is half of the gravity; grains this size and smaller are ejected from

the system. The blowout size is calculated from the formula given in Backman and

Paresce (1993) as (
ablow
1µm

)
= 1.15

(
L∗
L�

)(
M�
M∗

)(
1g cm−3

ρ

)
(3.5)

assuming constant density, spherical grains produced from planetesimals on circular

orbits. This equation assumes that the grains are spherical, have a certain compo-

sition, all have the same density, and that the density is uniform throughout the

grain. For astronomical silicates, we assume a grain density of 2.5 g cm−3. This

simple equation provides a good estimate of the expected minimum grain size, but

it relies heavily upon many assumptions and must be treated solely as an estimate,

accurate perhaps to only an order of magnitude.
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3.4.2 Results

To determine the best model for each system, we compared a grid of models to the

SED and found the set of parameters that produced the χ2 minimum value. The

error of each fit parameter was determined from the 1σ confidence interval in the

χ2 distribution after fixing the other parameters to their best fit values. The best

fitting parameters and the errors are displayed in Table 3.5, and the best fitting

SED models are shown in Figure 3.5. The HD30051 disk could not be fit at all with

this model because its SED has too few data points, having not been known to have

a debris disk before Herschel.

Lower limits on the disk masses are also given in Table 3.5. These masses are

calculated by summing up the mass of silicate grains with an assumed uniform

density of 2.5 g cm−3, with sizes between amin and amax and disk radii between rmin

and rmax. The mass also depends on the normalization constant and the radial

density profile of the disk. It is a lower limit on the mass because it only takes

into account the dust smaller than 1 mm, and not larger pebbles and planetesimals

hidden in the disk.

HD105

HD105, a G0V star 40 pc away, has the largest IR excess in the PACS wavebands

of all the Tucana-Horologium disks in this sample, yet shows very little mid-IR ex-

cess in the Spitzer IRS spectrum. This disk was observed with Spitzer as part of

the Formation and Evolution of Planetary Systems (FEPS) Legacy Survey (Meyer

et al. 2006). Meyer et al. (2004) first fit the disk with models from Wolf and Hil-

lenbrand (2003) that used Draine and Lee (1984) grain emissivities for astronomical

silicates and graphite in ISM ratios and found an inner radius of 45 AU for a fixed
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Figure 3.5: Best fitting models for the five of the debris disks with well populated SEDs. The solid black lines shows the stellar

photospheres that are fit with the NextGen models (Hauschildt et al. 1999). The best fitting models of the disks are shown in

red. The best fitting model parameters are given in Table 3.5.
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minimum grain size of 5µm. They assumed a flat radial density profile (q=0), a

grain size distribution power-law index of κ = −3.5, an outer radius of 300 AU, and

a maximum grain size of 100µm.

Hollenbach et al. (2005) found an even lower χ2 value using the Wolf and Hillen-

brand (2003) models with a minimum grain size of 21µm and a lower inner radius

of 19 AU, but confirmed that the inner cavity must be ≥ 13 AU because of the lack

of IR excess at λ . 35µm. The Spitzer IRS spectrum also shows no evidence of gas

lines, and Hollenbach et al. (2005) determined the gas mass to be < 0.1 MJ between

10–40 AU for a constant surface density.

Later FEPS modeling by Hillenbrand et al. (2008) used multi-temperature black-

bodies to fit the HD105 disk, and found an inner radius of 36.8 AU. This is a lower

limit to the inner radius since the grains were assumed to be large blackbody grains.

Smaller grains could reach the same temperatures farther from the star.

The smaller error bars of the Herschel PACS measurements, and the addition of

the 100µm data point, better map the characteristic turnover point in the SED and

lessens the severity of the model degeneracy. Our results are consistent with those

of Meyer et al. (2004), Hollenbach et al. (2005), and Hillenbrand et al. (2008).

The lack of mid-IR excess in this disk indicates an absence of both small grains

and grains within a large inner cavity. The dust begins at about the distance of

the Solar System’s Kuiper belt (52 AU using our best fitting model) and extends

to some distance beyond (see Section 3.6 for an estimate of the outer radius of

HD105). The lack of detectable dust interior to this region may be due to one

or more planets orbiting inside this dust ring (Moro-Mart́ın and Malhotra 2005).

Apai et al. (2008) searched for massive planets in the HD105 disk using VLT/NACO

angular differential imaging and found none. However, the survey was only sensitive

to planets with masses > 6 MJ at distances > 15 AU.
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The minimum grain size for this disk (8.9µm) is much larger than the expected

blowout size of 0.5µm. This suggests either the calculation of the blowout size is

inaccurate, or the small grains are efficiently removed by some other mechanism.

The calculation of the blowout size is just an estimate with several assumptions

built in, such as grain density and composition, and a change in the assumptions

could lead to a drastically different blowout size. For instance, if the grains were

porous, they would be less massive at a certain size, and the larger grains could be

more easily blown out of the system.

HD202917

HD202917 is a G5V star 46 pc away. The disk was observed with Spitzer by Bryden

et al. (2006) and analyzed as part of the FEPS survey by Hillenbrand et al. (2008)

and Carpenter et al. (2008). Smith et al. (2006) fit the disk with a blackbody grain

model to get a lower limit on the disk inner radius. They found the inner radius

to be > 7.4 AU. Hillenbrand et al. (2008) fit a multi-temperature blackbody model

to the disk that gave an inner radius of 2.5 AU, also a lower limit. HD 202917 was

also resolved in scattered light by HST/ACS, giving a disk outer radius of R ≈ 80

AU (Krist 2007; Mustill and Wyatt 2009). For this reason, we fixed rmax = 80 AU

rather than the usual value of 120 AU.

The fit is not well constrained in amin, but the fit with the lowest χ2 value has

amin = 0.3µm, equal to the blowout size. We found the best fitting inner radius to

be 46 AU. This result is larger than the previous lower limits due to the presence of

small grains in the model. We find this disk to be consistent with a belt of material

between 45 and 80 AU.
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Table 3.5: Best Fitting Model Parameters

Target amin
a ablow amax

a κa rmin
a rmax

a qa Qb Mass (M⊕)c

HD105 8.9+11.1
−4.4 µm 0.5µm 1000µm −3.3+0.3

−0.4 52+36
−7 AU 120 AU -1.5 0.15 4.3× 10−4

HD202917 < 2.8µmd 0.3µm 1000µm −3.4± 0.1 46+9
−3 AU 80 AU -1.5 0.70 3.4× 10−4

HD3003 3.5+0.5
−0.3 µm 3.4µm 1000µm −4.4+0.1

−0.2 7.8+0.3
−0.2 AU 120 AU -1.5 8.0× 10−11 7.0× 10−6

HD12039 0.4µm 0.4µm 1000µm -3.5 14± 3 AU 120 AU -1.5 0.88 1.7× 10−4

HD1466 0.5µm 0.5µm 1000µm -3.5 7.8+2.1
−1.8 AU 120 AU -1.5 0.30 6.2× 10−5

a Model parameters

b Model goodness-of-fit

c Lower limit on dust mass is calculated from the model parameters

d Unconstrained parameter, limits given are 3σ confidence

Model parameters in italics are fixed
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HD3003

HD3003 is an A0V star with a warm disk first detected by IRAS (Oudmaijer et al.

1992). Smith et al. (2006) also observed the HD3003 disk with Spitzer MIPS at 24

and 70µm. Smith et al. (2006) modeled the disk with blackbody grains at a single

radius and found a dust temperature of 230 K at a radius of 6.7 AU. Smith and

Wyatt (2010) added unresolved ground based mid-IR photometry from TIMMI2,

VISIR, Michelle and TReCS and found a blackbody temperature of 265 K with a

radius of 4 AU. Smith and Wyatt (2010) also make the point that HD3003 is a

binary, and a disk of this temperature must be circumstellar not circumbinary in

order to be stable.

With the new PACS data, we found a lower blackbody temperature of 208 K.

This is still highest temperature of all the disks in the sample, implying the grains

are either very close to the star, or smaller than 1µm in size. But HD3003 is an A0

star, and has a blowout size of 3.4µm. Therefore, the temperature is likely due to

the distance from the star. Our model of the HD3003 disk gives an inner radius of

7.8 AU and a minimum grain size consistent with the estimated blowout size. The

goodness-of-fit is very small for HD3003, with Q = 8 × 10−11, despite reproducing

the PACS data quite well. This small value is driven mostly by the small error bars

on the Spitzer IRS spectrum. However, this goodness-of-fit is indeed larger than the

value found for the blackbody models.

The grain size distribution, however, departs from the expected shape. The

best fit grain size distribution power-law index value of κ = −4.4 is much steeper

than the κ = −3.5 value expected for a steady state collisional cascade. HD3003 is

the only binary system with a confirmed disk in the sample. The apparent binary

separation is ∼ 0.1′′ (Mason et al. 2001). If this projected separation were a true

binary separation, the companion would be about 4.6 AU from HD3003. Smith and

61



Wyatt (2010) suggest the binary must have a semi-major axis > 14.4 AU for the disk

to be stable. If the system is unstable rather than in steady state equilibrium, then

it could have a κ value very different from the steady state value. Other possibilities

are explored in Section 3.6.3.

HD12039

HD12039 is a G3/5V star 42 pc away with a debris disk first detected using data from

the FEPS Legacy Program (Hines et al. 2006). The FEPS team analyzed Spitzer

observations with IRAC, IRS, and MIPS (24, 70, and 160µm). The disk was not

detected with Spitzer at 70 and 160µm. A blackbody fit gave a characteristic disk

temperature of 110 K and a lower limit on the radius of 6 AU. Hines et al. (2006) also

fit the disk with the models of Wolf and Hillenbrand (2003) that uses astronomical

silicates, with flat surface density profile (q = 0) and a Dohnanyi (1969) distribution

of grains from 0.4-1000µm. The best fitting model yielded an inner radius of 28

AU.

The best-fitting model in Hines et al. (2006) was very dependent on the MIPS

70µm upper limit. With the PACS 70µm detection, the disk radius is better con-

strained. We fit the disk with a surface density profile of q = −1.5, a minimum grain

size at the blowout limit, and a Dohnanyi (1969) grain size distribution, similar to

the modeling done by Hines et al. (2006). But, in contrast to Hines et al. (2006),

we found a smaller inner radius of 14± 3 AU. This difference is due mainly to our

measured disk flux at 70µm that Hines et al. (2006) did not have.

62



HD1466

HD1466 is an F9V star 41 pc away with an excess detected by Smith et al. (2006) at

both 24 and 70µm with Spitzer MIPS. Smith et al. (2006) found a minimum radius

of 7.2 AU. Our physical disk model fit gave an inner radius of 7.8 AU, consistent

with previous results.

HD30051

The HD30051 disk, unfortunately, has very little mid-IR data available to constrain

the disk parameters. With only two data points showing IR excess, we were unable

to model the disk in any more detail than a blackbody model. But the best-fitting

blackbody temperature of 58 K indicates the main component of the disk is far from

the star. Keeping the assumption of large pure blackbody grains, the disk would be

centered around ∼ 45 AU. This is a lower limit on the disk radius because smaller

silicate grains would have a temperature of 58 K tens of AU farther out.

3.5 Resolving the HD105 Debris Disk

3.5.1 Radial Profile

One disk in our sample, HD105, is marginally resolved at 70µm in the Herschel

PACS images. HD105 is the brightest disk in our sample. It may not be the

most extended, but for the other disks an extended structure would fall below the

background noise. We determined that the HD105 disk was resolved in two ways.

The first was to compare the azimuthally averaged radial profile of the disk to

a reference star, Arcturus. Figure 3.6 (a) shows the azimuthally averaged radial

profiles of the two images. These profiles were calculated by measuring the mean
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flux within annuli of one arcsecond width around the star. Scan maps with a smaller

pixel scale of 1′′ pixel−1 were created for this purpose. The uncertainties in the

measurements were determined by calculating the standard deviation in the flux

within each annulus. This method leads to an overestimation of the errors because

the PACS PSF changes radially across each annulus due to its tri-lobed shape. The

azimuthally averaged radial profile of HD105 shown in Figure 3.6 (a) is extended

beyond the PSF with a FWHM of 6.1± 0.8′′ compared to the PSF FWHM of 5.3±

0.5′′. The error in the FWHM is determined from the uncertainties in the brightness

by calculating the distance away from the FWHM where the brightness profile plus

and minus the errors would be equal to half the maximum brightness. This is not

a strong detection of extended structure given the large (and overestimated) errors.

Therefore, we also used a second method to determine if the disk is resolved.

The second method tries to avoid problems with the PACS PSF tri-lobe shape by

averaging over brightness contours rather than annuli. Figure 3.7 shows the PACS

70µm images of HD105 and the reference star Arcturus scaled to the same peak

brightness with brightness contours overlaid. The fluxes in the regions between the

contours were averaged and the uncertainty measured from the standard deviation.

The contours used for Figure 3.6 (b) are 15, 30, 50, 70, 85, and 100% of the peak

brightness for HD105 and Arcturus. For Arcturus, which is brighter than HD105, the

1, 2, 5, and 10% contours are also used. The radius adopted for each mean flux value

was the mean distance of the region between the contours. This method is unable

to map the brightness profile of HD105 far from the star because it quickly falls

below the background. But it is clear from Figure 3.6 (b) that the disk is extended

with a FWHM of 7.2± 0.5′′ beyond the PSF that has a FWHM of 6.1± 0.4′′.

The PACS PSF size is given by the Herschel PACS ICC as a two-dimensional

Gaussian with FWHM of 5.5× 5.8′′. The FWHM reported here for HD105 was not
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Figure 3.6: (a): Azimuthally averaged radial brightness profiles for HD105 and

the reference star Arcturus at 70µm. The radial profiles are azimuthally averaged

over annuli with one arcsecond widths. (b): Averaged brightness profiles from

contours for HD105 and Arcturus at 70µm. HD105 is extended beyond the PSF

in both profiles.
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Figure 3.7: Images of HD105 (left) and a PSF reference star Arcturus (right) at

70µm. Brightness contours are overlaid at 15, 30, 50, 70, 85 and 95% of the peak

brightness.

calculated in the same way. Therefore, the FWHM values should not be directly

compared to the PACS PSF FWHM when determining the physical size of the

disk. The FWHM values are given only to show that the disk is indeed significantly

extended beyond the PSF. In Section 3.5.2, we determine the physical size of the

disk without using the FWHM.

3.5.2 Determining the Outer Radius

Without data at wavelengths longer than 160µm, the outer radius cannot be de-

termined from SED fitting alone. However, resolved imaging provides geometrical

information. The marginally resolved image of HD105 constrains the outer radius

of the disk.

To determine the outer radius of the disk, we produced a synthetic image of the

disk using the parameters from the best fitting SED model. We then convolved our

model with the PACS PSF3 and rotated it to the position angle of the observation
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for direct comparison. We varied the outer radius and determined the χ2 value

between the model and the images of HD105. Once the outer radius of the model is

greater than a certain value, the surface brightness at that radius is so low that it

falls below the noise level. Therefore, we can only place a lower limit on the outer

radius of the disk. We found a disk outer radius of > 280 AU.

There are, of course, several assumptions that go into this model. The first is

that the ring is circular and face-on. The second is that the dust surface density

distribution follows an r−1.5 profile. This is expected to be the case for collision-

ally dominated disks. Several resolved images of disks have shown more complicated

structure such as rings with sharper density profiles, clumps, warps, and other asym-

metries. These structures would have less of an effect on the SED, which is fairly

insensitive to the density profile, but would strongly affect the analysis of the Her-

schel images. The outer radius derived here is the first such constraint put on the

disk, but an image with higher spatial resolution is needed to better determine the

spatial extent.

3.6 Discussion

We detected IR-excesses in∼ 1/3 of the stars in our sample. The Tucana-Horologium

disks we detect all have some similarities. They are optically thin debris disks with

relatively low fractional luminosities compared with younger protoplanetary disks,

which have typical fractional luminosities of LIR/L∗ ∼ 0.1 (Cieza et al. 2012). As

of yet, none of the Tucana-Horologium systems have shown any significant amount

of gas. However, these disks do show a remarkable amount of variety for systems

of the same age (∼ 30 Myr). The single temperature blackbody fits give a range in

3http://pacs.ster.kuleuven.ac.be/pubtool/PSF/
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temperature of 50-208 K. Although the hottest disk is around an A0 star (HD3003),

the other six disks still display a temperature range of 50-146 K with no apparent

dependence on spectral type. Any trends that may exist would be hard to see in a

such a small sample. Our further modeling also shows a variety in other disk prop-

erties. Three of these properties, minimum grain size, the grain size distribution

power-law, and inner holes, will be discussed in the following sections.

3.6.1 Minimum Grain Size

The minimum grain size in debris disks is expected to be approximately equal to

the blowout size due to radiation pressure. Any grains smaller than this limit would

be ejected from the system on a timescale of a few thousand years. But there

are a few problems with using the blowout size as a limit. First, there are many

assumptions that go into the blowout size calculation. The grains are assumed to

be spherical, have a constant density, and start out on circular orbits. Additionally,

the grain composition must be assumed. As circumstellar grain composition is hard

to determine due to the lack of mid-IR solid state features from most debris disks,

(e.g. Jura et al. 2004), ISM grain composition is commonly used. But densities can

differ greatly between silicates, graphite and ices, all of which are expected to be

present in debris disks. Porosity may also play a role in changing this grain size limit

(Lebreton et al. 2012). For these reasons, it is difficult to interpret the minimum

grain size results based on the blowout size.

Only two disks in our sample had well constrained minimum grain sizes. For

HD105, the minimum grain size found was more than an order or magnitude greater

than the blowout size. Here, either the calculated blowout size is inaccurate, pointing

to a different grain composition or porosity, or larger grains are efficiently removed

by some other mechanism. Thébault and Wu (2008) show that dynamically cold
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disks have fewer small grains. The smaller velocity of the collisions decreases the pro-

duction rate of the small grains while the destruction rate increases. This produces

a disk dominated by larger grains with orbits mostly confined to the planetesimal

ring, very similar to what is observed around HD105. For HD3003, the minimum

grain size is similar to the blowout size.

3.6.2 Inner Holes

The range of temperatures seen in the blackbody fits imply inner gaps with radii

from 4.5 to 52 AU. The largest inner hole is in the HD105 disk. Giant planets could

be responsible for these holes. However, there are also viable mechanisms to explain

the holes without planets (Kennedy and Wyatt 2010). For instance, dust parent

bodies may preferentially form at outer locations. This can be expected as a result

of photoevaporative clearing of the inner gas disk and pile-up of dust at its inner

edge (e.g. Alexander and Armitage 2007) or as a consequence of rapid planetesimal

formation in spiral arms of a self-gravitating disk (e.g. Rice et al. 2006). Resolved

imaging showing the sharpness of the hole’s edge could put more constraints on the

processes that created the inner hole, as was done in the case of the Fomalhaut

debris ring (Chiang et al. 2009).

3.6.3 An Unusual Debris Disk?

The disk of HD3003 was found to have a grain size distribution much steeper than

the typical Dohnanyi (1969) steady state collisional cascade. A steeper distribution

implies two possibilities: the disk has an overabundance of small grains, or a paucity

of large grains. The minimum grain size we find for HD3003 (amin = 3.5µm) is large

enough that we suspect the explanation to be the paucity of large grains. We believe

the minimum grain size to be correct, as it is consistent with both the blowout size
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and the lack of a 10µm silicate feature in the IRS spectrum which is only seen in

disks with small (sub-µm) grains (Kessler-Silacci et al. 2006).

We investigated other explanations of the SED slope. The lack of flux at longer

wavelengths could mean a smaller outer radius than was assumed. The disk could

be tidally truncated by its binary companion if the other star were close enough to

the disk. We tried fixing the grain size distribution power-law index to κ = −3.5

and varying rmax from 15-120 AU. These models were not able to reproduce the

observed data.

The unusual behavior of the HD3003 SED has been seen in older debris disks

in the DUNES sample (Eiroa et al. 2010). Ertel et al. (2012) detected three debris

disks with Herschel whose slopes are also inconsistent with a Dohnanyi (1969) dis-

tribution. They give three possible explanations for the underabundance of large

grains. First, there is a departure from the steady state collisional cascade condi-

tions. HD3003 is a denser disk, so it should be collision dominated not transport

dominated. However, the distribution can still deviate from Dohnanyi (1969) by

processes such as radiation pressure that causes a wavy distribution that is steeper

at some points (Campo Bagatin et al. 1994; Thébault et al. 2003). The second pos-

sibility is that grains of a different composition would have a different absorption

coefficient, Qabs, which may affect the SED slope. And lastly, a sheparding planet

could result in a spatial separation of the small and large grains, leaving the large

grains farther from the star and, therefore, cooler and harder to detect.

An idea not proposed in Ertel et al. (2012), but possibly relevant here, is en-

hanced stirring of the planetesimal disk by the companion star. The true separation

of HD3003’s companion star is unknown. If it is close enough, it could violently

stir the disk. If the orbit of the binary is eccentric, then a close passage of the

companion would excite the disk, raising the mean eccentricity of the disk particles,
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and thereby increasing their relative velocities (Mustill and Wyatt 2009). Numeri-

cal simulations show that the waviness of the grain size distribution depends on the

collision velocities. The amplitude and the peak-to-peak wavelength of ripples in the

grain size distribution increase with higher velocities (Krivov et al. 2006; Thébault

et al. 2003; Wyatt et al. 2011). Larger ripples mean the size distribution will be

steeper for grain sizes above the blowout limit, as is seen in HD3003. However, the

strange behavior of the SED is not yet understood, and will require more data and

further modeling to determine its cause.

3.7 Summary/Conclusion

We observed seventeen stars in the Tucana-Horologium Association with the PACS

instrument on the Herschel Space Observatory. We detected six debris disks, in-

cluding one previously unknown disk and put sensitive upper limits on those not

detected. We modeled the disks with a thermal dust disk model and were able to

place tighter constraints on several disk parameters, such as the inner disk radius,

minimum grain size, and grain size distribution. Additionally, we marginally re-

solved one disk and were able to put a lower limit on the outer radius. Future work

will include Herschel SPIRE observations to better populate the sub-mm portion of

the SEDs, and resolved imaging with ALMA to break degeneracies by determining

the disk geometry. These data will also be combined with other targets of different

ages to examine the statistical properties of the entire GASPS sample.

Table 3.6: Archive Data Used In SED Fitting.

HD105

System Wavelength Flux Reference

(µm) (mJy)

Continued on next page
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Table 3.6 – continued from previous page

Instrument Wavelength Flux Reference

(µm) (mJy)

Hipparcos 0.44 2020± 27.91 Høg et al. (2000)

Hipparcos 0.55 3504± 32.27 Høg et al. (2000)

2MASS 1.25 4139± 76.25 Cutri et al. (2003)

2MASS 1.65 3425± 69.41 Cutri et al. (2003)

2MASS 2.17 2383± 43.90 Cutri et al. (2003)

Spitzer/IRAC 3.6 1023± 7.36 Carpenter et al. (2008)

Spitzer/IRAC 4.5 645.4± 7.87 Carpenter et al. (2008)

Spitzer/IRAC 5.8 410.5± 4.27 Carpenter et al. (2008)

Spitzer/IRAC 8.0 230.7± 1.52 Carpenter et al. (2008)

AKARI 9 223.1± 9.59 Yamamura et al. (2010)

Spitzer/IRS 5-37 Carpenter et al. (2008)

Spitzer/MIPS 24 28.29± 0.25 Carpenter et al. (2008)

HD202917

System Wavelength Flux Reference

(µm) (mJy)

Hipparcos 0.44 619.2± 10.84 Høg et al. (2000)

Hipparcos 0.55 1233± 14.76 Høg et al. (2000)

2MASS 1.25 1770± 34.25 Cutri et al. (2003)

2MASS 1.65 1585± 55.47 Cutri et al. (2003)

2MASS 2.17 1150± 23.31 Cutri et al. (2003)

WISE 3.4 575.86± 17.23 Wright et al. (2010)

Spitzer/IRAC 3.6 519.2± 3.74 Carpenter et al. (2008)

Spitzer/IRAC 4.5 320.8± 3.91 Carpenter et al. (2008)

WISE 4.6 304.36± 5.94 Wright et al. (2010)

Spitzer/IRAC 8.0 117.3± 1.44 Carpenter et al. (2008)

AKARI 9 96.55± 12.4 Yamamura et al. (2010)

IRAS 12 101.5± 23.8 Moshir et al. (1992)

WISE 12 58.93± 1.04 Wright et al. (2010)

WISE 22 19.82± 1.01 Wright et al. (2010)

Spitzer/IRS 5-37 Carpenter et al. (2008)

Spitzer/MIPS 24 20± 0.8 Smith et al. (2006)

HD3003

Instrument Wavelength Flux Reference

Continued on next page
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Table 3.6 – continued from previous page

Instrument Wavelength Flux Reference

(µm) (mJy)

(µm) (mJy)

Hipparcos 0.44 35400± 456.5 Høg et al. (2000)

Hipparcos 0.55 35290± 292.6 Høg et al. (2000)

2MASS 1.25 15070± 513.6 Cutri et al. (2003)

2MASS 1.65 8870± 621.4 Cutri et al. (2003)

2MASS 2.17 6760± 124.5 Cutri et al. (2003)

AKARI 9 586.1± 9.77 Yamamura et al. (2010)

IRAS 12 446.0± 31.22 Moshir et al. (1992)

AKARI 18 237.7± 15.7 Yamamura et al. (2010)

Spitzer/IRS 5-37 This Work

Spitzer/MIPS 24 223.9± 9.0 Smith et al. (2006)

HD12039

Instrument Wavelength Flux Reference

(µm) (mJy)

Hipparcos 0.44 1103± 17.27 Høg et al. (2000)

Hipparcos 0.55 2073± 22.91 Høg et al. (2000)

2MASS 1.25 2885± 61.11 Cutri et al. (2003)

2MASS 1.65 2445± 85.59 Cutri et al. (2003)

2MASS 2.17 1718± 41.15 Cutri et al. (2003)

Spitzer/IRAC 3.6 747.3± 5.38 Carpenter et al. (2008)

Spitzer/IRAC 4.5 470.9± 5.75 Carpenter et al. (2008)

Spitzer/IRAC 8.0 170.4± 1.13 Carpenter et al. (2008)

AKARI 9 159.9± 6.9 Yamamura et al. (2010)

Spitzer/IRS 7-37 Carpenter et al. (2008)

Spitzer/MIPS 24 25.65± 0.23 Carpenter et al. (2008)

HD1466

Instrument Wavelength Flux Reference

(µm) (mJy)

Hipparcos 0.44 2248± 31.06 Høg et al. (2000)

Hipparcos 0.55 3686± 37.34 Høg et al. (2000)

2MASS 1.25 4147± 68.75 Cutri et al. (2003)

2MASS 1.65 3244± 107.6 Cutri et al. (2003)

Continued on next page
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Table 3.6 – continued from previous page

Instrument Wavelength Flux Reference

(µm) (mJy)

2MASS 2.17 2314± 36.23 Cutri et al. (2003)

AKARI 9 207.1± 20.8 Yamamura et al. (2010)

IRAS 12 141± 16.92 Moshir et al. (1992)

Spitzer/IRS 5-37 This Work

Spitzer/MIPS 24 32.90± 1.3 Smith et al. (2006)

HD30051

Instrument Wavelength Flux Reference

(µm) (mJy)

Hipparcos 0.44 3660± 50.56 Høg et al. (2000)

Hipparcos 0.55 5163± 47.55 Høg et al. (2000)

2MASS 1.25 4867± 89.66 Cutri et al. (2003)

2MASS 1.65 3829± 119.9 Cutri et al. (2003)

2MASS 2.17 2599± 52.66 Cutri et al. (2003)

WISE 3.4 1329± 61.35 Wright et al. (2010)

WISE 4.6 717.4± 14.69 Wright et al. (2010)

AKARI 9 237.4± 21.9 Yamamura et al. (2010)

IRAS 12 152± 15.2 Moshir et al. (1992)

WISE 12 126.2± 2.11 Wright et al. (2010)

WISE 22 34.67± 1.37 Wright et al. (2010)

HD16978

Instrument Wavelength Flux Reference

(µm) (mJy)

Hipparcos 0.44 95730± 1234 Høg et al. (2000)

Hipparcos 0.55 87120± 722.1 Høg et al. (2000)

2MASS 1.25 26620± 7349 Cutri et al. (2003)

2MASS 1.65 17260± 4337 Cutri et al. (2003)

2MASS 2.17 13250± 439.5 Cutri et al. (2003)

AKARI 9 1068± 6.11 Yamamura et al. (2010)

IRAS 12 743.0± 66.87 Moshir et al. (1992)

AKARI 18 257.7± 12.1 Yamamura et al. (2010)

Spitzer/MIPS 24 124.0± 4.96 Rebull et al. (2008)

HD2884

Continued on next page
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Table 3.6 – continued from previous page

Instrument Wavelength Flux Reference

(µm) (mJy)

Instrument Wavelength Flux Reference

(µm) (mJy)

Hipparcos 0.44 79260± 1022 Høg et al. (2000)

Hipparcos 0.55 72860± 604 Høg et al. (2000)

2MASS 1.25 21720± 5128 Cutri et al. (2003)

2MASS 1.65 13790± 965.9 Cutri et al. (2003)

2MASS 2.17 10750± 356.6 Cutri et al. (2003)

AKARI 9 895.2± 31.0 Yamamura et al. (2010)

IRAS 12 1300± 78 Moshir et al. (1992)

AKARI 18 188.4± 14.8 Yamamura et al. (2010)

Spitzer/IRS 5-37 This work

Spitzer/MIPS 24 101.7± 8.6 Smith et al. (2006)

HD224392

Instrument Wavelength Flux Reference

(µm) (mJy)

Hipparcos 0.44 37070± 478 Høg et al. (2000)

Hipparcos 0.55 37710± 312.6 Høg et al. (2000)

2MASS 1.25 17320± 590.3 Cutri et al. (2003)

2MASS 1.65 10730± 306.5 Cutri et al. (2003)

2MASS 2.17 7840± 151.7 Cutri et al. (2003)

AKARI 9 660.5± 18.2 Yamamura et al. (2010)

IRAS 12 477± 28.62 Moshir et al. (1992)

AKARI 18 113± 15.59 Yamamura et al. (2010)

HD2885

Instrument Wavelength Flux Reference

(µm) (mJy)

Hipparcos 0.44 54530± 703.1 Høg et al. (2000)

Hipparcos 0.55 59330± 491.8 Høg et al. (2000)

2MASS 1.25 29820± 8003 Cutri et al. (2003)

2MASS 1.65 21340± 4192 Cutri et al. (2003)

2MASS 2.17 15160± 502.8 Cutri et al. (2003)

AKARI 9 1291± 18.6 Yamamura et al. (2010)

Continued on next page
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Table 3.6 – continued from previous page

Instrument Wavelength Flux Reference

(µm) (mJy)

AKARI 18 340.6± 25.6 Yamamura et al. (2010)

Spitzer/MIPS 24 156.1± 4.5 Smith et al. (2006)

HD53842

Instrument Wavelength Flux Reference

(µm) (mJy)

Hipparcos 0.44 2529± 37.28 Høg et al. (2000)

Hipparcos 0.55 3716± 37.65 Høg et al. (2000)

2MASS 1.25 3813± 101.9 Cutri et al. (2003)

2MASS 1.65 2831± 80.83 Cutri et al. (2003)

2MASS 2.17 2015± 38.98 Cutri et al. (2003)

WISE 3.4 894.4± 31.9 Wright et al. (2010)

WISE 4.6 525.0± 10.7 Wright et al. (2010)

AKARI 9 179.4± 8.49 Yamamura et al. (2010)

IRAS 12 140.0± 10.0 Moshir et al. (1992)

WISE 12 100.1± 16.7 Wright et al. (2010)

WISE 22 40.4± 1.29 Wright et al. (2010)

Spitzer/IRS 7-37 Moór et al. (2009)

Spitzer/MIPS 24 31.0± 1.3 Moór et al. (2009)

HD44627

Instrument Wavelength Flux Reference

(µm) (mJy)

Hipparcos 0.44 318.1± 8.21 Høg et al. (2000)

Hipparcos 0.55 767.2± 12.72 Høg et al. (2000)

2MASS 1.25 1486± 32.86 Cutri et al. (2003)

2MASS 1.65 1497± 28.95 Cutri et al. (2003)

2MASS 2.17 1075± 23.77 Cutri et al. (2003)

WISE 3.4 533.0± 14.93 Wright et al. (2010)

WISE 4.6 295.5± 5.77 Wright et al. (2010)

AKARI 9 181± 5.09 Yamamura et al. (2010)

IRAS 12 101± 16.16 Moshir et al. (1992)

WISE 12 58.39± 1.03 Wright et al. (2010)

WISE 22 15.06± 0.81 Wright et al. (2010)

Continued on next page

76



Table 3.6 – continued from previous page

Instrument Wavelength Flux Reference

(µm) (mJy)

HD55279

Instrument Wavelength Flux Reference

(µm) (mJy)

Hipparcos 0.44 110.5± 6.01 Høg et al. (2000)

Hipparcos 0.55 304.0± 8.96 Høg et al. (2000)

2MASS 1.25 787.9± 16.69 Cutri et al. (2003)

2MASS 1.65 754.9± 39.65 Cutri et al. (2003)

2MASS 2.17 579.6± 13.88 Cutri et al. (2003)

WISE 3.4 273.9± 6.38 Wright et al. (2010)

WISE 4.6 148.1± 2.89 Wright et al. (2010)

AKARI 9 65.96± 5.85 Yamamura et al. (2010)

WISE 12 29.78± 0.61 Wright et al. (2010)

WISE 22 8.36± 1.23 Wright et al. (2010)

HD3221

Instrument Wavelength Flux Reference

(µm) (mJy)

Hipparcos 0.44 141.1± 6.239 Høg et al. (2000)

Hipparcos 0.55 512.0± 9.904 Høg et al. (2000)

2MASS 1.25 1852± 30.71 Cutri et al. (2003)

2MASS 1.65 2098± 65.72 Cutri et al. (2003)

2MASS 2.17 1625± 26.93 Cutri et al. (2003)

AKARI 9 162.7± 11.6 Yamamura et al. (2010)

IRAS 12 121.0± 20.57 Moshir et al. (1992)

HIP107345

Instrument Wavelength Flux Reference

(µm) (mJy)

Hipparcos 0.44 16.24± 4.654 Høg et al. (2000)

Hipparcos 0.55 78.94± 8.231 Høg et al. (2000)

2MASS 1.25 503.6± 11.60 Cutri et al. (2003)

2MASS 1.65 596.3± 12.08 Cutri et al. (2003)

2MASS 2.17 472.4± 11.31 Cutri et al. (2003)

WISE 3.4 236.5± 5.51 Wright et al. (2010)

Continued on next page
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Table 3.6 – continued from previous page

Instrument Wavelength Flux Reference

(µm) (mJy)

WISE 4.6 135.1± 2.64 Wright et al. (2010)

WISE 12 27.71± 0.54 Wright et al. (2010)

WISE 22 7.88± 0.89 Wright et al. (2010)

HIP3556

Instrument Wavelength Flux Reference

(µm) (mJy)

Hipparcos 0.44 17.48± 4.012 Høg et al. (2000)

Hipparcos 0.55 41.43± 5.780 Høg et al. (2000)

2MASS 1.25 645.8± 11.90 Cutri et al. (2003)

2MASS 1.65 730.3± 16.14 Cutri et al. (2003)

2MASS 2.17 595.3± 14.81 Cutri et al. (2003)

AKARI 9 118.0± 14.8 Yamamura et al. (2010)

Spitzer/MIPS 24 8.4± 0.34 Rebull et al. (2008)

GSC8056-482

Instrument Wavelength Flux Reference

(µm) (mJy)

Zeiss/FOTRAP 0.44 15.13± 4.82 Torres et al. (2006)

Zeiss/FOTRAP 0.55 54.15± 9.77 Torres et al. (2006)

2MASS 1.25 683± 14.62 Cutri et al. (2003)

2MASS 1.65 809.66± 17.33 Cutri et al. (2003)

2MASS 2.17 666.19± 16.77 Cutri et al. (2003)

AKARI 9 86.52± 14.8 Yamamura et al. (2010)

Spitzer/MIPS 24 9.0± 0.36 Rebull et al. (2008)
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Chapter 4

Young Debris Disks in the

Herschel GASPS Survey:

Relations Between Dust and

Stellar Properties

4.1 Introduction

Debris disks are the dusty remnants of the formation of a planetary system. Planet

formation begins in the gas-rich protoplanetary disk, which dissipates after about 10

Myr; mutual collisions of the remaining solid material form the debris disk. About

20% of nearby main-sequence F, G, and K stars are known to harbor a debris disk

(Eiroa et al. 2013).

In the youngest debris disks (< 100 Myr), planet formation has not completely

finished. Giant planets must have already formed by the debris disk stage since

their formation requires large amounts of gas to be present in their surroundings.
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Terrestrial planets, however, may still be accreting material from planetesimal im-

pacts. These young debris disks may be the link between the gas-rich primordial

disks and fully formed planetary systems.

Debris disks are often detected through their thermal infrared dust emission.

Their dust is quickly destroyed on timescales of thousands of years, and therefore,

the dust must be continually replenished by collisional cascade from the longer-lived

larger km-sized planetesimals. Assuming that the bulk of the surface brightness we

observe at any given time is emitted by dust still located close to its formation site,

the dust provides a lens for studying the unseen planetesimals.

Many surveys of the thermal emission from debris disks have sought to char-

acterize their properties. These include surveys in the infrared (IR) from space

observatories such as IRAS (Aumann et al. 1984; Moór et al. 2006), ISO (Decin

et al. 2003; Spangler et al. 2001), and Spitzer (Meyer et al. 2006; Rieke et al. 2004),

and from ground-based sub-millimeter (sub-mm) surveys (Najita and Williams 2005;

Nilsson et al. 2010, 2009). These surveys generally have a gap in spectral coverage

with few or no observations between the mid-IR and sub-mm. The Herschel Space

Observatory (Pilbratt et al. 2010) has provided excellent sensitivity and spatial res-

olution at far-IR wavelengths. Combining data from Herschel’s two photometric

instruments, PACS (Poglitsch et al. 2010) and SPIRE (Griffin et al. 2010) at wave-

length 70-500 µm with data from previous IR and sub-mm surveys, we can obtain

full spectral coverage of even the faint debris disks.

This is one of the goals of the Herschel Open Time Key Programme entitled

“Gas in Protoplanetary Systems” (GASPS; Dent et al. 2013). GASPS aimed to

study the gas and dust in protoplanetary disks and young debris disks to track the

evolution from one to the other. Disks were chosen from nearby stellar associations

with ages 1-30 Myr with a range of spectral types, disk masses, and other stellar
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properties.

This chapter focuses exclusively on the debris disks in the GASPS sample. In

Section 4.2, we discuss the Herschel observations and basic data reductions and

Section 4.3 describes the flux extraction. In Section 4.4, we describe how we fit

the data with modified blackbodies, which are used to compare disk properties in

Section 4.6. Sections 4.7 and 4.8 further discuss the results of the correlations, which

are interpreted in the discussion in Section 4.9.

4.2 Sample, Observations, and Data Reduction

In this chapter, we used a subset of the GASPS sample (see Tables 4.1 and 4.2).

We focus only on the debris disks, the targets in the older associations (∼ 10 Myr

or older). These associations include TW Hydrae Association (TWA, 10 Myr-old;

Barrado Y Navascués 2006), Upper Scorpius (UpSco, 11 Myr-old; Pecaut et al.

2012), Beta Pictoris Moving Group (BPMG, 12 Myr-old; Barrado y Navascués et al.

1999), and Tucana-Horologium Association (Tuc-Hor, 30 Myr-old; Zuckerman and

Song 2004). These associations are also discussed further in previous GASPS papers

(Donaldson et al. 2012; Mathews et al. 2013; Riviere-Marichalar et al. 2014, 2013).

Table 4.1: Summary of Stellar Associations

Association Age # disks/ Ave. distance

(Myr) # targets (pc)

TWA 10 2/11 50

UpSco 11 8/21 145

BPMG 12 8/18 37

Tuc-Hor 30 7/17 46
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Table 4.2: List of Herschel Observations

Object Wavelength ObsID Duration Scan

Name (µm) (s) Angle

AT Mic 70/160 1342209488 276 70

70/160 1342209489 276 110

CD-64 1208 70/160 1342209059 276 70

70/160 1342209060 276 110

100/160 1342209061 276 70

100/160 1342209062 276 110

GJ 3305 70/160 1342224850 276 70

70/160 1342224851 276 110

100/160 1342224852 276 70

100/160 1342224853 276 110

HD 139084A/B 70/160 1342216483 276 70

70/160 1342216484 276 110

100/160 1342216485 276 70

100/160 1342216486 276 110

HD 146624 70/160 1342215617 276 70

70/160 1342215618 276 110

100/160 1342215619 276 70

100/160 1342215620 276 110

HD 164249 100/160 1342215574 276 70

100/160 1342215575 276 110

250/350/500 1342239902 307 –

HD 174429 70/160 1342215576 276 70

70/160 1342215577 276 110

100/160 1342215578 276 70

100/160 1342215579 276 110

HD 181296 100/160 1342209055 276 70

100/160 1342209056 276 110

250/350/500 1342239922 307 –

HD 181327 100/160 1342209057 276 70

100/160 1342209058 276 110

250/350/500 1342241086 307 –

HD 199143 70/160 1342208861 1122 70

Continued on next page
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Table 4.2 continued

Object Wavelength ObsID Duration Scan

Name (µm) (s) Angle

70/160 1342208862 1122 110

HD 203 70/160 1342188366 220 63

100/160 1342221118 276 70

100/160 1342221119 276 110

HD 29391 70/160 1342190967 220 63

100/160 1342216153 276 70

100/160 1342216154 276 110

HD 35850 100/160 1342217746 276 70

100/160 1342217747 276 110

HD 45081 70/160 1342212832 1122 70

70/160 1342212833 1122 110

HIP 10679/80 70/160 1342189193 220 63

100/160 1342223862 276 70

100/160 1342223863 276 110

HIP 11437 70/160 1342189210 220 63

100/160 1342223864 276 70

100/160 1342223865 276 110

HIP 12545 70/160 1342223574 276 70

70/160 1342223575 276 110

GSC 8056-482 70/160 1342214199 558 70

70/160 1342214200 558 110

HD 105 70/160 1342188367 220 63

100/160 1342220762 220 70

100/160 1342220763 220 110

250/350/500 1342245915 307 –

HD 12039 70/160 1342213258 1122 70

70/160 1342213259 1122 110

250/350/500 1342261622 307 –

HD 1466 70/160 1342216458 1122 70

70/160 1342216459 1122 110

250/350/500 1342259401 307 –

HD 16978 70/160 1342212834 276 70

Continued on next page
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Table 4.2 continued

Object Wavelength ObsID Duration Scan

Name (µm) (s) Angle

70/160 1342212835 276 110

HD 202917 70/160 1342208847 558 70

70/160 1342208848 558 110

100/160 1342218958 220 70

100/160 1342218959 220 110

250/350/500 1342245531 307 –

HD 224392 70/160 1342211627 840 70

70/160 1342211628 840 110

HD 2884/5 70/160 1342212627 558 70

70/160 1342212628 558 110

HD 3003 70/160 1342189394 220 63

100/160 1342218802 220 70

100/160 1342218803 220 110

250/350/500 1342259399 307 –

HD 30051 70/160 1342217442 1122 70

70/160 1342217443 1122 110

100/160 1342224210 672 70

100/160 1342224211 672 110

250/350/500 1342239925 307 –

HD 3221 70/160 1342212625 558 70

70/160 1342212626 558 110

HD 44627 70/160 1342220772 558 70

70/160 1342220773 558 110

HD 53842 70/160 1342188886 220 63

100/160 1342211957 276 70

100/160 1342211958 276 110

HD 55279 70/160 1342211959 558 70

70/160 1342211960 558 110

HIP 107345 70/160 1342218960 558 70

70/160 1342218961 558 110

HIP 3556 70/160 1342188368 220 63

100/160 1342210632 276 70

Continued on next page
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Table 4.2 continued

Object Wavelength ObsID Duration Scan

Name (µm) (s) Angle

100/160 1342210633 276 110

TWA02 70/160 1342189163 220 63

100/160 1342211995 276 70

100/160 1342211996 276 110

TWA05 70/160 1342213111 1122 70

70/160 1342213112 1122 110

TWA07 70/160 1342188515 220 63

100/160 1342211993 276 70

100/160 1342211994 276 110

TWA10 70/160 1342213854 1122 70

70/160 1342213855 1122 110

TWA11 70/160 1342188519 220 63

100/160 1342213852 276 70

100/160 1342213853 276 110

250/350/500 1342261492 307 –

TWA12 70/160 1342222458 1122 70

70/160 1342222459 1122 110

TWA13 100/160 1342213113 276 70

100/160 1342213114 276 110

TWA16 70/160 1342213856 558 70

70/160 1342213857 558 110

100/160 1342213858 558 70

100/160 1342213859 558 110

TWA21 70/160 1342211983 1122 70

70/160 1342211984 1122 110

TWA23 70/160 1342222618 276 70

70/160 1342222619 276 110

100/160 1342222620 276 70

100/160 1342222621 276 110

TWA25 70/160 1342213624 276 70

70/160 1342213625 276 110

100/160 1342213626 276 70

Continued on next page
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Table 4.2 continued

Object Wavelength ObsID Duration Scan

Name (µm) (s) Angle

100/160 1342213627 276 110

1RXSJ160044.7-234330 70/160 1342215496 840 70

70/160 1342215497 840 110

HIP 76310 100/160 1342215621 276 70

100/160 1342215622 276 110

250/350/500 1342240001 307 –

HIP 77815 70/160 1342215474 276 70

70/160 1342215475 276 110

HIP 77911 70/160 1342189656 220 63

100/160 1342215480 276 70

100/160 1342215481 276 110

250/350/500 1342240000 307 –

HIP 78099 70/160 1342215486 276 70

70/160 1342215487 276 110

250/350/500 1342239999 307 –

HIP 78996 70/160 1342215502 558 70

70/160 1342215503 558 110

250/350/500 1342239998 307 –

HIP 79156 70/160 1342215414 558 70

70/160 1342215415 558 110

250/350/500 1342239994 307 –

HIP 79410 70/160 1342215404 276 70

70/160 1342215405 276 110

250/350/500 1342239993 307 –

HIP 79439 70/160 1342215402 558 70

70/160 1342215403 558 110

250/350/500 1342239992 307 –

HIP 79878 100/160 1342215615 276 70

100/160 1342215616 276 110

250/350/500 1342239997 307 –

HIP 80088 100/160 1342215514 276 70

100/160 1342215515 276 110

Continued on next page
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Table 4.2 continued

Object Wavelength ObsID Duration Scan

Name (µm) (s) Angle

250/350/500 1342239995 307 –

HIP 80130 70/160 1342215510 276 70

70/160 1342215511 276 110

100/160 1342215512 276 70

100/160 1342215513 276 110

USco J160210.9-200749 70/160 1342215434 276 70

70/160 1342215435 276 110

USco J160245.4-193037 70/160 1342214580 276 70

70/160 1342214581 276 110

USco J160801.4-202741 70/160 1342215450 276 70

70/160 1342215451 276 110

100/160 1342215452 276 70

100/160 1342215453 276 110

Usco J153557.8-232405 70/160 1342215623 276 70

70/160 1342215624 276 110

100/160 1342215625 276 70

100/160 1342215626 276 110

Usco J154413.4-25225 70/160 1342215482 276 70

70/160 1342215483 276 110

100/160 1342215484 276 70

100/160 1342215485 276 110

Usco J160108.0-211318 70/160 1342215464 276 70

70/160 1342215465 276 110

Usco J160654.4-241610 70/160 1342215498 276 70

70/160 1342215499 276 110

100/160 1342215500 276 70

100/160 1342215501 276 110

Usco J160856.7-203346 70/160 1342215454 276 70

70/160 1342215455 276 110

100/160 1342215456 276 70

100/160 1342215457 276 110

Usco J161402.1-230101 70/160 1342215506 276 70

Continued on next page
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Table 4.2 continued

Object Wavelength ObsID Duration Scan

Name (µm) (s) Angle

70/160 1342215507 276 110

100/160 1342215508 276 70

100/160 1342215509 276 110

The two youngest associations, UpSco and TWA, include a few primordial disks

in the GASPS sample. We removed from the sample the disks that had previously

been identified as primordial, either because they contain large amounts of gas or

they have too much IR excess to be debris disks. We focused only on stars with

known debris disks or IR excess non-detections. This leaves 67 sources amongst the

4 associations. The stellar properties of these 67 stars are listed in Table 4.3.

A handful of debris disks in the GASPS sample are not members of these four

associations. These include HD32297 (Donaldson et al. 2013), 49 Ceti (Roberge

et al. 2013), HR1998 and HD158352 (Meeus et al. 2012). We chose not to include

these disks since they have poorly determined ages. These four disks are discussed

in more detail in previous papers.

The targets were observed using the PACS instrument onboard the Herschel

Space Observatory with the scan map mode. Simultaneous 70 and 160µm observa-

tions were performed for most targets, with follow-up simultaneous 100 and 160µm

observations for many.

The scan map technique scans over the target at a speed of 20′′ s−1 with legs of

3′.5 in length and 4′′ steps between the legs. For most targets, 2 maps are produced

at scan angles of 70 and 110◦ and later combined to reduce noise due to streaking

in the scan direction.

The targets with excesses detected by PACS were followed up with the SPIRE

instrument at longer wavelengths as part of an OT2 proposal (OT2 aroberge 3: PI:
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Table 4.3: Stellar Properties

Target Association Stellar Spectral Stellar

Distance (pc) Type Temperature (K) AV

AT Mic BPMG 10.2 M4.5e 2800 –

CD-64 1208 BPMG 36 M0 or K7 3600 –

GJ 3305 BPMG 30 M0.5 3700 –

HD 139084A/B BPMG 40 K0V 5000 –

HD 146624 BPMG 43 A0V 9250 –

HD 164249 BPMG 47 F5V 6600 –

HD 172555 BPMG 29 A5IV/V+K7 7750 –

HD 174429 BPMG 50 K0Vp 5200 –

HD 181296 BPMG 48 A0Vn+M7 9250 –

HD 181327 BPMG 51 F5/F6V 6600 –

HD 199143 BPMG 48 F8V 6000 –

HD 203 BPMG 39 F2IV 6750 –

HD 29391 BPMG 30 F0V+M0.5 7250 –

HD 35850 BPMG 27 F7V 6200 –

HD 45081 BPMG 39 K6/7 4200 –

HIP 10679/80 BPMG 34 G2V 5800 –

HIP 11437 BPMG 42 K8 4400 –

HIP 12545 BPMG 41 M0 3700 –

GSC 8056-482 Tuc-Hor 25 M3Ve 3600 –

Continued on next page
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Table 4.3 continued

Target Association Stellar Spectral Stellar

Distance (pc) Type Temperature (K) AV

HD 105 Tuc-Hor 40 G0V 6000 –

HD 12039 Tuc-Hor 42 G4V 5800 –

HD 1466 Tuc-Hor 41 F9V 6200 –

HD 16978 Tuc-Hor 47 B9V 10250 –

HD 202917 Tuc-Hor 46 G5V 5600 –

HD 224392 Tuc-Hor 49 A1V 8750 –

HD 2884 Tuc-Hor 43 B9V 10750 –

HD 2885 Tuc-Hor 53 A2V 8000 –

HD 3003 Tuc-Hor 46 A0V 9000 –

HD 30051 Tuc-Hor 58 F2/F3IV/V 6600 –

HD 3221 Tuc-Hor 46 K5V 4400 –

HD 44627 Tuc-Hor 46 K2V 5000 –

HD 53842 Tuc-Hor 57 F5V 6600 –

HD 55279 Tuc-Hor 64 K3V 4800 –

HIP 107345 Tuc-Hor 42 M1 3800 –

HIP 3556 Tuc-Hor 39 M1.5 3500 –

TWA02AB TWA 52 M0.5 3500 –

TWA05Aab TWA 50 M1.5 3400 –

TWA07 TWA 38 M1 3800 –

TWA10 TWA 57 M2.5 3600 –

Continued on next page
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Table 4.3 continued

Target Association Stellar Spectral Stellar

Distance (pc) Type Temperature (K) AV

TWA11 TWA 67 A0 9250 –

TWA12 TWA 32 M2 3700 –

TWA13AB TWA 38 M2e 4000 –

TWA16 TWA 66 M1.5 3500 –

TWA21 TWA 69 K3 4600 –

TWA23 TWA 37 M1 3600 –

TWA25 TWA 44 M0 3700 –

1RXSJ160044.7-234330 UpSco 145 M2 3300 0.5

HIP76310 UpSco 145 A0V 9000 0.1

HIP77815 UpSco 145 A5V 7750 0.79

HIP77911 UpSco 145 B9V 10250 0.34

HIP78099 UpSco 145 A0V 9000 0.52

HIP78996 UpSco 145 A9V 7250 0.4

HIP79156 UpSco 145 A0V 10250 0.74

HIP79410 UpSco 145 B9V 9750 0.64

HIP79439 UpSco 145 B9V 9250 0.63

HIP79878 UpSco 145 A0V 9500 –

HIP80088 UpSco 145 A9V 7500 0.63

HIP80130 UpSco 145 A9V 8000 0.93

USco J160210.9-200749 UpSco 145 M5 3500 0.8

Continued on next page
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Table 4.3 continued

Target Association Stellar Spectral Stellar

Distance (pc) Type Temperature (K) AV

USco J160245.4-193037 UpSco 145 M5 3500 1.1

USco J160801.4-202741 UpSco 145 K8 4200 1.5

Usco J153557.8-232405 UpSco 145 K3 4800 0.7

Usco J154413.4-252258 UpSco 145 M1 3700 0.6

Usco J160108.0-211318 UpSco 145 M0 3500 –

Usco J160654.4-241610 UpSco 145 M3 3200 –

Usco J160856.7-203346 UpSco 145 K5 4600 1.4

Usco J161402.1-230101 UpSco 145 G4 5200 2.0

92



A. Roberge). These observations consisted of simultaneous 250, 350, and 500µm

observations taken with the small scan map mode with a scan speed of 30′′ s−1. All

targets were integrated to the confusion limit, 2 repetitions, for a total time of 307 s.

The PACS data reduction was done in HIPE 10 (Ott 2010) using the standard

pipelines. Sources brighter than 100 mJy were reduced with the Bright Point Source

script, and fainter sources were reduced with the Deep Survey Point Source script.

The final pixel scale of the reduced images was chosen to be the same as the de-

tector’s natural pixel scale to avoid as much correlated pixel noise as possible (3.2′′

pixel−1 for 70 and 100µm images and 6.4′′ pixel−1 for the 160µm images). The

SPIRE observations were also reduced in HIPE 10 with the Small Scan Map script,

producing images with pixel scale of 6, 10, and 14′′ pixel−1 for the 250, 350, and

500µm images respectively.

4.3 Analysis

We performed aperture photometry on all the PACS data. The aperture was cen-

tered on the target by fitting a 2D Gaussian to the image. For all sources brighter

than 100 mJy, we used aperture radii of 12, 12, 22′′ for the 70, 100, and 160µm

images respectively. For sources fainter than 100 mJy, we used the aperture radii of

5.5, 5.6, and 10′′.5. We determined the source flux by integrating the pixels inside

the circular aperture. We applied aperture corrections by dividing the flux by the

following aperture correction factors (αcor): 0.794, 0.766, and 0.81 for bright sources

with the larger apertures in the 70, 100, and 160µm images respectively, and 0.597,

0.550, and 0.628 for the faint sources with the smaller apertures1.

1PICC-ME-TN-037: http://herschel.esac.esa.int/twiki/pub/Public/

PacsCalibrationWeb/pacs bolo fluxcal report v1.pdf
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To estimate the background rms uncertainty, we placed an annulus at 20-30′′ for

the 70 and 100µm images and 30-40′′ for the 160µm images. The background rms

(σrms) is estimated as the standard deviation of the pixels inside of the annulus. The

rms uncertainty is corrected for correlated pixel noise by dividing by the correction

factors (χcor) 0.95 for the 70 and 100µm images and 0.88 for the 160µm images.

The rms uncertainty is also divided by the aperture correction factors given above

(αcor). The total uncertainty is then given by Equation 4.1.

σ =
σrms

αcorχcor

√
nbeam

(
1 +

nbeam

nsky

)
, (4.1)

where nbeam is the number of pixels inside the aperture and nsky is the number of

pixels in the sky annulus. An absolute calibration error of 3% for 70 and 100µm

images and 5% for the 160µm images is then added in quadrature with the total

uncertainty. The results are listed in Table 4.4. For non-detections, 3σ upper limits

are listed instead.

We also performed aperture photometry on the SPIRE data. HIPE produces

maps with units of Jy beam−1. We converted the image to Jy pixel−1 by dividing

by the beam area (423, 751 and 587 arcsec2 beam−1 for the 250, 350, and 500µm

images respectively) and multiplying by the pixel area (36, 100, 196 arcsec2 pixel−1

for the 250, 350, and 500µm images respectively). Because the images have a lot of

contamination from background galaxies, we did not center the apertures by fitting a

2D Gaussian as was done for the PACS images. Instead, we centered the apertures at

the expected stellar position. We measured the source flux using circular apertures

with radii of 22, 30, and 42′′ for the 250, 350, and 500µm images respectively.

We estimated the background by placing an annulus 60-90′′ from the center of the

aperture. We then subtracted the mean of the background flux multiplied by the

number of pixels inside the aperture (nbeam).

We applied an aperture correction by multiplying the flux by the factors 1.219,
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Table 4.4: Aperture Photometry Results

Target F70 F100 F160 F250 F350 F500

(mJy) (mJy) (mJy) (mJy) (mJy) (mJy)

AT Mic 14.8± 2.1 – < 15.5 – – –

CD-64 1208 < 5.4 < 6.3 < 11.8 – – –

GJ3305 < 5.6 < 6.1 < 11.0 – – –

HD139084 < 5.8 < 9.5 < 28.2 – – –

HD146624 10.5± 2.4 < 7.1 < 17.7 – – –

HD164249 – 539.9± 17.1 242.1± 51.2 74.3± 7.1 18.5± 5.6 < 22.5

HD172555 164.8± 8.5 106.7± 4.7 27.0± 7.0

HD174429 < 6.0 < 6.7 < 11.7

HD181296 – 262.4± 8.7 122.7± 10.4 29.9± 5.1 < 17.6 < 21.2

HD199143 < 4.4 – < 10.7 – – –

HD203 72.1± 4.7 32.9± 2.7 < 15.4 – – –

HD29391 20.7± 3.9 19.5± 4.2 21.3 – – –

HD35850 – 33.6± 5.7 < 15.1 – – –

HD45081 < 2.8 – < 8.0 – – –

HIP10679 52.0± 4.2 31.0± 2.7 < 27.3 – – –

HIP11437 75.7± 4.7 54.2± 3.0 41.0± 6.1 – – –

HIP12545 < 7.0 – < 18.9 – – –

HIP76310 – 366.2± 11.8 183.6± 17.7 75.3± 7.8 35.5± 7.4 25.4± 8.2

HIP77911 322.2± 12.3 214.0± 7.9 123.4± 12.0 38.3± 5.8 < 18.2 < 20.9

Continued on next page
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Table 4.4 continued

Target F70 F100 F160 F250 F350 F500

(mJy) (mJy) (mJy) (mJy) (mJy) (mJy)

HIP78996 9.3± 1.4 – < 16.7 < 16.0 < 19.6 < 20.7

HIP79156 < 5.8 – < 13.7 < 15.6 < 19.8 < 19.6

HIP79410 18.7± 2.2 – < 19.8 < 16.5 < 21.6 < 21.6

HIP79439 5.5± 1.4 – < 14.9 < 16.5 < 20.7 < 21.2

HIP79878 – < 8.8 < 23.1 < 17.8 < 20.7 < 23.1

HIP80088 – 61.1± 2.9 45.7± 6.1 < 15.9 < 19.7 < 20.4

TWA07 93.9± 5.2 60.2± 4.4 44.7± 8.3 25.4± 4.2 19.4± 5.0 < 20.2

TWA11 6130.6± 184.2 3789.7± 114.0 1688.0± 86.2 562.2± 40.0 250.8± 18.7 94.2± 9.5

HD105 152.9± 9.0 175.3± 7.0 147.8± 16.2 62.1± 6.4 45.8± 6.5 27.6± 6.5

HD12039 11.5± 1.0 – < 11.1 < 16.0 < 18.5 < 23.7

HD1466 11.1± 1.1 – < 11.5 < 15.5 < 18.3 < 21.3

HD16978 13.6± 2.2 – < 19.0

HD181327 – 1422.8± 42.9 825.0± 43.0 373.8± 26.8 194.6± 14.9 89.2± 9.4

HD202917 33.5± 1.8 24.8± 2.5 15.5± 2.9 < 16.4 < 18.4 < 21.5

HD224392 6.4± 1.1 – < 13.1 – – –

HD2884 7.0± 2.0 – < 18.2 – – –

HD2885 15.9± 1.7 – < 18.2 – – –

HD3003 54.0± 4.4 19.5± 2.6 < 23.3 < 14.9 < 18.2 19.7

HD30051 22.5± 1.2 12.7± 1.3 < 15.4 < 15.3 < 17.6 < 21.6

HD3221 < 3.8 – < 12.0 – – –

Continued on next page

96



Table 4.4 continued

Target F70 F100 F160 F250 F350 F500

(mJy) (mJy) (mJy) (mJy) (mJy) (mJy)

HD44627 < 4.1 – < 11.1 – – –

HD53842 < 22.4 < 16.2 < 23.1 – – –

HD55279 < 4.3 – < 13.2 – – –

HIP107345 < 4.2 – < 13.8 – – –

HIP3556 < 11.9 < 7.9 < 21.3 – – –

GSC8056-482 < 5.5 – < 12.7 – – –

TWA02 < 17.6 < 8.7 < 29.7 – – –

TWA05 < 3.6 – < 14.2 – – –

TWA10 < 3.5 – < 16.8 – – –

TWA12 < 3.3 – < 15.5 – – –

TWA13A – < 7.6 < 18.1 – – –

TWA16 < 4.1 < 4.4 < 7.7 – – –

TWA21 < 3.8 – < 14.3 – – –

TWA23 < 5.9 < 7.3 < 17.7 – – –

TWA25 < 6.3 < 6.7 < 14.3 – – –

HIP77815 < 6.0 – < 22.1 – – –

HIP78099 < 5.4 – < 14.1 < 16.1 < 19.2 < 21.5

HIP80130 < 5.7 < 7.5 < 14.7 – – –

1RXSJ160044.7-234330 < 4.0 – < 15.8 – – –

J160210.9-200749 < 6.5 – < 14.9 – – –

Continued on next page
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Table 4.4 continued

Target F70 F100 F160 F250 F350 F500

(mJy) (mJy) (mJy) (mJy) (mJy) (mJy)

J160245.4-193037 < 6.6 – < 15.5 – – –

J160801.4-202741 < 6.7 – < 15.4 – – –

J153557.8-232405 < 5.9 < 7.0 < 13.6 – – –

J154413.4-252258 < 6.4 < 5.9 < 18.4 – – –

J160108.0-211318 < 5.5 – < 16.3 – – –

J160654.4-241610 < 6.0 < 6.4 < 12.7 – – –

J160856.7-203346 < 7.8 < 7.4 < 19.4 – – –

J161402.1-230101 < 5.3 < 7.8 < 10.8 – – –
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1.193, and 1.194 for the 250, 350, and 500µm images respectively2. We color cor-

rected the SPIRE fluxes by assuming they would lie in the Rayleigh-Jeans regime

of a simple blackbody function. The color correction factors we multiplied to the

data assuming Rayleigh-Jeans are 0.9417, 0.9498, and 0.93952 for the 250, 350, and

500µm images respectively. The total error is calculated in the same way as for the

PACS data. The final fluxes, uncertainties, and upper limits for the SPIRE data

are listed in Table 4.4.

4.4 Spectral energy distributions

For each of our 67 targets, we collected archive data from several catalogs, including

the Hipparcos Tycho 2 catalog (Perryman and ESA 1997), the WISE All sky survey

(Wright et al. 2010), the 2MASS point source catalog (Cutri et al. 2003), the Akari

all sky survey (Yamamura et al. 2010) and IRAS (Moór et al. 2006). We also

included Spitzer Enhanced data products,3 if available; these include 8µm IRAC

measurements, 16 and 22µm IRS measurements, and 24µm MIPS measurements

and IRS spectra. For those targets without enhanced data products, we retrieved

Spitzer photometry data from various sources in the literature (Carpenter et al.

2009, 2006; Low et al. 2005; Rebull et al. 2008; Zuckerman et al. 2011).

We used the archive data with wavelengths less than 5µm to fit the photosphere

of the star. We used ATLAS9 stellar photosphere models (Castelli and Kurucz 2004)

to fit stars with temperatures greater than 7000 K. For stars with temperature less

than 7000 K, we used the PHOENIX stellar atmosphere models (Hauschildt et al.

1999). Extincted stars were dereddened with a Fitzpatrick (1999) extinction law

2SDRG 5.7: http://herschel.esac.esa.int/hcss-doc-9.0/

3irsa.ipac.caltech.edu/applications/Spitzer/SHA/
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before fitting the stellar models. The AV values of the extincted stars are taken

from Preibisch and Zinnecker (1999), Preibisch et al. (2002) and Hernández et al.

(2005) and are listed in Table 4.3.

We color corrected the Akari data using the best fit stellar temperature and the

color correction factors given in the Akari IRC Data User Manual4. The WISE

bands 1-3 data were also color corrected with the assumption that they are in the

Rayleigh-Jeans tail of a stellar blackbody (color correction factors of 1.0084, 1.0066,

and 1.0088 for bands 1-3).

4.4.1 Modified blackbody fits

We fit the IR excess data with blackbody models to determine the disk characteristic

temperature and fractional infrared luminosity. The blackbody temperature is a

direct link to the inner edge of a debris disk, where the dust is hottest and brightest.

This temperature can be translated into a dust radius, assuming perfect blackbody

grains. As real grains are less efficient, they are likely hotter farther from the star.

Therefore, the blackbody radius derived in this way indicates a lower limit on the

dust radius.

Sources with 70µm flux more than 3σ above the expected photosphere value are

determined to have an IR excess. We fit the data of targets identified as having IR

excesses with modified blackbodies of the form

Fν(T ) ∝ Bν(T )
(
1− e−τν

)
∝ Bν(T )τν (4.2)

for small optical depth (τν). For a simple blackbody, τν is a constant at all wave-

lengths. For the modified blackbody, the optical depth is not constant at longer

4http://www.sciops.esa.int/SA/ASTROF/docs/IRC_IDUM_1.3.pdf
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wavelengths, but instead takes the form

τν = τ0 for λ < λ0

= τ0

(
λ

λ0

)−β
for λ > λ0. (4.3)

We fit the models to the data with the Levenberg-Marquardt χ2 minimization

routine MPFIT (Markwardt 2009). We fixed λ0 = 100µm and constrained β to vary

only between 0 and 2. Many of the disks lacked enough long wavelength data for

the fits to be sensitive to changes in β. In those cases, we fixed β = 0.

The best fitting modified blackbody models are plotted in Figure 4.1 and the

parameters of the best fitting models are listed in Table 4.5 with their statistical

error bars. In Table 4.5, we also listed the fractional infrared luminosities (LIR/L∗)

calculated by integrating the blackbody models and the stellar models over all wave-

lengths.

For non-excess sources, we used the blackbody models to estimate upper limits on

LIR/L∗ by fitting a suite of blackbody models to the upper limits with temperatures

of 10-300 K with a step size of 1 K while requiring the models to lie below the upper

limits. We calculated LIR/L∗ values for each temperature and the highest LIR/L∗

value is the upper limit. Upper limits on LIR/L∗ are listed in Table 4.6.

4.5 Multiplicity in systems hosting debris disks

The presence of a stellar companion can have profound consequences on the for-

mation and evolution of circumstellar disks. For instance, it has been established

that binaries tighter than about 100 AU are much less likely to host protoplanetary

disks or debris disks than observed in control samples of single stars or wide binary

systems (e. g. Cieza et al. 2009; Duchêne 2010; Kraus et al. 2012; Rodriguez and
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Figure 4.1: Spectral energy distribution (SEDs) of the 24 debris disks detected.

The data used in the SED modeling includes the Herschel PACS (60, 100, &

160µm) and SPIRE (250, 350, & 500µm) analyzed in this chapter as well as

data from the literature, including Hipparcos, 2MASS, WISE, Akari, IRAS, and

Spitzer. Upper limits from PACS and SPIRE are shown as inverted triangles.

The data with wavelengths < 5µm was fit with stellar photosphere models (solid

line). The IR excesses are fit with modified blackbody models (dashed line).
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Figure 4.1 (continued)
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Figure 4.1 (continued)
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Figure 4.1 (continued)
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Table 4.5: Modified Blackbody Results

Target temperature (K) β LIR/L∗
HD164249 74.5± 0.6 0.9± 0.1 9.4× 10−4

HD172555 286.1± 3.7 1.1± 0.6 6.1× 10−4

HD181296 124.4± 1.6 0.6± 0.1 2.1× 10−4

HD203 146.6± 2.4 0 1.5× 10−4

HD35850 119.5± 8.4 0 6.3× 10−5

HIP10679 125.8± 3.5 0 3.2× 10−4

HIP11437 75.3± 2.5 0 5.2× 10−4

HD105 53.0± 2.1 0.1± 0.1 3.2× 10−4

HD12039 151.0± 5.6 0 8.5× 10−5

HD1466 181.1± 7.5 0 8.9× 10−5

HD181327 76.9± 0.4 0.2± 0.1 3.1× 10−3

HD202917 91.0± 2.0 0 2.8× 10−4

HD3003 200.3± 2.4 0 1.3× 10−4

HD30051 90.1± 7.1 0 4.5× 10−5

TWA07 80.6± 2.7 0 7.9× 10−4

TWA11 110.6± 0.5 0.6± 0.1 5.1× 10−3

HIP76310 104.3± 0.8 0 1.3× 10−3

HIP77911 106.8± 0.8 0.1± 0.1 3.8× 10−4

HIP78996 229.2± 10.2 0 3.2× 10−4

HIP79156 333.1± 21.9 0 1.2× 10−4

HIP79410 226.6± 9.6 0 1.4× 10−4

HIP79439 270.9± 27.4 0 6.3× 10−5

HIP79878 204.5± 12.0 0 9.5× 10−5

HIP80088 87.6± 0.9 0 5.7× 10−4

Zuckerman 2012). The nearby young associations provide a unique view on the ear-

liest epochs of the debris disks phenomenon and, thus, offer important clues about

the evolution of debris disks and their connection to multiple stellar systems. We

have thus constructed a sample of 50 objects observed within GASPS from Tuc-Hor,

BPMG, TWA, and UpSco and compiled their multiplicity properties, which have

been probed in many past studies (Bergfors et al. 2010; Biller et al. 2007; Brandeker

et al. 2003; Chauvin et al. 2010, 2005; Ehrenreich et al. 2010; Evans et al. 2012;

Kasper et al. 2007; Lowrance et al. 2005; Malo et al. 2013; Masciadri et al. 2005;
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Table 4.6: LIR/L∗ Upper limits

Target LIR/L∗ limit Target LIR/L∗ limit

AT MIC < 2.7× 10−4 TWA02 < 9.1× 10−4

CD-64 1208 < 2.2× 10−5 TWA05 < 8.7× 10−5

GJ3305 < 4.6× 10−4 TWA10 < 1.1× 10−3

HD139084 < 1.5× 10−4 TWA12 < 9.1× 10−4

HD146624 < 1.4× 10−5 TWA13A < 1.6× 10−3

HD174429 < 3.4× 10−4 TWA16 < 1.7× 10−3

HD199143 < 3.0× 10−5 TWA21 < 4.3× 10−4

HD29391 < 2.9× 10−5 TWA23 < 1.5× 10−3

HD45081 < 1.8× 10−4 TWA25 < 8.6× 10−4

HIP77815 < 3.0× 10−4 HIP78099 < 1.7× 10−4

HIP12545 < 5.1× 10−4 HIP80130 < 3.3× 10−4

HD16978 < 1.7× 10−5 1RXSJ160044.7-234330 < 8.3× 10−3

HD224392 < 1.7× 10−6 J160210.9-200749 < 2.0× 10−2

HD2884 < 5.7× 10−7 J160245.4-193037 < 2.0× 10−2

HD2885 < 1.6× 10−5 J160801.4-202741 < 7.4× 10−3

HD3221 < 2.6× 10−4 J153557.8-232405 < 4.9× 10−3

HD44627 < 3.0× 10−4 J154413.4-252258 < 5.8× 10−3

HD53842 < 4.6× 10−4 J160108.0-211318 < 4.3× 10−3

HD55279 < 8.1× 10−4 J160654.4-241610 < 5.7× 10−3

HIP107345 < 8.7× 10−4 J160856.7-203346 < 2.2× 10−3

HIP3556 < 8.8× 10−4 J161402.1-230101 < 2.7× 10−3

GSC8056-482 < 8.3× 10−4

McCarthy et al. 2004; Metchev and Hillenbrand 2009). To ensure completeness

and avoid spurious association at the largest separations, our analysis focused on

companions located in the approximate 5–1000 AU range of projected separation.

With this composite sample, we find that the frequency of the debris disk phe-

nomenon is virtually the same in multiple systems as it is for single stars (7/25 vs.

17/43, respectively). Thus, multiplicity alone does not result in adverse conditions

to form planetesimals. However, not all stellar companions have the same influ-

ence. As shown in Fig. 4.2, the binary population hosting at least one debris disk

is dominated by wide systems, with only one system with a separation smaller than
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Figure 4.2: Cumulative histogram showing the distribution of binary separations

among debris disks.

200 AU. Furthermore, this system HD12039 in the Tuc-Hor association, was first

discovered to be a binary by Biller et al. (2007) but unconfirmed by Evans et al.

(2012), so that its status is uncertain pending further high-resolution observations.

Regardless, the distribution of separation for binaries with debris disks is in marked

contrast to the separation distribution for diskless systems: the difference between

the two distributions is significant at the 98.4% level. This confirms that close bina-

ries are much less likely to host debris disks, as observed in the general population

of debris disk systems, indicating that this aversion is present at all stages of the

debris disks phenomenon.
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Figure 4.3: Relations between disk and star parameters from the modified black-

body fits. (a) Disk temperature vs. stellar temperature. (b) Fractional dust

luminosity (LIR/L∗) vs. disk temperature. The solid line represents a cut of the

average LIR/L∗ detection limits of the sample (calculated in Section 4.7) cut at

Teff = 6500 K. (c) LIR/L∗ vs. stellar temperature. The solid line represents the

detection limits cut at Td = 100 K. (d) LIR/L∗ vs. age.

4.6 Correlations

We used the best fit parameters of the modified blackbody models to look for cor-

relations between the stellar and disk parameters of the sample. Figure 4.3 shows

the relations between the different parameters: the disk temperature, the stellar

effective temperature, the fractional disk luminosity (LIR/L∗) and the age.
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To quantify the correlations, we calculated the linear correlation coefficient, r,

from Press et al. (1992)

r =
Σi(xi − x̄)(yi − ȳ)√

Σi(xi − x̄)2
√

Σi(yi − ȳ)2
, (4.4)

where x̄ and ȳ are the mean values of the x and y data. A value of r above 0.3

shows a reasonable correlation and a value above 0.5 indicates a strong correlation.

Additionally, we calculated the probability, P , that |r| should have a larger value

even if no correlation exists

P = erfc

(
|r|
√
N√

2

)
, (4.5)

where erfc is the complementary error function and N is the number of data points.

The disk parameters show a large scatter and the plots show that most param-

eters are not correlated with one another. We calculated the r and P values for

the all combinations of the disk parameters, LIR/L∗, age, Teff and Td. All but one

of the combinations had correlation coefficients below 0.3. This confirms that most

are not correlated.

The only plot that shows a hint of a correlation is the plot of disk temperature

vs. stellar temperature (Figure 4.3 (a)). There is a distinct lack of data in the upper

lefthand corner of the plot, representing a lack of warm disks around late-type stars.

The warm disks (those & 125 K) display a trend of increasing disk temperature

with increasing stellar temperature. The cold disks (those . 125 K) also show an

increasing trend, but not as steep as the warm disks.

For the entire sample, the correlation coefficient is r = 0.54 and the probability

of zero correlation is P = 0.008. When we split the disks into two populations, warm

and cold disks, we get r = 0.73 and P = 0.015 for the warm disks and r = 0.62

and P = 0.025 for the cold disks. This suggests the disk temperature and stellar

temperature are indeed correlated. We analyze this trend in Section 4.8, but first,
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in Section 4.7 we show that the lack of warm disks around late-type stars in not due

to the sensitivity of the dataset.

4.7 Detection Limits

To investigate the correlations seen in Section 4.6, we found we first need to be sure

the trends we see are not due to the detection limits. In this section, we estimate

the average detection limit for the sample as it depends on factors such as spectral

type and dust temperature. The GASPS dataset is not a uniform sample. The

integration time of each target was determined from a variety of factors, such as

spectral type, distance, and the Spitzer 70µm detections and upper limits, if any.

Therefore, the detection limits vary widely amongst the sample. However, we can

still estimate the average detection limits using the mean values of these parameters.

Assuming the stellar spectrum is well described by the Rayleigh Jeans law in the

mid- and far-IR and that the dust can be described by a blackbody, the fractional

dust luminosity (LIR/L∗) detection limit at a particular wavelength is given by

Lν
L∗

=

(
σFd
F∗

)
kT 4

d

(
ehν/kTd − 1

)
hνT 3

∗
(4.6)

(Bryden et al. 2006; Roberge et al. 2012), where σFd is the flux detection limit of

the observations, F∗ is the flux of the star at the given wavelength, Td is the dust

temperature, and T∗ is the stellar temperature.

To determine the average detection limit for the sample, we set σFd to the average

of the 3σ upper limits for all the non-detections. We calculated F∗ as the Rayleigh-

Jeans approximated flux of a star of a given spectral type at the wavelength in

question and at a distance equal to the average stellar distance of the sample (44

pc).

Using Equation 4.6, we calculated grids of LIR/L∗ detection limits vs. stel-
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Figure 4.4: The color map shows the projected contours of the average fractional

dust luminosity (LIR/L∗) detection limits in the disk temperature vs stellar tem-

perature plane. For detected disks, parameters of the best modified blackbody

models are also plotted, and their colors correspond to their LIR/L∗ value.

lar effective temperature and dust temperature for all three of the Herschel PACS

bandpasses. We also included the detection limits from the Spitzer MIPS 24µm

band by assuming a 1σ accuracy of 6% of the stellar flux. The 24µm MIPS data is

more sensitive than Herschel data to debris disks warmer than ∼ 100 K.

The final LIR/L∗ detection limit curve is derived by combining the three PACS

detection limits and the MIPS detection limits. In regions where they overlap, the

most sensitive value is used for the final detection limit curve.

In Figure 4.4, we plot the contour map of the three-dimensional surface of the

detection limits projected in the plane defined by the stellar temperature and the

disk temperature. The colors of the contours correspond to the LIR/L∗ detection

limits (logarithmic scaling, see colorbar). The data from the modified blackbody

fits are also displayed with symbol colors corresponding to the LIR/L∗ value of the
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best fitting blackbody model. For a disk to be detected, it must have an LIR/L∗

value larger than the detection limit contour in that region of the plot.

The data are more sensitive to disks around early type stars; the stars’ high

luminosity makes their disks brighter. The sensitivity decreases for warm disks

since they radiate more efficiently at wavelengths shorter than the PACS bandpasses.

There are no disks filling out the upper lefthand corner of this plot; this corresponds

to a lack of high temperature disks around late-type stars. This is the portion of the

plot where the GASPS sample is the least sensitive. However, this paucity of data

is not solely a sensitivity effect. Disks bright enough to be detected in this region

are found around warmer stars.

4.8 Interpretation of the temperature trend

Many disks show evidence of two distinct dust populations. Morales et al. (2011,

2009) and Chen et al. (2014) all fit SEDs of Spitzer detected disks with blackbody

models and found that many of them required a second blackbody component to

generate a good fit. Evidence for two distinct dust components has also been seen

in imaging of nearby debris disks. Su et al. (2013) found evidence of unresolved

inner dust belts in the Spitzer images of Vega and Fomalhaut inside the resolved

outer belts. Resolved far-IR images of Fomalhaut with Herschel (Acke et al. 2012)

and sub-mm images of AU Mic with ALMA (MacGregor et al. 2013) both show

unresolved thermal emission near the central star. This thermal emission is far too

bright to be coming from the star, and likely originates from a second unresolved

dust belt in the system.

Only a handful of the disks in our sample show indications in their SEDs of

having two dust populations. This may be just due to the sensitivity, especially
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for the faint disks. However, the full dataset shown in Figure 4.4 suggests there

are two distinct categories the disks fall into. The first category is the cold disks.

These disks have characteristic temperatures that are . 125 K, and the average

temperature does not vary much with the spectral type of the star. The second

group is the warm disks with characteristic temperatures & 125 K. These disks have

a large spread in temperatures (and larger uncertainties on average) but seem to

have a general upwards trend in disk temperature with stellar temperature.

We separated the disks into two populations at a temperature of ∼ 125 K. This

is the temperature where disks appear to split into two different trends. Figure 4.5

shows a histogram of the temperatures of the disks. As Chen et al. (2014) also saw

in a sample of ∼ 500 disks with Spitzer, we see a sharp peak in the cold disks (∼ 100

K) and a more uniform distribution out to warmer temperatures.

We fit both populations with a power-law function where the disk temperature,

Td, changes with stellar temperature, T∗, as Td ∝ Tα∗ . The best fits give α = 0.85±0.1

for the cold disks with a reduced chi-squared value of χ2
R = 69, and α = 0.95± 0.3

for the warm disks with χ2
R = 89 (see Figure 4.6). These values are consistent with

each other, implying the cold and warm populations could have the same trend, but

it is difficult to be certain with the large uncertainty on the fit to the warm disks.

The fit to cold disks does not depend on the temperature chosen to separate

the cold and warm disks. The cold disks have lower uncertainties on the dust

temperatures, so the fit to the trend does not significantly change even if we use the

entire sample, not just the cold disks. The warm disks, however, are sensitive to the

choice of dividing temperature. We fit the trend of the cold and warm disks with

different choices for the temperature separating the two groups from 100 K to 150

K in increments of 5 K. We chose 125 K as the temperature at which the fit to the

warm disks has the lowest χ2
R value. Above 150 K, there are not enough good data
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Figure 4.5: Histogram of the best fit blackbody disk temperatures for the 24 debris

disks. The disks fall into two categories, the cold disks (< 125 K) that cluster

around 100 K, and the warm disks (> 125 K) that have a uniform distribution of

temperatures from 125 to 350 K.

to constrain the trend, and the fit diverges.

Next we explore what value of α we would expect to get for a few simple models.

We start with a constant temperature model. Morales et al. (2011) claimed their

Spitzer data showed warm disks all show the same temperature, regardless of spectral

type. A constant dust temperature model (Td = const) would give α = 0. The cold

disks are definitely not consistent with this, and even with the large uncertainties

in the warm disk trend, the fit is also not consistent with α = 0.

Next we try a constant radius model, where the location of the dust is inde-

pendent of the central star. If we assume the true dust radius, Rx, is equal to the

blackbody radius RBB, and is a constant, then

Td ∝ R
−1/2
BB L1/4

∗ ∝ L1/4
∗ . (4.7)
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Figure 4.6: Characteristic disk temperature vs. stellar effective temperature for

the GASPS disks, separated into cold disks (blue) and warm disks (red). The two

populations are fit with a power-law in temperature.

Assuming L∗ ∝M3.5
∗ and R∗ ∝M

2/3
∗ , this gives α ∼ 7/4.

But how good is the assumption that the true disk radius is equal to the black-

body radius? In studies where the disk radius is spatially resolved, the true disk

radius is often larger than the blackbody radius calculated from the SED (e.g. Booth

et al. 2013; Rodriguez and Zuckerman 2012). This is because real dust grains are

not as efficient as blackbodies at radiating their heat at long wavelengths. Conse-

quently, the grains will be hotter farther from the star than a true blackbody would

be.

If, in the calculation above, we do not assume Rx = RBB, but instead we multiply
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RBB by a factor Γ, to get the true radius, i.e. Rx = ΓRBB. Γ can also be a function

of spectral type and ranges from ∼ 1 to 10 (Booth et al. 2013; Lestrade et al. 2012;

Marshall et al. 2011; Rodriguez and Zuckerman 2012; Wyatt et al. 2012). Pawellek

et al. (2014) attempted to constrain how Γ changes with spectral type, and they

found Γ ∝ T−1.2±0.2
∗ (A. V. Krivov, personal communication). Adding this to our

derivation of α, we get

Td ∝ Γ1/2L1/4
∗ ∝ T 1.15

∗ . (4.8)

Our warm disks are consistent with this trend. The cold disks could be consistent

as well if we take into consideration the uncertainty in the calculations, not just of

Γ, but also our simplification of L∗, M∗, and R∗ relations.

Another model we tried is one where the disk radius is a function of the spectral

type, i.e. Rx ∝Mβ
∗ . From Equation 4.7, we get

Td ∝M−β/2
∗ L1/4

∗ ∝ T−β+7/4
∗ (4.9)

if Rx = RBB. With our calculated values of α, this would give values of β = 0.9 for

the cold disks and β = 0.8 for the warm disks.

Both the cold and the warm disks show a large scatter around the best fit model,

resulting in large χ2
R values. This is likely due to real variations in the disks away

from an idealized system. Planets, binary companions, stellar flybys and other

factors can all affect the end result of a planetary system, which is why we see such

a large variation in disks and exoplanets systems. With more data, we can get better

statistics, but the large scatter will likely remain.

Several other teams have collected Herschel data on debris disks, such as DUNES

(Eiroa et al. 2013), DEBRIS (Matthews et al. 2010), and a few other smaller pro-

grams. With ALMA nearing completion, faint debris disks will be visible in the

sub-mm/mm regime. The collection of all these datasets together will provide a
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robust test of the trends seen in the GASPS data, as well as determine whether the

trend changes with stellar age.

4.9 Discussion

Planetesimal belts are often shaped by the gravitationally dominant planets around

them. The temperature trend seen in our young debris disk sample could point to

an underlying trend in the planets themselves or the trend in the cold disks could

be due to planet formation efficiency.

Core accretion efficiency drops with distance from the star because of the com-

bined effects of increases in dynamical timescales and the decrease in surface density

of solid material (Dodson-Robinson et al. 2009). Planetesimals, however, are easier

to form because they need less solid material. They can likely form at some distance

beyond where planets can form (Kennedy and Wyatt 2010).

Planets can clear out the inner edge of the belt through gravitational interaction.

The inner edge of the disk can therefore represent the outer limit of where planets

can form. The blackbody temperature probes the inner edge of a debris disk and

therefore the limit of planet formation efficiency. This does not take into account

the effects of planet migration, which could be significant in some systems.

If the temperature trend is driven by planet formation, we can derive the ap-

proximate form it should take. The timescale to form a giant planet depends on the

stellar mass. To first order, Kenyon and Bromley (2008) give the timescale as

t ∝ P/Σ, (4.10)

where P is the orbital period and Σ is the surface density of solids. Using Newton’s

form of Kepler’s third law and the surface density scaling like the Minimum Mass

Solar Nebula (MMSN; Hayashi 1981; Weidenschilling 1977) gives and Σ ∝ Σ0a
−3/2,
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where Σ0 is the initial surface density of solids. Σ0 scales with disk mass, which has

been shown to scale with stellar mass (Σ0 ∝ Md ∝ M∗) (Andrews et al. 2013).

Together, the timescale to form a planet is

t ∝ R3
xM

−3/2
∗ . (4.11)

Given a constant maximum time for planet formation, the location of the outermost

planet, and therefore the inner edge of the debris disk, should scale with stellar mass

as

Rx ∝M−1/2
∗ . (4.12)

The form we derive for our cold disk population, however, is closer to Rx ∝ M∗.

The difference could come from a number of assumptions, most notably, the form

of the MMSN. Other forms have been predicted in the literature (e.g. Desch 2007).

The large scatter in our data could indicate that the density distribution may vary

a lot in different disks, as suggested by observational studies of protoplanetary disks

(e.g. Andrews and Williams 2007).

Ballering et al. (2013) recently reported the existence of a similar temperature

trend amongst the cold debris disks observed with Spitzer. Using similar calculations

as above, they derive various predictions for an Rd ∝Mγ
∗ power-law. However, they

only fit the temperature trend with a linear relation and try no other power-law

forms. They do not report a trend in the warm disks.

Chen et al. (2014) also reanalyzed a sample of 499 debris disks with Spitzer data.

They fit their dust temperatures with a power-law as a function of stellar luminosity

and found Td ∝ L0.13
∗ for their cold disks. This approximately gives α ∼ 0.9, which

is very similar to our results.

Morales et al. (2011) reported a constant temperature for the warm disks de-

tected with Spitzer, regardless of spectral type. Though the scatter in the warm
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disks is quite large in both our Herschel data and the Spitzer data in Morales et al.

(2011), the constant temperature model does not appear to fit the trend we see.

Morales et al. (2011) do not report a trend in their cold disk sample.

4.10 Summary

The results of this study of young debris disks suggest a divergence into two types:

cool “classical” debris disks with Td < 125 K, and warm disks, with Td = 125−300K.

The cold debris disks in our sample show a trend of increasing disk temperature with

stellar temperature. This trend is well fit by a model where the disk location scales

linearly with stellar mass (Rd ∝M∗). Since the inner edge of the disk can be shaped

by the outermost planet in the system, we believe this trend probes the radial limit

of planet formation in young circumstellar disks. The warm disks are, on average, 50

times lower mass than the cool debris disks. They show a similar trend of increasing

disk temperature with stellar temperature, although the large scatter makes the

analysis more difficult. These warm disks could show an analogous trend probing

the limit of terrestrial planet formation inside the ice line.

More data of young debris disks with an instrument as sensitive as Herschel

are crucial to confirming the form of this trend. Many such data have been taken

in various programs with Herschel, and their data will soon be published. The

combination of their data with the GASPS data presented here should confirm or

deny our current findings. ALMA also provides the needed sensitivity at longer

wavelengths, allowing us to probe cold and faint disks.
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Chapter 5

Modeling the HD32297 Debris

Disk with far-IR Herschel Data

5.1 Introduction

Debris disks are circumstellar disks composed of dust produced during collisions of

planetesimals. In the youngest disks (10-100 Myr), the planetesimals may deliver

volatiles such as water to still-forming terrestrial planets. Although the planetesi-

mals themselves are undetectable, the dust they produce radiates thermally in the

infrared (IR) and sub-millimeter (mm) and scatters starlight at optical and near-IR

wavelengths. These grains provide clues to the composition of their parent bodies.

The outer regions of several debris disks have been imaged in scattered light.

Resolved images can constrain the morphology of the disk’s outer regions, but the

composition of their grains cannot be uniquely determined from these images alone.

Mid-IR spectra - useful for determining grain composition in younger protoplanetary

disks - also fail to provide constraints on the dust composition in most debris disks;

by this point, the remaining grains are too large to emit solid state features in the
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mid-IR (Chen et al. 2006). While there are a few notable exceptions, most debris

disks require modeling of the full spectrum, from optical to mm wavelengths, to

probe the grain composition.

The Herschel Space Observatory (Pilbratt et al. 2010) was launched in May 2009,

presenting a new opportunity for sensitive far-IR and sub-mm observations. The

PACS (Poglitsch et al. 2010) and SPIRE (Griffin et al. 2010) instruments have photo-

metric and spectroscopic capabilities spanning a wavelength range of ∼ 60−500µm.

These data are crucial for detailed modeling of a disk’s spectral energy distribution

(SED) because they span the wavelength range where the thermal emission from

debris disks typically peaks.

Unfortunately, SED modeling of debris disks is hampered by degeneracies in the

models between disk geometry and grain properties. Thankfully, resolved imagery

can be used to break some of the degeneracies by providing geometrical constraints.

We have used the Herschel Space Observatory’s PACS and SPIRE instruments to

obtain far-IR and sub-mm photometry and spectroscopy of the disk surrounding

the ∼ 30 Myr-old (Kalas 2005) A-star, HD32297. This edge-on disk has been

imaged several times in scattered light, thereby constraining the disk geometry.

The Herschel observations fill in a large gap in the SED, which allows us to model

the grain composition in more detail.

The HD32297 disk (112 pc away; van Leeuwen 2007) was first resolved in the

near-IR out to a distance of 3.3′′ (400 AU) from the star with HST NICMOS (Schnei-

der et al. 2005) and later resolved at several other near-IR wavelengths (Debes et al.

2009; Mawet et al. 2009). Recently, Angular Differential Imaging (ADI) has been

used to resolve the disk in the near-IR with ground-based facilities (Boccaletti et al.

2012; Currie et al. 2012). Additionally, the disk has been marginally resolved at

mid-IR (Fitzgerald et al. 2007b; Moerchen et al. 2007) and millimeter wavelengths
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(Maness et al. 2008).

The HD32297 debris disk has a few unique features; one of the more luminous

debris disks (LIR/L∗ ∼ 10−3), HD32297 is also one of only a handful of debris

disks where circumstellar gas has been detected. Redfield (2007) detected Na I in

absorption towards HD32297 that was not found towards any neighboring stars.

The additional peculiarity of brightness asymmetries and warping seen in scattered

light images were analyzed by Debes et al. (2009), who concluded that these features

could be caused by the disk’s motion through the interstellar medium (ISM).

The Herschel data presented here were acquired as part of the Herschel Open

Time Key Programme entitled “Gas in Protoplanetary Systems” (GASPS; Dent

et al. 2012). The PACS data were taken as part of the main program, and the SPIRE

data were taken as part of an Open Time proposal to follow up GASPS debris disks

at longer wavelengths (OT2 aroberge 3; PI: A. Roberge). Here we present the PACS

and SPIRE observations of HD32297 as well as the results of the modeling of the

entire SED. In Sections 5.2 and 5.3, we present the data and describe the data

reduction. In Section 5.4, we describe the SED modeling and we discuss the results

in Section 5.5.

5.2 Observations and Data Reduction

Observations of HD32297 at 70, 100, and 160µm were taken with the Herschel PACS

instrument in ScanMap mode with the medium scan speed of 20′′s−1. The 70µm

observations consisted of 8 scan legs at a scan angle of 63◦ with scan lengths of 3′,

and 2′′ separation between the legs, for a total observing time of 220 seconds. The

100 and 160µm observations were taken simultaneously with slightly larger maps

of 10 legs with the same leg length and separation as the 70µm observation. We
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took 100 and 160µm data at two different scan angles, 70 and 110◦, with a total

duration of 276 seconds per scan angle. We then combined the observations at the

two scan angles to reduce noise due to streaking in the scan direction. We reduced

the data with HIPE 8.2 (Ott 2010) using the standard reduction pipeline. We chose

the final maps to have a pixel scale corresponding to the native pixel scale of the

PACS detectors, 3.2′′ for the 70 and 100µm images and 6.4′′ for the 160µm images.

We also took simultaneous images of HD32297 at 250, 350, and 500µm with

the SPIRE instrument. The observations were made in the Small Scan Map mode

with a scan speed of 30′′s−1, with two repetitions and a total observation time

of 307 seconds. We reduced the data with HIPE 8.2, producing final maps with

pixels scales of 6, 10, and 14′′ for the 250, 350, and 500µm images respectively.

HIPE produces SPIRE images with units of Jy beam−1, which we converted into Jy

pixel−1 for analysis using beam areas of 423, 751, and 1587 arcsec2 for the 250, 350,

and 500µm images respectively.

The Herschel PACS spectroscopy of HD32297 was taken in two modes, the line-

Spec and rangeSpec modes. The lineSpec observations targeted the [O I] 63.2µm

line with a duration of 3316 seconds. The rangeSpec observations targeted six lines,

[O I] at 145.5µm, [C II] at 157.7µm, two o-H2O lines at 78.7 and 179.5µm, and

2 CO lines at 72.8 and 90.2µm. The total rangeSpec observation time was 5141

seconds, divided into three observing segments, covering the six lines two at a time.

A deep follow-up rangeSpec observation was performed targeting just the [C II]

157.7µm line with a duration of 4380 seconds. We reduced the spectroscopic data

using HIPE 8.2 and applied an aperture correction in HIPE to account for point

source flux loss. We produced spectra with a pixel scale corresponding to the native

resolution of the instrument.
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5.3 Analysis

5.3.1 Herschel PACS photometry

The HD32297 disk is a spatially unresolved point source to Herschel. The full-width

at half-maximum of the Herschel PACS beam at 70µm is 5.6′′, so the bulk of the

thermal emission must be within ∼ 300 AU. This is consistent with resolved images

which suggest the disk peaks at ∼ 110 AU (Boccaletti et al. 2012; Currie et al. 2012;

Debes et al. 2009). Aperture photometry was performed with apertures of 12′′ for

the 70 and 100µm images and 22′′ for the 160µm image.

We applied aperture corrections provided by the Herschel PACS ICC1, but color

corrections were not applied. We calculated the uncertainty in the flux from the

standard deviation of the sky background in an annulus around the aperture. We

placed the annulus between 20-30′′ from the central star for the 70 and 100µm

images and between 30-40′′ for the 160µm image. An absolute calibration error of

2.64, 2.75, and 4.15%1 for the 70, 100, and 160µm images respectively was added

in quadrature to the uncertainty measured from the sky background. Results from

the Herschel PACS photometry observations are given in Table 5.1.

5.3.2 Herschel SPIRE photometry

Aperture photometry was performed with aperture radii of 22, 30, and 42′′ for the

250, 350, and 500µm images respectively. The sky background was estimated from

an annulus with radius of 60-90′′ from the central star and subtracted from the

measured flux. Aperture corrections were applied according to the SPIRE data

1PICC-ME-TN-037: http://herschel.esac.esa.int/twiki/pub/Public/

PacsCalibrationWeb/pacs_bolo_fluxcal_report_v1.pdf
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Table 5.1: Herschel PACS and SPIRE photometry results

Obs. Id Wavelength Flux ± Error

(µm) (Jy)

1342193125 70 1.038± 0.029

1342217452-3 100 0.770± 0.022

1342217452-3 160 0.403± 0.020

1342240033 250 0.153± 0.012

1342240033 350 0.071± 0.008

1342240033 500 0.045± 0.007

reduction guide2. A color correction2 of ∼ 5% was applied assuming a Rayleigh-

Jeans law slope of Fν ∝ ν2. This correction could be off by 5% if the slope of the

SED in the sub-mm is steeper than Rayleigh-Jeans. The uncertainties in the flux

measurements come from the standard deviation of the sky background added in

quadrature with a 7% absolute calibration error. Results from the Herschel SPIRE

photometry are listed in Table 5.1.

5.3.3 Herschel PACS spectroscopy

The PACS spectrometer is an Integral Field Unit (IFU) spectrometer that has a 5×5

array of spaxels (spatial pixel) with each spaxel covering a 9.4′′ × 9.4′′ region. We

verified that the star was well-centered on the central spaxel during the observations

by comparing the observations to a model of the transmission of a theoretical PSF

through the PACS IFU. We shifted the model PSF and calculated the fractional

flux in the different spaxels as a function of offset. Comparison to observations of

HD32297 indicate the star is not significantly offset. This method is the same as the

one used by Howard et al. (in preparation) for PACS observations of Taurus that

had pointing errors.

We use data from the central spaxel only for analysis. No lines were detected

2SDRG 5.7: http://herschel.esac.esa.int/hcss-doc-9.0/
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in the lineSpec or the first rangeSpec observation. We calculated continuum flux

values by fitting straight lines to the data, and the results are listed in Table 5.2.

We excluded five pixels on each edge from the continuum fit because PACS spectra

have enhanced noise at the edges. Emission in the [C II] 157.7µm line was seen in

the second deep rangeSpec observation. The continuum flux was found by fitting

a line to the spectrum while masking out 0.5µm around the line center. The rms

noise was also calculated in the region surrounding the line. The number of pixels

used to calculate the noise was chosen such that the signal-to-noise in the emission

line was maximized, i.e. the rms noise was minimized.

The line flux was integrated over the three pixels surrounding the line (marked

by the gray bar in Figure 5.1). The uncertainty in the line flux was found by

propagating the rms noise. Upper limits on the other lines were found using the

same method of error propagation at the expected line center. These values are

reported in Table 5.2. The integrated line flux of the [C II] line is detected at

the 3.7σ level above the continuum in the central spaxel from the deep rangeSpec

observation. All 25 spaxels were searched for a significant [C II] line signal, and no

other emission was found with more than a 2σ significance. Since the line is present

only in the central spaxel, we believe the gas is associated with the star rather than

from the surrounding ISM.

5.3.4 Column density of C II in HD32297

With the flux of the [C II] line, we can determine the column density of C II for

comparison to the Na I column density found by Redfield (2007). The [C II] 158µm

line arises from the transition between the two fine structure lines of the electronic

ground state. Since the next electronic energy level is three orders of magnitude

higher, we can assume a two level population with a high accuracy. Following
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Figure 5.1: The [C II] 157.7µm emission line from the HD32297 debris disk. The

dashed line represents the expected position of the [C II] line. The continuum

was fit with a straight line (black solid line), and the emission line was fit with a

Gaussian (red solid line). The integrated line flux was measured from the 3 pixels

surrounding the line (indicated by the gray bar). The integrated line flux is 3.7σ

above the continuum.

Roberge and Kamp (2011), the column density is

NCII =
4πλ

hc

F10

A10x1Ω
, (5.1)

where the indices 1 and 0 indicate the upper and lower fine structure levels re-

spectively, λ = 157.7µm, F10 = 2.68 × 10−18 W m−2 is the integrated line flux,

A10 = 2.4 × 10−6 s−1 is the spontaneous transition probability, Ω = 0.357 arcsec2

is the angular source size estimated from resolved scattered light images, and x1 is

the fractional population of the upper level. Assuming local thermodynamic equi-

librium (LTE), x1 is dependent on the excitation temperature. Roberge and Kamp

(2011) give this as

x1 =
(2J1 + 1)g1e

−E1/kTex

Q(Tex)
, (5.2)
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Table 5.2: Herschel PACS Spectroscopy Results

Line Wavelength Continuum Integrated Line Fluxa

Name (µm) Flux (Jy) ×10−18 (W/m2)

O I 63 63.184 1.28± 0.20 < 7.29

CO 72 72.843 0.83± 0.23 < 7.77

H2O 79 78.741 1.03± 0.23 < 9.12

CO 90 90.163 1.05± 0.29 < 8.13

O I 145 145.525 0.55± 0.09 < 3.99

C II 158 (1) b 157.741 0.53± 0.13 < 4.32

H2O 180 179.741 0.44± 0.15 < 3.57

C II 158 (2) b 157.741 0.50± 0.06 2.68± 0.72

a Non-detections are reported as 3σ upper limits
b C II 158 line was observed twice. (1) - first rangeSpec

observation (2) - second deeper rangeSpec observation

where J1 = 3/2 is the angular momentum quantum number of the upper level, gN

are the nuclear statistical weights for the two levels (g0 = 2 & g1 = 4), E1/k = 91.21

K is the energy difference between the two levels, Tex is the excitation temperature,

and Q(Tex) is the partition function, which here can be approximated in a two level

system by

Q(Tex) = g0 + g1e
−E1/kTex . (5.3)

With only one gas line, we cannot measure the excitation temperature. However,

we can derive a lower limit on the column density. Figure 5.2 shows the dependence

of the column density on excitation temperature. From 1 to 300 K, we find a lower

limit on the C II column density of NCII > 2.5× 1011 cm−2. This value is similar to

the column density of Na I calculated by Redfield (2007) (NNaI = 2.5× 1011 cm−2).
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Figure 5.2: Column density of C II as a function of excitation temperature (solid

line). The dashed line shows the lower limit on the column density (N = 2.5×10−11

cm−2) for excitation temperatures < 300 K.

5.4 SED Modeling

5.4.1 SED data

In addition to the Herschel data, we collected archive data for use in our SED

modeling (see Tab. 5.3). To constrain the stellar photosphere, we used Hipparcos B

& V (Perryman and ESA 1997), 2MASS J, H, & Ks (Cutri et al. 2003), and WISE

bands 1 & 2 (Wright et al. 2010). For the infrared excess, we used IRAS 25 &

60µm (Moór et al. 2006), WISE bands 3 & 4 (Wright et al. 2010), Spitzer MIPS

24µm (Maness et al. 2008), and Spitzer IRS data taken from the enhanced data

product in the Spitzer Heritage Archive.3 We also included millimeter data from

Meeus et al. (2012): the 1.2 mm flux from the MAMBO2 bolometer array on the
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IRAM 30 m telescope and the 1.3 mm flux from the Sub-Millimeter Array (SMA).

The uncertainties for these last two measurements (reported in Table 5.3) include

15% calibration uncertainties added in quadrature.

The HD32297 disk is also marginally resolved at mid-IR and millimeter wave-

lengths. We used the total flux from Gemini North Michelle imaging at 11.2µm

(Fitzgerald et al. 2007b), and Gemini South T-ReCS imaging at 11.7 & 18.3µm

(Moerchen et al. 2007). We used the SMA flux at 1.3 mm rather than the total

flux from the CARMA 1.3 mm resolved image (Maness et al. 2008), because the

unresolved data from the SMA has a smaller uncertainty. The photometric data

used are listed in Table 5.3 and plotted in Figure 5.3.

We combined these data with our Herschel PACS and SPIRE photometry and

the continuum values from the PACS spectroscopy. Our data points fill in a large

gap in the SED from 60 to 500µm (see Figure 5.3) and allow us to assess where the

peak of the thermal emission is located.

Table 5.3: Additional data used in SED modeling

Wavelength Flux & Uncertainty Instrument Reference

(µm) (Jy)

0.438 1.952± 0.026 Hipparcos B [1]

0.547 2.094± 0.023 Hipparcos V [1]

1.235 1.342± 0.030 2MASS J [2]

1.65 0.913± 0.044 2MASS H [2]

2.16 0.611± 0.010 2MASS Ks [2]

3.4 0.278± 0.010 WISE 1 [3]

4.6 0.150± 0.005 WISE 2 [3]

8.00 0.064± 0.002 Spitzer IRS [4]

8.65 0.059± 0.003 Spitzer IRS [4]

9.35 0.053± 0.003 Spitzer IRS [4]

10.11 0.049± 0.002 Spitzer IRS [4]

Continued on next page

3irsa.ipac.caltech.edu/applications/Spitzer/SHA/
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Table 5.3 continued

Wavelength Flux & Uncertainty Instrument Reference

(µm) (Jy)

10.93 0.049± 0.002 Spitzer IRS [4]

11.2 0.050± 0.002 Gemini-N/Michelle [5]

11.56 0.053± 0.005 WISE 3 [3]

11.7 0.053± 0.005 Gemini-S/T-ReCS [6]

11.81 0.050± 0.002 Spitzer IRS [4]

12.77 0.052± 0.001 Spitzer IRS [4]

13.80 0.054± 0.003 Spitzer IRS [4]

14.92 0.063± 0.002 Spitzer IRS [4]

16.13 0.072± 0.003 Spitzer IRS [4]

17.44 0.087± 0.004 Spitzer IRS [4]

18.3 0.090± 0.014 Gemini-S/T-ReCS [6]

18.85 0.110± 0.004 Spitzer IRS [4]

20.38 0.142± 0.009 Spitzer IRS [4]

22 0.193± 0.020 WISE 4 [3]

22.03 0.189± 0.009 Spitzer IRS [4]

23.68 0.210± 0.010 Spitzer MIPS [7]

23.81 0.239± 0.011 Spitzer IRS [4]

25 0.256± 0.041 IRAS 25 [8]

25.74 0.296± 0.010 Spitzer IRS [4]

27.83 0.375± 0.011 Spitzer IRS [4]

30.08 0.444± 0.011 Spitzer IRS [4]

32.51 0.563± 0.014 Spitzer IRS [4]

35.15 0.668± 0.018 Spitzer IRS [4]

60 1.140± 0.070 IRAS 60 [8]

1200 0.00314± 0.00095 IRAM 30m/MAMBO2 [9]

1300 0.00310± 0.00087 SMA [9]

Color corrected flux with 1σ error bars used in the SED modeling.

References - [1]: Høg et al. (2000), [2]: Cutri et al. (2003),

[3]: Wright et al. (2010), [4]: Spitzer Heritage Archive,

[5]: Fitzgerald et al. (2007b), [6]: Moerchen et al. (2007),

[7]: Maness et al. (2008), [8]: Moór et al. (2006), [9]: Meeus et al. (2012)
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Figure 5.3: Spectral energy distribution of HD32297 with simple blackbody fits.

The gray line is the best-fitting stellar photosphere model with T = 7750 K (see

Section 5.4.2). The data points that were taken from the literature and listed in

Table 5.3 are plotted here as well as the new PACS and SPIRE data given in Tables

5.1 and 5.2. A two temperature modified blackbody model is over plotted (orange

solid line), with the individual components also shown - a warmer blackbody with

T = 240 K (dotted line) and a colder blackbody with T = 83 K (dashed line) as

described in Section 5.4.4.

5.4.2 Stellar Properties

We started our analysis by fitting for the stellar parameters of HD32297. We used

the Hipparcos B & V, 2MASS J, H, & Ks, and WISE bands 1 & 2 to constrain

the stellar models. We fit the stellar data with ATLAS9 stellar photosphere models

(Castelli and Kurucz 2004). The spectral type of HD32297 is usually quoted as

either an A0 (Torres et al. 2006) or an A5 (Fitzgerald et al. 2007b, and references
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therein). Our best fitting model with an A0V spectral type (T = 9750 K) is too hot

and does not match the data well.

We therefore tried both adding interstellar extinction with a Fitzpatrick (1999)

extinction law and varying the stellar photosphere temperature. Unfortunately,

these two parameters are degenerate. Fixing the temperature to T = 9750 K,

the best fitting model has an extinction of AV = 0.63 ± 0.02 mag, a reduced chi-

squared value of χ2
ν = 0.59, and a bolometric luminosity of L = 11.9L�. The best

fitting model with extinction and temperature as free parameters has T = 8000 K,

AV = 0.161± 0.026 mag, and χ2
ν = 0.55.

To break the degeneracy, we added UV continuum values at 0.26 and 0.31µm

from unpublished STIS spectra (Redfield et al. 2012, in preparation). The best

model is one with no extinction, a temperature of T = 7750 K, and a luminosity of

L = 5.6L� (Fig. 5.3). This is more consistent with an A7 spectral type than an

A0. This hint in the UV spectra that the star has a cooler stellar temperature than

was previously thought will be thoroughly analyzed in a future paper (Redfield et

al. 2012, in preparation). We note that this lower temperature is the same used by

Debes et al. (2009) and close to the temperature used by Fitzgerald et al. (2007b),

both of whom note that the star appears to be under-luminous for a main sequence

star of this temperature. Some reasons proposed are errors in the Hipparcos distance

(Debes et al. 2009) or a sub-solar metallicity (Meeus et al. 2012).

The assumed stellar luminosity does not have a significant effect on the SED

in the far-IR where the stellar contribution is negligible. However, the assumed

temperature of the star is important for calculating the equilibrium temperature of

the dust. An error in the stellar temperature will translate into an error in the dust

temperature, which will affect the calculated grain properties, such as minimum

grain size.
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5.4.3 Surface Density Profile

The HD32297 disk has been well resolved in scattered light with HST NICMOS at

1.1µm (Schneider et al. 2005), 1.6µm, 2.05µm (Debes et al. 2009), and Ks band

(λ = 2.16µm) from the ground with Keck/NIRC2 (Currie et al. 2012), as well as

H (λ = 1.65µm) and Ks bands with VLT/NACO (Boccaletti et al. 2012). These

observations block out the central star with a coronagraph, and consequently obscure

the inner portions of the disk as well.

The resolved images place strong geometrical constraints on the disk outside

of ∼ 65 AU. Currie et al. (2012) and Boccaletti et al. (2012) have both recently

published models of the disk based on their near-IR ground based imaging using

ADI. Boccaletti et al. (2012) warn that images processed using ADI and/or the

Locally Optimized Combination of Images (LOCI) are subject to self-subtraction

and other artifacts (also see Milli et al. 2012). Therefore, a direct inversion of

the surface brightness profile in the manner of Augereau and Beust (2006) is not

practical here. For this reason, we rely on the disk modeling that takes into account

the ADI and LOCI processing.

The models of Currie et al. (2012) and Boccaletti et al. (2012) agree quite well.

Both see a break in the surface brightness profiles around 1′′ (∼ 110 AU), which

was also seen by Debes et al. (2009) in the NICMOS images. Both measure an

inclination of 88◦, i.e. 2◦ from edge-on. This is notably different from the inclination

measured by Schneider et al. (2005) of 79.5◦.

Where the models disagree is in the anisotropic scattering factor, g. Currie et al.

(2012) use a two-component Henyey-Greenstein phase function with a highly forward

scattering component (g1 = 0.96) and a backscattering component (g2 = −0.1),

while Boccaletti et al. (2012) use only a one-component phase function with a best
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fit value of g = 0.5. They discuss how higher values of g would make the disk too

bright in the inner regions. Currie et al. (2012) also note this, but they dismiss it

due to the large uncertainties in surface brightness close to the star.

We chose to use the models of Boccaletti et al. (2012) because they used the

GRATER code (Augereau et al. 1999; Lebreton et al. 2012) to model the disk images,

which we also used to model the SED (see Section 5.4.5). The best-fit model of

Boccaletti et al. (2012) to the Ks band image has a mid-plane density of the form

n(r) = n0

√
2

(( r

110AU

)10

+
( r

110AU

)−4
)−1/2

. (5.4)

We assumed the disk is geometrically thin because the SED modeling cannot distin-

guish between a vertical offset from the midplane and a radial change in distance.

We chose to use the Boccaletti et al. (2012) model of the Ks band image rather than

the H band image because the Ks band data are of better quality.

5.4.4 Dust Disk Modeling Strategy

We started our modeling by fitting the infrared excess with a single temperature

modified blackbody, i.e. a blackbody model with an opacity at longer wavelengths

of the form νβ. The exact form of the modified blackbody we used is Fν ∝ τνBν for

λ ≥ λ0, and Fν ∝ Bν for λ < λ0, where Bν is a simple blackbody and τ is the optical

depth, which takes the form τ ∝ (ν/ν0)β ∝ (λ/λ0)−β. Here we have fixed β = 1 and

λ0 = 100µm, based on typical values for debris disks (Dent et al. 2000; Williams

and Andrews 2006). The best fit was determined through χ2 minimization using

MPFIT (Markwardt 2009). The best fitting model has a temperature of T = 80 K.

However, this model significantly underestimates the flux at mid-IR wavelengths.

To account for the missing IR flux in our model, we added a second modified

blackbody. The best fitting model has two distinct components with temperatures
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of T = 83 K and T = 240 K (see Fig. 5.3). The addition of the second blackbody

much improves the fit over the single temperature model, suggesting there is a second

inner disk. The inner component is too hot, and therefore too close to the star, to

be part of the outer ring imaged in scattered light.

Spatial information is important for breaking degeneracies in SED modeling.

Scattered light images of HD32297 restrict the models of the outer disk geometry.

Unfortunately, no constraining images exist for the inner disk, which is too close

to the star to be imaged. Therefore, we divided the dust disk modeling into two

steps: first fitting the outer disk with a more complex model, then fitting the poorly

constrained inner disk with a simpler one.

5.4.5 Outer disk modeling with GRATER

For the outer disk, we limited the data to those with wavelengths larger than 25µm.

This cutoff was chosen as the point where the inner disk contributes less than 50%

to the total two component blackbody model. With the Herschel observations, we

have enough data points with wavelengths greater than 25µm to constrain the outer

disk properties.

We use the GRATER code (Augereau et al. 1999; Lebreton et al. 2012) to fit

the SED of HD32297. GRATER is dust disk modeling code specifically designed for

optically thin debris disks, which can compute large grids of models with different

grain sizes and composition and use a density profile to describe the disk geometry.

The code computes both the scattered light emission and the thermal emission

from the grains in equilibrium with the radiation field of the central star. We

constrained the spatial distribution of the dust grains by using the models of the

resolved scattered light images from Boccaletti et al. (2012). We confined the grains

in our SED model to be located in a ring defined by Equation 5.4. The overall
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abundance was left as a free parameter that scales the radial profile to match the

SED.

With the disk geometry fixed, we focused our modeling on the grain sizes and

composition, which we assumed to be the same throughout the disk. GRATER

calculates Mie scattering and absorption coefficients for a large range of grain com-

positions. Specifically, we explored combinations of materials consisting of astrosil-

icate (Draine 2003), amorphous carbon (Zubko et al. 1996), amorphous water ice

(Li and Greenberg 1998) and porosity. The volume ratios of the materials explored

are listed in Table 5.4. If any material reaches its sublimation temperature, it is

replaced by vacuum. For most of the outer disk, the temperatures are too cold for

this to happen.

Table 5.4: Parameters explored in GRATER models

Parameter range # of values distribution

κ -5 to -2.5 20 linear

amin 0.01 to 100µm 77 logarithmic

Carbon Volume 0 to 100% 21 linear

Ice Volume 0 to 90% 10 linear

Porosity 0 to 95% 20 linear

For the grain sizes, we explored a range of minimum grain sizes from amin =

0.01µm to amin = 100µm and grain size distributions with a power-law of the form

n(a)da ∝ aκda, with κ ranging from −5 to −2.5. The maximum grain size is kept

fixed at amax = 7.8 mm, which is large enough compared to the longest wavelength

of the data (λ = 1.3 mm). However, we only considered grains with sizes smaller

than 1 mm in calculating the dust mass (given in Table 5.5), to be consistent with

other results from GASPS and other Herschel Key Programmes.

We modeled the disk using six different compositions with varying levels of com-

plexity. The simplest model used only astrosilicate grains. The next three models
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used silicates mixed with only one other grain type: carbonaceous material, water

ice, or increased porosity. For the three and four material combinations, we kept the

silicate to carbon volume ratio fixed at 1:2. This is the ratio expected from cosmic

abundances and is similar to the ratio observed in comet Halley dust (Greenberg

1998).

The grains are assumed to be porous aggregates of silicate, carbon and water ice.

The scattering and absorption coefficients for the aggregates are calculated using the

Bruggeman mixing rule (Bohren and Huffman 1983). Silicate and carbon are mixed

first, then the Si+C mixture is mixed with water ice, and finally it is all mixed with

vacuum to simulate porous grains. For more details see Lebreton et al. (2012) and

Augereau et al. (1999).

5.4.6 Inner disk modeling

The mid-IR flux can only be explained with a warmer component than is seen in

the scattered light images. We first tried to model the disk with the geometry

constrained only by the coronagraphic scattered light images of the disk. We found

that the thermal emission from the grains seen in the scattered light images was not

enough to reproduce the mid-IR flux in the SED. The data in this region come from

several sources, and all are consistent (Spitzer IRS, WISE (Wright et al. 2010), and

Gemini N (Fitzgerald et al. 2007b) and S (Moerchen et al. 2007)). Therefore, we

added a warmer component to fit the mid-IR data.

We chose to model the warm component as an inner disk inside the radius masked

by coronagraphs in the images. The inner disk is less constrained than the outer

disk since the inner disk lacks geometrical information and the LIR/L∗ of the inner

disk is an order of magnitude lower than the outer disk ( 6.9×10−4 vs. 5.6×10−3;

see Fig. 5.4). This leads to a degeneracy between two of the dust disk modeling
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parameters: the minimum radius and the minimum grain size. The degeneracy

exists because decreasing both the parameters has the same effect of increasing the

grain temperature. Changing the minimum grain size also affects the amount of

flux emitted from a given grain, but this can be mimicked by varying the total

number of grains. With a weakly-emitting disk, the separate effects can be difficult

to disentangle.

For each outer disk model with a different grain composition, we subtracted it

from the SED and fit our inner disk model to the residuals. Since we lack con-

straining spatial information for the inner disk, we needed to use a simpler model.

We used the model described in Donaldson et al. (2012), which calculates only the

thermal emission from astrosilicate grains in radiative equilibrium with the central

star. We fixed the outer radius to 5 AU since all values above this had no significant

effect on the SED. We assumed the disk has a surface density profile of the form

Σ(r) ∝ r−1.5, consistent with collision-dominated disks (Krivov et al. 2006; Strubbe

and Chiang 2006). We also fixed the grain size distribution throughout the disk to

a Dohnanyi (1969) power-law (n(a)da ∝ a−3.5da) with a maximum grain size of 1

mm. The only free parameters were the inner radius, the minimum grain size, and

the dust mass.

We used the inner disk model to fit the residuals after subtraction of the outer

disk model, then combined this model with those of the outer disk and the star. We

calculated reduced χ2 values (χ2
ν) using all 43 data points listed in Tables 5.1, 5.2,

and 5.3 greater than 8µm and the number of degrees of freedom (ν) listed in Table

5.5. We calculated the errors on the parameters from the 1σ confidence intervals in

the χ2 distribution.

A similar modeling approach was recently used by Ertel et al. (2011) for HD107146.

They fit the disk SED using the scattered light images to constrain the geometry,
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and they also found an overabundance of Spitzer IRS mid-IR flux in their best fit

models. They tried modeling the excess in two ways: first by adding a small grain

population within the imaged disk, and second by adding an inner disk. The small

grain model was unable to reproduce the mid-IR flux in HD107146; the inner disk

model was needed to match the Spitzer IRS spectrum.

5.4.7 Results

We found the best fitting outer disk model was the 4 material composition of sili-

cates, carbon, and water ice in a 1:2:3 ratio with a high porosity of 90% (final row of

Table 5.5, Fig. 5.4). The outer disk grains have a minimum size of amin = 2.1µm,

with a grain size distribution power-law index of κ = −3.3. The best fitting total

SED model also includes an inner disk from 1.1 AU with an unconstrained outer

edge. The inner disk was fit with astrosilicate grains with a Dohnanyi (1969) size

distribution (κ = −3.5). The minimum grain size in the inner disk for the best

fitting model is amin = 2.2µm, similar to the outer disk grains. Other grain models

tested appear in Table 5.5. We determined the uncertainties given in Table 5.5

from the 1σ confidence intervals in the χ2 distribution after fixing the other free

parameters to the value that gives the smallest χ2 value.

The 4 material composition model has the best reduced χ2 value of the tested

compositions (χ2
ν = 1.59, ν = 34). Of the 2 material composition models, astrosil-

icate + carbon and astrosilicate + porosity are the best fitting (χ2
ν = 4.27 and

χ2
ν = 4.42, ν = 35), but the model is much improved when all 3 materials are added

together (χ2
ν = 3.60, ν = 35). The addition of ice makes a dramatic improvement

in the fit from the 3 material composition to the 4 material composition. The min-

imum grain size in the inner disk models decreases with each improvement on the

outer disk model, moving closer to the expected blowout size of 1µm. This is likely
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Figure 5.4: Top: Spectral energy distribution for the best-fitting total model given

in Table 5.5 (Model 6). The black solid line is the fit to the stellar photosphere,

the dotted and dashed lines show the inner and outer disk models respectively,

and the red solid line represents the combined model of photosphere + inner

disk + outer disk. The data plotted here are listed in Tables 5.1, 5.2, and 5.3.

Bottom: The relative residuals of the best-fitting model shown above. The relative

residuals are of the form (data - model#6)/data. Also plotted for comparison are

the relative residuals of the other five models given in Table 5.5, e.g. (model#1 -

model#6)/model#1. The red line marks the zero point, or the residual for model

6.

because the two material models fail to fit all the mid-IR flux coming from the outer

ring, and the inner disk models have to compensate.

The blowout size given above is calculated for the inner disk only, where the

assumed grain composition is astrosilicate. Given a density of ρ = 3.5 g cm−3,

the blowout size for spherical grains on circular orbits (in microns) is ablow =

1.15L∗/(M∗ρ), with L∗ and M∗ in solar units and ρ in g cm−3. For astrosilicate grains

around HD32297 (M∗ = 1.84M�, L∗ = 5.3L�), the blowout size is ablow = 1µm.
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Table 5.5: Results of SED modeling

outer disk volume outer disk inner disk total disk

modela ratios amin κ rmin amin χ2
ν ν Dust Massb

Model 1 – 1.4± 0.1µm −3.8± 0.2 3.3± 0.3 AU 200± 120µm 4.58 36 0.32± 0.05 M⊕
Model 2 1:4 2.1± 0.4µm −4.3± 0.3 3.5± 0.5 AU 31.6± 26µm 4.27 35 0.11± 0.02 M⊕
Model 3 11:9 0.3± 0.1µm −3.5± 0.2 3.6± 0.4 AU 31.6± 27µm 4.42 35 0.26± 0.05 M⊕
Model 4 4:1 1.0± 0.1µm −3.7± 0.2 3.2± 0.3 AU 39.8± 22µm 4.45 35 0.34± 0.12 M⊕
Model 5 1:2:12 3.4± 0.1µm −3.8± 0.2 2.8± 0.3 AU 25.1± 24µm 3.60 35 0.08± 0.01 M⊕
Model 6 1:2:3:54 2.1± 0.3µm −3.3± 0.2 1.1± 0.2 AU 2.2± 0.9µm 1.59 34 0.10± 0.01 M⊕
a Model 1: Astrosilicate (AS), Model 2: Astrosilicate + Carbon (C), Model 3: Astrosilicate + Vacuum (P), Model

4: Astrosilicate + Water Ice (I), Model 5: Astrosilicate+ Carbon + Vacuum, Model 6: Astrosilicate + Carbon

+ Water Ice + Vacuum
b The dust mass is calculated for dust grains smaller than 1 mm only. The total dust mass is dominated by the

outer disk.
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For the outer disk, the grains are highly porous and likely have a fractal structure.

The calculation of the blowout size depends on the surface area of the grains; this

is non-trivial for fractal grains. The above equation is for spherical grains only; we

do not calculate the blowout size for the outer disk because it is not very realistic in

this case. For more about this problem, see the discussion in Lebreton et al. (2012).

5.5 Discussion

The composition of dust grains in young debris disks is a key piece in understanding

the last stages of terrestrial planet formation. A handful of debris disks, including

β Pictoris and HD172555 (Lisse et al. 2009; Telesco and Knacke 1991), have solid

state features in the mid-IR that indicate dust grain composition. But most debris

disks, including HD32297, lack these features, and therefore, modeling of the full

SED is needed to constrain the grain composition.

Unfortunately, the presence of an unresolved warm component to the HD32297

system complicates the modeling. Without resolved imaging of the inner regions,

it is impossible to know the distribution of the warm component and how much

mid-IR flux is coming from the outer disk versus the inner disk. The models of the

inner disk depend strongly on the model chosen for the outer disk. Additionally,

since there are no geometrical constraints on the inner disk, the results depend upon

the distribution we assumed.

Another concern is the age of the system. Kalas (2005) states the age as 30 Myr

based on an uncertain association with either the Gould belt or Taurus Aurigae.

The dust mass of HD32297 (see Table 5.5) is high for a debris disk. The mass

is comparable to the 8 Myr-old disk HR4796A, which suggests HD32297 may be

younger than 30 Myr. HD32297 is also one of the oldest debris disks with gas
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detected, another indication it may be a younger system. But the system likely

not much younger than the given age of 30 Myr. There are several indicators that

HD32297 is a main sequence star with an optically thin debris disk, including 1) the

lack of optical extinction, 2) the low fractional dust luminosity (LIR/L∗ ∼ 10−3) and

3) a lack of solid state features in the mid-IR indicating no small grains are present.

5.5.1 Cometary Dust?

The best fitting model to the outer disk includes grains that are highly porous

and icy. High grain porosity is seen in interplanetary dust particles collected with

Stardust (Brownlee et al. 2006) and in the ejecta from comet Temple 1 created

by Deep Impact (A’Hearn 2008). Greenberg and Hage (1990) showed that comet

Halley’s spectrum could only be fit by highly porous grains with a porosity between

93 and 97.5%. Li and Greenberg (1998) modeled the β Pictoris disk with similar

composition dust. They assumed the β Pic dust was cometary in origin and rejected

models of compact grains with porosity lower than 90%. Polarized light observations

of AU Mic also indicate that disk is dominated by highly porous grains with porosity

of 91-94% (Fitzgerald et al. 2007a; Graham et al. 2007). The highly porous, icy dust

around HD32297 is similar to β Pic and Solar System comets.

Dust in the outer ring of HD32297 therefore appears consistent with cometary

dust particles. The ring is centered around ∼ 110 AU, far from the star where ices

should be prevalent. If planetesimal collisions produce the dust, this indicates that

comet-like bodies dominate the planetesimal population in the outer disk.

A large population of comets in the outer disk could deliver water to terrestrial

planets. A significant fraction of Earth’s water likely came from Kuiper Belt comets

(Morbidelli et al. 2000). At an age of 30 Myr, HD32297 could still be forming

terrestrial planets (Kenyon and Bromley 2006). Comets scattered into the inner
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regions of the disk could deliver water to forming terrestrial planets in the habitable

zone.

5.5.2 Grain Porosity and ISM interaction

The scattered light images of HD32297, as well as those of the edge-on disks HD15115

and HD61005, have asymmetric features that may be due to interaction with ISM

as the systems move with respect to their surroundings. The short wavelength of

images of HD32297 (Debes et al. 2009; Schneider et al. 2005) and HD61005 (Buenzli

et al. 2010; Hines et al. 2007; Maness et al. 2009) show a “swept-out” feature, while

HD15115 has a strong east-west asymmetry (Debes et al. 2008; Kalas et al. 2007;

Rodigas et al. 2012). The ISM interaction model of Debes et al. (2009) reproduces

the features of all three disks.

The ISM affects the disk grains through gas drag and/or grain-grain collision

as the disk moves through a dense clump in the ISM. Unbound or weakly bound

grains are swept back as they interact with the ISM. The most affected grains are

typically thought to be the small grains that are nearly unbound due to the effect

of radiation pressure. But larger grains with a higher porosity are also strongly

affected by radiation pressure, and therefore may also be susceptible to being blown

back through ISM ram pressure. The high porosity of the outer disk grains may

be one factor that helps explain why this disk has such a strong ISM interaction

feature. Stellar motion and environment must also play a role, since other disks

modeled with a high grain porosity, such as β Pic, do not have the same feature.

146



5.5.3 Gas in HD32297

HD32297 is one of only a handful of debris disks that have gas detections. Redfield

(2007) found Na I in absorption, aided by the disk’s nearly edge-on orientation.

The detection of [C II] emission from HD32297 is the fourth detection of atomic gas

from a debris disk with Herschel, though it is weaker than the lines seen from β

Pictoris, HD172555, and 49 Ceti (Brandeker et al. 2012; Riviere-Marichalar et al.

2012; Roberge et al. 2012). It is also unusual that [C II] was detected while [O I]

was not. The only other debris disk with gas where this is true is 49 Ceti (Roberge

et al. 2012).

Given relatively advanced age of HD32297 (∼ 30 Myr; Kalas 2005) and the typi-

cal protoplanetary disk lifetime (< 10 Myr; Williams and Cieza 2011), the HD32297

gas is unlikely to be primordial. The lack of sub-mm CO emission suggests a gas-

to-dust ratio lower than is seen in younger protoplanetary disks (e.g. Zuckerman

et al. 1995). Furthermore, the disk dust has a relatively low abundance, and shares

other characteristics with debris dust (no detectable line-of-sight extinction, a lack

of mid-IR solid state features from small grains). With little dust and little gas,

the disk should be optically thin to stellar and interstellar dissociating UV photons

and molecular gas lifetimes should be short. However, at this time, it is difficult to

prove that the observed C II is not simply the tenuous end product of dissociated

primordial gas, although the lack of O I emission would be puzzling in this scenario.

An alternative scenario would be gas production by secondary mechanisms such as

planetesimal collisions or outgassing from comet-like bodies.

To calculate the total amount of carbon gas in the disk, we assume the disk

is similar to the well studied β Pictoris debris disk. Several gas species have been

observed in β Pic, and their abundance ratios are summarized in Roberge et al.
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(2006). The ratio of neutral and singly ionized carbon in β Pic is C I/C II ∼

1. Assuming the same ionization fraction, the total column density of carbon in

HD32297 is NC & 5 × 1011 cm−2. The ionization fraction of sodium in β Pic is

≥ 0.999 (Roberge et al. 2006). This implies a total sodium column density of

NNa > 2.5× 1014 cm−2, 500 times larger than the lower limit on carbon.

By assuming solar abundances, we naively expect there to be about two orders of

magnitude more carbon than sodium. This would only be the case if the excitation

temperature is less than 10 K. We consider three possible explanations. The first

possibility is that the excitation temperature really is less than 10 K; this would

be several times lower than the excitation temperature measured in β Pic (Roberge

et al. 2006). Second, the disk does not have solar abundances as assumed, but a

different ratio, meaning less carbon or more sodium. Yet, we expect the opposite

to be true. Carbon does not feel as strong a radiation pressure as sodium because

unlike sodium, carbon does not have strong absorption lines in the optical, but in the

far-UV where the star is much fainter (Roberge et al. 2006). Hence, we expect there

to be more carbon than sodium relative to solar abundances, making the problem

worse. The last possibility is that ISM sodium absorption lines along the line of

sight contaminated the HD32297 sodium measurements, boosting the signal. We

deem this to be the most likely scenario.

We can estimate a lower limit on the total gas mass in HD32297 by making a

few assumptions. We start by modifying Equation 5.1 to get a C II mass lower limit

of MCII > 1.7× 10−4 M⊕. By making the same assumptions as above (C I/C II∼ 1,

solar abundances), the total gas mass is ∼ 700 times the C II mass, giving a lower

limit of M > 0.1 M⊕.

Gas in disks can affect the distribution of dust. Gas orbits the star at sub-

keplerian speeds due to either to a gas pressure gradient or radiation pressure. The
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dust grains, if large enough not to experience strong radiation pressure, orbit at

keplerian speeds, and therefore feel a headwind that causes them to spiral inwards.

This mechanism could be a way of transporting dust grains from the outer disk to

the inner disk. Krivov et al. (2009) investigated how 0.3-30 M⊕ of gas would affect

HD32297’s radial surface brightness profiles, and found the gas has little effect on the

disk outside 110 AU. The distribution of the inner disk, however, could be affected

by small amounts of gas. Since we have no limiting spatial information on the gas

in HD32297, we cannot determine if the gas significantly affects the distribution of

the dust in the inner disk. This scenario will be further discussed in Section 5.5.4.

5.5.4 Inner Disk

Our best model for the inner disk of HD32297 starts at ∼ 1 AU. The outer edge

of the inner disk is unconstrained, but we find a lower limit on the outer edge of

∼ 5 AU. We assumed the inner disk grains are astrosilicate grains, and our best

fitting model has a minimum grain size of 2µm. The fit to the inner disk depends

strongly on the fit to the outer disk. Although the results of the grain size in the

inner disk varied by about 2 orders of magnitude (2.2µm - 200µm) the inner radius

only varied by a factor of a few (1.1 - 3.6 AU). This range places the inner disk near

the habitable zone of the star. A simple
√
L∗ scaling of the Solar System’s habitable

zone (∼ 0.7 - 1.5 AU) places the HD32297 habitable zone at ∼ 1.7− 3.5 AU.

The presence of dust in the habitable zone does not rule out terrestrial planets

in this region. Low mass planets may not have had time to clear this region of

planetesimals. In fact, some of the dust may be trapped in resonance with a planet

(Stark and Kuchner 2008; Wyatt 2003).

Since the inner disk has not been resolved, we do not know how the dust is

distributed. The dust distribution in the inner region depends on the location of
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the parent material and dust transportation. We consider two scenarios for the origin

of the inner dust disk: one where the inner dust disk is fed by dust transported from

the outer disk through gas drag, and the second where there is another planetesimal

belt closer to the star.

In the first scenario, the presence of gas might affect the dust distribution, such

that it is no longer collision-dominated. The entire inner disk may be composed of

material that has leaked inwards from the outer disk due to gas drag. If this were the

case, we would expect a smooth surface density distribution from the outer disk to

the inner disk. At first glance, this might seem inconsistent with an SED that is well

fit by a two temperature blackbody model. This model is most easily interpreted as

two rings with a gap in between. However, a gap is not needed to produce such an

SED. The region closest to the star will be much warmer and thus brighter than the

dust in the intermediate region. The signature of dust in the intermediate region

would be hard to detect in the SED alone. Reidemeister et al. (2011) have shown

that in the Eps Eri disk, even a bimodal SED curve can be reproduced with models

that assume transport of dust from the outer disk (in that case, caused by stellar

winds rather than gas), and thus a continuous distribution of dust from the outer

to the inner region. Since the mass of the inner disk that could account for the

observed warm emission is Minner & 6 × 10−9 M⊕, and assuming the radius of the

inner disk of ∼ 1 AU, such a continuous distribution within ∼ 100 AU would imply

roughly 6 × 10−5 M⊕ worth of dust. For gas drag to work, the gas mass should

exceed the dust mass. Therefore, 0.1 M⊕ of gas, which is a lower limit that we

placed from the [C II] observations in Sec. 5.4, would be sufficient for the transport.

However, without images of the inner ∼ 50 AU of the disk, we cannot confirm gas

drag as the origin of the inner dust.

In our second scenario for the origin of the inner dust, there could be another
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belt of planetesimals closer to the star, similar to the asteroid belt. Collisions

between planetesimals, in this case, would produce the dust seen in the SED, just

like in the outer belt. We made calculations with the model of Löhne et al. (2008)

and a velocity-dependent critical fragmentation energy from Stewart and Leinhardt

(2009). They suggest that an asteroid belt of a sub-lunar mass at 1.1 AU in a

30 Myr-old system can easily sustain 10−7M⊕ to 10−8M⊕ worth of dust through

a steady-state collisional cascade. This is more than the mass of the inner disk

(M & 6×10−9M⊕). Without spatial information on the inner disk, we cannot tell if

the presence of warm dust is due to an asteroid belt or from material leaked inwards

from the outer disk. In any case, the mass of the inner disk is significantly less than

the outer disk; only its proximity to the central star makes it outshine the outer

disk in the mid-IR.

5.6 Summary

We present new Herschel PACS and SPIRE photometry and spectroscopy of the

edge-on debris disk around HD32297. Our main conclusions are the following:

1. We detected the disk at 13 wavelengths from 63 to 500µm, filling in a gap in

the SED in this region. The new data probe the peak of the thermal emission.

2. We detected a 3.7σ [C II] line at 158µm, making HD32297 only the fourth

debris disk with atomic gas detected with Herschel. We estimate a lower limit

on column density of NCII > 2.5× 1011 cm−2.

3. The stellar fit to the optical, near-IR and UV data suggest the star has a later

spectral type than typically quoted, likely an A7.

4. Our SED models require a warm component to fit the large mid-IR excess.
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This material is too warm to be part of the ring imaged in scattered light.

The geometry of the warm component is unconstrained; we were able to fit it

with a low density disk at radii greater than 1 AU.

5. The best fitting model to the outer disk includes grains consisting of silicates,

carbonaceous material, water ice, and a highly porous structure. These grains

are similar to cometary grains found in the Solar System.

152



Chapter 6

Spatially Resolved Spectroscopy of

the HD32297 Debris Disk

6.1 Introduction

Debris disks are the remnants of the planet formation process. The dust we observe

in these systems are the result of collisions between larger bodies, the planetesimals

that have been or will be incorporated into planets.

The composition of the dust grains can tell us about the properties of their

progenitors, the unseen planetesimal population. However, unlike in younger proto-

planetary disks, most dust grain in debris disks have grown too large (& 1µm) to

emit solid state features in the mid-IR (Chen et al. 2006). The optical spectrum, on

the other hand, is a more useful tool for characterizing the dust composition. Large

silicate grains have a neutral spectrum in the optical, water ice and small silicate

grains scatter preferentially in the blue, and organic material is expected to have a

red signature.

We use a technique called “coronagraphic spectroscopy” – or spectra taken with
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a long slit and an occulting bar blocking the central star – to characterize a debris

disk’s optical spectrum as a function of radius. Spectra from 2900 Å to 10500 Å

are taken of the target disk and a diskless star with a similar spectral type for

PSF subtraction, resulting in a two dimensional spectrum of the disk as a function

of wavelength and position. This technique has only been used once before to

characterize a disk for the face-on disk TW Hydrae (Roberge et al. 2005). This is

a great tool for edge-on disks specifically because the slit can be aligned along the

direction of the disk and most of the disk’s scattered light will fall within the area

covered by the slit.

We present spatially resolved spectroscopy data from an HST program to image

a few edge-on debris disks, including HR 4796A, AU Microscopii, and HD32297 (GO

12512, PI: A. Weinberger). In this chapter, we focus on the data from HD32297, a

30 Myr-old disk around an A star 112 pc away. HD32297 has been imaged before in

the near-IR (Boccaletti et al. 2012; Currie et al. 2012; Esposito et al. 2014; Rodigas

et al. 2014; Schneider et al. 2005), but this will be the first characterization of the

optical spectrum of the disk as a function of radius.

6.2 Observations

We obtained HST STIS G430L and G750L reflectance spectra of the HD32297 debris

disk as part of a coronagraphic spectroscopy survey of bright edge-on debris disks

(GO 12512, PI: A. Weinberger). These spectra cover the wavelength range ∼ 2900−

10200 Å. The 52 × 0.2F2 aperture was used - i.e. a 0.′′2 wide slit 52′′ long with a

0.′′86 long fiducial bar placed in front of the star. The length of the slit was placed

parallel to the disk (PA= 46.1◦). Acquisition peak up was used to accurately align

the fiducial bar in the x-direction (wavelength-direction).
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Similar observations were taken of HD32297 and a reference star (HIP22984)

for Point Spread Function (PSF) subtraction, chosen to have a similar color as the

target star. Unocculted spectra of the two stars were also taken to correct for color

brightness differences between the target and the PSF stars. These observations were

taken with the same slit (52′′×0.′′2) but without the fiducial bar. Contemporaneous

lamp flats were taken with the G750L grating for defringing (see Section 6.3.1).

The final observations have a plate scale of 50.78 milli-arcsec pixel−1 in the spatial

direction (y-direction) and a resolving power of ∼ 800 at the central wavelength of

each grating. Table 6.1 lists the details of the observations, including exposure time,

aperture, and grating.

Table 6.1: Datalog for STIS observations

ID target Exp Time (s) Aperture Grating Note

OBPZ03050 HD32297 25.0 52X0.2 G750L CCDFLAT

OBPZ03010 HD32297 1.0 52X0.2 G430L unocculted

OBPZ03020 HD32297 1756.0 52X0.2F2 G430L fiducial

OBPZ03030 HD32297 2763.0 52X0.2F2 G430L fiducial

OBPZ03040 HD32297 2.0 52X0.2 G750L unocculted

OBPZ03060 HD32297 2614.0 52X0.2F2 G750L fiducial

OBPZ03070 HD32297 2862.0 52X0.2F2 G750L fiducial

OBPZ04040 HIP22984 25.0 52X0.2 G750L CCDFLAT

OBPZ04010 HIP22984 1.0 52X0.2 G430L unocculted

OBPZ04020 HIP22984 516.0 52X0.2F2 G430L fiducial

OBPZ04030 HIP22984 1.8 52X0.2 G750L unocculted

OBPZ04050 HIP22984 624.0 52X0.2F2 G750L fiducial
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6.3 Data Reduction

The observations were carried out in an unsupported mode, so we reduced the data

ourselves, including defringing and wavelength calibration using the STSDAS IRAF

CALSTIS tasks. We started with the crj files; these are the intermediate calibrated

files that have had basic data reduction performed (bias and dark subtraction, simple

flat fielding, and cosmic ray rejection) but still have geometric distortions. We

combined the multiple observations of HD32297, and updated the exposure time in

the fits header.

6.3.1 Defringing the G750L data

The G750L data suffer from a fringing pattern caused by interference from internal

reflections in the CCD at wavelengths longer than ∼ 7000 Å. We performed defring-

ing IRAF tasks on all the G750L data: the combined HD32297 fiducial, the PSF

fiducial, and the unocculted observations of both stars. We started by using the

normspflat task to make a flat field with the contemporaneous lamp flat observa-

tion. We then used the mkfringeflat task to shift and scale the fringes to match

the data, then the defringe task to defringe the data with the scaled fringe flat.

6.3.2 Calibration

We used the wavecal task to wavelength calibrate all the data. The x1d task was

used to extract one-dimensional spectra from the unocculted observations. The x2d

task was used to calibrate the two-dimensional fiducial spectra. This task converts

the flux into cgs units of erg s−1 cm−2 Å−1 arcsec−2 and corrects for geometrical

distortion so that wavelength is linear along the x-axis and distance is linear along

the y-axis.
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6.3.3 Sigma Clipping

We sigma clipped the 2D spectra to remove hot and cold pixels. This is a procedure

that flags pixels that are more than 3σ away from the average flux inside a region,

and removes them, thereby decreasing the overall noise. We used a 5 × 200 pixel

box – 5 pixels in y and 200 in x. We found this shape to be optimum for our data,

because the spectrum does not change as much in x as it does in y. The box is just

small enough in the x-direction that the real spectral features are not removed while

bad pixels are removed.

We calculated the noise inside the box from the standard deviation. We removed

pixels that were more than 3 times the noise above or below the average, and replaced

them with the median value inside the box. The final 2D spectrum for the G750L

data appears in the top panel of Figure 6.1.

6.3.4 PSF subtraction

The raw data of the 2D fiducial spectrum are a combination of both the signal from

the disk and the starlight diffracting around the fiducial bar. This includes Airy

patterns from the stellar PSF that move radially outwards with wavelength (see

Fig. 6.1). In order to isolate the light from the disk alone, we must remove the

diffracted light through subtraction of an observation of the diskless PSF reference

star.

While the PSF reference star was chosen to be a close match in spectral type, the

colors of the two stars are not exactly the same. We used the 1D spectra extracted

from the unocculted observations to correct for color and brightness differences

between the target and the PSF reference star, by dividing one spectrum by the

other, providing an array giving the relative color of the two stars.
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Figure 6.1: The HST STIS G750L two dimensional fiducial spectrum of HD32297

before PSF subtraction (top panel) and after PSF subtraction (bottom panel).

The x-axis is the wavelength in angstroms and the y-axis the spatial direction of

the slit in arcseconds, centered around the star. In the top panel, the airy rings

of the PSF are visible as diagonal lines moving outwards from the center with

wavelength. After the PSF subtraction, the airy rings are removed, but there are

still some residual PSF subtraction artifacts visible, especially close to the fiducial

bar.

We scaled the PSF reference 2D fiducial spectrum with the resulting factor,

and subtracted the scaled fiducial PSF from the target fiducial spectrum. This

procedure removes many PSF artifacts, such as the Airy pattern, but it is not

perfect, and leaves some strong residuals close to the fiducial bar because the shape

of the telescope PSF changed between the observations of the reference and target

stars. The bottom panel of Figure 6.1 shows the PSF subtracted G750L fiducial

data for HD32297.
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6.4 Stellar Spectral Type

There has been some confusion in the literature about the spectral type of HD32297.

The star is often quoted as an A0V from the Torres et al. (2006) SACY spectroscopic

survey. The data for HD32297, however, comes from a smaller subset of data within

that survey. The data used was only a 450 Å wide region around 6500 Å which is a

much lower resolution than the rest of the survey.

Several debris disk papers noticed this spectral type does not fit the SED of

HD32297 very well. Fitzgerald et al. (2007b), Debes et al. (2009), and Donaldson

et al. (2013) fit the star with a cooler temperature than that of an A0 (7600 K and

7750 K). Fitzgerald et al. (2007b) could not tell with much certainty if the star an

extincted A0, or a cooler star. Donaldson et al. (2013) used extra UV data points

from Redfield et al. (in preparation) to help break the degeneracy between extinction

and temperature to determine there was zero extinction and a temperature of 7750

K, consistent with the best fit from Fitzgerald et al. (2007b).

Our unocculted spectrum of HD32297 represents a good opportunity to finally

put this debate to rest. The 1D point source spectrum is a R ∼ 800 spectrum from

∼ 3000 Å to 10000 Å. We fit the spectrum with ATLAS9 stellar photosphere models

(Castelli and Kurucz 2004). We explored a grid of three parameters: temperature

(7000 – 10000 K in 10 K steps), extinction (AV from 0 to 0.5 in steps of 0.01), and

log(g) (-3.0 to 5.0 in step of 0.5). We calculated the extinction using a Fitzpatrick

(1999) extinction law.

The best fit model has T = 7870± 350 K, log(g) = 4.0± 0.5, AV = 0.0± 0.05,

and a total luminosity of L = 5.26L�. The uncertainty in the parameters were

determined from the 1σ χ2 contours from the grid. The best fit model to the stellar

spectrum is show in Figure 6.2. The data are shown in black, the best fit model in
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Figure 6.2: Stellar spectrum of HD32297 from the unocculted STIS data. Overplotted are two ATLAS9 stellar photosphere

models. In red is our best fitting model, with T = 7870 K, log(g) = 4.0, and zero extinction. For comparison, in blue is

the best fitting model for a fixed temperature of T = 9750 K. This model clearly overestimates the stellar spectrum at short

wavelengths (∼ 4000 Å).
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red, and an A0V (T = 9750 K) model is shown for comparison.

6.5 Radial Profiles

Radial profiles were produced by integrating each row of the two dimensional spectra

over the entire bandpass for both the G430L and the G750L data to get the disk

surface brightness as a function of radius. We calculated the radial profiles separately

above the fiducial bar (PA = 46.1◦) and below fiducial bar (PA = 226.1◦).

We define the outermost detected radius of the disk as the location where the

radial profile is 1σ above the background level. The background is calculated as the

standard deviation of 5 rows far from the center of the disk (10′′) integrated over

the wavelength range of the data. This gives us outermost detected radii of R = 179

AU for the G430L data and R = 247 AU for the G750L data.

Roberge et al. (2005) showed the largest error in this type of data is likely from

systematic error of a misalignment between the PSF star and the disk due to a

shift of the star position under the fiducial bar between the two observations. To

account for this, we produced two more spectra where the PSF spectra was shifted

up or down by 0.25 pixels before the PSF subtraction step. The radial profiles were

then calculated in the same way as the unshifted spectra. The systematic error

due to a possible misalignment was calculated as half of the difference between the

radial profiles of the upward and downward shifted spectra. The total error is the

statistical error and the systematic error added in quadrature.

Figure 6.3 shows the radial profiles for the G430L and G750L. Both figures show

radial profiles from both above the fiducial bar (solid line) and below the fiducial

bar (dashed line). The error bars show both the statistical error and the total error

after the addition of the systematic error.
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Figure 6.3: Radial profiles of the G430L (top) and G750L (bottom) data. The

radial profiles were calculated by integrating each row of the 2D spectrum over

wavelength. The black solid line is the radial profile above the fiducial bar (PA=

46.1◦) and the red dotted line is the radial profile below the fiducial bar (PA=

226.1◦). The horizontal line indicates the level of the background.
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6.6 Disk Spectra

We extracted spectra of the disk as a function of disk radii, or distance from the star.

The calibrated data are in units of surface brightness (erg cm−2 s−1 Å−1 arcsec−2),

so we first needed to apply a flux conversion and a slit loss correction for point

sources.

For a point source, the flux can be corrected for slit loss using the header keyword

DIFF2PT, introduced during the x2d calibration step. The stellar spectrum was

extracted by integrating over a default extraction box (7 pixels), then multiplying by

the DIFF2PT value. For the disk, each pixel was converted from surface brightness

to flux per angstrom by multiplying by the plate scale and the slit width (in arcsec).

This flux conversion is wavelength independent. This means that the final spec-

trum will be correct in the center of the bandpass, but not correct on either side.

Since both the stellar and the disk flux is converted in the same wavelength inde-

pendent way, this effect can be removed by dividing one by the other. Dividing the

disk spectra by the stellar spectrum also removed the scattered stellar light signal,

leaving us with only the intrinsic color of the grains.

The disk spectra were first binned by 10 pixels in the wavelength direction to

increase signal-to-noise. Then 5 rows were averaged together in the spatial direction

to reduce residual noise from the PSF subtraction. The innermost radial bin was

one centered around 110.9 AU. This was the closest radius to the fiducial bar that

did not show the sinusoidal residual noise variation from PSF subtraction artifacts.

We then combined the spectra from radii above and below the fiducial bar. The data

above and below showed no distinct differences, so they were combined to increase

signal-to-noise.

Figure 6.4 shows the combined spectra of the first 4 radial bins across both the
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Figure 6.4: Disk spectra as a function of disk radius. Each radial bin is the

average of 5 rows above the fiducial bar and 5 rows below the fiducial bar. The

spectra are also binned by 10 pixels in the wavelength direction. We divided the

disk spectra by the stellar spectrum extracted in the same manner. This removes

any calibration errors and removes the trend of scattered starlight. The remaining

disk signal represents the intrinsic scattering albedo of the dust grains. The outer

radial bins all show a neutral scattering color, but the innermost radial bin, center

around 110.9 AU, shows a strong red color across the wavelength range.

G430L and the G750L bandpasses. Most of the radial bins show a neutral color

with no spectral features stronger than the PSF residual noise. The exception is

the 110.9 AU radial bin, which shows a strong red color seen in both the G430L

and G750L data. However, the long wavelength end of the data did not match up

with the short wavelength end of the G750L data. We suspect this is because there

is more slit loss at longer wavelengths. To connect the two spectra, we shifted the

110.9 AU G430L data down by 5× 10−6.

In the next few sections, we investigate the cause of the red color in the innermost

radial bin. As this is the closest to the fiducial bar, we need to be more careful that
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the spectrum is not still affected by improper PSF subtraction. The individual

unbinned spectra outside of 100 AU show no signs of PSF subtraction residuals.

However, a strong inner signal behind the fiducial bar may leak out more at longer

wavelengths than at shorter wavelengths. This could affect the spectra close to the

fiducial bar. We explore this possibility in Section 6.7.

If, on the other hand, the color is real, we may be seeing actual variations in

grain properties as a function of disk radius. Near-IR images have shown the peak

of the dust grain distribution to be near 110 AU (Boccaletti et al. 2012; Currie et al.

2012; Esposito et al. 2014; Rodigas et al. 2014). The peak of the dust distribution

may indicate the location of a parent belt of planetesimals. The color difference

between the inner and out spectra may be due to an actual difference in grain size

of composition inside versus outside the parent belt.

6.7 Leak from behind the fiducial bar?

We investigated the question of whether the red color in the 110.9 AU spectrum is

caused by a disk signal from just behind the fiducial bar. Diffraction spreads out

the disk signal more at long wavelengths. Some of the light from just behind the

fiducial bar might leak out more at longer wavelengths to contaminate the spectra.

The leak could be due to a bright inner disk just behind the fiducial bar. Even if

there is no inner disk, an edge-on system will still have a lot of light from the outer

disk hidden behind the fiducial bar.

Currie et al. (2012), Donaldson et al. (2013) and Rodigas et al. (2014) have all

postulated the existence of an inner disk in the HD32297 system. Currie et al.

(2012) use an inner disk to explain the flattening of the radial profile inside of 50

AU. Currie et al. (2012) and Donaldson et al. (2013) also needed an inner disk to
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explain the high flux of the spectral energy distribution in the mid-IR. The proposed

inner disks would have been behind the coronagraph in all the near-IR images that

have been taken.

To test the effect an inner disk might have on the spectra due to PSF bleeding, we

simulated observations of a gray colored disk with a bright inner ring. We modeled

the scattering properties of a gray disk with isotropically scattering grains. The

model images were made with the same plate scale as the STIS two dimensional

spectra. For the outer disk, we used the dust density distribution Boccaletti et al.

(2012) used to model their near-IR data. For the inner disk, we used the same

density distribution as the outer disk, but placed it near the outer edge of the

fiducial bar (45 AU). This is consistent with the predictions of Currie et al. (2012)

and Rodigas et al. (2014) who place the inner disk at < 50 AU.

Next, we created simulated PSFs with the Tiny Tim HST PSF modeling code

(Krist et al. 2011). We made three monochromatic STIS CCD PSFs at 450, 675,

and 900 nm to span the G430L and G750L wavelength coverage. The PSFs were

not subsampled, but made with detector sized pixels and using the recommended

PSF size of 3′′.

We convolved the three PSFs with the disk model to simulate the spreading of

the inner disk with wavelength. After the convolution, the inner disk was more

extended at 900 nm than at 450 nm, as predicted, but not nearly enough to affect

the data at 110 AU. Figure 6.5 shows the radial profiles of the model after being

convolved with the PSF at 450, 675, and 900 nm.

As a further test, we extracted spectral points of our models at 450, 675, and

900 nm in the same way as the data. At 110 AU, the color does not change more

than 1%. Since the data is 12% brighter at 900 nm than 450 nm, we conclude that

the red color is not caused by light leaking from behind the fiducial bar.
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Figure 6.5: Radial profiles of gray disk models after being convolved with the PSF

at 450, 675, and 900 nm. The PSF does extend the profile of the inner disk more

at longer wavelengths, but this effect does not contribute to the radial profile at

110 AU.

6.8 Discussion

Now that we have shown the red color in the HD32297 spectrum is not a PSF

subtraction artifact, we are left with the question of what could cause this red color

to be present in the disk, and why it is visible at some radii and not others.

The first possibility is that the dust grains have an intrinsic albedo that scatters

more efficiently at longer wavelengths. Debes et al. (2008) used HST spectrophotom-

etry to determine the HR4796A debris disk also has a red color from the optical to

the near-IR (∼ 0.5−2.2µm). Their modeling of the spectrum concluded the red color
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was due to grains composed of complex organic material, called tholins. Tholins are

produced from irradiation of ices containing hydrocarbons, such as methane, and

have been used to explain the red color found in many outer Solar System bodies

(Cruikshank et al. 2005).

While tholins may be able to reproduce the red color seen in our Solar System

and in HR4796A, Köhler et al. (2008) argued they are not necessary. Simple ISM-

like grains (composites of silicate, carbon, and water-ice) can also reproduce the red

spectrum if the grain size and porosity are increased.

Mulders et al. (2013) also discussed the impact of grain size on the disk color,

this time in relation to the protoplanetary disk, HD100546. They conclude that

large grains (∼ 2.5µm) are much more forward scattering than smaller grains. In

optical images, where the small scattering angles are blocked by the coronagraph,

the effective albedo is smaller than the intrinsic albedo. At longer wavelengths, the

scattering becomes more isotropic, increasing the effective albedo. This causes the

disk to appear red.

Using the model of Mulders et al. (2013), the disk color can change with radius

in one of two ways. First, if the forward scattering is strong enough, the disk will

appear redder closer to the star. Second, the change in disk color with radius could

indicate a change in grain size with radius, i.e. only large grains are present closer

to the star, while small grains are present in the outer parts of the disk, making the

disk appear more neutral in color.

This separation of small and large grains could be a natural consequence of

radiation pressure. Small grains are constantly being produced by collisions of large

planetesimals in the parent belt (thought to be located near the peak of the dust

emission at ∼ 110 AU). These small grains feel a strong radiation pressure from

the central star, and due to their large surface area to mass ratios, they are quickly
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expelled from their birthplaces. Therefore, small grains are unlikely to be found

inside the parent belt, but may be found outside as they make their way out of the

system.

Recently, Stark et al. (2014) analyzed STIS images of the HD181327 debris disk,

and found that the scattering phase function changes with semi-major axis, which

seems to also indicate a spatial sorting of grain sizes in and out of the parent belt.

Stark et al. (2014), however, argued that the strength of the change with radius

is more consistent with the presence of a planet dynamically ejecting small grains,

rather than just pure radiation pressure effects.

6.9 Future Work

The next step is to model the HD32297 disk and try to reproduce the STIS spectrum

at each radius. We will start by modeling the scattering properties of an edge-on

debris disk with a phase function that depends on wavelength.

The scattering of starlight off dust grains in disks is often modeled with a Henyey-

Greenstein phase function of the form

Φ(θ) =
1

4π

1− g2

(1 + g2 − 2g cos(θ))3/2
, (6.1)

where g is a value between −1 and 1 that represents the anisotropy of the phase func-

tion (g = 0: isotropic, g = 1: pure forward scattering, g = −1: pure backscattering)

(Henyey and Greenstein 1941).

This is often used to fit a disk observation at a single wavelength. In the case

of HD32297, we will let g vary with wavelength to fit the observations. Since the

different radial bins of the spectrum cover a different range of scattering angles, we

may be able to find a g(λ) that fits all radial bins.

Next, we will try to find a grain composition that matches the observations.
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Through our collaborators, we have several tools at our disposal to help with this

task. We have a library of scattering and absorption properties of several grains

types, both collected from the literature (Debes et al. 2008) and calculated for

aggregate compositions using Mie theory and the Bruggeman mixing rule (Lebreton

et al. 2012). We also have disk scattering models from both Lebreton et al. (2012)

and Stark and Kuchner (2009).
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Chapter 7

Summary and Future Work

This dissertation collects four projects that aim to characterize the dust in young

debris disks. Young debris disks may be the sites of ongoing terrestrial planet

formation. Planetesimals in the disk are likely still being accreted onto planets,

bringing with them volatile material that the planets themselves lose earlier in their

formation.

By studying the dust, we are indirectly studying the planetesimals themselves.

Dust grains are produced in destructive collisions between the planetesimals and

have short lifetimes compared to the ages of the disk. Therefore, the dust is likely

co-located with the planetesimals and composed of the same material, so the dust

can tell us the location and composition of the planetesimals.

To start, we observed the dust in the far-infrared with the Herschel Space Ob-

servatory. We looked at mostly unresolved systems, so we characterized the dust by

modeling the SED. We started with a detailed look at the 30 Myr-old disks in the

Tucana-Horologium Association, then expanded our sample to include more debris

disks with a wider range of ages (10-30 Myr). A few things we learned include:

• In Tucana-Horologium, the disks display a large variety in their properties,
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even though they all have the same age. The processes that make disks dif-

ferent has probably already occurred by this age.

• Disks in our sample appear to fall into two categories, cold disks (. 150 K)

and warm disks (& 150 K).

• Both disk populations show a trend of increasing disk temperature vs. stellar

temperature. For the cold disks, this trend could be probing the radial limit

of planet formation and how it depends on stellar spectral type.

• No change as a function of age was detected in our sample. Debris disks

appear to evolve slowly after the dissipation of the gas disk. Samples with

larger range in ages (∼ 1 Gyr) show a decline in fractional dust luminosity

and temperature with age (e.g. Chen et al. 2014).

Next we focused on one disk, HD32297. This disk is relatively bright, well

studied, and has been spatially resolved in the near-IR. This allows us to study the

disk in more detail than we could with the fainter disks in Tuc-Hor and the other

associations. We observed the disk with Herschel in the far-IR and sub-mm and

HST in the optical/near-IR. A couple of points we noted about this disk are:

• Gas was detected in the HD32297 disk. This gas is likely secondary from

collisions or outgassing of comets, not primordial. HD32297 is one of only a

handful of debris disks with detectable amounts of gas.

• We modeled the disk with a two component model that included an inner disk

that would have been behind the coronagraph in the scattered light images of

the disk.

• The outer disk is composed of porous and icy grains similar to solar system

cometary grains.
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• The disk shows a red color in the optical/near-IR. This could be due to or-

ganic material, large grains, or porous grains. More modeling is needed to

understand the true meaning of this color.

7.1 Future Work

The work in this dissertation can naturally be expanded into a couple of other

projects, outlined below.

7.1.1 Modeling the HD32297 disk

We have collected a large amount of data on the HD32297 debris disk, and even

more data is coming in from other groups. We filled in a large gap in the SED from

60 to 500µm and detected gas emission. We also obtained optical spectra of the

disk as a function of disk radius.

Several other groups are working on ground-based observations of the HD32297

disk, using Adaptive Optics and Angular Differential Imaging to resolved the disk

out into the infrared. Boccaletti et al. (2012) and Currie et al. (2012) imaged the

disk at 2.2µm, and Rodigas et al. (2014) observed the disk at 3.8µm. Additionally,

Rodigas et al. (2014) have obtained data at 3.1µm, the wavelength of an important

water ice feature that could confirm or deny our model from Chapter 5. Furthermore,

the disk has been imaged with high spatial resolution at several wavelengths with

HST NICMOS (Debes et al. 2009; Schneider et al. 2005) and STIS (Schneider and

HST/GO 12228 Team 2013).

All these data make HD32297 one of the best observed debris disks. The logical

next step is to model all the data self-consistently. This would leave very little

wiggle room in the model, making us more confident in the results.
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Figure 7.1: GPI’s first light images of the HR4796A debris disk. Left: ∼ 2µm

scattered light image of the disk. Right: Polarized light view of the disk. The

NW side of the disk, thought to be the back side, is highly polarized. Image

credit: Marshall Perrin, STScI

7.1.2 HR4796A

HR4796A is another bright, young debris disk close to edge-on, similar to HD32297.

This disk has been studied even more than HD32297 because it is closer and shows

a narrow ring in optical/near-IR images. A recent press release image from the

Gemini Planet Imager (GPI) shows a startling polarized light view of the disk (see

Figure 7.1).

HR4796A is also part of the GASPS sample, so we have photometry of the disk

from 60 to 500µm. The disk is also part of our STIS program to get coronagraphic

spectroscopy of edge-on debris disks. With this data, HR4796A is the perfect can-

didate to model the disk as we did for HD32297.
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Figure 7.2: The Atacama Large Millimeter/submillimeter Array (ALMA). Eight

of the full 66 antennas in the Atacama desert in Chile. Image Credit: ALMA

(ESO/NAOJ/NRAO)

7.1.3 ALMA

The Atacama Large Millimeter/submillimeter Array (ALMA - see Figure 7.2) presents

a new opportunity to spatially resolve debris disks. Its unmatched sensitivity and

angular resolution in the millimeter/submillimeter will allow us to map the thermal

emission from large grains in debris disks.

This will have a huge impact on our models. SED modeling is based on the

thermal emission from a range of different size grains. The near-IR images we use

to constrain the dust location, however, come from light scattering off small dust

grains. These small grains are more susceptible to processes that move dust grain

around in the disk, such as radiation pressure. The large grains imaged at millimeter

wavelengths are more likely to be located closer to their parent bodies. It is unclear

how the grain size distribution changes in the disk, and it is often assumed to be

constant throughout. ALMA will allow us to measure this.

175



ALMA will also be more sensitive to gas in debris disks. This can help up

understand the puzzling origin of debris disk gas. Dent et al. (2014) recently spatially

resolved the CO gas in the 12 Myr-old debris disk, β Pic, which showed the gas is

mostly confined to one or two big clumps. This suggests the gas may come from a

recent collision of Mars-sized bodies.

We envision a few future projects using ALMA. They are described in more

detail below.

HD32297: Imaging the mm grains – As mentioned above, resolved imaging

at millimeter wavelengths will help improve out models of HD32297. HD32297 has

only been marginally resolved in the sub-mm with the Sub-Millimeter Array (SMA),

where it showed a somewhat asymmetrical structure. ALMA will be able to get an

image of the disk with sub-arcsecond resolution and confirm whether this asymmetry

is real.

In addition to aiding our modeling efforts, an ALMA image of the disk would

help solve one other mystery. HD32297 is one of a handful of edge-on disks (includ-

ing HD15115 and HD61005) that show strange asymmetries at short wavelengths.

HD32297 has bowl-shaped wings that fan out to the NW. Debes et al. (2009) sug-

gested the disk was interacting with a dense clump of the ISM, while Maness et al.

(2008) suggested it might be due to gravitational interaction with a giant planet. A

planet would affect both the small and large grains, while ISM interaction prefer-

entially affects the small grains. Therefore, the presence or absence of the wings in

the ALMA images will sort out which process is at work in the HD32297 disk.

Modeling the AU Mic disk – AU Mic is another young, edge-on debris disk,

but this one surrounds an M star. The disk has already been imaged with ALMA

and the disk shows a symmetrical structure in the mm (see Figure 7.3; MacGregor

et al. 2013). This disk is another good candidate for further modeling. The results
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Figure 7.3: The AU Mic debris disk imaged with ALMA at 1.3 mm (MacGregor

et al. 2013). At long wavelengths, ALMA images the structure of the large grain

(∼ 1 mm), which are more likely to be located near their parent bodies. The AU

Mic disk shows a symmetrical ring structure and a mm excess near the central

star.

may shed some light on the difference between debris disks around A stars vs. M

stars.

Approved ALMA proposals: 49 Ceti and HD181327 – I am a co-investigator

on two Cycle 2 ALMA proposals which were approved earlier this year. The first is a

proposal to measure the C I gas in the young debris disk, 49 Ceti (P.I. A. Roberge).

This debris disk has a relatively large amount of gas for its advanced age (∼ 40

Myr). The CO gas has already been mapped with ALMA in Cycle 1. Comparing

the C I and CO spatial distribution can help us understand the origin of the gas.

The other proposal is to map the dust continuum of the 12 Myr-old face-on debris

disk, HD181327 (P.I. C. Stark). HD181327 is a member of BPMG and was a part
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of the GASPS sample. The disk was also recently imaged with HST STIS (Stark

et al. 2014), which hinted at a possible recent massive collision and spatial grain size

sorting that could be due to a giant planet. Comparing the resolved images from

STIS and ALMA could confirm these results.

178



Bibliography

Acke, B., Min, M., Dominik, C., Vandenbussche, B., Sibthorpe, B., Waelkens, C.,

Olofsson, G., Degroote, P., Smolders, K., Pantin, E., Barlow, M. J., Blommaert,

J. A. D. L., Brandeker, A., De Meester, W., Dent, W. R. F., Exter, K., Di

Francesco, J., Fridlund, M., Gear, W. K., Glauser, A. M., Greaves, J. S., Harvey,

P. M., Henning, T., Hogerheijde, M. R., Holland, W. S., Huygen, R., Ivison, R. J.,

Jean, C., Liseau, R., Naylor, D. A., Pilbratt, G. L., Polehampton, E. T., Regibo,

S., Royer, P., Sicilia-Aguilar, A., and Swinyard, B. M. (2012). Herschel images

of Fomalhaut. An extrasolar Kuiper belt at the height of its dynamical activity.

A&A, 540:A125.

Agnor, C. and Asphaug, E. (2004). Accretion Efficiency during Planetary Collisions.

ApJ, 613:L157–L160.

A’Hearn, M. F. (2008). Deep Impact and the Origin and Evolution of Cometary

Nuclei. Space Sci. Rev., 138:237–246.

Alexander, R. D. and Armitage, P. J. (2007). Dust dynamics during protoplanetary

disc clearing. MNRAS, 375:500–512.

Alibert, Y., Mordasini, C., Benz, W., and Winisdoerffer, C. (2005). Models of giant

planet formation with migration and disc evolution. A&A, 434:343–353.

Andre, P. and Montmerle, T. (1994). From T Tauri stars to protostars: Circumstel-

lar material and young stellar objects in the rho Ophiuchi cloud. ApJ, 420:837–

179



862.

Andre, P., Ward-Thompson, D., and Barsony, M. (1993). Submillimeter contin-

uum observations of Rho Ophiuchi A - The candidate protostar VLA 1623 and

prestellar clumps. ApJ, 406:122–141.

Andrews, S. M., Rosenfeld, K. A., Kraus, A. L., and Wilner, D. J. (2013). The Mass

Dependence between Protoplanetary Disks and their Stellar Hosts. ApJ, 771:129.

Andrews, S. M. and Williams, J. P. (2007). High-Resolution Submillimeter Con-

straints on Circumstellar Disk Structure. ApJ, 659:705–728.

Andrews, S. M., Wilner, D. J., Espaillat, C., Hughes, A. M., Dullemond, C. P.,

McClure, M. K., Qi, C., and Brown, J. M. (2011). Resolved Images of Large

Cavities in Protoplanetary Transition Disks. ApJ, 732:42.

Apai, D., Janson, M., Moro-Mart́ın, A., Meyer, M. R., Mamajek, E. E., Masci-

adri, E., Henning, T., Pascucci, I., Kim, J. S., Hillenbrand, L. A., Kasper, M.,

and Biller, B. (2008). A Survey for Massive Giant Planets in Debris Disks with

Evacuated Inner Cavities. ApJ, 672:1196–1201.
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G., Podosek, J., Pohlen, M., Polehampton, E. T., Pouliquen, D., Rigopoulou,

192



D., Rizzo, D., Roseboom, I. G., Roussel, H., Rowan-Robinson, M., Rownd, B.,

Saraceno, P., Sauvage, M., Savage, R., Savini, G., Sawyer, E., Scharmberg, C.,

Schmitt, D., Schneider, N., Schulz, B., Schwartz, A., Shafer, R., Shupe, D. L.,

Sibthorpe, B., Sidher, S., Smith, A., Smith, A. J., Smith, D., Spencer, L., Stobie,

B., Sudiwala, R., Sukhatme, K., Surace, C., Stevens, J. A., Swinyard, B. M.,

Trichas, M., Tourette, T., Triou, H., Tseng, S., Tucker, C., Turner, A., Vaccari,

M., Valtchanov, I., Vigroux, L., Virique, E., Voellmer, G., Walker, H., Ward,

R., Waskett, T., Weilert, M., Wesson, R., White, G. J., Whitehouse, N., Wilson,

C. D., Winter, B., Woodcraft, A. L., Wright, G. S., Xu, C. K., Zavagno, A.,

Zemcov, M., Zhang, L., and Zonca, E. (2010). The Herschel-SPIRE instrument

and its in-flight performance. A&A, 518:L3+.
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D., Sandell, G., Williams, J. P., Dent, W. R. F., Menard, F., Lillo-Box, J., and
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