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instrument on the SOFIA airborne observatory to study 10 nearby star-forming regions, and
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our design and implementation results of the control and attitude estimation system for the

BETTII payload, which poses unique challenges as an interferometer on a balloon platform.
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Introduction

In order to improve the mind, we ought less to
learn, than to contemplate.

R. Descartes

The work presented in this thesis is centered around the design, development, and test-

ing of an astronomical balloon-borne telescope called BETTII: the Balloon Experimental Twin

Telescope for Infrared Interferometry. Developed at NASA Goddard Space Flight Center, this

instrument is exploring a relatively new observation technique called "Double-Fourier" inter-

ferometry, which could lead to future space-borne telescopes with high angular resolution in

the far-infrared regime. Various fields in astronomy would benefit from such enhanced capa-

bility, as demonstrated by the success of far-infrared single-aperture telescopes such as WISE,

Spitzer and Herschel .

More than just a pathfinder, BETTII is a scientific instrument in its own right. For its

first flights, it will study regions of clustered star formation in unprecedented details, providing

almost an order of magnitude better spatial resolution than any existing or past far-IR facility.

The following chapters describe aspects of my involvement with BETTII as well as my

contributions to the scientific field of clustered star formation using another far-IR facility,

the Stratospheric Observatory for Infrared Astronomy (SOFIA). The thesis is organized as

follows:

• Chapter I describes the framework and current understanding of how stars are forming
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in clusters, and lays out the tools that we use to study these regions at far infrared

wavelengths.

• Chapter II is a study of nearby star-forming clusters using new data that we obtained

with the SOFIA observatory. SOFIA offers moderately high angular resolution, which

we use to improve the study of the brightest, densest regions of star formation. This

work is to be submitted for publication shortly after the conclusion of this dissertation.

• Chapter III describes the physical principles of interferometry which drive the design

of the balloon instrument. We predict the sensitivity of the BETTII instrument and

identify scientific targets and calibrators that are suitable for our first flights.

• Chapter IV is a standalone, refereed paper that was published in 2015 on the spectral

sensitivity of double-Fourier interferometers in general. It proposes a mathematical

framework to analyze the sensitivity of such instruments to various types of noise sources.

We apply those findings to the case of BETTII.

• Chapter V discusses the design of the control system for BETTII, which presents unique

challenges compared to any other balloon-borne instrument. We also discuss the controls

algorithm that is used in flight to properly estimate the orientation of the payload, a

key requirement to achieve successful interferometry.

• Chapter VI shows results of the implementation of the control system on BETTII. This

consists of laboratory and on-sky testing of BETTII at GSFC.

• Chapter VII summarizes our findings and discusses the path forward for the BETTII

project.
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BETTII will be shipping out to Fort Sumner, New Mexico, for its first balloon flight in

early August 2016. The flight window is from mid to late September. The technical work in

chapters III to VI plays a key role in the success of this first flight.
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Chapter I

Star Formation in Clustered

Environments

This chapter is an introduction to some of the concepts which play a role in the formation of

stars. First, we discuss properties of the molecular clouds which are the sites of star formation.

Second, we elaborate on the physics of the star-forming processes and the evolutionary stages

in star formation. Third, we discuss the properties of the dust, which is the main observable

of relevance for the rest of this thesis. This chapter is not meant to be an exhaustive review

of the field, but instead explains the aspects of the star formation phenomenon which are

important to understand when designing an observatory to study it.

I.1 Molecular Clouds

Molecular clouds are dense regions of the interstellar medium (ISM) where stars are forming.

They contain about half the mass of the ISM in < 2% of its volume (see Kennicutt et al., 2012,

and references therein). High densities (n & 1000 cm−3) of mostly molecular hydrogen and

low temperatures (< 20K) distinguish molecular clouds from the other major components
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of the ISM in galaxies: the Hot Ionized Medium, the Warm Neutral Medium, the Warm

Ionized Medium, and the other cold phase of the ISM, the Cold Neutral Medium, which is

thought to be the parent medium from which molecular clouds are formed. In addition to

molecular hydrogen, molecular clouds contain Helium (cosmic abundance of 10% by number),

dust (∼ 1% by mass), CO (∼ 1× 10−4 by number), and traces of many other molecules.

Observations reveal that molecular clouds are highly structured often with filamentary

structure on a range of spatial scales (Heyer et al., 2015; André et al., 2010; André et al.,

2014; Williams et al., 2000). We are particularly interested in the star formation process in

these regions so our focus is on the youngest systems, . 2Myr, where stars are often still

embedded and may not yet have accreted the majority of their final mass.

Approximately 60% of all stars are thought to form in embedded, young stellar clusters

with 100 or more stars (Porras et al., 2003; Allen et al., 2007). These >100 star clusters have

characteristic sizes of 2-4 parsecs (pc) with peak surface densities of >10 stars per square

parsec and a typical median distance between nearest neighbor young stellar objects (YSOs)

<0.06 pc (Gutermuth et al., 2009).

Because star-forming clusters are surrounded by interstellar matter from the parent

molecular cloud, they usually cannot be studied at optical wavelengths, due to the large

obscuration from dust grains along the line of sight. Infrared observations can be used to

probe these structures since the dust can acquire sufficient temperature to emit thermally

from the mid-infrared through millimeter wavelengths.

The high density of YSOs within clusters, combined with their typical separations of

few hundredths of parsecs requires a high angular resolution in order to capture the relevant

spatial scales to identify individual sources and probe their physical characteristics.
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I.2 Star formation

I.2.1 Standard models

A considerable literature exists on the theory of star formation and the various physical

processes involved in forming stars (e.g. Evans, 1999; McKee et al., 2007; Portegies Zwart

et al., 2010; Kennicutt et al., 2012; Hennebelle et al., 2012, and references therein). In this

section, we review some of the more standard views that describe how stars are born and

grow to acquire their final masses.

I.2.1.1 Gravitational collapse

The simplest way to derive characteristic quantities related to the formation of stars is to

consider a pre-stellar core as a spherical clump of uniform, isothermal gas in hydrostatic

equilibrium (no magnetic field or turbulence). For such a system, the Virial theorem ap-

plies, which describes the balance between the gravitational potential and the kinetic thermal

energy within the gas. In other words, in hydrostatic equilibrium, the core’s self-gravity is

compensated by the internal pressure caused by the temperature of the gas. If the tempera-

ture decreases, or if the core mass increases, the core will contract and can become unstable

to further contraction. While simplistic, this treatment leads to a handy derivation of critical

timescales, sizes, and masses that form a good starting point for more elaborate theories.

First, it is important to determine the characteristic timescales of star formation. In

the core with a uniform density, the simplest timescale to define is called the free-fall time tff:

this is the time it takes for the total gravitational collapse of a spherically-symmetric clump
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of uniform density ρ if only the force of gravity is considered (no pressure):

tff ∼
(

3π

32Gρ

)1/2

∼ 1× 106 yr
( n

1000 cm−3

)−1/2
= 1× 106 yr

(
ρ

4× 10−21 g cm−3

)−1/2

,

(I.1)

where we have substituted a typical value for the particle density in molecular clouds n ≡

nH2 ≈ 1000 cm−3, and also converted it into a mass density, using a mean molecular weight

µ = 2.33 (corresponding to a Helium abundance of 10% in number as in McKee et al. (2007)).

The free-fall time is usually a lower limit on the collapse timescale, since there can always

be some physical mechanisms such as thermal and turbulent pressure or magnetic fields that

oppose gravity and slow down the infall of gas into the potential well.

The other relevant quantity that involves time is the sound speed in the cloud, cs =

(kT/(µmH))1/2, where µ ≈ 2.33 is the mean molecular weight of the gas and mH the mass

of hydrogen. For a given spatial scale R, the sound-crossing time is defined as ts = R/cs =

4.9× 105 yr
(

R
0.1pc

)(
cs

0.2 km s−1

)−1
. This is the time it takes for a wave to cross the scale R

while traveling at the sound speed. Intuitively, if the core has a size R such that tff < ts, it

tends to collapse faster than the gas on larger scales in the cloud can react. This corresponds

to a size scale that is called the Jeans’ length, and corresponds to the characteristic size scale

of gravitational instability within a cloud (McKee et al., 2007):

λJ = cs × tff = 0.2 pc
( cs

0.2 km s−1

)( n

1000 cm−3

)−1/2
. (I.2)
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The Jeans mass is the amount of mass within a sphere of diameter λJ, and corresponds

intuitively to the characteristic mass of a core that can undergo gravitational collapse:

MJ =
4π

3
ρ

(
λJ
2

)3

, (I.3)

= 0.3M�
( cs

0.2 km s−1

)3 ( n

1000 cm−3

)−1/2
. (I.4)

Note that this formalism ignores the material that surrounds the core while it collapses.

In practice, the cloud exerts an external pressure on the core that needs to be taken into

account when calculating the critical masses. This case of a clump of self-gravitating gas that

is immersed in a medium of external pressure Pext is called a Bonnor-Ebert sphere. It can be

shown (McKee et al., 2007) that the sizescale for a critical Bonnor-Ebert sphere is similar to

the Jeans’ length, and the mass scale is:

MBE = 1.18
c4
s

G3/2P
1/2
ext

, (I.5)

= 0.85M�
( cs

0.2 km s−1

)4
(

Pext

3× 105kBcm−3

)−1/2

, (I.6)

∼ 2.73MJ. (I.7)

where we have used the characteristic turbulent pressure in molecular clouds, Pext, 0 =

3× 105 kB cm−3 K, for the external pressure term (McKee et al., 2007) (kB is the Boltz-

mann constant). The turbulent pressure is dominant over thermal temperature on the large

scale in molecular clouds because the observed turbulent velocities are supersonic (by factors

of 5-10) compared to the sound speed in gas at 10K temperature .

This turbulent nature of cloud can drive local overdensities which reach and exceed
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the Jean’s or Bonnor-Ebert masses in regions where turbulent cells collide. The overdense

region can then fragment into multiple centers of collapse, each of which will lead to a star.

Accretion from the turbulent surrounding core material may occur throughout this process.

Within these centers of collapse, gravity is dominating the evolution and it is still useful to

refer back to simple, symmetric accretion model for overall guidance.

In the simple model, the collapse from a Bonner-Ebert sphere results in an infalling

envelope with density profile which follow power laws from r−1.5
env to r−2

env, an important observ-

able that can be useful for testing models. Some models of slowly-rotating infalling clouds

suggest more complex density profiles for the envelopes (e.g. Ulrich, 1976; Terebey et al.,

1984) than simple power laws, but differences from the traditional power-law envelope have

been observationally difficult to constrain due the scales at which those differences become

significant, 100-1000 astronomical units (au).

Nevertheless, it is expected that collapsing cores will have some amount of angular

momentum and that angular momentum becomes significant when the material falling from

1,000’s of AU to stellar scales, roughly 6 orders of magnitude. Due to conservation of an-

gular momentum all of the material cannot fall directly onto the star and some creates a

circumstellar disk. Observationally, we know that the process by which this disk material

accretes onto the star is associated with outflows of material along the rotation axis, which

are called bipolar outflows, and these outflows carve out a cavity in the envelope along the

axis of rotation of the star.

The object now has three characteristic components: the star itself; the flattened cir-

cumstellar disk; and a diffuse envelope with an open cavity, which constitutes a mass reservoir

for future accretion onto the star. A cartoon of the protostar is shown in Fig. I.1.
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Figure I.1: Cartoon of a protostar (Greene, 2001) with the envelope, a flat-
tened circumstellar disk, the bipolar outflow/cavity, and the protostar at the

center. A typical scale for the envelope of a young object is ∼10 000 au.

Although most of the mass is contained in the H2 gas, there is a small fraction of

material in the form of dust grains of various sizes and populations. Despite their low mass,

these grains play a very important role in determining the observable properties of YSOs,

because they absorb short wavelengths and radiate in the thermal infrared (see Section I.3).

I.2.1.2 YSO classification and characteristics

The observational characteristics of YSOs are dominated by emission from the star, disk, and

envelope, and the evolution of these components is reflected in the evolution of these observable

characteristics. The star is fairly well understood as an object in rough hydrostatic equilibrium

that is accreting material on its way to the main sequence. The luminosity of a YSO is a

combination of internal stellar luminisity which is due to Kelvin-Helmholtz contraction and/or

hydrogen burning in the core, and accretion luminosity; in all cases, the dominant luminosity

is created within 1 to several stellar radii. The spatial distribution of gas in the disk and
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the envelope changes as the YSO evolves and is primarily responsible for the observable

emission at infrared through millimeter wavelengths. Simple models assume that the material

distribution is axially symmetric, but in all likelihood it is more complex. For clarity, we will

discuss here the simple models that can be used to describe the YSOs in the primary stages

of their evolution.

In the most common model of the evolution of young stars, there are four stages in the

lifetime of a YSO. The first stage consists of a dense core right after the YSO is born. The

disk is almost non-existent, the envelope still is dense and circularly symmetric. This is called

Class 0. As the system evolves, the YSO grows in mass, an outflow forms and increases the

opening angle creating a bipolar cavity in the envelope, the density of the envelope decreases,

and the size of the disk increases.

The classes of YSO, from 0 to III, are defined by their broad emission spectra, called

Spectral Energy Distributions (SEDs), although the actual observed SED of a specific YSO

is dependent on our viewing angle. In practice, since it is generally difficult to obtain full

SEDs from optical to millimeter wavelength for large numbers of YSOs, the most commonly

used tool to classify YSOs is the spectral index of the emission, defined as the near-IR to

mid-IR wavelength slope of the emission, α, in the log-log plots, with α = d(log λFλ)/d(log λ)

between 2 to 20 µm (McKee et al., 2007). Various authors propose different boundaries for α

corresponding to each class. The four classes of YSOs are:

• Class 0: Most the of short-wavelength (< 10 µm) light is highly obscured by the dust

in the massive envelope. Most of the emission is around 100 µm and into the submil-

limeter/radio regimes. If there is a disk, it is very small. Some authors (Dunham et al.,

2010) classify a source as Class 0 as long as the amount of the mass in the envelope is
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at least half the total mass. The typical spectral index is a positive number typically

> 1.5.

• Class I: Light scatters at short wavelength off the dust grains to give us a hint at the

embedded object, but it still very obscured. The envelope’s mass is lower, and the disk

extends to larger distances. The typical spectral index α is 0 < α < 1.5.

• Class II: The YSO is now a pre-main sequence star, with a spectral index −1.5 < α < 0

and a significant circumstellar disk. This is traditionally referred to as a classical T-Tauri

star.

• Class III: Still a pre-main sequence star, but most of the accretion has stopped, and

α < −1.5. As traced by infrared excess emission, the envelope has almost completely

disappeared, and so has most or all of the disk.

An illustration of canonical SED and density structure is shown in Figs. I.2 and I.3 for

the four main classes, with parameters taken from Whitney et al. (2003b)1. On the left of each

picture, the SED is the measurable quantity when the YSO is unresolved at all wavelengths.

The challenge is to estimate the density structure (to the right) by measuring the SED. The

different lines plotted in the SEDs are different inclination angles, highlighting the enormous

impact of the viewing angle on the potential interpretation of these SEDs. The dashed line

corresponds to the Planck function from the central source. These models were run using the

Hyperion software (Robitaille, 2011) with "OH5" dust (Ossenkopf et al., 1994), as discussed

in more details in Section I.3.
1except for the Class III model, for which we reduced the envelope mass by 3 orders of magnitude, as we

think it is more representative of these objects.
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(a) Class 0

(b) Class I.

Figure I.2: Early evolution of YSOs. The left panel shows the spectral
energy distribution (SED) of the object. Lines of different colors show different
inclination angles. The dashed line corresponds to the SED of the central object
only. The right panel shows a cross-section of the mass density (including
both gas and dust) profile used in the modeling. Darker colors indicate higher
densities. In this model, the cavity is in the up/down direction, coaligned with
the circumstellar disk axis. The circumstellar disk is present in those models,
although difficult to distinguish in the density maps because of its small scale.
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(a) Class II.

(b) Class III.

Figure I.3: Late evolution of YSOs.
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These SEDs can also be characterized and classified with a numerical observational

metric such as the bolometric luminosity (Myers et al., 1993; Dunham et al., 2010):

Lbol = 4πd2

∫ ∞
0

Sνdν, (I.8)

where Sν is the flux density in Wm−2 Hz−1. We will use the bolometric luminosity later in

our analysis of our SOFIA FORCAST data as it is a direct observable, whereas the "true"

luminosity of most YSO system can only be derived from modeling, and the derived answer

is model dependent.

I.2.2 Mass accretion in clusters

The discussion in the previous section represents a simplified view of how a single core collapses

and forms a star. While it is convenient to assume that the original core forms from a fixed

reservoir of gas that will determine the star’s final mass, it is likely too simplistic, since

YSOs are preferentially forming in cluster environments with multiple other YSOs nearby

and sharing a dense, often turbulent environment (Porras et al., 2003; Allen et al., 2007;

Gutermuth et al., 2009).

The answer to how stars acquire their final mass is a key issue in star formation. Does

dense gas fragment into isolated centers of collapse? Do young stars competitively accrete

material from a surrounding common reservoir? Do gravitational interactions between form-

ing young objects play a significant role in setting the final stellar mass function? Better

observational understanding of these clusters is necessary to address these questions and to

discriminate between the different models, as noted by Bonnell et al. (2006), Offner et al.

(2011) and Myers (2011).
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Given the typical stellar separations in clusters with fully formed YSOs and the typical

densities of gas in these cores, several 1000s of au (1 pc = 206 265 au) is the size scale over

which forming stars must draw material to become 0.5-10M�. Once the material is inside a

few 100’s of au, it is strongly bound to the forming stellar system (which may be one or more

stars) and its fate is determined. To give an idea of the possibilities for accreting material,

Fig. I.4 sketches three scenarios for how stars could capture mass in the cluster environment:

(a) core collapse, (b) competitive accretion, and (c) collisional merging. In core collapse (CC)

(Fig. I.4a, McKee et al., 2003; Myers, 2011), the cluster’s gas fragments into cores which

collapse individually to form single, binary, or small multiple star systems; the available mass

is defined by the original fragment. In competitive accretion (CA) (Fig. I.4b, Bonnell et al.,

1997), the initial core collapses but contains a small fraction of the star’s final mass; additional

mass is captured competitively with other forming stars from the surrounding dense core gas.

In collisional merging (CM) (Fig. I.4c, Bonnell et al., 2002), the initial fragments interact

gravitationally and form larger mass cores before and during the formation process.

Are all these processes observed at once in star forming clusters? Only one? What

conditions favor one versus the other, and why? Do different processes dominate at different

stages in the cluster’s history?

Recent studies by Offner et al. (2011) and Myers (2011) compared protostar luminosity

distributions with predictions of models based on these ideas. Offner et al. (2011) suggest

that both CC and CA could work if the star formation rate in the cluster increases with

time; (Myers, 2011) finds that a CA-type model, with additional Bondi accretion to produce

massive stars, works best. As highlighted at the end of the Offner et al. (2011) paper, larger

cluster samples and better data on massive stars are needed to improve the observational
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constraints on models.

(a) (b) (c)

Figure I.4: Three scenarios of clustered star formation: (a) core collapse,
(b) competitive accretion, and (c) collisional merging. Darker colors indicate

higher densities.

I.3 Dust as a tracer of star formation

Despite being a small component by mass, interstellar dust is an important tracer of star

formation activity and its absorption and emission of radiation is an important factor in the

evolution and outcome of the star formation process. Dust grains are heated up by absorbing

the short wavelength emission from stars and re-radiate in the thermal infrared, accounting

for ∼ 30% of the total luminosity of the galaxy (Mathis, 1990).

Observationally, dust plays perhaps the most important role when it comes to studying

star formation. It usually is assumed that dust is well mixed with the gas, which makes it an

excellent tracer of the gravitational well and mass distribution in YSOs. Because H2 and He

molecules have very few spectral signatures at temperatures below 100K, they are difficult to

observe and study directly. Dust grains block UV and visible star light and emit continuum

far-IR radiation, opening a large region of the electromagnetic spectrum for astronomers to
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study the properties of star formation. Alternative tools to study star formation are dedicated

to observing spectral lines of the molecular species of the ISM such as CO and other dense

gas tracers, which reveal information about the dynamics and the physical conditions of the

gas in these regions.

I.3.1 Dust populations and properties

One of the best early studies of the composition of dust grains in the ISM was done by Mathis

et al. (1977), where they studied the absorption spectrum of the diffuse ISM, and found that

the measurements were appropriately fitted with a dust grain composition of silicates and

small graphite particles (Stecher et al., 1965). They were able to fit the observed extinction

curve with a grain-size distribution, typically n(a) ∝ a−3.5, where a is the grain size (assuming

spherical grains) and n(a) corresponds to the number of grains of size a. This distribution

requires low and high cutoffs for the grain sizes, typically 50Å and 0.25 µm, respectively

(Weingartner et al., 2001).

This grain size distribution model was later enhanced by Cardelli et al. (1989) to account

for the difference in interstellar extinctions (hence grain size distributions) across different

Galactic lines of sight. These authors were able to successfully parameterize the grain size

distribution using a single parameter, RV , which is the ratio of the total extinction A(V )

to selective extinction2 (or color) E(B − V ) = A(B) − A(V ). The distributions of sizes of

graphite and silicate grains vary between the low density regions of the ISM, where RV = 3.1,

and the high density regions, where RV = 5.3 (Kim et al., 1994).

Observations in the thermal infrared from space telescopes have detected strong absorp-

tion lines at 9.7 µm and 18 µm which are attributed to the stretching mode of Si-O and the
2Extinction and colors are expressed in magnitudes
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bending mode of O-Si-O, confirming the presence of silicates in dust compositions (Weingart-

ner et al., 2001). Other emission features at 3.3, 6.2, 7.7, 8.6, and 11.3 µm (Sellgren, 1994) are

attributed to bending and stretching modes of polycyclic aromatic hydrocarbons (PAH, see

Gillett et al., 1973; Allamandola et al., 1985), which are complex, planar organic molecules.

A consolidated model matching all-sky measurements by the COBE, IRAS and Planck

missions confirms the composition of amorphous silicates and carbonaceous grains with sizes

ranging from large grains (≈ 1 µm) down to tens of atoms (Planck Collaboration et al., 2016),

where the larger carbonaceous grains have graphitic properties and the smaller population

have PAH-like properties.

In the very cold and dense regions surrounding a YSO, where the dust temperature

typically never exceeds a few tens of K, it is expected that these dust grains are covered by

a mantel of ices which can dramatically change their radiative properties, especially at short

wavelengths (e.g. Ossenkopf et al., 1994). It is also expected that the grain size distribution

will shift to larger sizes due to coagulation of grains.

Knowledge of the composition and grain size distribution of the dust is important to

properly characterize its observational characteristics and relate its measured emission to the

physical quantities of interest in astronomical objects. Unfortunately, the properties of dust

grains, especially in the range of circumstellar environments of direct interest to modeling the

infrared emission from YSOs, are not yet well known. Calculated dust models can provide the

quantities that are needed in radiative transfer modeling (see Section I.3.3), such as the albedo,

the scattering function, and the opacity, but knowledge of the calculated properties should

not be mistaken for accurate knowledge of the true grain properties in a YSO’s environment.
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I.3.2 Basics of dust extinction

Dust grains are responsible for the extinction within molecular clouds, inside of clusters, and

in the environment around each YSO. This refers to the apparent reduction in observed flux

density of the light coming from the young stars. The typical representation of the extinction

along a line of sight uses the ratio of observed flux over the expected flux, measured in V-band:

AV ≡ A(V ) = 2.5 log(F obs
ν /Fν); this definition puts the visual extinction in the astronomical

units of magnitudes. The extinction as a function of wavelength, A(λ), then expresses the

light absorption property of dust in magnitudes for different wavelengths. An alternative

representation is to consider the extinction as being caused by an optical depth τext such that

exp(−τext) ≡ F obs
ν /Fν . The two definitions have the equivalence A(λ) = 1.086τext(λ).

At sufficiently long wavelength, dust opacity models can usually be represented by a

simple power-law, κν = κ0(ν/ν0)β , with the index β depending on the specifics of the dust

model (Draine, 2011). The opacity κν is expressed in cm2 g−1, and can be interpreted as a

extinction cross-section per unit mass. Most dust models assume a 1:100 dust-to-gas ratio, and

derive opacities per unit gas+dust mass, instead of just dust mass. From a radiative transfer

perspective, the observed specific intensity from a thermal source Bν(T ) at temperature T in

the optically thin regime is Iν =
∫
Bν(T )dτν , where the optical depth is τν =

∫
κνρdustdl. In

this expression all quantities depend on the location l along the line of sight. If T , κν , and

ρdust are constant along the line of sight, this simplifies to:

Iν = τνBν(T ) = κνρdustLBν(T ) = κνσdustBν(T ), (I.9)

where we define σdust as the total mass surface density (both dust and gas).
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A measure of the intensity from a source can thus lead to an approximation of the total

mass within a primary beam of the observation, for a given dust grain model. For a source

with a measured sub-millimeter flux density Sν , in the optically thin regime we can write

Sν = κνσdustBν(T )Ω, where Ω is the solid angle of the source. At a distance d, the mass is

M ≈ σdustΩd2, which leads to (e.g. Shirley et al., 2000):

M =
Sνd

2

Bν(Tdust)κν
, (I.10)

with a dust temperature usually taken to be between 10 to 20K for general regions of molecular

clouds.

With only near- to mid-IR wavelengths observations (2-60 µm), however, it is more dif-

ficult to estimate the dust mass, because the system is usually not in the optically thin regime

and cool dust at these temperatures emits weakly or not at all at 2-60 µm wavelengths. To use

near- to mid-IR observations, which are interesting because they naturally sample material

closer to YSOs, detailed radiative transfer models are usually required (see Section I.3.3).

The modeling requirements are especially important at short wavelengths where dust

grains both scatter or absorb photons, and each process has its own frequency-dependent ef-

ficiency. Scattering mechanisms are more complicated to represent, as they usually involve a

scattering phase function, describing the deflection angle of incident photons (which also de-

pends on wavelength). Most models show that dust grains are preferentially forward-scattering

(Draine, 2011). The emission at shorter wavelengths can also be affected by stocastic heating

of small grains (< 50Å), where single photons can heat up the grains to much higher temper-

atures for short amounts of time, resulting in a statistical distribution of dust temperatures
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for a single dust grain size.

I.3.3 Radiative transfer modeling

Several radiative transfer codes exist in the literature, and we have explored a few of them

(DIRT, by Wolfire et al. (1986), HOCHUNK by Whitney et al. (2003a) and HOCHUNK3d

by Whitney et al. (2013)). We opted for an open-source package called Hyperion (Robitaille,

2011), which has the advantage of having a Python interface and enjoys a relatively large

community support. The code can accept different dust models and can generate various

types of geometries and density grids. It contains the essential geometrical elements of a

YSO: stars, disks, envelopes with cavities, which all have numerous parameters to describe

their density structures. It can also accept user-generated, arbitrary density grids.

The radiative transfer code uses a Monte-Carlo technique to propagate packets through

the density grid. The code uses an iterative process to follow the absorption and emission of

radiation throughout the grid until an equilibrium solution is achieved. The code implements

multiple techniques and proxies to improve the computation speed and the accuracy of the

simulation, as explained in detail in Robitaille (2011). Beyond the traditional benchmarks

used in that paper, we validate our specific usage of the Hyperion code by reproducing SED’s

from other authors (see Fig. I.2 an I.3 as examples of simulations using this code, which match

the calculations in Whitney et al. (2003b)).

The Hyperion models (Robitaille, 2011) have a large number of parameters which de-

scribe a physical model for the star-disk-envelope system. As will be discussed in the next

chapter, a number of these parameters are degenerate in terms of the calculated SED. At a

broader level, SEDs models in general present a significant amount of degeneracy in terms of
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the derived physical properties of the systems, especially when the entire range of wavelengths

is not covered, as often is the case for observed sources. The reasons for the ambiguity are

a combination of limitations of astronomical instrumentation and limitations on our knowl-

edge of the physics in these regions. On the instrumentation side, observations are always

associated with measurement errors; systematic calibration uncertainties are typically 5-20%

at infrared wavelengths. Ideally, we would want information at scales from 1 au to 10’s of

au, but this is not achievable at infrared wavelengths for any star-forming region; instead,

lower resolution observations can provides at best 100’s to 1000’s of au linear scales, which

integrates over the spatial distribution of the emission and loses information about the source.

On the physics side, the detailed distributions of grain sizes, compositions, and structures are

not known, and may vary significantly between different parts of the YSO environment. In

addition, geometrical effects such as viewing angles can dramatically change the SED shape,

as it is illustrated in Fig. I.2 an I.3. Fundamentally, the SED alone can yield only limited

information about the properties of the YSO system.

Other authors (e.g., Robitaille et al., 2006) have used similar codes to produce stan-

dardized grids of pre-computed models which randomly sample a very large number of source

geometry parameters. These grids of models are routinely used by the community to fit a set

of unresolved SED measurements at discrete wavelengths. However, most often the scatter in

the parameters for the few best fit models prevents the authors from drawing meaningful con-

clusions on the observations. In Chapter II, we discuss this problem and offer an alternative

method to determine the best-fitting models and the range in fitted model parameters.

One of the key challenges of using this code is to determine which dust models to use.

For this work, we choose to use exclusively OH5 dust (Ossenkopf et al., 1994), which represents
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grains with an ice mantle which are the result of a coagulation phase of an initial distribution

of grain sizes following n ∝ a−3/2. This model was found to accurately represent some of the

grain distributions found in star-forming clusters (see e.g. Dunham et al., 2010).

I.3.4 Observing star formation

In the past decade, space-based infrared observatories such as Spitzer and Herschel have

allowed the beginning of the detailed study of dust around forming stars, by sampling the

SEDs in key spectral regions, such as the extended near-infrared (3-8 µm with the IRAC

instrument on Spitzer), the mid-infrared (with the MIPS instrument on Spitzer , especially

its 24 µm channel), and the far-IR (with the PACS and SPIRE instruments on Herschel).

These single-aperture observatories have lead to major advances in our understanding of star

formation on its largest scale.

However, these observatories lack the angular resolution required to observe the key

physics of star formation in dense clusters in the key wavelength region between 30 µm and

400 µm. For a diffraction-limited single aperture telescope, the angular resolution and spatial

resolutions (taken as full width half max or FWHM) are FWHMθ and FWHMlinear are:

FWHMθ ∼ 15′′
(

λ

70 µm

)(
D

1m

)−1

, (I.11)

FWHMlinear = 0.04 pc
(

d

500 pc

)(
λ

70 µm

)(
D

1m

)−1

, (I.12)

which shows that even Herschel with its 3.5m primary mirror and its 70 µm channel can

barely resolve clustered YSOs (typical projected separations of a few hundredths of pc) for

the closest star-forming clusters, let alone study the structure of a single YSO system in detail.
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To further complicate the problem, most space observatories are designed to make very

sensitive observations, so the brightest regions of clusters often saturate the detectors. This

reduces the effective angular resolution and confuses the emission in regions of clustered bright

YSOs with imaging artifacts. These two issues prevent scientists from gathering a good picture

of the physics in these dense and important regions of stellar birth.

In the following chapter, we discuss SOFIA FORCAST imaging from 11 to 37 µm wave-

length towards a number of dense star-forming regions which improve on Spitzer and Herschel

in resolution. This is a first step towards a better understanding of these regions. In Chapter

3, we discuss BETTII’s design to provide even higher resolution SEDs from 30 to 100 µm

wavelength.
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Chapter II

Star Formation in Clustered

environments with SOFIA FORCAST

II.1 Introduction

Most stars in the Galaxy form in cluster environments of sizes 2-4 pc, often containing more

than 100 young stellar objects (YSOs), with typical separations of <0.05 pc between stars

near their centers (Porras et al., 2003; Allen et al., 2007; Gutermuth et al., 2009). Previous

studies have been effective in elucidating the young stellar content and distribution in clouds

on large scales (parsec down to 0.05 pc) (Kennicutt et al., 2012), but young cluster cores,

born in dense portions of molecular clouds, are more difficult to observe. They are obscured

at optical through near-IR wavelengths. At mid-IR through far-IR wavelengths, the material

surrounding YSOs and involved in the stellar birth process emits due to heating by the young

stars, but the resolution to date has not been sufficient to isolate individual stars in the cores

of most nearby young clusters.

Spitzer has tremendously advanced our understanding of star formation, by providing

sensitive observations in continuum bands from 3.6 µm to 160 µm. In particular, the IRAC
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instrument (with 4 bands from 3.6 to 8.4 µm) and MIPS 24 µm channel provided a robust

way to determine the spectral index of YSOs, hence leading to a dramatic improvement of

our understanding of the YSO population in molecular clouds (e.g., Gutermuth et al., 2009;

Gutermuth et al., 2011).

However, the most dense regions of clusters presented a challenge for the MIPS instru-

ment, as the YSOs are too bright and/or in too close proximity, which led to saturation and

confusion, as exhibited in Fig. II.1. In this figure, we show the same region seen by the IRAC

3.6 µm band, the MIPS 24 µm band, and the Herschel PACS 70 µm, from left to right. While

the IRAC instrument can clearly distinguish multiple objects within the region, the MIPS

image is completely saturated, while the PACS image is confused and cannot properly resolve

the individual objects due to the lower resolution of the Herschel telescope at 70 µm. Note

that these YSOs are much closer to each other than is typical in clusters (0.01 pc instead of

a typical value of 0.04 pc), however this scale of projected separation is not unusual at the

centers of clusters.

Figure II.1: Saturation and confusion in NGC2071. Left : Spitzer IRAC
3.6 µm; Center : Spitzer MIPS 24 µm; Right : Herschel PACS 70 µm.
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Future instruments like BETTII will be able to tackle the confusion problem at wave-

lengths from 30 to 100 µm, and be complementary to Herschel observations of star-forming

regions. In the meantime SOFIA, the Stratospheric Observatory For Infrared Astronomy, can

already start studying these dense regions, providing 2-3.5′′ resolution between 10 and 37 µm,

without the saturation problems present in the Spitzer data. This corresponds to a factor of

2-3 improvement in angular resolution over Spitzer at 24 µm.

II.2 Sample description and scientific goals

This chapter reports the results of a survey of nearby star-forming cluster cores with the

SOFIA FORCAST instrument (Herter et al., 2012). The clusters were selected from a list

of dense young clusters within 1 kpc of the Sun derived from works by Porras et al. (2003)

and Gutermuth et al. (2009). From their lists we selected clusters that were: (1) north of

-25◦ declination so that they could be observed from a northern hemisphere SOFIA flight; (2)

included membership of >50 YSOs; and (3) included bright 8-24 µm sources within the dense

cores based on Spitzer and/or WISE data.

We observed in four FORCAST science continuum bands: 11.1, 19.7, 31.5 and 37.1 µm,

which covered the wavelength range available to the instrument at the time of proposal (2012).

This wavelength coverage is complementary to archival data from Spitzer and Herschel . Our

selection of bright regions spread all across the sky is convenient for SOFIA, as our project

could be observed as a gap-filler between the primary science flight legs of other projects.

The main objectives of the survey are to gather statistics on the YSO content of the

Spitzer saturated regions, and fill the SED gap between Spitzer ’s bands and Herschel ’s bands,

when the latter are available. While most of our targets have valid Spitzer IRAC data, often



Chapter II. Star Formation in Clustered environments with SOFIA FORCAST 29

the data from the MIPS instrument is unavailable due to saturation or confusion. Herschel

photometry usually is not published in the literature for our sources, but maps of our regions

are sometimes available so we can retrieve the far-infrared fluxes for some sources. For the

targets without MIPS or Herschel data, these SOFIA observations are the best information

available between the longest IRAC band at 8 µm and the shortest submillimeter bands from

ground-based telescopes. Thus our data provide important constraints to the SED of very

clustered YSOs in these regions to infer their physical properties.

The data analysis and scientific interpretation are presented in the next few sections.

First, we describe our observations, as well as the archival datasets that we use to comple-

ment them. Second, we characterize the systematics of the FORCAST instrument and their

variations over multiple science flights spanning multiple years. Third, the data reduction

process is explained, followed by a snapshot of the data products themselves. Fourth, we dis-

cuss our SED fitting strategy, and fit the SEDs of some of our clusters to derive the physical

properties of their embedded YSOs. Finally, we focus on the case of the young stellar cluster

IRAS 20050+2720, and discuss how our FORCAST data helps us understand the physics of

such embedded regions.

II.3 Observations

The FORCAST camera (Herter et al., 2012) has two separate 256× 256 pixel infrared arrays

that can image multiple bands in the wavelength range from 5.5-37 µm with 0.768′′ × 0.768′′

pixels. The two arrays can observe simultaneously through a dichroic beam splitter that

divides the wavelength range shortward and longward of 26 µm. Alternatively, the long wave-

length array can be used by itself with the dichroic removed from the light path, gaining a
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sensitivity factor of ∼ 2.5. We observe the 11.1 and 37.1 µm together (hereafter "mode 1")

and the 19.7 and 31.5 µm together (hereafter "mode 2") . We set the 1σ sensitivity threshold

of the observations such that a 1.5L� source with a moderately rising SED would be detected

at all wavelengths. The integration times were scaled appropriately for the distance to the

cluster (see Table II.1). This allows us to probe the same luminosity limit at all distances and

obtain a consistent sample of YSOs.

Table II.1: List of desired sensitivities for different distances

Distance 1σ minimum detectable flux (Jy) Corresponding minimum

(pc) 11 µm 19 µm 31 µm 37 µm L�

200.0 0.1 0.1 0.32 0.7 ∼0.5

400.0 0.1 0.1 0.32 0.6 ∼1.5

600.0 0.05 0.04 0.18 0.25 ∼1.5

800.0 0.02 0.02 0.1 0.12 ∼1.5

1,000.00 0.01 0.01 0.06 0.1 ∼1.5

For the most nearby clusters (< 300 pc), the required observing time was so short that

the overhead of the observatory was very costly. Hence, we put a lower threshold on the

integration time of 30 s. Similarly, the sensitivity of the 37 µm band is such that in order to

be consistent with our sensitivity target, this band was heavily driving the observing time in

mode 1. Hence, we observed in this mode as long as required to meet the sensitivity target

for the 11 µm band, and obtained additional observations in the 37 µm band with the dichroic

removed (hereafter "mode 3"). This allowed us to request less total observing time while

achieving our sensitivity goals. A summary of our sensitivities for various distances is shown

in Table II.1.

Several observing strategies are available to the FORCAST user to deal with background

subtraction. The most robust techniques are very costly in terms of time overhead for the



Chapter II. Star Formation in Clustered environments with SOFIA FORCAST 31

observatory, so we decided to request the cheapest observing mode: the Chop-Nod mode

(C2N), combined with 9 ditherings for each field, which dramatically helps when co-adding

images together. Most of our data was processed by the SOFIA automated pipeline that

provided calibrated Level 2 images, except for the data from the first few flights, for which

we received the help of one of FORCAST’s team members, Dr. Joe Adams, who processed

the raw data through his own instrument pipeline.

The data were acquired over 10 SOFIA flights spanning multiple years, with the last

batch dating from February 2015. The actual observing times for each band and cluster is

shown in Table II.3. In that table, we have estimated the time for the 37 µm band using a

composite formula that levels the observing time from mode 3 to that of mode 1, considering

their respective sensitivities. We obtained about 10 h total of on-sky data, and 10 out of our

12 original target clusters were observed.

Table II.3: List of targets

Cluster Coordinates SOFIA NFields d T11 T19 T31 T37

(J2000) Flight IDs (pc) (s) (s) (s) (s)

Cepheus A 22h56m10s +62d03m26s F132 F109 2 730 206 234 235 490

Cepheus C 23h05m45s +62d30m05s F132 1 730 150 121 121 286

IRAS20050 20h07m05s +27d28m51s F166 F131 2 700 321 224 256 266

NGC1333 03h29m00s +31d17m20s F129 F193
F190

9 240 530 558 467 446

NGC2071 05h47m06s +00d21m45s F192 2 420 36 25 33 42

NGC2264 06h41m07s +09d33m35s F156 4 913 495 300 331 587

NGC7129 21h43m07s +66d06m42s F109 1 1000 383 214 214 709

Ophiuchus 16h27m05s -24d30m29s F157 11 150 396 468 501 365

S140 22h19m23s +63d18m44s F129 1 900 322 393 393 568

S171 00h04m01s +68d34m50s F132 1 850 253 219 219 476

Notes: For each cluster, we list the SOFIA flights on which the data was taken,
the number of individual fields within the cluster, the distance, and the total
integration time for each of the 4 observation bands, including all fields. The
37 µm time quoted is a composite time calculated by combining the exposure

time of mode 1 with that of mode 3, as discussed in the text.
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To complement our SOFIA observations, we obtained publicly available Spitzer , and

Herschel images. Most of our targets have already published Spitzer IRAC and/or MIPS

photometry (mostly from Gutermuth et al., 2009; Megeath et al., 2012; Evans et al., 2009),

which we use in the relevant cases. In the cases where no IRAC photometry was available,

we applied our own photometry algorithms to publicly available archival images. We could

not find published photometry for the targets with available Herschel images, hence we also

used our own photometry pipeline to derive fluxes from archival images. In some cases, we

found published submillimeter continuum measurements to help constrain the long-wavelength

behavior of the SEDs.

II.4 SOFIA FORCAST characterization

In addition to the science images, a number of calibrators were observed during each flight for

different dichroic settings and wavelength bands. These calibrators are usually bright stars

which are point sources for SOFIA’s angular resolution, and have known mid-IR fluxes, so

they can be used both for flux and PSF calibration. We use them for two purposes: the first

is to obtain a robust metric to determine whether sources are extended or not; the second

is to determine the aperture correction factor which will be used for aperture photometry of

science sources.

II.4.1 PSF size

The size of the PSF can be defined in multiple ways. We adopt the approach of characterizing

the PSF using its encircled energy distribution. Fig II.2 shows the average of the normalized

encircled energy distribution of the PSF, measured on all the calibrators observed during our
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flights which use each filter setting. Each curve represents one of the five different combinations

of bandpass filter and dichroic setting that we use for our observations. For each radius, the

total energy is the sum of the pixels within the circular aperture of that radius, to which we

subtract an estimate of the background in an annulus around the source (see Section II.5.2

for details on the background subtraction methods).

Figure II.2: Average PSF encircled energy distribution profile for all calibra-
tor observations.

As expected, the PSF at 37.1 µm is larger than the PSFs at shorter wavelengths, but by

less than the traditional diffraction limit rule. This indicates that additional PSF smearing

is occurring at short wavelengths, likely due to telescope jitter and pointing errors, which

is consistent with what other authors have found (e.g. Herter et al., 2013). Throughout all

the flights, point source calibrators have the same encircled energy distribution shape within
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∼ 4% rms.

To look at the behavior of the PSF in more detail, we can use the full width at half

maximum of the encircled energy distribution, FWHM, as a proxy for PSF size. The variation

of this quantity for the various flights, bandpass/dichroic setting, and calibrators used is

showed in Fig. II.3. This shows the flight-to-flight differences and, for some calibrators, the

in-flight variability. We find that the latter is usually small, except for the SOFIA flight

on 05-02-2014, for which the spread is quite considerable and could have been caused by

instrumental malfunction or abnormal levels of water vapor in the atmosphere. The variation

from flight to flight is larger than the variation within a given flight, which indicates variability

in the observing conditions, systematics, or thermal radiation environment of the observatory

between different flights. Even considering the flight-to-flight and calibrator-to-calibrator

variations, the overall spread in FWHM for a given observation setting is almost always less

then 10%, making this metric a useful reference to compare with scientific data. In our analysis

we will compute FWHM for our sources and compare it to the FWHM from the current flight

for the same filter setting, if the calibration file exists. If no calibration observation exists

for a given setting, we use the mean FWHM for that setting from calibrators observations

in other flights. The ratio β37 = FWHMsource/FWHMcal helps quantify the extension of the

source, to within ∼ 10% confidence level.

II.4.2 Aperture correction factor

In Fig. II.2, we observe that the encircled energy does not vary much with an aperture radius

of 12 pixels, so we consider this fiducial aperture as our "total flux" aperture. The goal

of aperture photometry is to estimate the amount of flux in this large aperture, which we



Chapter II. Star Formation in Clustered environments with SOFIA FORCAST 35

Figure II.3: Distribution of the FWHM for all calibrators observations within
each bandpass. Lower wavelengths have lower FWHM. In red: 11 µm band,
with dichroic; in green: 19 µm band, with dichroic; in blue: 31 µm band, with
dichroic; in yellow: 37 µm band, with dichroic; in purple: 37 µm band, no
dichroic. Down triangles: α Boo; Pentagons: α Cet; Diamonds: α Tau; Up

triangles: β And; Hexagons: β Peg; Circles: β UMi.

consider to be the total amount of flux from the source, by only measuring flux within a much

smaller aperture. This has the advantage of reducing contamination from other sources, and

increases the signal-to-noise ratio of the flux estimate since the pixels near the tail of the PSF

usually contain more noise than signal. In Fig II.4, we plot the aperture correction factor that

we compute from the ratio of the flux measured within an aperture of 3 pixels radius and this

12-pixel radius aperture. Not surprisingly, this graph follows very closely the plot of FWHM

from Fig II.3, showing the close link between the aperture correction factor and the shape

of the calibrator’s PSF. We match each observation in our data to the mean of the aperture



Chapter II. Star Formation in Clustered environments with SOFIA FORCAST 36

correction factors for the same observation setting and flight.

Figure II.4: Instrumental response and aperture correction. The color code
and marker shape is the same as in Fig. II.3. Lower wavelengths usually have

smaller aperture correction.

II.4.3 Instrument response and overall uncertainty

To validate our approach, we take a look at the calibrator fluxes after normalization by the

calibration factor, which is provided directly by the FORCAST pipeline. This calibration

factor converts the pixel digital value to a physical flux density unit, and presumably is

determined using the flux from calibrator stars as well. Here we re-measure the flux from

each calibrator for each observation setting and each flight, using our standard aperture

photometry method and background subtraction. Ideally, we would always obtain the same
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flux for each setting and calibrator, independently of the flight, an assertion we find true to

within ∼ 5% r.m.s (Fig II.5). The in-flight errors are typically lower than this. This validates

our aperture photometry method, and we can trust that the instrument’s systematics are

well-behaved to within these levels.

This would suggest that we can adopt systematic 1σ uncertainties of ∼ 5%, a value

which is consistent with the published uncertainties of 3σ ≈ 20% (De Buizer et al., 2012). In

an effort to be conservative, we chose to follow those authors and adopt a 1σ ≈ 7% systematic

measurement uncertainty.

Figure II.5: Instrumental response, showing decreased calibrator fluxes with
longer wavelengths, which is expected since all calibration targets are evolved
stars. The color code and marker shape is the same as in Fig. II.3. In this plot,
the variation across multiple flights for a given marker type of a given color
is usually less than ∼5%. Note that for the bottom green triangles (α Boo at
19 µm), there seems to be a systematic change between flights occurring before

and after 2013-09-19.
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II.5 Data reduction and photometry

The data were processed through various versions of the online pipeline to yield Level 2

data products available on the archive (Herter et al., 2013). We apply our own reduction

procedure and photometry pipeline on those products to derive final images, source positions,

fluxes and sensitivities. Our software makes extensive use of the Python astropy package

(Astropy Collaboration et al., 2013) and its associated modules photutils and APLpy.

II.5.1 Pre-treatment

Some manual treatment of each image was necessary before it could be analyzed by our

software. We followed this procedure: a) visually align the WCS coordinate system, often

10-20" off, using point sources and archival data from other wavelengths and facilities such as

IRAC 8 µm; b) crop the images to clean off the nodded fields, and c) identify the coordinates

of each source, both point-like and extended.

After these manual steps, the Level 2 images are multiplied by the calibration factor

provided by the online pipeline, which converts them to Jy/pixel. We do not proceed to any

systematic color correction, but the effects on the fluxes are very small (Herter et al., 2013).

II.5.2 Source flux extraction

We fed the adjusted files to our photometry pipeline. For each identified source, we determine

its flux in all bands using aperture photometry with local background subtraction. The

aperture correction factor we used is the one determined from the calibrators observed for

the same observation setting during the same flight as the one when the data was taken. If

a calibrator is not available during the flight, we use the average aperture correction factor
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taken over 9 of our 10 flights (we choose to exclude the flight on 05/02/2014 which seems to

have abnormal behavior).

We distinguish between 3 types of sources after manual identification: isolated, which are

point sources with no nearby objects; clustered, which are point sources with nearby objects;

and extended, which are not consistent with being point sources based on visual inspection.

For point sources that are isolated, we use our standard aperture of 3 pixels at all

wavelengths. We consider an annulus surrounding the source extending from 12 to 20 pixels

radius (24 to 40 pixels for clustered sources): the local background is determined from the

mode of the pixels in the annulus, while the sensitivity is calculated by measuring the standard

deviation of the flux values within 3-pixel apertures spread over that annulus (Shimizu et al.,

2016). We apply the aperture correction derived from the calibrator observations taken during

that flight.

For extended sources, an elliptical aperture is determined manually from the 37 µm

images. The local background is determined from the mode of an elliptical annulus, with an

inner boundary at the elliptical aperture and an outer boundary corresponding to an ellipse

20% larger. The sensitivity quoted is the point source sensitivity, and is determined following

the same method as for point sources, using the standard deviation of apertures spread across

the elliptical annulus.

The photometry from sources that were observed in different flights is then combined

to increase the signal-to-noise ratio. This combination takes into account the sensitivity of

each source by appropriately weighing each image.

The noise level calculated for the observation is added in quadrature to the systematic

uncertainty of the instrument, for which we follow the recommendation from (Herter et al.,
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2012) and adopt a 7%, 1σ uncertainty.

Table II.5: SOFIA photometry comparison

SOFIA name F11 F11L F19 F31 F31L F37 F37L

Jy Jy Jy Jy Jy Jy Jy

S140.3 10.28 9.70 101.49 419.41 401.00 525.90 669.00

S140.4 3.80 4.00 88.95 337.22 368.00 352.07 485.00

S140.5 110.57 110.00 830.97 2065.13 1585.00 2278.61 2176.00

Sum of sources in cluster 124.65 123.70 1021.40 2821.76 2354.00 3156.58 3330.00

Total cluster emission 135.20 145.00 1194.57 4449.46 3780.00 5840.64 6730.00

Ratio 1.08 1.17 1.17 1.58 1.61 1.85 2.02

Notes: Comparison of SOFIA four-band photometry from Harvey et al. (2012)
on S140 (columns with ’L’). All fluxes are in Janskies. The authors’ "total
emission" actually represents the total emission in the entire field of view,
whereas our measurement corresponds to a manually-selected source region
encompassing only the dense core. The total emission in the entire field of
view is less representative, as it could include contribution from other sources
as well as areas of negative flux from the chopping and nodding steps. In this
cluster, there is a large amount of emission which is not clearly associated to

the three identified sources.

To validate our flux extraction method, we compare our results with data from Harvey

et al. (2012) who observed one of the sources in our sample, S140. Their photometry (shown

in their Table 1) of IRS 1, 2 and 3 (corresponding to our targets S140.5, S140.4, and S140.3,

respectively) is compared to our photometry in Table II.5. We find reasonable agreement

between our fluxes and theirs, although some differences are larger than expected in the

longer wavelength bands. We attribute this to differences in the exact centroid location of the

sources, which could be due to a different aperture size. Centroid errors have more impact at

longer wavelengths, where the flux is larger and the PSF wings more extended.
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Table II.7: FORCAST Sensitivities

Cluster F11 F19 F31 F37 Sources

σman σstd σth σman σstd σth σman σstd σth σman σstd σth

CepA 0.07 0.04 0.05 0.11 0.05 0.05 0.19 0.07 0.16 0.26 0.09 0.34 4

CepC 0.03 0.03 0.04 0.10 0.05 0.04 0.19 0.06 0.16 0.16 0.09 0.30 4

IRAS20050 0.04 0.03 0.04 0.08 0.04 0.05 0.13 0.05 0.16 0.30 0.11 0.32 7

NGC1333 0.12 0.04 0.07 0.07 0.07 0.07 0.22 0.08 0.25 0.48 0.13 0.52 11

NGC2071 0.19 0.10 0.12 0.32 0.15 0.15 0.21 0.22 0.49 0.45 0.28 0.81 6

NGC2264 0.07 0.03 0.05 0.19 0.05 0.06 0.28 0.07 0.20 0.21 0.09 0.43 21

NGC7129 0.07 0.03 0.03 0.10 0.04 0.03 0.26 0.09 0.12 0.17 0.08 0.19 5

Ophiuchus 0.11 0.05 0.08 0.16 0.07 0.08 0.31 0.09 0.27 0.41 0.18 0.65 19

S140 0.04 0.03 0.03 0.16 0.03 0.03 0.21 0.07 0.09 0.35 0.11 0.21 7

S171 0.04 0.03 0.03 0.07 0.04 0.03 0.07 0.05 0.12 0.16 0.06 0.23 2

Notes: For each band F11, F19, F31 and F37, we measure the 1σ sensitivity
σman and σstd in each field from the data using two different methods (see
text), and present here the median of all fields. The theoretical sensitivity σth

corresponds to the expected sensitivity for the actual integration time, using the
SOFIA FORCAST observation planning tools and assuming moderate water

vapor content. All sensitivity values are in Janskies.

II.5.3 Image sensitivity

In order to determine the absolute sensitivity in the image, we use two methods. First, we

manually determine a region near each cluster that visually appears devoid of sources. We

calculate the sensitivity as if this background region was a source, by patching apertures in

an annulus around this background location and calculating the standard deviation of the

obtained fluxes. We call this sensitivity measurement σman. The main downside of this

method is that it requires a manual operation to select the appropriate background field,

and hence could have more variation depending on which field we select. Second, we use a

routine that iteratively isolates the pixel values above 2σ of the image, in order to remove the

contamination from our actual sources. The standard deviation of the resulting image is then

calculated, and is multiplied by the square root of the number of pixels in an aperture of 3
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pixel radius. This corresponds to a floor sensitivity σstd. We present our results in Table II.7,

where we also compare this sensitivity with the expected sensitivity σth obtained using the

online calculator with the actual exposure time of our images. We note that usually, the

theoretical values are more in agreement with our first method for F31 and F37, while more

in agreement with our second method for F11 and F19.

II.5.4 Other photometry

SOFIA provides mid-IR photometry. We looked in the literature for published fluxes on our

targets in order to reconstruct more complete SEDs. In addition to our four SOFIA bands, We

collected data from 2MASS, Spitzer , and other instruments. Photometry from these sources

is published in online catalogs, which we programmatically cross-reference with the positions

of our targets. The closest target that corresponds to a Vizier location query is selected to be

the correct catalog match. For the 2MASS data, the location of the target was required to be

less than 2′′ away from our coordinates for point sources, and 5′′ for extended sources. For

the Spitzer data, the matching radius is 3′′ for point sources and 10′′ for extended sources. In

addition to automated online catalog searches, we add values for sources in NGC2071 from

Kempen et al. (2012).

For our two most clustered regions, the cores of NGC 2071 and IRAS 20050+2720, the

published catalogs do not have all available fluxes. We assume that the sources are so clustered

that the source extraction software from the authors do not register them as point sources,

due to confusion or saturation effects. Hence we adapt our own photometry routines for these

clustered environments and obtain the fluxes directly from the calibrated Level 3 images,

which are all available on the archive. In Table II.9, we compare our photometry results
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with published fluxes from Megeath et al. (2012) and Gutermuth et al. (2009) for isolated

sources elsewhere in these same fields of view. We use the Spitzer handbook recommendations

for aperture photometry on Spitzer archival images (2.4′′ aperture with and an annulus that

extends from 12 to 20′′). We find that our results are within 10% of the other authors’

results for isolated sources, which can reflect a simple difference in exact aperture centroiding

position.

Table II.9: Spitzer photometry comparison

SOFIA name i1 i2 i3 i4

Jy Jy Jy Jy

NGC2071.1 0.060 0.056 0.004 -0.021

NGC2071.3 0.018 -0.010 -0.004 -0.047

NGC2071.4 0.090 -0.054 0.036 -0.066

NGC2071.5 -0.130 -0.109 -0.144 -0.139

IRAS20050.1 0.020 0.039 0.017 0.131

IRAS20050.3 0.181 0.122 0.082 0.121

IRAS20050.6 -0.044 -0.046 -0.092 -0.056

Notes: Fractional difference between our own aperture photometry on Spitzer
archival images and published Spitzer photometry from Megeath et al. (2012)
for NGC2071, and Gutermuth et al. (2009) for IRAS20050+2720. When values

are negative, it means that their photometry is lower than ours.

In some cases, we also found archival Herschel images, although no published photome-

try was available for most our sources. We then apply our same aperture photometry routines

for those calibrated Herschel images, using aperture and background subtraction parameters

from Shimizu et al. (2016) for the PACS and SPIRE. We find also very good agreement be-

tween our photometry results for the PACS 70 µm band and the published Spitzer MIPS 70 µm

for some of these sources.
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II.6 Data products

We identify 70 point sources and 14 extended sources in our sample. We produced three

types of data products: the mosaic images in each band for all the clusters we observed; the

photometry catalogs which can be used to make SEDs; and the fitted physical parameters

for the point sources, which are determined from our radiative transfer model, explained in

Section II.7.

II.6.1 Mosaics

The SOFIA FORCAST images consist of ∼ 200 individual images, each representing a field at

a given wavelength. Some fields are revisited multiple times when the entire observation could

not be completed in a single flight leg. These individual fields are processed and mosaiced

together to form one single map for each wavelength and each cluster.

Before mosaicing the fields, we did a 2D background subtraction. This method divides

the images into sections of 50 × 50 pixels, estimates the median in each cell, and fits a 2D

function to these median values. This function is used to construct a smooth background,

which is then removed from the image. Each background-subtracted image is calibrated

(using the calibration factor that is supplied by the FORCAST pipeline), and weighed by its

exposure time before it is co-added into a mosaic in the WCS coordinate reference frame.

Although these maps are useful for viewing the source distribution and spot artifacts, the

actual photometry described in the previous sections uses each individual raw field, before

the mosaicing and without our background subtraction (some level of background subtraction

is already done by the SOFIA pipeline on the archive). If a source is present in multiple fields,
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the photometry from each of these fields is combined to provide a better flux estimate.

In Fig. II.6 we present four maps from our cluster sample. Each map is a three-color

image (red: 37 µm, green: 31 µm and blue: 19 µm), and the scale and stretch of each color is

adjusted to balance each color. The three bands have resolutions of 6.4 pixels (4.9′′), 6 pixels

(4.6′′) and 5 pixel (3.8′′) FWHM for 37, 31 and 19 µm respectively.

Figure II.6: RGB images of selected sample of sources (red: 37 µm, green:
31 µm and blue: 19 µm). In these images, the three bands have 6.4, 6 and 5

pixels FWHM for 37, 31 and 19 µm respectively.
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II.6.2 Photometry catalog
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Table II.11: Extract of NGC1333 photometry used for SED modeling.

SOFIA name Coordinates R37 Lbol j e_j h e_h ks e_ks i1 e_i1 i2 e_i2

NGC1333.1 03h29m07.7s +31d21m57.0s 0.746 8.385 0.0012 0.0001 0.0031 0.0003 0.0450 0.004 0.696 0.070 1.800 0.180

NGC1333.2 03h29m10.3s +31d21m55.5s 2.232 27.832 0.2853 0.0285 0.6539 0.0654 0.9010 0.090 0.637 0.064 0.446 0.045

NGC1333.3 03h29m01.5s +31d20m20.5s 0.904 8.104 0.0008 0.0001 0.0029 0.0003 0.0296 0.003 0.544 0.054 1.090 0.109

NGC1333.4 03h29m11.1s +31d18m30.8s 1.103 3.056 0.0007 0.0007 0.0009 0.0009 0.0015 0.002 0.001 0.0007 0.004 0.0004

NGC1333.5 03h29m10.6s +31d18m19.6s 1.623 2.786 0.0007 0.0007 0.0009 0.0009 0.0015 0.002 0.002 0.0002 0.007 0.001

NGC1333.6 03h29m13.0s +31d18m13.8s 0.951 1.155 0.0007 0.0007 0.0009 0.0009 0.0015 0.0004 0.046 0.005 0.180 0.018

i3 e_i3 i4 e_i4 F11 e_F11 F19 e_F19 M24 e_M24 F31 e_F31 F37

NGC1333.1 03h29m07.7s +31d21m57.0s 3.060 0.306 2.550 0.255 0.225 0.169 1.502 0.208 – 0.260 6.886 0.640 10.994

NGC1333.2 03h29m10.3s +31d21m55.5s 0.448 0.080 0.913 0.128 8.414 0.596 36.517 2.562 – – 106.490 7.457 135.723

NGC1333.3 03h29m01.5s +31d20m20.5s 1.690 0.211 3.060 0.306 1.681 0.131 6.902 0.493 – 0.069 9.256 0.656 9.406

NGC1333.4 03h29m11.1s +31d18m30.8s 0.005 0.001 0.004 0.0004 0.097 0.060 0.076 0.115 0.607 0.061 1.785 0.209 3.040

NGC1333.5 03h29m10.6s +31d18m19.6s 0.010 0.001 0.011 0.001 0.114 0.093 0.150 0.119 0.771 0.077 1.946 0.234 2.166

NGC1333.6 03h29m13.0s +31d18m13.8s 0.274 0.027 0.320 0.032 0.160 0.035 0.570 0.093 0.735 0.074 1.446 0.180 1.806

e_F37 M70 e_M70 H70 e_H70 H160 e_H160 H70 e_H70 H160 e_H160 H250 e_H250

NGC1333.1 03h29m07.7s +31d21m57.0s 0.948 49.300 4.930 52.724 5.272 66.529 35.197 52.724 5.272 66.529 35.197 71.541 14.258

NGC1333.2 03h29m10.3s +31d21m55.5s 9.507 – – 70.039 7.004 77.574 20.036 70.039 7.004 77.574 20.036 87.661 15.014

NGC1333.3 03h29m01.5s +31d20m20.5s 0.695 23.400 2.340 20.218 2.022 78.316 7.832 20.218 2.022 78.316 7.832 101.472 18.943

NGC1333.4 03h29m11.1s +31d18m30.8s 0.341 – – 16.609 1.661 53.689 5.369 16.609 1.661 53.689 5.369 57.215 6.293

NGC1333.5 03h29m10.6s +31d18m19.6s 0.377 20.600 2.060 14.627 1.463 49.868 4.987 14.627 1.463 49.868 4.987 52.536 6.166

NGC1333.6 03h29m13.0s +31d18m13.8s 0.345 4.290 0.429 1.527 3.883 4.702 13.332 1.527 3.883 4.702 13.332 29.105 6.272

H350 e_H350 H500 e_H500 S850 e_S850 F1100 e_F1100 S1300 e_S1300 α e_α

NGC1333.1 03h29m07.7s +31d21m57.0s 45.559 17.857 24.264 16.301 – – 1.300 0.130 – – 0.280 0.564

NGC1333.2 03h29m10.3s +31d21m55.5s 51.506 16.114 24.742 13.062 – – – – – – 1.243 –

NGC1333.3 03h29m01.5s +31d20m20.5s 70.907 17.371 40.867 11.474 – – 1.500 0.150 – – 0.714 0.385

NGC1333.4 03h29m11.1s +31d18m30.8s 38.449 6.033 18.594 4.666 – – 2.000 0.200 – – 1.864 0.458

NGC1333.5 03h29m10.6s +31d18m19.6s 36.232 6.189 18.007 4.878 – – 2.000 0.200 – – 1.705 0.273

NGC1333.6 03h29m13.0s +31d18m13.8s 34.781 8.007 21.255 6.628 – – 0.630 0.063 – – 1.001 0.501

Notes: The table contains the source name, coordinates in J2000, the ratio of R37= FWHMsource/FWHMcal, the
bolometric luminosity determined by integrating the data points in log-log space, followed by the photometry and its 1σ
error in the 2MASS bands (j, h, ks at 1.3, 1.6 and 2.2 µm respectively), IRAC bands (i1, i2, i3, i4 at 3.6, 4.5, 5.8 and 8 µm
respectively), the FORCAST bands (F11, F19, F31, F37), the Spitzer MIPS bands (M24 and M70), the Herschel PACS
and SPIRE bands (H70, H160, H250, H350), the SCUBA band (S850), the BOLOCAM band (F1100) and the SMA
continuum band (S1300). The number following capital letters in the band denomination indicates the band’s central
wavelength. Flags are used to designate whether or not a source is considered an upper limit, and are not shown in this
table for clarity. The fluxes that are upper limit can be seen in the SED images, Fig. II.7 and Fig II.9. The complete

version of this table is made available electronically.



Chapter II. Star Formation in Clustered environments with SOFIA FORCAST 48

We produced a consolidated list of fluxes for our clusters, where we gather 2MASS,

Spitzer , FORCAST, Herschel , SCUBA, and SMA data, when available, for ∼ 90 sources.

Most sources are point sources for the SOFIA FORCAST 37 µm band, but some sources

present a certain spatial extension which was not known before.

A few other parameters are determined from the FORCAST data and shown in the

catalog: the R37 ratio, which is the ratio of FWHM for the source and FWHM for the last

observed calibrator; the spectral index and its uncertainty, computed from the 2.2 µm - 37 µm

fluxes; and the bolometric luminosity for each source. Note that the bolometric luminosity

is the integration of the observed emission across the observed wavelength; as such, it is an

observed quantity but it is generally not the true luminosity of the source due to extinction

(which is not corrected) and viewing angle corrections. An excerpt of the final table containing

just the results for a few NGC 1333 sources is shown in Table II.11.

The SEDs for our most complete clusters, NGC1333 and Ophiuchus, are shown in

Fig II.7 and Fig II.9. These show the data points in various color codes and marker types,

as well as the best fit models for each source, as determined using our custom fitting routine,

described in Section II.7. The R-value, indicated for each fit, is a metric that indicates how

well the software was able to find a match between the data points and a pre-computed grid

of models. Lower values of R generally indicate better fits.

Many SEDs are well fitted. Some of the sources show poor fits (R>3), where it seems

difficult to find a model that both satisfies the long-wavelength measurements and the IRAC

measurements. This indicated that none of the models in the grid fit well. We think this could

be explained either by a mismatch of the spatial resolution for the different measurement

bands, in which case the long-wavelength bands sample flux that is not necessarily associated
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Figure II.7: SEDs of the point sources in NGC1333. The red curve represents
the best fit. The grey curves represent all the fits with R within 0.5 of the best
fit (see Section II.7.2 for details about the fitting process). The white arrows
show which data point is considered an upper limit for the fitting routine. Note
that 2MASS J- and H-band measurements, as well as Spitzer MIPS 24 µm and
70 µm are plotted, but never used for fitting. Red triangles: 2MASS. Green
diamonds: Spitzer (our photometry or data from existing catalogs). Dark blue
triangles: FORCAST (our data). Purple stars: Herschel (our photometry).
Green triangles: SCUBA 850 µm and SMA 1.3mm data from (Kempen et al.,
2009) and (Kempen et al., 2012). Left-pointing blue triangles: 1.1mm data

from Enoch et al. (2009).
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with the protostar, but rather is associated with another, nearby source or extended dense

cloud emission; or by an excess flux from the IRAC bands that could be explained by the

proximity to an outflow (Noriega-Crespo et al., 2004; Hudgins et al., 2004). Fig. II.8 shows

an example of a poor fit which could be attributed to excess IRAC emission due to a nearby

outflow.

Figure II.8: Fields centered on NGC1333.1, a poorly-fitting source that shows
a mismatch between the IRAC fluxes and the longer-wavelength fluxes. The
Herschel SPIRE 250 µm (right) is taken at the same location as the sources
identified using Spitzer IRAC 3.6 µm (left) and FORCAST 37 µm (middle).
The resolution of the SPIRE beam is not shown on the figure, because it has
a radius of 22′′. In this particular case, it appears that the long-wavelength
emission is associated with the source. However, this source is in close proximity
to NGC1333.2, an extended source of our sample, which shows a bow shock
structure in the southwest of its center seen in IRAC 3.6 µm, as well as diffuse

emission that extends all the way to NGC1333.1.

II.6.3 Fitted physical parameters

The spectral index (α ≡ (d log(λFλ)/d log λ) distribution for the point sources in our sample

is shown in Fig. II.10. Most sources have strongly positive spectral indices, indicative of a rise

in the SED with increasing wavelength and a significant contribution to the total luminosity

by long-wavelength emission. These objects are more embedded, and thought to be younger

than objects with negative spectral index. Note however that the emission generally peaks
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Figure II.9: SEDs of the point sources in the Ophiuchus cluster. Same legend
as Fig. II.7

a little shortward of 100 µm. A closer inspection of the distribution of our sources reveals

that the targets with negative index mostly lie in the Ophiuchus cluster, and are consistent

with late Class I objects which have already cleared a significant fraction of their envelopes

(Jørgensen et al., 2008).
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Figure II.10: Spectral index distribution of all point sources in our sample.
Left : standard determination of the spectral index, using 2MASS and Spitzer
from 2 µm to 24 µm, when data is available. Right : Determination of the
spectral index using data from 2MASS, Spitzer and our FORCAST data up to
37 µm. The distribution changes significantly when you account for the longer

fluxes in these clustered regions.

The data tables also include all of the physical parameters derived using the technique

from Section II.7, as well as their uncertainties.

II.7 SED fitting

This section looks more closely at the SED fitting process: examining its value and its common

shortcomings. First, we need to recognize that SED fitting is prone to many degeneracies (see

e.g. Robitaille et al., 2007, for an introduction on the degeneracies of SED fitting) unless one

has a great deal of spatial and spectral information about the source, which is usually not the

case. In order to make physically plausible models, there are usually many geometrical and

physical parameters in detailed radiative transfer models, but only a handful of measurement

points are available to fit, leading to a dramatically under-constrained problem. The goals
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of our fitting procedures are then to reduce the number of parameters to those which have a

significant quantitative impact on the SED, to identify the families of model parameters that

fit the SED, and to define the "best fit" model and its "uncertainty" which represents the

range in the model parameters with "reasonable" fits.

As our starting point of our investigation of fitting SEDs to our sources, we used the

sedfitter tool from (Robitaille et al., 2006). These authors computed a large grid of tens of

thousands of SED models using a radiative transfer code by (Whitney et al., 2003a), by varying

14 geometrical and physical parameters in the dust density grid such as the size of the disk,

the accretion rates, the radius and mass of the envelope, etc. The models are then evaluated

in the bands corresponding to our data, and a χ2 metric is evaluated for each model. By

exploring the distribution of χ2, we noticed, as expected, the very large correlations between

the parameters which is indicative of many local minimas in the 14-dimensional grid. Hence,

inferring geometrical and physical parameters from such a grid can be misleading.

II.7.1 A custom grid of models

We use Hyperion (Robitaille, 2011, see also in Section I.3.3) to develop our own capability

of calculating SEDs and understand the sensitivity of these parameters on the SED shape of

our sources. Based on our investigation, the degeneracy between viewing angle and multiple

geometrical parameters is considerable. The sensitivity of our SED to disk properties is small,

as most of our YSOs are younger objects with significant envelopes. Since no central star is

visible, parameters describing the central source such as the mass, radius and temperature

are primarily important when they are combined into one single term, which is the central

luminosity. Similarly, the luminosity created by accretion onto the central object can not be
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distinguished from a more luminous central object and a non-accreting disk. Finally, we find

that there is very little difference between Ulrich envelope models (Ulrich, 1976) and standard

power-law envelopes (see for example Fig. 14 from Whitney et al. (2013)), except that the

latter can more easily be related to physical parameters such as the envelope mass.

From these findings, we created a simplified grid of models by significantly reducing the

number of parameters in Hyperion. Table II.13 describes most of the geometric and physical

parameters that are available in Hyperion: divided into the central source, the disk, the

envelope and the bipolar cavity. We set most parameters to constants which we determined

as average values using literature examples as well as our own investigations for the objects

we try to study, which are primarily class 0 and I YSOs. The parameters which we varied

in the fits are shown at the bottom of the table: the inclination angle, the central luminosity

(irrespective of whether it is caused by the central star or by accretion), the envelope mass, the

external extinction and a scaling factor (explained below). The only two physical parameters

that we vary are the luminosity and the envelope mass. While others (e.g. Furlan et al., 2016)

have also attempted to reduce the number of parameters for their fitting, they still include

more parameters such as the disk radius, but generally conclude that they are not able to

properly constrain all of their parameters. As will be discussed later, there are a few YSOs

which are not well fitted with a heavily reduced set of fitting parameters.

It is important to emphasize that we do not know the values of these "fixed" model

parameters but rather that fixing them to a typical literature value does not have major impact

on the fitted parameters and hence the SED fit. Disk mass and radius are two examples; in the

presence of an envelope of comparable or greater mass, the disk emission is a weak function

of mass in the wavelengths (<20 µm) where it contributes significantly to the SED because
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it is optically thick at those wavelengths. Similarly, the outer radius of the disk controls its

contributions at longer wavelengths (>50 µm) where the envelope usually emits effectively;

significantly reducing the disk emission at longer wavelengths requires small disk outer radii

(10-30 AU) but has little impact on its shorter wavelength emission.

Unlike most authors, who use multiple kinds of dust models for different regions of the

SED which add complexity and a number of parameters (Whitney et al., 2003b; Robitaille

et al., 2006; Whitney et al., 2013), we choose to use the same dust model (OH5) for both

the envelope and the disk, and assume a 1:100 dust-to-gas ratio. By doing so, we tend

to overestimate the short-wavelength emission from SEDs, because the OH5 model assumes

isotropic scattering whereas most dust grains appear to be forward-scattering (Draine, 2011).

To facilitate the calculation of models, we constructed a wrapper program that can run

the Hyperion software for the range of parameters given in Table II.13 to create our model

grid.

Because of time and resource limitations, a moderate number of photons was chosen in

the Monte Carlo calculation, which can increase the noise at short wavelengths. The details

of our modeling parameters, which will be familiar to the Hyperion user, are described in

Table II.15. Note that models of more than 1M� are actually run with more photons (1× 106

instead of 2× 105) for imaging, in order to obtain acceptable SNR at short wavelengths.

The grid is composed of ∼ 418 models which are calcuated with Hyperion. For models

with Menv > 0.5M�, we interpolate the grid in mass by increments of 20%, which allows

for a finer sampling at higher masses, but increases the number of individual models to 958.

The interpolation is done at constant luminosity. Each model is sampled at 10 inclinations,

15 values for external extinction, and five different scaling factors, for a total of 718 500 grid
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models. Each model is evaluated at all relevant observing bands, from the 2MASS bands

all the way to the 1.3mm SMA bands. Given the sparsity of the grid, and the relatively

simple model used, we do not apply color correction to the fluxes, nor do we convolve the

model fluxes with the band transmission function: the resulting corrections fall within our

approximations, and do not affect significantly the outcome of the fitting.

The scaling factor in our fits is used to represent the uncertainty in the distance deter-

mination (e.g. Robitaille et al., 2006), but it can also be considered as a scaling to represent

modestly different luminosities from the model value (Furlan et al., 2016). Indeed, Furlan

et al. (2016) show that, to first order, changing luminosity by a small amount is approxi-

mately equivalent to scaling the SED in flux. In their grid, they use a scaling factor that

ranges from 0.5 to 2.0, which allows them to have factors of 2.0 in the luminosity of their

calculated models. We choose a more conservative approach by actually running the grid at

closer luminosity steps (factor of 1.5) and hence have a smaller range of scaling factors.

The extinction parameter is used to represent extinction by material along the line of

sight that is outside of the core: foreground material which may be extended material within

the cluster core or may be additional cloud along the line of sight. This parameter is essential

to providing good fits, as most other authors have also found (e.g. Robitaille et al., 2006;

Furlan et al., 2016). A discussion of the meaning and importance of this parameter is given

in the following sections.
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II.7.2 Fitting method

In order to determine which model fits the data best, we adopt a metric defined by Fischer

et al. (2012) and Furlan et al. (2016):

R =
1

N

∑
i

wi| log[Fobs(λi)]− log[Fmod(λi)]|, (II.1)

where i are the indices of the valid data points, the weights wi correspond to the inverse of

the fractional uncertainty of each measurement, Fobs and Fmod are the observed and model

fluxes respectively, and N is the number of valid measurements. For our models, we set the

fractional uncertainty to a minimum of 10%, to avoid having a few points completely drive

the fit. Early versions of the fitting routines, which used the published 1σ uncertainties would

completely skew the results by putting all the weight into a few flux measurements. This

was most notable for the Spitzer IRAC points, for which published uncertainties sometimes

only are a few percent. We chose to override these uncertainties, in large part because the

assumptions of geometry and dust properties that go into a model calculation do not justify

that level of confidence in the model output.

Furlan et al. (2016) discuss in more detail the meaning of this R metric, which differs

from a standard χ2 metric such as the one used by Robitaille et al. (2007). R represents a

weighted average of the logarithmic deviations between the observations and the model. It is

important to note that, although it is normalized, it does not have a statistical interpretation

like the standard χ2 metric. In particular, models with fewer data points or large measurement

uncertainties will tend to have smaller values of R, even if the fit is poor. R is only useful as

a relative measure of the goodness of fit to the specific observations.
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For each source, we calculate R for each model in our grid. The model with the smallest

value for R is the best-fitting model by this metric, but given our sparse sampling and the

errors of our observations, this is not necessarily the most likely model to best fit the data.

We can consider two extremes: in the first case, the best fit has a value of R which is much

lower than other models. Then, it is clearly the best fit. In the second case, let’s suppose

that the 1000 best-fitting models lie very close to the best R. In this case, concluding that

the model that best fits our observations (and from which will interpret physical quantities)

is the one with the minimum R is too strict and does not account for the uncertainties that

are present.

In practice, most of our models fall in the second case. After visual inspection of

the fits, we conclude there is very little significant difference between values of R which are

separated by ∼ 0.5. They all can be considered equally good (or bad) fits. Hence, for a robust

measure of the best-fitting model parameters, we choose the mode (the most likely value) of

the parameters from models which are within Rmin and Rmin + 0.2, in order to really pick the

best possible fits. The error on the parameter is then estimated using the models within Rmin

and Rmin + 0.5, since these models all similarly fit, and is described in the next section.

Because we use exclusively the OH5 dust model, which we know overestimates the

short-wavelength fluxes, we expect to overestimate the extinction required to match the ob-

servations. For this reason, we choose to ignore the 2MASS J and H band data points, which

drive the extinction values up dramatically and sometimes leads the fit towards non realistic

solutions. However, we choose to keep the 2.2 µm Ks Band data point to give some weight to

the shorter wavelength data.
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II.7.3 Overview of derived parameters

The distribution of the best fit solutions of the envelope mass and central luminosity is

shown in Fig. II.11 for the clusters for which we have long-wavelength data (Ophiuchus and

NGC1333). Our sample covers a broad range of masses, but is naturally biased towards high

luminosities given SOFIA’s instrumental sensitivity and our cluster selection.
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Figure II.11: Fitted envelope mass and luminosity distribution for all ob-
served point sources in Ophiuchus and NGC 1333, where long-wavelength data

is available.

From visual inspection, data with R less than or close to 1 appear to fit the data well.

Larger R show less good fits. The distribution of R for all the isolated point sources is shown

in Fig. II.12. Note that targets where less data points are available, or where data points are

more noisy, usually have lower R than targets with a lot of available data points, even if the

fits are not necessarily as good. This has also been observed by (Furlan et al., 2016) and is

one of the drawbacks of using the R metric.

One major limitation and inconsistency in all broad fitting works to date is the inclusion
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Figure II.12: R distribution across all observed point sources in Ophiuchus
and NGC1333, where long-wavelength data is available.

of a foreground material which provides extinction without emission. For example, Furlan et

al. (2016) fit for external extinction up to AV = 40 for some of their sources, and use all of

the 2MASS bands in their fitting. It is not consistent to assume that so much material is

present along the line of sight, while not also being observed at longer wavelengths. Since the

dust is optically thin at longer wavelengths, the far-infrared and submillimeter observations

should see emission from this material which is obscuring the shortest wavelengths.

Our exploration with the fitting routine shows that limiting the external extinction

forces more inclined geometries, where the light from the central star passes through the

disk before reaching us. However, we were not able to account for the entirety of the short

wavelength extinction by doing this, as the mid-infrared wavelength (IRAC and FORCAST

bands) are also affected by more inclined geometries, which can compromise the fits. This

could indicate a fundamental limitation in our geometrical representation of YSOs or assumed

dust properties, since there is no possible way to account for both the low amount of far-IR
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emission seen, e.g. by Herschel and high amount of extinction seen from the 2MASS and IRAC

bands. The highly cited publications, that we have referred to, adopt an external extinction

factor, the rigor of which we now strongly question. However, we have not been able to find

an appropriate solution to circumvent this issue. Hence, we choose to follow the examples of

previous authors and adopt an external extinction factor. Unlike Furlan et al. (2016), which

consider AV as high as 40 mag, we choose to limit it to AV = 14 mag, a moderate value of

the diffuse extinction in our clusters of interest.

An external extinction of AV = 14 mag means that fluxes at 2.2 µm are reduced by a

factor of ∼ 17, while 8 µm fluxes are reduced only by a factor of ∼ 2. For most Class 0 and I

sources, most of the emission has already been reprocessed by dust out to longer wavelengths,

and the 2MASS 2.2 µm data points are usually extremely low, so a difference of a factor

of 17 in this small region of the spectrum will not lead to significantly different luminosity

estimates when compared to the contribution from other parts of the spectrum. In fact, a

small exploration of our fits reveals that for these sources usually the extinction from within

the envelope itself is already much larger than this factor. However, at AV = 40, the flux

reduction at 2.2 µm is > 3000, at which point we argue this could become a problem. Which

such a large ratio, it is more difficult to claim that the fitted luminosity from the model is not

overestimating the actual luminosity, since the external extinction reduces by many orders of

magnitude the short-wavelength emission in order to fit the data.

For all sources we calculate the bolometric luminosity as the integral of all the available

data points, even those which correspond to upper limits. This makes Lbol an upper limit as

well on the observed luminosity. Since most of the upper limits are from long-wavelength data

points, this impacts sources with a larger envelope more. We note that the fitted luminosity
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Lmod tends to be lower than the bolometric luminosity Lbol for low inclination angles, but

Lmod tends to be higher than Lbol for more inclined geometries. This is expected since for

high inclinations a large fraction of the emission is not directed towards the observer (see, e.g.

Furlan et al., 2016, for a discussion). On the contrary, when seen almost face-on, the observer

sees both the emission from the source as well as the light scattered on the walls of the cavity

and the disk.

Finally, for the clusters which have submillimeter data points, we calculate the tradi-

tional mass estimate described in Section I.3.2 using the 1.1mm or 1.3mm fluxes. For this cal-

culation, we use an effective dust temperature of 20K, assuming an opacity of 0.0114 cm2 g−1

and 0.009 cm2 g−1 for 1.1mm and 1.3mm, respectively, based on the expected emissivity for

OH5 dust. These values for Menv are shown in Table II.17. Note that this measurement is

very sensitive to these assumptions; for example, lowering the dust temperature estimate to

10K increases the mass estimate by a factor of 3. In addition, these measurements can be

overestimates by a large amount if the 1.1 and 1.3mm fluxes are measured with single-dishes,

and hence upper limits on the flux from the YSO environment.

A summary of our fit results for Ophiuchus and NGC1333 is shown in Table II.17. All

fits results for all our sources are shown in Appendix D. Note that the luminosity that is

used in this analysis is always the luminosity multiplied by the scaling factor s, under the

assumption that the SED scales for small changes in luminosity. This scaling factor improved

the fit but it must be remembered that the true luminosity is dependent on the distance. For

example, a distance error of 10% would cause a luminosity estimate that would differ by 20%.
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Table II.13: SED model grid.

Parameter Description Values Units

Constant parameters

Central source

M? Stellar mass 1 M�

T? Stellar temperature 4000 K

Disk

Type Flared or alpha disk Flared

Mdisk Disk mass 0.001 M�

Rmax
disk Disk outer radius 100 au

Rmin
disk Disk inner radius sublimation radius au

β Flaring parameter 1.25

p Disk surface density exponent -1

r0 Reference distance for scale height Rmin
disk au

h0 Disk scale height at r0 0.01×Rmin
disk au

d Dust OH5

Envelope

Type Power-law or Ulrich Power-law

Rmin
env Envelope inner radius Rmin

disk au

Rmax
env Envelope outer radius 5000 au

α Power -1.5

renv0 Reference radius Rmin
env au

d Dust OH5

Cavity

rcav0 Cavity outer radius Rmax
env au

θ0 Opening angle at rcav0 10 degrees

Flaring exponent 1.5

ρ0 Density at rcav0 0 g cm−1

αe Density profile exponent 0

Fitted parameters

i Inclination angle 0 to 90 in 10 constant
increments of cos i

degrees

L? Central luminosity 5× 1.5p for
p = −4,−3, . . . , 10
(from 0.99 to 288)

L�

Menv Envelope mass 0.01× 1.5p for
p = −2,−1, . . . , 19

(from 0.001 to 22.17)

M�

AV External extinction 0, 1, . . . , 14 mag

s Scaling 0.7, 0.85, 1, 1.5, 1.3
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Table II.15: Hyperion simulation parameters.

Parameter Value

Number of photons (initial) 2× 105

Number of photons (imaging) 2× 105

Number of photons (raytracing sources) 1× 106

Number of photons (raytracing dust) 1× 106

Lucy max iterations 6

Max photon interactions 1× 105

Geometrical grid parameters (radial, theta and azimuthal) 400, 199, 2

MRW True
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Table II.17: Fitted parameters for the point sources in Ophiuchus and NGC1333 where long-wavelength photometry is
available.

SOFIA Name Coordinates R37 α R Menv Calc. Menv Lmod Lbol i AV

(J2000) (M�) (M�) (L�) (L�) (◦) (mag)

NGC1333.1 03h29m08s +31d21m57s 0.75 0.28 3.40 0.004 ± 0.005 0.97 32.5 ± 7.8 8.4 51 14

NGC1333.3 03h29m02s +31d20m21s 0.90 0.71 3.39 0.004 ± 0.03 1.12 3.5 ± 2.1 8.1 0 14

NGC1333.4 03h29m11s +31d18m31s 1.10 1.86 0.83 2.919 ± 0.45 1.50 2.3 ± 0.4 3.1 19 11

NGC1333.5 03h29m11s +31d18m20s 1.62 1.70 0.77 1.297 ± 0.33 1.50 1.3 ± 0.3 2.8 19 14

NGC1333.6 03h29m13s +31d18m14s 0.95 1.00 1.21 0.001 ± 0.0007 0.47 7.5 ± 1.2 1.5 27 14

NGC1333.7 03h28m43s +31d17m35s 1.19 1.08 1.83 0.001 ± 0.001 – 9.6 ± 1.8 1.4 58 0

NGC1333.8 03h29m04s +31d16m04s 0.77 1.14 1.06 1.946 ± 0.75 2.02 17.0 ± 2.4 35.1 0 13

NGC1333.9 03h28m56s +31d14m37s 0.80 2.79 2.62 2.919 ± 0.35 1.72 17.0 ± 2.4 24.3 19 14

NGC1333.10 03h28m57s +31d14m15s 0.80 1.83 1.16 0.256 ± 0.18 0.45 5.6 ± 0.9 4.8 19 14

NGC1333.11 03h28m37s +31d13m30s 1.02 1.69 0.99 0.38 ± 0.18 0.27 7.7 ± 0.8 7.5 19 14

Oph.1 16h27m10s -24d19m13s 0.92 0.27 0.67 0.01 ± 0.002 0.04 7.9 ± 1.3 3.6 78 3

Oph.2 16h26m44s -24d34m48s 0.93 0.83 2.08 0.001 ± 0.002 0.05 32.3 ± 21.1 1.2 84 14

Oph.3 16h27m09s -24d37m18s 0.99 0.57 1.54 0.004 ± 0.002 0.04 85.0 ± 19.7 13.4 0 14

Oph.5 16h27m07s -24d38m15s 1.31 0.31 1.36 0.001 ± 0 0.03 4.3 ± 0.5 0.5 81 14

Oph.6 16h27m16s -24d38m46s 1.29 2.54 0.93 0.001 ± 0.001 0.02 26.6 ± 6.4 0.8 90 13

Oph.7 16h27m28s -24d39m34s 0.97 1.35 1.39 0.015 ± 0.002 0.03 26.6 ± 3.5 6.5 72 14

Oph.8 16h27m37s -24d30m35s 1.02 0.55 1.13 0.007 ± 0.002 0.03 17.7 ± 3.4 5.0 78 12

Oph.9 16h27m22s -24d29m54s – 0.51 2.08 0.001 ± 0 0.01 11.8 ± 1.2 1.0 81 14

Oph.10 16h27m18s -24d28m55s 1.26 0.50 1.38 0.003 ± 0.0006 0.004 5.0 ± 1.6 0.6 81 14

Oph.13 16h27m30s -24d27m43s 0.00 -0.37 2.23 0.001 ± 0 0.01 17.7 ± 5.5 1.5 81 14

Oph.14 16h27m28s -24d27m21s 1.89 -0.13 1.00 0.001 ± 0.0009 0.02 4.3 ± 0.6 1.0 81 14

Oph.15 16h27m29s -24d39m17s 1.25 0.10 1.12 0.004 ± 0.0007 0.02 3.3 ± 0.4 0.6 27 14

Oph.16 16h26m24s -24d24m48s 1.80 -0.76 1.87 0.001 ± 0 – 17.7 ± 2.9 2.2 78 10

Oph.17 16h26m24s -24d24m39s 0.96 -0.09 1.21 0.001 ± 0 – 5.3 ± 0.6 1.3 81 14

Oph.18 16h26m17s -24d23m45s 1.18 0.63 1.34 0.003 ± 0.004 0.04 2.8 ± 0.9 0.3 81 14

Oph.19 16h26m30s -24d23m00s 2.51 0.57 0.89 0.001 ± 0.001 0.01 5.3 ± 1.0 1.2 75 14
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II.7.4 Estimating parameter uncertainty

It is important to estimate the uncertainty in fitted parameters to quantify the confidence in

a given fit. Without uncertainties, no meaningful conclusion can be drawn about the physical

meaning of the fits. This estimation is also one of the most difficult aspects of the fitting

process, since it really depends on the method used and the modeling strategy. It is also

difficult to compare results with the findings of other authors who used a different approach

to their fitting.

In this work, we propose a novel methodology to derive the uncertainty on the best fit.

First, we determine the best fit for a given parameter as the mode of the parameter values

from the models that fit within [Rmin, Rmin + 0.2], where Rmin is the minimum value of R

in the entire grid. This is statistically more robust than picking simply the model with the

lower R, since, given our uncertainties and approximations, there is no statistically-significant

difference between models that fit within that range.

Once this best fit value is determined for all parameters, the uncertainty is determined

using all models that fit within [Rmin, Rmin + 0.5]. We determine three quantities from these

models: the standard deviation from the best fit; the median absolute deviation from the best

fit; and the skewness of the distribution.

The choice of the R intervals are empirical based on our fitting experience. Since the

metric R is not model-dependent but instead is a distance between models and observations,

we think that similar values will still lead to reasonable parameter and uncertainty estimates in

other future works. One limitation could occur from the density of the grid: if the models are

so sparse that there are only a handful of model within each interval used in the uncertainty

estimation, this could lead to poor estimate of uncertainties.
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II.7.5 Discussion

Several factors have been omitted for simplicity in our model fitting. First, the models we use

have an axisymmetric geometry which is unlikely to account for realistic mass distributions in

the envelope and the disk. Second, we ignore the surrounding medium and consider it devoid

of emission. In reality, the transition to the surrounding medium is likely smooth and its

emission relevant at the longest wavelengths. Third, we assume that the only heating source

is located at the center of the YSO. The heating source consists of both the light from the

star, and from the accretion luminosity, which can not be distinguished from our point of

view. It is important to realize that external heating can also play a role in raising the dust

temperature and changing the SED signature in the cluster environment. The impact of the

interstellar heating is explored in Furlan et al. (2016), who show that it can have a substantial

effect on the SED - but they nevertheless do not include this parameter in their grid, since it

is too case-specific. The Hyperion radiative transfer code that is used to model our grid could

accommodate external radiation fields as well, and this could become a future addition to our

modeling. Finally, the observations that form our SEDs were not taken simultaneously, so it

is possible for the YSO flux to change over the period of years. This YSO variability has been

shown to be fairly common at the 10 to 20% level at near infrared wavelengths (Rebull et al.,

2014) and larger optical outbursts in luminosity are known to occur in a small sub-class of T

Tauri stars called FU Ori stars (Hartmann et al., 1996). However, we do not anticipate that

YSO variability would drastically change the fit results, given typical variability amplitudes

modest (e.g. Poppenhaeger et al., 2015).

Given the relative simplicity of our model grid, most of observations are fit reasonably

well and the fitted parameters have acceptable uncertainties for a large fraction of sources.
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Our range of R values is similar to that of Furlan et al. (2016) in their analysis, although

they used more free parameters than just the luminosity and the envelope mass. This further

confirms the degeneracies that exist when trying to fit for too much physics into very elaborate

models. The difference in the resolutions, sensitivity, and photometric techniques for each

wavelength in the SED limits the value of a more thorough analysis, especially when located

in a very clustered environment when extended emission and nearby sources can contaminate

the measurements.

We argue that more complex models would not help in estimating the physical param-

eters of YSOs - but instead, this work highlights the need for higher angular resolution at

wavelengths longward of 37 µm. Such data can be obtained in the future at arcsecond and sub-

arcsecond resolution at millimeter and submillimeter wavelengths with ALMA at > 350 µm.

The new continuum cameras for large radio telescopes like the Green Bank 100-meter tele-

scope and the 50-meter Large Millimeter Telescope can produce ∼5 arcsecond images of the

extended envelope and surrounding cloud material to provide strong constraints on the exter-

nal extinction issue. It is also essential to improve the resolution of observations from 30 to

200 µm to constrain the disk and envelope masses, and refine our knowledge of dust properties

in the different regions of the circumstellar environment.

In our models, we have used OH5 dust as it was recommended by various authors (e.g.

Dunham et al., 2010). However, the models for OH5 do not include scattering properties,

which might jeopardize the accuracy of the models at short wavelengths, which are domi-

nated by scattered light. However, it seems to have a opacity that fits best the clustered

environments (Huard et al., 2016, in prep.). By ignoring the fact that grains are preferentially
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forward-scattering, we could cause the model to fit for larger extinction values or higher incli-

nation angles than desired. We are considering using other types of dust, such as the one used

by Furlan et al. (2016), which has fully detailed scattering properties, but less long-wavelength

opacity. Using this type of dust would require running a new model grid with considerably

more photons for each model, which we estimate would take ∼ 4 weeks on the UMD 8-core

computer we have been using.

Finally, the issue of external extinction needs much more investigation. To date, we

have not found in the literature a proper treatment of this problem. In order to re-establish

self-consistency, we suggest exploring ways to add constraints on the long-wavelength flux

when adding more extinction. Since the material that causes truely external extinction is

presumably far away from the source, we can assume that is it at the temperature of the

surrounding molecular cloud. The extinction AV can be converted to a column density of

material by assuming a dust composition and knowing its opacity at short wavelengths. By

knowing the amount of material along the line of sight and assuming a temperature, we could

infer how much emission is expected at long wavelengths and test if it is consistent with

Herschel mesurements along the line of sight. A second approach is to add the flux from

the extinction material to the long wavelength emission from the model as part of the fitting

process. This suggestion has not yet been tested or implemented.

II.8 A close look at IRAS 20050+2720

In this section, we focus our attention on IRAS 20050+2720 which shows very clustered sources

that are resolved for the first time in the mid-IR with our SOFIA FORCAST observations.
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Figure II.13: IRAC 3-color images of IRAS 20050+2720. The two SOFIA
fields corresponds approximately to the two white squares in the image.

The fields that were observed are shown in Fig. II.13, superimposed with IRAC 3-color images

to provide some context.

II.8.1 Overview

IRAS 20050+2720 is part of an active site of intermediate-mass star formation in the Cygnus

Rift located at 700 pc (Wilking et al., 1989), with the particularity that it doesn’t seem to

contain any massive stars (Günther et al., 2012). The main cluster core is associated with

water and methanol masers (Palla et al., 1991; Fontani et al., 2010) and multipolar molecu-

lar outflows observed at millimeter wavelengths (Bachiller et al., 1995; Anglada et al., 1998;

Beltrán et al., 2008), suggesting that the region might have experienced an episode of star
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formation in the past 0.1 Myr which contrasts with the average age of the cluster of 1 Myr

(Chen et al., 1997; Gutermuth et al., 2005). Gutermuth et al., 2009 have identified > 170

YSOs surrounding the core and measured their continuum fluxes up to 8 µm with the Spitzer

IRAC instrument. While measurements at longer wavelengths are able to provide estimates

of the total luminosity of the cluster (e.g. using IRAS, Molinari et al., 1996, 388L�), the mea-

surements are confused in the densest region and it has not been possible to properly associate

the far-IR emission with its short wavelength counterpart because of the small separation be-

tween IRAC-detected protostars. The IRAS point source was classified as a luminous class

0 protostar (Bachiller, 1996), and its emission associated with the bright millimeter source

MMS1 to the northwest of the core (Chini et al., 2001), also called OVRO1 in Kempen et al.

(2012). Beltrán et al. (2008) show strong evidence that this region has multiple generations of

stars, and suggest that a group of low-mass stars first completed their main accretion phase,

before the birth of new intermediate-mass stars at the core of this cluster. A recent study

by Poppenhaeger et al. (2015) investigated the YSO variability in the IRAC 3.6 and 4.5 µm

fluxes in the region, and found that a large fraction exhibit variability, some as large much as

0.55 mag over periods ranging from a few days to ∼ 30 days.

II.8.2 Observations and discussion

We observed two fields within the cluster (see Fig. II.13), including the brightest core at

20h07m06.70s + 27◦28′54.5′′. Multiple sources in the core can be distinguished in the IRAC

maps, but the core appears extended in Spitzer MIPS at 24 µm, and is identified as a single

source with WISE. No high resolution far-infrared continuum data longward of 24 µm was

available for this source. To our knowledge, our observations are the only mid-IR observations
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Figure II.14: 37 µm observations of the IRAS 20050+2720 core, with the
5 identified objects. The blue contours are from a 2.7mm continuum emis-
sion observed by the OVRO array (Beltrán et al., 2008) at levels from 10 to
46mJybeam−1 by increments of 4mJybeam−1. The resolution of the 2.7mm
beam is ∼ 4.8′′, while the r.m.s noise is 1.5mJybeam−1. The dashed line is the
axis of a bipolar outflow identified by Bachiller et al. (1995). The beam shown
at the bottom left represents the resolution of the FORCAST instrument.

available that can properly resolve the YSOs in the dense region.

II.8.2.1 A clustered region with an outflow

We find 5 separate sources in the core which appear to share an envelope of extended emission

at 37 µm. These sources are labeled in Fig. II.14, and their IRAC and FORCAST photometry

is summarized in Table II.19. IRAS20050.4 is coincident with the source at the northwestern

end of the cluster, which is named OVRO1 in Beltrán et al. (2008). Two more sources are
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Table II.19: Sources fluxes in IRAS 20050+2720.

SOFIA name Coordinates ks i1 i2 i3 i4 F11 F19 F31 F37

J2000 Jy Jy Jy Jy Jy Jy Jy Jy Jy

IRAS20050.1 20h07m06.6s
+27d28m48.0s

0.214
±

0.021

0.489
±

0.049

0.57
±

0.057

0.731
±

0.073

0.858
±

0.086

0.64
±
0.07

1.93
±
0.20

4.50
±
0.35

6.32
±

0.59

IRAS20050.2 20h07m06.2s
+27d28m49.1s

0.002
±

0.002

0.041
±

0.004

0.142
±

0.014

0.264
±

0.026

0.308
±

0.031

0.06
±
0.06

1.45
±
0.19

9.31
±
0.72

11.96
±

1.19

IRAS20050.3 20h07m06.3s
+27d28m56.6s

0.028
±

0.003

0.09
±

0.009

0.218
±

0.022

0.339
±

0.034

0.429
±

0.043

0.18
±
0.06

2.58
±
0.27

12.53
±
0.94

19.34
±

1.41

IRAS20050.4 20h07m05.9s
+27d28m59.2s

0.002
±

0.002

0.023
±

0.003

0.039
±

0.004

0.053
±

0.008

0.055
±

0.008

0.06
±
0.05

0.25
±
0.20

8.54
±
0.80

12.85
±

1.25

IRAS20050.5 20h07m06.6s
+27d28m53.1s

0.042
±

0.004

0.118
±

0.012

0.176
±

0.018

0.235
±

0.024

0.32
±

0.032

0.19
±
0.05

1.03
±
0.21

2.97
±
0.33

5.65
±

0.65

IRAS20050.6 20h07m02.2s
+27d30m26.0s

0.155
±

0.016

0.537
±

0.054

0.771
±

0.077

1.113
±

0.111

1.805
±

0.181

1.81
±
0.13

2.29
±
0.17

1.64
±
0.14

1.22
±

0.38

IRAS20050.7 20h07m07.9s
+27d27m15.8s

0.002
±

0.002

0.004
±

0.004

0.024
±

0.002

0.06
±

0.006

0.072
±

0.007

0.06
±
0.05

0.11
±
0.06

1.15
±
0.14

2.09
±

0.31

identified with the blue millimeter wavelength continuum contours from Beltrán et al. (2008),

to the south and east of OVRO1, but they do not appear to correlate with our SOFIA

sources. The CO outflow axis (Outflow "A", Bachiller et al., 1995), which is associated with

IRAS20050.4, appears to be aligned with extended emission that is visible to the east of the

5 sources. This extended emission is visible in both IRAC and FORCAST, and coincides

with blue-shifted CO emission in the velocity maps from Beltrán et al. (2008). The emission,

totalling ∼ 6 Jy at 37 µm, appears diffuse and not connected to any particular YSO. A multi-

wavelength view of the region is shown in Fig.II.15.
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Figure II.15: The core of IRAS20050+2720 is seen in the four bands of the Spitzer IRAS instrument, as well as with the
four FORCAST bands. The increased resolution of FORCAST compared to previous instruments allows one to match
the long-wavelength emission with its short wavelength counterpart. The stretch in each image is adjusted for optimal

readability. The red contours correspond to the FORCAST 37 µm emission at 0.03, 0.07, 0.13, 0.2, 0.3 and 0.4 Jy.
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A likely explanation for this emission is that the outflow from IRAS20050.4 (MMS1/OVRO1)

is colliding with cold material in the surrounding cloud, creating a shock layer and heating

the dust to a few hundred degrees kelvin. This could explain the arc shape of the emission.

The hypothesis is supported by the SED for the extended emission (Fig. II.16) which exhibits

strong features at 5.8 and 8 µm (IRAC bands 3 and 4 respectively). These bands are known

to have multiple PAH broad emission lines, and significant PAH emission has been found to

be associated with other outflows (Noriega-Crespo et al., 2004; Hudgins et al., 2004) as the

shock energy and the direct starlight hitting the dust through the outflow cavity excite these

emission features. PAH emission is significantly weaker in IRAC band 1, while it is expected

to be non-existent in band 2 (Noriega-Crespo et al., 2004). The presence of excess emission

in bands 3 and 4 indicates that the emission is not purely thermal.

II.8.2.2 SEDs and fitted parameters

The 5 sources in the densest part of the cluster shown in Fig. II.15 are all highly extincted

based on the slopes of the emission in the 2MASS bands and the depth of the 10 µm silicate

absorption feature (see Fig. II.17). IRAS20050.1 has a flat spectrum out to 37 µm, unlike the

four other sources which are rising. IRAS20050.4 is the most steeply rising source, and is weak

in the IRAC bands, suggesting that it is the most embedded source, which is corroborated by

the fact that it is coincident with the strongest millimeter continuum source in the region.

The fitted parameters for the 7 identified sources in our two fields are shown in Ta-

ble II.21. When the mass error is 0, it means that there is only one mass parameter for all

the fits which are within 0.5 of Rmin. Since no long-wavelength data is available, the envelope

masses are not very well constrained. Sources 6 and 7 are far away from the main core which
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Figure II.16: SED from extended emission to the east of the cluster, using
photometry from IRAC and FORCAST in a 2.4′′ radius aperture. Excess
emission at 5.8 and 8 µm (IRAC bands 3 and 4 respectively) can be attributed

to PAHs excited by the shock and/or by the radiation from the outflow.

was discussed previously, and do not appear to be associated with the first 5 sources. We

interpret these results in several ways:

Table II.21: Fitted parameters of sources in IRAS 20050+2720.

SOFIA Name Coordinates α R Menv Lmod i AV

(J2000) (M�) (L�) (◦) (mag )

IRAS20050.1 20h07m06.6s +27d28m48.0s 0.07 0.74 0.004 ± 0 128 ± 15.3 65 9

IRAS20050.2 20h07m06.2s +27d28m49.1s 1.65 0.77 0.58 ± 0.22 26.6 ± 6.0 19 14

IRAS20050.3 20h07m06.3s +27d28m56.6s 1.13 0.73 0.26 ± 0.11 48.5 ± 6.3 27 5

IRAS20050.4 20h07m05.9s +27d28m59.2s 1.71 0.27 0.38 ± 0.32 48.5 ± 8.8 43 5

IRAS20050.5 20h07m06.6s +27d28m53.1s 0.54 0.78 0.01 ± 0 49.4 ± 6.2 43 14

IRAS20050.6 20h07m02.2s +27d30m26.0s -0.34 2.22 0.004 ± 0 201.6 ± 32.1 81 14

IRAS20050.7 20h07m07.9s +27d27m15.8s 1.29 1.50 0.015 ± 0.09 3.5 ± 3.6 0 14

Notes: The envelope masses are not well constrained due to the lack of long-
wavelength emission. When the mass error is 0, it means that there is only one

mass parameter for all the fits which are within 0.5 of Rmin.
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• Generally, the best-fitting luminosity is better constrained than the masses (10 − 25%

uncertainties in luminosity for R < 1);

• The sum of the protostellar luminosities is ∼ 300L�, which is consistent with IRAS

luminosity measurements of the entire region of 388L�.

• Sources 1 and 5 appear to be at a later stage of their evolution, with a lower spectral

index and much lower envelope mass. However, less models in our grid fit these models

well, as all well-fitting models have the same mass at the very edge of our range of grid

parameters;

• Sources 2, 3 and 4 are more embedded, with steeply rising SOFIA fluxes. They are

consistent with having sub-solar mass envelopes, but the uncertainties on the envelope

mass are large due to the lack of long-wavelength measurements;

• Source 6 fits less well and appears to have a very low envelope mass, as the SOFIA

fluxes are decreasing with increasing wavelength.

• Source 7 has the most fractional scatter in terms of envelope mass, as well as in lumi-

nosity. The fits from this source do not allow us to draw meaningful conclusions. It

would greatly benefit from having a high-resolution data point at long wavelength.

IRAS20050.6 is the poorest fit in this cluster, and it shows the limit of our grid of

models. Judging by the shape of the SED and its negative spectral index, we can conclude

that this object is not a Class 0 or Class I protostar with a large envelope. In fact, it is

classified as a Class II YSO in Gutermuth et al. (2009), and our grid is not particularly well-

suited to fit sources of this type. By doing some exploration of the parameter space around
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the best fit, it appears that the emission could potentially be fitted by a much smaller disk

outer radius with no envelope. The smaller disk size is required to reduce long-wavelength

emission, as all the dust stays warmer and emits only at shorter wavelengths. In order to be

thorough, we might decide to run a larger grid to fit this type of objects as well.

II.8.2.3 Diffuse emission

In testing the various scenarios of star formation, it is useful to obtain a measure of how much

mass is available for the YSOs to grow after their original collapse. For this, clustered regions

such as this one are an ideal laboratory since the YSOs appear to share an envelope. In this

cluster, the typical separations between the sources are 6′′-8′′, which correspond to projected

distances of 4200-5600 au. This strongly indicates that the envelopes of individual YSOs are

interacting with each other.

Table II.23: Clustered sources in the densest region of IRAS 20050+2720.

SOFIA name F11 F19 F31 F37

Jy Jy Jy Jy

IRAS20050.1 0.64 1.93 4.50 6.32

IRAS20050.2 0.06 1.45 9.31 11.96

IRAS20050.3 0.18 2.58 12.53 19.34

IRAS20050.4 0.06 0.25 8.54 12.85

IRAS20050.5 0.19 1.03 2.97 5.65

Sum of point sources in cluster 1.13 7.24 37.84 56.11

Total cluster emission 1.79 7.07 37.36 49.33

Ratio 1.58 0.98 0.99 0.88

Notes: The "total cluster" emission corresponds to the entirety of the region
shown in Fig. II.15, which is then background-subtracted.

However, measuring the flux from each individual source in these clustered regions

is challenging, since the sources are so close together. With an aperture of 2.4′′ (3-pixel
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Figure II.17: SEDs of the 7 sources in the two fields.
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radius on FORCAST), we managed to put non-overlapping apertures for all the 5 sources in

IRAS 20050+2720. However, since the aperture correction was derived considering a "total

flux" aperture to be ∼12 pixel radius, we are accounting for the same flux multiple times, even

if the apertures are not overlapping. We estimate the 37 µm flux from the eastern extended

emission to total ∼ 6 Jy, we obtain about 22% of excess 37 µm flux when comparing the sum

of the point sources and the total emission from the cluster (see Table II.23). At 31 µm, the

flux excess is only about 10%. At 19 µm and below, the extended emission is within the noise

uncertainty of the map.

This excess flux can only partially be explained by the tails of the PSF extending well

below the aperture size (see Fig. II.2), with 10-15% of the total energy still existing in the

annulus outward of 8 pixels (6′′) from the aperture center. However, the contribution of a

source to any given other source is only a fraction of this since it would only correspond to the

amount of flux within a 3-pixel aperture. We conclude that the PSF shape is not responsible

for the bulk of the observed excess flux at both wavelengths.

One possible explanation would be that diffuse thermal emission occurs across the entire

region. This could be caused by heating internal to the cluster (powered by the outflow, for

example, like the eastern extended emission) or by a population of stochastically heated very

small grains, which are not in LTE. The high outflow activity in this region could carve out

multiple cavities which facilitate short-wavelength photons from the individual stars to reach

out to larger distances within the envelopes and the shared mass reservoir. At 37 µm, the

level of diffuse emission required to account for the excess flux is about 0.05 Jy pixel−1, which

is the same as the average diffuse emission in the eastern region. Such an explanation would

also help account for the high amount of external extinction that is needed to fit most of the
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SEDs in this region.

This tends to favor a scenario where protostars are fragmenting from a cloud and con-

tinue accreting material within that original envelope. The envelopes of neighboring YSOs

interact, and possibly can exchange material as some YSOs become more massive (competitive

accretion).

II.8.2.4 Conclusions on IRAS 20050+2720

We have determined the photometry for 7 objects in IRAS 20050+2720. 5 of these objects

are highly clustered and our FORCAST data is the first mid- to far-IR photometry for these

sources. Our findings can be summarized as follows:

• Fitted luminosities for the 5 clustered sources are between 26 and 128L�, with estimated

scatter ranging from 10 to 25%.

• IRAS20050.1 and IRAS20050.5 have smaller envelope mass estimates compared to the

other 3 sources, which is consistent with the difference in their spectral index. Fitted

masses are less robust and show more scatter for the most embedded sources 2, 3 and

4, which are limited by the lack of far-IR, high-resolution data points.

• We detect extended emission to the east of the main core, which is strongest in the

31 and 37 µm images. It appears to be associated with the blue lobe of the outflow

coming from IRAS20050.1 (MMS1/OVRO1). We argue that the emission is arising

from shock-heated material where the outflow is impacting the cloud, and we suggest

that the enhanced IRAC band 3 and 4 fluxes are a signature of PAHs emission, which

can be characteristic of such outflow regions.
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• The grid might need to be expanded to lower masses and/or to smaller disk and envelope

sizes to manage to fit Class II sources such as IRAS20050.6.

• Finally, the inconsistency between the sum of point source fluxes and the total cluster

emission at 31 and 37 µm could be explained by the presence of an extended, diffuse

component the 5 clustered sources appear to share. This is consistent with competitive

accretion theory of clustered star formation in which multiple cores will attempt to

accrete mass from a same, shared envelope.

II.9 Conclusion and future work

We have used SOFIA FORCAST to image 42 fields in bright, nearby stellar clusters. We

derive aperture photometry in 4 bands: 11.1 µm, 19.7 µm, 31.5 µm, 37.1 µm, for a total of 70

point sources and 14 extended sources. In many cases, our photometry is the only mid- to

far-IR photometry available for these sources, since archival Spitzer observations were either

saturated or confused.

In most cases, we complete our SOFIA photometry using Spitzer IRAC and 2MASS

data to produce SEDs from 1.2 µm to 37 µm. In a limited number of cases, we also obtained

Herschel data. When the photometry catalogs cannot be found, we use the same photometry

pipeline that we developed for SOFIA on the Spitzer and Herschel calibrated images.

We proceed to SED fitting of a subset of our sources, based on a radiative transfer

code called Hyperion. Starting from a standard model, we argue that there are 4 primary

parameters that are needed to model the SEDs for Class 0 and I YSOs: the central luminosity,

the envelope mass, the inclination angle, and an external extinction component. A scaling

factor can be used as a proxy for finer luminosity sampling in the grid. We argue that as a
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system approaches the boundary between Class I and Class II, a fifth parameter might need

to be varied in the model: the disk/envelope outer radius. Reducing this radius is necessary

to appropriately reducing the emission around 100 µm while maintaining the fluxes at shorter

wavelength, as exhibited for example in our source IRAS20050.6.

Fits for most our sources are reasonable. The luminosity of the family of best fits is

usually constrained well, with scatter usually less than 25%. We attribute this good accu-

racy to the FORCAST 31 and 37 µm bands which really sample the envelope. This typical

scatter does not change when long-wavelength data points are not available, for example

in IRAS 20050+2720. Envelope masses, however, are constrained much better when long-

wavelength data (such as Herschel) is available. Unfortunately, for most of our sources the

long-wavelength data come from single-dish telescopes, which do not have sufficient angular

resolution to guarantee that the measured flux is associated with the source; the measured

emission could belong to an extended component, or to another nearby source.

We find that the fitted luminosity is substantially different from the observationally-

defined bolometric luminosity of our sources (which corresponds to the integral of the observed

data points), with a high dependence on the inclination angle of the fit. We argue that the

fitted luminosity is a more accurate measurement of the central luminosity (which is composed

of the source’s luminosity and the accretion luminosity). Indeed, the bolometric luminosity

is highly geometry-dependent, as a source seen edge-on will exhibit a dramatically lower

bolometric luminosity as opposed to sources seen through the throat of the cavity, because of

the line of sight passes through the disk which has a lot of opacity. SED fitting allows us to

lift this degeneracy and provide a more robust estimate of the actual luminosity.



Chapter II. Star Formation in Clustered environments with SOFIA FORCAST 84

Finally, we discuss several caveats with the fitting methods that are traditionally em-

ployed, such as the use of an external extinction factor which is modeled purely as extinction

with emission counterpart. While this could matter substantially for estimating masses, we

argue that its impact on the luminosity determination is small, provided that the allowed

range of extinction remains reasonable.
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Chapter III

The Balloon Experimental Twin

Telescope for Infrared Interferometry

III.1 Towards higher angular resolution in the far-IR

Observations at mid- to far-infrared wavelengths from the Earth’s surface are extremely lim-

ited by the large atmospheric opacity in this region of the spectrum. Space-based telescopes

like IRAS (12-100 µm; Neugebauer et al., 1984), ISO (2.5-240 µm; Kessler et al., 1996), Spitzer

(3.6-160 µm; Werner et al., 2004), AKARI (1.7-180 µm; Murakami et al., 2007), WISE (3.4-22

µm; Wright et al., 2010) and Herschel (55-672 µm; Pilbratt et al., 2010) have demonstrated

the scientific value of observations at these wavelengths; but the spatial resolution of space-

based observatories is limited by the cost and complexity of building and flying progressively

larger aperture telescopes.

High-altitude platforms are a good compromise between ground and space observatories:

while less sensitive because of the surrounding thermal emission from the atmosphere and the

instrument components which are at ambient temperature, they can still feature larger optics

and payloads, more experimental setups, and instrumentation that can be changed on a more
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frequent and significantly less costly basis.

BETTII is an experiment that aims at breaking from the single-aperture paradigm

by using interferometry between 30 and 110 µm from a balloon platform. Interferometry is

commonly used on the ground at other wavelengths such as optical and radio, and is a viable

path forward to obtain much higher resolution than what single apertures can reasonably

provide.

BETTII is founded on a particular technique called spatio-spectral interferometry (Mar-

iotti et al., 1988), which is a way to achieve high angular and moderate spectral resolutions

at far-IR wavelengths, without the cost and limitations of large single apertures.

III.2 BETTII description

As a cryogenic payload flying at an altitude of 37 km (120 000 ft), BETTII is the first flying

"direct detection" interferometer: it will attempt to coherently combine light from two dif-

ferent telescopes to provide increased angular resolution. Because it is operating from above

most the atmosphere, it can see the far-infrared universe between 30 and 110 µm, and provide

0.5′′-1′′ spatial resolution at these wavelengths - a key region of parameter space well-suited

to study protostars evolving in dense clustered environments.

To provide this resolution (which matches that of JWST at 25 µm), BETTII needs to

be have two collectors separated by ∼ 8m; because of its operating wavelength, it needs to

have a cryogenic instrument; because it is an interferometer, it needs optics with excellent

surface quality (by far-infrared standards); and because it flies on a balloon platform, it needs

to accommodate for large changes in temperature, large pointing errors, and severe shock

resistance for the landing phase.
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This chapter will first discuss the basics of double-Fourier interferometers, then present

the general design of BETTII payload and most of its subsystems.

III.3 Basics of interferometry

Since the end of the 19th century, scientists have learned how to use the wave properties of

light to learn about new astrophysical phenomena. It did not take long for what first started

as a laboratory experiment by Michelson et al. (1887) to be applied to astronomy, with the

Michelson Stellar Interferometer experiment.

The principle of interferometry is simple. Because light behaves like a wave, two beams

of light coming from the same source can be combined coherently, provided that their am-

plitudes and phases are controlled. The intensity of the combined signal is a function of the

brightness of the light beam, and the relative phase and wavefront of each beam. Changes in

the relative phase create a modulation of that brightness.

Michelson et al. (1887) created what became the standard Michelson interferometer

(Fig. III.1). It uses one single source of light and a 50/50 beam splitter that creates two

coherent light beams from that one source. The two light beams go through two separate arms

before being recombined. While adjusting the length of one arm with respect to the other,

we modulate the phase difference between the two arms, leaving everything else the same.

This creates a modulation called an interferogram, which describes the measured intensity

variation as a function of the phase difference between the two arms.

The phase difference is expressed in radians and depends on the wavelength of the light

that is used. In this work, we will usually refer to this difference in terms of an actual physical
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Figure III.1: Left : Schematics of a Michelson interferometer. Right : Inten-
sity modulation resulting from the mirror linear motion. The center of the
modulation, called "ZPD" for zero path difference, is the precise location of

the mirror where the distance is equal in each arm.

distance: the optical path difference (OPD). This has the advantage of being wavelength-

independent and relate more easily to opto-mechanical considerations.

III.3.1 Fourier transform spectroscopy

One immediate consequence of the original Michelson experiment is to realize that the in-

terferogram actually contains spectral information. For an ideal monochromatic source, the

interferogram depends on the OPD only modulo a wavelength. This means that the modu-

lation is identical whether we introduce an OPD = λ, or OPD = nλ, where n is an integer.

This is because the monochromatic wave can essentially be represented by an amplitude times

a cosine function of phase (a cosine function of 2πOPD/λ).

The interferogram for a given wavelength is a cosine wave, with an amplitude related

to the intensity of the signal, and a period equal to the wavelength of the incident light.

If we consider a polychromatic signal as a sum of monochromatic wavelengths, this

phenomenon happens for each single wavelength, and the resulting intensity modulations add
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OPD

Figure III.2: An ideal interferogram here is shown as a sum of cosine waves
of different frequencies.

coherently : the total intensity is the coherent sum of the intensity modulations created by

each individual wavelength (see Fig. III.2). This has the effect of smearing the resulting

modulation in most places except around the precise location where the OPD is zero (which

is called ZPD). Around this location, a modulation is always seen. This is commonly referred

to as white light fringes, where a fringe represents one wavelength of the interferogram. The

range of OPD in which fringes can be seen is called the coherence length Lc. When all

wavelengths are weighted equally in a bandpass ∆λ, the coherence length can be expressed

as:

Lc =
λ2

∆λ
, (III.1)

and the interferogram can be represented by a carrier frequency modulated by an envelope

function.

Since the modulation is a coherent superposition of cosine waves, it contains spectral

information. A cosine transform of the interferogram will decompose the contribution of each
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individual wavelength, hence reproducing the spectrum of the polychromatic source. This

technique, called "Fourier Transform Spectroscopy", has led to many scientific discoveries in

astronomy, chemistry and other fields over the last 100 years.

III.3.2 Aperture synthesis

An interferogram is produced by coherently combining photons from one single source of light.

This can be applied for example for an infinitely distant astronomical source: as the light

propagates from the source, by the time it reaches our instrument the radius of curvature of

its wavefront is extremely large, and the latter can be approximated as being flat. The photons

from this source nominally enter each arm of the interferometer with the same phase, when the

alignment is perfect. When combined, these photons interfere and create an interferogram.

However, let’s suppose that a second source is sufficiently far away from the first source

that its wavefront enters the interferometer at an angle (see the red source in Fig. III.3).

This means the photons from the second source enter one arm slightly later than the other -

photons need to cross over more optical path in one arm than in the other. These photons

would also create an interferogram, but the latter will be centered about a different position

in OPD space than the interferogram created by the photons from the first source. Now let’s

suppose that the second source is exactly as bright as the first one, and that it is apart from

the first by an angle θ such that B · ŝ = |B| sin θ = λ/2, where ŝ is a unity vector representing

the line of sight of the telescope, and B is the baseline vector projected on the plane of the sky.

In this case, the interferogram created by the photons from the second source has the same

amplitude as the first interferogram, but is shifted by half a wavelength in OPD. As a result,

the two (monochromatic) interferograms would exactly cancel each other, and we would say
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Figure III.3: Schematics of a Michelson Stellar interferometer. Two sources
are shown at the top of the picture. The red source is off-axis by an angle θ.
Since it is infinitely far away, its wavefront is essentially planar as it reaches
us. The two siderostats sample the identical wavefront at different points,
but because of the incidence angle, the light in the left arm travels slightly
more path than the light in the right arm. As a result, the interferogram
from that source will be shifted, since the position of ZPD is now offset by
this extra distance the light has to cross. On the other hand, light from the
blue source, which is perfectly on axis, produces an interferogram which has a
ZPD at the nominal position. Those two intensity modulations co-add in the
detector plane, and the sum is shown in black. By observing these summed
interferograms over multiple baseline angles and distances, one can reconstruct

entirely the spatio-spectral scene.

that the visibility (sometimes referred to as the complex degree of coherence (e.g. Mariotti

et al., 1988)) between the two sources is zero. Although the sources are not coherent in
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the strict sense because they are completely independent sources, the interferograms caused

by each source would, in this case, cancel out. If the angular separation was such that

|B| sin θ = λ, then the modulations would add up and the resulting modulation would have

twice the amplitude of that with just one single source. We would say that the visibility

between the two sources is unity. In the bottom right of Fig. III.3, we show the addition of

two polychromatic interferograms (in blue and red), adding up to the measured curve in black.

By measuring the curve in black, we know that there are two sources along our baseline vector.

The spatial resolution of the interferometer is its ability to resolve nearby sources directly in

the interferogram space - in other words, it is its ability to resolve fringe packets. Usually, this

spatial resolution is equal to θ ∼ λ/(2B). A summary of the relevant planes used in aperture

synthesis is shown in Fig III.4.

One way to formalize the concept of spatial coherence is to consider an interferometer

with a given baseline length and angle as a filter of the source’s spatial distribution on the

sky. For a given baseline length and angle with respect to the sky, the interferometer is only

sensitive to a single angular frequency in a single direction on the sky (as well as the total

power). Various sources observed simultaneously by the interferometer will all contribute to a

single measured interferogram, which can be characterized in terms of the complex visibility

between the sources for a given baseline angle and length.

The generalization of this property is called the Van Cittert-Zernike theorem (Zernike,

1938): the 2D Fourier transform of the intensity distribution on the sky is its complex visibility

function. In other words, by mapping the complex visibility (through measuring interfero-

grams) for a sufficiently dense set of baseline angles and lengths (in the Nyquist sense), we can
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Figure III.4: Relevant planes in the optical train for aperture synthesis,
inspired by Fig. 3.14 in Glindemann (2011). Three sources are shown on the
sky on the left. The second relevant plane is the entrance aperture or pupil
plane, which is the 2D Fourier transform of the source plane, which is also
called the u,v-plane. The interferometer samples two apertures in this complex
plane at each given baseline length and orientation with respect to the sky. In
the third plane, we show that an optical delay is introduced between each sub-
aperture in the pupil plane, and the pupils are overlapped. Finally, an image
is formed out of the overlapped pupils, which is shown in the detector plane.

reconstruct the original image through an inverse Fourier transform without loss of informa-

tion. The plane of complex visibilities is commonly referred to as the (u,v)-plane (Thompson

et al., 2008).

Interferometry and aperture synthesis is used commonly at radio wavelengths, where

coherent detectors can retain the direct phase of the incoming light by mixing the signal with

a local oscillator. Both the amplitude and the phase of the signal can be recorded for each

antenna, and can be combined with all the other antennas at a later time.

Aperture synthesis has also been achieved at optical and near-infrared wavelengths

from the ground, where a nearby guide star is used to determine a reference phase of the

incoming beam (e.g. Monnier et al., 2004; Gillessen et al., 2010). The interferograms measured
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for the science sources can then be non-ambiguously aligned with each other. This process

requires very rapid imaging capabilities (on the order of 10ms, a typical atmospheric coherence

timescale, see discussion in Mariotti et al., 1988) to freeze the atmospheric variations across

the synthetic aperture, which in turn requires bright guide stars. In addition, because of

the large baselines, the field of view is very limited, so the targets accessible by optical

interferometers are limited to scientific sources which are within few arcseconds of a bright

guide star (Glindemann et al., 2000): this dramatically limits the capabilities of ground-based

interferometry at these wavelengths.

III.3.3 Double-Fourier interferometry

In this work, we introduce the concept of Double-Fourier interferometry, which uses a standard

Fourier Transform Spectrometer at the back-end of a Michelson stellar interferometer (see

Fig. III.5 and Mariotti et al. (1988)).

We adopt a Michelson interferometer configuration with pupil-plane combination. Un-

like image-plane combination, where fringes are seen across a single Airy disk in the image

plane, no fringes are visible across the field of view at a given OPD. Instead, the intensity of

the entire field of view is modulated as a function of OPD.

By scanning the OPD, we obtain a modulation of each pixel on the detector, which

contains information on both the spectral (through the Fourier transform of the scan) and

the spatial (through the amplitude and phase of the fringe packet) characteristic of the source,

at that baseline orientation and length. By repeating the measurement over a full range of

baseline angles and lengths, one can unambiguously retrieve both the spatial and spectral

content of the astronomical scene by filling the synthetic aperture.
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Pupil-plane combination allows for an interferometric response of the entire field of

view. The price we pay is that the OPD scans need to be longer in order to cover enough

range, going through ZPD for each pixel in the field of view. For a single-pixel detector, the

OPD scan would only need to cover enough stroke to obtain the desired spectral resolution

for the one single pixel.
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Figure III.5: Standard FTS telescope layout (left) versus double-Fourier tele-
scope layout (right) (Mariotti et al., 1988). Note the extra reflection in one

arm for the double-Fourier layout.

A detailed derivation of the equations of Double-Fourier interferometry starting from

first principles is presented, in Appendix A.1 and Chapter IV.

III.4 BETTII Instrument design

The BETTII payload is an 8m fixed-baseline interferometer, equipped with two 50 cm siderostats.

It operates in two wavelength bands, 30-55 µm and 55-110 µm. In these two bands, its theo-

retical angular resolution is ∼0.5′′ and ∼1′′, respectively. This is significantly better than all

existing or previous facilities that operate in the far-infrared, which are limited by the mirror
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size. In addition, this matches the resolution of JWST at 25 µm, hence providing the ability

to probe astrophysical phenomena at longer wavelength with the same angular resolution.

There are four major components to BETTII: the mechanical structure and design;

the optics and their mounts; the cryostat and the detectors; and the control system. The

latter will be discussed extensively in Chapter V. In this section, we first describe the balloon

environment and its constraints, before discussing these four major BETTII components.

III.4.1 Stratospheric balloon environment

High-altitude balloons have for many years served as test platforms for future space instru-

ments, such as the FIRAS instrument on COBE (Fixsen et al., 2002a). These balloon plat-

forms fly between 30 and 40 km, above more than 99% of the atmosphere, which make them

particularly well suited for studying the universe at infrared, far-infrared and sub-millimeter

wavelengths. Balloon launches occur year-round across multiple continents, including Antarc-

tica. NASA and other agencies organize these campaigns for various areas of science.

For a typical launch, the scientific payload is attached on the bottom of a train of about

100m that includes a parachute and a ladder. The top of the ladder attaches to the bottom

of the large helium-filled balloon.

At float altitude, the air temperature is between 230K and 250K, while the air pressure

is 0.5% of the sea level pressure (about 5 mbar). Upper altitude winds are large-scale laminar

flows that move the balloon and the payload as one. This can excite pendulum motions about

the pivots underneath the balloon and at the top of the payload, which are typically of the

order of a few arcminutes and have periods of a few to many tens of seconds (Fixsen et al.,

1996a).
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Figure III.6: Picture of a balloon launch. The payload is captured by
the launch vehicle (in yellow) until the balloon is inflated and released. The
parachute assembly, which is a part of the long train from the top of the payload

to the bottom of the balloon, can be seen in red. Credit: NASA.

The payload’s temperature distribution is influenced by the air temperature, infrared

radiation of the Earth, and sunlight, which can result in complex temperature gradients across

the instrument. A better temperature uniformity is expected for night flights, which is what

BETTII is expecting.

Balloon experiments can also be affected by cosmic rays which can damage the elec-

tronics, lead to data corruption and or failures of the software/control system. However, this

becomes more of an issue for long-duration balloon flights around Antarctica, during which

the payloads are exposed for many weeks to the cosmic ray environment.

BETTII is expected to launch from Fort Sumner, NM, for its first engineering flight in

September 2016. After a morning launch, we expect to wait until nightfall to achieve proper

thermal stabilization and achieve our science goals. We expect the flight to last about 16 h,
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although this is highly dependent on the weather and wind patterns.

III.4.2 Mechanical design

BETTII has two main structures. The first is a carbon fiber and steel truss that is used as our

optical bench, and all our optical elements are attached to this structure. This was the first

item that was designed on the project. The elements of this structure are built by bonding

7.5 cm diameter hollow carbon fiber tubes to stainless steel conical ends, that we call nose

cones. All tubes on the payload were tested to 2000 lbs of tension at room temperature, and

we tested a few tubes in tension after dunking them in liquid nitrogen. The epoxy bond held

in all "cold" tests, and only one bond broke out of 100 tubes for room temperature tests.

We further determined that the bond failed because the carbon fiber surface inside the tube

was not sufficiently sanded and cleaned. The steel nose cones are lightweight and strong, and

have a threaded hole on the axis: they attach to multi-faceted, hollow steel nodes. Bolts go

through the facets of the nodes and thread into the nose cones. There are three lengths of

tubes on the truss. At the interface between the nose cones and the nodes, and depending

on the location on the payload, we use either a combination of spherical washers and bellville

washers or polypropylene washers. The difference of the washer material compensates for

differential thermal contraction on the beams that form the long side of triangles.

The structure is about 9m long. It is designed to be lightweight, strong, and have a

first resonant mode above 20Hz to ensure fast damping of residual mechanical oscillations.

We measured the first resonance peaks to be within 1Hz of their expected frequency, at 25Hz

(see Chapter VI).

The entire balloon payload needs to be robust to survive 10 g vertical force and 5 g
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force at 45 deg, which are the safety guidelines from the launch facility. With an expected

total mass of 1000 kg, we need yield strength sufficient to hold 100 000N of force.

An annotated rendering of BETTII is shown in Fig. III.7. The gondola is what holds the

truss and attaches to the balloon train. It also holds the electronics, reaction wheels, batteries,

and communications to the ground. The frame is made out of 80/20 T-slotted aluminum bars

that are attached together using T-inserts, and reinforced by screwed-on corner plates. The

precision of this frame is of no importance to the optical alignment.

Figure III.7: CAD rendering of the BETTII payload in its final state.

The various electronic components of the system are attached to the gondola using

aluminum or honeycomb aluminum plates, which are painted with white appliance paint

(Krylon 3201 White Epoxy Appliance paint) for better thermal behavior. These plates act as

radiator panels which allow us to dissipate the heat out to space, since they efficiently reflect

visible light and emit in the infrared.

The most critical portion of the gondola is the assembly that connects to the balloon

train. This contains a single pin that needs to have the highest yield strength of all elements
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on the payload, since it is the only point of the payload that needs to support the entire

weight. A more detailed description of the pin is presented in Section V.1.2.4.

The entire payload is designed, assembled and tested in the building 20 high bay at

NASA GSFC (Fig. III.8).

Figure III.8: Payload in the high bay before a controls test.
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III.4.3 Warm optical system

The optical system was one of the most challenging design aspects of the project. It is beyond

the scope of this work to go into details about all the considerations that went into the design,

but we will review some of the main aspects: the overall optics layout, and the fabrication of

the telescope assemblies.

III.4.3.1 Optics layout

Because the nature of balloon payloads, there can be extensive damage to the structure during

parachute opening and landing. In order to minimize the repair costs from one flight to the

next, it was decided to place the telescope assemblies - which are expensive, long lead-time

items - away from the edges of the truss, where we expect to have the most damage.

Instead, flat mirrors (that we call siderostats) are used to redirect the light towards the

telescope assemblies, which are kept close to the center of the truss where damage is expected

to be less than the edges.

The telescope assemblies (Fig. III.9) consist of 3 powered mirrors and a folding flat.

They provide a 20:1 compression ratio of the beams with reasonable tolerance on the mirror

positioning. As an all-aluminum assembly, they shrink homologously as the temperature

varies during the different phases of the flight, hence maintaining optical prescriptions.

In order to perform double-Fourier interferometry, an extra reflection needs to be intro-

duced in the system in order to properly combine the polarizations of the light at the beam

combiner (see Fig. III.5). This asymmetry occurs after the telescope assemblies and before

entering the cryostat. In one arm, a 3-mirror assembly (called the K-mirror assembly, or

KMA) is used on a rotating stage to match the field of view rotations as the two siderostats



Chapter III. The Balloon Experimental Twin Telescope for Infrared Interferometry 102

Figure III.9: Telescope assembly model and layout.

change elevation. On the other side, a 4-mirror delay line assembly (called the Warm Delay

Line, or WDL) is set at a fixed orientation. Its role is to compensate for the optical delays

caused by the residual pointing errors.

On both the KMA and the WDL (Fig. III.10), one of the mirrors is actuated in tip

and tilt, which provides the fine control required to properly overlap the two beams at the

detectors. There is an extensive discussion of the control system in Chapter V.

The beams from each side enter the cryostat through thin polypropylene windows. We

tested different window thicknesses and selected the 15 µm thickness as our baseline design.

Once the beams are inside the cryostat, they are split into a NIR tracking channel, and into

the FIR optics train where they are delay-modulated by the Cold Delay Line (Fig. III.10),
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Figure III.10: K-Mirror Assembly, Warm Delay Line, and Cold Delay Line.

combined, and image onto the detectors. A complete layout of the optics train is shown in

Fig. III.11 (Dhabal et al., 2016, in press).

Figure III.11: Optics layout for BETTII (Dhabal et al., 2016, in press).
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III.4.3.2 Optics manufacturing

Despite working at relatively long wavelengths, the tolerance in the surface figure of all the

mirrors is an important consideration. Differential wavefront errors between the two optics

trains before combination will result in decreased contrast of the interferograms, which reduces

our signal-to-noise ratio. As a result, the surface quality of the mirrors pre-combination

(as measured by the wavefront errors) needs to be much lower than a wavelength of light,

since errors will stack after hitting many mirrors from both sides. We allocate 2 µm of total

wavefront error at combination, which translates to ∼0.23 µm of surface error per mirror.

Given that known processes exist to manufacture small mirrors below this requirement, we

relax the requirement for the primary mirrors and the siderostats to a 300 nm r.m.s surface

figure error over the entire aperture.

The company Nu-Tek, in Aberdeen, MD manufactured all of our small optics out of

aluminum. The procedure includes an initial milling process, heat treatment using a method

called uphill quenching (Hill:1960vf), followed by diamond turning and gold coating to avoid

oxidation.

However, very few manufacturers in the United States were able to diamond-turn the

siderostats and the primary mirror assemblies, while ensuring the level of surface figure we

needed. The diamond-turning process uses a slowly moving diamond blade that is controlled in

3 axes to carve out the required shape. This process requires extreme temperature stability,

which is often not available in traditional machine shops. Companies which are familiar

working with NASA on space missions were not affordable for a small project like BETTII.

The Department of Advanced Manufacturing at North Carolina State University pro-

posed to manufacture our mirrors on a ’best effort’ basis for a reasonable cost. The results
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Figure III.12: Telescope assemblies in the optics lab.

are published in Furst et al. (2016, in press), although the surface quality has not yet been

measured, due to difficulty with the equipment and setup in the optics lab at NASA God-

dard. Each telescope assembly (see Fig. III.12) has a stacked r.m.s surface figure error of

300 nm, while the siderostats have a surface error of 100nm r.m.s. The siderostats are more

complicated because they did not exactly fit in their diamond-turning spindle. We decided

to proceed with a two-step diamond turning, where they turned two sections of the ellipse

consecutively. This does not guarantee that the two areas will be at the same height since

they have to unmount the mirror off the spindle. However, our models show that even if

different sections of the mirrors are at different heights, the beam combination can still be

successful, as the parts of the pupil that are shifted in one arm are also shifted in the other.
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III.4.4 Cryogenic instrument

The cryostat was designed by our team. Items were sent out for manufacturing to different

companies and assembled in our lab. The cold volume is cooled by liquid nitrogen and helium

and does not require any mechanical cryo-cooler. It is designed to operate for a duration of

40 h, which should give us enough margin considering the typical lengths of balloon flights

from the U.S. of about 16 h.

The optics inside the cryostat are split into two sections: a near-infrared fine guidance

system, and the far-infrared channels with the science detector (Fig. III.13). The incoming

light beam is split right after entering the cryostat with a NIR/FIR dichroic beam splitter.

This custom-made filter reflects the far-IR and transmits the near-IR. At the bottom of the

cryostat, in the 77K volume, the fine guidance sensor is composed of 12 optics and one

HAWAII-1RG detector from Teledyne.

At the top of the cryostat and attached to the 4K cold plate, there is a cold optics

bench that holds all of the far-IR optics, filters, and the Cold Delay Line. All filters were

manufactured by Cardiff University in the U.K. The layout of the optical system is shown in

Fig. III.11, and more details can be found in (Dhabal et al., 2016, in press). A picture of the

cold optical bench with populated and aligned optics is shown in Fig. III.14.

The cold plate of the dewar is cooled down to 4K with liquid Helium. A (3He+4He)

sorption refridgerator from Chase Research is used to obtain an intermediate cold finger at

1K and a final stage that brings down the detector temperature to ∼400mK. Fig. III.15

shows a picture of the top plate of the cryostat while cold.

At the heart of the instrument are four 9× 9 close-packed linear arrays of multiplexed

superconducting transition edge sensor (TES) bolometers (Benford, 2008) incorporating the
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Figure III.13: Cryostat crossection.

Backshort Under Grid (BUG) architecture (Allen et al., 2006). These arrays are scaled ver-

sions of similar arrays already built for ground-based instruments (e.g., GISMO, Staguhn et

al., 2014a). Detectors are read out using linear SQUID multiplexer and amplifiers. A 4× 22

multiplexed readout is used for each array; the extra seven channels are used for calibration

signals (unilluminated pixels, “dark SQUID” channels, and an “always on” channel), allowing

monitoring of all potential noise contributors (Korte et al., 2003).
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Figure III.14: Optics on the cold bench.

Figure III.15: Cryostat top plate during cool down.
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III.4.5 Data products & analysis

Once in flight the payload operations consist of pointing at a target, stabilizing the attitude

motions, and scanning the delay while recording detector data. A number of operational

modes are required to ensure we reach this stable observing stage, and are described in more

details in Chapter V.

Individual scans will last for a nominal duration of 2.5 s, and consist of 1024 individual

detector frames, which are matched to a given OPD. To increase the signal-to-noise ratio

(SNR), we expect to stack 10min worth of data, which corresponds to 200 scans. For this

duration, we expect that the change in the baseline angle due to the rotation of the Earth is

negligible. It is critical to correctly stack the interferograms, as OPD errors from scan to scan

can significantly reduce the fringe contrast (see Chap. IV).

To describe post-processing, consider a 10min cube which is the OPD-corrected stack

of images from the 200 individual scans. The cube has a crossection of 9×9 (which is the size

of an individual detector frame), and a depth of 1024 frames. For each frame, the intensity of

each source in the detector is determined for each OPD, and combined into interferograms.

We repeat the process for the same field observed at different baseline angles.

Using starting points involving our existing SOFIA multi-wavelength observations, as

well as the IRAC images, these interferograms will help determine the multiplicity of bright

sources, their individual SED, and their position relative to the large-scale extended emission.

Juanola-Parramon (2016) developed an inversion software to retrieve spatio-spectral

datacubes from a set of interferograms taken at multiple baselines. While useful for diag-

nostics, simulations, and calibrations, this software will likely not be used for actual data

processing since the BETTII (u, v)-plane coverage is so sparse.
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Figure III.16: BETTII data processing steps.

III.5 Sensitivity analysis

Early in my involvement with BETTII, I led the effort in trying to estimate the sensitivity

of our instrument, in order to select relevant scientific targets, but also find astronomical

calibrator objects which would help us understand the systematics of our payload.

This section summarizes the findings and gives details on the methods and equations

we used. We were able to derive a new formalism to estimate the spectral sensitivity of

double-Fourier interferometers for point sources. Our method uses propagation of gaussian

errors through Fourier transforms, and is described in detail in Chapter IV. This can be useful

to determine the sensitivity of other types of instruments, such as a space-based follow-up of

BETTII, which we briefly discuss in the conclusion of this work.
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III.5.1 Instrument and observing parameters

Table III.1 represents the key instrument parameters that are relevant for the sensitivity

estimation of the two science channels of BETTII. The main impact of each parameter on

some aspects of the science is shown. A detailed, custom calculator tool that we developed

compiles most of the instrument parameters that flow down from these requirements, which in

turn serve as design baseline for various subsystems. For example, the "OPD range required"

is a derived output, depending on the baseline length, the field of view and the required

spectral resolution.

III.5.2 Far-IR background noise estimation

We proceed to an estimation of the known far-IR background noise contributions from sources

in thermal equilibrium. We assume that each source of noise emits like a Planck function Bν

with a certain emissivity ε. In Table III.3, we list the number of photons generated per second

for the amount of solid angle seen by a single pixel (with the exception of the atmospheric

contribution, which is treated separately). The thermal emission is weighted by the normalized

transmission function, which was measured in the laboratory (Fig III.17). By far the strongest

contributors from our system are the warm optics and the cryostat’s polypropylene window.

In addition to the noise of our own system and the astronomical background, we need

to take into account the noise generated by the atmosphere, which results in a more complex

calculation. For best accuracy, we use quantities from Harries, 1980, who measured the actual

sky radiance in a large range of wavelengths from balloon altitudes. We obtain a radiance

of 0.16Wm−2 sr−1 and 0.07Wm−2 sr−1 for band 1 and 2 respectively. This corresponds to

2.6× 1010 photons s−1 and 5.2× 1010 photons s−1, respectively.
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Table III.1: Instrument design parameters for BETTII.

Parameter Value Units Science
driver/impact

Top-level parameters

Input aperture 0.196 m2 Sensitivity

Baseline length 8 m Angular resolution

Detector pixels 9× 9 pixels Wide FOV

Detector quantum efficiency 70 % Sensitivity

Integration time per full frame 2.5 ms Sensitivity

Time per baseline orientation 10 min Sensitivity

Number of data points per scan 1024 points Wide FOV

OPD range required 8.2 mm Wide FOV &
spectral resolution

Optical system

Band 1 Band 2

Central wavelength 40 82 µm Study YSOs

Fractional bandwidth 62.5 % 54.9 % SNR at ZPD

Field of view 2 3 arcmin YSO regions

Etendue per pixel 8.2× 10−10 1.8× 10−9 m2 sr Sensitivity

Estimated efficiency 20 % 24 % Sensitivity

Pixel angular size 13.32 19.72 arcsec Wide FOV

Primary full width half max 17.31 35.49 arcsec Sensitivity

Notes: Instrument parameters that flow from the science requirement of 0.5′′

and 1′′ spatial resolution in bands 1 and 2 respectively, and spectral resolution
R = 10 in both bands.
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Table III.3: Thermal noise contributors

Noise source T (K) Emissivity Photons s−1
Band 1

Photons s−1
Band 2

Reference

Warm optics 240 0.1 1.38× 1011 9.97× 1010 Assumes 99% per
mirror

Window 240 0.02 2.76× 1010 1.99× 1010 Lab measurements

Zodi dust 245 3.00× 10−7 2.92× 105 3.41× 105 Fixsen et al., 2002b

Galactic Cirrus 20 1.23× 10−4 1.79× 101 7.67× 104 Bracco et al., 2011

Zodi scattering 5800 1.00× 10−13 1.47× 101 1.31× 101 Fixsen et al., 2002b

CIB 18.5 1.30× 10−5 2.19 9.68× 103 Fixsen et al., 1998

Instrument 4 1 8.3× 10−27 3.60× 10−7 Conservative esti-
mate

CMB 2.728 1 1.02× 10−45 9.35× 10−17 Fixsen et al., 1996b

Notes: The calculator was designed to be scalable to designing a space mission,
which is why we kept track of terms which are negligible compared to the main
contributors. In space, the warm optics and window contributions would be
significantly reduced and more comparable to the other terms. These quantities

do not yet include the losses from the instrument’s throughput
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Figure III.17: BETTII total transmission curves Tbp(λ) from all cold filters,
excluding the beam combiner, cryostat window, and NIR/FIR dichroic. Bands

are shown in different colors.
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To know how much power is actually reaching the detectors, we need a measurement

of our optical throughput. The throughput is the product of the efficiencies of the various

elements along the optical train: the mirrors, the cryostat window, the NIR/FIR dichroic, and

all the cold filters. The latter multiply to give the transmission profile shown in Fig. III.17,

which we call Tbp. We write farm1->detN (resp. farm2->detN) the throughput of light from arm

M (resp. arm 2) falling on the detector N, where N = 1, 2:

farm1,2->det1,2(λ) = τcombinerτwindowτdichroicr
NmirrorsTbp(λ) (III.2)

≈ 0.38× Tbp(λ), (III.3)

where we have used lab measurements to estimate τwindow ≈ 0.98, τdichroic ≈ 0.95, τcombiner ≈

0.5 and r ≈ 0.99 is the far-IR reflection of each warm mirror, in both bands. There are

Nmirrors = 9 within the warm optics train on the left side, and 8 on the right side. Until we

obtain precise measurement of the throughput of each element as a function of wavelength,

we consider that this extra factor is wavelength-independent and represents an average over

the band. This is valid since most of these materials do not have steep dependence at such

a long wavelength. The transmission Tbp(λ) has an average of 27% (resp. 31%) for band 1

(resp. 2) respectively, so the throughput amounts to about ∼ 10% (resp. ∼ 12%) efficiency

for the light coming from one arm falling onto one detector.

After accounting for all losses, we approximate the total noise power per pixel as:

Ppix = (farm1->detN + farm2->detN)NPhotons s−1EphQE, (III.4)
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Table III.5: Estimated power and NEP contributors for a single detector
pixel.

Noise source Power reaching the detector (pW) NEP (10−16 WHz−0.5)

Band 1 Band2 Band 1 Band2

Warm optics 92 45 9.6 6.7

Atmosphere 18 24 4.6 4.9

Window 21 9 4.3 3.0

Detectors - 5 5

Total 131 77 17 10

Notes: These values are lower than the ones cites in Rinehart et al. (2014)
and Rizzo et al. (2015) since we now have more precise measurements of the

transmission as a function of wavelength.

where NPhotons s−1 is the total number of photons per second per pixel from the warm op-

tics, the window, and the atmosphere, which are the three main contributors of noise (see

Table III.3). We also use the photon energy Eph and detector efficiency of the detector,

QE ≈ 0.7. Throughout most the design phase of BETTII, this equation was used for the

band-averaged quantities, for lack of better knowledge of the exact wavelength dependence

of the various optical components. However, this is also valid on a finer scale and can be

integrated over wavelength to provide more accurate estimates. In Table III.5, we used our

knowledge of the bandpass transmission and integrate over the band. The Noise Equivalent

Power (NEP), a common measure of noise in the far-IR, is calculated as NEP =
√

2PpixEph.

Note that the detectors are designed to contribute less than 30% of the total estimated photon

NEP, so that their noise contribution is negligible.
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III.5.3 Interferometric visibility budget

Estimating the noise from each arm separately can help us determine important quantities

such as the photon loading and NEP, which can be used to design the detectors. However,

the scientific signal from an interferometer also depends on how well the two arms combine.

This is roughly a measure of how symmetric the optical system is. In table III.7, we identify

two kinds of error contributions: static and dynamic. The static contributors are caused

by differential wavefront errors (WFE), amplitude mismatch, polarization errors and pupil

area overlap. These are caused mostly by misalignments of the optics along each train, by

errors in the manufacturing of the mirror surfaces, or by distortion of optics due to material

deformation of themselves or their mounts through the cooldown process. Second, we have

the dynamic contributors, which are caused by OPD errors and differential tip/tilt. These are

errors which need to hold over the timescale corresponding to a single data point, so about

2.5ms. The OPD errors correspond to fast uncorrected motion of the delay lines, while the

differential tip/tilt corresponds to an error in co-aligning the two beams at the detector. Note

that in Chap. IV, we discuss the various timescales involved with the OPD motions. In this

table and for the calculation of the visibility, we only take into account the instantaneous,

un-recoverable error in OPD. The error in OPD over longer timescales, resulting in a decrease

in SNR as we co-add consecutive interferograms, is not taken into account in Table III.7. For

reference, the equations are explicitly stated here, as we have found it handy to gather them

all in one single place. The derivation for most equations can be found in Lawson (2000).
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Table III.7: Interferometric visiblity budget.

Term Symbol Alloc. Effect on visibility Vloss

Band 1 Band 2

Static contributors

Total WFE in
mirror surfaces

σWFE 2 µm exp(−[2πσWFE/λ]2) 0.906 0.977

Amplitude
mismatch

R 95 % 2/(R1/2 +R−1/2) 0.999 0.999

Polarization effects θ 12◦ cos(πθ/180/2) 0.995 0.995

Pupil area overlap foverlap 90 % foverlap 0.900 0.900

Dynamic contributors

Error in OPD
knowledge

σOPD 2 µm exp(−[2πσOPD/λ]2) 0.906 0.977

Differential tip/tilt σtt 1.5′′ 2J1(πDσtt/λ)/(πDσtt/λ) 0.990 0.998

Total visibility Π(Vloss) 0.726 0.851

Notes: The dynamic contributors need to hold true for 2.5ms, and consist of
the residual amount that cannot be corrected in post-processing.

III.5.4 Science channel estimated sensitivity

Now that we know the noise per pixel and the efficiency of the interferometric beam com-

bination, we can determine the SNR for a single source of known flux. For this, we use the

formalism by Mighell (2005) who derives the proper equation for a matched filter representing

a point-spread function (PSF) discretized on a noisy detector array. The efficiency ηmf of the

matched filter is the inverse of the square root of the effective background area of the PSF,

β = 4πS2, where S is the standard deviation of the PSF in pixels, S = 0.42λ/D
θpix

. We obtain

ηmf ≈ 0.55 and 0.39 for band 1 and 2 respectively.

This matched filter efficiency is due to the uneven spread of the light from a PSF onto
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multiple pixels, and corresponds to the error in fitting the detector to the PSF assuming an

even noise floor among all pixels. Pixels with more photons will have more SNR, hence should

be weighted more when attempting to extract the flux from the PSF. In this sense, using a

matched filter is a best-case scenario. Another approach would consist of simply dividing the

PSF area by the area of one single pixel, which is a worst-case alternative that would lead to

efficiencies of 0.13 and 0.07 in band 1 and band 2 respectively. In what follows, we are using

the optimistic approach and assume we can recover the flux from the PSF using matched

filtering.

We define the Minimum Detectable Line Flux (MDLF) as the flux per pixel which

corresponds to a SNR = 1:

MDLF =
NEP

(farm1->detN + farm2->detN)A
√

2Tint
, (III.5)

where Tint = 2.5ms corresponds to the integration time per pixel (or detector frame). The

MDLF is expressed in Wm−2.

The Minimum Detectable Flux Density (MDFD) is the MDLF divided by the band-

width. This is expressed in Wm−2 Hz−1 and can be converted to Jy.

The faintest detectable interferometric point source with SNR = 1 is then given by

Smin = MDFD/Vi/ηmf, where the MDFD is increased due to the interferometric visibility

losses and the spreading of the photons onto multiple pixels of the detector. Smin represents

the smallest flux density that leads to an SNR = 1 within a single scan.

Co-adding consecutive scans will improve the SNR considerably, but it will also intro-

duces errors and inefficiencies. We quickly realized the impact of systematic errors in co-adding
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scans, so a significant amount of effort went into understanding the behavior of the various

error contributions, and analyzing mitigation strategies. The result of this investigation was

published in Rizzo et al. (2015), and is shown here in Chap. IV. In that chapter, we discuss

the meaning and importance of the phase noise or OPD noise, and quantify the impact on the

sensitivity. The OPD noise arises when residual uncertainties in the knowledge and control of

the OPD result in errors while co-aligning and co-adding consecutive interferograms. For the

rest of this discussion, we will assume that the OPD noise amounts to 5 µm r.m.s over 200

consecutive scans.

Using the formulas derived in Chap. IV, we can now correctly determine the SNR in the

co-added interferograms. However, co-added interferograms are not the only goal of BETTII.

Although interferograms allow for the distinction between multiple, nearby point sources,

most of the scientific information is retrieved by analyzing the spectrum of each source in the

field by taking the Fourier transform of the interferogram. Hence, we want to characterize

the spectral sensitivity of the instrument, and establish this metric as the default observing

metric for our science.

A summary of the results is presented in Table III.9.

Table III.9: BETTII sensitivity estimates

Quantity Band 1 Band 2 SNR Target

Single scan (3 s)

MDFD 77 Jy 113 Jy SNRI = 1

Normal observing (200 scans, 10 min)

MDFD 5 Jy 8 Jy SNRI = 1

Notes: SNRI represents the SNR in the interferogram.
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III.5.5 Tracking channel estimated sensitivity

A similar sensitivity analysis is done for the tracking channel. This is simplified somewhat

since the tracking channels consist only of two cameras, and does not involve beam combi-

nation. The levels of background noise are less obvious to estimate. We primarily use the

findings of Matsumoto et al. (1994), which measured 2 µm emission line strengths from bal-

loon altitude. This emission is thought to arise from a thin layer of OH radicals at ∼ 100 km

altitude, and is sometimes referred to as airglow. Using the measurements by these authors,

who span multiple balloon flights in the 60s and 70s, we obtain an average radiance in the

NIR bands of RNIR ≈ 1× 10−4 Wm−2 sr−1. According to our estimates, this is two orders

of magnitude lower than the brightest astronomical noise source in the NIR, which is the zodi

scattering.

Balloon altitudes provide significantly better atmosphere transmission in the NIR wave-

length region, compared to ground observatories. Fig. III.18 illustrates this difference using

a modelling software called MODTRAN. The transmission from an altitude of 4 km shows

transmission windows (J, H, K bands) that would limit the design of a ground-based inter-

ferometer. At float, the bands are not limited by the atmospheric transmission and thus we

can use larger bands than the traditional J, H and K in order to optimize our photon signal.

Due to the prioritization of the science channels, the NIR tracking channel is less ad-

vanced at the time of writing. Hence, we use estimates for the transmission and reflection

efficiencies of the various components along the optical train. We estimate the efficiency of

the major components: the mirrors (95% reflective), the cryostat window (90% transmissive),

and the NIR/FIR dichroic (90% transmissive), which transmits the NIR light. There is an

additional filter just in front of the detector, which limits the bands from 1 to 2.5 µm. The
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Figure III.18: Model atmospheric transmission, from Rizzo et al., 2012.

detectors are not responsive for longer wavelengths. The total amount of efficiency for this

channel is expected to be on the order of ε = 20%. Using this, a 1 Jy source will correspond

to a number of photons Nph within a PSF at the detector:

Nph =
1× 10−26

h
A× FBW× εTint ≈ 8100, (III.6)

where FBW ≈ 0.67 corresponds to the fractional bandwidth, and h is the Planck constant.

The detector is expected to have a read noise of σRON = 18 electrons r.m.s in up-the-

ramp sampling, according the manufacturer specifications. Its frame rate changes throughout

the acquire mode (see Chapter V), but the fastest mode will have a frame rate of ∼ 50Hz.

Since the detector does not read destructively, saturation is an issue and needs to be addressed

carefully - having to reset the pedestals to avoid saturation can complicate the software and

might require a lot of tuning. Our calculations take into account a 20ms integration time,
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a quantum efficiency of 70%, and a 0.6 arcsec pixel−1 plate scale, which provides an effective

background area β = 0.43 for a diffraction-limited PSF of diameter 1.5′′ at 1.5 µm. We

consider that most of the photons will be spread on 1/β ≈ 2.35 pixels, so we expect about

Ne− ≈ 3440 electrons per pixel from a 1 Jy source. A much more rigorous analysis is required

once the efficiencies are measured.

For convenience, we express the SNR of a source using its flux S in electron per second:

SNR =
S√

S + β(B + σ2
RON)

, (III.7)

where B is the number of electrons per pixel from the background. In our case, we calculate

B ≈ 2.4 electrons, which is negligible compared to the read noise, so we will ignore this term

in the future.

The required flux density for a given SNR is then found by solving the previous equation

for S:

S[Jy] =
SNR2 +

√
SNR4 + 4SNR2βσ2

RON

2Ne−
. (III.8)

For a SNR = 10, this corresponds to ∼ 0.13 Jy, or ∼ 9.66 H magnitude. For our first

flight, all of our primary science targets have a star at least as bright within our field of view,

which is usually embedded in the cluster itself.

III.6 Targets

The primary science targets for BETTII have fluxes that are above the spectral sensitivities

from Table III.9, with a bright NIR guide star nearby. In addition, in order to correctly know
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the OPD, we need sets of bright calibrator targets which provide high-SNR fringes in one

single scan of the delay line.

The science targets need to be available during our launch window, and preferably cover

a large range of projected angles (so we can study the source at multiple angles to retrieve

more of the spatial distribution). For this reason, we favor circumpolar sources, since they

are the ones which change orientation at the fastest pace.

III.6.1 Calibrators

Calibrators ideally need to be point sources � 100Smin Jy in our FIR bands, and it is not

straightforward to identify which astronomical sources exist that would provide this kind of

flux density. The planets of the solar system and their moons are usually bright enough, but

they are often resolved by our instrument, which dramatically reduce their interferometric

contrast. For example, we estimate the Uranus is > 1000 Jy, but because it is so resolved,

the actual fringe contrast is very small, hence drastically reducing the SNR. Nearby, bright

A stars such as Alpha Boo are most likely point sources, but are usually only a few Jy at the

most as thermal sources with temperatures of thousands of kelvin. It is possible to use actual

science sources as calibrators, but of course it is unknown whether or not they actually are

extended (this is the purpose of a mission like BETTII!).

We find that bright asteroids such as Ceres, Pallas and Vesta are the best candidates for

bright calibrators (respectively > 320, 150and120 Jy). In addition, because of their albedo,

they also reflect the sunlight so they would also be suitable for the tracking channels (e.g. Ceres

has Hmag∼3). Their only disadvantage is that they are not inertial targets - this complicates

the pointing control system as their expected position moves across the sky, which requires
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the payload to have accurate timing capabilities to know where the object is at a given time.
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Figure III.19: Visibilities of calibrators.

III.6.2 Science targets

For our first flight, our science target list will be primarily composed of sources we have

already observed with SOFIA FORCAST. In our source list, our best BETTII candidates are

the sources which are bright at 37 µm, have a large spectral index, appear point-like, are up

in the sky at night during our flight, and are preferably circumpolar.

Table III.11 gives a list of such sources, and includes the fraction of time that the

target spends above 10 degrees elevation and below 75◦ during the planned observing night

of September 15, 2016. In addition, Fig. III.20 shows the tracks in the sky. The circumpolar

targets S140, Cepheus A and NGC 7129 are available for the most time. All are located well

in the East at the beginning of the night, which means we can point towards them as the

Sun sets in the West. Note that when the source is at low elevations, we could experience a

substantial amount of additional atmospheric noise since the line of sight sees more airmass.
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Table III.11: BETTII Targets

Cluster Coordinates Fraction of night time
between 15-75◦

elevation

S140 22h19m23s +63d18m44s 100.0 %

Cepheus A 22h56m10s +62d03m26s 100.0 %

NGC 7129 06h41m07s +09d33m35s 100.0 %

IRAS 20050+2720 20h07m05s +27d28m51s 50.0 %

Bright potential targets for BETTII’s first flight.
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Figure III.20: Polar plot showing the tracks of our targets in the night sky,
between 8pm on Sept 15th and 6am on Sept 16th. The coordinates represent
the local azimuth (with respect to North) and elevation, which is 0◦ at the
horizon. Note that NGC 2071 and NGC 2264 cannot be observed at night in

this period of the year.
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Chapter IV

Far-infrared double-Fourier

interferometers and their spectral

sensitivity

IV.1 Introduction

Several space-based interferometer concepts, the Far Infrared Interferometer (FIRI; Helmich

et al., 2009), the Space Infrared Interferometer Telescope (SPIRIT; Leisawitz et al., 2007),

and the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS; Harwit et al.,

2006), have been proposed and use spatio-spectral interferometry to achieve the much needed

angular resolution to study astronomical processes such as the birth of stars and planetary

systems, the activity in galactic nuclei and the formation of galaxies in the distant universe.

The FIRI and SPIRIT concepts have two mirrors which are movable on one axis along a

monolithic truss to provide a range of baseline lengths. SPECS consists of three spacecraft

connected via tether to achieve baselines of order 1 km.
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There are numerous engineering challenges to be addressed before such missions can

become reality. A number of them can be tackled with testbeds (e.g. Leisawitz et al., 2012;

Grainger et al., 2012) and small-scale pathfinder missions. These missions will likely be two-

element, single baseline interferometers in space or on balloon platforms, such as the Balloon

Experimental Twin Telescopes for Infrared Interferometry BETTII; Rinehart et al., 2014 and

to a certain extent the Far-Infrared Interferometric Telescope Experiment FITE; Kato et al.,

2010. These pathfinders will have very limited baseline coverage and rather than producing

full images, they will focus on reconstructing spectral information from closely-spaced sources.

This paper explores aspects of the noise in spectral measurements specific to these instruments.

IV.1.1 Spatio-spectral interferometry

In their pioneering paper, Mariotti et al. (1988) lay out the principles of spatio-spectral (or

double-Fourier) interferometry. A spatio-spectral interferometer consists of a Fourier trans-

form spectrometer (FTS), where a delay line mechanism modulates the optical path difference

(OPD) between two independent light beams before combining them in the pupil plane. The

instrument produces interferograms, which are arrays of power measurements as a function

of the OPD. Unlike traditional FTS, where a single incoming beam is split, delay-modulated,

and recombined, a double-Fourier interferometer utilizes multiple light collectors pointing to

the same astronomical source and combines the incoming light from the collectors pairwise

in the pupil plane. The orientation and magnitude of the baselines - the vectors between

each pair of light collectors - determines which spatial frequency of the astronomical image

the instrument measures. Longer baselines correspond to higher angular resolutions. The
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“double-Fourier" aspect comes from the fact that the interferogram measured on a given base-

line is related to the Fourier Transform (FT) of the spatial and spectral distribution of the

source emission. Two FTs are used to reconstruct the full spatio-spectral datacube represent-

ing the astronomical scene: the spectra which are more directly related to the power as a

function of time delay difference between the two incoming beams (equivalent to the OPD)

and the source 2D spatial structure on the sky which is more directly related to measurements

accumulated from many different baseline vectors. The length of the baseline vectors can be

changed by modifying the distance between the light collectors. The orientation of the vectors

can be changed by rotating the baseline with respect to the source on the sky. The plane

representing the source visibilities as a function of baseline vector is referred to as the (u, v)-

plane and is a common notion in ground-based submillimeter and radio interferometry. This

paper focuses on the reconstruction of the spectrum from closely-spaced point sources using

single-baseline measurements, and does not address the techniques and sensitivities involved

in using multiple baseline lengths to produce an image of the scene; a mathematical formalism

that covers imaging is already proposed in Elias et al. (2007).

Proposed double-Fourier instruments at far-IR wavelengths distinguish themselves from

operating interferometers at sub-millimeter and radio wavelengths in several ways. First, they

do not directly measure the phase information. The fundamental measurement is a time series

of real-valued power as a delay line modulates the OPD in a controlled sequence (for example

a linear ramp). The OPD from the delay line, as well as other OPD contributors in each arm

of the instrument, and the external OPD created when the line of sight to a source is not

perpendicular to the baseline vector, add up to the total OPD. In double-Fourier instruments,

the OPD can be determined by measuring or estimating the various contributors to the total
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OPD. For a given detector location along the projected baseline vector, there exists a value of

the OPD in the delay line that exactly compensates all other OPD contributors. This delay

line position results in a zero net total OPD, and is called the Zero Path Difference (ZPD).

At this value of OPD, an incoming plane wave traverses the two beam paths reaching the

detector exactly with the same phase, for all wavelengths. ZPD corresponds to the center of

an interferogram for that detector location. In the context of this paper, the phase for a given

wavelength φλ is related to the OPD between the beams from each arm when they combine,

at the time of a data point measurement: φλ = 2πOPD/λ.

A second important difference for balloon and space interferometers is that collectors are

not fixed to the Earth. In the case of BETTII and SPIRIT, the collectors are fixed to a truss

structure which is part of the mechanical system for pointing the collectors. Consequently,

baseline length and external OPD, as relevant to an astronomical source, are not independent

of pointing errors. The impact of errors in baseline length is modest because the relevant

measure is in terms of fractions of the collector diameter. Errors in pointing translate into

external OPD as the sine of the error angle times the baseline length, while the relevant

measure is the wavelength. This can easily become significant; for example, a 1" pointing

error for an 8 m long baseline corresponds to a 38 µm shift in OPD.

Third, bolometer-type detectors, such as being built for BETTII and envisioned for

SPIRIT, are easily, and indeed typically, configured as two-dimensional arrays. With pupil

plane combination, the entire field of view has an interferometric response; hence wide-field

interferometry over multi-pixel arrays is straightforward. Fig. IV.1 shows this concept and

sketches the instrumental response. For the configuration shown with the detector array
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Figure IV.1: Concept of wide-field double-Fourier interferometry. Light from
the instrument is focused after combination to an image of the sky on the
detector array (represented as the grid). Each column of the detector has
a distinct ZPD so the interferometric responses (right side) of two sources on
different columns are centered around different delay positions. The gray stripe
represents the central column on the detector array and its corresponding ZPD

on the interferograms.

columns aligned perpendicular to the baseline vector, ZPD is the same along lines perpen-

dicular to the baseline vector projected on the detector. As the OPD is swept, it moves

across ZPD for the different columns in the array, yielding interferograms with shifted centers

corresponding to the changes in external OPD for each source location in the field.

By sweeping the OPD, the double-Fourier instrument measures interferograms which

contain both spectral and spatial information over the detector array. The full spatial and

spectral source information can be unambiguously recovered by repeating the delay line sweep

over a range of baseline angles and lengths, which correspond to different spatial frequencies

on the sky (Mariotti et al., 1988).
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IV.1.2 The case study: BETTII

The BETTII project (Rinehart et al., 2014), is a motivation for this paper and a near-term

application of spatio-spectral interferometry. BETTII consists of two 50 cm siderostats on a

fixed 8 m baseline, with a far-IR beam-combining instrument at the center. It will observe the

far-IR universe in two wavelength bands, 30-50 µm and 60-110 µm. The instrument is currently

under construction at NASA Goddard Space Flight Center and is scheduled to launch in the

Fall of 2016 on a stratospheric balloon from Fort Sumner, New Mexico, to an altitude of 35 km

in order to be above most of the atmosphere. For its first flight, BETTII will focus on the

study of dense star formation in nearby clusters. While a complete image reconstruction is

not possible due to the static baseline length, BETTII will help resolve point source objects

that are 0.5-1′′ apart in the short and long band, respectively, more than ten times the spatial

resolution of Spitzer at 24 µm and six times the resolution of SOFIA at 37 µm. Combined

with a modest spectral resolution of R = 10 − 50, BETTII will measure the spectral energy

distributions (SEDs) of clustered young stars to determine their evolutionary stage, locate

the origin of the far-IR emission, and improve our understanding of how stars accrete their

mass in these very dense regions of stellar birth (e.g. see Tan et al., 2014, and references

therein). For resolved sources, the fixed baseline will not completely lift degeneracies between

the spectral and spatial information; however detailed source modeling can put constraints

on the distribution of the far-IR emission (e.g Whitney et al., 2013).

In this chapter, we study how various types of noise propagate to the derived spectrum

in an instrument like BETTII or SPIRIT. In section 2, we establish a mathematical formalism

that can be used to represent interferograms. In section 3, we look at the dominant types of

noise in the interferogram and define the relevant timescales associated with spatio-spectral
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interferometers. In section 4, we derive the spectral signal-to-noise ratio (SNR). In sec-

tion 5, we apply these results to the special case of BETTII to derive its point source spectral

sensitivity.

IV.2 Mathematical formalism

Re-imaging and 

Relay optics

Detectors

Left

Siderostat
Right

Siderostat

Beam
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Beam

Compressor
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- +

Delay
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Beam
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Figure IV.2: Optical train diagram of a typical far-IR, double-Fourier in-
strument. The K-mirror rotates the beam to align the fields of view of the
two sides. Inside the cryostat, a set of optics re-image the pupil, implement
a controlled instrumental delay between them with the Cold Delay Line, and
relay them towards the central beam combiner. After the combiner, the beams
are imaged onto the detectors. To see the BETTII-specific implementation of

this design, see Rinehart et al. (2014).

The general optics layout for a double-Fourier system is shown in Fig. IV.2 for a single

baseline. The combination of the siderostat and beam compressor acts as an afocal telescope

which outputs a parallel beam with a diameter convenient for the rest of the optical train.

The K-mirror in one beam path corrects for the pupil rotation so that the images of the sky

from the two collectors are matched over the field of view. At the center of the instrument,

there are optics for pupil re-imaging, filtering, and beam folding, as required by the specific

implementation. The key components for our purpose are the delay line, beam combiner and

detectors. The delay line introduces a controlled OPD between both arms. The two incoming
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beams are combined in the outputs from the beam combiner. We arbitrarily define one output

as the "+" and the other as the "-". To conserve photon energy, the two outputs must be

complimentary such that the summed power of the two is independent of the OPD. In an

ideal double-Fourier system, the two beam paths are symmetric about ZPD; hence, the power

from the "+" and "-" outputs are equal at ZPD, and have odd symmetry about ZPD. In a

traditional FTS at ZPD, one output has fully constructive interference while the other has

fully destructive interference, with even symmetry about ZPD.

IV.2.1 Interferograms for a single baseline

The interferogram for a single frequency of light measured at the outputs of the ideal double-

Fourier instrument can be described in terms of the normalized intensity:

Î±(x, σ) = Re(1± i VB(σ)e−2iπσx), (IV.1)

where σ ≡ 1
λ is the wavenumber of the light in cm−1 as per the convention for the FTS

literature, x is the instrumental OPD created by the delay line with x = 0 corresponding to

ZPD, and VB(σ) is the complex spatial visibility of the astronomical source for the baseline

vector B. “Re(f)" indicates the real part of the complex-valued function f . The ± indicates

values for the two output beams: "+" and "-" in Fig. IV.2. The derivation of this expression

is given in Appendix A.1.

The normalized complex spatial visibility VB has a magnitude of 1 for all baselines

for which the source is completely unresolved. For extended sources, the spatial visibility

depends on the source geometry, intensity distribution, and the instrument baseline vector

as described in Chapter 2 of Lawson (2000) and Chapter 3 of Thompson et al. (2008). For
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a normalized source brightness distribution F̂ , the spatial visibility with respect to a phase

reference position on the sky can be written as:

VB(σ) =

∫
source

dΩÂ(ξ)F̂(ξ)e−2iπσξ·B, (IV.2)

where Â is the normalized reception pattern of the collecting area; B is the baseline vector

between the two collectors and ξ is the vector on the plane of the sky from the phase reference

position to the infinitesimal solid angle dΩ. The resulting visibility as a function of baseline

vector is the 2-dimensional FT of the source’s sky distribution. Since F̂ does not have to

be symmetric with respect to the chosen phase center, VB is in general complex and can be

expressed as an amplitude and a phase, ΦB(σ): VB(σ) = |VB(σ)|eiΦB(σ).

Real instruments have asymmetries, imperfections, and measurement errors which can

create phase-shifts between the two optical paths and across the pupils. Fixed instrumental

effects can be represented by a normalized instrumental visibility loss term, Vi(σ) where the

complex quantity Vi(σ) = |Vi(σ)|eiΦi(σ), as described in detail in Chapter 3 of Lawson (2000),

represents both amplitude losses and phase shifts (see Appendix A.1). Additional phase

errors can arise from imperfect knowledge of the real-time optical path lengths which we will

represent as eiΦr(σ,x), where Φr(σ, x) is the "phase noise"; this term depends on the OPD x

through time-dependent phenomena such as mechanical jitters, temperature variations in the

optics support, or pointing errors. In the rest of this paper, we will mostly talk about this

"OPD noise", which is the physical source of the noise, whereas phase noise represents its

effects on the interferogram. The total complex visibility sampled at a single σ by the system

is VB(σ)Vi(σ)eiΦr(σ,x), and it is normalized such that, for an ideal instrument observing a



Chapter IV. Far-IR double-Fourier interferometers and their spectral sensitivity 135

point source, this quantity is equal to 1 at ZPD.

Using Eq. IV.1 for the monochromatic source, the polychromatic interferogram is the

integral over σ of this dimensionless response at each wavenumber. The total amount of power

coming into the 2-aperture interferometer within a small wavenumber range dσ is 2AB(σ)cdσ

where 2A is the total aperture area in m2, B(σ) is the spectral flux density in W·m−2·Hz−1

and c is the speed of light in cm·s−1. Filters and optics in an instrument cause a wavenumber-

dependent transmission profile Tbp(σ). The quantum efficiency of the detector can depend

on wavenumber, ηD(σ). For multi-pixel detectors the interferogram is measured by matched

filtering a point-spread function on a pixel array, which has some efficiency ηmf.

The actual power measured by the instrument can be represented as:

I±(x) = Ac
∫ +∞

0
ηmfηDTbpB × Re

[(
1± iViVBeiΦre−2iπσx

)]
dσ, (IV.3)

where the factor of 2 for the two apertures is dropped because it is implicit in Eq. IV.1. All

quantities within the integral can be functions of wavenumber, and all the instrumental phase

and interferometric loss terms are in Vi and eiΦr .

Instead of considering each separate output, we use I = I+ − I− as our interferogram

expression, which cancels out the constant term. We also introduce an interferometric instru-

ment transmission function, which can be complex, which represents the normalized amplitude

and phase of the interferogram for a point source of uniform spectrum and no phase noise:

Tinst(σ) ≡ AcηmfηDTbpVi = |Tinst(σ)|eiΦinst(σ), (IV.4)
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We can then write the modulated signal as:

I(x) = Re
(

2

∫ +∞

0
i|Tinst|BVBeiΦr+iΦinste−2iπσxdσ

)
, (IV.5)

where B is real and VB can be complex.

Eq. IV.5 can be turned into a Fourier transform by mirroring all quantities to neg-

ative wavenumbers. This convention is explained in detail in Davis et al. (2001) for FTS

instruments; the odd symmetry of the interferogram for a system with one beam com-

biner and the complex instrumental transfer function means that the incident spectrum

on the detectors must be mirrored to -σ as the negative of the complex conjugate of +σ:

Se(σ) ≡ [TinstBVB]e(σ) = 1
2 [Tinst(σ)B(σ)VB(σ)− T ∗inst(−σ)B(−σ)V∗B(−σ)]. We use the sub-

script e to denote the reflected function, and will apply this convention in the rest of this

paper; this reflection ensures that the integrals keep the same value when they are expressed

from −∞ to +∞, and does not affect the SNR estimates: although the signal appears to

be divided by a factor of two, so is the noise, as it is spread between positive and negative

frequencies. The interferogram expression is then:

I(x) = Re
(∫ +∞

−∞
iSee−2iπσx+iΦrdσ

)
. (IV.6)

IV.2.2 Measured interferograms

In practice, the interferogram data are discrete measurements of a real-valued signal on the

detectors. Like for most FTS instruments, each data point on the interferogram corresponds

to an integration of the detector while the delay line is continually in motion. This decreases
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the amplitude of the interferogram due to the local smearing of the fringes, but it can be kept

to low values by increasing the fringe sampling. At each delay xn, the interferogram has a

measured value I(xn) = 1
dx

∫ xn+dx/2
xn−dx/2 I(x)dx. To first order, this has the effect of multiplying

the power at each wavenumber by sinc(πσdx). For the purpose of this paper, we consider

this term to be included as part of the instrumental transmission Tinst. Note that the value

of the optical delay xn is the path difference from ZPD, not the physical location of the delay

line, since there could be a multiplying factor between the two due to beam folding (e.g., for

BETTII, a motion of 1 mm of the delay line creates 4 mm of OPD).

A discrete Fourier transform (DFT) is used to transform a discrete interferogram of

N measurements into a complex discrete spectrum with N points. The resolving power of

the instrument, R = λ/dλ, is dependent on the physical length scanned by the delay line L:

R = Lσ/2 for a scan with symmetric length on both sides of ZPD. For these instruments

where we scan through the whole interferogram, the data should be sampled at least at the

Nyquist rate for the interferogram response frequency of dx = λ/2. For a sampling exactly

equal to Nyquist, we have the relationship: N = 4R.

For a double-Fourier instrument, as shown in Fig. IV.1, the ZPD for different columns

on the array occurs at different delay positions xcol, related to the projected baseline length.

The simplest way to express this is in terms of the angular offset on the sky of each column,

ξ, along the direction of the baseline, B:

xcol = |B| sin ξ ≈ |B|ξ = 48.7µm
(
|B|

10 m

) (
ξ

1 arcsec

)
, (IV.7)

where we have filled in practical units for an infrared instrument. For a far-IR interferometer
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working at 50 µm, with 1-2 m diameter collectors, the delay shift across the collector point

spread function (collector angular resolution) is several to ten wavelengths. Hence the scan

length to cover a wide-field array detector is comparable to the scan length required to achieve

R’s of 100’s to 1000’s. This property is an important consideration for observation and data

analysis strategies.

The ideal interferogram for a point source from a perfect instrument is an odd function of

the OPD x, so its DFT is purely imaginary. The noise in the interferogram will be converted

into spectral noise in both the real and imaginary axes so the real axis is a proportional

measure of the noise. Referring back to Eq. IV.6, phase shifts caused by the instrumental

transfer function and source spatial visibility will break the anti-symmetry; in practice, the

DFT of a measured interferogram is complex and the real and imaginary parts are of interest.

The scientifically interesting quantities are the source spectrum and source spatial visibility: B

and VB; the fixed instrumental terms have to be calibrated or properly modeled by observing

a bright point source of known spectrum. The techniques for calibrating FTS systems are

well developed (e.g. Davis et al., 2001), and there are many methods proposed to correct some

phase and amplitude errors (e.g. Forman et al., 1966; Sromovsky, 2003).

The phase noise term Φr(x, σ) in Eq. IV.6, and the SNR in the measured interferogram

can have significant impact on the ability to recover the source spectrum with a real instru-

ment. The upper panel in Fig. IV.3 shows an example of an interferogram (left), and the

transformed Se(σk) (right) for a source with flat power spectrum, multiplied by a flat band-

pass function with smoothed edges. The middle panel of Fig. IV.3 shows the same source

and instrument parameters as the upper panel, now with an assumed Gaussian OPD noise of

standard deviation equal to 10% of the central wavelength of the band λ0 ≡ 1
σ0

(i.e., there is
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Figure IV.3: Effects of phase and intensity noise on the recovered spec-
trum (single realization of the noise). Left column: normalized interferograms,
intensity as function of OPD. Right column: normalized DFT of interfero-
grams. Solid: input spectrum multiplied by anti-symmetric transmission func-
tion; Solid circles: Imaginary part of DFT from interferogram; Dotted: Real
part of DFT. First row: ideal measured signal, no noise; used for normalization
of all other plots. Second row: results with a realization of phase noise of 10%
at each point of the interferogram. Third row: results with a realization of

intensity noise and SNRI = 10.

a λ0/10 OPD uncertainty for each data point in the interferogram). The lower panel is the

top panel observed with a incoherent background noise corresponding to SNR = 10 at the

peak of the interferogram, and no phase noise. The next sections of this paper will analyze

these noise contributions and quantify their impact on the derived spectrum.
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IV.3 Noise sources

The two primary types of noise in a double-Fourier instrument are intensity and OPD noise.

The intensity noise consists of the astronomical and thermal background noise, the photon

noise from the source, and the detector noise. The OPD noise arises primarily from uncer-

tainties and changes in OPD, which would prevent us from accurately knowing the x-values

of measurements in the interferogram before the FT. For convenience, we usually refer to the

OPD noise as a percentage of the carrier wavelength. In the rest of this paper, a "10% OPD

noise" signifies that the OPD for each measurement in the interferogram is known to within

an error of 10% of the carrier wavelength, or 10% of one full fringe cycle.

IV.3.1 Intensity noise

The measured signal has units of power and can be represented as the interferometric signal

with additive noise:

Imeasured(xn) = I(xn) + nI(xn), (IV.8)

with nI being the difference of the noise in the two outputs of the interferometer, nI = n+−n−.

When the beam combiner, optical train, and detectors are symmetric, the residual nI has zero

mean. The total noise in Imeasured(xn), expressed in Noise Equivalent Power, NEPtot, is the

sum of the three noise variances:

NEP2
tot = 2NEP2

ph + 2NEP2
det + 2NEP2

sou, (IV.9)
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where NEPph and NEPsou are the thermal noise from the background (e.g. sky and warm

optics in the case of a far-IR instrument) and source photon noise, respectively, in one out-

put, and NEPdet is the noise-equivalent power characterizing each detector’s noise (including

phonon, readout and Johnson noise). The factor of 2 multiplies each term since we are con-

sidering the difference of both outputs. The relation between NEPtot and the variance σ2
I of

the noise nI during an interval dt is (Sromovsky, 2003):

σ2
I =

NEP2
tot

2dt
. (IV.10)

For space instruments, the noise will likely be dominated by the sky background (zodiacal

light, galactic cirrus emission, or optics thermal emission) and detector for a very large fraction

of astronomical targets, which tend to be faint; for balloon instruments, emission from warm

optics and the atmosphere sets the noise level in the far-IR.

IV.3.2 OPD noise

Observing from the ground at optical wavelengths with a double-Fourier interferometer is

limited by the phase coherence between the apertures, which is related to the atmospheric

coherence time, as discussed by Mariotti et al., 1988. The short coherence time forces fast

scan rates, which degrades the sensitivity of the instrument due to short integration times

and phase shifts between sequential scans. This is not a problem for flying platforms, since

even at balloon altitudes the atmospheric coherence is not a significant issue (Rizzo et al.,

2012). The major concerns for balloon and space missions are overall instrumental stability,

knowledge of ZPD, and pointing errors, which can all contribute to OPD noise.
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OPD noise arises in an interferogram when the OPD at the time of a measurement is

uncertain, hence compromising the reconstruction of the true x-value. Since this uncertainty is

a physical delay δx, the error in phase is wavenumber dependent: 2πδxσ. δx is the difference

between the estimated x and the true x. For single-beam FTS instruments, internal laser

metrology can provide optical path length measurements to high accuracy (e.g. Griffiths et

al., 2007), and the separate paths the split beams need to travel can be kept small. For double-

Fourier instruments, the entire optical paths upstream of the beam combiner affect the OPD,

hence it is more challenging to accurately measure and estimate the OPD contributors. In

addition, common-mode pointing errors of the collectors are directly converted to geometrical

delay errors. Hence, it is critical to know the position and orientation of the baseline vector

with respect to the astronomical target with high accuracy in order to properly reconstruct

the interferogram.

For this analysis, we identify three timescales that can be used to examine the effects

of OPD noise on the interferogram. These timescales are important to consider in the design

of the OPD control system of any double-Fourier interferometer. Timescale 1 is the shortest

and corresponds to the integration time for a single data point, typically a few milliseconds.

In practice, this kind of OPD noise could be created by high-frequency mechanical jitters in

the instrument (including the delay line bearing and motor, stiction behaviors and resonant

modes, reaction wheels and other self-induced vibrations...). Timescale 2 is the time it takes to

acquire one single interferogram over the full field of view and at the desired resolving power,

typically on the order of seconds. The sources of noise that can affect this timescale include

for example pointing errors and drifts, as well errors in the knowledge of the delay line position

relative to a reference ZPD. Finally, the longest timescale to be considered, timescale 3, is the
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time it takes to complete one full "track" by co-adding several consecutive interferograms to

achieve the desired SNR, typically a few minutes long. During this timescale, it is expected

that the change in baseline orientation on the sky does not produce any significant change in

the source spatial visibility function. The latter timescale is most importantly influenced by

thermal variations and time-varying gradients that could change the optical alignment and

mechanical configuration between the two arms.

IV.4 Spectral signal-to-noise ratio

IV.4.1 Effects of Gaussian intensity noise

In the presence of Gaussian intensity noise (thermal background and detector noise), the

measured interferogram is of the form of Eq. IV.8. We suppose that the noise has a variance

σ2
I and zero mean, and is independent of delay position. In particular, this assumes that the

source photon noise is negligible. The noise in the spectral domain is the transform of the

noise in the interferogram domain:

dxDFT(nI) = dx

N/2−1∑
n=−N/2

nI(xn)e2iπnk/N , (IV.11)

where the dx factor is to normalize the noise to a sampling bin (Press et al., 1992), and k

indexes the N discrete wavenumbers in the spectral domain. The interferogram interval is

symmetric with about ZPD (n=0). The noise variance is equal in the imaginary and the real

domain, and can be expressed as the variance of the noise transform:

σ2
S = dx2VAR (Re(DFT(nI))) , (IV.12)
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where VAR is the variance operation. By writing out the variance we obtain:

σ2
S = dx2σ2

I

N/2−1∑
n=−N/2

cos2(2πnk/N) =
N

2
dx2σ2

I , (IV.13)

where we used
∑N/2−1

n=−N/2 cos2(2πnk/N) = N/2 for k 6= 0.

The signal at wavenumuber σk in the discrete spectrum Se(σk) is:

Se(σk) =
1

δσ

∫ σk+δσ/2

σk−δσ/2
Se(σ)dσ, (IV.14)

where δσ = (Ndx)−1. A line of power Pe at σk0 will thus have an apparent flux density

Se(σk) = NdxPe at k = k0 and 0 for all other k. The signal-to-noise ratio in the spectrum

can be expressed in general as:

SNRk =
Se(σk)
σS

=

√
2

N

Se(σk)
dxσI

. (IV.15)

Using Eq. IV.10 and the definition xmax = Ndx/2, this becomes:

SNRk =
Se(σk)

xmaxNEPtot

√
Ndt, (IV.16)

where dt corresponds to the integration time of one data point on the interferogram. As

expected the SNR improves as the square-root of the total integration time,
√
Ndt, and is

adversely affected by increasing NEP and scan length.

Defining the central wavenumber of the band as σ0, the spectral resolving power of

the transformed interferogram is R = dxNσ0/2. We introduce the sampling parameter s =

(σ0dx)−1 which is the number of data samples per fringe for the central wavenumber in the
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band. The spectral resolving power at the band center can now be writtenR = N
2s . In practice

one wants to pick a value of s that ensures Nyquist sampling on the fringe for all wavenumbers

in the band so s ∼ 3 or greater is typically preferred. For a given integration time per data

point (given SNRI), increasing the fringe sampling effectively increases the amount of time

spent on the fringe, so the spectral SNR should increase with
√
s. Note that as long as we

Nyquist-sample the fringe, there is no difference between multiplying the fringe sampling by

some factor, and increasing the integration time per data point by the same factor, since in

both cases the effective time on the fringe is equally increased.

It is useful to relate SNRk to the SNR in the interferogram at the location of maximum

intensity of the fringe, using physical quantities. The noise in each discrete measurement of

the interferogram is σI . The signal at maximum intensity is Imax = dσS, where dσ is the

width of the bandpass filter and S is the average value of the signal in the band. Defining

SNRI = Imax/σI , and noting that
√
Ndx2/2 = 1

σ0

√
R/s, we obtain:

SNRk =
Se
√

2√
NdxσI

=
Se(σk)
S

√
s

R
σ0

dσ
SNRI . (IV.17)

Thus, the SNR in a channel of the final spectrum depends inversely on the square root of the

resolving power R and the fractional bandwidth dσ
σ0
; and it depends directly on the square

root of the number of samples per fringe
√
s.

For a given integration time, SNRI is proportional to
√

dσ
σ0
, which means that SNRk is

inversely proportional to
√

dσ
σ0
. Hence, maximizing the SNR in the interferogram by increasing

the bandwidth does not lead to a better spectral SNR. Although the central fringe has more

SNR with a larger bandwidth, the fringe envelope is decreasing more rapidly, and we see less
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fringes with good SNR. With a smaller bandwidth, the envelope is broader and although each

fringe has less SNR, we are seeing more of them within the scan, so we spend more time in

an interesting region of the interferogram. The number of fringes within the main lobe of a

standard sinc function is indeed inversely proportional to the fractional bandwidth. This is

an important concept that can be used to tune the spectral resolving power appropriately:

if the instrument has a large bandwidth, increasing the scan length (hence R) well beyond

the fringe pattern’s main lobe will hurt the sensitivity, since many data points will be adding

noise and almost no signal. The dependencies discussed above can be summarized as:

SNR2
k ∝

( s
R

)(σ0

dσ

)
dt. (IV.18)

IV.4.2 Effects of Gaussian OPD noise

This section derives analytic expressions for the effects of Gaussian-distributed OPD noise. We

look at the general case in order to derive sensitivities for double-Fourier instruments. Here,

we suppose that the OPD from the delay line, the OPD within each arm of the instrument,

and the OPD caused by an off-axis source are all measured or estimated with some residual

error. Hence, the data points measured in the interferogram are associated with a delay value

relative to ZPD, and if necessary, resampled to produce an evenly-spaced delay axis. This is

necessary to use the FT and retrieve the spectrum. The noise on the delay estimate can be

characterized as a wavenumber-dependent phase error in the interference of the two beams. In

the following, we quantify the impact of this noise on the spectral SNR, in order to understand

how good our knowledge of the OPD needs to be to make sure the OPD noise effects are not

dominant.
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Let’s consider a single frequency signal first, so that the phase is proportional to the

OPD. If we suppose that these residual phase errors Φr(x) are represented by a Gaussian

distribution with zero mean and variance σ2
Φ, then the primary effect of the noise is to change

the instantaneous power in I(x) by the factor eiΦr(x). Now we consider a large ensemble

of realizations of this noise distribution in order to predict its effect on the SNR. Using

the expression from Richards, 2003, for sufficiently small phase errors (< π radians), the

intensity of the coherent signal is reduced, on average, by a factor e−σ2
Φ/2. For Gaussian-

distributed OPD uncertainties with standard deviation λ/20, where λ is the wavelength, the

signal intensity is reduced by 5%; for λ/10 the amplitude is reduced by 18%. To give a

practical example of the impact of this effect, we can consider the case of BETTII: if we

assume that the uncertainty in the attitude of the payload is the only source of OPD noise,

then knowing the attitude to within 0.1" rms will reduce the signal, on average, by 18% at

40 µm.

For the polychromatic case, the delay position uncertainty, δx, creates larger phase

errors the shorter the wavelength, Φr(k) = 2πδxσk. A given error distribution of variance

σ2
OPD in position yields a degradation across the band, e−σ2

Φ(k)/2, with σ2
Φ(k) = (2π)2σ2

OPDσ
2
k.

Of course, the power lost from the coherent fringe pattern is still present in the scan;

it becomes part of the incoherent signal seen by each output. In the limit where there is no

spectral noise from the background or detectors, defining Sk ≡ Se(σk) we have:

SNRk =
Ske−σ

2
Φ(k)/2√

1
2sR

∑
k′

[
S2
k′(1− e

−σ2
Φ(k′))

] , (IV.19)

where k′ designates an index on all positive wavenumber bins. Note that N = 2sR. This
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relationship is identical to the one derived by Meynart (1992), and we suggest an alternate

and more detailed justification for it (see Appendix A.2). Studying this relationship, all the

wavenumbers contribute to the white noise at a given wavenumber σk. The strongest lines

(strongest S2
k′) and the shortest wavelengths (strongest 1−e−σ2

Φ(k′)) contribute the most to the

overall noise. To summarize, considering an ensemble average of interferograms, OPD noise

degrades the spectral SNR in two ways: first, it reduces the overall signal in the interferogram;

second, it converts this lost power into white noise.

More realistically, observations will have both intensity and OPD-generated spectral

noise. In this case, the intensity noise and the scattered power add in quadrature to give:

SNRk =
Ske−σ

2
Φ(k)/2√

1
2sR

∑
k′

[
S2
k′(1− e

−σ2
Φ(k′))

]
+ sRdx2σ2

I

. (IV.20)

The numerator of Eq. IV.20 shows that any amount of OPD noise will reduce the

spectral SNR. However, the impact of OPD noise is even greater when the power lost from

the fringe is comparable to the intensity noise, as the first term of the denominator starts to

matter. In fact, for arbitrarily large source fluxes, this equation reaches an asymptotical value

which depends only on the OPD noise, and sets the maximum SNR achievable on average

in a single scan. This is relevant for astronomical calibrators which can be so bright that

the intensity noise term is negligible. In that case, assuming constant OPD noise, more SNR

is only achievable by co-adding consecutive scans, as we discuss in the next section and in

Appendix A.3. For most astronomical applications, where targets are usually faint compared

to the intensity noise, it is expected that the first term of the denominator will be negligible.
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IV.4.3 Co-adding interferograms

Eq. IV.20 is the general case of a single interferogram with OPD and intensity noise. In

practice, we would co-add M interferograms in one "track" to build up SNR, but this puts

stringent requirements on the performance of the control system and OPD estimator, because

consecutive interferograms need to stay aligned with each other to within a small fraction of

the carrier wavelength, to avoid causing OPD noise. The design and performance of the OPD

estimator is highly implementation-specific, but most balloon and space designs will likely

include an estimator that either directly measures the OPD, or indirectly infers it from the

measurement of another quantity.

A direct OPD measurement can be achieved for example with a fringe-tracking instru-

ment, while an indirect OPD estimate can be an attitude measurement, which can be related

to the OPD by simple geometry by using some assumptions. The latter scheme only works

if the OPD errors are only influenced by pointing uncertainties over the timescale of a track,

and that all other OPD contributors are modeled and corrected with comparatively high fi-

delity. The spectral SNR over M scans can be determined from Eq. IV.20 by multiplying the

whole equation by a factor of
√
M . The OPD noise term causing the phase noise variance σ2

Φ

then corresponds to the variance of the OPD uncertainties for each point of a scan, plus the

variance of the OPD estimation error in determining the position of the center of each scan,

which is necessary to properly co-align them (Appendix A.A.3).

IV.4.4 Implications for spectroscopy

A primary application for BETTII and proposed missions like SPIRIT will be the measure-

ment of the spectral energy distribution from warm dust associated with star formation in
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different environments. These types of measurements require broad wavelength coverage but

not especially high spectral resolution since the emission can be characterized as a sum of

Planck functions over a range of temperatures. For an instrument like BETTII, covering from

30-50 µm and 60-110 µm simultaneously, R ∼ 10 in each band is sufficient to accomplish

much of the science.

Spectral measurement with R ∼ 10 requires covering a delay range of ±10 λ0 for a

single source. On the other hand, a delay range of 35-70 λ (see Eq. IV.7) is needed to move

ZPD across 1 arc-minute of sky. Hence, typically, the delay requirements for spatial coverage

creates interferograms with higher resolution than needed to measure the continuum, and

the full scan needs to be cut into smaller arrays around each target in the field. The size

of these smaller arrays depends on the desired spectral resolving power R, and the required

sensitivity, as shown in Eq. IV.17. However, the additional data can be used for higher-

resolution spectroscopy, for example to measure specific atomic lines in the far-IR. The SNR

for lines is actually increasing with the square root of the number of data points in the

interferogram, as the broadband noise gets more diluted in increasingly narrower spectral

bins (see Eq. IV.14, IV.15).

As discussed for FTS instruments (e.g. Davis et al., 2001), apodization, the weighting

of the points of the measured interferogram before applying the DFT, is one method for

optimizing the SNR in the spectrum. The weight scheme is optimized to measure a specific

type of spectrum: narrow line, broad features, continuum. The method relies on the fact that

the data points close to the center or edges of a fringe packet contain information about low

or high spectral frequencies, respectively. For example, if the purpose of an observation is to

study continuum, it is appropriate to apply smaller weights to data points far away from the
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central fringe, since they add noise and very little SNR.

A common low-resolution spectroscopy case can be derived analytically if a source has a

spectrum following a power law distribution over the covered band. We can write S(σ) ∝ σα

where the exponent α is the quantity of interest. Several methods have been developed to

properly fit these power laws using maximum entropy and other techniques (e.g. Clauset et al.,

2007). Here we use a simple estimator and provide a ready-to-use formula to help quantify

the sensitivity of double-Fourier instruments.

By taking the logarithm of the spectrum, the problem is turned into a weighted linear

fit in log-log space, where we want to determine the slope of a line. The noise in the new

domain is σL =
∣∣∣d(ln(S))

dS

∣∣∣σS = σS/S = 1/SNRS . The weights wk = 1/σ2
k of the linear fit are

then simply the values of the spectral SNR squared at each data point, SNR2
k. The error on

the weighted least square estimate of the slope is (Bevington et al., 2003):

σ2
α =

∑
wk∑

wk
∑
wkX

2
k − (

∑
wkXk)

2 , (IV.21)

where Xk ≡ ln(σk) is the natural logarithm of the wavenumber for data point k. In the case

of uniform spectral signal-to-noise ratio SNRS over m points of the spectrum, this expression

simplifies to:

σ2
α =

1

m× SNR2
S ×VAR(Xk)

. (IV.22)

This equation indicates that the variance of the spectral index estimate decreases with the

number of points used to calculate the estimate, the spectral SNR squared, and the variance of

the points distribution on the logarithmic wavenumber axis. For example, for 10 data points

spread evenly from 30 to 55 µm, each with a spectral SNR of 5, we obtain an error on the
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slope determination σα ∼ 0.3.

IV.5 Spectral sensitivity analysis for BETTII

This section applies elements of the above discussion to BETTII. A general discussion on the

details of BETTII can be found in (Rinehart et al., 2014). On BETTII, two mirrors collect

light with an altitude-azimuth pointing system. The truss that holds the two mirrors moves

in azimuth and determines the baseline vector, while the mirrors themselves move only in

elevation. While BETTII does not physically rotate about the line of sight to cover different

baseline angles, the payload always stays horizontal and the projection of its baseline vector

changes as a source moves across the sky, hence covering different angles in the (u, v)-plane.

The absolute OPD and ZPD of the instrument cannot be measured, maintained, or known with

perfect accuracy, especially during the flight itself, due to attitude estimation errors leading to

our inability to perfectly estimate the orientation of the baseline vector in real time. In fact,

a significant component of the mission’s design and implementation involves the selection and

coordination of the suite of instruments which provide attitude measurements to construct

the OPD estimator.

A second relevant aspect of BETTII is that the detectors are cryogenic bolometers see

Staguhn et al., 2014b, for similar architectures with 1/f noise which sets an optimal read-out

time for the detectors of around 2.5 milliseconds (timescale 1). With BETTII’s designed

field coverage of 2 arcminutes, full field scans consist of 1024 points and take 3 seconds

to complete (timescale 2). Due to thermal emission from the atmosphere, warm mirrors,

and cryostat windows, BETTII will be in the background noise limited case for all science

targets. It is anticipated that 200 scans will typically be co-added to create one single visibility
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measurement over 10 minutes (timescale 3). For most source locations, the variation of the

baseline orientation due to change in parallactic angle is not significant over this period.

IV.5.1 Noise sources and control system

Table III.5 showed our estimates of the background power levels associated with the atmo-

sphere, warm optics, and windows in the two BETTII bands. The detectors themselves have

been designed to have a noise level comparable to the background to optimize the use of the

dynamic range of the devices. The total NEPs of the short and long bands are expected to

be ∼ 1.7× 10−15 W.Hz−0.5 and ∼ 1× 10−15 W.Hz−0.5, respectively. The source photon noise

is negligible compared to the total NEP.

Balloon instruments are subject to low frequency (< 0.5 Hz) pendulum modes and other

oscillations introduced by the system’s geometry and mass distribution, which make pointing a

challenge. However, it is expected that the balloon environment is free of perturbations at any

higher frequency (other than the instrument specific perturbations). Hence, sensors with high

electrical bandwidth can robustly estimate the pendulum modes to gain accurate knowledge

of the attitude, which can be used as our indirect OPD estimator since it is geometrically

related to the phase on sufficiently short timescales.

The BETTII control system is organized with three different levels of control loops

(Rizzo et al., 2014): the coarse pointing loop, the fine pointing loop, and the OPD loop. The

coarse pointing loop uses gyroscopes and star cameras to keep the baseline oriented within

10-15′′ of an appropriate near-IR guide star. A dichroic splits the near-IR (1-2 µm) from the

far-IR (30-110 µm) inside the cryostat before the scanning delay line. The guide star is imaged

through each of the two arms on two separate readout windows of a near-IR detector array
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that shares most of the optical path with the science channels. The fine control loop uses

fast-steering tip-tilt mirrors (see Section III.4.3.1 and Section V.1.2.7), located at the pupils

of each arm, to control the guide star image on each window and maintain good overlap of the

beams at the science detectors. This loop reads the near-IR detector and generates a tip/tilt

correction at 100 Hz. We expect to achieve beam overlap to within better than 1.5′′ at all

times when a guide star is available. The spatial resolution of an individual BETTII beam is

17′′ in the short wavelength band so this is a little better than 1/10th of a resolution element.

The interferometric visibility loss for this overlap error is anticipated to be less than 0.5%.

We do not expect to be able to maintain the three dimensional orientation of the truss,

and hence the baseline vector, to much better than 15′′ rms, due to the various pendulum

modes mentioned above and large inertia of the payload. However, the errors in OPD intro-

duced by pointing errors can be corrected directly using a delay line. BETTII uses a delay

line external to the cryostat to correct the OPD at the entrance of the cryogenic volume. This

delay line is completely separate from the science delay line which scans the OPD to produce

the interferogram. Two delay lines are not a requirement for a double-Fourier instrument in

general as the job can be done in theory by a single mechanism, with sufficient range and

mechanical bandwidth. The external delay line on BETTII allows for the possible future up-

grade of correcting and monitoring the OPD outside of the cryostat using the near-IR channel

by implementing a fringe tracker (Rizzo et al., 2012).

For the OPD loop on BETTII, the angles of the tip/tilt mirrors which are used to

maintain overlap of the beams act as an estimator of the baseline orientation, and hence as

an indirect estimator of the OPD. The attitude estimates computed from these angles are fed

to the external delay line so that the OPD at the entrance of the cryostat stays as constant as
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possible. Because the pendulation modes have periods of a few to tens of seconds and should

be well-behaved, we expect to be able to trust the control signals and estimate the attitude

of the baseline vector to ∼ 0.12′′ rms, which corresponds to a fifth of a detector pixel in the

near-IR tracking array. A 0.12′′ attitude error indirectly corresponds to a delay uncertainty of

5 µm, or 12% of a wavelength at 40 microns. This is a critical consideration when co-adding

consecutive interferograms. With this amount of OPD noise, we expect, on average, a ∼ 25%

degradation in SNR for all sources in the short band, simply from the effects of phase noise

in reducing the coherent signal (see Eq. IV.20).

Even with a stable OPD estimator, the absolute ZPD of the instrument must be mea-

sured during flight and tracked over long timescales as the instrument and the truss cool

down to ambient temperatures (∼240 K). This can be accomplished by observing a bright

point source with known position periodically during a flight and identifying the center of the

interferogram response (see Appendix A.3).

IV.5.2 Derived sensitivity and faintest detectable targets

Incorporating these sources of noise with the formulas derived in the previous sections leads

to the sensitivity values shown in Table IV.1. In this table we show the sensitivity in the

two bands. The minimum detectable flux density (MDFD), which is the flux that provides

SNRI = 1 in a single interferogram, is 77 Jy and 113 Jy in band 1 and 2 respectively. For 200

scans averaged with a OPD noise between scans of 5 µm, the MDFD is 5 Jy and 8 Jy, using a

matched filter efficiency of 0.5 and 0.4, respectively (Mighell, 2005). The faintest detectable

spectroscopic point source that leads to a spectral SNR = 5 is 34 Jy and 17 Jy, respectively.

These are determined for "normal observing", which consists of co-adding 200 scans in 10
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minutes that span the whole 2’x2’ field of view, using a spectral resolution of R = 10 and a

nominal OPD noise of 5 µm rms.

Table IV.1: BETTII sensitivity estimates

Quantity Band 1 Band 2 SNR Target

Single scan (3 s)

MDFD 77 Jy 113 Jy SNRI = 1

Normal observing (200 scans, 10 min)

MDFD 5 Jy 8 Jy SNRI = 1

Faintest pt. source 34 Jy 17 Jy SNRk = 5

Enhanced sensitivity (200 scans, 10 min)

Faintest pt. source 19 Jy 10 Jy SNRk = 5

At the bottom of the table, we also show the results in case we were using the instrument

in an "enhanced sensitivity" mode. This mode is mentioned here to illustrate the flexibility of

the interferometer and its observing modes. It consists of increasing the individual integration

time for each point in the interferogram by a factor of 3, while reducing the interferometric

field of view by the same factor of 3: while the intrinsic field of view is unchanged at the

detector, for the same scan time we only cover enough OPD range to cross ZPD for a subset

of the pixels of the detector (and obtain a scan of the same length). This mode could be used

for example for isolated targets which are located in less crowded star fields, by optimizing

the time spent close to ZPD, where there is more signal (as we are interested in low-resolution

spectroscopy). BETTII’s observing parameters can be changed during flight so that the

instrument stays flexible to optimize the chance of seeing fringes.

Finally, we show the overall sensitivity as a function of point source flux density
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Figure IV.4: BETTII’s spectral sensitivity. Solid: Normal observing mode,
band 1; Dashed: Enhanced sensitivity mode, band 1; Dotted: normal observing
mode, band 2; Dot-dashed: Enhanced sensitivity mode, band 2. This plot
includes the technique of fringe tracking in the science channel for sufficiently
bright sources (see Appendix A.A.3). As the source flux rises, the effects of the
phase noise become larger and the SNR should reach an asymptotical value.
However, with fringe tracking, the phase noise itself becomes smaller since
one can see fringes in one single or a few consecutive scans, so the co-adding
becomes easier. Thanks to the fringe-tracking, there is no regime where the
phase noise is expected to be dominant on BETTII, provided that the control

system performs according to expectations.

(Eq. IV.20) for both observing modes and both bands in Figure IV.4. In normal background-

limited regime, the sensitivity curves should be straight lines. Here, OPD noise creates a

decrease in overall sensitivity as a reduction in coherent power, but also, for brighter targets,

from the power lost from the fringe that is converted to white noise (which causes a deviation

from straight lines). For very bright targets of 50 Jy or more, it is possible to measure the

OPD accurately within each interferogram by tracking the fringes in the science channels

themselves (see Appendix A.A.3). For sufficiently large SNR, this process has less error than
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the assumed 5 µm OPD noise coming from the indirect OPD estimation, so the OPD noise

decreases for these very large fluxes to become negligible. This is particularly attractive for

in-flight testing and calibration.

It is important to note that for sufficiently faint targets, it is impossible to accurately

measure the OPD using single scans or co-adds of scans: we rely on the OPD estimator

to have sufficient stability to properly co-add scans until the next calibration measurement.

This needs to be considered carefully when planning the observation strategy, as long stretches

without calibration could lead to a total loss of the OPD information (hence a total loss in

scientific data), due to other OPD noise contributors such as thermal drifts that impact the

payload on long timescales.

IV.6 Conclusion

Spatio-spectral interferometry can enable high resolution spectral imaging of wide fields at far-

IR wavelengths. Implementation of the technique provides some new instrumental challenges

compared to traditional Fourier Transform Spectroscopy, such as the fact that the measured

spectrum is a mix of the source’s spectral and spatial information.

In a double-Fourier system, the zero path difference for each detector pixel occurs at

a different delay setting of the delay line. The delay stroke needed to cover a scientifically

interesting field of view is equivalent to a spectral resolving power of 100’s to 1000’s for the

central pixels.

We present an analysis of the impact of Gaussian intensity and OPD noise on the spec-

tral sensitivity. Intensity noise, essentially thermal noise from the optics, sky, astrophysical

background, and detector, is similar to noise in FTS systems with the exception that the
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longer scan lengths required to cover the spatial field add noise; this can be mitigated by

cutting the interferogram for each pixel into smaller arrays centered on each source’s ZPD to

match the desired spectral resolving power, and by apodizing the interferogram to increase

sensitivity to the spectral properties of interest. OPD noise is not usually relevant for FTS

systems, but is intrinsic to double-Fourier instruments, since the two incoming beams go

through long separate paths before combination. For instruments on balloons or in space,

the OPD noise is expected to be dominated by disturbances from the instrument and from

pointing errors. On average, OPD noise reduces the coherent power in the interferogram,

and converts the power lost from the fringe into additional white noise in the spectrum. We

argue that there are three relevant noise timescales: the time to take a single data point, the

time to collect a complete interferogram, and the time to co-add M interferograms together

in a track. The latter corresponds to the timescale that the source spatial visibility function

changes significantly, due to the rotation of the baseline angle on the sky.

We derive the spectral sensitivity of double-Fourier instruments to intensity and OPD

noise. The expressions in this paper are derived in the general case and can be used to design

any instrument that implements this method.

Applied to the case of BETTII, these equations lead to spectral sensitivity estimates

of 34 and 17 Jy in its 30-50 µm and 60-110 µm bands, respectively, to achieve a spectral

SNR = 5 in 10 minutes with R = 10 and an assumed OPD noise of 5 µm rms.
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Chapter V

Attitude estimation and control for
BETTII

Don’t bother just to be better than your
contemporaries or predecessors. Try to be better
than yourself.

W. Faulkner

Chapter IV sets the general background to double-Fourier interferometry when used

mostly in spectroscopy mode. It sets the mathematical formalism to estimate the spectral

sensitivity, given various sources of gaussian noises.

In this chapter, we see more directly how this applies to BETTII, and how the system

is designed to satisfy these requirements in order to guarantee good observations. First, we

describe the overall architecture and system-level strategy that we use, before going into some

details of BETTII’s subsystems. Second, we describe the main algorithm used in the flight

software, which estimates the position of the payload at all times. Because of the importance

of this algorithm, and its potential usability by others, we decided to elaborate on some of

the mathematical derivations that define the attitude estimator.
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V.1 Control system architecture

V.1.1 Overall strategy

V.1.1.1 Requirements

The strategy that we developed aims at satisfying the requirements established in the pre-

vious chapter, under the cost, time and personnel constraints of the BETTII project. It

fundamentally relies on the fact that knowledge is more important than control. While sev-

eral research groups (such as the WASP team at Wallops Flight Facility) are attempting to

provide sub-arcsecond balloon gondola control, we are not. Our strategy uses the fundamental

advantage that the interferometer has over traditional pointed observatories: the decoupling

of the phase with the telescope pointing. This feature of interferometers refers to obtaining

electromagnetic interference even when the telescopes are slightly mispointed from the target.

There are three levels of requirements for our instrument to produce interferograms.

First, both arms need to be pointed at the target, in order for an image of the target seen

through each arm to be formed on the detector. When a target is not exactly on-axis with

the telescope, it can still fall on the detector as tip/tilt correction happens downstream.

The tip/tilt correction will create aberrations, but these are relatively well behaved at our

wavelengths and focal length. Hence, this requirement can be expressed as an overall pointing

requirement of the instrument to some amount that can be corrected in tip/tilt in each

individual arm. We set this to ±15′′. This also roughly corresponds to one single pixel on the

short band detector, and half a primary beam’s FWHM.

Once the instrument is pointed to the desired target to within ±15′′, there needs to be
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a fine guiding system in each arm that allows for the remaining tip/tilt correction. This level

of control needs to overlap the beams to a small fraction of a pixel to get maximum overlap

and minimum visibility losses. We set this requirement to 1.5′′ r.m.s., which corresponds to

a tenth of a pixel size a keeps a high visibility in the science channels. The fine guidance

system needs to operate over a range of at least ±15′′ to pick up where the previous level of

requirements stops. It also needs to happen with high bandwidth to ensure that only minimal

motion is occurring at timescales comparable to a data acquisition timescale. This system is

described in Section V.1.2.8.

Finally, an angular mispointing of the baseline vector with respect to the target can still

exist, even if both beams are overlapped properly. This introduces an unwanted optical delay

that can push the fringe packets outside our nominal OPD scanning range. Control of this

optical delay is critical for interferometry, as it is required to properly reconstruct the OPD

axis of the interferograms that are the elementary data blocks of the instrument. The OPD

tracking can be achieved using a delay line. This is done for all interferometers on the ground

(e.g. Blind et al., 2011), and we implement such a device on BETTII, which is described

in Section V.1.2.6. For this to work, we need to be able to monitor the changes in OPD

accurately, which is equivalent, on short timescales, to accurately estimating the attitude of

the payload.

A good estimate of the attitude of our payload can lead to an accurate angular difference

between our baseline vector and our target. This angular difference can be converted to an

OPD using simple geometric arguments, and can then be fed to the delay line for correction.

With an 8 m baseline length, a mispointing of 1′′ along the baseline direction corresponds to

an OPD of about 40 µm, or one full wavelength of BETTII’s short-wavelength band. In order
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to produce quality interferograms, we will need to know the OPD to a fraction of this (see

Chapter IV).

V.1.1.2 BETTII Coordinate systems

Before going into the details of the controls architecture, it is important to set key nomencla-

ture and properly define our reference frames. On BETTII, multiple coordinate systems are

involved in the control system. The main systems are described in Fig. V.1. These coordinate

systems need to be aligned before flight for the control system to operate well.

x
y
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xg
yg
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xsc

ysc

zsc

xR

yR

zR

φEl

xtel
ztel

yLS

xLS

zLS

xL−yL

zL

optical
axis

φEl

xtel
to targetztel

Figure V.1: Coordinate systems relevant to the pointing control system. The
subscript sc, g, tel, L, R and LS indicate the star camera, gyroscope, telescope,
left, right and left siderostat reference frames, respectively. The gyroscope
reference frame is nominally aligned with the gondola reference frame, which

has no subscript.

The truss reference frame (in orange and with no subscript for the rest of this document)

is tied to the gyroscope reference frame (also in orange, with subscript ‘g’), and we will consider

that these two reference frames are aligned with each other. The z axis of the payload points
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up, while the x axis points ‘forward’. The arrow formed by the truss members of the center

section hence points towards the right, or in the −y direction.

The star cameras (in purple and with subscript ‘sc’) are nominally aligned with the

gyroscope reference frame, except for a rotation about yg of −45◦.

The main optical axis of the payload joins the centers of the two siderostats, and is

coaligned with the centers of the two telescope assemblies (not shown on Fig. V.1). Each

siderostat has its own reference frame (in green and subscript ’LS’ or ’RS’, for left siderostat

or right siderostat, respectively) which is tied to its shape, and which is used during alignment

procedures. Most importantly for the control system, the reference frame that matters is that

of the optical beam reflecting off the siderostat. This is called the telescope reference frame (in

black and with subscript ‘tel’). With this notation, xtel is our instrument’s line of sight vector.

Note that there are actually two ‘telescope’ reference frames (one for each side), although for

most of the discussion presented here, we will only consider one global telescope reference

frame.

Not shown in Fig. V.1 are the reference frames of the tip/tilt actuators which we will

discuss in Section V.1.2.8, as well as many other coordinate systems used for optical alignment.

In addition to the payload’s own coordinate systems, it is important to properly under-

stand the various astronomical coordinate systems that play a role in the pointing system.

This is represented on Fig. V.2. In this complicated cartoon, the celestial sphere is shown

as the outermost circle. For our purposes, a location in the sky is represented by a pair of

spherical coordinates on this unit sphere, the right ascension (RA) and declination (DEC).

The vernal equinox is shown as our zero for RA and DEC, and corresponds to one of the two

nodes at the intersection of the celestial equator and the ecliptic plane. In yellow, a sample
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Figure V.2: Gondola and star camera frames on the celestial sphere (see text
for details).

guide star is shown, with its RA and DEC coordinates.

Our payload is arbitrarily placed on the inside sphere which represents the Earth. The

gondola/gyroscope coordinate system is shown, as well as the local horizon, which corresponds

to the tangent plane at our location. The boresight vector of the star camera, xsc is also shown.

To properly define the relevant pointing angles, however, we need to consider that the observer

is always located at the center of this sphere, so we translated the gyroscope reference frame

to the center of the celestial sphere. Here, for clarity, we increased the size of the star camera
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boresight vector, to show its intersection with the celestial sphere. The star camera field of

view is represented as a rectangle, and the rest of the star camera axes are drawn as well.

The star camera measured the celestial coordinates of its boresight vector, RAsc and DECsc,

as well as the Roll angle of its field of view with respect to the local meridian.

The telescope reference frame is omitted from Fig. V.2 for clarity. Once the star camera

determines its orientation, the orientation of the gyroscope reference frame, gondola and

telescope can be calculated. The error signal which is relevant to the control system is the

measure of the distance (in terms of local spherical coordinates: elevation ∆φEl and cross-

Elevation ∆φ×El) between our current telescope reference frame boresight coordinates and

the chosen target position on the sky (see Fig. V.3). The goal of the control system is to

minimize this vector. Nominally, the error in elevation is corrected by moving the siderostats

about the optical axis. The cross-elevation error is corrected by moving the entire payload in

azimuth.

A more detailed illustration of the high-level pointing strategy is offered in Fig. V.4. In

this picture, we now show the point of view of the payload with its local horizon plane. The

same yellow star is shown for reference to the previous figure. In this particular configuration,

the payload determines its orientation with the star camera, and calculates a correction in

local azimuth and desired local elevation, φAz and φEl. Note that the azimuth does not refer

to any particular cardinal direction. For us, the azimuth angle is simply the angle between

our xg vector and its desired position when the telescope points at the target.

V.1.1.3 Control architecture and operating modes

To summarize the previous discussion, the three levels of control that we need are:
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Figure V.3: The star camera reference frame (see text for details).

1. Coarse control of the entire gondola to within ± 15′′ of the target,

2. Fine pointing control of each beam to 1.5′′ r.m.s. at the science detector,

3. Fine knowledge of the inertial attitude to ≈ 0.15′′ r.m.s., followed by appropriate OPD

control

Goals 1 and 2 need to be achieved during the flight, while goal 3 needs to be achieved

at post-processing, as the OPD information can be corrected provided sufficient amount of

information is available.



Chapter V. Attitude estimation and control for BETTII 168

zg

yg

xg

Local
horizon

φAz

xtel

φEl

desired
elevation

x

y constant DEC

z

constant RA

Star camera
field of view

xsc

ysc

zsc

(RA,DEC)sc
y

z

ROLLsc

Figure V.4: Azimuth and elevation of a target. See text for details

At its fundamental level, the problem is to implement a system that satisfies these

requirements, starting with only the target’s location in right ascension (RA) and declination

(DEC). Ideally, the system needs to be able to achieve these goals autonomously. All of the

operating modes follow from this.

All of the pointing will be done in the reference frame of the gondola, which is tied

solidly to the reference frame of the gyroscopes (nominally they are the same) and the star

cameras (nominally off by −45◦ about the y axis). In the following sections, we describe how

the inertial attitude of the gondola is determined. Once it is known, a target’s RA and DEC

can be converted to a desired local azimuth φAz and elevation φEl in the spherical coordinates

attached to the gondola reference frame (see Fig. V.4). Note that the elevation angle is defined

as being zero in the (xg,yg)-plane.
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Once the turbulence from the ascent has died out, the control system determines where

the gondola is currently pointing using the star cameras. For the software to process the star

camera image, the payload has to be still to avoid blurring of the stars on the sensor. Hence,

the first order of business is to slow down the payload’s inertial velocity, which is measured

by the gyroscopes. This is also called BRAKE mode.

The first time the system receives a star camera frame and identifies its inertial position,

this triggers the estimator algorithm that constantly combines gyroscope and star camera

information. From this point on, we have a reasonable estimate of where the gyroscope

reference frame is pointed with respect to the inertial frame.

When a new target in RA and DEC is set by the flight computer, the system will enter

the SLEW mode. This creates a profile of desired azimuth position and velocity as a function

of time. The software commands the reaction wheels to turn the payload about its z axis. At

the same time, it commands the rotation stages that control the telescopes’ elevation, to go to

the desired elevation. The control in elevation and control in azimuth are entirely decoupled.

When we complete the deceleration phase as we get close to our target, we switch to

TRACK mode. This mode tries to maintain control of the telescope within ± 15′′ of our

target.

Finally, for each of the two arms, we need to acquire a guide star onto our guide camera

(Section V.1.2.8). This requires a fast imaging capability and a fast-steering tip/tilt correction

mechanism to freeze the motion of the sky on the guide camera. This is ACQUIRE mode.

Two images of the sky are made on the detector, one from each arm; the guide star is located

in each image, and the tip/tilt mechanisms are actuated to center this star onto a location

of the detector that corresponds to maximum overlap at the science detectors. Once the star
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is centered onto that location, the window size of the camera decreases, and the acquisition

speed increases. Ultimately, we will get two patches of 35×35 pixels at ≈ 50Hz. When this

acquisition speed is reached we consider ourselves in LOCKED mode.

In both ACQUIRE and LOCKED mode, the position of the two tip/tilt platforms

contains information on the overall mispointing of the optical train: when the actuators are

both off in the same direction with respect to their nominal position, it means that the entire

truss is off the guide star by this amount. When available, this information is used by the

estimator along with the gyroscope and star camera information to compute the best possible

attitude estimate. Since the tip/tilt is tied to the actual optics train, its information is heavily

weighted compared to the other sensors.

When the two guide star images are centered, this means proper overlap of the far-

infrared beams at the science detectors. Hence, we are in a position to spot interferometric

signal, which will translate to a modulation of the intensity of the coherently combined image

as a function of OPD. The OPD is constantly modulated with the Cold Delay Line (Sec-

tion V.1.2.6), independently of the mode in which we are. However, residual mispointings can

create large unwanted OPD perturbations. Hence, during TRACK and ACQUIRE mode, the

Warm Delay Line mechanism is activated. Its goal is to use the estimated change in baseline

position to predict the resulting OPD variations - and correct them directly in OPD space.

The OPD within the delay line is determined using capacitive sensors.

During the LOCKED mode, we need to consider what happens if we lose the guide star.

Since the field of view is relatively small compared to the expected motions of the gondola,

the guide star could technically walk outside the range of the guide camera - at which point

the attitude estimation relies temporarily on the gyroscopes as we switch back to ACQUIRE
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mode and the guide camera increases its field of view (and decreases its speed) until it finds

the guide star.

Note that the Cold Delay Line (CDL) is running in closed loop during all the modes.

Since the environment inside the cryostat is not changing from test to flight, there is no reason

to ever turn the loop off or keep different sets of gains for different operating modes. The

CDL is its own closed system.

The various operating modes will assign different gains for different subsystems, and

all modes are summarized in Table V.2. Each actuator has its own PID control loop (see

Appendix C for more details about a description of PID control loops).

V.1.2 Subsystems

Multiple actuator and sensing subsystems are mentioned in the previous section. They are

summarized in Table V.2, and each discussed in more detail in this section.

V.1.2.1 Gyroscopes

We purchased three SRS-2000 fiber-optic gyroscopes from Optolink. This gyroscope technol-

ogy uses the Sagnac effect and is the cutting edge in inertial rotational velocity measurements

(for a review of the state-of-the-art see, e.g. El Badaoui et al., 2014). We chose these devices

for their low angular random walk, which is a measure of their inherent noise. If we were

to trust the gyroscope measurement and integrate its velocity to obtain a position estimate,

the estimation error we would make after 1 hour of integration has a standard deviation of

about 2 arcseconds. As the purchase of the gyroscopes occurred before any requirements were

specified, this provided us with ample margin to work with.
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Mode Description Actuators Sensors

SAFE All PID gains set to 0;
siderostats point towards zenith;
azimuth is not commanded; used
during ascent, emergencies

– CDL – Gyros
– Star cameras

BRAKE Used to slow down the payload
after undesired motion; deriva-
tive gains only, no position loop

– CCMG
– Rotators
– CDL
– Mom. Dump

– Gyros
– Star cameras
– Elevation encoder
– Gimbal encoder

SLEW Used to move to target with a set
velocity profile

– CCMG
– Rotators
– CDL
– Mom. Dump

– Gyros
– Star cameras
– Elevation encoder
– Gimbal encoder

TRACK Used to stabilize payload after
slew, track target coarsely

– CCMG
– Rotators
– CDL
– Mom. Dump
– WDL

– Gyros
– Star cameras
– Elevation encoder
– Gimbal encoder

ACQUIRE The guide camera grabs images
for each arm and identifies the lo-
cation of a guide star in increas-
ingly smaller quadrant sizes

– CCMG
– Rotators
– CDL
– Mom. Dump
– WDL
– Tip/Tilts

– Gyros
– Star cameras
– Elevation encoder
– Gimbal encoder
– Tip/Tilt encoders
– Guide camera

LOCKED The intensity of the target in the
science detector is measured, and
the central phase is estimated

– CCMG
– Rotators
– CDL
– Mom. Dump
– WDL
– Tip/Tilts

– Gyros
– Star cameras
– Elevation encoder
– Gimbal encoder
– Tip/Tilt encoders
– Guide camera
– Science detector

Table V.2: BETTII operating modes.
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The devices have a bandwidth of 50Hz, but can be triggered at up to 2000Hz. Their

stability is contingent upon proper temperature stabilization, which is done with a closed-loop

set at their calibration temperature of 23.5 ◦C±0.5 ◦C using an active built-in Peltier element.

This Peltier element transforms electric power into either heating or cooling (Peltier, 1834).

Figure V.5: Three single-axis Fiber Optic Gyroscopes are mounted in an
orthogonal assembly and attached to the truss.

The three single-axis gyroscopes are assembled in an orthogonal mount configuration

shown in Fig. V.5. In the following, we describe how we measure the various properties of the

gyroscopes, and discuss how they compare to the specifications. The gyroscope’s sensitivity

has complicated some of their testing. As soon as we attach a gyroscope to any structure,

it measures its vibrational modes, which makes it hard to make a stable measurement of the

gyroscope’s drift stability. This includes the vibrations that are inherent to the building in
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which they are placed.

We were successful at measuring the gyroscope properties over long periods of time by

attaching them flush to a heavy slab of metal, and putting the slab of metal flush on the

vibration-isolating floor of one of NASA Goddard’s optics labs in building 34.

We proceeded to an identical series of tests for each gyroscope:

1. We acquired data at 2000Hz for 10min to measure a proper power spectral density and

characterize the noise;

2. We acquired data at 100Hz for ∼ 8h to study the drift properties.

The properties that we are looking for are typical instantaneous angular random walk,

and the overall drift instability of the gyroscope’s mean. When the gyroscopes are set on the

floor, they measure a component of the Earth’s rotation vector in inertial space. The mean of

the measurement depends on the exact angle at which the device is placed with respect to the

zenith vector, and is of no importance for this noise study. We seek to understand how much

the mean varies over long periods of time. To avoid disturbances from the building vibrations

(opening/closing of doors, etc), we operated entirely after regular working hours.

The angular random walk (ARW) is a measure of the effects of integrating a noisy

velocity measurement. The specification from the manufacturer is ARW = 5× 10−4 deg h−0.5.

This means that if we integrate the gyroscope’s rate for 1 hour, the 1− σ uncertainty on our

position would be 5× 10−4 deg ∼ 1.8′′. For an integration time of 1 second, it would be 0.03′′.

For a single integration time step ∆t = 10ms, it would be 0.003′′.

The manufacturer specification gives a maximum bias instability over a wide range of

temperatures less than 0.005 deg h−1. This represents how much the mean angular velocity is

expected to vary. These tests are an attempt to verify these numbers.
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Figure V.6: Snapshot of 100 s of gyroscope data, taken from our 8 h data
sample.

V.1.2.1.a Power spectral density

The usual frequency-domain analysis tool is the power spectral density (PSD). This allows us

to spot any frequency peaks in the data, and let us look at the 1/f noise behavior, which is

the typical low-frequency behavior that indicates drifts in the signal. The 100Hz data is all

we need, as the gyroscope’s bandwidth is 50Hz. Hence, the 2000Hz data does not contain

any more information than the 100Hz. In fact, while plotting the PSD of the 2000Hz data,

we can see clearly the break at 50Hz characteristic of a 50Hz low-pass filter.

It is important to note that in their factory settings, the gyroscope noise distribution

was not normal at all. It exhibited electronic peaks with many harmonics, at frequencies

that were varying as a function of the gyroscope inclination (as it was measuring different

components of the Earth’s rotation). After talking to the manufacturer, we determined that

it was caused by the closed-loop algorithms inside the gyroscope electronics. The problem

was known by them, and the remedy was to inject a random phase perturbation in the closed
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(a) (b)

Figure V.7: (a): Single-sided power spectral density for gyro 11005, an 8h
sample with a sampling rate of 100Hz, showing no particular feature (large
peaks or resonances). (b): Single-sided power spectral density for gyro 11005, a
10min sample with a sampling rate of 2000Hz, showing no electronic resonance

peak or other feature. We can notice the −3 dB break at around 50Hz.

loop. This had the effects to get rid of those frequency peaks, at the cost of increasing the

overall noise variance by a factor of 4. The noise levels that are specified by the company are

very close to the noise seen when using that random phase modulation. Hence, if one does

not care as much about the frequency content of the gyroscope, it is possible that this device

could work much better than it does for us.

V.1.2.1.b Normality tests

We ran a few standard normality tests on chunks of the 8-hour data for each gyroscope. The

distribution of the total 8 hours rejects the null hypothesis with a very high probability, using

both the Anderson-Darling and the Kolmogorov-Smirnov test. It means that it is extremely

unlikely that the measured noise over 8 h is coming from a normal distribution.

However, the data is always consistent with being normally distributed over timescales

of tens of minutes. After close inspection of the long-term quartile plots and histograms, we
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determined that it would be safe to consider the distribution as normal for the purpose of our

attitude estimator (see Fig. V.8).

(a) (b)

Figure V.8: Normality analysis of the gyroscope signal over 8 h of data taken
at 100Hz. (a): Normal quantile-quantile plot for an 8h sample with a sampling
rate at 100Hz. Here the measured quantiles (fraction of the measured values
under a certain value) are plotted against the theoretical quantiles from a
normal distribution. The red line is the theoretical distribution if the data
were taken from a normal distribution. (b): Probability density distribution
for an 8h sample with a sampling rate at 100Hz. In red, the theoretical normal
distribution we obtain with the measured mean and standard deviation from
the sample. While the data is not strictly normally distributed, we consider

that it is sufficiently close to a gaussian distribution.

V.1.2.1.c Allan variance

Another common tool to study the gyroscope’s performance is to plot the Allan variance. The

Allan variance gives a time-domain analysis of the gyroscope’s noise that is complementary

to the power spectral density, by plotting the variance (or standard deviation) between the

means of clusters of data over various lengths. On the Allan deviation plots shown for our

gyroscopes in Fig. V.9, the angular randow walk (ARW) can be measured as the deviation at

1 s cluster interval, and the bias drift measured as the deviation for 10 000 s cluster interval.
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Figure V.9: Allan deviation plots

V.1.2.2 Star cameras

V.1.2.2.a Design

We have designed, built and tested a custom star camera setup that provides higher accuracy

measurements than commercially available devices. An image of our assembly is shown in
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Table V.3: Gyroscope properties

Measured property Gyro #11005 Gyro #12003 Gyro #12004

Standard deviation (deg h−1) 0.237 0.199 0.217

Angular random walk (deg h−0.5) 4.31× 10−4 3.79× 10−4 4.02× 10−4

Bias instability (deg h−1) 3.11× 10−4 1.8× 10−3 3.05× 10−4

Notes: Properties of the gyroscopes determined from the Allan variance anal-
ysis on an 8 h sample with a sampling rate at 100Hz. Note that 1 deg h−1 =
1 arcsec s−1, and the Earth rotates at about 15 arcsec s−1 about the line joining

the two poles.

Fig. V.10. Our collaborators from Cardiff University provided the star camera software, which

solves for the inertial orientation from a given picture. This software is a C++ set of routines

that was originally developed for the EBEX balloon experiment (Oxley et al., 2004).

Our star camera uses a Nikon Nikkor 300mm f/2.8 telefocal lens with manual focus

and extended hood. These lenses were manufactured between 1977 and 1982 and can be

found today online through websites like e-Bay. The lens provides low chromatic aberration,

a magnification of 688 ′′mm−1, a wide field of view (≈ 10◦) and a collecting area of 90mm2

which is is larger than most star tracking assemblies. This old lens does not feature a built-

in autofocus or any of the image stabilization actuators commonly found in modern lens

assemblies, which would become a liability in the severe balloon environment.

Our camera is a USB3.0 Point Grey Grasshopper3. The sensor is a Sony Pregius

IMX174 CMOS sensor with 1920×1200 pixels at 5.86 µm pitch. This provides a field of view

of 2.14◦×1.34◦ and a pixel scale of 4.02′′/pixel. It features a very convenient Linux-compatible

software suite which works with all the Point Grey camera products, and leaves room for future

potential upgrades of the camera. The detector characteristics are summarized in Table V.4.
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Figure V.10: Star camera assembly.

We have successfully cycled the camera in the environmental chamber all the way un-

til the camera’s internal thermometer indicated a temperature of −80 ◦C, and it continued

operating nominally.
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Table V.4: Star camera properties

Property Value Description

Quantum efficiency at
525 nm (%)

76 Fraction of incoming photons that create signal

Read noise (electrons) 6.83 Error made when reading the pixel’s value

Absolute sensitivity
threshold (photons)

9.77 Minimum number of photons required to get a SNR = 1
on a pixel

Well depth (electrons) 32 513 Maximum number of electrons a pixel can store
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Figure V.11: Quantum efficiency of star camera sensor.

V.1.2.2.b Focusing strategy

Focusing the camera could be required at float due to the change in temperatures that could

create a shift of the focal plane. We implemented our own autofocus mechanism, a belt is

attached between the lens’ focus ring and a stepper motor. When the stepper motor turns, it

turns the focus ring. We tested this very simple configuration in our environmental chamber

only to realize that the belt was loosing grip when the temperature was too cold. To fix this

problem, we added a spring-based belt tensioner which adds ≈ 10N of force to the belt.

At cold temperature and low pressure, we noted that the glass in the lens began to

exhibit radial cracks, presumably caused by the CTE difference between the steel housing
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and the glass material. These cracks don’t noticeably affect image quality, but of course they

could cause the glass to shatter if they become too large. Hence, it was decided to maintain

the outside temperature of the lens above 0 ◦C at all times during flight, using heaters and

snap-disk thermostats.

V.1.2.3 Azimuth control

The Compensated Controlled Moment Gyros (CCMG) is a system with two counter-rotating

reaction wheels on a gimbal that we use to control our azimuth, designed and built by E.

Gorman’s group at NASA GSFC. It features multiple encoders and motors. First, there is

a brushless DC motor that spins each wheel, with a relative 13-bit encoder that monitors

where the wheel is in its rotation. Second, there is a Beckhoff AS1050 stepper motor that

controls the wheels’ shaft angle. On the gimbal, there is a 13-bit absolute magnetic encoder

that measures the angle of the wheels from some reference. We use the latter to know where

the gimbal is positioned at all times. Hard stops prevent the wheels from moving far past

±90◦ from their nominal position.

The motion controller that we use to monitor the wheel’s speed is a brushless-DC Galil

Motion controller DMC-4020. It reads out the wheel encoders and controls the current to

the wheels accordingly. It directly and independently implements the closed-loop system of

the wheels, including all of the gains, acceleration/deceleration, and jogging speeds associated

with the desired motion.

The motion controller was modified to accept an external clock pulse in order to synchro-

nize the wheels’ motion with our master clock signal. It requires a clock pulse at 1.024 kHz,

and deviations from this value will require changing some of the gains - it is our understanding
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that the controller internally uses a nominal 1.024 kHz crystal oscillator to generate its time

basis, as some of the gains and parameters to the controller can directly be entered as, for

example, "steps per second".

At power-up, the wheels immediately start accelerating to their cruising speed of 3000 rpm.

They take about 10 minutes to reach their target. The wheels’ frequency is set for the entire

duration of the flight.

The gimbal is controlled with another Galil Motion controller, a 2-axis stepper driver

DMC-4020, which is synchronized with an external clock. Only one axis is used for the

CCMG, while the second axis is used by the momentum dump motor (see section V.1.2.4).

The controller operates in micro-stepping mode and has a very smooth response, in contrast to

previous controllers we tested which create a lot of vibrations. The controller is set always to

use 64 micro-steps per step, and the motor is a Phytron VSS200 with 200 steps per revolution.

The motor is outfitted with a Beckhoff AG1000 planetary gearhead with a 3.7:1 reduction

ratio. The gearbox itself has a ratio of 25, which creates a total gear ratio of 92.5. Hence, a

360◦ revolution of the stepper corresponds to 360/92.5 = 3.9◦ motion of the shaft.

In practice, all of the control is done using the regular stepper motor encoder. The

magnetic encoder is used for limit-checking and to feed back to the momentum dump mecha-

nism. With this in mind, we can now relate the control signal (stepper motor micro-steps per

second) to the physical torque that the wheels provide.

∆θ[rad] =
2π

92.5× 200× 64
∆(micro-steps) (V.1)

∼ 5.3× 10−6∆(micro-steps) (V.2)

∆θ[′′] ∼ 1.09∆(micro-steps) (V.3)
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At 3000 rpm, the CCMG has a total stored momentum MCCMG = 20.8Nms. Of

course, depending on the orientation of the wheels, the momentum along the z axis is only

the projection of this momentum vector,

MCCMG,z [Nms] = 20.8 sin θ, (V.4)

where θ[rad] is the angle between the horizontal axis and the rotation axis of the wheels. This

makes sense: when the wheels are horizontal, there is no momentum projected on the z axis

because the rotation vectors of the wheels are orthogonal to z. When the rotation axes are

aligned with z, we have the maximum momentum.

The torque TCCMG is the variation of the momentum with time. So we can write:

TCCMG[Nm] =
d

dt
MCCMG,z (V.5)

TCCMG[Nm] = 20.8× θ̇[rad s−1] cos θ (V.6)

= 1.1× 10−4 × n[micro-step s−1] cos θ (V.7)

The entire CCMG assembly was tested in a vacuum chamber at cold temperatures.

Several heaters are strategically located in the assembly to allow some thermal control for all

the electronics in case issues arise.

V.1.2.4 Momentum dump mechanism

The momentum management strategy consists of using the balloon as a large momentum

reservoir. The control system then needs to be equipped with a system that allows a transfer of
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Figure V.12: CAD rendering of the CCMG design.

momentum between the gondola and the balloon, which are connected through the parachute

and ladder.

For this purpose, BETTII uses a design which has successfully flown on previous balloon

payload (Fig. V.14), with several improvements over its predecessors. It consists of a steel and

titanium setup which will make the junction between to the bottom of the balloon train (at the

very bottom of the ladder) and the very top of the gondola. The critical material is an alloy

of steel that has been heat treated and is particularly strong. The setup consists essentially
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Figure V.13: Compensated controlled moment gyros during testing.

of a pivot and a pin made with this alloy, connected together with grade 8 bolts. The top of

the pin is attached to the pivot, and has a lip at the bottom on which two circular bearings

are stacked: the bottom one uses ceramic balls (for their excellent friction properties), and

the top one uses steel balls (for their excellent strength). Between the two bearings, there is

a metal holder that extends all the way down below the pin. On top of the steel bearing, a

titanium case sits, which attaches to the entire gondola through four steel tubes.

The momentum dump mechanism is a simple rotary stepper motor. Its housing attaches

to the steel case of the assembly - while its shaft attaches to the metal holder between the two

bearings. With an assembly like this, when a vertical upward force is exerted, the gondola’s
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Grade 8 bolts

Steel alloy pin
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Titanium holder
Steel ball bearing
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Attaches to
stepper shaft
Attaches to

stepper body

Figure V.14: Cross-section of the momentum dump mechanism in an earlier
version of the design. The part that was built has a larger titanium holder.

Figure V.15: Our momentum dump mechanism, with a cross-section which
is very close to Fig. V.14.
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weight pushes on the bearings, which then push onto the pin’s lip. When the stepper motor

starts spinning, it spins only the top part of the bottom bearing, and the bottom part of the

top bearing: the friction force that this exerts allows to slowly dump momentum into the pin,

hence into the balloon train.

Given that the entire weight of the payload rests on the two bearings and the pin’s

bottom lip, this can be hazardous during descent when the parachutes open and the payload

can experience up to a 10 g vertical load. Hence, this piece of the assembly was pull-tested

and certified to satisfy the launch facility safety requirements.

In practice, the momentum unloading happens quite slowly due to the very low friction

of the bearing. As the stepper turns the bearing, it slowly turns the entire train along with

the pivot for a few tens of seconds. When the train has experienced sufficient twist, it then

unfurls and gives a slight kick in the opposite direction. The control system needs to be

tuned to optimize the momentum unloading speed while minimizing those kicks, which could

introduce pointing errors.

The momentum dump mechanism has not been tested in the environmental chamber -

however, the stepper motor was rated for vacuum and extreme temperatures, and the entire

assembly is inspired from assemblies which have flown before. One of the big unknowns is

the value of the bearings’ friction coefficients in the balloon environment. When powered, the

stepper motor dissipates quite a large amount of heat, which will help maintain the whole

assembly to a reasonable temperature.
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Figure V.16: Momentum dump control loop.

V.1.2.5 Siderostat control

When put in terms of ground-based telescopes, BETTII is fundamentally an Alt-Az telescope:

to reach a target, it has to move in azimuth, and in elevation (also called altitude). Instead of

moving the entire payload in elevation, which would have conserved the optical setup constant

for all targets, we chose to move only the siderostats for increased reliability. We paid one

cost: as the siderostats cover different elevations, the fields rotate on the detector in opposite

directions in the two arms. So as the elevation changes, an active compensation needs to

happen, which is done with a third rotation mechanism located downstream, the K-mirror.

These rotation mechanisms have multiple requirements: they need to operate at 90◦

from the gravity axis; they need to operate well at −40 ◦C; they need to have an inner

clearance to let our 2.5 cm beam through; they need to be able to support many kilograms

of cantilevered mass; and they need to have a precise encoder that allows not only smooth

motion, but also accurate knowledge of the elevation angle. Griffin Motion LLC makes an

industrial rotator that satisfies all of these conditions (Fig. V.17).

These are industrial-grade brushless DC rotators. They are controlled by a three-axis

Galil Motion controller DMC-4030 with sinusoidal drives. The requirement for sinusoidal

drives as opposed to pulsewidth-modulated (PWM) drives stemmed from the fact that these

motors were going to be 5m away from their controller at the end of each arm, and we wanted
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Figure V.17: Rotation stages from Griffin Motion LLC.

to avoid creating electromagnetic noise by having high-frequency pulses going through such

a large distance. The rotary encoder is a RENISHAW RESOLUTE absolute encoder with

26 bit resolution, which corresponds to a 0.019′′ angular resolution. However, the controller

ignores the two bits of lowest significance, effectively giving a 24 bit resolution, corresponding

to a 0.08′′ angular resolution.

An old version of these rotation stages was tested in our environmental chamber, but

not under load. These devices are rated to operate nominally down to −40 ◦C, but because

of their self-heating, we do not expect that they will reach that temperature. During our

cold tests of the device, we noted that the friction seemed to change, which required a re-

adjustment of the PID coefficients inside the Galil controller. Given that only the encoder

has been changed between the old and new generation of rotation stages, we expect a similar

behavior. We have the capability to change the PID gains of all systems during flight.

V.1.2.6 Delay lines

We have designed, built and tested two linear mechanisms that change the OPD on BETTII:

the Cold Delay Line (CDL) and the Warm Delay Line (WDL). Both of these mechanisms have
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optics attached to them and have been briefly discussed in Chapter III. The rationale behind

using two delay lines requires some explanation. First, we realized that we had two very

different problems to solve in terms of OPD. One was to produce a periodic, very repetitive

modulation to produce our interferograms. This requires very small range, high bandwidth.

This was originally set out to be a cryogenic mechanism for symmetry reasons, and the team

used a heritage design from the FIRAS delay line mechanism, using titanium flexures, voicecoil

actuators, and capacitive sensors to close the PID loop. The design, fabrication, and procure-

ment of this delay line was already underway when we realized that we needed significantly

more range to tackle the second problem: the variation of OPD due to geometrical pointing

errors. With the pendulum modes of balloon payloads extending to multiple arcminutes, and

the large lever arm given by our baseline length, excursions in OPD can be considerable. In

addition, we learned from our optical design that we had to introduce an asymmetry in the

system to properly overlap the polarizations within the pupils, which most easily was achieved

by having a 4-mirror set in one arm and a 3-mirror set in the other. We then decided that

given the required difference in dynamic range of the two requirements and the maturity of

the CDL, to implement a second delay line, the WDL, also based on voicecoil actuators and

capacitive sensors. This device does not have any requirement to be operated at cryogenic

temperatures, so we chose to have it operate at ambient temperature.

V.1.2.7 Tip/tilt

Our tip/tilt mechanisms are Physik Instrumente S330 piezo-electric actuators that move a

flat platform in tip and tilt. We attach a mirror to that platform, and put that mirror close

to a pupil of the optical system, to correct for angular errors without creating beam walk
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(e.g. in the K-mirror assembly, see Fig.V.18). After long discussions with the company’s

engineers, we ordered a custom strain gauge sensor specially tuned and tested to resist low

temperatures: this sensor tells the angle of the platform, which is important for our control

system. Similar devices have been successfully used on sounding rockets before to provide

milli-arcsecond angular control (Mendillo et al., 2012).

The piezo-electric driver electronics E-616.SS0 provide the required 100V to operate the

platform, and amplify 10 times an analog 0-10 V command signal. Despite its broad range

of motion (≈ 10mrad), they can still operate at multiple hundred Hz bandwidth, even with

a mirror load on top of the platform. The resonant frequency of the structure under load,

which needs to be avoided at all costs to avoid severe damage, is at more than 2 kHz, way

beyond the frequency at which we need to command the device.

Figure V.18: K-mirror assembly model with a piezoelectric tip/tilt actuator.



Chapter V. Attitude estimation and control for BETTII 193

The platform can be controlled in open-loop mode, where there is a simple gain between

the command and the voltage applied to the piezo crystals. However, we baseline the closed-

loop mode during flight. In this configuration, the electronics close the loop using the strain

gauge sensor and the command corresponds to an angle rather than simply a voltage. The

drawbacks of the closed-loop mode are a slightly decreased bandwidth and overall range of

motion. In case more range is needed during flight, it is possible to switch back to open-loop

mode.

V.1.2.8 Fine guidance sensor

The fine guidance sensor is a HAWAII-1RG detector from Teledyne with 1024×1024 pixels that

is sensitive to infrared wavelengths between 1 µm and 2.5 µm. The plate scale is 0.6′′pixel−1.

The device will be operated at a cryogenic temperature of 77K, at which the expected read

noise is 18 electrons r.m.s. The readout is accomplished using a San Diego State University

GENIII (Leach et al., 1994) controller. The readout scheme accommodates simultaneous read

of two windows on the array, one for each arm of the interferometer. The software can switch

window size quickly, hence accommodating our ACQUIRE mode needs.

The centroid of a guide star in each window is determined, and the error between this

centroid and a pre-registered location on the sensor is fed back to the tip/tilt actuators after

proper rotation, to ensure overlap of the two beams in the science channels. The amount of

correction required by the tip/tilt actuators to overlap the two beams is then used by the

attitude estimator and converted to an overall baseline error.
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V.1.2.9 Clocks and timing

Synchronization of the sensors and actuators are of prime importance for our payload. As

an interferometer, we are extremely sensitive to vibrations which could be injected in our

system by the motors. While everything was designed to maintain a very good symmetry,

slight differences in the inertias or mass distribution of the reaction wheels, for example, could

create a beat frequency that would be noticeable in our science data. The existence of multiple

clocks, each with their own slight temperature-dependent drift, can dramatically complicate

the proper retrieval of the data.

To avoid future complications, all BETTII actuators and sensors are slaved to one single

50MHz master clock, or an integer divider of that master clock. The cascade of the various

clock dividers meets at the common value of 124 800, which corresponds precisely to 2.496ms.

This is BETTII’s heartbeat. Hence, 124 800 master clock ticks correspond to the elementary

cycle of all critical processes:

– The CDL moves of one single step

– The fine guidance sensor reads one single frame

– The science detector reads one single frame

– The CCMG wheel position about its axis is checked and a correction is applied.

A diagram of all the clocks in the system is shown in Fig. V.19.

The advantage of this strategy can be illustrated as follows. The time it takes for a wheel

to complete a revolution is set to be an integer multiple of this heartbeat, 998 400 = 124 800×8

master clock ticks (about 50 revolutions per second). Hence, every 8 heartbeats, each wheel

is supposed to be in the same position, and it will be controlled 8 times during one revolution

to make sure it is. This completely locks in their relative velocities, on average. Let’s suppose
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Figure V.19: BETTII’s clocks are all derived from one single master clock.
The heartbeat at 2.496ms is highlighted in red.

now that in their 8th position, a mechanical defect in the wheel or the bearing triggers a small

vibration. This vibration will occur at a frequency which is locked with respect to our science

data, such that we will see its effects every 8 data samples. In the case where these clocks are

not synchronized and would unpredictably drift with respect to each other, a perturbation

that occurs every 8th of a revolution has repercussions not exactly at every 8 data samples.

If we think about this in the frequency domain, it means that the power peak caused by the

vibration is now broadened, whereas it is very sharp in the synchronized case.

The attitude control and sensing occurs every 4 heartbeats, which corresponds to

≈100.16Hz. In the rest of this discussion, we will always refer to this frequency as being

at 100Hz for simplicity of notation - but it important to remember that it is in fact derived

from the master clock.

V.1.2.10 Computers

BETTII will have two on-board computers (see also Fig. V.20):
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Table V.5: BETTII on-board computers.

Name Description & tasks

boopFPGA • Generate 50MHz master clock
• Generate all other system clocks derived from master clock
• Trigger all sensors
• Read sensors: gyroscopes, galil controllers, ford at 100Hz
• Send actuator commands at 100Hz
• Implement hardware protection (limit, overdrive, etc)

boopRT • Collects all sensors from boopFPGA and estimate the inertial attitude and velocity
• Create proper commands to all actuators and sends them to boopFPGA
• Manages operating modes (see Section V.1.1.3
• Manages FIFOs and communication channels with ford

ford • Processes star camera frames to determine attitude
• Processes science detector frames
• Processes fine guidance sensor frames
• Handles communication with the ground (through the CIP) and from/to boop
• Automatically applies observing plan if no commands from the ground: send
targets to boopRT

1. a computer which operates a real-time Linux kernel will be used to store all the data,

process the up/down telemetry, acquire star camera images, solve for inertial attitude,

and process the science detector and H1RG frames. This computer is named ford.

2. an FPGA and real-time computer from National Instruments to process the sensor

input/outputs, implement the attitude estimation, and synchronize all the control loops.

This computer is named boop. This is the brain of the control system.

ford is an Adlink Extreme Rugged Express-IBR 3517UE with a dual-core i7 CPU and

4 GB of ECC (Error Checking and Correction) memory. The ECC memory is helpful in

mitigating some of the side effects of cosmic ray hits on the memory chips. The computer has

low power consumption, which allows it to function with a simple radiator instead of a fan.
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ford has been successfully tested at in the environmental chamber, and the temperatures of

its cores under maximum CPU stress have been monitored over long periods of time.
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Figure V.20: Relationships and communications channels between the vari-
ous subsystems, from Rizzo et al. (2014).

boop is a National Instrument cRIO- system. It features a reprogrammable FPGA chip

in addition to a dual-core real-time operating system. NI LabView is the software interface

to the system. boop will generate and distribute BETTII’s master clock signal at 50MHz.

The various relationships and communications channels between the subsystems is

shown in the diagram on Fig. V.20.

V.1.3 Software architecture

A diagram showing the flow of the main loop of the control software is shown in Fig. V.21.

This loop is operated at a nominal frequency of 100Hz, which is the speed at which we read

out the gyroscopes and issue new commands to the control system. The star camera, as well
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as other absolute sensors are being processed by the Real time software, and appropriately

propagated since they often correspond to a measurement that was taken some number of

loops ago. Using a robust synchronization scheme slaved to our system’s master clock, we can

align the various pieces of information with very high accuracy.
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Figure V.21: Two loops of the main control software. Right at each clock
tick, the gyros are triggered in boop FPGA and read out. Once the sensors
are triggered and read out, it triggers the loop in boop RT, which has then
less than 10ms to complete and send new commands back to the boop FPGA.
These commands are not applied by the actuators until the next clock tick.
This has the advantage to completely lock all moving parts of our payload
to our heartbeat. The commands sent are using information from exactly 1
loop ago. This constant lag is preferred, as opposed to a scenario where the
commands are applied as soon as possible, which would lead a variable lag

which would depend on the processing time within boop RT.

V.1.4 Controls architecture summary

To summarize our entire strategy, we show the control diagram in Fig. V.22. This diagram

shows both the estimation loop as well as the actuation loop, although it omits several aspects

for clarity: first, the fine guidance sensor loop has its own PID loop using the H1RG sensor and
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Figure V.22: Control system architecture (see text for more details).

two tip/tilt mirrors, and only sends back the common-mode errors in azimuth and elevation,

from which we can compute q̄meas
fgs ; and second, the cold delay line constantly works in its own

closed-loop system, with a pre-determined position and velocity profile.

V.2 3D attitude estimation and sensor fusion

The attitude estimation consists of combining high-frequency angular velocity measurements

of the payload with low-frequency attitude measurements. The high-frequency measurements,
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usually from gyroscopes, are relative measurements, and exhibit biases. The attitude mea-

surements are absolute. The Kalman filter (Kalman, 1960) combines these two types of

measurements in a mathematical formalism that uses a model of the physical relationship

between them. For the simplest version of this filter, the goal is to estimate the bias of the

high-frequency measurements, hence providing bias-corrected, drift-less, trustworthy dynam-

ical information that can be used to estimate the attitude at all times, even when there is

no absolute measurement. In the general sense, the filter finds the state parameters that

minimize the covariance of the error between a predicted quantity (in our case, the predicted

attitude from integrated gyroscope velocities), and a measured quantity (in our case, an ab-

solute attitude measurement from the star cameras).

This filter is very common for spacecraft attitude and control, although a large number

of variations exist. It continues to be an active field of research today (e.g., Crassidis et al.,

2011; Markley et al., 2014). Under certain circumstances and assumptions, the Kalman filter

is the optimal filter, which means that it is the filter that has the fastest possible convergence

towards the minimum steady-state error covariance.

One of the complexities of the Kalman filter is that it involves inverting matrices to find

the optimal solution when new absolute measurements are received. This has implications in

terms of numerical complexity which often will limit the bandwidth of the filter, especially in

the context of resource-limited FPGA computers on spacecraft. In practice the trade-off is

the following: either limit the bandwidth of the filter, or limit the number of state parameters

(i.e. limit the rank of the matrix to invert). On the ground, this limitation is usually not an

issue. But even our powerful embedded computer will be limited in the speed at which it can

find solutions.



Chapter V. Attitude estimation and control for BETTII 201

In order to set up the Kalman filter, we choose quaternions to describe our attitude,

which are discussed extensively and compared to other attitude representations in Appendix B.

In addition to the various advantages explained in this appendix, quaternions have a nice

behavior when it comes to small angles, so we can use them in their linear, small angle

approximation to create a multiplicative, extended Kalman filter (MEKF) (Lefferts et al.,

1982). It is extended because it operates in the small angle approximation, hence it is a

local approximation of a non-linear relationship. And it is multiplicative, instead of being

additive, because we use the quaternion multiplication operation to describe the "difference"

or error between measured and predicted attitudes. One popular instance where this filter

was successfully implemented on board the WMAP spacecraft (Harman, 2005).

First, we need to choose a representation for our sensor suite: the gyroscopes and the

star cameras. Second, we describe the equations that govern the physics of our system and

connect the sensors together: this is critical for the Kalman filter to produce robust estimates,

and the more accurate our representation is, the more accurate our predictions can be. Third,

we discuss the Kalman setup, and two phases of the algorithm: prediction and update. And

finally, we discuss potential improvements of the filter that can be used for ground-based

analysis of the data.

V.2.1 Sensor models

This section describes the chosen mathematical model that will be used to represent our

sensors. These are necessarily approximations, as they do not encompass all of the possible

physical effects that will be observed. The residual, non-modeled physical effects need to be

small with respect to this representation in order for this filter to work optimally. In the ideal
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case, when all physical contributors are accounted for, and when the residual noises have a

normal distribution, the Kalman filter is the optimal filter.

V.2.1.1 Gyroscope model

For our baseline design, the gyroscope model that we use is: ωmeas = ω+b+ng, where ωmeas

is the measured angular velocity vector, ω is the true angular velocity vector, b is the bias

vector, and ng is the angular velocity noise vector (also called the "rate noise"). This implies

that we have ideal alignment between each gyroscope and what we define to be the gyroscope

reference frame. We consider that ng is a white noise process with a diagonal covariance

matrix Ng = σ2
c,gI3×3.

We consider that the derivative of the bias b is also a white noise process: ḃ = nb,

where nb has a diagonal covariance matrix Nb = σ2
c,bI3×3.

Assuming that the covariance matrices are diagonal help to set up the filter, but is not

a necessary assumption in the general case. The following implementation is not relying on

this assumption.

The angular random walk (ARW) that we measure is ARW ≈ 5× 10−4 deg h−1, and

varies as the square root of the integration time. This means that if we integrate the gy-

roscope’s rate for 1 hour, the 1σ uncertainty on our position would be 5× 10−4 deg ∼ 1.8′′.

For an integration time of 1 second, it would be 0.03′′. For a single integration time step

∆t = 0.01 s, it would be 0.003′′.

The units required for σg are [rad s−0.5], so we convert:

σg[rad s−0.5] =
π

60× 180
×ARW[deg h−0.5] ∼ 1.5× 10−7 rad s−0.5. (V.8)
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Note that we can relate the ARW to the measured discrete rate noise uncertainty

σ(nmeas
g ) with:

σ(nmeas
g )[deg s−1] = ARW[deg h−0.5] × 60

√
BW[Hz], (V.9)

where BW[Hz] is the gyroscope’s bandwidth, equal to 50Hz for our system. We obtain a

quantity close to the measured quantity, σ(nmeas
g ) ∼ 0.2 arcsec s−1.

The bias instability units are [rad s−3/2]. We adopt the manufacturer’s specification for

a worst-case scenario bias instability over a wide range of temperatures equal to 0.005 deg h−1.

This is for a bandwidth of 50Hz, so we obtain the bias instability term, which also corresponds

to the process noise of our Kalman filter:

σb[rad s−3/2] = 0.005 deg h−1 ×
√

BW[Hz] ∼ 1.8× 10−7 rad s−3/2. (V.10)

This represents how much what we are trying to estimate is expected to vary. While this

drift appears to be very slow, it increases linearly with time (as opposed to the ARW which

increases as the square root of the time). Hence, the bias drift quickly increases the position

uncertainty when integrating the gyroscopes, which justifies the efforts in trying to properly

estimate its properties and correct for it as often as possible.

V.2.1.2 Star camera model

The star camera takes a picture of the sky to make noisy measurements of the right ascension

(RA) and declination (DEC) of the boresight, as well as the roll angle (ROLL) in which the

frame is taken. The RA and DEC typically are much more accurate than the roll angle. Each
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angle can be used as en Euler angle to define the attitude of the payload in the inertial frame

(or equivalently, the rotation from the inertial frame to the current attitude). Each angle

corresponds to a quaternion rotation about a single axis:

q̄RA = [0, 0, sin(RA/2), cos(RA/2)]T , (V.11)

q̄DEC = [0, sin(DEC/2), 0, cos(DEC/2)]T , (V.12)

q̄ROLL = [sin(ROLL/2), 0, 0, cos(ROLL/2)]T , (V.13)

q̄meas
sc = q̄ROLLq̄DECq̄RA. (V.14)

The errors associated with the three Euler angles are assumed to be a random vector

nSC , also with a diagonal covariance matrix R. Typical star camera noises are 1-2′′ in RA

and DEC and 100′′ r.m.s. in ROLL (see Chapter VI).

The star camera is oriented at a fixed position on the payload, which is not necessarily

aligned with the gyroscope reference frame. In that case, the attitude quaternion needs to be

rotated by the quaternion representing the transformation between both reference frames. In

addition, the covariance matrix needs to be rotated by the direction cosine matrix correspond-

ing to the same transformation. This would not have an effect if the covariance matrix was a

multiple of the identity matrix, but it usually is not the case since the Roll measurement is

often much less sensitive. This can have implications while designing the balloon payload and

deciding on the placement and orientation of the star camera: the attitude estimation will be

less precise about the Roll axis of the star camera.
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V.2.2 Continuous state equation and error

We want to use the Kalman filter to obtain an estimate of the attitude quaternion q̄k ≡ G
I q̄(t),

but also use it to estimate the gyroscope biases b(t) to improve our attitude predictions and

lower the errors between predicted and measured. The "state" of our system is described by

the vector:

x(t) =

GI q̄(t)
b(t)

 . (V.15)

The evolution of the state is governed by the two differential equations that follow:

G
I

˙̄q(t) =
1

2
Ω(ω(t))GI q̄(t), (V.16)

ḃ(t) = nb(t), (V.17)

with ω = ωmeas − b − ng. These equations represent the exact relationship between our

quantities of interest, assuming that the noise values are known. In practice, we will create

an estimator that is used to evaluate the expected value of these quantities. This estimator,

x̂ =
[
ˆ̄q(t), b̂(t)

]T
, is governed by the following equations:

G
I

˙̄̂q(t) =
1

2
Ω(ω̂(t))GI ˆ̄q(t), (V.18)

˙̂b(t) = 0, (V.19)

The Kalman filter’s goal is to minimize the variance of the estimator’s error - that is,

the covariance of the error vector x − x̂. However, in our case, we have constraints in the
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system since we force the quaternion to be of unit length: this introduces a singularity in the

covariance matrix of the error vector, and is prone to numerical complications. It is possible

to circumvent this problem by using the multiplicative properties of the quaternion used in

the small angle approximation. This is called a "multiplicative" Kalman filter, as opposed to

a more traditional "additive" filter.

To do this, instead of following the evolution of the state x̂ itself, we will follow the

evolution of the error vector x̃ = [δθ,∆b]T , where δθ corresponds to the 3-dimensional angular

error between true and estimated attitude quaternion taken from the difference quaternion

G
Ĝ
δq̄ = G

I q̄ ⊗ Ĝ
I

ˆ̄q−1 ≈ [1, 1
2δθ]T , and ∆b = b− b̂.

The evolution of x̃ as a function of time can be obtained by taking the quaternion

derivative of the true attitude quaternion ˙̄q = ˙δq̄⊗ ˆ̄q+ δq̄⊗ ˙̄̂q. With our gyroscope model, we

can write:

ωmeas = ω + b + ng, (V.20)

ω̂ = ωmeas − b̂, (V.21)

so ωtrue = ω̂ − ng −∆b. (V.22)

After a lengthy derivation to express ˙δθ from ˙δq̄ = [0, 1
2

˙δθ]T (Trawny et al., 2005), we

obtain:

˙δθ = −ω̂ × δθ −∆b− ng. (V.23)

Note that the cross-product ω̂×δθ is equal to the matrix multiplication bω̂×cδθ, where bω̂×c

is the skew-symmetric matrix made out of the elements of ω̂.



Chapter V. Attitude estimation and control for BETTII 207

The bias equation is:

∆̇b = ḃ− ˙̂b = nb. (V.24)

We can now write the linearized equations representing the evolution of the error state x̃:

˙̃x =

 ˙δθ

∆̇b

 = F

 δθ
∆b

+ G

ng

nb

 , (V.25)

with

F =

bω̂×c −I3×3

03×3 03×3

 , (V.26)

and:

G =

−I3×3 03×3

03×3 I3×3

 . (V.27)

It is important here to introduce the expression of the propagation error covariance

matrix of this continuous representation. Writing the noise vector n =

ng

nb

, the covariance

matrix is the expected value of the product of two noise vectors taken at different times

(Trawny et al., 2005), but since we suppose that the noise samples are independent, the

covariance is not a function of this time difference τ :

Qc = E[n(t+ τ)nT (t)] =

σ2
c,gI3×3 03×3

03×3 σ2
c,bI3×3

 . (V.28)
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V.2.3 Integration of continuous equations

Since our system has a fast sampling rate compared to the characteristic times of the system,

we can consider that F is constant over a time step in order to express the state evolution in

a discrete sense, which is appropriate for a computer implementation. We can integrate the

state equation between tk−1 and tk = tk−1 + ∆t, which leads to a discrete state transition

matrix Φk:

Φk = Φ(tk, tk−1) = exp (F∆t) ≡

 Θk Ψk

03×3 I3×3

 , (V.29)

with Θk ∼ I3×3 − ∆tbω̂×c + ∆t2

2 bω̂×c
2 and Ψk ∼ I3×3∆t + ∆t2

2 bω̂×c −
∆t3

6 bω̂×c
2. The

exponential function in this equation refers to the matrix exponential.

These expressions are now what we need to establish a discrete version of the state

equations, which are based on this transition matrix Φk.

V.2.4 Discrete covariance matrices

Since we have a discrete system, it is also necessary to also represent the propagation error

covariance matrix discretely. The discrete propagation covariance matrix Q sampled between

time tk and tk+1 = tk + ∆t is related to the continuous matrix Qc through the relationship

(Maybeck, 1982):

Q =

∫ tk+1

tk

Φ(tk+1, τ)G(τ)QcG
T (τ)ΦT (tk+1, τ)dτ.
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The full result of this integration is given in (Trawny et al., 2005). To the second order in ∆t,

the equations simplify when ω → 0 into:

Q11 = σ2
g∆t · I3×3, (V.30)

Q12 = −σ2
b

∆t2

2
· I3×3, (V.31)

Q22 = σ2
b∆t · I3×3, (V.32)

with

Q =

Q11 Q12

QT
12 Q22

 . (V.33)

V.2.5 Discrete Kalman filter setup

Now that we obtained all discrete representation of our system, we can write the algorithm’s

steps. The Kalman filter will estimate the current attitude quaternion and gyroscope bias

value, while minimizing the covariance of the error x̃. Below, we summarize the relevant

physical equations that are used to set up this filter. This is useful if one wants to build a

physical model of the dynamic system.

1. Velocity estimate: ω̂k = ωmeas
k − b̂k,

2. Attitude propagation: ˆ̄qk = exp
(

1
2Ω(ω̂k)∆t

)
ˆ̄qk−1,

3. Error state evolution: x̃k = Φkx̃k−1 + Gknk,

4. Error covariance to be minimized: Pk = cov [x̃k],

5. Error covariance evolution: Pk = ΦkPk−1Φ
T
k + Qk,
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6. New attitude measurement: q̄meas
k ,

7. State error measurement: z̃k = Hkx̃k + nmeas
k .

Note that in that last step, the error measurement z̃k is determined by extracting

δθmeas
k from the difference quaternion δq̄k = q̄meas

k ⊗ ˆ̄q−1
k using the small angle approximation.

Furthermore, we have nk =
[
ng nb

]T
, nmeas

k is the measurement noise, and in our case

Hk =
[
I3×3 03×3

]
.

At each step, we will attempt to produce our best estimate of the state x̂, and keep

track of the evolution of the state error x̃ and its covariance matrix P. There are two distinct

phases in the Kalman filter: the prediction, and the update.

In the prediction phase, we use our best estimates from the previous step, along with

the velocity measurements and the expected propagation relationships to predict what the

estimates should be at the current step. If we don’t get a new attitude measurement at that

step, then these new estimates are the best we can do.

When we do get a new attitude measurement, then in addition to the prediction phase,

we also do an update phase. We compare the best estimate from the prediction phase to our

new measurement, and use the difference to compute a correction to our state. This uses the

weights of the various noise contributors in the system, as well as additional weights that can

be defined by the user. This phase most importantly estimates the bias of the gyroscopes, to

allow robust propagation of the state from one step to the next.

In this section, however, we assume that the attitude measured by the star camera q̄meas
k

corresponds to the attitude at the current step. In reality, when we receive the star camera,

it represents an attitude that was taken some number of steps ago. This is due to the slow
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processing of the star camera images and the catalog search. Our software cannot solve the

star camera position in one single loop iteration. We tackle this issue in Section V.2.8.

V.2.6 Kalman filter: prediction

The notation x̃k|k−N corresponds to the estimate made at step k knowing the value at step

k −N , where k −N corresponds to the step at which we received the last absolute attitude

measurement.

The algorithmic steps for this phase are:

1. Predict the bias: b̂k|k−N = b̂k−1|k−N since there is no new information to allow us to

update the bias.

2. Estimate the angular velocity: ω̂k|k−N = ωmeas
k − b̂k|k−N .

3. Predict the attitude: ˆ̄qk|k−N = exp
(

1
2Ω(ω̂k|k−N )∆t

)
ˆ̄qk−1|k−N .

4. Compute the state transition matrix: Φk =

 Θk Ψk

03×3 I3×3

 using ω̂k|k−N in the

expressions of Θk and Ψk.

5. Compute the added noise covariance matrix: Qk. This corresponds to the noise

that is added by the new gyro measurement.

6. Update the state covariance matrix: Pk|k−N = ΦkPk−1|k−NΦT
k + Qk

We have now propagated our system from step k − 1 to step k, and we have three new

quantities: the bias b̂k|k−N , the attitude estimate ˆ̄qk|k−N , and the state covariance matrix

Pk|k−N . If we do not get any star camera measurement, then at the next step we will just

continue propagating with this procedure.
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V.2.7 Kalman filter: update

The star camera information provides us with a measurement of the attitude q̄meas
k , which is

compared to our predicted attitude. We use the difference between our prediction and the

measurement to update the bias and the state covariance matrix. Under certain circumstances,

the Kalman filter is the optimal estimator: it converges towards the correct solution with the

minimum amount of iterations.

For the Kalman filter update procedure, we form a measurement vector z̃k that corre-

sponds to the difference of an attitude measurement at step k and the predicted attitude at

step k.

7. Compute the innovation: z̃k = δθmeas
k with δθmeas

k extracted from the difference

quaternion δq̄k = q̄meas
k ⊗ ˆ̄q−1

k|k−N .

8. Compute the innovation covariance: Sk = HkPk|k−NHT
k + Rk.

9. Compute the Kalman gain: Kk = Pk|k−NHT
k S
−1
k .

10. Update error state: x̃k|k = Kkz̃k =

 δθ
∆b

 =

2δq

∆b



11. Update attitude estimate: ˆ̄qk|k = δq̄⊗ ˆ̄qk|k−N with δq̄ =

√1− δqT δq

δq

 if δqT δq 6

1, or δq̄ = 1√
1+δqT δq

 1

δq

 otherwise.

12. Update the bias: b̂k|k = b̂k|k−N + ∆b.

13. Update the angular velocity estimate: ω̂k|k = ωmeas
k − b̂k|k
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14. Update state covariance matrix with Joseph’s form:

Pk|k = (I6×6 −KkHk)Pk|k−N (I6×6 −KkHk)
T + KkRkKT

k .

V.2.8 Delayed star camera solution

In general, the star camera takes much longer than one single loop cycle to produce an attitude

estimate. Between the time we trigger the star camera frame and the time we receive the

attitude measurement, we need to keep track of the propagation matrices that will allow us

to express both the attitude and its covariance matrix in the current reference frame, where

the measurement can be combined with the a priori estimate from the Kalman filter.

While no new star camera measurement is available, the attitude transition is ex-

pressed by ˆ̄qk = exp
(

1
2Ω(ω̂k)∆t

)
ˆ̄qk−1, and the new covariance is P′k = ΦkPk−1Φ

T
k + Qk,

where we assume that Qk is a constant. We can consider that the gyroscope bias does not

change significantly during the time between two star camera measurements (typically on

the order of a few seconds). With this we can create a recursive relationship and q̄k =[
Πk
i=k−N exp

(
1
2Ω(ω̂i)∆t

)]
q̄meas
k−N where k − N again represents the index at which the star

camera image was taken. Similarly, we have: Pk = AkPk−NAT
k + Bk where Ak and Bk

are defined recursively as Ak = ΦkAk−1 with A0 = I6×6, and Bk = Qk + ΦkBk−1Φ
T
k with

B0 = 06×6. Ak can also be written Ak = ΦkΦk−1 · · ·Φk−N =
[
Πk
i=k−NΦi

]
.

Hence, once we trigger the star camera, we need to start keeping track of the matrices

Ak, Bk, andCk = Πk
i=k−N exp

(
1
2Ω(ω̂i)∆t

)
, appropriately reset them when a new star camera

trigger has occurred, and propagate them until the estimator receives the star camera value.
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V.2.9 Enhancing the Kalman filter models

The simple gyroscope model that we adopt is incomplete, and can cause some issues that need

explanation. In our simplified representation, gyroscope models using only a bias to account

for the measurement errors. The bias, which combines linearly with the measured velocity, is

adjusted by the Kalman filter to correct the errors and minimize the covariance of the error.

However, this supposes that the gyroscopes are perfectly orthogonal, with unity scale

factor, and the transformation between the absolute measurement sensor (the star camera)

reference frame and the gyro reference frame is known perfectly. An alignment error in either

of these two components will translate to multiplicative errors on the velocities, which will

have a large effect when the velocity dramatically changes (for example, after a slew) and

will not be accounted for by a simple bias model. Eventually, the bias would adjust to be

in agreement with the star camera measurements - but it can take a while, and during this

time, the velocity that we think we are moving at is incorrect. To put this in perspective,

a 1% error on the gyroscope velocity in one axis for a 10◦ slew at 400′′s−1 corresponds to a

position error of 6 arcminutes, a considerable amount given our pointing requirements.

For spacecraft projects, alignment issues and calibrations are allocated a large amount

of resources to minimize these issues and come close to the ideal configuration. Our project

has not dedicated enough resources to ensure exquisite alignment and calibration between the

gyroscopes and the star camera, due to lack of time and resources. We nevertheles propose

elements of solution in the next section.

If this error persists during flight, the poor man’s solution is as follows. Instead of

tracking the Kalman filter during the entire duration of the slew, we discard the star camera

measurements during the slew and reset the estimator after the slew is complete. This resets
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our starting position with the first solution from the star camera. Since we will be off our

target, we will slew again to the desired target, which will be much closer. Each time this

needs to be repeated, we minimize the effects of the alignment errors.

For our scientific purpose, even a 1% error in the gyroscope scale factor or angular

velocity alignment is not a deal breaker, since their main purpose is to maintain sufficient

stability to lock onto a guide star with the fine guiding sensor. The fine guiding sensor is by

definition in the correct reference frame, since it observes through the optical train.

V.2.9.1 Estimating angular error between reference frames

Here, we propose an appropriate approach to estimate the gyroscope misalignment using a

different Kalman filter. In this filter, the global misalignment error of the entire reference

frame is set as part of the state, and is being estimated at each step. A global misalignment

error can be represented by a rotation matrix which, in the small angle approximation, can

be written C′ ≈ I3×3 +C, with:

C =


0 cxy cxz

−cxy 0 cyz

−cxz −cyz 0

 . (V.34)

We now have ωtrue = (I3×3 − C)ωmeas, so the gyro error introduced by the misalignment

is ∆ω = −CTωmeas. The new state components are c =
[
cxy cxz cyz

]T
, and we can

rearrange the matrix terms to express Ωc as a function of the components of ωmeas and

write: ∆ω = Ωcc. Similarly to the error-representation equations in the Kalman filter model

expressed in the previous sections, we then obtain the new upper right block of the transition
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matrix:

Ψk = −Ωc∆t. (V.35)

This is useful because the three additional state elements can replace the gyroscope

bias for initial calibration and determination. When on the ground, it is then possible, with

minimum software changes, to estimate the three components of a rotation matrix instead of

the three components of a bias vector.

V.2.9.2 Estimating the orthogonalization error and scale factor error

The full orthogonalization matrix for the three gyroscopes is a non-orthogonal matrix M:

M =


kx mxy mxz

myx ky myz

mzx mzy kz

 , (V.36)

where k =
[
kx ky kz

]T
is the scale factor of the gyroscopes, and the cross terms corre-

spond to the misalignments between the different axes. This can also be rearranged and

rewritten in terms of the three scale factor unknowns and the 6 cross terms unknowns

m =
[
mxy mxz myx myz mzx mzy

]T
:

∆ωk = Ωkk,∆ωm = Ωmm, (V.37)
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for a total error in velocity ∆ω = ∆ωk + ∆ωm + ∆ωb if we also include the bias that we

discussed in our standard estimator. We have here:

Ωk =


ωx 0 0

0 ωy 0

0 0 ωz

 (V.38)

and

Ωm =


ωy ωz 0 0 0 0

0 0 ωx ωz 0 0

0 0 0 0 ωx ωy

 . (V.39)

This is now a 15-state Kalman filter, with the error state: x̃ =
[
δθ ∆k ∆m ∆b

]T
. The

top right block of the transition matrix can be written:

Ψk = −∆t
[
Ωk Ωm I3×3

]
. (V.40)

This is handy for data analysis on the ground, but not appropriate for flight since

increasing the state vector size quickly increases the computational cost of the filter. While

running this Kalman filter implementation in the Real Time OS on boop, we measured average

run times of ∼ 0.4 s, largely caused by the 15×15 matrix inversion process that happens during

the update phase of the filter.

V.2.10 Conclusions on sensor fusion

We have defined, designed, implemented and tested a complete sensor fusion algorithm based

on an multiplicative, extended Kalman filter, which has several steps summarized in Fig. V.23.

This software, implemented entirely in Labview Real Time OS, has been the workhorse
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of our testing of the control system. Similarly, we have implemented several variations of the

software for use on the ground, in order to estimate the residual misalignments between the

individual gyroscopes, as well as between the gyroscope frame and the star cameras.

The software merges the information gathered from the gyroscopes and the star cameras,

while appropriately correcting for the lag in the star camera measurements, and accounting

for user-defined weights.

While this software is deeply integrated with our hardware and flight software architec-

ture, its critical components are quite independent. We plan on sharing this software with

an open-source license after the pointing test results are published. It is quite versatile and

allows for many user improvement and modifications.
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Chapter VI

Implementation and on-sky testing

Ever tried. Ever failed. No matter.
Try again. Fail again. Fail better.

S. Beckett

It is only in the past year that we were able to obtain system-level results that would

validate some of our design choices. In order for us to collect test data from this observatory

while looking at the sky, many different subsystems need to be operational, and we have

mostly focused on the electronics and software architecture. In the Spring of 2016, enough of

the systems became operational to allow on-sky testing of the coarse pointing loop, which is

what is discussed in this section. As this document is being written, progress is very rapid as

the team is getting ready to ship our for the flight campaign out of Fort Sumner, New Mexico

in the middle of August. As a result, the payload every day becomes more "flight-like".

This section is organized as follows. First, we describe key procedures that we developed

that are necessary before flight. Elaborating these procedures and interpreting their results

has been an important part of our testing phase. Second, we present our test setup in the

high bay at NASA Goddard and discuss results of the sensor fusion implementation described

in the previous chapter while the payload is sitting on the ground, but looking out to the sky.

Third, we show results of the sensor fusion implementation while the payload is hanging and
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looking out on the sky. This is the most flight-like of all tests that were achieved by mid-June,

2016.

VI.1 Key pre-flight procedures

VI.1.1 Inertia measurement

While CAD models allowed to us to estimate the moment of inertia of the payload, this is

only an approximation. For testing and for launch, the payload will be different than the

model we have: we will either miss some components because they are not yet installed, or

have additional components such as the ballasts, the crush pads, or the weights that are used

to balance the payload.

We use a simple procedure to estimate the moment of inertia about zg of the payload

while hanging from a crane. For this purpose, we command the CCMG to input a torque to

the payload by moving the gimbal at a constant velocity. According to Eq. V.7, TCCMG =

20.8 × θ̇ cos θ. According to conservation of angular momentum, the rate of change of the

total angular momentum about zg is (Jω̇)z = TCCMG = 20.8× θ̇ cos θ.

We measure the inertia Jz by averaging measurements of the angular acceleration ω̇z,

divided by the instantaneous input torque, which is numerically more stable than averaging

its inverse since the accelerations, expressed in rad s−1 are typically very small. A measure of

the inertia is then the inverse of this average. We consistently measure an inertia of roughly

1700 kgm2, which is about 15% higher than the expected CAD model estimates. This reflects

some errors in assigning the proper masses in the CAD model.
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VI.1.2 Sensor alignment and calibration

While the intrinsic noise of our sensors has been characterized in Section V.V.1.2.1, it is

important to test them while mounted to the payload, align their axes to the other refer-

ence frames, and study their spectral energy distribution. Mounting the gyroscopes in a

3-dimensional mount on the truss will inevitably lead to alignment errors and the contribu-

tion of new vibration frequencies present in the structure and excited by the moving parts on

the payload.

VI.1.2.1 Gyroscope spectral analysis in flight configuration

The gyroscopes were characterized in quiet laboratory environment that was designed for pre-

cision optical interferometry, with special foundations to prevent vibrations being transmitted

through the ground. This allowed us to measure the gyroscopes down to their noise levels.

However, as soon as we attach the gyroscopes to any structure, the gyroscopes measure their

mount’s vibration modes.
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Figure VI.1: Gyroscope noise
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We estimate that, once in the box and attached onto the truss, the gyroscope has ∼20

times its natural noise levels. Looking at the power spectral density of the velocity time series

(Fig. VI.1a), almost all of the noise power is contained in three strong and sharp peaks, which

coincide with the expected first resonant modes of the carbon fiber truss structure, obtained

through finite element analysis. These modes are precisely located at 24.49, 25.23 and 26.7Hz

with the mass configuration at the time the data was taken, which omits the large siderostat

mirrors on each end (Fig. VI.1b).

The positive conclusion is that the truss has its first resonant frequencies precisely where

they were designed to be from CAD modeling, and they are above 20Hz, which is out of the

bandwidth of the attitude control. This noise can then be drastically attenuated either by

notch filters (if the frequencies do not shift) or by low-pass filters with a break frequency at a

few Hertz. For example at 2.5Hz, a single-pole low-pass Butterworth filter would attentuate

these peaks by 20 dB, or an attenuation factor of 100.

One less encouraging result is that these modes do not seem to damp, which means

that they are continually being excited. One of the ideas behind bringing the first resonant

frequencies above 20Hz was to have low amplitudes and relatively fast damping. We hypoth-

esize that the truss vibrational modes are excited by the ambient vibration spectrum coming

from the air, in particular from the A/C unit.

Examining the PSD in Fig VI.1a, we also notice some broad peaks at 3, 5.5, and 2Hz

for the x, y, and z axes respectively. These are attributed to motions of the truss within

the gondola about the vibration isolators that were installed to decouple the two mechanical

structures.
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VI.1.2.2 Orthogonalization of gyroscope mount

An orthogonalization procedure was established to determine the correction matrix to apply to

the gyroscope velocity vector to make sure measurement were independent from one another.

The procedure involves spinning the 3-axis gyroscope mount on one of the rotation stages

that we use for flight (which are used for elevation control).

The system to solve is:

ωmeas =


Mx mxy mxz

myx My myz

mzx mzy Mz

ωtrue = Mωtrue (VI.1)

The 9 matrix elements can be found by commanding the 3-axis mount to rotate at a

known velocity about each axes. Hence, by knowing the vector ωtrue (one component is the

commanded velocity and the two others are zero) and measuring the velocities on the three

axes, we can determine the matrix element for the column corresponding to the current spin

axis.

The gyroscopes are so sensitive that they measure the rotation of the Earth accurately.

This corresponds to a bias in the commanded velocity. To mitigate this issue, we spin the

3-axis mount in two opposite directions. The perceived difference in the velocities corresponds

to the Earth velocity about that axis.

Because of cabling constraints, we are only able to spin the 3-axis mount for small angles.

This method works very well when the gyroscope can spin freely and do 360◦ rotations, since

a lot of the systematics of the setup will cancel out after multiple revolutions. Unfortunately,

we do not have access to a state-of-the-art rotation table with a slip-ring.
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The matrix we obtain suggests typical alignment errors on the order of 0.1-0.3%, which

correspond to angular errors of a few degrees. While the measurements appear to be repeat-

able, we noticed that the sum of the squares of the velocities was typically 2% off from its

expected value, which we know since it corresponds to the square of the Earth’s rotation

velocity. Further, this error varies with different orientations of the gyroscope mount. The

typical errors that are seen are consistent with a residual misalignment of a few tenths of

degrees between the gyroscopes - a considerable amount.

This could lead to multiple interpretations. First, it is possible (even likely) that the

mount deforms under its own gravity in different ways depending on its orientation. Unfor-

tunately, it is not simple to proceed to this orthogonalization method with the mount in its

flight orientation, and would require some ground support equipment (GSE) not available at

the moment.

A second possible interpretation is that the gyroscope internal scale factor is changing.

We noted that the temperature of the gyroscopes was increased by about 5 ◦C when they

are inside the mount on the thermal isolators. This can potentially change their scale factor

(which effectively multiplies the measured velocity) as a result of the fiber optics’ length

changing slightly.

The path forward towards orthogonalization of the mount is to use a laser tracker

to measure the orientation of each plate on which the gyroscope is mounted. This would

allow us to find the components of the matrix M for the mount on the payload in its final

flight configuration. It will also allow us to precisely align the mount to the other important

reference frames, such as the star camera reference frame and the telescope reference frame.

The scale factor on the z gyroscope can also be precisely determined if the payload
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is aligned horizontally with precision. Because of the size of the payload, a good lever arm

provides an accurate measure of its horizontal position. The gyroscope on the z axis can thus

be aligned with the gravity vector precisely, at which point the expected angular velocity is

known, and the scale factor correction can be determined.

VI.1.2.3 Alignment of gyroscope mount to star camera mounts

Once the gyroscope is orthogonalized, it remains to be properly referenced to the star camera

mount. While a good alignment on the ground can be achieved with a laser tracker, our star

camera lens design does not permit a perfect alignment because of uncertainties in the angle

of the glass pieces in the lens, and uncertainties in the location of the sensor.

To correct for small deviations from the original alignment, we developed a variant to

the traditional Kalman filter described in Chapter V which, instead of estimating the bias,

estimates the rotation matrix between the gyroscope mount and the star camera, as explained

in V.2.9. Running this filter can be done seamlessly, even in flight, since the number of

unknowns is the same as the flight model which estimates bias drifts.

VI.1.3 Star camera

VI.1.3.1 Tuning tests

We proceeded to multiple stages of tuning for the star camera, spanning many nights over the

past year. In this section, we propose an small excerpt of the data acquired during one night

when we varied the exposure time of the camera, to determine the most suitable value for

flight. We list here (Table VI.1) five experiments starting with an exposure time of 250ms and

decreasing the exposure time down to 31ms. During these tests, we compute some statistics



Chapter VI. Implementation and on-sky testing 228

on the observations, and are most interested in the success rate, which is the ratio of solutions

found over the total number of images taken. By computing these statistics from the outputs

of the star camera software, we also noted that the fitted exposure time, which corresponds to

the best fit between the known star brightness and the measured camera digital counts, was

remarkably accurate when solutions were found. In addition, on the occasion when a false

positive was found (that is a solution that is not correct), the exposure time was, predictably,

very inaccurate. We decided to add this fitted exposure time information as an additional

metric to determine the accuracy and reliability of the star camera software. From the results,

we determine that an exposure time of 125ms provides good results, while minimizing the

amount of smearing that occurs when slewing. With exposures of 125ms, a smearing of 1 pixel

occurs when the payload moves at 30′′s−1, which is well above the detectable and correctable

velocity.

Table VI.1: Star camera exposure time tests.

Exposure
time (ms)

Number
of

images
in run

Fitted
exposure
time (ms)

Number of
matching
stars

Fit ra &
dec error
(arcsec)

Fit roll
error

(arcsec)

Processing
time (s)

Solution
success
rate (%)

Exp1 250 118 260 ± 92 9.12 ± 1.67 1.46 ± 0.43 114 ± 40 1.48 ± 0.77 98

Exp2 125 36 113 ± 13 9.75 ± 1.95 1.46 ± 0.39 118 ± 32 1.05 ± 0.26 100

Exp3 62 49 70 ± 53 8.43 ± 1.55 1.72 ± 0.64 155 ± 66 1.01 ± 0.21 96

Exp4 62 132 66 ± 23 7.32 ± 1.34 1.75 ± 0.65 151 ± 55 1.22 ± 0.59 76

Exp5 31 35 44 ± 53 6.54 ± 0.84 2.33 ± 0.79 180 ± 65 1.19 ± 0.48 37

Notes: The fitted exposure time is estimated from the best fit between the
expected number of photons from the catalog stars and the number of counts
measured on the sensor. A good agreement between actual exposure time and
fitted exposure time further ensures that we are looking at the correct region
of the sky (the matching algorithm does not use the fluxes of each star to
determine the attitude solution, so the fitted flux is simply an extra protection
against false positives. Although we only show small number statistics here,
we have experienced very robust results in the lab over many clear nights using
a 125ms exposure. The exposure time is a parameter that can be set remotely

and changed during flight if necessary.
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Figure VI.2: Left : Example of a background-subtracted star camera image with identified > 5σ sources circled in red.
The orientation of the image on the celestial sphere is the one provided by BETTII’s embedded star camera solver. This
image corresponds to a field in the Scorpius constellation. Right : WISE 3.4 µm mosaic from the online archive, centered
on the same location. This image is composed of 9 individual WISE images that we patched into a mosaic using the

Montage[CITE] software package.
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VI.1.3.2 Live star camera diagnostic software

During our test operations, a lot of information is available and it can sometimes be challenging

to understand the full system status and diagnose the issues. To help mitigate this, we created

a suite of small Python routines which help quickly diagnose the star camera behavior. For

example, one piece of software displays the latest image from the star camera, and overlays

the "blobs" (contiguous regions of bright pixels) that the star finder software finds. At a

glance, this can tell us if blobs are not found in the image, or if the star camera appears out

of focus, or if there is a cloud cover. During flight, however, we will not have access to all

this information because of the low bandwidth. Hence, the software also cuts the star camera

image (a 1920 × 1200 array of 16-bit integers) into a smaller mosaic composed only of the

regions around the blobs the software identified. Further, the type of all blobs is reduced to 8

bits. This constructs a much more modestly-sized piece of information that can be sent down

for diagnostics.

Other metrics are useful to understand the star camera’s behavior. For example, the

star finder and catalog matching software solves for the best fit of exposure time, by comparing

the known brightness of the stars and the measured number of digital counts on the detector.

We find that this is accurate to ∼ 10 − 20% in a vast majority of the cases, and values that

are wildly off this estimate usually indicate either a false positive or some other sort of issue

associated with the solving. This is used in two ways: first, it offers a quick sanity check that

the solving happens correctly and robustly; and second, it can offer one additional protect

against false position information, which we can use in the Kalman estimator when we decide

whether to incorporate a star camera solution or not.
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VI.2 Estimator implementation

VI.2.1 Test setup and limitations

The testing is done indoors in the Building 20 Highbay at NASA GSFC. The payload is

sufficiently close to the rolling doors that one arm can see a small patch of sky while hanging

from the indoor crane.

The payload is entirely run with 7 Marine Deep Cycle batteries, which provide all the

required power for ≥8 h of continuous operations. BETTII is entirely wireless and uses a Wi-

Fi router on board to provide high-bandwidth communication through a TCP/IP connection,

which is useful for testing and displaying large quantities of information.

The mechanical, electrical, and communication setup is different than it will be in flight

in several ways. First, the crane is about five times shorter than the balloon train, which

results in higher pendulum frequencies. Second, the payload can only see one arm at a time

through the high bay doors, making it difficult to test the entire control system with the fine

guidance sensor loop. Third, when the rolling doors are open, gusts of winds can move the

payload as it is hanging, resulting in considerably larger pendulum motions than expected in

flight. And finally, in flight, the communication bandwidth is expected to be 1 MB/s down

and ∼1 B/s up. The astonishingly low uplink rate forces a minimalistic approach where most

commands are only one or two bytes long.

The star camera is also not put in its final, flight mounting position. The reason for

this is that if the payload is lifted enough to clear most non-movable obstacles in the high bay,

the angle at which the star camera can look and still see a patch of sky has to be less than

∼ 30◦. In previous months, star camera testing was done with the star camera positioned
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at the very end of one of BETTII’s arms to increase the amount of sky coverage available.

While discussions are underway to modify the high bay structure and open up portions of the

wall, it is not reasonable to expect any actual changes for any of our relevant timescales for

BETTII.

VI.2.2 Autofocus implementation

Since the payload is close to the high bay door, changes in temperature occur and slightly

change the focus of the star camera. These changes are expected to be more dramatic at float.

For this reason, we implemented a very simple, yet very robust autofocus mechanism that we

tested both on the ground and while hanging.

The algorithm relies on the fact that the focus ring of the lens has a hard stop. The

stepper motor that controls the focus ring through a belt cannot pass this stop, and when it

tries, the belt always slips. In addition, we also know that the focus position for the ring will

always be very close to this hard stop, which is a little past infinity focus for the lens.

Hence, we design an algorithm as follows:

1. Drive the stepper a large number of steps to guarantee hitting the hard stop.

2. Take a picture and move one step backward (away from the stop).

3. Calculate the variance of all the pixels in the image (which is a measure of sharpness).

4. Repeat a sufficient amount of times to guarantee passing through focus.

5. When done, go back to the position which maximized the variance.

This very simple algorithm proved to be very robust in all situations. The variance

metric was the simplest to implement, as opposed to more complicated sharpness metrics used
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in modern photography. We inspected the results by eye and they were always satisfactory.

The small backlash usually present when the stepper motor changes direction to go to the

best position is not noticeable in the results.

VI.2.3 Gyro attitude estimator

We present here the results of the on-board Kalman filter estimator which was described in

Chapter V. The data gathered through the many test runs is archived on the ground computer.

We developed a framework in Python to process this data and align all quantities properly to

BETTII’s heartbeat.

The results shown in this section correspond to data gathered when the payload was

sitting on the ground. This served as the simplest possible test to ensure the Kalman filter

could appropriately correct for the errors given by the star camera.

In Fig. VI.3, we show the standard attitude plot. The red line indicates the inertial RA

and DEC of the gondola or gyro reference frame estimated by the Kalman filter, while the

blue dots indicates the measured inertial attitude of the same reference frame. In this plot,

time goes from left to right (increasing RA). For each star camera data point, a line is drawn

to show which estimator data point it corresponds to. This is necessary since the star camera

solution is delayed with respect to the estimation. While the estimation starts as soon as the

flight computer boots up, the first star camera solution resets it and sets a new starting point

for the estimate.

In order to understand this plot in more detail, we show two zoomed-in plots in Fig. VI.4.

The plot in (a) shows the beginning of the estimation process. At first, the star camera

solutions appear systematically off from the estimates obtained from simply propagating the
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Figure VI.3: Attitude estimation while on the ground (see text for descrip-
tion).

gyroscopes. Each time this happens, the Kalman filter adapts the bias to attempt to minimize

this difference. After about ∼ 20 solutions, it appears that the filter has converged to a mean

deviation around zero. In (b), we show a zoomed-in snapshot towards the end of the run,

where for some amount of time, no star camera solution was found - but given the slow drift

of the gyroscopes, it is not much of a problem and the solution found after some time is still

very close to the estimate.

For each star camera solution, the software estimates a correction to apply to the bias
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(a) (b)

Figure VI.4: Zoom on attitude estimate plot (see text for description).

that modifies the perceived gyro velocity. The results of this bias estimation for this particular

run are shown in Fig. VI.5. Note that since the star camera is inherently less sensitive in roll

(about X), the X bias estimate is more noisy and takes longer to converge.

Finally, we can display the error between the estimated and measured attitude in a single

scatter plot (Fig. VI.6). The contours show a 2D Kernel density estimation on the dataset,

indicative of how peaked the probability distribution is. For this particular run including the

Kalman filter learning process at the beginning, we obtain an overall standard deviation of

2.3′′. Note that the peak of the distribution is not exactly located at (0, 0), which indicates

an error in the alignment of the star camera solution with the corresponding estimator loop

number. This is a known mistake from the processing software that has been corrected since

then.
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Figure VI.5: Bias estimation while on the ground.

VI.2.4 Telescope attitude estimator

While knowing how the gyroscope gondola is oriented is critical to properly commanding the

actuators (which are in that reference frame), the real error perceived by the instrument and

the optics is the error in the telescope reference frame. The figure we used in the previous

chapter is put here again for convenience and to set the context of the relevant reference

frames (Fig. VI.7). What is not shown on this picture is the fact that the telescope reference

frame itself is rotated about ytel by some elevation angle with respect to the gyro reference

frame.

The error vector is estimated in the local telescope reference frame by knowing the
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Figure VI.6: Error between measured position and estimated position.

inertial attitude of the telescope, which is related to the inertial attitude of the star camera and

the gyro reference frame. The target’s coordinates can then be determined in the telescope

reference frame, since we know the target’s inertial coordinates. The two spherical angles

that we obtain are ∆φ×El and ∆φEl, which are the cross-elevation and the elevation angles,

respectively.

VI.2.5 Phase estimator

The phase estimator is perhaps the most constraining aspect of this mission. Indeed, in order

to properly reconstruct interferograms, the phase uncertainty needs to be extremely small,

which leads to a desired attitude knowledge uncertainty the order of ∼0.1′′ for periods of
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convenience.

minutes. This quantity is exclusively in cross-elevation, as elevation errors do not contribute

any pathlength error.

The various components that create delay are summarized here. By far the largest

delay errors will be introduced by attitude pointing errors, which correspond to the errors in

cross-elevation. These errors are corrected by the Warm Delay Line to some uncertainty. In

addition to those errors, the Cold Delay Line is also adding some errors. Finally, there can

remain errors introduced by thermal variations of the structure.

The zero-point adjustment of the delay can be done using fringe tracking in the science



Chapter VI. Implementation and on-sky testing 239

channels using a bright calibrator star (see Appendix A.3). This will allow corrections for

errors that are large on longer timescales. Assuming that this scheme works (it can only be

tested in flight), then the only errors that are present on short timescales are the errors from

the two delay lines and the attitude motion.

Without an absolute zero-point correction on shorter timescales, the phase estimator

relies exclusively on our attitude estimator, which will consist of the bulk of the error. The

phase or OPD estimate is then OPD = φ×El[rad] × 8m, which is then fed to the WDL for

correction. For scaling, a 1′′ attitude error corresponds to 40 µm error of OPD.

The tuning of the WDL and CDL was successfully achieved and is discussed elsewhere

(Dhabal et al 2016, in press).

VI.3 Pointing tests and performance results

VI.3.1 Control system in practice

In a system that has to be remotely controlled, it is of interest to limit the number of pa-

rameters required for operations. In practice, there are only a few key parameters that are

required to pilot BETTII to its inertial attitude. The most sensitive are the PID gains for

the azimuth loop and the momentum dump loop, as they drastically change the response of

the payload.

The Kalman filter imposes more parameters, which have a more abstract role in the

attitude estimation phase of the code. For our 6-state Kalman filter estimator, 9 parameters

are nominally available. They as three sets of (x,y, z) weights to increase or decrease the

relative importance of the measurements and process noise. The three sets control: 1) the
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weight of the gyroscope measurements; 2) the weight of the bias rate of change; and 3) the

weight of the star camera solution. The weights multiply the expected variance of the various

contributors, and will influence the way the estimator treats each incoming piece of informa-

tion. The software uses by default the theoretical values for the relative weights, computed

in Section V.2.1 of the previous chapter, but allows the user to tweak those parameters.

For example, increasing the weight of the bias variance indicates to the estimator that

the bias is expected to vary more, allowing for faster convergence to its final solution, but with

larger statistical variation in steady-state. On the contrary, a very small weight to the bias

indicates that the bias is almost not expected to change, so the steady-state will have very

little variation, but the impact of a new star camera measurement will be much decreased:

hence, it will take a long time to reach the steady-state solution.

The star camera uses default weights that are directly measured by the solving software.

When a catalog pattern match is found, a least-square estimate of the best position naturally

leads to errors in RA, DEC, and ROLL. As shown in Table. VI.1, the error in ROLL is

considerably larger than the error in RA and DEC, so the ROLL component of the star

camera solution should not be trusted as much as the other two components: it has a heavier

weight on its variance.

One indirect impact of these weights is how much change is going to be induced each

time a new measurement comes in. Fig. VI.4 shows distinct jumps in the gyroscope estimated

position, which are caused by the fact that the camera is trusted perhaps too much. These

jumps are getting smaller as the solution converges, but could still cause controls problems,

as they are injected directly in the determination of the errors in the PID controllers. Hence,

the star camera gains should be small when the star camera first attempts to determine the
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bias steady-state values (indicating that we trust the camera a lot), but should be increased

when tracking to avoid trusting new measurements too much and causing jumps in the control

system.

For flight, we plan to reduce these 9 Kalman filter parameters to only three (one per

system, as opposed to one per axis for each system), hence simplifying the commanding from

the ground. We have determined the validity of this approach in the lab.

VI.3.2 Gondola pointing stability with high bay doors closed

The most common test that we do routinely is to test the pointing stability indoors, without

using the star camera. This corresponds to a pure controls test, since the star camera is not

functional and we do not have knowledge of the real RA and DEC of the payload.

When the payload is lifted and hangs uncontrolled, the motion about z is shown in

Fig. VI.8, and the power spectrum of the velocities is shown in Fig. VI.9a. The motion can

be mostly characterized by an oscillation with a ∼ 100 s period, which likely is caused by the

restoring torque from the crane’s geometry. The excitation is likely caused by the A/C of the

high bay room, as well as small motions of the high bay structure itself.

The PSD plots in Fig. VI.9a show that most of the motion occurs in z at about 0.01Hz.

This motion is 3 orders of magnitude higher than any other contributor about z. We can also

notice a peak at 0.7Hz that is visible in all axes, which we believe is an uncontrolled pitch

motion of the payload about its long axis. This can be caused for example by a pivot mode

about the gondola attachment pin. Since we see the signature of this peak in all axes, this

is further indication of the non-orthogonality of the gyroscope mount. The peak at 0.5Hz is

thought to be caused by a pivot mode about the same point but about the x axis. The ratio
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Figure VI.8: Integrated gyro time series while hanging and no motor on.

of the two peak frequency roughly corresponds to the expected ratio of the moment of inertia

about y and x. The peak at 0.15Hz seen in both x and y is attributed to the pendulum

mode about the crane at the top of the building. This is consistent with a pendulum frequency

1
2π

√
g
L for L ∼ 20m. In flight, we expect that last mode to be at lower frequency, by at least

a factor of
√

5, as the balloon train is expected to be at least 5 times longer.
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(a) (b)
Figure VI.9: Noise while hanging indoors
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Once lifted, the gyro PSD about z is quite different (see Fig. VI.9b). We are indeed

able to cancel out most of the drift by about 6 orders of magnitude in power at 0.01Hz. The

resulting time series showing the cross-elevation angle is shown in Fig. VI.10. The 1σ r.m.s

noise of this 700 s run is ≤ 1′′. This reflects a 1000:1 rejection ratio when the control loop is

on.

Figure VI.10: Cross-elevation error indoors.

Note that this behavior also implies the momentum dump loop working well. While we

do not have the data to show due a mistake in the archiving software, the CCMG gimbal angle

was staying for all this time within a few degrees of zero, and has being working consistently

well for multiple months before this writing. This has allowed us to always maintain the

gimbal in the middle of the range, and ensured long-term stability.
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VI.3.3 On-sky pointing control

On-sky, lifted pointing test is the ultimate test that we can run from the ground without

having the optics in place. We show two sets of data; the first one (configuration 1) was taken

with the star camera positioned at ∼ 43◦ elevation at the very end of the BETTII boom

(pointing in the (y, z) plane). This gave access to a large patch of sky, as the boom could be

almost sticking out through the high bay door. The second set (configuration 2) features the

star camera installed at a temporary ∼ 23◦ angle from horizontal in the (x, z) plane. This

configuration is more similar to the final flight configuration where it will be at a nominal 45◦

from horizontal in that same plane. Putting it at an elevation of ∼ 23◦ angle allows coverage

of a reasonable patch of sky, although it remains very constraining.
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(a) (b)

Figure VI.11: Slew and point on the sky. (a): Two consecutive slews with the camera in configuration 1 totalling
∼ 25◦ in azimuth. The time flows from left to right on this graph. (b): Point, slew and point with the camera in
configuration 2. The low rate of star camera solutions towards the end of the run is due to increased cloud coverage and

increased surrounding light in the very early morning.
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In Fig. VI.11 we show two typical pointing runs during a night in June 2016. That night

marked the transition to configuration 2 and a reorganization of the high bay to accommodate

rotating the payload so that it faces the door, and so that the telescopes can see out of the

door.

For the first run that night, shown on Fig. VI.11a, we tested the new gyroscope mount,

new algorithms, and new flight procedures. The run shows two consecutive slews (the swathes

with little to no star camera solutions) spanning a total of about 25◦ in RA. Note that the

scales are different in RA and DEC for display convenience. There are two noticeable features

to this figure. The first is that some star camera solutions appear to be false positive, a result

from non-optimal star camera parameters which involved too few stars required to confirm a

match. This can be easily fixed by increasing this parameter.

The second, and more concerning problem is the apparent drift of the star camera

solution after the first slew. This is what made us realize that correcting for biases only was

not capturing the entire behavior of the gyroscope-star camera system pair. We interpret the

resulting large error at the end of the first slew as a misalignment between the star camera

orientation and the 3D gyroscope mount, and have developed flight software to properly

estimate this out (see Chapter V, Section V.2.9).

If this is a problem during flight, we anticipate resetting the estimator’s position each

time we finish slewing, to restart the Kalman filter using the original biases.

The second run of the night, which was also our first run in configuration 2, does not

exhibit this behavior, partly due to a better alignment between the gyros and the star camera,

and also because the slew is half as long as the first slew in the other picture.

For this second run, we show the pointing stability in cross-elevation in Fig. VI.12.
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This picture is to be compared with the test done indoors, showed in Fig. VI.10. Here the

peak-to-peak errors are increased by a factor of ∼ 5, but the r.m.s deviation is still ≤ 5′′. This

satisfies the ±15′′ requirement for more than 95% of the points, which is very encouraging.

Figure VI.12: Cross-elevation error for a test on the sky (see text for descrip-
tion).

Another view at the pointing stability is proposed in Fig. VI.13, which presents the

data as a 2D plot of the error in both elevation and cross-elevation, augmented by a 2D

Kernel density contour plot to better show where the density peak lies. Note that contours

are separated linearly, so that data is 10 times more likely to be inside the brightest contour

than outside the black outer contour. The values of the contours are not meaningful, since

they refer to lines of same probability density, which doesn’t easily relate to a percentile value.

The striking asymmetry of this plot reveals that the elevation control is, for now, much

more accurate than the cross-elevation loop, which is to be expected due to the much lower
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inertia of the rotators (at the time of this run, the mirrors were not installed on the rotators).

We expect degradation of the elevation accuracy once the siderostats are mounted on the

rotators, even after tuning the PID gains.

Figure VI.13: Elevation and cross-elevation error for a test on the sky.

VI.3.4 What’s left: Fine guiding sensor loop implementation

The last on-sky pointing tests have consistently shown:

1. our ability to always know where we are pointed using a robust star camera solution

2. our ability to slew large amounts while maintaining the wheels close to their zero position

(which indicates a successful momentum dumping loop)

3. our ability to keep the telescope vector pointed to an inertial target to within the

specificied ±15′′ more a large fraction of the time



Chapter VI. Implementation and on-sky testing 250

4. our ability to have small attitude errors which can be fed to the delay line for further

correction

However, despite this relative success, one key item has yet to be implemented before

flight: the fine guiding loop, which brings both beams to overlap better than 1.5′′. In order to

be implemented, the optics, cryostat, and tip/tilt mechanisms all have to be integrated into

the payload in order to make it function.

We have started planning for this upcoming integration by designing a C++ program

to handle the task at hand. In this section we present the notional architecture for this last

piece of software, but warn the reader that many unknowns will remain until the optics are

installed in the truss. In particular, our main concern lies in the transition mode that we

called "ACQUIRE", which might require a lot of tuning.

The role of the fine guiding loop is to use the fine guiding sensor (FGS, an H1RG detector

with two window readouts, one for each arm) to determine the centroid of a known source

within the field of view. The location of this source on each of the readout windows of the

detector (each window shows what is seen by each arm) will then be compared to known pixel

locations that ensure overlap between the two science beams. The errors signals are then ∆xL,

∆yL, ∆xR, ∆yR, where the subscripts designate the left and right arm, respectively. These

error signals are rotated to the proper reference frame and fed to the tip/tilt mechanisms,

which zeroes them out very quickly thanks to their very large actuation bandwidth and very

small inertia.

Since the errors are zeroed out almost instantaneously, these errors signals cannot be

used to determine the attitude of the entire payload. However, the angular deviation of each

tip/tilt stage from their nominal position has information about the overall pointing error of
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the truss. To illustrate this feature, let’s suppose that both windows are perfectly aligned and

the detector axes (X,Y) match the elevation and cross-elevation, respectively. In this case, if

both tip/tilt stage need to correct for a positive elevation error, it means that the entire truss

is mispointed in elevation. Similarly, if the cross-elevation correction happens in the same

direction, it means that a movement of the truss in cross-elevation will correct it and bring

the tip/tilt stages to their nominal position.

We can generalize this statement by saying that the common-mode deviations from

the nominal position of the tip/tilt stages represent an estimator for the attitude difference

between the payload and the guide star. This information is processed, rotated in the correct

reference frame, an injected into the Kalman filter estimator in replacement of a star camera

measurement. The weight (or variance) of this new measurement is considerably smaller than

the star camera, since it is the most trusted attitude measurement that we can have.

At full speed and sampling only 15′′×15′′ windows, the fine guiding loop can provide

these absolute position estimates at 50Hz.

There are many challenges with this system. The first is to robustly, autonomously

identify the chosen guide star within the field of view. For this, we design a blob-finding

software which examines the images received from the fine guiding sensor and identifies the

brightest N blobs in the image. The targets are carefully chosen so that the guide stars are

the brightest sources in the image, which enhances the chances of finding the correct star.

ACQUIRE mode involves progressively reducing the size of the FOV in the fine guiding

sensor, starting with a 5′ × 5′ FOV at 2 s per frame, down to 15′′×15′′ at 50Hz.
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Chapter VII

Concluding remarks

There is nothing like a dream to create the future.

V. Hugo

High angular resolution observations in the far-infrared are essential to determine the

physical properties of young stars, which are preferentially forming in embedded stellar clus-

ters. Using SOFIA FORCAST, we showed results of a survey of 10 nearby clusters, which

observed 70 YSOs and 14 extended sources, between 11 and 37 µm. The higher angular

resolution of FORCAST allowed us to map these regions at an effective resolution which com-

pares with Spitzer IRAC at 8 µm. We use a radiative transfer modelling tool to fit physical

parameters of the point sources in our clusters with sufficient amount of data, and propose

a detailed study of IRAS 20050+2720. The poor angular resolution at long wavelengths

causes uncertainties in the SEDs, since it is not clear that the measured fluxes are associ-

ated with their short-wavelength counterparts. This is an inherent limitation which can cause

over-interpretation of SED fitting results, and can be lifted through obtaining higher angular

resolution between ∼30 µm and ∼300 µm, which no existing instrument can provide.

BETTII is a far-infrared balloon-borne interferometer, and a pathfinder towards this

type of instrument. BETTII samples wavelengths close to the peak of the far-IR emission

of YSOs, making it complementary to SOFIA FORCAST, and to modern instruments like
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ALMA, which observe at longer wavelengths where the degeneracy between opacity, temper-

ature, and mass is more pronounced.

The payload is scheduled for its commissioning flight in the Fall of 2016. I discuss the

design of the balloon payload and the instrument, and derive its expected sensitivity. As part

of this sensitivity analysis effort, I developed a new technique to more accurately determine

the spectral sensitivity of spatio-spectral interferometers such as BETTII. These sensitivity

predictions are used as requirements to design every aspect of the mission.

In this work I detail my contribution to one aspect of the mission, which is the control

system. As a remote-controlled, flying interferometer, achieving phase stability is challenging

and requires detailed attention. I propose a control strategy that ensures phase control and

allows us to gain appropriate phase knowledge to reconstruct the interferograms, which contain

the scientific data. Finally, I discuss the practical implementation of this strategy, and some

preliminary test results which occurred in the Spring of 2016.

Over the course of 5 years, the BETTII project went from paper drawings to its first

flight campaign. I have had the opportunity to be involved in all aspects of the project, which

provided me with a unique view of how to build instruments to address a specific scientific

question. In addition to the day-to-day engineering challenges, a global vision of the process

was acquired, which made this experience irreplaceable.

The mechanical, cryogenic, optical, electrical, and software infrastructure developed

from scratch for BETTII form a powerful pointed observatory platform that can host various

instruments in the future. If BETTII succeeds and is able to obtain more funding over the
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years, the versatility of its subsystems make them relatively straightforward to repair, enhance,

or adapt to future goals.

The work and thoughts spent on BETTII during the past years, combined with the

approaching Astrophysics Decadal Survey discussions, have converged towards a new concept

for a potential Probe-class space telescope: the Space High Angular Resolution Probe for the

InfraRed (SHARP-IR, pronounced "sharper"). This new concept, which is currently going

through the Architecture Design Lab and soon through the Instrument Design Lab at NASA

GSFC, could see the full potential of double-Fourier interferometry come to fruition, and

provide transformational science in the far-infrared. The concept was unveiled for the first

time at the SPIE conference in Edinburgh (Rinehart et al. 2016), and synthesizes all of our

lessons learned from designing and building BETTII.
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Appendix A

Far-IR double-Fourier interferometers

and their spectral sensitivity

A.1 Deriving the Interferogram Equation in a Double Fourier

System

The interferogram from a double-Fourier system is different from the interferogram for an

FTS in several ways that derive from the fact that the double-Fourier system starts with two

independent input beams viewing the same astronomical target. For this derivation, we will

follow the convention in the FTS literature and consider the propagation of a single plane

wave (radiation from a point source at infinity) at wavenumber σ ≡ 1/λ through the system.

Fig. IV.2 in the main text shows the setup for a typical double-Fourier system with

the K-mirror on one arm to keep the sky images at the same rotation on the two paths,

and the delay line in the other arm to allow adjustment of the relative path lengths between

path 1 and 2. The plane wave travels a distance x1 on path 1 from an entrance aperture

an arbitrary distance above the siderostat to the beam combiner: a1(σ)e−2πiσx1+φ, where
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a1 is the amplitude of the electric field and φ corresponds to an arbitrary phase offset. For

convenience of notation, in the following derivation we drop the amplitudes’ dependence on

wavenumber by writing a1 instead of a1(σ).

The wave also undergoes phase shifts caused by reflections and partial reflections along

the path. A full reflection for light traveling in air or a vacuum causes a 180 deg phase shift;

a 50% reflection at the beam splitter/combiner causes a 90 deg phase shift between reflected

and transmitted beam (Lawson, 2000). Since the instrument measures the combined light at

the detectors, what matters is the difference in the numbers of reflections along path 1 and

2. In the case of the particular BETTII implementation, path 1 contains one more reflection

than path 2.

The electrical fields arriving at the “+" and “-" detectors are then:

A− = a1e
−2πiσx1+iπ+iπ/2+φ + a2e

−2πiσx2+φ, (A.1)

A+ = a1e
−2πiσx1+iπ+φ + a2e

−2πiσx2+iπ/2+φ, (A.2)

where the π phase shift on path 1 occurs because there is one extra reflection compared to

path 2 (see Fig. IV.2), and φ corresponds to an arbitrary phase offset. The detectors are

power detectors so defining the intensity I = A∗A:

I− = a2
1 + a2

2 + a1a2

(
e−2πiσ(x1−x2)+3iπ/2 + e2πiσ(x1−x2)−3iπ/2

)
, (A.3)

I+ = a2
1 + a2

2 + a1a2

(
e−2πiσ(x1−x2)+iπ/2 + e2πiσ(x1−x2)−iπ/2

)
. (A.4)
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Defining x ≡ x1−x2 and expanding the complex exponentials, the equations can be simplified

to:

I− = (a2
1 + a2

2)

(
1− 2a1a2

a2
1 + a2

2

sin(2πσx)

)
, (A.5)

I+ = (a2
1 + a2

2)

(
1 +

2a1a2

a2
1 + a2

2

sin(2πσx)

)
, (A.6)

where x is now the difference in the physical length between the two light paths. For the case

of equal wave amplitudes on path 1 and 2 (a1 = a2 = a):

I± = 2a2(1± sin(2πσx)). (A.7)

The generalization of this equation to a source distribution on the sky requires the recognition

that a1 and a2 are complex values such that |a1|2(σ) and |a2|2(σ) are power from the source

at wavenumber σ, while a1a
∗
2 is the correlated power seen through the two apertures which

is the source spatial visibility, γ(B, σ), and is in general a complex valued function. γ(B, σ),

which is a function of the baseline vector B connecting the two light collectors, and σ, is the

Fourier transform of the source emission distribution on the sky. For the general case, the

previous equations become:

I− = |a1|2 + |a2|2 + γ(B, σ)e−2πiσ(x1−x2)+3iπ/2 + γ∗(B, σ)e2πiσ(x1−x2)−i3π/2, (A.8)

I+ = |a1|2 + |a2|2 + γ(B, σ)e−2πiσ(x1−x2)+iπ/2 + γ∗(B, σ)e2πiσ(x1−x2)−iπ/2. (A.9)
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The same simplification as before can be done except that γ(B, σ) is a complex-valued func-

tion. If we define the normalized spatial visibility as

VB(σ) =
2γ(B, σ)

a2
1 + a2

2

, (A.10)

then the equation for I± becomes:

I± = (|a1|2 + |a2|2) [1± (Re (VB(σ)) sin(2πσx)− Im (VB(σ)) cos(2πσx))] , (A.11)

I± = (|a1|2 + |a2|2)
[
1± Re

(
iVB(σ)e−2πiσx

)]
, (A.12)

where Re(f) is the real component of f and Im(f) is the imaginary component.

The same style of derivation can be done with for a realistic instrument with a complex

transfer function. If we characterize the spectral transmission function as t1(σ) = |t1(σ)|eiΦ1(σ)

along path 1, and t2(σ) = |t2(σ)|eiΦ2(σ) on path 2, then the amplitude mismatch of the spectral

transmission function in each path reduces the power in the interferogram and the phase

differences introduce a phase factor Φi = Φ1 − Φ2 into the exponential term. As a result,

the source visibility in the previous equations is multiplied by a normalized, instrumental

visibility loss term, Vi = |Vi(σ)|eiΦi(σ):

I± = (|t1|2|a1|2 + |t2|2|a2|2)
[
1± Re(iVB(σ)Vi(σ)e−2πiσx)

]
. (A.13)



Appendix A. Far-IR double-Fourier interferometers and their spectral sensitivity 259

A.2 Spectral noise in presence of gaussian phase noise

Suppose that the signal is a line of power density 2S centered on bin number k corresponding

to wavenumber σk. In the complex interferogram, the line has a power density S in bin k

and −S at −k, and zero everywhere else. To simplify the analysis, let’s focus on the positive

frequencies, which only contain half the noise. The interferogram at delay xn = ndx is

Ik(xn) = Sδσe−2iπσkxn . Through a simple DFT, the value of the line in the spectrum in ideal

conditions is:

dxDFT(Ik(xn))[k′] = dx

N/2−1∑
n=−N/2

Sδσe−2iπσkxne2iπnk′/N = dx

N/2−1∑
n=−N/2

Sδσe−2iπ(k−k′)n/N ,

(A.14)

which is equal to dxNSδσ = S for k = k′ and zero everywhere else. Note that we have

σkxn = kδσndx = kn/N . and δσ = (Ndx)−1. The phase noise degrades the effective power

of the line, so it is now Se−σ2
Φ/2 (Richards, 2003). The noisy interferogram is Ik(xn) =

Sδσe−2iπkn/NeiΦr(xn).

Designating the operator 〈〉 as the ensemble average, the noise σ2
S in the interferogram

is the variance of the DFT:

σ2
S [k′] = VAR(dxDFT(Ik(xn))[k′])

= dx2

〈∣∣∣∣∣∑
n

Ik(xn)e2iπnk′/N

∣∣∣∣∣
2〉
−

∣∣∣∣∣
〈∑

n

Ik(xn)e2iπnk′/N

〉∣∣∣∣∣
2
 ,

= dx2

(∑
n

∑
n′
〈Ik(xn)I∗k(xn′)〉 e2iπ(n−n′)k′/N −

∑
n

∑
n′
〈Ik(xn)〉 〈I∗k(xn′)〉 e2iπ(n−n′)k′/N

)
,

= dx2
∑
n

∑
n′

[〈Ik(xn)I∗k(xn′)〉 − 〈Ik(xn)〉 〈I∗k(xn′)〉] e2iπ(n−n′)k′/N .
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We can write 〈Ik(xn)I∗k(xn′)〉 = 〈S2δσ2e−2iπ(n−n′)k/Nei(Φr(xn)−Φr(xn′ ))〉. This quantity is

equal to S2δσ2e−2iπ(n−n′)k/Ne−σ
2
Φ when n 6= n′ and equal to S2δσ2 when n = n′. The

quantity 〈Ik(xn)〉〈I∗k(xn′)〉 is equal to S2δσ2e−2iπ(n−n′)k/Ne−σ
2
Φ for all n and n′. Hence, the

term in the sum is nonzero only for n = n′, for which it is S2δσ2(1− e−σ2
Φ). The value of the

sum is then:

σ2
S [k′] = dx2

∑
n

S2δσ2(1− e−σ2
Φ), (A.15)

= dx2NS2δσ2(1− e−σ2
Φ), (A.16)

=
1

N
S2(1− e−σ2

Φ). (A.17)

This quantity is independent of k′, so the noise is white. The negative frequencies contribute

the same amount, doubling the noise variance. However, we are only considering the imaginary

part of the spectrum, so only half the noise variance is important in our calculation of our

SNR. The last expression thus represents the variance of the noise that is useful for our SNR

calculations.

A.3 Fringe tracking in the science channels

For sufficiently bright sources, it is possible to self-calibrate the OPD between subsets of the

M interferograms in a track, to prevent the drift of an indirect OPD estimator. The idea

is to bin consecutive interferograms in subsets in order to build up enough SNR to clearly

see a fringe and be able to estimate its position with sufficient accuracy. Then, the different

subsets within a track can be offset and co-added with better accuracy (smaller OPD noise)

than if we were co-adding the M interferogram individually with only the instrument OPD
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estimator noise. The best scenario would be when the fringe has a high SNR in each single

interferogram - which will be the case of calibrators for BETTII.

There are many ways to fit the location of the fringe center, and the error associated

with each method is highly implementation-specific. Here, we consider the simple example of

a fringe tracking algorithm in two steps (Rizzo et al., 2012): a Hilbert transform of the inter-

ferogram to obtain its envelope; and a centroid of the points of the envelope above a certain

SNRI threshold. The Hilbert transform doubles the error variance in the interferogram, and

in the worst case, the centroid has an error variance of approximately (n × SNR2
I)
−1, where

n is the number of data points above the threshold SNRI . The conversion to a phase leads

to a phase error variance equal to [σ2
Φ(σ)]direct ∼ 2× (2π)2σ2/σ2

0/(n× SNR2
I). This indicates

that when the SNR is high enough, this direct estimate of the phase can become better than

the estimate coming from an indirect OPD estimator with corresponding phase error variance

[σ2
Φ(σ)]indirect, like the attitude estimator used on BETTII.

In Chapter IV, Fig. IV.4, we use Eq. IV.20 and a total phase error variance which is a

combination of the phase noise from the direct and indirect methods, to ensure continuity:

σ2
Φ(σ) =

(
1

[σ2
Φ(σ)]direct

+
1

[σ2
Φ(σ)]indirect

)−1

. (A.18)

On BETTII, the bulk of the phase noise comes from the uncertainties in co-adding

consecutive scans (timescale 3), as the estimator uses an indirect method and never really

measures the absolute phase for low-SNR targets. For high-SNR targets, the method de-

scribed above can serve as a fringe tracker that not only is useful for calibration, but can also

substantially improve the phase estimator’s stability over long periods of time by preventing
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drifts.
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Appendix B

Attitude representation in three

dimensions

There are three common representations of the orientation, or attitude, of an object in a

3-dimensional Euclidian reference frame: in the following we will discuss the Tait-Bryan an-

gles (which are very similar to, and sometimes confused with proper Euler angles), rotation

matrices, and quaternions. All of them can be understood as a rotation of the initial refer-

ence frame I = {I,J,K} into the object’s local reference frame L = {i, j,k}. The reference

frame I is assumed to be fixed while L is allowed to move. We can write each unit vector

as follows: I = I [1, 0, 0]T , J = I [0, 1, 0]T , K = I [0, 0, 1]T , and i = L[1, 0, 0]T , j = L[0, 1, 0]T ,

k = L[0, 0, 1]T . {I,J,K} and {i, j,k} are orthonormal bases to I and L, respectively. The

subscript before the vector indicates in which reference frame the vector is expressed, and

the T after the vector indicates the transpose operation. We will keep this formalism for all

vectors and matrices in this work.
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B.1 Tait-Bryan/Euler angles

The Tait-Bryan formalism corresponds to a sequence of three angles, each corresponding to

a rotation about one of the object’s main axes: these are also called "intrinsic" rotations.

They differ from "extrinsic" rotation, sometimes called "Euler angles", which correspond to

a rotation about one of the axes of the global (fixed) reference frame. In the following,

we will focus on using exclusively intrinsic rotations, as they are more intuitive. Note that

sometimes people call this formalism "Euler angles" as well, so it is important to understand

how this works. With this formalism, we start in the global reference frame and rotate the

reference frame three times to end up in the body reference frame, which describes the final

orientation of an object. We will most often choose a well-known sequence of rotation such as

the z− y′− x′′ order, which corresponds to the angles used to describe the heading, elevation

and bank of an aircraft with respect to a reference frame attached to the Earth, for example

the North-East-Down reference frame. The first rotation about k will transform I into L′.

The second rotation, about the j axis of the rotated frame L′, transforms L′ into L′′. The

third and last rotation, about the i axis of L′′, will transform L′′ into the final orientation, L,

of the object (see Fig. B.4).

This sequence of rotation can be used to represent the rotation matrix that describes

the attitude of an image of the sky. Celestial coordinates are usually given in terms of right

ascension, declination. To fully describe the image of a patch of sky, we need another degree

of freedom, which is the roll of the image about the boresight. When given these three angles:

RA, DEC, and ROLL, one can reconstruct the attitude using the Tait-Bryan angles in the

z − y′ − x′′ order, where the first, second and third elementary rotations correspond to the
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rotations in right ascension, declination and roll, respectively.

B.2 Rotation matrices

Perhaps the most common way to express the orientation of an object within a given reference

frame is to use the matrix that describes the rotation from one reference frame to the other.

Since rotations are linear transformations of R3, there always exists a matrix to represent it.

If we choose an orthonormal basis to R3, matrices representing rotations are 3 × 3 orthogo-

nal matrices. When given the traditional matrix multiplication operation, 3 × 3 orthogonal

matrices with determinant of +1 form a group which is an isomorphism of the group of all

3-D rotations of Euclidian space (subsequently called SO(3) for "special orthogonal group"):

it means that each rotation can always be represented by exactly one 3 × 3 orthogonal ma-

trix. This theorem is the mathematical translation of the sometimes obvious intuition that

rotation matrices always exist, are unique for a given rotation, and that the composition of

two rotations is still a rotation. It also expresses the requirement that the corresponding

rotation matrices have a determinant of +1, which can be useful when we consider numerical

implementations of these matrices, as rounding errors might require a periodic normalization

of the matrices to ensure they stay in this group. Note that the group of rotation is a cyclic

group, since a rotation of an angle θ is the same as a rotation of θ + 2π.

We are interested in matrices describing rotations of entire coordinate systems, which

are also called passive rotations. This is different from matrices describing rotations of vectors

within a given coordinate system (called active rotations), and an important distinction that

can often lead to confusion. Let’s suppose that we have an initial coordinate system I of

basis {I,J,K}, and a second coordinate system L of basis {i, j,k}. For example, this applies
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when L is the body reference frame, and we want to understand its orientation with respect

to an initial reference frame, such as the inertial reference frame. The basis vectors of L can

all be expressed by a linear combination of the basis vector of I. This transformation can be

described using the direction cosine matrix, which has the following expression:

L
IR =


I · i J · i K · i

I · j J · j K · j

I · k J · k K · k

 . (B.1)

The columns of this matrix correspond to the expression of the basis vectors of I ex-

pressed in the basis of L. This is what we call the rotation matrix between I and L, and

transforms vectors expressed in I into their representation in L. With this convention, the

matrix pre-multiplies the vector. For example, if we have some vector Iu expressed in the

initial reference frame I, its expression in the reference frame L will be Lu = L
IRIu.

Note that the rotation matrix L
IR is an orthogonal matrix of determinant +1: each

columns are orthogonal with each other and of unit norm. Hence, the inverse of this matrix

is its transpose, which also corresponds to the rotation of a vector from frame I to frame L:

(LIR)−1 = (LIR)T = I
LR.

Let’s take an example and consider the unit vector Iu = I(1, 0, 0), expressed in I

originally. Now, let’s rotate the coordinate frame I by an angle θ with respect to the axis

k. The new reference frame is L′ = {i′, j′,k′}. For simplification, let’s consider that θ =

+90 degrees. It is clear that the vector i is now equal to −j′, and L′i = L′(0,−1, 0).

In the more general case, let’s suppose that the local reference frame L′ is rotated by

an angle θ about the k axis (Fig. B.2) with respect to the reference frame I. The convention
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I

J

K = k′

i′

j′

θ

Figure B.1: The {i′, j′,k′} reference frame (in blue) is rotated with respect
to {I,J,K} (in black). The rotation is about the axis K by an angle θ =

30 degrees.

we adopt sets the rotation matrix for this transformation as being:

L′
I R = Rk(θ) =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 , (B.2)

where k indicates the third axis of the current basis (i and j represent the first and second

axes, respectively). This will transform vectors from I to L′. Suppose now that we further

rotate our reference frame by an angle φ about the newly-rotated j′ axis. The rotation for

this elementary transformation is:

L′′
L′ R = Rj(φ) =


cosφ 0 − sinφ

0 1 0

sinφ 0 cosφ

 . (B.3)
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And let’s do one last rotation about i′′, of an angle ψ, for which the transformation matrix

is:

L
L′′R = Ri(ψ) =


1 0 0

0 cosψ sinψ

0 − sinψ cosψ

 . (B.4)

The matrix that corresponds to the active transformation of I to L will multiply vectors

expressed in I and express them in L. Hence, this matrix can be written:

L
IR = L

L′′RL
′′

L′ RL
′

I R = Ri(ψ)Rj(φ)Rk(θ), (B.5)

where we pre-multiply the matrix for each consecutive rotation of reference frames. This

corresponds to the "natural order" of rotations (Shuster, 1993), and is especially relevant

when related to quaternions. While the first axis of rotation, k, is defined in the initial

reference frame, it is important to realize that the axes corresponding to the second and third

rotations are defined in the intermediate frames L′ and L′′, respectively. We can understand

this by thinking that the transformations follow the body, as each rotation is done in the body

reference frame, and is a particularly useful approach to our problem.

B.3 Quaternions

Quaternions are a more modern way to describe the orientation of a reference frame with

respect to another, and are today widely used to describe spacecraft orientation (e.g. Wertz,

2012). From a strictly mathematical point of view, quaternions form a normed algebra over
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I

J

K = k′

i′
j′θ

Figure B.2: The {i′, j′,k′} reference frame (in blue) is rotated with respect
to {I,J,K} (in black). The rotation is about the axis K by an angle θ =

−30 degrees.

I

J

K = k′

i′ j′ = j′′
θ

φ

i′′ = i

k′′

Figure B.3: The {i′′, j′′,k′′} reference frame (in red) is rotated with respect
to {i′, j′,k′} (in blue). The rotation is about the axis j′ by an angle φ =

−45 degrees.

I

J

K = k′

i′ j′ = j′′
θ

φ

i′′ = i

k′′

j

k

ψ

Figure B.4: The {i, j,k} reference frame (in green) is rotated with respect
to {i′′, j′′,k′′} (in red). The rotation is about the axis i′′ by an angle ψ =

15 degrees.
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the real numbers that is an extension of traditional complex numbers. The quaternion normed

algebra has four dimensions, instead of just two for the complex numbers. At its fundamental

level, the basis for the quaternion algebra consists of one real axis and three imaginary axes

{1, i, j, k}. Like complex numbers (which have a basis {1, i}), there are fundamental relations

between the basis elements that govern the multiplication operation, such as the well known

identity i2 = −1, that we will discuss at length later in this section. In this document, we will

write a quaternion using one of the following equivalent notations (Schmidt et al., 2001) :

q̄ = qr × 1 + qii + qjj + qrk = qr + q =


qi

qj

qk

qr

 =

q
qr

 =
[
qT qr

]T
, (B.6)

where we make a clear distinction between the quaternion’s real part qr, and its 3-dimensional

imaginary part that we choose to represent as a vector q = qii + qjj + qrk. Like complex

numbers, quaternion have a conjugate operation, which negates the imaginary part:

q̄∗ =
[
−qT qr

]T
. (B.7)

Quaternions are interesting beyond their pure mathematical definition because the sub-

set of quaternions of unit norm can be used to represent a coordinate frame rotation in three

dimensions. The Euler rotation theorem states that any coordinate frame rotation can be de-

scribed by a rotation of an angle θ about an appropriately-chosen unit vector u = xi+yj+zk

(also called the "Euler axis" or "Euler vector"). This formalism has 3 degrees of freedom, the



Appendix B. Attitude representation in three dimensions 271

minimum needed to describe a rotation between two reference frames: two degrees of freedom

in the vector (which is constrained to be of unit norm), and one in the rotation angle. If we

encode this information in a quaternion using Euler’s exponential notation for vectors, this

precisely defines the quaternion:

q̄ = exp

[
θ

2
(xi + yj + zk)

]
= cos

θ

2
+ (xi + yj + zk) sin

θ

2
. (B.8)

This quaternion completely describes the rotation between the two reference frames and

has unit norm. Conversely, every quaternion of unit norm can be decomposed like this and

represent a rotation in three-dimensional Euclidian space. Like rotation matrices, the unit

quaternions form a group under the quaternion multiplication operation, which is isomorphic

to the special unitary group SU(2). SU(2) is a surjective 2:1 homomorphism of SO(3). This

means that each element in SO(3) can be described by exactly two elements in SU(2), or

equivalently, two distinct unit quaternions: the quaternion q̄, and its opposite −q̄.

Quaternions use 4 numbers to describe 3 degrees of freedom: an advantage over matrices

(9 elements), but an apparent disadvantage over Tait-Bryan angles, which consist of an optimal

number of 3 elements. However, Tait-Bryan angles can be shown to exhibit a phenomenon

called gimbal lock, which leads to a degeneracy when describing the set of angles corresponding

to rotations when the pitch angle (second rotation angle, about j) is ±π/2. This creates

situations where some rotations and sequences of rotation would have to be avoided by fear

of creating numerical issues caused by gimbal lock. Quaternions, while needing an extra

number to represent the rotation, are free of this concern. This is one of the main reasons

that they were originally preferred to Tait-Bryan angles early in the spaceflight era (Wertz,
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2012; Shuster, 1993).

B.3.1 Quaternion multiplication

In order to form the unit quaternion group, one has to define an appropriate multiplication

operation. We warn that the formulation that we use and present in the next few paragraphs

does not correspond to the commonly accepted rules for quaternion operations (also called

"Hamilton notation", from W. R. Hamilton who is attributed the discovery of quaternions).

We use a formalism that was popularized by Caley (Cayley, 1963) and adopted in most of

the aerospace community, mostly to describe the orientation of satellites in inertial space. Its

main advantage is that consecutive transformations using quaternions consist of multiplying

elementary quaternions in a "natural order", exactly in the same order as the corresponding

rotation matrices.

To avoid confusion, we will not mention the original Hamilton rules in this work. In-

stead, we define the quaternion elementary multiplication rules as follows (Shuster, 1993):

i2 = j2 = k2 = −1;

ji = −ij = k;

kj = −jk = i;

ik = −ki = j.

(B.9)
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Using the relations in Eq. B.9, we define the general quaternion multiplication operator

⊗:

p̄⊗ q̄ = (pr + pii + pjj + prk)× (qr + qii + qjj + qrk)

= (prqr − piqi − pjqj − pkqk)

+ (prqi + piqr − pjqk + pkqj)i

+ (prqj + pjqr − pkqi + piqk)j

+ (prqk + pkqr − piqj + pjqi)k

. (B.10)

To express a vector Iv = I(x, y, z) in the new frame L, we construct a purely imaginary

quaternion from this vector: q̄v = 0 + xi+ yj+ zk, and we use the quaternion multiplication

to obtain: Lv
0

 = L
I q̄ ⊗ q̄v ⊗ L

I q̄
−1, (B.11)

and extract the vector Lv from the resulting quaternion.

Note that the quaternion inverse operation for quaternions of unit norm is the same as

the conjugate operation.

B.3.2 Relationship with matrices and elementary quaternions

Using this formalism, a quaternion is behaving in the same way as the corresponding passive

transformation matrix to describe a reference frame rotation. This means that consecutive

rotations are multiplying in the "natural order", which makes it more intuitive.

For example, let’s consider the elementary rotation described in Fig B.2 that represents



Appendix B. Attitude representation in three dimensions 274

a rotation of the initial reference frame I into a reference frame L about k. Using the "left-

hand" rule, the angle θ of rotation about k is now θ = +30 degrees. This quaternion is

L
I q̄ = q̄k(θ) = cos θ2 + sin θ

2k, and represents the same rotation as the passive rotation matrix

Rk(θ) discussed in Section B.2. If the rotation of the reference frame is described by three

consecutive rotations of angles θ, φ and ψ about k, j′, and i′′, respectively (see e.g. Fig. B.4),

we can write:

L
I q̄ = q̄i(ψ)q̄j(φ)q̄k(θ)

=


0

sin ψ
2

0

cos ψ2




0

0

sin φ
2

cos φ2




0

0

sin θ
2

cos θ2


, (B.12)

which forms a quaternion that is equivalent to the rotation matrix multiplicationRi(ψ)Rj(φ)Rk(θ).

Note that the order of the quaternions is the same as the order of the matrices. This is one

of the advantages of choosing this "natural order" convention (Shuster, 1993).

B.4 Quaternion derivative and integration

Properly defining the derivative and integral of quaternions is necessary for our purpose. We

will need a derivative to describe our dynamic system as its orientation changes over time;

and we will need to integrate (or propagate) those equations to find a numerical solution to

the attitude estimation problem.

In the following, we consider the body reference frame L(t) which evolves as a function

of time with respect to a fixed, inertial reference frame I.
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The mathematical derivations leading to those results can be found elsewhere (Trawny

et al., 2005). Over an infinitesimal time step dt, the local frame is rotating by an angular

vector δθ. The instantaneous angular velocity, expressed in the body reference frame L(t),

is L(t)ω(t) = limdt→0
δθ
δt . It can be shown (Trawny et al., 2005) that with this formalism,

the quaternion derivative is defined using either a quaternion multiplication, or an equivalent

matrix multiplication:

L(t)
I

˙̄q(t) =
1

2

ω
0

⊗ L(t)
I q̄ =

1

2
Ω(ω)

L(t)
I q̄, (B.13)

where the matrix

Ω(ω) =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 (B.14)

is going to play an important in the later sections.

The integrator formulas are derived in Trawny et al. (2005). The problem is to find a

matrix Θ to integrate a quaternion L(t)
I q̄(t), and estimate attitude at time t + ∆t, knowing

the instantaneous angular velocity ω(t):

q̄(t+ ∆t) = Θ(t, t+ ∆t)q̄(t) (B.15)

A zeroth-order solution assumes that the angular velocity ω is a constant over the timestep

∆t, an important special case since it describes the typical discrete representation that we
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will use in our software. The solution can be expressed as:

Θ(t, t+ ∆t) ≡ Θ(∆t) = exp

(
1

2
Ω(ω)∆t

)
, (B.16)

where the matrix exponential is defined using a Taylor expansion [give reference for that].

A first-order solution is given in Trawny et al. (2005) and uses knowledge of two previous

ω values to estimate the integral.

B.5 Covariance matrices in different reference frames

In the following, we will be describing our attitude using quaternions or rotation matrices

in a Kalman filter with a state-space representation. This means that we will be making

estimates of physical quantities, as well as estimates of our estimation error. These errors are

represented using covariance matrices.

Covariance matrices contain information about the cross-correlation of the variables in

the state vector. The diagonal elements represent the auto-covariance of a given variable,

while the terms off the diagonal indicate the degree of covariance (or correlation) between

the different variables. For example, we will have three gyroscopes which will be mounted

orthogonally from each other, each measuring the angular velocity about three different axes.

In the ideal case, all gyroscopes are independent and the covariance matrix associated to

the set of three angular velocities is diagonal, with the variances of each gyroscope on the

diagonal.

If we rotate the gyroscopes’ frame with a rotation matrix C, the new covariance matrix

Q needs to be rotated as well: Q′ = CQCT .
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B.5.1 Small angle approximation

Quaternions become more intuitive in the small angle approximation. Indeed, when all angles

are small with respect to π, we can write:

L
I q̄ ≈

1
2δθ

1

 , (B.17)

where 1
2δθ = 1

2 [δθi, δθj , δθk]
T corresponds to three small rotations about all the three axes

of the initial reference frame. Because we are in the small angle approximation, the order of

the rotations does not matter. Hence, if the imaginary part of a quaternion has small values

qi, qj , qk, and if qr ≈ 1, this quaternion represents a rotation of the reference frame by an

angle δθi = 2qi, then by an angle δθj = 2qj , and finally by an angle δθk = 2qk, where all the

angles are expressed in radians.

More simplifications can also be found. For example, in the limit where ω → 0, the

matrix exponential defined in Eq. B.16 simplifies into:

Θ(∆t)
ω→0
= I4×4 +

∆t

2
Ω(ω). (B.18)
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Appendix C

The PID control loop

Before we elaborate on the control architecture of the entire system, let’s first discuss the

elementary controls block: the PID.

A Proportional-Integral-Derivative (PID) control loop is one of the most basic, yet most

used methods to build systems with active control. The problem that these systems try to

solve is simply to make an object reach a desired state: a sensor is used to measure the

current state, and the difference between the desired state and the current state is fed to an

apparatus capable of changing the state. Most commonly, this uses motors and either position

or velocity sensors, but it can also be used for example for temperature control in a cryogenic

environment, where heaters are used to change the temperature. For simplicity, in the rest of

this work, we will always consider a loop with sensors and actuators.

In its most simple expression, the PID can be reduced to a simple proportional loop,

where the command is proportional to the error between the desired and measured state.

The value of this proportional coefficient usually sets the dynamics of the response, as a large

proportional gain Kp will mean that even a small deviation from our desired state will trigger

a large response. Sometimes, a purely proportional system can lack stability.
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A proportional-derivative loop adds the information of the speed at which the error

varies. If the error is growing quickly, we can increase our command. If the error is being

reduced quickly, it is time to slow down the command to avoid overshooting our target. This

uses the time derivative of the error that multiplies a gain, Kd, and has the effect to damp

the motion. A PD loop usually will help with the system’s stability.

But even then, while a proportional-derivative loop helps stabilize the dynamics of the

system; it does not guarantee that you will reach your desired state. We then complete the

PID loop with an integral gain Ki, which multiplies the integral of the error over some length

of time. While the Kp and Kd gains mostly control the dynamics of the response, the integral

term will control the steady-state error and ensure it converges to zero. This term needs to

be considered with caution, as some situations can lead to a diverging response.

Desired
state

PID
controller

Error
System

Command

Sensors
or Estimator

Measured or
estimated state

+

-

Figure C.1: Diagram of a PID loop.

A simple PID loop diagram is shown in Fig C.1, with the desired input state at the

entrance of the loop and the real state at the output of the loop. It is often the case that

the state cannot be directly measured: this requires the use of an estimator or observer, in

which various indirect measurements will feed a mathematical model of the system to estimate

its parameters. The relevant example for us is a scenario where we only measure a velocity

measurement, while we want to close the loop on the position. Simply put, we know that the

position has an integral relationship with the velocity, and the observer’s role is to estimate
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the integration constants.

The estimator is also used to realize sensor fusion. This consists of combining various

types of measurements to provide the best estimate of the state to feed back to the control loop.

The various measurements often happen at different discrete rates, with different lag times,

which can lead to rather complex implementations. One of the most well-known estimation

algorithms is the Kalman filter, which we will discuss at length in Chapter V.

For BETTII, each subsystem has its own PID control loop. Each PID loop structure

consists of 7 variables: the Kp, Kd, Ki gains, and overall scaling factor, an upper and a lower

limit on the command, and a boolean value that is used to reset the content of the integral

term used to multiply Ki.

The traditional PID loop can be enhanced many ways to increase several of its proper-

ties, such as its robustness or noise-rejection properties. We implement two key enhancements

which are used in most of our PID loops. The first is a low-pass filtering of the derivative error,

which helps avoid velocity noise (such as the structure’s resonant mode at 25Hz) from being

injected into the command. The second is called a deadband, and is critical to the success

of the azimuth loop. Indeed, as the target is reached and the angular velocity has roughly a

zero average, the velocity changes sign often due to its inherent noise. Since the proportional

contribution is often small, this can cause the gimbal actuator to change direction very fast,

which in turn excites vibrations, and contributes to wear on the stepper motor shaft. The

deadband solves this problem by only using the derivative contribution if it is outside of a

band about zero. On BETTII, while this makes the loop non-linear, its benefits far outweigh

its drawbacks, especially since the deadband is typically kept at small values such as ±2′′s−1.
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FORCAST fit results
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Table D.1: Fitted parameters for the 84 sources in our 42 SOFIA fields.

SOFIA Name Coordinates Type R37 α R Menv Calc. Menv Lmod Lbol i AV
(J2000) (M�) (M�) (L�) (L�) (◦) (mag)

CepA.1 22h56m06.9s +62d04m34.0s Isolated 1.16 -0.75 0.66 0.015 ± 0.006 – 39.9 ± 6.0 6.1 19 7
CepA.2 22h56m03.0s +62d02m58.0s Extended 1.71 1.86 0.79 0.114 ± 0.027 – 163.2 ± 21.3 25.0 19 14
CepA.3 22h56m14.0s +62d02m17.3s Isolated 1.42 1.89 0.29 0.171 ± 0.075 – 17.5 ± 3.6 3.8 19 14
CepA.4 22h56m19.0s +62d01m54.4s Extended 2.61 2.40 9.92 22.17 ± 1.776 – 374.4 ± 0.0 2004.0 0 14
CepC.1 23h05m45.8s +62d30m21.4s Isolated 0.88 1.38 1.06 1.95 ± 0.944 – 5.6 ± 1.1 5.5 0 11
CepC.2 23h05m47.9s +62d30m38.6s Isolated 0.00 1.67 0.79 4.38 ± 0.869 – 134.4 ± 44.5 0.7 27 14
CepC.3 23h05m40.0s +62d29m16.2s Isolated 1.04 -0.30 1.89 0.001 ± 0.000 – 111.1 ± 21.3 7.3 51 12
CepC.4 23h05m49.7s +62d30m00.8s Extended 1.54 0.19 2.07 0.01 ± 0.003 – 11.9 ± 22.3 15.3 0 8
IRAS20050.1 20h07m06.6s +27d28m48.0s Clustered – 0.07 0.74 0.004 ± 0 – 128.0 ± 15.3 14.9 65 9
IRAS20050.2 20h07m06.2s +27d28m49.1s Clustered 2.28 1.64 0.76 0.577 ± 0.217 – 26.6 ± 6.0 8.0 19 14
IRAS20050.3 20h07m06.3s +27d28m56.6s Clustered 2.00 1.13 0.73 0.256 ± 0.114 – 48.5 ± 6.3 12.8 27 5
IRAS20050.4 20h07m05.9s +27d28m59.2s Clustered 2.09 1.70 0.24 0.577 ± 0.217 19.174 48.5 ± 8.7 14.9 47 5
IRAS20050.5 20h07m06.6s +27d28m53.1s Clustered 2.07 0.54 0.78 0.01 ± 0.003 – 49.4 ± 6.2 5.8 43 14
IRAS20050.6 20h07m02.2s +27d30m26.0s Isolated 1.40 -0.34 2.22 0.004 ± 0 – 201.6 ± 32.1 19.3 81 14
IRAS20050.7 20h07m07.9s +27d27m15.8s Isolated – 1.23 1.42 0.015 ± 0.040 3.196 3.5 ± 3.2 3.0 19 14
NGC1333.1 03h29m07.7s +31d21m57.0s Isolated 0.75 0.29 3.40 0.004 ± 0.005 0.972 32.5 ± 7.8 8.4 51 14
NGC1333.2 03h29m10.3s +31d21m55.5s Extended 2.23 1.24 1.77 22.168 ± 9.901 – 7.7 ± 1.1 27.8 0 2
NGC1333.3 03h29m01.5s +31d20m20.5s Isolated 0.90 0.71 3.39 0.004 ± 0.027 1.122 3.5 ± 2.1 8.1 0 14
NGC1333.4 03h29m11.1s +31d18m30.8s Isolated 1.10 2.00 0.83 2.919 ± 0.447 1.496 2.3 ± 0.4 3.1 19 11
NGC1333.5 03h29m10.6s +31d18m19.6s Isolated 1.62 1.78 0.77 1.297 ± 0.327 1.496 1.3 ± 0.3 2.8 19 14
NGC1333.6 03h29m13.0s +31d18m13.8s Isolated 0.95 0.87 1.21 0.001 ± 0.001 0.471 7.5 ± 1.2 1.5 27 14
NGC1333.7 03h28m43.4s +31d17m34.8s Isolated 1.19 0.93 1.83 0.001 ± 0.001 – 9.6 ± 1.8 1.4 58 0
NGC1333.8 03h29m03.7s +31d16m03.9s Isolated 0.77 1.15 1.06 1.946 ± 0.746 2.020 17.0 ± 2.4 35.1 0 13
NGC1333.9 03h28m55.6s +31d14m36.6s Isolated 0.80 2.88 2.62 2.919 ± 0.354 1.721 17.0 ± 2.4 24.3 19 14
NGC1333.10 03h28m57.4s +31d14m15.0s Isolated 0.80 1.79 1.16 0.256 ± 0.178 0.449 5.6 ± 0.9 4.8 19 14
NGC1333.11 03h28m37.1s +31d13m30.0s Isolated 1.02 1.67 0.99 0.577 ± 0.133 0.269 7.7 ± 0.7 7.5 19 14
NGC2071.1 05h47m04.8s +00d21m43.1s Isolated 1.17 2.31 2.83 22.168 ± 2.597 13.521 43.7 ± 3.3 297.2 0 14
NGC2071.2 05h47m04.7s +00d21m48.2s Isolated 2.13 2.21 1.28 22.168 ± 14.238 20.464 74.1 ± 20.7 199.9 19 14
NGC2071.3 05h47m05.4s +00d21m50.3s Isolated – 1.01 1.51 0.171 ± 0.317 6.212 28.8 ± 7.9 113.7 19 14
NGC2071.4 05h47m04.0s +00d22m10.5s Isolated 0.96 1.01 1.31 0.001 ± 0.001 – 39.9 ± 6.1 21.4 38 14
NGC2071.5 05h47m10.7s +00d21m14.0s Isolated 1.11 0.32 0.96 0.002 ± 0.001 – 39.9 ± 5.1 14.9 27 14
NGC2264.1 06h41m04.5s +09d36m20.5s Isolated 0.88 1.86 0.45 1.297 ± 0.286 – 43.7 ± 3.9 8.9 19 11
NGC2264.2 06h40m59.1s +09d35m50.5s Isolated 1.13 1.72 0.93 0.01 ± 0.004 – 49.4 ± 13.6 6.7 0 5
NGC2264.3 06h41m06.5s +09d35m54.2s Isolated 1.61 1.76 1.01 1.95 ± 0.331 – 14.5 ± 1.7 1.9 19 3
NGC2264.4 06h41m09.9s +09d35m40.5s Isolated 1.07 2.15 0.98 2.93 ± 0.515 – 32.3 ± 3.8 2.9 19 12
NGC2264.5 06h41m06.7s +09d34m45.9s Isolated 1.23 0.10 0.79 0.007 ± 0.002 – 59.5 ± 7.3 16.7 0 7
NGC2264.6 06h41m11.9s +09d35m33.8s Isolated 1.40 1.37 0.42 0.022 ± 0.010 – 11.0 ± 4.3 2.4 0 14
NGC2264.7 06h41m05.7s +09d34m06.9s Isolated 1.70 1.32 0.47 0.114 ± 0.268 – 11.9 ± 5.3 1.9 27 13
NGC2264.8 06h41m06.1s +09d34m08.5s Isolated 1.87 1.37 0.58 6.568 ± 2.243 – 163.2 ± 52.9 1.4 27 2
NGC2264.9 06h41m05.8s +09d35m29.8s Isolated 1.80 0.29 0.47 0.004 ± 0 – 65.5 ± 6.8 7.2 27 13
NGC2264.10 06h41m08.6s +09d35m42.1s Isolated 1.30 2.23 1.87 2.92 ± 0.475 – 9.2 ± 1.9 1.4 19 14
NGC2264.11 06h41m11.3s +09d29m05.6s Isolated 1.07 1.72 0.04 0.171 ± 0.098 – 26.6 ± 2.0 3.3 19 11
NGC2264.12 06h40m59.1s +09d33m23.9s Isolated – 1.37 0.21 0.022 ± 0.010 – 3.3 ± 7.4 2.3 0 14
NGC2264.13 06h41m08.9s +09d29m44.9s Isolated 1.26 1.35 0.59 0.114 ± 0.021 – 147.2 ± 13.9 19.9 72 13
NGC2264.14 06h41m10.2s +09d29m33.3s Isolated 1.05 0.41 1.57 14.78 ± 1.908 – 374.4 ± 0.0 1856.1 0 0
NGC2264.15 06h41m12.7s +09d29m04.5s Isolated 1.03 0.72 1.77 0.015 ± 0.004 – 374.4 ± 31.3 86.3 27 13
NGC2264.16 06h41m02.8s +09d36m14.7s Extended 2.12 0.41 1.03 0.022 ± 0.007 – 166.4 ± 27.8 37.8 51 9
NGC2264.17 06h41m06.8s +09d33m31.5s Isolated 0.98 1.39 1.25 2.919 ± 0.880 – 10.4 ± 2.0 1.2 19 14
NGC2264.18 06h41m04.3s +09d34m59.3s Isolated 1.38 0.80 0.51 0.004 ± 0.001 – 38.0 ± 7.1 2.9 43 14
NGC2264.19 06h41m01.8s +09d34m33.7s Isolated 1.55 0.44 0.39 0.007 ± 0.002 – 26.6 ± 3.6 4.0 55 14
NGC2264.20 06h41m06.3s +09d33m50.4s Isolated 1.49 0.99 0.67 22.17 ± 16.130 – 374.4 ± 267.4 1.4 19 0
NGC2264.21 06h41m09.3s +09d30m25.8s Isolated 1.10 0.89 0.93 0.004 ± 0.002 – 26.6 ± 4.1 3.9 0 14
NGC7129.1 21h43m06.4s +66d06m55.4s Extended – 0.28 1.54 0.05 ± 0.014 – 249.6 ± 31.1 126.3 38 0
NGC7129.2 21h43m01.8s +66d07m08.7s Extended 1.60 1.19 0.64 6.568 ± 3.028 – 72.3 ± 9.0 62.7 0 14

Continued on next page
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Table (continued)

SOFIA Name Coordinates Type R37 α R Menv Calc. Menv Lmod Lbol i AV
(J2000) (M�) (M�) (L�) (L�) (◦) (mag)

NGC7129.3 21h42m59.7s +66d06m11.3s Extended 2.57 2.20 0.38 0.384 ± 0.153 – 331.2 ± 28.1 60.4 19 14
NGC7129.4 21h42m50.2s +66d06m36.1s Extended 1.63 0.50 1.20 0.022 ± 0.014 – 128.0 ± 29.0 27.6 90 0
NGC7129.5 21h43m06.9s +66d06m42.1s Isolated – -0.13 1.32 0.007 ± 0.003 – 201.6 ± 28.6 12.4 68 14
Oph.1 16h27m10.3s -24d19m12.9s Isolated 0.92 0.28 0.67 0.01 ± 0.002 0.040 7.9 ± 1.3 3.6 78 3
Oph.2 16h26m44.2s -24d34m48.2s Isolated 0.93 0.82 1.97 0.004 ± 0 0.051 8.0 ± 1.2 1.2 75 14
Oph.3 16h27m09.4s -24d37m18.3s Isolated 0.99 0.54 1.54 0.004 ± 0.002 0.040 85.0 ± 19.7 13.4 0 14
Oph.4 16h27m02.5s -24d37m27.6s Extended 1.80 0.19 2.22 0.004 ± 4E-04 0.066 14.3 ± 2.7 4.5 38 14
Oph.5 16h27m06.8s -24d38m15.4s Isolated 1.31 0.35 1.36 0.001 ± 0 0.032 4.3 ± 0.5 0.5 81 14
Oph.6 16h27m15.7s -24d38m45.8s Isolated 1.29 2.36 0.90 0.001 ± 0.001 0.020 26.6 ± 6.6 0.8 90 13
Oph.7 16h27m28.0s -24d39m33.8s Isolated 0.97 1.35 1.39 0.015 ± 0.002 0.026 26.6 ± 3.5 6.5 72 14
Oph.8 16h27m37.2s -24d30m34.8s Isolated 1.02 0.55 1.13 0.007 ± 0.002 0.026 17.7 ± 3.4 5.0 78 12
Oph.9 16h27m21.8s -24d29m53.7s Isolated – 0.49 2.08 0.001 ± 0 0.009 11.8 ± 1.2 1.0 81 14
Oph.10 16h27m17.5s -24d28m55.0s Isolated 1.26 0.45 1.31 0.002 ± 0.001 0.004 2.9 ± 0.3 0.6 81 14
Oph.11 16h26m59.2s -24d35m00.2s Extended 2.60 2.04 0.74 0.034 ± 0.010 – 11.9 ± 1.9 4.0 78 14
Oph.12 16h26m34.0s -24d23m40.7s Extended 2.97 3.37 1.05 0.076 ± 0.025 – 39.9 ± 5.0 10.3 87 14
Oph.13 16h27m30.1s -24d27m43.3s Isolated – -0.39 2.23 0.001 ± 0 0.009 17.7 ± 5.5 1.5 81 14
Oph.14 16h27m28.4s -24d27m21.1s Isolated 1.89 -0.15 1.00 0.001 ± 0.001 0.021 4.3 ± 0.6 1.0 81 14
Oph.15 16h27m29.4s -24d39m16.6s Isolated 1.25 0.02 1.12 0.004 ± 0.001 0.019 3.3 ± 0.4 0.6 27 14
Oph.16 16h26m24.1s -24d24m48.3s Isolated 1.80 -0.74 1.87 0.001 ± 0 – 17.7 ± 2.9 2.2 78 10
Oph.17 16h26m23.6s -24d24m39.4s Isolated 0.96 -0.10 1.21 0.001 ± 0 – 5.3 ± 0.6 1.3 81 14
Oph.18 16h26m17.2s -24d23m45.1s Isolated 1.18 0.56 1.15 0.003 ± 0.002 0.036 2.8 ± 1.0 0.3 81 14
Oph.19 16h26m30.5s -24d22m59.9s Isolated 2.51 0.43 0.84 0.001 ± 0.001 0.009 5.3 ± 1.0 1.2 72 14
S140.1 22h19m32.7s +63d19m24.4s Isolated 0.91 1.82 1.25 4.38 ± 2.347 – 25.0 ± 3.6 22.9 0 14
S140.2 22h19m20.9s +63d18m28.8s Isolated – 1.20 0.11 0.015 ± 0.038 – 8.0 ± 9.4 6.6 0 14
S140.3 22h19m19.8s +63d18m49.6s Clustered 3.02 1.68 1.97 14.78 ± 2.345 – 331.2 ± 27.3 631.6 0 13
S140.4 22h19m18.2s +63d19m03.9s Clustered 2.24 3.56 3.77 14.78 ± 1.946 – 331.2 ± 24.9 455.8 0 13
S140.5 22h19m18.1s +63d18m47.0s Extended 1.13 1.48 7.28 22.17 ± 1.639 – 374.4 ± 0.0 4129.7 0 0
S140.6 22h19m22.4s +63d18m04.5s Isolated 1.04 1.50 0.15 0.076 ± 0.040 – 10.4 ± 3.1 2.0 19 14
S140.7 22h19m14.7s +63d19m00.0s Isolated – 1.49 0.07 0.384 ± 0.321 – 26.6 ± 10.5 2.4 19 10
S171.1 00h03m59.8s +68d35m05.8s Isolated 1.03 0.45 2.56 0.004 ± 0 – 201.6 ± 35.8 23.5 78 14
S171.2 00h04m02.0s +68d34m33.3s Isolated – -0.77 0.60 0.001 ± 4E-04 – 48.4 ± 5.6 7.8 43 6
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