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The application of advanced statistical methods to astrophysical problems is

desirable for reasons of time-efficiency, and robustness. A data-driven approach,

when combined with physical insights, can expedite solutions to difficult problems,

where data is aplenty, however, physical insights may be nebulous. This may be

either due to the parametric complexities of the models assumed, or the inherent

complexity in the behavior of the astrophysical system itself. In this thesis we

demonstrate that, via the application of a variety of statistical tools to the Pan-

STARRS1 medium-deep survey data, we solve two important classification problems

faced by the survey.

The Pan-STARRS1 (PS1) Survey is unique in terms of its temporal, spa-

tial, and wavelength coverage, permitting extensive studies on known astrophysical

sources such as active galactic nuclei (AGN) and supernovae (SNe), as well as ex-

otic ones, such as tidal disruption events and recoiling supermassive black hole

binaries. The Medium-Deep (MD) survey in particular offers a time resolution on



the order of a few days over 10 distinct 8 sq. deg. fields, or over 80 sq. deg. of

sky, and with the technique of difference imaging, enables the detailed study of

stochastic variations and explosive transients associated with extragalactic sources.

In the first of two parts of this thesis, I outline a novel method for the light-curve

characterization of Pan-STARRS1 Medium-Deep Survey (PS1 MDS) extragalactic

sources into stochastic variables (SV) and burst-like (BL) transients, using multi-

band difference-imaging time-series data. Using a combination of Bayesian leave-

out-one-cross-validation and corrected-Akaike information criteria to model time-

series in the four PS1 photometric bands gP1, rP1, iP1, and zP1, we use a k-means

clustering decision algorithm to classify sources as bursting or stocastically variable

with over 91% purity, based on spectroscopically confirmed AGN and SN verification

samples. The performance of our classifier is comparable to the best among existing

methods in terms of purity. We use our method to classify 4361 difference image

sources with galaxy hosts in the PS1 MD fields as BL or SV, and then together

with their host galaxy offsets, create a robust sample of AGN and SNe. From these

variability-selected samples, we derive photometry and variability based priors that

can be used in future survey data streams for near real-time classification.

In the second part, I discuss the applications of a genetic algorithm optimized

support vector machines or GA-SVM, machine learning classifier and regression

tool, we developed to solve two important problems in astronomical surveys; a.

star-galaxy classification where we show as proof of concept, the efficient separation

of 11000 stars and galaxies in the MD fields using 32 photometric parameters de-

rived from the PS1 MD stack [1]; and b. photometric redshift regression, where as



proof of concept we predict with high accuracy, the photometric redshifts of 5000

galaxies in the COSMOS survey, based on 25 photometric parameters derived from

the survey. We show that our GA-SVM method is more efficient as compared to ex-

isting methods for star-galaxy classification, and more robust than existing methods

for photometric redshift estimation.
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Chapter 1: Scientific Motivation

1.1 Statistical Methods and Machine Learning in Astronomy

The future of astronomy will be data intensive, and data driven. In conjunc-

tion with a bottom-up, or fundamental approach, to understanding astrophysical

problems, a data driven or top-down approach can expedite the solution to several

classes of astrophysical problems. Advanced statistical methods such as machine

learning [2], where an algorithm is trained to mimic human understanding, provide

a starting point for understanding complex problems in astronomy. In addition,

machine learning methods may complement our understanding from fundamentals,

by enabling the reduction of the complexity of problems with high dimensionality.

The formal definition of machine learning from [2] is: “A computer program

is said to learn from experience E with respect to some class of tasks T and perfor-

mance measure P, if its performance at tasks in T, as measured by P, improves with

experience E.”. More colloquially, machine learning is a scientific discipline that

deals with the construction of algorithms that can learn from data, by building a

model based on inputs and resulting outputs, which can be used to make predictions

of future outputs based on previously unseen input sets.

Classification and regression problems form the core of astronomy. It is there-
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fore, imperative that the methods be as robust as possible given computational and

time constraints. While the application of advanced statistical methods may be

tedious and computationally complex to apply, many data rich areas of astronomy

warrant their use due to their increased predictive power and robustness. In order

to ensure the maximum ratio of improvement in efficiency from the increased com-

putational overhead of a given classification or regression problem, it is essential to

utilize increased computational abilities whenever available. As I show, in my work,

these methods are indispensible.

Classification problems form the basis of ensemble studies (or coherent large

scale studies of particular types of objects) in astronomical surveys, and thus require

machine-based methods, especially with the advent of the Large Synoptic Survey

Telescope (LSST) era [3]. The LSST is the NSF and DOE funded wide-field sur-

vey telescope that will revolutionize the study of the variable night sky. In surveys

of such large magnitude, human-aided classification (with the exception of citizen

science) will become untenable, requiring automated source identification in large

volumes of data in archival catalogs, as well as in real-time data. Recent increases in

computational resource availability and efficiency have enabled near-complete auto-

mated transient discovery in large surveys [4]. Machine-learning methods are slowly

replacing human eye-balling for transient classification in real-time, as well as in

large survey catalogs [5,6]. The knowledge of prior event types makes it possible to

look for specific events in the data with a high degree of completeness and efficiency

using time-variability [7–10], color based selection [11], multi-wavelength catalog

associations [12], and host-galaxy properties [13]. Also, generalized automated ma-

2



chine classification algorithms based on random-forest methods [14], support vector

machines and naive Bayes estimates [15], and sparse matrix methods [16] that use

a number of photometric and non-photometric features have been demonstrated to

achieve classifications with very high purity.

Similarly there are many problems of regression which utilize advanced statis-

tical methods. These can range from Bayesian time-series characterization of AGN

lightcurves [7,17,18], using continuous-time auto-regressive processes to model sto-

hastic variability in AGN [19], maximum likelihood based modeling of SN lightcurves

[20], deriving ages of stellar populations in AGN using locally weighted regres-

sion [21], deriving photometric redshifts using atomistic methods [22], or principal

component analysis [23], and characterizing H − α emission using support vector

machines regression [24].

The rest of Chapter 1 is organized as follows. In the next section, I provide

a brief glossary of statistical and machine learning methods I have used as part of

this work. These are expanded in detail, in the respective chapters where they are

referenced. This is followed by an introduction to the Pan-STARRS1 survey, which

is the main focus of application for these statistical methods. Finally, I provide an

outline for the rest of this thesis, and how these methods are applied to my work.

1.1.1 Glossary of Statistical Methods

� Maximum Likelihood Estimation and the Akaike Information Criterion

Maximum likelihood estimation (MLE), as the name suggests, is an optimiza-
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tion method very commonly used in model fitting. The likelihood L is a

monotonic function of penalty ǫi = (yi − ym)/σi, or the scaled error at each

point, where yi is the value of the data, ym is the value given by the model,

and σi is an estimate of the allowable error. A common error function used is

Gaussian error, where model likelihood on a dataset is given by

L =
∑

i

−1

2
log(σi2π)−

∑

i

ǫ2i (1.1)

The maximization of the likelihood is akin to minimizing overall error. It is

customary to use a Monte-Carlo method to explore the model prior distri-

butions, while searching for a likelihood maxima. However, more often than

not, the global likelihood maxima may not be found, unless the initial guesses

for the model parameter values are chosen close to their optimal values. An-

other issue with the MLE, is that it does not account for model complexity.

Models with a larger number of parameters are not penalized for over-fitting,

while yielding larger likelihoods as a consequence of being able to fit a given

dataset better than a model with a smaller number of parameters. To solve

this problem, I resort to the Akaike information criterion AIC [25] which cor-

rects for the model complexity, or number of parameters, k, by penalizing the

maximum likelihood according to

AIC = 2k − lnL (1.2)
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Therefore, by minimizing the Akaike information, the best model that does not

overparameterize the dataset is chosen. When the number of parameters in a

model is comparable to the size of the dataset n being fit, a correction needs

to be applied to the AIC that is a function of k/n, to obtain the corrected

AIC or the AICc. This correction is very large, so to speak, if the number of

parameters is on the order of the size of the dataset.

AICc = 2k − lnL+
2k(k + 1)

n− k − 1
(1.3)

� Bayesian K-Fold Cross-Validation and Posterior Parameter Estimation using

a Markov Chain Monte Carlo

K-fold cross-validation is the segmentation of a dataset to be modeled, into K

parts, so as to use K− 1 parts in training the model, and using the remaining

part to validate the trained model, using a likelihood estimate. The validation

set is chosen in rotation among the K parts, and an overall likelihood estimate

is obtained by taking the product of the partition likelihood estimates. In

Bayesian estimation, the validation set likelihood is averaged over the posterior

distribution constituted by the model over the training set [7]. This is different

from Bayesian evidence where the likelihood is averaged over the model prior

distributions, and not the posterior.

I sample the posterior distribution using a Metropolis-Hastings Markov-chain

monte-carlo (MCMC) algorithm. In simple terms, the Markov-chain Monte-

Carlo explores the posterior distribution in strides, in the underlying param-
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eter space, where the width of the strides are decided apriori. A given stride

is accepted with a probability that is equal to the ratio of the value of the

posterior at the new point to that at the current one.

In this work, I use the leave-one-out cross-validation (LOOCV) likelihood to

estimate model fitnesses. The LOOCV ranks among the most robust methods

to estimate model probability, but is largely complicated due to the On2m

complexity, where n is the size of the dataset, and m is the number of itera-

tions in the MCMC. I resolve this using my distributed computing framework

described in the appendix.

� K-Means Clustering

−5
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−505101520
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0
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Figure 1.1: K-Means Clustering

K-means clustering - A machine learning method which attempts to cluster data around K-centers

or K-“means”.

Machine learning, to reiterate, is the simulation of human-like learning behav-
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ior using algorithmic implementations, to solve particular problems in para-

metric dependence. This can be sub-divided into problems of a regressive na-

ture, or that of classification. K-means clustering [26] (Fig.1.1), is a machine-

learning classification method, which attempts to cluster data in parameter

space based on their proximity, to a pre-determined number of centers. The

algorithm is ubiquitously applicable in classification problems where there are

more than two classes, and the “centers” of the clusters that represent the

classes, need to be determined in a n-dimensional parameter space of their

characteristic properties. In my work, I use the K-means clustering algorithms

implemented in [26].

� Genetic Algorithms

Genetic algorithms (GAs), as the name suggests, use the principles of genetics

to evolve solution sets, by “cross-breeding” them based on their fitnesses, to

yield increasingly fit candidates. As is best explained by example, in astron-

omy it may involve determining an optimal subset of parameters that may be

relevant for separation of classes such as stars and galaxies, or to determine

a regressand such as a photometric redshift. The examples quoted are indeed

the subjects of my applications of the said algorithm in Chapter 3, and I show

that the GA is extremely efficient in determining robust sets of parameters to

solve these problems. Note, that choosing solution subsets is akin to arriving

at a multi-parameter functional minima, but here the parameters themselves

are variable, complicating the solution by one further step. The GA is usually

7



combined with a reward or fitness function, such as a maximum-likelihood, or

a more complicated machine learning method such as support-vector machines

(SVM), to assess the fitnesses of the parametric subsets.

� Support Vector Machines

A support vector machines (SVM), machine learning algorithm [27] is primar-

ily a classification method, that is used to construct a maximum margin hyper-

plane to separate two classes of objects in n-dimensional parameter space. For

efficient classification, this necessitates linear separability between the classes

in question. However, even otherwise, a transformation may be effected on the

basis of the original parameter space to a higher dimensional space known as

“feature space”, using a kernel transformation [28], where the objects become

linearly separable. The commonly used transformations are one of polynomial,

radial basis, or sigmoidal transformation [27].

The SVM can be used both for classification, as well as for linear regression,

since the method in either case is a quadratic optimization problem that at-

tempts to minimize a function of form ||w||2 , where w is either the inverse of

the distance between the classes, for classification, or the slope of the line, for

regression. This implies that, for classification Fig.1.2, the goal is to maximize

the infimum of the distance between the classes, and for regression, the goal is

to construct a line that is as flat as possible, as long as the errors in classifica-

tion ǫ, defined as yi −wxi − b = ǫ, are also minimized, where w is the slope of

the line, b is the intercept, and xi and yi are the independent and dependent

8
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Figure 1.2: Support Vector Machines

(Left) SVM classification attempts to construct a maximum margin hyperplane by maximizing

||w||, while minimizing the number of misclassifications. (Right) SVM regression attempts to

construct a line of slope ||w||, that is as small as possible, while attempting to minimize the

distance of the points from the line.
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variables respectively. In my work, I use the SVM implemented in [27], both

for classification and regression.

1.2 The Pan-STARRS1 Medium-Deep Survey

Table 1.1: Pan-STARRS1 Medium-Deep Survey Field Centers

Field RA Declination

HH:MM:SS Degrees

MD01 02h23m30s −04 deg 15′

MD02 03h32m24s −27 deg 48′

MD03 08h42m22s 44 deg 19′

MD04 10h00m00s 02 deg 12′

MD05 10h47m40s 58 deg 04′

MD06 12h20m30s 47 deg 07′

MD07 14h14m48s 53 deg 04′

MD08 16h11m08s 54 deg 57′

MD09 22h16m45s 00 deg 16′

MD10 23h29m14s 00 deg 25′

A significant part of my work utilizes time-series data from the Pan-STARRS1

medium-deep survey (PS1-MDS). In this section, I briefly describe the details of the

survey, and that of our transient database at the University of Maryland (UMD).
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Figure 1.3: The Pan-STARRS1 survey cadence.

The Pan-STARRS1 survey has a staggered 3-day cadence in the gP1, rP1, iP1, and zP1 bands

corresponding to 6 observations per month per filter, while yP1 is observed during bright-time.

The observations I use in this work extend from 2009 September 14 till 2011 November 17. In this

work yP1 is not used due to the relatively sparse cadence as compared to the other filters.
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The Pan-STARRS1 (PS1) telescope [29] is a 1.8 meter diameter telescope on the

summit of Haleakala, Hawaii with a f/4.4 primary mirror, and a 0.9 m secondary,

delivering an image with a diameter of 3.3 degrees onto 60, 4800 × 4800 pixel de-

tectors, with 10µm pixels that subtend 0.258” each [29, 30]. The observations are

obtained through a set of 5 broadband filters gP1,rP1,iP1,zP1,yP1, each with a limiting

magnitude per nightly epoch of 23.5 mag. Although the filter system for PS1 has

much in common with that used in previous surveys, such as the SDSS, there are

substantial differences. For more technical details refer to [31] and [32].

The PS1 survey has two operating modes, 1) the 3π survey which covers 3π

square degrees at δ > −30 degrees in 5 bands with a cadence of 2 observations per

filter in a 6 month period, and 2) the Medium Deep Survey (MDS) which obtains

deeper multi-epoch images (m ∼ 23.5) in 5 bands of 10 fields, each 8 square degrees,

listed in Table 1.1, designed for both extensive temporal coverage, and full-survey

stacked static-sky depth (m ∼ 25). Depending on the weather, the accessible fields

are observed with a staggered 3-day cadence in each band during dark and gray

time (gP1, rP1 on the first day, iP1 on the second day, zP1 on the third day, and

then repeat with gP1, rP1), and in the yP1 band during bright time. On average, the

cadence (Fig. 1.3) is 6 observations per filter per month, with a 1 week gap during

bright time, during which time the Medium Deep fields are observed exclusively in

yP1.

The PS1 MD data is processed using the image processing pipeline (IPP)

located in Hawaii. The IPP performs flat-fielding and detrending on each of the

individual images using white light flat-field images from a dome screen, in combi-
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Figure 1.4: The Pan-STARRS1-UMD data pipeline.

The Pan-STARRS1-UMD data pipeline. The data is relayed from the IPP via the photpipe pipeline

that provides transient alerts, as well as performs forced photometry and image differencing. At

UMD the data is downloaded, enhanced with statistical parameterizations, and assimilated into

SQL databases using a C++ framework, which are then queried using IDL or PHP for interactive

web-based analysis.
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nation with an illumination correction obtained by rastering sources across the field

of view. Bad pixel masks are applied, and carried forward for use in the stacking

stage. After determining an initial astrometric solution [33], the flat-fielded images

are then warped onto the tangent plane of the sky, using a flux conserving algo-

rithm. The image scale of the warped images is 0.250 arcsec/pixel. In the MD

fields, all images from a given night are collected with eight dithers. This allows

the removal of defects like cosmic rays or satellite streaks, before they are combined

into a nightly stack using a variance-weighted scheme. Nightly stacks of images,

each with a 8 square degree field of view, as well as seasonal deep stack reference

images are created, which are then transferred to the Harvard Faculty of Arts and

Sciences Odyssey Research Computing cluster, where they are processed through a

frame subtraction analysis using the photpipe image differencing pipeline originally

developed for the SuperMACHO and ESSENCE surveys [34–36]. Significant flux

excursions are then detected in the difference images [37], and they are tagged as a

source, if they satisify the following conditions:

� Positive detections with a signal-to-noise ratio (SNR) ≥ 5 in at least three

images within a time window of 15 days.

� Detections in at least two filters.

� No previous alert at that position.

These criteria remove the majority of “bogus” detections due to non-astrophysical

sources, such as camera defects, cosmic rays, and difference imaging artifacts. The
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PS1 alerts are published to an online alerts database located in Harvard [34]. My au-

tomated pipeline then downloads the alerts database to our local database servers

at Unversity of Maryland on a nightly basis. The alerts are then processed and

additional value added measurements are made on the data to enable easy char-

acterization of sources via a SQL-IDL-C++ pipeline (Fig. 1.4). The sources are

automatically cross-matched with custom multiband deep-stack catalogs [1] to de-

rive host associations and subsequently their properties. Other statistics such as

color evolution and higher moments of magnitude and flux are also computed and

stored in our database. Webpages that derive custom cuts on the data based on

host properties, host offsets, color, magnitude, and time variability properties are

also updated nightly. My custom query page can be used to query the database and

display column-wise sortable results on a webpage. The page can also be used to vi-

sualize the data in our database using simple 2 dimensional plots or histograms that

are created in IDL which are displayed on a webpage. Finally, the transient alerts

are classified based on their light curves using my time-series method discussed in

Chapter 2.

1.3 Thesis Outline: Machine Learning in PS1-MDS and COSMOS

The multi-band photometry of the Pan-STARRS1 survey offers redundancy

and reinforcement of astrophysical source characterization. Additionally, there ex-

ists the possibility for creating deep catalogs for high signal-to-noise astronomy,

or using time-variability information from difference-imaging in the 5 bands. The

15



combination of the temporal and spectral richness of the survey make it an ideal

candidate for the application of advanced statistical methods to derive astrophysical

source properties. The statistical methods outlined in the glossary are applied either

individually, or in conjunction as part of my work.

The subject of my first paper is the application of a k-means clustering method

that uses both the corrected Akaike information criterion and leave-one-out cross-

validation to decide on the time-variability classification of sources in the Pan-

STARRS1 medium-deep fields. The requirement of dense time-series (cadence≈few

days) for robust variability-based classifications makes the medium-deep survey my

survey of choice. My method utilizes data from difference-imaging in four Pan-

SARRS1 filters gp1, rp1, ip1, and zp1 in conjunction, to separate stochastic variables

(AGN) and burst-like sources (SNe), with over 90% accuracy and high completeness.

Further, in combination with host galaxy offsets, I use the variability-selected AGN

and SNe to define observational priors to identify them in future surveys based on

their difference-fluxes, and their host galaxy fluxes in the various bands. I also show

that the host galaxy color itself may suffer contamination due to the AGN where

they are present, and therefore, may not serve as a good photometric prior in general.

I also study the time-variability properties of the AGN, obtained using an Ornstein-

Uhlenbeck parameterization of the r-band difference-flux lightcurve, and show that

they are correlated to their central supermassive black hole (SMBH) masses, and to

their host galaxy luminosities for a small spectroscopic sample in the MD fields. My

classification algorithm, and the aforementioned results are described in Chapter 2.

In Chapter 3, I demonstrate the application of a genetic algorithm optimized
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support vector machines algorithm (GA-SVM) to classification and regression in as-

tronomical surveys. For classification, I consider the classic star-galaxy classification

problem in the Pan-STARRS1 medium-deep survey [1], which is increasingly impor-

tant in automated surveys, where it is important to identify the object in question

as a star or galaxy, either to weed out “contaminants”, or to perform ensemble stud-

ies. Based on a set of 32 photometric parameters including magnitudes, colors, and

shape-representative moments derived in the Pan-STARRS1 custom medium-deep

catalog [1], I classify stars and galaxies identified in the COSMOS survey using the

high-spatial resolution imaging of HST/ACS [23], with the highest efficiency for any

current classifier.

In the second part of chapter 3, I use GA-SVM regression to model photomet-

ric redshifts of galaxies in the COSMOS survey, using 325 photometric parameters

constructed from observations in 25 bands ranging from infra-red to ultra-violet [38].

The traditional method to determine photometric redshifts, has been to fit the red-

hifted SED of a galaxy using several template galaxy SED models, with corrections

for dust atttenuation and emission features [38]. [39] is a good reference point for

such an SED fitting methodology used to predict photometric redshifts with high ac-

curacy. In addition to making assumptions about the galaxy SED and the shape of

the extinction law, a large number of transformations are required to be performed

on the photometry, before the SED fitting itself can be performed. Also, SED fit-

ting over a large number of sources is computationally tedious. These render the

SED fitting method unattractive. In my work, I use a Genetic algorithm optimized

support vector machine regression method on the 25 photometric parameters in the
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custom deep-stack, and show that I can predict photometric redshifts with a slightly

larger error margin than that for SED fitting, but a significantly smaller number of

outliers or “catastrophic errors”. I show that I obtain a more robust result, with a

smaller number of assumptions.

In Chapter 4, I summarize and discuss extensions to this work. In Appendix

A, I briefly discuss the computational framework that I have setup to facilitate my

research, broadly subsuming SQL databases, classification algorithms, a distributed

computing framework, and the GA-SVM. Appendix A may serve as a starting point

for this computational framework to be utlized for future research.
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Chapter 2: Classification of Pan-STARRS1Medium-Deep Transients

2.1 Overview

As the number of detected transients grows very large in wide-field time do-

main surveys, complete spectroscopic follow up becomes impossible due to lim-

ited resources and faint magnitude limits. Classification methods using time-series

data alone are favorable, and have been applied in the past to a broad range of

sources; [10] discuss the identification of AGN via damped-random walk parame-

terization of difference-imaging light curves, [40] on the applicability of single and

multiple Ornstein-Uhlenbeck (OU) processes to AGN, and [8] on the separation of

AGN from variable stars in photometric surveys through damped-random walk pa-

rameterization. For supernovae (SNe), [20] discusses various photometric methods

that enable their identification with particular SN classes.

Amongst these, the application of robust Bayesian methods [7] to the selection

of sources using deterministic and stochastic models for the light curves using model

templates, is ubiquitous. However, the applicability of these methods has been

limited to single-band detections [10], or have typically used magnitude time-series

data [8], which are undefined for negative difference-fluxes. Also, computational

limitations typically lead to the use of only single models as predictors for class, or
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only using simple statistical criteria for model assessment, rendering classification

schemes prone to the possibility of systematic misclassification.

Due to the plenitude of time-series data in 4 Pan-STARRS1 bands, gP1, rP1, iP1, zP1

I attempt here to use time series methods alone to classify sources into the broadest

general categories of burst-like (BL), or stochastically variable (SV). These light-

curve classes capture the variability behavior of the two most common extragalactic

sources detected in difference imaging surveys, AGN and SNe. I present in this

chapter, a novel method that separates BL and SV sources with high purity using

supervised machine-learning methods.

Using multi-band difference-flux in the gP1, rP1, iP1 and zP1 bands, I select

BL and SV from 4361 difference-image sources with galaxy hosts. In each band, I

estimate the fitness of several analytical models generally representative of BL as

compared to that of the OU process, using both their estimated leave-out-one cross-

validation likelihoods (LOOCV) and corrected-Akaike information criteria (AICc).

I show that the use of simple analytical models with suitably chosen priors, which

mimic the approximate shapes of BL light curves (predominantly SNe), is sufficient

for segregating them from SV (AGN), thereby obviating the need for exact models

that resemble specific BL subclasses. The model statistical characterizations are

combined across sources using a K-means clustering algorithm [26], to provide robust

source classifications in each filter. The filter-wise classifications are then averaged

to give final source classifications.
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2.2 Pre-Processing the Alerts for Classification

I have chosen to divide extragalactic difference image alerts into two broad

categories based on their light-curve properties: stochastically varying (SV) or burst-

like (BL), since the two most common extragalactic time-varying sources, AGN and

SNe, can be quite cleanly separated into these two variability classes. However,

these broad classifications, in combination with host galaxy offsets, also enable us

to discover more rare and exotic variables and transients. For example, nuclear

BL sources should include tidal disruption events [41, 42], off-nuclear BL sources

may contain gamma-ray burst afterglows [43, 44], and off-nuclear SV sources may

be offset AGN from a post-merger recoiling SMBH [45].

I identify extragalactic alerts by cross-matching the 18, 058 alerts detected in

the first 2.5 years of the PS1 MDS with galaxies detected in our custom multi-band

deep-stack star/galaxy catalogs [1]. Galaxies are detected in χ2 images [46] built

from CFHT’s u-band and the five PS1 bands. The detection threshold, defined

by the χ2 distribution, is equivalent to a SNR of 1.9σ. The photometry is then

performed using SExtractor [47] in Kron elliptical apertures which are used in cross

matching alerts with the objects in the catalog. The catalog contains ≈ 107 objects

which have been classified as stars or galaxies with over 90% accuracy for sources

with magnitudes < 24 mag, using an optimized SVM classification scheme that

takes into account the shape, color, and magnitudes of the detections [1]. I only

select alerts with iP1−host < 24 mag, where the star/galaxy classification is reliable.

I identified 4361 extragalactic alerts using the catalog, which also had at least 20
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”usable” measurements in each of the gP1, rP1, iP1, zP1 bands, where ”usable” is

defined in the following paragraphs. I then characterized as SV or BL using multi-

band difference-flux time-series. Note, that I do not include extragalactic alerts

with unresolved hosts in my sample, such as quasars, or “hostless” alerts, those

with either a faint host galaxy (iP1−host > 24 mag), or located outside the elliptical

region that defines their host galaxy.

To characterize the sources, I model their difference-flux time-series obtained

from forced photometry [34] in each of the gP1, rP1, iP1, and zP1 bands, and then

combine the characterizations across the filters. Forced photometry, done by the

photpipe pipeline, is obtained by performing PSF fitting photometry on all difference

images in each band at the location of any transient candidate, in order to fully

exploit all available difference-flux time-series information on the alert, prior to

the alert detection. In my method, I decided to use difference-fluxes instead of

differential magnitudes because stochastic light curves can have negative difference-

fluxes (if they were brighter in the reference image) for which AB magnitudes cannot

be defined. For BL lightcurves, zero or negative fluxes are useful while measuring

the rise-time, which may otherwise be less well-constrained.

Before I perform the classification on the difference-flux light curves, I pre-

process them to remove artifacts, as well as to make them conform with SV and

BL model priors. Many difference-flux light curves contain singular large difference

flux errors caused by difference-imaging artifacts (eg. dipoles), which can throw

off model fitting. To remove them, each difference-flux point yi in a given light

curve is compared to its previous and next difference-flux values, yi−1 and yi+1 with
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the criterion that at least one of |yi − yi−1| < 10dyi−1, or |yi − yi+1| < 10dyi+1

is satisfied for the difference-flux point to be accepted as non erroneous. Since

most difference-flux errors are much larger than this cutoff and most differences

in successive difference-flux values are much smaller than this, I ensured that the

lightcurve is unaffected, while the outliers are removed. Since the starting and

ending points of light curves cannot be subject to one of these criteria, I discard

them after removing the erroneous difference flux points. This lightcurve clean-up

method has been tested on 100 lightcurves where we observed large difference-flux

errors, on which these set of conditions resulted in the removal of these errors.

However, a more sophisticated method is required to remove difference flux errors

in a more robust manner since this method may be prone to errors when successive

differences are larger than 10dyi+1,i−1, or when the difference flux errors are smaller

than these values. Finally, I transform the light curves such that the minimum

difference-flux value is 0. This is done so as to make them conform to the limits for

the baseline priors for BL light curves, which is especially important in light curves

where the BL source was active in the reference image.

In my analysis I only use light curves which have at least n = 20 distinct

difference-flux measurements, or ”usable” measurements post processing in any fil-

ter, so as to ensure that this is at least four times as large as the maximum number

of parameters kmax used in any of the models (the maximum number of parameters

in any time-series model (§2.3) is 5). This is done to prevent over-fitting of the data,

which may result in model comparisons not being meaningful. Also, n = 20 is not

a restrictive limit for classification purposes since this is a factor ≈ 2 smaller than
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the average number of photometric measurements in any filter for all 4361 sources,

which is ≈ 36. Fig. 2.1 shows the histogram of number of distinct points in the

gP1, rP1, iP1, or zP1 filters for all the PS1 transient alerts associated with galaxy hosts

that pass my cuts. In the next section I discuss the time-series models that I use to

classify the difference-flux light curves.
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Figure 2.1: Medium-deep field alert distribution.

Sources plotted in the figure satisfy my criteria for classification: a light curve with n ≥ 20 points

in all 4 filters. MD10 has no points which satisfy my criteria due to only a single full season of

coverage in the first two and a half years of the PS1 MDS. A few supenovae have points below the

detection threshold before they turn-on, and a few AGN lightcurves show noisy difference imaging.

These result in a second mode at a smaller value ≈ 25 points.
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2.3 Time-Series Models

Since my goal is to classify extragalactic time-varying sources into two broad

classes, BL or SV, I assess the general shapes of the light curves by comparing

their similarities to SN-like bursting behavior, or to AGN-like damped-random-walk

type behavior. While fitting an exact model involves a large number of parameters

which may be unknown, and may necessitate a large number of data points, the

general shape of a BL light curve can be approximated to certain simpler analytical

functional forms (Gaussian, Gamma distribution, and generic analytic SN model);

and that of an SV light curve approximated by an OU process [40,48] as described

in Table 2.1. In these models, I have ignored the effects of cosmological reshift

corrections and dust extinction. However this is acceptable since my goal here is to

use the models only to distinguish between coherent single-burst type behavior from

stochastic variability, while not assuming any underlying physical processes for the

sources.

The Gaussian is the simplest model that attempts to model the overall flux

from a BL source as the sum of a constant background α, and bursting behavior

characterized by a Gaussian with amplitude β, center µ, and width σ. This however,

does not account for the asymmetry in SN light curves; for example Type Ia SNe are

better approximated by a sharp rise trise ≈ 15 days [49–51] followed by a relatively

slow decline in the flux in any band (tfall ≈ 30 days). To resolve this, I employ

a Gamma distribution which is robust in modeling such light curves (Fig. 2.2),

reflecting varying degrees of asymmetry depending on the shape k and scale D
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parameters of the distribution. Another model is the Analytic-SN model, that uses

distinct exponential rise and decline timescales, trise and tfall, and is particularly

well suited to modeling non-Ia type SN light curves [20], although it is generic in its

application. Despite the non-specific nature of these models, I find that their simple

statistical descriptions of the difference-flux light curves of BL sources are sufficient

in distinguishing them from AGN with low contamination. The use of three distinct

analytical BL models allows for a broader range of BL light-curve shapes, and is

comparable to using independent statistical descriptions of the light curve through

distinct parameterizations. Also, since the BL models are compared with the SV

model, only their relative fitnesses in describing the data are important. Should the

necessity arise of classifying the objects into particular sub-classes of the broader

SV-BL distinction, or that of extracting particular details about the parameters of

a source light curve, exact models for the sources [18, 20] must be included in the

comparisons, which although it is beyond the scope of this work, is a direct natural

extension.

The fluctuating behavior of optical light curves of AGN is well described by an

OU process [17], a first-order continuous-time auto-regressive process. The process

can be described in terms of a driving noise field, parameterized by c and a damping

timescale τ [7]. Mathematically, the evolution of the state variable Z(t) of the OU

process is given by the differential equation

dZ(t) = c1/2dW (t)− 1

τ
(Z(t)− b)dt (2.1)
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Figure 2.2: Gamma distributions.

A range of BL light curve shapes can be modeled using Gamma distributions by varying the

shape and scale parameters k,D. This is particularly applicable to the asymmetric rise and fall

time-series patterns of SN light curves.
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where W is a Wiener process, and b is the mean value of the process. For

simulating the OU process itself, I use the prescriptions from [7]. The method uses

Bayesian analysis to improve the estimate of the state variable continuously, by using

the observed flux yk−1 at time-step tk−1 to compute the posterior distribution of the

state variable zk−1, which is subsequently used to compute zk. The OU process

being a Gaussian-Markov process, Z(t) is characterized by Gaussian probability

distribution function G(µ(Z(t)), V (Z(t))) where µ, V are the mean and standard

deviation of the state variable at time t. It may be argued that the OU process

being Gaussian, under-represents the fluxes that are possible in AGN lightcurves,

which are better approximated by a log-normal distribution [52]. To deal with this

it may be possible to use a model which takes this into account. This can be done

by substituting Z(t) = logY (t), where Y (t) is the flux which will be log normally

distributed. Note that this equation can be solved analytically by first substituting

Z(t) = e−t/τX(t) followed by X(t) = logY (t).

I also determine whether the light curves are well fitted by a constant model

that is representative of white noise. In the event that none of the light curve models

is significantly better than white noise, the light curves are assumed to not pertain

to any of the stochastic or bursting categories, and are classified as No-model (NM)

sources. Figs. 2.3, 2.4, and 2.5 show examples of SN, AGN, and NM classified

sources and all the model fits. In each case, the best models are chosen based

on robust statistical criteria, and the final source class decided using a clustering

machine learning scheme described in the following sections.
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Figure 2.3: Burst-like lightcurve fit.

An SN difference-flux light curve is reasonably well fit by all the models, but the BL models have

higher LOOCV and lower AICc as compared to the OU process resulting in the light curve being

classified as BL.
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Figure 2.4: Stochastically varying lightcurve fit.

Example of an AGN light curve that is well fit by the OU process and poorly by the BL models.
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Figure 2.5: Noisy lightcurve fit by a No-model.

Example of a difference-flux light curve that has a large number of difference-imaging errors re-

sulting in it being best fit by the No-Model.
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Table 2.1: Difference-flux models

Model Type Equaton Parameters Prior Distributions

Gaussian BL Flux(t) = α + βe−(t−µ)2/σ2
α Ulog(0, 105)(flux counts)

β Ulog(103, 108)(flux counts)

µ Ulog(−102, 104)(days)

σ Ulog(1, 104)(days)

Gamma distribution BL Flux(t) = α + β
(t−µ)k−1e−(t−µ)/D

DkΓ(k)
α Ulog(0, 105)(flux counts)

β Ulog(0, 109)(flux counts)

µ Ulog(−102, 104)(days)

D Ulog(1, 102)

k Ulog(1, 102)

Analytic-SN model BL Flux(t) = α + β e
−(t−to)/tfall

1+e−(t−to)/trise
α Ulog(0, 105)(flux counts)

β Ulog(0, 109)(flux counts)

to Ulog(−102, 104)(days)

tfall Ulog(1, 103)(days)

trise Ulog(1, 103)(days)

OU process SV dZ(t) = −

1
τ
Z(t)dt + c1/2N (t; 0 , dt) τ Ulog(1, 106)(days)

where Z here is flux count. c Ulog(0, 1014)(flux counts2)

b Ulog(0, 108)(flux counts)

µ(Z) Ulog(0, 108)(flux counts)

V (Z) Ulog(0, 1014)(flux counts2)

No-Model White Noise Flux(t) = C C Ulog(0, 108)(flux counts)

2.4 Model Likelihood and Fitness Estimation

For all time-series models, including for the OU process I assume a Gaussian

error model to compute the model likelihoods. Although for an OU process, the

actual likelihood of the parameters is computed differently from this [7], using only

the photometric errors to compute the likelihood is justified here, since the intent is

to determine the model that best mimics the light curve shape, and not one which

also takes into account the variance that is allowable due to the OU process. The
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variance allowed by the OU process, may allow fitting for very large differences

between the points and the model. Therefore, to compare the OU process with

deterministic models, would then necessitate the inclusion of a noise model for the

deterministic models.

The probability P (yk|σk, θn) of observing a difference flux yk, assuming Gaus-

sian errors, is given by

logP (yk|σk, θn) = log

(

1

σk

√
2π

)

− (fk(θn)− yk)
2

σ2
k

(2.2)

where fk, yk, and σk are the model difference-flux, the observed difference-flux,

and the standard deviation estimates of the kth datapoint. For the OU process I

use µ(Z(tk)) or the mean light curve, in the place of fk, to evaluate its likelihood.

To assess the fitness of the models, I estimate their corrected Akaike informa-

tion criteria (AICc) [25] and leave-out-one cross-validation likelihoods (LOOCV) [7]

over the difference-flux data for each source, filter-wise. The AIC (Eq.2.3) is a quan-

tification of the information lost when a model is used to represent a dataset. The

AIC penalizes the maximum model log-likelihood lnL by a factor that depends on

the number of model parameters k, thereby accounting for over-parameterization of

the dataset.

AIC = 2k − 2lnL (2.3)

AICc = AIC +
2k(k + 1)

n− k − 1
(2.4)
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The AICc is a correction to the AIC, that corrects for the finite size of the

dataset n relative to the number of model parameters k. Note, that models that

better represent the dataset have smaller AICc values. The LOOCV, another inde-

pendent measure of model fitness, is a measure of how well each difference-flux value

can be predicted using the remaining difference-flux data and hence, is a more com-

plete statistical measure of model fitness as compared to the AICc. The LOOCV,

more specifically, is the sum of the piece-wise probability of obtaining individual

difference-flux measurements using a time series model, while sampling the param-

eters from the posterior constituted by the model over the remaining points in the

time-series. In LOOCV estimation of a model over a dataset yk containing K points,

the likelihood Lk of the kth data point is given by

Lk = P (yk|y−k, σ, η) ≈
1

N

n=N
∑

n=1

P (yk|σk, θn, η) (2.5)

where η is the time-series model, σk is the error estimate at each point, and θn

are the model parameters drawn in the nth iteration from the Markov chain Monte-

Carlo sampling of the posterior probability distribution of the model over the other

k − 1 data points denoted by y−k. The LOOCV of the model can then be obtained

by multiplying the partition probabilities

LOOCV =
k=K
∏

k=1

Lk (2.6)

Since the AICc and the LOOCV are measured independently of each other,

they can be used simultaneously to assess model likelihood, thereby reinforcing
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model fitness assessment. It is argued that the AIC and the LOOCV provide asymp-

totic equivalence of choice [53], however, this necessitates infinite sampling of the

likelihood and posterior space. Also, the correction to the AIC may break this

equivalence.

The LOOCV for each model is estimated using a Markov chain Monte-Carlo

(MCMC) using a standard Metropolis-Hastings algorithm to sample the posterior

distributions [54]. The model parameters are sampled from known distributions and

the posterior probability Lipi is evaluated, where pi is the prior probability and Li

is the model likelihood in the ith iteration. Parameters for the i + 1th iteration

are accepted with probability (Li+1pi+1)/(Lipi), failing which the parameters from

the ith iteration are retained. I use a log-normal sampling distribution with a

diagonal covariance matrix, with σ2
ii = 10−4 uniformly across all parameters, and all

models. I find that this choice of a constant variance of the sampling distribution

leads to stable cross-validation likelihood values. In accordance with log-normal

sampling requirements, the uniform parameter distributions defined in Table 2.1

are transformed between −∞,∞ using a sigmoidal transform.

The prior distributions for the BL and SV model parameters can be assumed

to be uniform as I have in my simulations, or can be obtained by sampling the

parameters at the posterior maxima for the BL and SV models, for known SNe (BL)

and AGN (SV) training sets. The latter is advantageous if the entire set of sources is

well represented by the training set, in that the number of iterations to convergence

would be significantly reduced. However, I did not make this assumption in order

to allow for the classification of BL and SV light curve types that may not occur in
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the verification set, and only took care to ensure that the limits on the parameter

ranges subsumed the parameter values that could occur in the dataset.

Since the initial guesses for the model parameters in the MCMC may be far

from the actual solution, a burn-in of 1000 iterations is employed for all model

assessments. I determined that a large number of burn-in iterations is important

to ensure sampling near the peaks of the posterior distribution, and is particularly

important while using uniform prior parameter distributions, as I have done here.

I determined that 10000 post burn-in iterations were sufficient for good model-fit

convergence, after replicating the results with 2000 burn-in iterations, and 20000

post burn-in iterations. The calculation of the LOOCV is tedious and computation-

ally expensive, and required us to parallelize my codes over a 300 core multi-node

cluster. In addition my codes were written ground-up in C++ and optimized for

quick run-time; the classification of ≈ 7000 sources with ≈ 40 difference-flux points

in each of the four bands, requires ≈ 4 hours. The classification of a individual

source on a single CPU takes ≈ 10 minutes.

2.5 Classification Method

Once the fitnesses of the models are estimated filter-wise on the difference-

fluxes using the AICc and the LOOCV, I obtain two parameters per model for 5

time-series models in each of the four filters gP1, rP1, iP1, and zP1. First, I remove

the NM best fit sources by comparing their model statistics with those of the BL and

SV models. To do this I construct a relative sign vector RVi,f for each object in each
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filter using the AICC, and the logarithm of the LOOCV I designate by LLOOCV:

RVi,f = {

sgn(LLOOCVGaussian,i,f − LLOOCVNM,i,f ),

sgn(LLOOCVGamma,i,f − LLOOCVNM,i,f ),

sgn(LLOOCVAnalytic,i,f − LLOOCVNM,i,f ),

sgn(AICcGaussian,i,f − AICcNM,i,f ),

sgn(AICcGamma,i,f − AICcNM,i,f ),

sgn(AICcAnalytic,i,f − AICcNM,i,f

sgn(LLOOCVOU,i,f − LLOOCVNM,i,f ),

sgn(AICcOU,i,f − AICcNM,i,f )

} (2.7)

where i is the object id, f is the filter, and sgn denotes the sign function,

defined to be +1 for positive values and−1 for negative values. The reason I consider

the log is that the ratios of the LOOCV are more relevant in model likelihood

estimation than are their differences. This is already accounted for in the AICc

which is a function of logarithm of the maximum likelihood.

Ideally, for a BL source, RVBL = {+1,+1,+1,−1,−1,−1,±1,∓1} since the

BL models will have a larger LOOCV, and a smaller AICc when compared to the

same for the NM, while for an SV source the relative sign vector should be RVSV =

{±1,±1,±1,∓1,∓1,∓1,+1,−1}, i.e., the OU process better desribes the light curve

as compared to any of the BL models or the SV models. For sources where the NM
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is the best model, RVNM = {−1,−1,−1,+1,+1,+1,−1,+1}.

I then compute RVi,f for all sources, which are aggregated in filter-wise and fed

into a K-means clustering supervised-machine-learning algorithm, using the number

of centers K = 3 in a swap method that is repeated over 100 iterations [26]. The

clustering algorithm partitions the sources in the 8-dimensional RVi,f space, into

Voronoi cells to determine the centers of the distributions for BL, SV, NM, by

minimizing the sum of squares of the distances of points xl within cluster Sm from

the means of the clusters µm that correspond to the different classes of sources:

k
∑

l=1

∑

xlǫSm

||xl − µm||2 (2.8)

Each source is then assigned a class Ci,f = (+1, 0,−1), for BL(+1), SV(-1),

or NM(0), depending on the center it is clustered around. The squared-distance of

each source point i in filter f , Di,f = |xi − µC,f |2 from the clustering center µC,f is

a measure of how reliably it is classified as the particular type C, with a distance of

Di,f = 0 being the best, and larger distances indicating less reliable classifications.

Di,f is in mathematical terms the square of the L2̂ norm. Ci,f and Di,f are computed

for each source, in each of the gP1, rP1, iP1, and zP1 bands independently. I choose

to classify the sources filter-wise, and not using the statistical measures from all the

filters at once, for the following reasons.

1. The behavior of each type of source, across the filters, cannot be assumed to

be uniform and hence, the clustering centers may differ significantly,

2. Clustering in some filters may be more noisy than others, resulting in most
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sources being classified as no-model sources, thereby making these bands less

favorable for classification purposes. For these filters, the no-model center

would be repeated in place of an SV or a BL center.

3. Some filters may be less noisy and show clustering only around two centers

corresponding to BL and SV. Combining these filters with the noisier ones

results in both, more uncertainty in clustering classification (larger Di) and

a larger number of misclassifications. This is because, the uncertainty in the

clustering classification caused by one or more filters confounds the otherwise

clear classifications from the others. As a result, the clustering centers are

poorly determined in the joint parameter space of statistical parameters from

all the filters. By performing the clustering in each filter separately, the clas-

sifications can be reinforced if they show agreement across filters, and reflect

the uncertainty otherwise, via smaller |Ci| and larger Di values.

Note, that it is favorable to assume more clustering centers in any filter than

there are. For example, I could assume that a certain filter has 3 clustering centers

corresponding to BL, SV, or NM while it may so happen that one of the BL or SV

centers is repeated, or two of the centers are relatively proximal, implying that the

clustering really occurs only around two centers. Post clustering, I filter out sources

which have been clustered around NM centers in at least 3 bands they are detected

in, and label them NM sources. The remaining sources then, are classified in at least

2 bands they are detected in as either SV or BL. To detect their type more precisely

than just using their comparisons to the no-model, I construct another relative sign
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vector BLSVi,f comparing the fitness statistics of the BL models directly to those

of the OU process for each source, band-wise:

BLSVi,f = {

sgn(LLOOCVGaussian,i,f − LLOOCVOU,i,f ),

sgn(LLOOCVGamma,i,f − LLOOCVOU,i,f ),

sgn(LLOOCVAnalytic,i,f − LLOOCVOU,i,f ),

sgn(AICcGaussian,i,f − AICcOU,i,f ),

sgn(AICcGamma,i,f − AICcOU,i,f ),

sgn(AICcAnalytic,i,f − AICcOU,i,f

} (2.9)

I aggregate BLSVi,f band-wise and perform a two-center K-means clustering

(K = 2) to segregate the BL and SV sources. I find that this type of hierarchical su-

pervised clustering, i.e. filtering out the NM sources in the first stage and classifying

the remaining sources as BL or SV in the second stage, is more efficient as compared

to using all the model statistical comparisons concurrently in a single clustering step.

This is because, model comparisons which are not relevant to a particular classi-

fication type, contribute significantly to the noise in the clustering process. I also

attempted a clustering on the differences between the model LLOOCVs and AICcs,

instead of on the signs of their differences, in a single clustering step, as well as

in a hierarchical supervised method as discussed in this paper. However, I found

40



that in both cases, the number of misclassifications is larger due to the associated

variance in the values of the differences in LLOOCV and AICc, which is mitigated

by reducing them to binary statistics using the sign of their differences alone.

I combine the clustering classifications from the second clustering stage in

each filter, by defining two measures; a quality factor Ci which is the average of

classifications across the filters:

Ci =

∑

f Ci,f

Nfilters

(2.10)

and, the average clustering square distance Di across the filters:

Di =

∑

f Di,f

Nfilters

(2.11)

BL sources have Ci closer to 1 while stochastically variable sources have Ci

close to −1. Di is a measure of the overall reliability of the classification that

decreases with increasing Di. Therefore, sources which are purely BL will have

Ci = 1, Di = 0, while purely stochastic variables will have Ci = −1, Di = 0.

Intermediate values of Ci indicate disagreements between some of the band-wise

classifications, while larger values of Di indicate a disagreement between the models

in a given band.

2.5.1 Tests On a Verification Set

To test my classification method I constructed a reliable verification set with a

diverse range of SNe (BL) and AGN (SV) in order to capture, as much as possible,
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Figure 2.6: Verification set clustering results.

Densities of verification set SNe (left) and AGN (right) on the Ci vs Di plane. Since AGN

classifications for Di > 4 occupy both the BL (Ci > 0) and SV(Ci < 0) regions, I only rely on

classifications with Di <= 4. As a result, the SNe are classified with 93.89% completeness and

90.97% purity while the AGN are classified with 57.92% completeness and 95.00% purity.
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the full range of their time-variability properties. For AGN, I created a verification

set from two sources: 1) 58 UV-variability selected AGN with associations with

PS1 alerts within 1′′ from the GALEX Time Domain Survey (TDS) [55] with no

available spectroscopy, and 2) 125 spectroscopically confirmed AGN PS1 alerts as-

sociated with galaxy hosts from SDSS [56] and from a multipurpose Harvard/CfA

program with the MMT to observe PS1 transients (PI Berger). The GALEX AGN

were selected from UV variability at the 5σ level in at least one epoch, and then

classified using a combination of optical host colors and morphology, UV light curve

characteristics, and matches to archival X-ray, and spectroscopic catalogs. The

SN verification set consists of 131 spectroscopically confirmed Type-Ia, Type-Ib/c,

Type-II, Type-IIn, and Type-IIP SNe from a combination of PS1 spectroscopic

follow-up programs using Gemini, Magellan, and MMT described in [35] and Berger

et al. (in prep.). In order to test the performance and efficiency of my algorithm in

the classification of AGN and SNe, I have constructed a diverse and robust verifica-

tion set that should be representative of these populations in my sample.

Fig. 2.6 shows the contours of Ci vs Di for the spectroscopic AGN and SNe.

The SNe cluster around the region Ci ≥ 0.5 and Di < 4, while AGN predominantly

occupy the regions defined by Ci ≤ 0 and Di ≤ 8. In general, the degree to which

an object is BL as opposed to SV increases with Ci. Some AGN light curves may

show bursting-type behavior resulting in their being classified in more than 1 fil-

ter as BL, consequently having Ci > −1. Also, AGN clusterings are less reliably

classified as evidenced by systematically larger Di as compared to the SNe. This is

possibly due to the OU process being a simplistic representation of a more complex
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Figure 2.7: Minimum difference-magnitudes of AGN and SNe.

Distribution of SV (blue), verification set AGN (cyan hashed), BL (red), verification set SN (orange

hashed), and NM (dark green) as a function of minimum magnitudes in the gP1, rP1, iP1, and zP1

bands. The overall distribution of extragalactic sources (black) is also shown.
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Figure 2.8: PS1 alert offset distributions.

Bimodal distribution of PS1 extragalactic alert host offsets, separated into nuclear, and off-nuclear

distributions, with µnuc, σnuc = 0.26, 0.14 and µoff−nuc, σoff−nuc = 0.48, 0.37. Sources offset from

their host galaxies by more than µnuc + 2σnuc = 0.54” are predominantly SNe.
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Figure 2.9: AGN offset distribution.

Offset distribution of verification set AGN which is well approximated by a Gaussian with

µAGN , σAGN = 0.25, 0.15. This is approximately the same as the distribution for nuclear offsets

obtained in Fig. 2.8 from the bi-modal assumption for the entire extragalactic alerts population.
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continuous-time auto-regressive process [18]. Consequent to these reasons, 47.88% of

the verification set AGN classified with Di > 4, indicating unreliable classifications.

In order to maximize the purity of my classifications, with a sacrifice to complete-

ness, I use Di = 4 as the bound for the classifications below which 57.92% AGN

and 93.89% SNe are recovered with 95.00% and 90.97% purities respectively. It is

possible to include other photometric properties like color or host-galaxy properties

to improve the completeness of the AGN classifications, however, since the focus of

my present work is to only use time-variability as a tool for classification, I reserve

this for future work.

In multi-epoch surveys such as Pan-STARRS1, it may be possible to differ-

entiate between AGN and SNe simply by comparing variability between observing

seasons. For example, a SN, which is in almost all cases active in only one season,

will have one season for which the reduced χ2 (χ2
ν) is close to 1; while an AGN light

curve can show variability in both seasons with χ2
ν >> 1. In Fig. 2.10 I test this

simplified method by plotting the minimum of the seasonal χ2
νs for the verification

set AGN and SNe. If χ2
ν = 5.75 is used to separate AGN from SNe, then 55.73% of

the AGN can be recovered with 86.45% purity. This is comparable in completeness

to that of of my light-curve classification algorithm! However, for SNe, the perfor-

mance is much worse, with 87.69% of SNe recovered, with only 47.22% purity. This

high contamination rate for SNe is due to the extensive overlap between the AGN

and SN in the region χ2
ν < 5.75. Some SNe also have χ2

ν > 5.75 due to multiple con-

secutive difference imaging errors that cannot be removed easily. Hence, I conclude

that for maximum purity, a more sophisticated method such as the one adopted in
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this work, is necessary.
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Figure 2.10: Minimum seasonal χ2
ν .

Minimum seasonal χ2
ν of the spectroscopic verification set of AGN and SNe in the g band. A

cut-off of χ2
ν > 5.75 can be used to demarcate AGN from SNe, albeit with a high contamination

rate for SNe. A few SN have χ2
ν > 5.75 due to consecutive difference-imaging errors.

2.5.2 Final Classifications and Properties of Extragalactic Sources

I begin classifying my 4361 extragalactic transient alerts by first selecting out

sources which are clustered around the NM center in at least 3 of the 4 bands. I

find 570 such sources (NM sources hereafter). Visual inspection of the NM source

light curves reveals that the majority are the result of noisy difference imaging light
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curves, most often due to large excursions in flux from image differencing artifacts,

and not statistical errors due to faint fluxes, in most of the bands. This can be seen

in Fig. 2.7, which shows the minimum source magnitude in the gP1, rP1, iP1, and

zP1 bands for all sources, including that for NM sources (dark green), which barring

the brightest end of the magnitude distribution, follows the overall magnitude dis-

tribution of extragalactic sources (black), indicating no strong biases toward fainter

magnitudes.

However, I determined that the average of the magnitude of the NM sources

is ≈ 0.5mags less bright as compared to the classified SV, and 0.25mag less bright

as compared to the classified BL. I also find that the distribution of the offsets of

NM sources is similar to that for BL sources; Fig. 2.11 shows the distribution of

NM sources overlayed with the BL distribution (red curve) implying that the NM

sources may be a distribution of faint BL sources.

Table 2.2: Source variability and offset classifications

Type Nuclear (offsets < 0.55′′) Off-Nuclear (offsets > 0.55′′)

Burst-Like 689 812 (SNe)

Stochastic Variable 1233 (AGN) 1027

No-Model 449 121

Fig. 2.12 shows Ci vs Di contours for the 3791 extragalactic sources classified

SV and BL. I determine that there are 2262 SV sources and 1529 BL sources in
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Figure 2.11: Offset distribution of No-model sources.

Offset distribution of NM sources strongly resembles the distribution of BL sources. Given that

the mean of the peak magnitude distributions of NM sources is 0.25 mag fainter than that of BL

sources, I conclude that these may be a population of fainter BL sources.
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the dataset. Fig. 2.13 shows the distributions of SV, BL, and NM by MD field,

with SV being the most common class of extragalactic alert in all fields. I combine

the light-curve classifications, with host galaxy offsets, in order to define a robust

photometrically selected sample of AGN and SNe, from nuclear SV and off-nuclear

BL, respectively. In order to determine my cut off for off-nuclear sources, I first

fit the entire source offset distribution with a bimodal distribution (Fig. 2.8), for a

nuclear (AGN) and off-nuclear (SNe) population. SNe can be coincident with galaxy

nuclei due to the limited spatial resolution of the images. AGN, however, should

not have significant offsets from their host galaxy centers, unless of course, they

are more exotic objects such as recoiling supermassive black holes, or dual AGN.

This results in a 2σ cut-off of > 0.54′′ for off-nuclear sources. I also use my AGN

verification set to determine the nuclear offset distribution, shown in Fig. 2.9, which

is fitted with a similar 2σ cut-off of > 0.55′′, which I adopt. The offset distribution

for each variability class is shown in Fig. 2.14. The distribution of SV offsets is

broader than that of the verification set AGN, however, the broader distribution

likely reflects the larger errors in the image difference and host galaxy centroids for

fainter AGN not represented in the verification set. The BL distribution is seen to

extend well beyond the nuclear AGN distribution, as would be expected for SNe.

Table 2.2 shows the number of sources in each variability class divided into

nuclear (offset < µnuc + 2σnuc = 0.55′′) and off-nuclear (offset > 0.55′′). I use this

offset division to sub-select from the variability selection population of BL and SV,

to define SN as BL with offsets > 0.55′′, and AGN as SV with offsets < 0.55′′. In

the following section, I use these SN and AGN to define photometric priors for their
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Figure 2.12: Density maps for BL and SV.

Density maps for BL (left) and SV(right) as a function of Ci and Di.

identification in future surveys.

2.6 Photometric Priors: AGN, SNe, and Their Host Galaxies

For upcoming multi-band, multi-epoch surveys such as LSST, I have shown

that light-curve characterization combined with host galaxy offsets is a robust way

to select AGN, SNe, and other exotic events, and does not require data external

to the survey such as spectroscopic follow-up. Using all the gP1, rP1, iP1, zP1 bands

offers a redundancy that increases the confidence of source classification. With my

photometrically selected samples of AGN and SNe, I now characterize their key

observed source and host galaxy properties, with the hopes of finding priors that

can accelerate their identification in future surveys.

I use the iP1-band to characterize the host galaxy magnitudes of my sources,

since the iP1-band has the highest signal-to-noise ratio amongst all the PS1 bands,
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Figure 2.13: Source distribution by PS1 fields.

Distribution of SV,BL, and NM sources across the 10 MD fields.
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Figure 2.14: Offset distributions for SV, BL, NM sources.

Host galaxy offset distributions for SV, BL, and NM sources in arcsec. Dashed line indicates the

offset above which a source is considered “off-nuclear”.
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and contamination of host galaxy flux by a central AGN is minimized as compared

to the bluer bands. Fig. 2.15 shows the distribution of host galaxy iP1 for AGN and

SN. AGN host galaxies appear significantly brighter in the i-band than the SN host

galaxies. Preliminary redshift estimates of the transient alert host galaxies indicate

that SN host galaxies have a larger mean redshift distribution [1] as compared to

the AGN host galaxies, thereby resulting in the observational bias.
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Figure 2.15: AGN and SN i-band magnitude distribution

Distribution of SN and AGN host galaxy i-band magnitudes. AGN host galaxies are ≈ 3 mag

brighter than SN host galaxies.

AGN detected in galaxies are much fainter in difference flux as compared

to their host galaxy flux, and I can use this to further separate the AGN from
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the SN using the distribution of the differences between the minimum source i-

band difference-magnitude and the host magnitude (imin − ihost) (Fig. 2.16). AGN

peak variability amplitudes are significantly fainter (≈ 4 mag) relative to their host

galaxies, as compared to that for SNe (≈ 2 mag), consequently being more difficult

to detect.
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Figure 2.16: Distribution of iAGN − ihost for AGN and SN.

Distribution of the differences between the minimum i-band difference magnitude and the host

galaxy i-band magnitude for all source types. AGN fluxes are typically much fainter relative to

their host galaxies with typical (iAGN− ihost) ≈ 4 mag, while SNe are typically 3 mag fainter than

their host galaxies in the i-band.

I find that by using only ihost and (imin−ihost), I can compute informative priors
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for the source-types from their relative probabilities of occurrence. Fig. 2.17 shows

the contours of AGN and SN in ihost and imin − ihost space. Although the AGN

and SN distributions overlap in this space, there is a clear divide between their

highest density regions, making it possible to separate them and assign relative

probabilities in the overlap regions. Approximating and smoothing the SNe and

AGN, ihost and (imin − ihost) distributions (in Fig. 2.15 and Fig. 2.16 respectively)

by Gamma distributions, I obtain their respective joint probability distributions in

both parameters as:

pAGN = γ(imin − ihost, k = 25.360, θ = 0.230)

× γ(ihost, k = 4.911, θ = 0.651) (2.12)

pSN = γ(imin − ihost, k = 12.852, θ = 0.400)

× γ(ihost, k = 11.080, θ = 0.469) (2.13)

If NAGN and NSN are the observed number of AGN and SN, the relative AGN

likelihood for any set of values ihost and imin − ihost is given by

pAGN|AGN,SN =
NAGNpAGN

NAGNpAGN +NSNpSN
(2.14)

Assuming that the number of AGN and SNe scale linearly with the number of

SV and BL sources respectively, I obtain NAGN = 2262 and NSN = 1529. Fig. 2.18

is a smoothed version of Fig. 2.17 and shows the contours of pAGN|AGN,SN. SNe being

brighter and in fainter galaxies, typically occupy smaller imin − ihost and larger ihost
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(redder contours), while AGN difference-fluxes being smaller compared to their host

galaxy fluxes and from less distant galaxies, occupy larger imin − ihost and smaller

ihost (bluer contours). The probability of a SN at any given point in this parameter

space is 1− pAGN|AGN,SN. The verification set AGN (black stars) and SNe (magenta

circles) are plotted for reference.

For the problem of classification in real-time from a large data stream such as

the LSST transient alerts, I have found that for a magnitude-limited survey, simply

using the i-band peak source magnitude and i-band host magnitude as priors, one can

produce a robust preliminary AGN vs. SN classification, in order to help filter out a

sample for more tedious methods such as spectroscopic or time-series identification

of sources.

The colors of the host galaxies for the two classes may also show trends that

can be used for source classification. However, the colors of host galaxies contain-

ing AGN may be prone to contamination by the nuclear AGN component. To test

this, I select a sample of host galaxies from the overall sample in my PS1 deep-

stacks [1] which has an identical i-band magnitude distribution to that of the AGN

host galaxies. Preliminary photometric redshift estimates [1] indicate, that in the

absence of redshift measurements, selecting a control host galaxy sample that has

an identical distribution to that of the AGN host galaxies ensures that their redshift

distributions are similar. Fig. 2.19 shows the distribution of my control sample of

host galaxies and the AGN host galaxies, and it can be clearly seen that the colors of

AGN host galaxies can extend up to 1 magnitude bluer in the observed u−g or g−r.

I also tested for the distribution of colors for weaker AGN defined by the ratio of the
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Figure 2.17: Distribution of AGN and SN ihost and imin − ihost

Distribution of AGN (contours in blue to red) and SN (contours in gray to black) ihost and

imin − ihost. A clear separation can be seen between the highest density regions of the two source

types.
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Figure 2.18: Smoothed distribution of Fig. 2.17.

Smoothed distribution of relative AGN probability (Eq.2.14) in the ihost - imin − ihost plane. The

probability distributions, derived from the density of the photometrically selected AGN and SN

samples in each parameter, are smoothed and approximated by Gamma distributions. The overall

distribution is obtained by multiplying the distributions in each parameter. The verification-set

AGN (black stars) and SNe (magenta circles) are plotted for reference.
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maximum difference flux to the flux of the host galaxy FluxAGN/F luxGalaxy < 0.1

(Fig. 2.19), to determine if AGN contamination can be a significant factor affecting

host galaxy color. I determined that host galaxies with the weaker AGN have colors

more similar to the control sample host galaxies. I conclude that, host galaxies con-

taining strong AGN emission either must fundamentally be distributed differently

from the sampled host galaxies in color space, or that the AGN contamination of

the host galaxy colors is significant. The latter is the more plausible argument, since

it is expected that AGN contamination would lead to bluer overall observed colors.

However, it is possible that AGN are linked to star formation thereby resulting in

bluer host galaxy colors. To measure the colors of the host galaxies it therefore, may

be required to fit for and subtract the nuclear flux from the AGN in the stacked

images, which is the subject of [1], but beyond the scope of this thesis.

For SNe host galaxies, it would be interesting to see if they demonstrate a bi-

modal distribution as would be expected for a mixed population of thermonuclear

(Type Ia SNe) which are typically observed in older, redder galaxies, and core-

collapse SNe which are observed in bluer, star forming galaxies. Since the SN

distribution is typically centered at a higher redshift as evidenced by fainter source

and host magnitudes compared to AGN, to compare their colors with host galaxies

at the same redshift, I again create a control sample of host galaxies from the overall

pool, in the same manner as I did for AGN host galaxies in Fig. 2.19. Interestingly,

Fig. 2.20 shows there is a concentration of SNe in blue galaxy hosts, consistent with

core-collapse SNe, with a tail out to redder galaxies likely from Type Ia SNe.
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Figure 2.19: u− g vs g − r for AGN

(Left) Host galaxy colors u − g vs g − r for AGN (blue) and a sample of host galaxies (gray)

with the same i-band distribution as that of the AGN host galaxies. Due to potential contam-

ination of the host galaxy colors by the AGN, the colors may be extended beyond the sampled

host galaxy distribution. (Right) Selecting only the host galaxies with weaker AGN defined by

FluxAGN/F luxHost < 0.1 I find that the AGN host colors match the sampled host galaxy colors

better. This indicates that, either the colors of host galaxies of the stronger AGN population may

be contaminating the host-galaxy colors, or that the host galaxies intrinsically represent a different

color distribution from that of the sampled host galaxy distribution.
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Figure 2.20: SN distribution by host galaxy

The photometric SN sample is highly concentrated in blue galaxies, consistent with core-collapse

SNe, and tail out to redder galaxies, most likely from thermonuclear SNe (Type Ia).
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2.7 Variability Properties of AGN

The source of AGN variability, and its functional dependence on the basic

properties of the black hole as well the feeding mechanism, are poorly understood

[18]. While a single OU process may sufficiently describe AGN optical variability,

a better model is thought to be a linear combination of OU processes to accurately

describe the AGN Power spectral density |P (w)|, including the high-frequency break.

The power spectral density of a time-series, is the distribution of its overall variance

as a function of frequency. This can be defined to be Fourier transform of the auto-

covariance function Rxx of a time-series x(τ), where the PSD and the auto-covariance

are defined as

Pxx(w) =

∫ ∞

−∞

|Rxx(t)e
−iwt|dt (2.15)

Rxx(t) =

∫ ∞

−∞

x(τ)x(t+ τ)dτ (2.16)

Another model capable of describing the lightcurve, and the PSD structure

is the continuous-time auto-regressive moving-average (CARMA) model [19]. The

CARMA models themselves are sub-branches of generalized auto-regressive hetero-

skedastic processes (GARCH), i.e., consist of data drawn from distributions with

a range of variances. However, the motive must be clear that, while fitting the

lightcurve is important, the inference on the parameters is more important, i.e., the

parameters must be meaningfully represented in the physical system. In this regard,

one may choose the simplest model, that also best describes the lightcurve either
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using cross-validation methods, or using the AICc.

[17] model the r-band rest frame lightcurves of AGN using OU processes, to

recover a relation to their host galaxy SMBH masses. To repeat [17], I obtained a

spectroscopic AGN sample from the SDSS DR7 catalog [56], which I cross-matched

with the medium-deep alerts to obtain 434 AGN. The catalog from [56] also provides

the spectroscopic redshifts and virial black hole mass estimates. The virial black

hole mass MBH,virial is given by [56]

log MBH,virial = a+ b log10

(

λLλ

1044ergs−1

)

+ 2 log10

(

FWHM

kms−1

)

(2.17)

where Lλ is the luminosity of the continuum at wavelength λ, and a, b are constants

which are obtained from local AGN with masses from reverberation mapping, or

internally among the different lines - Hβ, MgII, CIV , and their corresponding

continuum luminosities. For the exact values of a, b please refer to [56], which are

calibrated according to the line used, and to the definition of FWHM adopted for

the corresponding line.

I then parameterized their rPS1 difference-flux lightcurves, using OU processes,

to derive the observed variability timescale τ(days). The details of the Bayesian pos-

terior estimation and the MCMC are the same as described earlier in this chapter.

The observed timescale is complicated by the fact that the sources have a cosmo-

logical distribution. Below, I derive a small correction to the observed variability

timescale as a function of source redshift z, so that I can compare sources in their

rest-frames. The rest frame frequency νrest of the observed r-band is given by

νrest = νr−band(1 + z) (2.18)
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From [57], the ratio of effective radii in the accretion disk rratio, of the radius at

which this frequency is emitted to that at which the r-band is emitted is given by

(νrest/νr−band)
−4/3 . (2.19)

Therefore,

rratio =
reff−r−band

reff−rest

= (1 + z)4/3. (2.20)

If the damping time-scales can be assumed to scale with the dynamical times at

these radii, then their ratio Tratio is identical to the ratio of Keplerian timescales at

these radii. The Keplerian timescale at a radius r around an SMBH of mass M is

given by

TKepler = 2π
√

r3/(GM) (2.21)

where r is the radius of the particle orbit around the SMBH and M is the mass of

the SMBH. Therefore,

Tratio = r
3/2
ratio = (1 + z)2 (2.22)

That implies that the overall correction to the observed timescale should be

τrest−r−band =
τobs−r−band

(1 + z)
× (1 + z)2 = τobs−r−band(1 + z) (2.23)

Fig. 2.21 and Fig. 2.23 show the variation of τ (days) versus the mass of

the SMBH and the host galaxy i-band magnitude. As expected, the r-band rest-

frame variability time-scale increases with increasing black hole mass as log τ =

−5.43± 0.17 + (0.906± 0.09) logMBH .
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Figure 2.21: τrest vs SMBH mass.

The variation of the r-band rest-frame time-scale τ (days) with the measured mass of the central

SMBH (Msun) in AGN. The power-law (log τ = −5.43 ± 0.17 + (0.906 ± 0.09) logMBH) trend is

recovered as expected.
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Supermassive black hole masses are also known to scale with their host galaxy

stellar masses [58]. A proxy for the stellar mass is the i-band magnitude of the host

galaxy since it is the highest signal to noise pan-STARRS1 band in which the AGN

contribution is also minimal. However, to obtain the rest-frame absolute i-band host

galaxy magnitude, I will have to apply K-corrections as well as corrections to the

flux as a consequence of the non-zero redshift. K-corrections will depend on the

shape of the SED of the host galaxy and is far from being straightforward. As a

preliminary estimate, I apply only flux corrections to the i-band magnitude of the

host galaxy. To do this, I obtain an analytical expression from here [59] for the

distance modulus as a function of redshift. Assuming Ωm = 0.27, the expression for

absolute magnitude is

Mi = mi −DM (2.24)

DM =
(

43.16 + 5 log10(z/
√

(1 + 0.464z + 0.164z2)) + 5 log10(1 + z)
)

(2.25)

Fig. 2.22 shows the variation of known black hole masses obtained from the

Sloan digital sky survey DR7 data release [58] versus the i-band host magnitudes.

As expected, the SMBH mass decreases with increasing i-band host magnitude and

therefore, stellar mass, with the relationship logMBH = 2.45 ± 0.004 − (0.25 ±

0.0005)Ihost. Once the stellar masses are measured in [1], I will derive the correlation

of logMBH with stellar mass.
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Figure 2.22: SMBH mass as a function of ihost.

The variation of central SMBH mass as a function of i-band host galaxy magnitude given by the

regression logMBH = 2.45± 0.004− (0.25± 0.0005)Ihost.
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Figure 2.23: τrest vs ihost.

r-band rest-frame time-scale τ (days) as a function of the host galaxy i-band magnitude, Mi, which

serves as a good proxy for the stellar mass, varies as log τ = −1.13± 0.015− (0.15± 0.0006)Mi.
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2.8 Conclusions and Future Work

In this chapter, I discussed a multi-band difference-flux time-series based

method for the classification of 4361 PS1 MD extragalactic difference-imaging sources

into stochastic and bursting. Using a star-galaxy catalog to select extragalactic

sources, I classify them into SV and BL sources using band-wise difference-flux

characterization. Although this method can use actual or difference-magnitude time-

series, difference-flux time-series are preferred over difference magnitudes which are

log scaled, thus circumventing the problem of negative difference-flux excursions in

SV light curves, for which magnitudes cannot be defined. I use multiple BL models

to model the shapes of BL light curves, an OU process to model SV light curves, and

a No-Model to identify white-noise dominated light curves. Since the models only

attempt to differentiate between coherent single-burst type behavior and stochastic

variability, they do not assume any underlying physical processes for the sources,

making the method widely applicable. The use of multiple BL models is justified

for statistical redundancy in the parameterizations of the light curves, as well as for

modeling the gamut of shapes of BL light curves. I estimate the model fitnesses using

their estimated corrected-Akaike information criteria, and their leave-out-one-cross-

validation likelihoods in each filter. The use of these independent derived statistical

measures, one of which is suited to simply assess light curve shape characteristics,

and the other to assess the overall robustness of the model, works to fortify the

derived classifications.

I then construct decision vectors RVi,f for each source based on the AICc and
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LLOOCV of all the time-series models, which are combined in two clustering steps

across the sources, and classified using a supervised K-means clustering method to

arrive at the final filter-wise classifications; I filter out the NM sources in the first

step, and then I separate out the SV and BL sources in the second. K-means clus-

tering machine learning as a decision mechanism takes into account uncertainties in

the shapes of the lightcurves, the uncertainties in the statistical criteria (including

MCMC convergence), and the multiplicity of models and statistics to give decisive

band-wise source classifications. Alternatives to K-means clustering, such as hier-

archical clustering [60] or random decision forests [4] can also be used. Random

forest methods in particular will also give probabilities of source class, which may

be important while selecting good AGN or SN candidates.

One may use the actual values of the differences in AICc and the LLOOCV

in clustering, instead of the differences of their signs. One idea is to use a logistic

regression to derive a value between 0 and 1 for AGN or SN likeness based on the

differential statistic in question. This value can then be included in the clustering

or random forest to decide the final classification. This will also eliminate the

large variance in differential statistics that may otherwise confound the clustering

or decision process.

The use of time-series in multiple bands increases the reliability of my classifi-

cations. I then define two quality measures Ci and Di, which are filter-wise averages

of the final clustering classification parameters, in which space the SV and BL can

be separated. I find that my method results in 183 verification set AGN being clas-

sified with 95.00% purity and 57.92% completeness, and 130 verification set SNe
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classified with 90.97% purity and 93.89% completeness. I use my method to classify

all the extragalactic difference-detection alerts into 2262 SV, 1529 BL, and 570 NM

best-fit sources. I then construct a robust photometrically selected sample of 812

SNe and 1233 AGN, using a combination of light-curve class and host galaxy offset.

The variability selected population of AGN and SNe, are used to construct

relevant photometric priors, to detect them in future surveys. In particular I showed

that the i-band difference-imaging magnitude and the i-band host magnitudes can

be used to construct a probabilistic prior in the ihost-(imin − ihost) space, as shown

in Fig. 2.18. It is expected that AGN host galaxy colors, would be contaminated by

the AGN itself, as seen for u− g, g− r in Fig. 2.19). This results in host color being

an unreliable prior for separating AGN and SNe. SNe host galaxies show a bimodal

distribution in u− g, g − r space (Fig. 2.20). This is consistent with a dichotomous

population, as expected from thermonuclear, or Type-Ia, SNe dominating to the

rate in redder galaxies, and core-collapse, or Type-II SNe dominating the rate in

blue galaxies. A spectral study of these populations should confirm this.

Following [17], I parameterized the r-band lightcurves of variability-selected

spectroscopically-verified AGN from [56], using an OU process. The damping timescales

τ derived from Bayesian estimation of the OU process, is then corrected for redshift

effects, assuming a Keplerian scaling for the damping timescales in the respective

accretion disks. The expected correlation of τ with the central black hole masses

is then derived as log τ = −5.43 ± 0.17 + (0.906 ± 0.09) logMBH . Similarly, it is

also expected that the black hole mass scales with the overall host stellar mass,

and consequently the host galaxy i-band magnitude, since the i-band has the high-
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est signal-to-noise amongst the Pan-STARRS1 bands, that suffers least AGN flux

contamination. Preliminary studies on the spectroscopic AGN host sample, shows

that the mass of the central SMBH scales with the absolute i-band magnitude Mi

as logMBH = 2.45±0.004− (0.25±0.0005)Mi, as shown in Fig. 2.22. Consequently

the variability timescale can also be expressed as a function of the host galaxy i-

band magnitude, Mi, as log τ = −1.13 ± 0.01 − (0.15 ± 0.0006)Mi (Fig. 2.23). My

future work will consist of obtaining photometric redshifts for the entire variability

selected AGN population [1], and exploring further correlations between black hole

mass, host galaxy mass, AGN luminosity, and variability timescale.

Overall, I demonstrated that my method can be used to separate SV from BL

using the self-contained data (multi-epoch difference imaging and deep stacks) avail-

able in multi-band time domain surveys, such as PS1 and LSST. However, one could

go further and use other parameters in conjunction with my time-series method, to-

gether with host galaxy offsets, colors, and morphology, and external information

from multi-wavelength catalog associations, in a larger, comprehensive hierarchical

classification scheme to improve classification accuracy, characterize known sub-

classes of sources, as well as discover new classes of sources. In addition to the

classification of variables and transients into broad general classes and particular

sub-classes via the use of exact models, ensemble studies of their general properties

can be readily performed; for example, the general properties of the host galaxies

of AGN and SNe; the rates and properties of SNe and their subclasses; the vari-

ability timescales and amplitudes of AGN and their subclasses, and subsequently,

the estimation of the black hole mass function; are some of the questions that can
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be readily answered using the model-fit parameter distributions for the respective

classes. In the era of wide-field synoptic surveys generating millions of transient

alerts per night, such self-contained photometric identification, classification, and

characterization of transients based on light-curve characteristics and host galaxy

properties will be essential.
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Chapter 3: Genetic Algorithm Optimized Support Vector Machines

3.1 Overview

The future of astronomy will rely heavily on machine-based classification to

identify sources in data-driven surveys. As better quality data becomes available

from telescopic surveys such as LSST, human intervention for all but the most com-

plex tasks will be impossible. One ubiquitous problem in large surveys, is the seg-

regation of stars and galaxies for purposes of study and sub-classification. Previous

attempts to solve this problem [4] based on intuitively chosen parameters that may

include colors, multi-band magnitudes, and PSF or Kron fitting parameters obtained

from survey data, have resulted in sub-par classification schemes which tend to be-

come worse at magnitudes fainter than iband ≈ 23mag. Methods used to perform

star-galaxy classification have included Bayesian methods [4], Random forests [61],

and Support Vector Machines [62]. However, each of these methods have suffered

set-backs. Bayesian schemes, or naive hierarchical Bayesian networks [63] can be

used to classify based on distinct independent parameters in a tree-like scheme.

However, this is an over-simplification of the problem since input parameters such

as magnitudes and colors are rarely uncorrelated, leading to the schemes returning

very poor purity or completeness, i.e., either < 80%. Random Forests have been
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used with great success to perform astrophysical source classification. However, an

inherent problem of the method is that it accounts only for two-parameter covari-

ances at most, and does not account for multi-parameter covariances. For example,

while one may infer the effect that the presence or absence of a particular parameter,

may have on the classification efficiency, it may be impossible to infer the effect that

a particular subset of parameters has, or doesn’t have. This, therefore, amounts to

saying that the random forest may converge to a local optimum, but perhaps hard

to argue that it does to a global one.

Support Vector Machines [28] have been used with great success in star-galaxy

classification, amongst their use in all types of astrophysical classification problems .

However, one major drawback has been that the available parameters have all been

used in conjunction without differentiation, or exploration of lower dimensional sub-

spaces. In addition, it is assumed that the parameters that are available, are usable

without suitable transformations in order to perform the classification, when in fact

there may be dependencies that may utilize a transformed version of the parameter,

or even both the parameter and its transformed version.

In this context, a genetic algorithm optimized support vector machines (GASVM)

algorithm is one of the most powerful methods available. Genetic algorithms, as the

name suggests, are algorithms which permit an iterative solution to problems, based

on reward or fitness functions that evolve across generations of the solution set. The

GA-SVM is a GA that uses the fitnesses derived from a SVM classification scheme,

to successively iterate on a subset of parameters, in order to eventually derive the

fittest parameter subset.
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Using the GA-SVM method, I show that my classification sceme when applied

to the Pan-STARRS1 medium-deep survey photometry [1] for stars and galaxies

marked using the HST ACS [23], converges upon a star-galaxy classification with

over 96% efficiency, which is the highest efficiency for any current star-galaxy clas-

sifier, for any large survey catalog. In addition, my method is computationally

efficient, and does not suffer from any of the aforementoned deficiences inherent in

other methods.

Another important problem in astronomy is the determination of photometric

redshifts of galaxies using photometric measurements and colors alone. Traditional

methods have relied on inferring galactic SEDs from multi-band observations, and

suitably shifting the observed SEDs to match the inferred rest-frame galactic SEDs

in order to derive the photometric redshifts [38,39]. In addition to the complexities

of choosing an ideal galactic SED, there may be corrections that need to be applied

to the observed SED due to emission and absorption features that may intervene,

further complicating the SED selection process. Also, SED fitting must be performed

for each source after SED, emission, and absorption models are selected, which is

computationally hard.

A machine learning solution to this problem, known as an Atomistic Method

[22], has attempted to derive photometric redshifts for galaxies in SDSS-DR10. The

Atomistic method is a statistical machine learning tool that is used to derive an

analytical expression for the redshift as a function of the photometric parameters,

and predicts photmetric redshift with less than 1% error. However, the ranges of

redshift predicted are restricted to between 0 < z < 0.7, demonstrating systematic
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errors for z > 0.7 [22]. I show that, using the GA-SVM to regress the spectroscopic

redshifts derived from [64] on subsets of 975 parameters derived from 25 bands of

COSMOS photometry [39], I select only the most relevant photometric parameters

and their transformations, to determine the redshift up to z ≈ 1.5 to within 2.3%

accuracy.

Before I proceed with describing my results for star galaxy classification and

photometric regression, I provide a mathematical description of the SVM in §3.2,

and the GA in §3.3. In §3.4, I discuss the transformations that need to be performed

on the dataset to accurately capture the parameteric dependencies; in §3.5, I discuss

my star-galaxy classification scheme, and in §3.6 I discuss the results from applying

the GA-SVM to photometric redshift regression.

3.2 Support Vector Machines

Support vector machines (SVM) is a machine learning algorithm that con-

structs a maximum margin hyperplane to separate linearly separable patterns. The

term “machines” is coined for a system that learns from a training set of data. The

term “support vector” is from the representation of the solution to the quadratic

optimization problem discussed below.

SVM is especially relevant in higher dimensional parameter spaces, where sep-

arating two classes of objects using a hyperplane is a computationally tedious prob-

lem, with best case complexity Onparametersn
2
samples, which it is for the SVM. Note,

that the algorithm can also be applied to data that is not linearly separable using a
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so called “kernel transformation”, which maps the input parameter space to a higher

dimensional so-called ’feature space’, where the data becomes linearly separable.

The advantages of using an SVM are that there are established guarantees of

their performance which has been well documented in literature [28]. In addition

SVM desirably scales linearly with the number of dimensions of the parameter space.

Also, the final classification plane is not affected by local minima in the classification

or regression statistic, which other methods based on least squares, or maximum

likelihood may not guarantee.

Figure 3.1: Maximum margin hyperplane.

Support vector Machines: The construction of a maximum margin hyperplane separates the two

classes. The sample vectors which lie on the boundary of the margin are called support vectors.

In Fig. 3.1 the maximum margin hyperplane is defined by w.x− b = 0 where

w represents the vector normal to the plane, with a distance b
||w||

from the origin. A

further margin can be imposed on the samples xi and xj to be separated.
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w.xi − b ≥ 1 (3.1)

w.xj − b ≤ 1 (3.2)

If yk represents the actual classification for all samples, then this criterion can

be rewritten as

yk(w.xk − b) ≥ 1 (3.3)

It is important to note that the distance between the planes in Eq.3.1 is 2
||w||

and hence, the goal is to minimize ||w|| so as to maximize the margin between the

classes. Since minimizing ||w|| involves repeated computations of its square root,

it is instructive to solve a related problem which can be solved using quadratic

programming algorithms [65], and which will yield the same solution, i.e.,

min
(w,b)

||w|| = min
(w,b)

1

2
||w||2 (3.4)

However, since the constraints in Eq.3.3 need to be satisfied in addition, the

final form of the function to be optimized is

min
(w,b)

1

2
||w||2 −

n
∑

i=1

αi [yk(w.xk − b)− 1] (3.5)

The solution to this problem will yield the final values of b and w in terms of

a subset of the original vectors known as support vectors
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w =

Nsupport
∑

i

αiyixi (3.6)

where i is the index of support vector i, of which there are Nsupport.

While support vector machines, used independently, can determine optimal

solutions to a given problem in a N dimensional parameter space, there are inher-

ent issues of over-fitting, by its use of too many support vectors, i.e., essentially it

creates a model that fits all the points by effectively using each point as a support

vector. To avoid this, it is essential to restrict the size of the search space to a mini-

mal subset and search within the subspaces for suitable solutions to the regression or

classification problem at hand. However, the SVM cannot perform subspace based

searches by itself, and needs an external driving algorithm to perform an efficient

subspace search. This is where the genetic algorithm fits into the global optimiza-

tion problem. By creating sub-parameter spaces from the N dimensional parameter

space, and using the SVM to search for optimal solutions, the GA samples the poste-

rior distribution of the N dimensional parameter space, using at most k parameters

at any given time. The d parameters chosen from this posterior distribution are

finally used to create a classification or regression model that is robust, and with

dimensionality d << N , thereby avoiding overfitting the data. I discuss the GA in

the next section.
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3.3 The Genetic Algorithm

Genetic algorithms (GA) apply the basic premise of genetics to the evolution

of a solution set of a problem, until it reaches optimality. That is, it evolves the

solution set of parameters through several generations, according to some pre-defined

evolutionary reward function. This reward function may be a goodness of fit, or a

function thereof that may take into account more than just the goodness of fit. For

example, one may choose to optimize χ2, AICc, LOOCV, energy function, entropy,

and so on. Its ubiquitousness, and simplicity of application, have made the GA

and its family highly sought, in solving some of the hardest multi-parameter global

optimization problems [66].

For both, the star-galaxy classification, as well as the photometric redshift re-

gression, I use the SVM to return reward or fitness functions that are representative

of the purity and the goodness-of-fit respectively of parameter subsets. Therefore,

it is these reward functions that the GA is trying to optimize over successive gen-

erations of parameter chains. The GA itself can be described by the following

algorithm:

(a) Create S subsets of parameters from a superset of N parameters and call this

a generation. Each subset is called an organism (in literature, the organism

may also be referred to as genotype or genome), and each parameter within

an organism is referred to as a gene. Each organism can be of length between

1 and L << N , and the genes themselves are initially drawn randomly from a
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gene pool which is of size N . The genes within the organisms are mutated to

any other type, with a preset probability of Pmutate, at the time of creation.

(b) The organism fitnesses are evaluated using a reward function that depends on

the SVM output:

– For the star-galaxy classification problem, a known set of stars and galax-

ies are attempted to be classified. The resulting classification purity given

by 1 − fractionmisclassified which is returned by the SVM, and is used as

the reward or fitness function for the organism.

– For the photometric redshift problem, galaxies with known spectroscopic

redshifts zspec,i are used as training sets to determine their photometric

redshifts zphot,i. The reward function used is given by

1
∑

i ((zphot,i − zspec,i)/zphot,i)
2 (3.7)

(c) Once the fitnesses of all the organisms within a generation have been deter-

mined, a new generation which is of equal size as the parent generation is

created by roulette selection, based on the fitnesses of the parents.

(d) The genetic algorithm stops when the number of generations exceeds a pre-

determined limit. Usually this limit is determined based on convergence cri-

teria that may depend on the posterior parameter histogram, requiring that

the minimum number of samples per bin (or parameter) be greater than a

pre-determined limit. For my simulations, I ensured that there were at least
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10 samples in the least populated bin at the time when the simulations were

terminated. I then computed the mean µ standard deviation σ of the param-

eter histogram, and used parameters which had frequencies > µ + σ. This

corresponds to a t-statistic CDF value of 1.0 for large samples, assuming a

uniform distribution over all parameters.

3.4 Transformations on the data

When I talk of transformations on the data for machine learning, it is primarily

to ensure three things:

� All parameters should be well conditioned, i.e., they must be normalized be-

tween −1 and 1. This is important, since the ranges of the parameters may

affect the error norms in the SVM, when a non-linear SVM kernel is used.

Non-linear kernels are used when the data is not linearly separable, or when

non-linear regression is required.

� The values of the parameters must not be clustered around any particular

value. This ensures that the dependence on the parameter in question is

captured well.

� To capture a non-linear dependence on the parameters, the data can be suit-

ably transformed using a function x → f(x) and then normalized to between

−1 and 1. Sometimes, the parameteric dependence can extend to multiple

transformations of a parameter or set of parameters, in which case it is re-

quired to include all the transformations. The GA-SVM will pick out the
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parameters, and their transformations, that most strongly comply with the

requirements of the classification or regression at hand.

Failing to include transformations on the data, is akin to losing information on

the importance of a variable, on an order of magnitude level. For example, certain

variables may show an exponential dependence on a variable thereby being more

important than others, which may only show a linear, or logarithmic dependence.

For my simulations, I use the code plainlogexp.cpp to automatically transform

the parameters provided in an input file, linearly, logarithmically, and exponentially,

and normalize them to lie between −1 and 1. With minor modifications it is also

possible to include more functional transformations, if desired. The output file

generated by plainlogexp.cpp contains all the transformations of all the parameters,

and is then used as input to the GA-SVM program.

3.5 Star-Galaxy Classification

Star-Galaxy classification is of utmost importance in large surveys, where it

is necessary to pick out extragalactic sources from the stellar contaminants, or the

other way around. Several photometric and shape based parameters can be used

to separate stars and galaxies. For example, stars are intrinsically brighter than

galaxies due to their proximity. Also, they appear as point sources where galaxies

appear extended. Therefore, the quality of PSF fits [1] to their two dimensional

brightness profiles, or parameters of Kron fits to the same, can be assessed. For

example, Fig. 3.2 shows how stars and galaxies in the Pan-STARRS1 medium-deep
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catalog can be separated in magnitude vs spread model, a shape representative

SExtractor parameter, in the i-band.
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Figure 3.2: Star-galaxy separation spread model vs i-band magnitude

spread model vs i-band magnitude for stars and galaxies in the Pan-STARRS1 medium deep

reference catalog.

We base the star-galaxy study in this chapter, on the custom multi-band cat-

alog [1] for the medium-deep field, MD04. This catalog is built from the PS1 bands,

and from CFHT u band imaging obtained by the PS1 consortium. Images are re-

sampled to the same pixel resolution and grid, and then PSF-matched to the image

with the worst seeing. A χ2 image [67] is built from the 6 bands. The photometry

is then performed with SExtractor [47] in dual mode: the χ2 image is the detection

image, and the flux is measured on the PSF-matched images. The resulting catalog

is complete down to i ∼ 24.5.

The SExtractor parameter spread model is also derived in each band from
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the resampled, non-PSF matched images. spread model is a linear discriminant

between the best fitting local PSF model and a slightly fuzzier version made from

the same PSF model, convolved with a circular exponential model with scale length

given by FWHM/16 (FWHM being the Full-Width at Half- Maximum of the local

PSF model). The spread model is normalized to allow for comparison of sources

with different PSFs throughout the field. For more details please refer to [68]. By

construction, spread model is close to zero for point sources (most likely to be

stars), positive for extended sources (most likely to be galaxies) and negative for

detections smaller than the PSF, such as cosmic ray hits.

We build a training sample using the star/separation from [23], which is based

on ACS data obtained as part of the COSMOS survey [23,69]. This star/separation

is obtained from unrotated ACS/WFC data, which has been specially reduced for

lensing purposes. The star-galaxy classification is done as part of the requirement for

lensing analysis in [23], to mask out diffraction spikes that result from their imaging.

[23] used the SExtractor parameter MU MAX (the peak surface brightness above

the background level). This is motivated by the fact that the light distribution of

a point source scales with magnitude. Point sources therefore occupy a well-defined

locus in the MU MAX −MAG AUTO plane. The classifications are accurate to

within 2% down to a magnitude of i ≈ 25. My training sample contains 63000

galaxies and 7900 stars.

The input parameters constructed from the bands described above, and shown

in Table.3.1, are transformed linearly, logarithmically, and exponentially using the

code plainlogexp.cpp. The following command is then executed to begin training
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the GA-SVM classifier.

./GASVMuniversal --STARTING 0 --ENDING 20000 --FILENAME ./DES/STARGAL

--NGEN 30 --NORG 30 --MINGENE 3 --MAXGENE 30 --MUTATION 0.1 --RBF 2

--WEIGHT 9 --STCOL 2 --ENCOL 95 --SVMPATH ../svm_light --WRITEPATH ./DES

--DEBUGMODE 1 --NCORES 30 --INTERPOLATE 0

The above command implies that the GA should be run over 30 generations,

with 30 organisms per generation, with a minimum organism length of 3, a maxi-

mum organism length of 30, a gene mutation probability of 0.1, an SVM RBF kernel

(option 2 in svm light), a WEIGHT of 9 since the ratio of galaxies to stars is 9, with

columns beginning from 2 till 95, using 30 cores, and in classifier mode (INTERPO-

LATE=0). The starting and ending rows in the input file are also specified using

STARTING and ENDING. The run time of the GA is typically about ≈ 30minutes

for this simulation, over 30 cores on any YORP node.

The GA-SVM is run until each parameter is sampled at least 10 times in the

posterior. Fig. 3.3 shows a posterior distribution of parameters. The mean µ and the

standard deviation σ of the posterior are then determined, and parameters which

are sampled more than µ + σ times are chosen. Table.3.2 shows the parameters

chosen by GA-SVM classifier, and which transformed variant of the parameters was

chosen.

The performance of the star-galaxy classifier can be described in terms of

completeness and purity. The completeness is defined to be the overall fraction of

galaxies and stars which are correctly classified, while the purity is the fraction of
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Figure 3.3: Posterior for star-galaxy separation

The GA-SVM samples the posterior parameter distribution for star-galaxy classification, and re-

turns the histogram of input parameter counts. The final parameters are chosen at a 1-σ signifi-

cance level.
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Figure 3.4: Star-galaxy separation purity

Overall, the fraction of galaxies and stars correctly classified is 98.7% and 87% respectively. The

is a tremendous improvement over the corresponding numbers in [23], which are 90.9% and 64.3%

respectively. At the faint end i > 23 the galaxies are classified with nearly 100% correctness, but

about 80% of the stars are misclassified.
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Figure 3.5: Star-galaxy separation completeness

Completenes of star-galaxy classification. Both the completeness and purity of galaxies remain

high, even at i > 23, however, stars tend to be misclassified.
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Table 3.1: Input parameters to the GA for star-galaxy classification

Parameters Type

u,g,r,i,z,y Magnitudes

ellipticity, spread model u, spread model g, spread model r,

spread model i, spread model z, spread model y

chigal star, chi gal qso, chi qso star

Shape

u-g,u-r,u-i,u-z,u-y,g-r,g-i,g-z,g-y,r-i,r-z,r-y,i-z,i-y,z-y Colors

zphot Photometric redshift

real galaxies and stars in the samples classified as galaxies and stars respectively.

The completeness and purity for star-galaxy classification are shown in Figs.3.4,3.5.

While the bright end is dominated in numbers by stars, hence biasing the SVM

classifier toward stars at this end, the completess and purity of galaxies are seen to

be nearly a 100% througout, including the faint end, i > 23. Stars tend to be well

classified down to i ≈ 22, beyond which galactic contamination is significant. How-

ever, more importantly, the overall fraction of training set stars that contaminate

galaxies is only 1.4%, and this number is likely to be smaller at the faint end which

will be dominated by galaxies. Compared to results in [23] where the star galaxy

classifications yielded a purity of 90.9% for galaxies, 64.3% for stars, the GA-SVM

classifier shows an improvement of 7.8% for galaxies, and 22.7% for stars. In addi-

tion, the GA-SVM also shows a reduction in the contamination of stars in galaxies
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Table 3.2: GA-SVM classifier output for star-galaxy separation

Parameter Type

u linear

r log, linear

spread model g exp

spread model r log, linear

spread model i exp

u-g linear

u-z linear

u-y linear

g-y log

r-y exp

i-y linear

z-y exp

zphot linear

by 1%.

[68] describe a combined principal component analysis - neural network based

formulation for star-galaxy separation. While their results (Fig.9 of [68]) show that

they retain a purity of 97% for galaxies at 96% completeness, the completeness of

their stellar sample is highly compromised at 25%. Also the range over which they

display this high purity is limited to between i ≈ 19 − 22.5, while I show nearly

100% purity and completeness for stars and galaxies within the ranges i ≈ 18− 23.

My results are also significantly better as compared to the best decision tree based
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classifiers, which have an overall purities and completenesses on the order of ≈ 85%

[61].

Overall, I show that the GA-SVM combined with pre-transformations on the

data, yields a quick, robust solution to the problem of star-galaxy classification.

There are no assumptions made on the data nor on the parameters. Further, noisy

parameters can be included as part of the GA-SVM training, which will automati-

cally be weeded out by the GA in successive generations, or may not show signifi-

cance in the posterior. The subset of parameters derived a posteriori, can be used to

understand why certain parameters are more important than others in determining

the distinction between stars and galaxies. Of course, it is possible that false cor-

relation may also be derived where such a correlation exists, however, the posterior

parameter space is sufficiently small in a large fraction of my simulations, that I can

rule them out via parameter-by-parameter analysis.

3.6 Photometric Redshift Regression

Having successfully applied the GA-SVM to classification, I chose to solve the

problem of regressing photometric redshifts of distant galaxies, via application of the

GA optimized SVM. While there have been several attempts to derive photometric

redshift efficiently, including SED fitting methods [39] and machine learning methods

[22], I show that the GA-SVM regression can be the most effective tool to estimate

photometric redshifts in future surveys.

For proof of concept, I choose to regress the redshifts of 5000 galaxies in the
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COSMOS survey. The COSMOS survey photometry utilizes 25 bands across various

telescopes including Subaru (4200−9000Å), CFHT (3900−21500Å), UKIRT(12500Å),

Spitzer (3.6−8µm), and GALEX (1500−2300Å) telescopes. The details of the pho-

tometry are available in [39, 70]. The UV data is taken from the CFHT down to

a depth of 26.5 mag, covering the entire COSMOS field. The u band images are

also used as priors in the measurement of FUV (1500Å) and NUV (2300Å) fluxes in

order to ensure a proper deblending of sources in the GALEX images [71]. GALEX

fluxes are then extracted using the EM-algorithm [72] down to a depth of 26 mag-

nitudes. Optical images are obtained from the Subaru 8.2m telescope using the

Suprime-Cam instrument. The observations are complete in 20 bands: six broad-

bands (BJ , VJ , g+, r+, i+, z+), 12 medium bands (IA427, IA464, IA484, IA505,,

IA527, IA574, IA624, IA679, IA709, IA738, IA767, IA827), and two narrowbands

(NB711, NB816). The deep J and K band data in the NIR, are obtained using

the WFCAM and WIRCAM wide-field infrared cameras on UKIRT and CFHT, re-

spectively [70], down to magnitudes of 23.7 for a 5σ detection in either band. The

Mid-IR data is obtained from IRAC [73] in four bands: 3.6µm, 4.5µm, 5.6µm, and

8.0µm using sources detected in the 3.6µm image. Fluxes are measured in the four

IRAC bands using the dual mode configuration of SExtractor. The IRAC catalog

is 50% complete at 23.9mag at 3.6µm.

The spectroscopic redshifts were observed with the Very Large Telescope

(VLT) Visible Multi-Object Spectrograph (VIMOS) spectrograph [64], and the

Keck Deep Extragalactic Imaging Multi-Object Spectograph (DEIMOS) spectro-

graph [74]. These two spectroscopic samples have very different selection criteria
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and cover different ranges of redshift and color space. The zCOSMOS survey has two

components: zCOSMOS-bright with a sample of 20000 galaxies selected at i < 22.5

and zCOSMOS-faint with approximately 10000 galaxies color-selected to lie in the

redshift range 1.5 < z < 3. zCOSMOS-bright galaxies were observed using the

red grism of VIMOS covering between wavelengths of 5500Å < λ < 9000Å. The

faint sample was observed using the blue grism of VIMOS between wavelengths of

3600Å < λ < 6800Å at a resolution of 200. The DEIMOS spectra cover a wave-

length range 4000Å < λ < 9000Å at a resolution of 600. This sample of 24µm

selected galaxies contains 317 secure spectral with an average redshift of z ≈ 0.74

and apparent magnitude in the range 18 < i+ < 25. For more details, please refer

to [39].

In addition to all the COSMOS bands detailed, I construct the colors pairwise

and thereby, the input to the GA. The entire parameter set is listed in Table.3.3. The

parameters are transformed linearly, logarithmically, and exponentially to capture

the dependence of the photometric redshift with these variants of the parameters.

In addition, I also choose to regress the logarithm of the spectroscopic redshift

log10 zsp instead of zsp to improve the sensitivity of the SVM at small zsp. Without

the logarithmic transformation, the SVM is less sensitive to errors at zsp ≈ 0 and

thereby, leads to large fractional errors at low redshift. Using 5000 galaxies with

redshift estimates which are secure to within 99.5%, the GA-SVM regression is then

called with the following command and options:

./GASVMuniversal --STARTING 0 --ENDING 5096 --FILENAME ./COSMOSNARROW/CN

97



--NGEN 30 --NORG 30 --MINGENE 3 --MAXGENE 30 --MUTATION 0.1 --RBF 2

--WEIGHT 1 --STCOL 2 --ENCOL 982 --SVMPATH ../svm_light --WRITEPATH

./COSMOSNARROW --DEBUGMODE 1 --NCORES 30 --INTERPOLATE 1

The above implies that the GA should be run over 30 generations, with 30 or-

ganisms per generation, with a minimum organism length of 3, a maximum organism

length of 30, a gene mutation probability of 0.1, an SVM RBF kernel (option 2 in

svm light), a WEIGHT of 1 (this option is a dummy here), with columns beginning

from 2 till 982, using 30 cores, and in interpolation mode (INTERPOLATE=1).

The run time of the GA is typically 1 hour for this simulation, run over 30 cores on

any YORP node.

The GA-SVM regression chooses the parameters described in Table.3.5. One

may infer that SVM regression is almost akin to SED fitting, where instead a piece-

wise regression is done from between points sampled on the SED, and the sum of

the regressands is taken here. Here, colors involving the u-band, and the u-band

itself play an important role in photometric redshift determination. I believe this

to be the result of the u-band emission being stronger in stars than in galaxies,

on average, as seen in Fig. 3.6. The galaxies are strongly peaked at higher mag-

nitudes u∼25, while stars show only a gradual increase in numbers toward higher

magnitudes. Also, since the u-band is also repeated in several color combinations,

it is possible that some of these are redundant. However, it is not straightforward

to eliminate the redundant bands, since the functional dependence is complicated

due to the use of the RBF kernel, which is used to perform SVM regression in a
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transformed space. However, elimination of any of these colors, in turn, leads to

poorer photometric redshift estimates.
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Figure 3.6: u-band magnitudes for stars and galaxies.

u-band magnitudes for stars and galaxies. While galaxies are strongly peaked at u ∼ 25, stars are

brighter on average, and only show a shallow increase in number at higher magnitudes. The GA

chooses the u-band and colors involving the u-band for photometric redshift estimation.

The photometric redshift prediction itself is shown in Fig. 3.7. The dashed

lines are plotted at δz/(1+z) = 0.15 from the zph = zsp line. I define two parameters:

1. the standard deviation σ defined as

σ = σ

( |zph − zsp|
1 + zsp

)

(3.8)

and 2. the fraction of catastrophic outliers which lie outside the region bounded by

b(z) = zsp ± 0.15(1 + zsp) (3.9)

Eqs.3.8,3.9 are standards used in literature, to compare photometric redshift
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prediction efficiency. Compared to the SED fitting method from [39], where the

standard deviation σ, and the fraction of outliers were both at 0.7%, the GA-SVM

performs slightly worse at σ = 2.3%, but with only 0.02% outliers (Fig. 3.7). My

method is therefore, more consistent for the smaller number of catastrophic failures.

We know these numbers are consistent and robust, since a 10-fold cross-validation is

performed as part of the SVM training. In addition, my method is much faster, and

less restrictive than in [39] for the reasons that, a. there is no necessity to calibrate

the zero-points of the filters ahead of time, b. there are no assumptions to be made

on the galactic SED templates, and c. there is no necessity to account for emission

or extinction features in the SED.

A method similar to ours is attempted in [22] where atomistic simulations are

used to arrive at an analytical expression for the photometric redshift based on the

g,r, and the i bands. However, they suffer from the limitation of only being able to

predict redshifts out to zsp ≤ 0.7 citing systematic effects for redshifts zsp > 0.7. My

method shows no such limitation, and I predict redshifts down to zsp ≈ 1.5 within

the allowable error bounds b(z) for catastrophic failures.

Fig. 3.8 shows the bias in the photometric redshift zspec − zphot. While there

is a net positive bias that results from the systematics from the inclusion of points

with z > 0.7, the overall bias is constrained to zspec − zphot < 0.04 for z < 1.4. The

large bias at high z is unavoidable, due to noisy photometry. This is also seen in

the standard deviation of the redshift error Eq.3.8 shown in Fig. 3.9. σ(z) is well

bounded up to z ≈ 1.3.

What this shows is that, using the parameters and their transformations de-
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fined in Table.3.5, I can use the SVM to compute the photometric redshift with high

accuracy. Once the SVM model has been trained for a particular set of objects with

spectroscopic redshifts and these relevant parameters, it can instantaneously com-

pute the photometric redshifts. This method is therefore, as ubiquitously applicable

as the SED fitting method, while requiring no additional computational time apart

from the initial parametric transformations.
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Figure 3.7: Photometric redshift zph vs spectroscopic redshift zsp

The Photometric redshift zph as a function of spectroscopic redshift zsp. The overall standard

error is σ = 0.023. The fraction of catastrophic errors is 0.02%.

3.7 Conclusions

In this chapter, I proved the utility of the GA-SVM algorithm in classifica-

tion and regression problems in astronomy. In particular, I showed that star-galaxy
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Figure 3.8: Bias in photometric redshift zspec − zphot

Bias in the photometric redshift zspec − zphot. The net positive bias results from the use of the

RBF kernel, resulting in the concave slight curvature toward the zspec = zphot line.
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Figure 3.9: Standard deviation in photometric redshift σ(zph)

Standard deviation of the error σzp as a function of the photometric redshift zph. σzp ≈ 0.02

for z < 1 and increases as expected with zph due to increasingly unreliable photometry at fainter

magnitudes.
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classification and photometric redshift regression can be significantly improved by

using a GA to explore their photometric parameter spaces, and determine the pa-

rameters relevant for the task at hand. For star-galaxy classification, using the

Pan-STARRS1 medium-deep photometric catalog [1], and classifications from the

COSMOS ACS [23], I showed that my method yields an overall 96.5% classifica-

tion efficiency where other classifiers offer only ≈ 85% [23, 61]. My method is also

computationally efficient, since once the SVM model has been created, apart from

pre-defined transformations on the parameters, almost instantaneously yields the

classification.

GA-SVM regression was applied to determining photometric redshifts for 5000

galaxies in the COSMOS survey [39]. The 25 photometric parameters are used in

conjunction with their derived colors to yield 325 parameters, which the photometric

redshift is then regressed upon. My method yields photometric redshifts with up to

2.3% accuracy for 0 ≤ z ≤ 1.3, and can be used for higher redshifts z ≤ 1.5, but

with error margins ≈ 10%. While the accuracy is not as high as for SED fitting, my

method has less outliers, and boasts of making no assumptions about host galaxy

morphology, extinction, emission lines, nor of calibrations required to be done in the

various observational bands. The computational time, is again insignificant, once

the SVM model has been constructed.

Our approach differs from what has been the norm thus far, which has been

to choose parameters based on intuitive or logical arguments, and then proceed for-

ward with a regressive approach. I find that, when enough robust data is available,

a top-down or data-driven approach can be adopted in addition to a bottom-up fun-
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damentals based approach. This way, all the available data can be utilized to build

a rudimentary model which may then be followed up with a bottom up approach

that rationalizes, or corrects the derived parametric correlations based on physical

arguments. This is especially relevant when the size of the parameter spaces in

question, are large enough that a piecewise subset based search becomes infeasible.
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Table 3.3: Input parameters to the GA-SVM for regression (Table 1 of 2)

Parameters

U,B, V,G,R, I, Z, J,K, I1, I2, NB816, IA427, IA464, IA505, IA574, IA709,

IA827, NB711, IA484, IA527, IA624, IA679, IA738, IA767

Individual

U −B,U − V,U −G,U −R,U − I, U − Z,U − J, U −K,U − I1, U − I2, U −NB816, U − IA427, U − IA464,

U − IA505, U − IA574, U − IA709, U − IA827, U −NB711, U − IA484, U − IA527, U − IA624, U − IA679,

U − IA738, U − IA767, B − V,B −G,B −R,B − I,B − Z,B − J,B −K,B − I1, B − I2, B −NB816, B − IA427,

B − IA464, B − IA505, B − IA574, B − IA709, B − IA827, B −NB711, B − IA484, B − IA527,

B − IA624, B − IA679, B − IA738, B − IA767, V −G,V −R, V − I, V − Z, V − J, V −K,V − I1, V − I2,

V −NB816, V − IA427, V − IA464, V − IA505, V − IA574, V − IA709, V − IA827, V −NB711,

V − IA484, V − IA527, V − IA624, V − IA679, V − IA738, V − IA767, G−R,G− I,G− Z,G− J,

G−K,G− I1, G− I2, G−NB816, G− IA427, G− IA464, G− IA505, G− IA574, G− IA709, G− IA827,

G−NB711, G− IA484, G− IA527, G− IA624, G− IA679, G− IA738, G− IA767, R− I,R− Z,R− J,R−K,

R− I1, R− I2, R−NB816, R− IA427, R− IA464, R− IA505, R− IA574, R− IA709, R− IA827, R−NB711,

R− IA484, R− IA527, R− IA624, R− IA679, R− IA738, R− IA767, I − Z, I − J, I −K, I − I1, I − I2,

I −NB816, I − IA427, I − IA464, I − IA505, I − IA574, I − IA709, I − IA827, I −NB711, I − IA484,

I − IA527, I − IA624, I − IA679, I − IA738, I − IA767, Z − J, Z −K,Z − I1, Z − I2, Z −NB816,

Z − IA427, Z − IA464, Z − IA505, Z − IA574, Z − IA709, Z − IA827, Z −NB711, Z − IA484, Z − IA527,

Z − IA624, Z − IA679, Z − IA738, Z − IA767, J −K,J − I1, J − I2, J −NB816, J − IA427,

J − IA464, J − IA505, J − IA574, J − IA709, J − IA827, J −NB711, J − IA484, J − IA527, J − IA624,

J − IA679, J − IA738, J − IA767,K − I1,K − I2,K −NB816,K − IA427,K − IA464,K − IA505,K − IA574,

K − IA709,K − IA827,K −NB711,K − IA484,K − IA527,K − IA624,K − IA679,K − IA738,K − IA767,

I1− I2, I1−NB816, I1− IA427, I1− IA464, I1− IA505, I1− IA574, I1− IA709, I1− IA827,

I1−NB711, I1− IA484, I1− IA527, I1− IA624, I1− IA679, I1− IA738, I1− IA767, I2−NB816,

I2− IA427, I2− IA464, I2− IA505, I2− IA574, I2− IA709, I2− IA827, I2−NB711, I2− IA484,

I2− IA527, I2− IA624, I2− IA679, I2− IA738, I2− IA767, NB816− IA427, NB816− IA464, NB816− IA505
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Table 3.4: Input parameters to the GA-SVM for regression (Table 2 of 2)

Parameters Type

NB816− IA574, NB816− IA709, NB816− IA827, NB816−NB711, NB816− IA484, NB816− IA527,

NB816− IA624, NB816− IA679, NB816− IA738, NB816− IA767, IA427− IA464, IA427− IA505,

IA427− IA574, IA427− IA709, IA427− IA827, IA427−NB711, IA427− IA484, IA427− IA527,

IA427− IA624, IA427− IA679, IA427− IA738, IA427− IA767, IA464− IA505, IA464− IA574,

IA464− IA709, IA464− IA827, IA464−NB711, IA464− IA484, IA464− IA527, IA464− IA624,

IA464− IA679, IA464− IA738, IA464− IA767, IA505− IA574, IA505− IA709, IA505− IA827,

IA505−NB711, IA505− IA484, IA505− IA527, IA505− IA624, IA505− IA679, IA505− IA738,

IA505− IA767, IA574− IA709, IA574− IA827, IA574−NB711, IA574− IA484, IA574− IA527,

IA574− IA624, IA574− IA679, IA574− IA738, IA574− IA767, IA709− IA827, IA709−NB711,

IA709− IA484, IA709− IA527, IA709− IA624, IA709− IA679, IA709− IA738, IA709− IA767,

IA827−NB711, IA827− IA484, IA827− IA527, IA827− IA624, IA827− IA679, IA827− IA738,

IA827− IA767, NB711− IA484, NB711− IA527, NB711− IA624, NB711− IA679, NB711− IA738,

NB711− IA767, IA484− IA527, IA484− IA624, IA484− IA679, IA484− IA738, IA484− IA767,

IA527− IA624, IA527− IA679, IA527− IA738, IA527− IA767, IA624− IA679, IA624− IA738,

IA624− IA767, IA679− IA738, IA679− IA767, IA738− IA767

Colors
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Table 3.5: GA-SVM photometric redshift parameters

Parameter type

U lin,log,exp

B lin,log,exp

V lin,log

G log

R exp

I log

Z log

J exp

I1 exp

IA427 log

IA464 exp

IA738 log

U J lin

U IA427 lin,log

U IA484 log

U IA738 log

U IA767 log

B V log

B IA624 lin

V I1 log

V IA527 exp

G Z exp

G NB816 exp

Parameter type

G IA738 log

R IA827 lin

I IA709 log

I IA738 exp

Z IA505 lin

Z IA484 log

J IA464 log

J IA709 lin

J NB711 log

K IA709 lin

K IA527 lin

I1 IA624 lin

I1 IA679 log

I1 IA767 exp

I2 IA427 exp

NB816 IA709 exp

NB816 IA827 lin

IA464 IA505 exp

IA464 IA767 exp

IA505 NB711 log,exp

IA505 IA767 exp

IA709 IA527 exp

IA709 IA624 log

IA827 IA527 exp
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Chapter 4: Summary

The conjoining of statistical methods to utilize all available astronomical in-

formation and data, is the main goal of this thesis work. While simple methods and

models are required as first order estimates for modeling data, over-simplification

of the problem at hand is not recommended, where mathematical and computa-

tional complexity can be accommodated. The Pan-STARRS1 medium-deep survey

is ripe with opportunities for statistical study, particularly of a time-series nature. In

chapter 2, I demonstrated that time-series data from the four Pan-STARRS1 bands

could be used in conjuction in a Bayesian-clustering based method, to robustly and

efficiently determine the classification of sources, or “alerts”, in the medium-deep

fields. While Bayesian time-series methods may be used to compare model appli-

cability one-to-one, in order to combine the decisions from multiple models in an

informative manner, it is essential to utilize clustering methods. It may also be

possible to utilize random forest [5] methods instead of clustering, however, random

forest decision trees are unnecessarily complicated in this scenario.

We also demonstrated the utility of support vector machines (SVM) in clas-

sification problems. SVM is a machine learning algorithm, where a hyperplane is

constructed in a parameter space of characteristic properties of the two classes, to
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segregate the classes. Using kernel transformations, it is possible to separate even

classes that are not linearly separable [28] in a given parameter space, but are, in

the transformed space. The SVM is ideal when the dimensionality of the param-

eter space is small, due to the computational time for training the SVM scales as

O(nparameters). However, when the size of the parameter space is large, it is possible

to break the parameter space down into subsets and search the spaces using genetic

algorithms.

Genetic algorithms break the parameter space into subset of parameters called

genomes, and assesses the fitnesses of a given initial set of parent genomes. The

parent genomes are then cross-bred using a roulette method that prioritizes them

according to their fitnesses. The algorithm also allows for mutation of the genes

within the genome with a probability p<∼ 0.1, to permit explorations of the param-

eter space more efficiently. I combined my genetic algorithm with a freely available

SVM classifier [27] to select parameters for efficient segregation of stars and galaxies.

I showed that my algorithm out-performed all existing star-galaxy classifiers, and

has an efficiency of 96.5% at 100% completeness.

The SVM can also be used for regression as described in Chapter 4. I take

up a hard problem in the form of photometric redshift (photo-z) determination

using COSMOS photometry [38, 39] in 25 bands, which are used individually and

in pairs to construct a 325 parameter set. I then perform GA-SVM regression to

determine an optimum subset of parameters that enables photo-z prediction with

2.3% overall error, and a catastrophic error rate of 0.02%, which is the lowest across

all existing methods. I show that my method is faster than existing SED fitting based
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methods, Bayesian formalisms, or SVM like methods [22] which are also limited in

redshift range. In addition, the GA-SVM method does not require any calibrations

to be made on the photometry, nor assumptions on extinction laws. or those of the

presence of emission lines.

4.0.1 Future Work

The Pan-STARRS1 @ UMD database that I have set up is a robust starting

point for future research. In particular, the structure of the database as described

in Appendix A can be replicated for other telescopic surveys, and connected with

previous ones. The congregation of properties at one place for any particular astro-

physical source, makes my database extremely useful. My database has also been

used for research by other groups outside of UMD that are part of the Pan-STARRS

consortium, via the creation of specialized interactive webpages.

The classification algorithm outlined in Chapter 2 can be further extended

to classify sub-classes of bursts or stochastic-variables via the inclusion of relevant

templates. For example, sub-classes can be decided using my classifier’s output as

one of the inputs, to either a random-forest classifier, or a hierarchical clustering

scheme, that includes other photometric parameters such as color, spectroscopy, or

host galaxy offset.

A robust classification method for multiple classes, that has not been discussed

in this thesis, but is a natural extension of work done in Chapters 2 and 3, is

the inclusion of all parameters relevant for classification, in a GA based clustering
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scheme. GA based clustering is an extremely powerful method that for a given set

of classes, and an input parameter space, will decide on parametric sub-spaces based

on the minimization of clustering distortion, as well as cluster membership, based

on verification sets. An untested version of the code is available on demand.

The GA based regression scheme explored in this work, is primarily based on

linear SVM regression, but with a capability to subsume non-linear behavior through

kernel transformations on the original parameter space. However, the GA may be

directly combined with any likelihood or fitness based method, to fit non-linear

models by optimizing the fitness function over their parameter sub-spaces. One

potential application of this would be fitting an AGN lightcurve using stochastic

processes that are parameterized by functions of the fundamental properties of the

black hole, or the accretion disk. The best-fit parameters may then be studied a

posteriori for potential correlations.

The GA based method is posterior based, and does require a knowledge of

prior correlations. The idea is that, in complex multi-dimensional problems where

it may not be possible to simplify correlations between dependent and independent

parameters to within two or three dimensions, the GA may offer insights as to which

directions may be fit for pursuit. In a time where data and computational power are

available aplenty, a data driven approach, in conjunction with fundamental physical

insights, may expedite solutions to difficult problems.
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Appendix A: Computational Resources - Utilization and Allocation

This purpose of this appendix is mainly to serve as a guide to facilitate future

research work, that will utilize the computational framework that we have set up.

Broadly, the computational framework can be broken down as shown in Fig. A.1

into four parts: The SQL database (Fig. A.2), consisting of the 230 SQL tables that

contain the Pan-STARRS1 data, cross-matches with other catalogs, and derived

properties. Further the SQL database has the facility to be automatically updated,

which though not relevant presently since the medium-deep survey is completed, is

useful in the context of future surveys, such as the LSST. There is also a system

of webpages established to visualize and share the SQL data. The webpages use

PHP to query the SQL database and display them on a HTML front end. Where

required, IDL/C++/Shell routines are called by the webpages to either run further

computations on the data, or to generate plots.

Fig. A.3 shows the distributed computing framework, which uses free nodes

(to be determined ahead of run) in the department network, to run batch serial

runs. The serial runs are setup using an executable file that is pre-compiled or can

be compiled at runtime, which is then batch generated for a list of inputs using a

shell script generate.sh. The file runmanager.cpp is then configured with the path
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to the input files and the list of nodes to be used, and their processor allocations.

The completed runs then can be aggregated as desired.

Fig. A.5 shows the classification algorithm framework described in chapter

2. For a given source in the medium deep field, the code photomanipMOD.cpp

performs the cross-validation in the four PS1 bands, and evaluates the AICc si-

multaneously, for all the models used. To perform this efficiently for ≈ 10000

sources in the medium-deep field for the 2010 and 2012 data sets, we utilize our

distributed computing framework. Following this, the shell scripting algorithms

in REDUCTIONALGORITHMS call the clustering classification algorithm and

evaluate the final source classifications.

Fig. A.4 is the schematic for using the genetic algorithm optimized support

vector machines (GA-SVM). The options to the GA-SVM are also shown in the

figure. The code has also been parallelized using OPENMP, and has been success-

fully tested for use over 30 cores on the YORP nodes. Prior to using the GA-SVM,

the code plainlogexp.cpp can be used to apply linear, logarithmic, and exponen-

tial transformations to the parameters in the input file, to enable regression and

classification using these variants of the data.
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Figure A.1: Computational resources.

Computational resources are organized into four main parts, described briefly in the flowcharts

that follow.
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Figure A.2: The SQL database.

The SQL database is extensive, and consists of 230 tables over two main databases PS1UMD and

MDREF. This is the general structure of the SQL database, the update routines, and the webpages

used to display the data. A separate manual will be written, explaining the SQL tables and their

usage.
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Figure A.3: Distributed computing.

The distributed computing code can utlize idle nodes on the department network. As an example

of practical application, I successfully completed over 40000 runs, that run a cross-validation for

4 time-series models over ≈ 40 data points each, with 10000 iterations per partition of the cross-

validation. The simulation used 400 cores and was completed within 5hrs using this code.
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Figure A.4: OPENMP parallelized GA-SVM.

The OPENMP parallelized GA-SVM classification and regression code, explained in Chapter 3.

The options are explained here. The training set objects are organized as rows. The various

columns are for the different parameters. It is possible to specify the starting and ending row

numbers of a given file, within which the data is extracted. The GA-SVM then determines the

columns relevant for classification or regression between the specified starting column and ending

columns.
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Figure A.5: The classification algorithm and ancillaries.

Our classification algorithm explained in Chapter 2 and ancillaries. The .cpp files are fully anno-

tated for modification. The classification algorithm works on a single source or event classification.

The code “generate.sh” is called to generate input files for single event classifications. The dis-

tributed computing code is then called to run the classifications based on theory described in

Chapter 2. Finally the data is combined and clustered using an algorithm available under “RE-

DUCTIONALGORITHMS”.
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M. C. Liu, H. J. McCracken, B. Mobasher, A. Renzini, M. Rich, E. Schinnerer,

P. L. Shopbell, Y. Taniguchi, D. J. Thompson, C. M. Urry, and J. P. Williams.

S-COSMOS: The Spitzer Legacy Survey of the Hubble Space Telescope ACS 2

deg2 COSMOS Field I: Survey Strategy and First Analysis. ApJS, 172:86–98,

September 2007.

[74] J. S. Kartaltepe, H. Ebeling, C. J. Ma, and D. Donovan. Probing the large-

scale structure around the most distant galaxy clusters from the massive cluster

survey. MNRAS, 389:1240–1248, September 2008.

135


	List of Tables
	List of Figures
	Scientific Motivation
	Statistical Methods and Machine Learning in Astronomy
	Glossary of Statistical Methods

	The Pan-STARRS1 Medium-Deep Survey
	Thesis Outline: Machine Learning in PS1-MDS and COSMOS

	Classification of Pan-STARRS1 Medium-Deep Transients
	Overview
	Pre-Processing the Alerts for Classification
	Time-Series Models
	Model Likelihood and Fitness Estimation
	Classification Method
	Tests On a Verification Set
	Final Classifications and Properties of Extragalactic Sources

	Photometric Priors: AGN, SNe, and Their Host Galaxies
	Variability Properties of AGN
	Conclusions and Future Work

	Genetic Algorithm Optimized Support Vector Machines
	Overview
	Support Vector Machines
	The Genetic Algorithm
	Transformations on the data
	Star-Galaxy Classification
	Photometric Redshift Regression
	Conclusions

	Summary
	Future Work

	Computational Resources - Utilization and Allocation
	Bibliography

