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Gamma-ray bursts (GRBs) are the most luminous events in the Universe with

Eγ,iso ∼ 1048−54 erg. Leading models hypothesize that GRBs are created from inter-

nal collisions within collimated and ultrarelativistic jets. The jets then shock-heat

the surrounding material (e.g. interstellar medium) to create GRB afterglows. These

afterglows are extremely useful probes of the Universe because long GRBs are (1)

bright events that can be used as backlights for absorption studies, (2) able to probe

at all redshifts massive stars exist, and (3) transient events that allow us to follow-

up on the host galaxies at late times. In this thesis we study the environments of

GRBs.

We first explore the relationship between GRB and supernova (SN) using a

nearby GRB-SN (GRB 130702A/SN 2013dx) at z = 0.145. There are only nine other

GRB-SNe that were close enough to have extensive spectroscopic and photometric

follow-up of the SN at late times. We create a quasi-bolometic light curve of SN

2013dx and fit an analytical equation to the quasi-bolometric light curve combined



with measurements of the photospheric velocity to determine SN parameters: mass

of 56Ni, kinetic energy, and ejecta mass. We examine the relationship between SN

parameters and Eγ,iso for the 10 well-studied GRB-SNe, but find no correlations

despite numerical simulation predictions that the mass of 56Ni should correlate with

the degree of asymmetry.

We then move to larger distance scales and use GRB afterglows as bright back-

lights to study distant galaxies. We examine the galactic environments of Damped

Lyman-α systems (DLAs; NHI ≥ 1020.3cm−2) identified with GRB afterglows at

z ∼ 2 − 6. We use late-time photometry after the GRB afterglow has faded to

determine star formation rates (SFRs) from rest-frame ultraviolet measurements or

spectral energy distribution (SED) models from multiband photometry. We com-

pare our sample’s SFRs to a sample of quasars (QSOs) DLA host galaxies. Despite

the overlapping NHI and redshift ranges, our GRB-DLA galaxies have much larger

SFRs than the QSO-DLA host galaxy sample; this may suggest that the QSO-DLA

and GRB-DLA galaxy populations are different. We also compare star formation

efficiencies to the local Universe and simulations at z = 3.

A large portion of this thesis has focused on the development of a new ground-

based GRB afterglow follow-up instrument, the Rapid infrared IMAger-Spectrometer

(RIMAS), that will target high-redshift GRB afterglows to study early galaxy envi-

ronments. RIMAS covers 0.97-2.37 µm and can simultaneously observe two band-

passes in any observing mode: photometry, low-resolution spectroscopy (R ∼ 30),

or high-resolution spectroscopy (R ∼ 4000).

In particular, this thesis focuses on RIMAS’s three detectors: two science grade



Teledyne HgCdTe Astronomy Wide Area Infrared Imager with 2K x 2K, Reference

Pixels and Guide Mode (H2RG) and a slit-viewer Spitzer Legacy Indium-Antimonide

(InSb) array. We describe the detector hardware and characterization in detail and

discuss general infrared detector troubleshooting methods at both cryogenic and

room temperatures.

Several software packages have been developed for RIMAS throughout this

thesis work. We introduce RIMAS’s quick reduction pipeline that takes raw images

from a single acquisition and returns a single result frame. We then present a

generalized data reduction pipeline that we have tested on two currently operational

photometers. We also describe our detailed and realistic RIMAS throughput models

for all three observing modes as well as our online observer calculators with these

throughput models. All of our data products are open source and are publicly

available on Github repositories with detailed documentation.
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Preface

Large portions of this thesis have been published in peer-reviewed journals and

presented at international conferences. Chapter 2 was published in the Astrophys-

ical Journal as “Optical and Near-infrared Observations of SN 2013dx Associated

with GRB 130702A” (Toy et al., 2016c). Chapter 3 was also published in the As-

trophysical Journal as “Exploring Damped Lyman-α System Host Galaxies using

Gamma-ray Bursts” (Toy et al., 2016a). Portions of chapter 4 and chapter 5 were

previously published in non-refereed SPIE conference proceeding manuscripts (Toy

et al., 2014, 2016b).
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Chapter 1: Introduction

1.1 Gamma-ray Bursts

Gamma-ray bursts (GRBs) are explosive transient events in the gamma-ray

band that last .100 seconds. GRBs have non-thermal spectra and light curves that

can vary on the order of milliseconds. In this section we will outline a brief history

of GRBs, the origin of these objects, and current detection methods.

1.1.1 Short History

The first GRB was detected by the Vela satellites in 1967. The Vela satel-

lites were launched by the United States Air Force and were equipped with X-ray,

neutron, and gamma-ray detectors to identify non-compliance of the Partial Nu-

clear Ban Treaty with the Soviet Union. Initially the GRB detections were shelved

because the signal did not resemble the characteristic light curve shape of nuclear

weapons. Klebesadel et al. (1973) examined 16 of these GRBs that had near simul-

taneous detections in two satellites indicating that these objects were not located

in our solar system. Unfortunately these objects could not be localized precisely

enough for follow-up observations.
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Figure 1.1 A small sample of GRB light curves from BATSE taken from Fishman &
Meegan (1995). There is a large amount of variation between different bursts and
there can be rapid variations within each burst.
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Figure 1.2 The location of GRBs detected by BATSE over the lifetime of the in-
strument. The isotropic distribution of the GRBs indicated that these objects were
extragalactic in nature. Image retrieved from http://gammaray.nsstc.nasa.gov/

batse/grb/skymap/.

Not much progress was made until the Compton Gamma Ray Observatory

(CGRO) was launched in 1991. The CGRO carried the Burst and Transient Source

Experiment (BATSE) on board which detected over 2700 GRBs over its nine year

lifespan (Goldstein et al., 2013). This amounted to a detection rate of roughly one

GRB per day. Figure 1.1 shows some example light curves from BATSE. The light

curves show that, in general, GRBs last several seconds, but the bursts can vary

drastically from one another. Figure 1.2 displays the location of each of the BATSE

bursts on the sky. The isotropic nature of the BATSE GRBs indicated that these

objects were extragalactic in nature (Meegan et al., 1992; Pendleton et al., 1994;

Briggs et al., 1996).

The duration of a GRB is defined by a parameter called T90 which is the
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Figure 1.3 The BATSE T90 distribution indicated that there was a bimodal distri-
bution of GRBs: long-duration with T90 & 2s and short-duration with T90 . 2s.
Image retrieved from http://f64.nsstc.nasa.gov/batse/grb/duration/.

duration of time that the cumulative counts of the burst increase from 5% to 95%

above the background and encompass 90% of the total GRB counts. BATSE data

showed that GRBs fell into two classes (Figure 1.3): long-duration bursts where

T90 & 2s and short-duration bursts where T90 . 2s (Kouveliotou et al., 1993).

BATSE had a localization with uncertainties of several degrees which made

it difficult to follow-up GRBs with other instruments. However, a major watershed

event occured in 1997 when BeppoSAX, an X-ray telescope, detected a fading X-

ray source in its Wide-Field Camera (WFC) concurrent with a BeppoSax Gamma-

Ray Burst Monitor (GRBM; Feroci et al., 1997) trigger. BeppoSAX was able to

localize this burst, GRB 970228, to an error box of 6′ (Costa et al., 1997). With

the more precise localization, optical telescopes were able to follow-up and detect
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a fading optical counterpart (van Paradijs et al., 1997; Wijers et al., 1997). This

optical counterpart was associated with a faint galaxy and indicated that GRBs lie

at cosmological distances. Later in 1997, observers were able to measure the first

redshift of a GRB, GRB 970508, at z = 0.835 (Metzger et al., 1997).

In 2004, the launch of Swift (Gehrels et al., 2004) drastically changed the field

of GRBs. Swift is outfitted with the Burst Alert Telescope (BAT; Barthelmy et al.,

2005), a wide-field gamma-ray instrument that uses a coded aperture mask to locate

the position of each burst to ∼3′. Swift is also equipped with the X-ray Telescope

(XRT; Burrows et al., 2005) and Ultaviolet/Optical Telescope (UVOT; Roming

et al., 2005) which can localized GRBs to ∼3′′ and sub-arcseconds respectively.

When a GRB trigger occurs in the BAT, Swift rapidly and autonomously slews the

XRT and UVOT to better localize the burst. This has allowed other ground- and

space-based facilities to quickly follow-up on these bursts to identify optical/radio

counterparts and measure redshifts. Swift detects ∼100 GRBs/year (Gehrels et al.,

2009) and has allowed us to study GRBs and their host counterparts in detail. We

discuss the specifics of detection methods in §1.1.5, but first we explore the origin

of these bursts.

1.1.2 What Are Gamma-Ray Bursts?

GRBs are some of the most explosive events in the Universe. As the name sug-

gests, these are bright bursts in the gamma-ray band. They have isotropic gamma-

ray energies of Eγ,iso = 1048 − 1054 erg and last mere seconds. However, GRBs can
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have a wide variety of behavior as shown in Figure 1.1. In fact, some GRB light

curves show rapid variations on the order of milliseconds. This suggests that the

emitting regions are fairly compact (cδt . 3×107 cm) if they are not relativistically

expanding.

Spectral energy distributions (SEDs) of GRBs show that these objects have

non-thermal spectra and emit at >1 MeV in the rest-frame. These energies are above

the rest energy of an electron-positron pair and if GRBs originate from compact

emitting regions, we would expect that these objects to be opaque to pair production

and produce a thermal spectrum. This inconsistency is called the “compactness

problem” and is resolved if the emitting regions are relativistically expanding with

a Lorentz factor of Γ = 1√
1−v2/c2

. Relativistic expansion increases the radius of the

emitting region, r ∼ Γ2cδt, and decreases the opacity (Piran, 2004):

τγ−γ ∝ FD2r−2 ∝ FD2Γ−(2α+2)cδt (1.1)

where F is the fluence, D is the distance to the object, and α is the high-energy

spectral index. In order for the emitting region to be optically thin (τγ−γ . 1),

the Lorentz factor must be large (Γ & 100) which means that GRBs must have

ultrarelativistic ejecta (ex. Lithwick & Sari, 2001). We expect that relativistic ejecta

will have relativistic beaming effects which means that GRBs are collimated.
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Figure 1.4 An example of a GRB SED for GRB 130427A across 16 orders of mag-
nitude in frequency and 130 days of observations taken from Perley et al. (2014).

1.1.3 Gamma-ray Burst Models

The leading GRB model is the “fireball” model where an optically thick and

compact inner engine ejects a relativistic energy flow (Piran, 1999, and references

within). The optically thick jet expands and cools to eventually become optically

thin. In this model, collisions between shock waves within the jet traveling at dif-

ferent speeds convert kinetic energy into gamma-ray photons through either Inverse

Compton scattering or synchrotron emission. These gamma-ray photons are cre-

ated after the jet becomes transparent and create GRBs. However, internal shocks

are inefficient at removing energy from the outflow because the relative velocities

between shells of relativistic material is small.
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The jet still maintains a lot of energy when it interacts with the interstel-

lar medium (ISM) and the kinetic energy from the jet shock-heats the ISM. These

accelerated electrons emit synchrotron radiation when they interact with local mag-

netic fields creating a GRB afterglow that emits across the entire electromagnetic

spectrum (ex. Figure 1.4). The energy emitted in the GRB afterglow is roughly

the same amount of energy emitted in the GRB, Eγ,iso ∼ 1048−54 erg, and can last

between days and weeks in the optical and up to years in the radio.

This jet model is supported by GRB afterglow observations that have a jet

break at late times (Racusin et al., 2009) as well as late time ejecta velocity mea-

surements from radio observations (ex. Figure 2 in Margutti et al., 2014a). This

suggests that not only are GRBs collimated, ultrarelativistic material, they also

come from jets and are not emitted isotropically. Therefore, observational evidence

points to GRBs being formed from highly collimated and ultrarelativistic jets.

1.1.3.1 Gamma-ray Burst Progenitors

Any proposed GRB central engine must have very large angular momentum

to create these collimated and ultrarelativistic jets. The leading models use two

different types of central engines to explain what powers the jet: an accreting black

hole (MacFadyen & Woosley, 1999; Woosley, 1993; Giacomazzo et al., 2013) or a

rapidly spinning neutron star with large magnetic fields (Usov, 1992). The GRB

central engines are believed to be formed through different channels for long and

short GRBs.
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4 J. Hjorth & J.S. Bloom

Fig. 9.1. Discovery of SN 1998bw associated with GRB 980425. The upper panels
show the images of the host galaxy of GRB 980425, before (left) and shortly after
(right) the occurrence of SN 1998bw (Galama et al. 1998). The bottom panel shows
a late HST image of the host galaxy and SN 1998w. The 3-step zoom-in shows
SN 1998bw 778 days after the explosion embedded in a large star-forming region of
a spiral arm (Fynbo et al. 2000).

times more energy than in a typical (1051 erg) SN. We caution here that the

term “hypernova” is a theory-laden classification pertaining to energetics; it

is entirely possible to have a core-collapse SN with large expansion velocity

(⇠> 20, 000 km s�1) yet typical (1051 erg) energy coupled to the ejecta.

No traditional optical afterglow (as seen in most other GRBs; see Chap-

ters 4–6) was detected. Moreover, the comparatively low energy output of

GRB 980425 (see e.g., Kaneko et al. 2007) and its low redshift were consid-

ered as pointing to a di↵erent class of GRB (Kulkarni et al. 1998, Bloom

et al. 1998), not necessarily of the same progenitor origin as the truly cosmo-

logical GRBs (loosely defined as having a significant redshift, a high energy

Figure 1.5 Host galaxy of GRB 980425 from archival images (upper left) and images
taken shortly after SN 1998bw (upper right). Late follow-up zoomed in Hubble Space
Telescope images are shown in the bottom panel. The GRB-SN occurred in a blue,
star forming region of the spiral arm of the host galaxy. Images taken from Hjorth
& Bloom (2012).

Long GRBs are associated with the explosion of massive stars. While there

was observational evidence that placed long GRBs in bluer galaxies with higher

star formation rates (Woosley & Bloom, 2006, and references within), the conclu-

sive evidence came with SN 1998bw. This supernova (SN) was both spatially and

temporally coincident with GRB 980425 (Figure 1.5; Galama et al., 1998; Iwamoto

et al., 1998; Kulkarni et al., 1998). Since then, multiple SNe have been associated

with nearby GRBs (see Table 2.1). All of these GRB-SNe are Type Ic-BL SNe

which have no hydrogen in their spectra, but have helium and are marked by their

incredibly broadened lines with velocities of &10,000 km/s.
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The leading short GRB progenitor model is either a neutron star-neutron star

(NS-NS) merger or a neutron star-black hole (NS-BH) merger (Eichler et al., 1989;

Narayan et al., 1992). This is supported by observational evidence that short GRBs

tend to be located at large radial offsets from their host galaxies and a mixture

of early-type and star-forming galaxies (Berger, 2014, and references within). The

strongest evidence comes from GRB 130603B which displayed an infrared excess

consistent with a “kilonova” (Tanvir et al., 2013) which is an explosion that is

fainter than a supernova but creates r-process elements created during a NS-NS

or NS-BH merger. The real smoking gun would be a gravitational wave detection

coincident both temporally and spatially with a short GRB.

1.1.4 Gamma-ray Burst Afterglow Model

The GRB afterglow can be observed from seconds up to years after the initial

GRB trigger depending on the bandpass. The characteristic afterglow synchrotron

spectrum (Figure 1.6) is described by a four-part broken power law separated by νa,

νm, and νc (Sari et al., 1998). νa is the synchrotron self-absorption frequency, νm is

the frequency associated with the minimum energy imparted to an electron when

it crosses the shock wave, and νc is associated with the cooling rate of electrons.

Frequencies above νc can easily cool and radiate energy away, therefore when νc < νm

the afterglow undergoes fast cooling and when νc > νm the afterglow undergoes

slow cooling. Sari et al. (1998) shows that νc ∝ t−0.5 and νm ∝ t−1.5 for adiabatic

evolution or νc ∝ t−2/7 and νm ∝ t−12/5 for radiative evolution so at late times
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the afterglow undergoes slow cooling and the peak of the afterglow moves towards

longer wavelengths. νa, νc, νm, and the flux of νm can be expressed in terms of blast

wave properties and therefore we can determine blast wave properties when we have

a full SED model for the GRB afterglow (Wijers & Galama, 1999). This requires a

coordinated multiwavelength observation effort.

1.1.5 Detection Methods

The majority of GRBs are detected using gamma-ray instruments on either

Swift with the BAT or the Fermi satellite with the Gamma-ray Burst Monitor (GBM;

Meegan et al., 2009) or the Large Area Telescope (LAT; Atwood et al., 2009). The

instruments are complementary: the BAT covers the lower energy range of 15-150

keV, the GBM covers the lower and middle energy range of 8 keV-40 MeV, and

the LAT covers a much higher energy range of 20 MeV-300 GeV. However, the

GBM and the LAT can only localize to a few degrees so Swift works in conjunction

with Fermi to localize GRBs. The GRB detections are disseminated through the

GRB Coordinates Network (GCN; Barthelmy et al., 1998) through circular notices

which allow observers to coordinate follow-up observations of the GRB afterglow.

Observers initially use GCNs to disseminate information about the GRB trigger

time, GRB location, and GRB energy.

Optical observatories typically measure the redshift of the GRB once the GRB

is well localized. The redshift can be measured by identifying either metal or hydro-

gen spectral emission lines or absorption lines from the host galaxy using the GRB
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Figure 1.6 Synchrotron emission models for GRB afterglows taken from Sari et al.
(1998). The top panel shows the case where the frequency associated with the
minimum energy imparted to an electron when it crosses the shock wave (νm) is
larger than the cooling frequency (νc) which is called fast cooling. The bottom
panel shows the case where νc > νm and the GRB afterglow undergoes slow cooling.
The frequencies that separate the four-part broken power law change as function of
time.
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Figure 1.7 Photometry (red and blue errorbars) and low-resolution spectrum (black)
of GRB 090423, the most distant spectroscopically confirmed GRB, at z ∼ 8.2 from
Tanvir et al. (2009). The GRB flux density drops off sharply at onset of neutral
hydrogen clouds creating a well defined Ly-α edge starting at the first IGM absorber.
The redshift of a burst can be determined from this Ly-α edge.

afterglow as a backlight. The GRB redshift can also be measured using photometry

because as distant light travels from GRB afterglows through the host galaxy and

intergalactic medium (IGM), neutral hydrogen creates a very distinct absorption

feature: the Lyman-α (Ly-α) forest. This is created from a combination of the host

galaxy and multiple cosmologically redshifted pockets of neutral hydrogen along the

line of sight absorbing Ly-α photons. At higher redshifts the Ly-α absorption line is

shifted to longer wavelengths. The spectrum drops out blue-ward of the first IGM

absorber (Figure 1.7) creating the Ly-α forest edge. This drop-off is very evident

in both photometry and spectroscopy and the drop-off’s abrupt edge will be dis-

tinguishable from the more gradual dust extinction slope (Figure 1.8). For higher

redshift bursts, the Ly-α forest is shifted into the near-infrared so the redshift is
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determined with either near-infrared photometry or spectroscopy. GRBs have been

discovered at z ∼ 8− 9 (Tanvir et al., 2009; Cucchiara et al., 2011).
The Astrophysical Journal, 736:7 (12pp), 2011 July 20 Cucchiara et al.

Figure 6. Spectral energy distribution of the GRB 090429B afterglow formed
by extrapolating our observed photometry to 3 hr post-burst assuming the
magnitude remains constant, i.e., α = 0 (for varying α fits, see Figure 8).
The vertical error bars represent 1σ uncertainty, and the horizontal shaded bars
illustrate the widths of the broadband filters. The best-fit model (χ2/dof =
1.76/3) to the data points is shown as the solid red line, the parameters being
redshift z = 9.36, rest-frame extinction AV = 0.10, and intrinsic power-law
slope βO = 0.51. The inset simply replots the short wavelength part of the figure
(indicated by a dotted box) on a logarithmic flux density scale to more clearly
show the constraints from the optical measurements. An alternative low-redshift
(z ≈ 0), high-extinction (AV = 10.6) model is shown as a dashed blue line, but
in fact is formally ruled out at high significance (χ2/dof = 26.2/4).

model, which has z = 9.36 and extinction AV = 0.1, although
the 99% confidence contour runs as low as z ≈ 7.7 if there is a
modest amount of dust (rest-AV ∼ 0.5) in the host. Marginal-
izing the likelihood (which we define L ∝ exp(−χ2/2)) over
AV (assuming a flat prior) indicates a 90% likelihood range of
9.02 < z < 9.50. There is no solution at lower redshifts (z < 7)
which is not ruled out at %99.9% level; the best fit at low red-
shift (z ≈ 0 as it happens, as shown by the blue cross) requires
a very high extinction of AV ≈ 10.

In Figure 8 we show similar likelihood contours for fits span-
ning a broader range of models with different prior assumptions
for the temporal power-law decline index α and commonly used
dust laws. Changing α to ±1 makes rather little difference, and
in any case, as discussed above, there is evidence to suggest that
the luminosity was not changing even as rapidly as this. Varying
the dust law does have more effect, largely due to the 2175 Å
feature in the MW, LMC (Pei 1992), and Maiolino et al. (2004)
laws producing the blue H − K color even at slightly lower
redshifts, although in most cases the best fit remains z ! 9. The
Maiolino et al. (2004) dust law was determined from observa-
tions of a quasar at z = 6.2 and is argued to be consistent with
dust produced largely from early supernovae (note that this law
is only defined up to ∼3200 Å in the rest frame, and we therefore
graft it to the SMC law at this point). This case is interesting
as it does allow redshifts as low as z ∼ 6.5 at 99% confi-
dence, although to date, only GRB 071025, with a photo-z ∼ 5,
has shown evidence of requiring such a dust law (Perley et al.
2010).

Finally, in Figure 9 we show the likelihood as a function
of redshift for the SMC dust-law models having marginalized
over both α (assumed a flat prior between −1 and +1) and
AV (assumed a flat prior between 0 and 12). The maximum

Figure 7. Confidence contours on a parameter space of redshift and host
galaxy extinction for the GRB 090429B afterglow, for our favored set of prior
assumptions (green contours are 90%, 99% and 99.9% confidence). The gray
scale shows the likelihood down to much lower levels, formally ∼10−7. All
fits at z < 7.7 are ruled out at > 99% confidence, and while fits can be
found at z ∼ 0 they are markedly worse than the high-z solutions. The best
z < 5 solution (formally at z = 0) is marked with the blue cross and requires
AV ∼ 10, and is also disfavored by the lack of any host galaxy to deep limits,
and the inconsistency of the required AV with the hydrogen column density
measured from the X-ray afterglow. To illustrate this the best-fit NH from the
X-ray spectrum is converted into AV and plotted onto the contour plot as the
purple lines (dashed lines show the 90% error range, and the dotted lines show
the limits of the systematic error due spanning the range of gas-to-dust ratios
reported by Schady et al. 2010). As can be seen the AV inferred from the
X-ray and that required from the photometric redshift fit are inconsistent at low
redshift, but broadly consistent with the high-z fit.

likelihood is at z = 9.38, and 90% of the likelihood is between
9.06 < z < 9.52.

3.3. Implications of the Absence of a Host Galaxy

Our late-time date taken with Gemini and HST are potentially
extremely valuable, since we can use the absence of any host
galaxy candidates to assess the plausibility of any lower-z
solutions to our photometric redshifts (the HST images are
shown in Figure 10). The detection of a host galaxy in the
optical was used, for example, to show that GRB 060923A was
z < 3 despite its afterglow being a K-band dropout (Tanvir
et al. 2008). In the case of GRB 090429B, the possible low-
redshift scenarios seem to be those with z < 1 and high dust
extinction AV ∼ 10 (although we emphasize that such models
remain formally ruled out). The limits these data provide on this
are shown graphically in Figure 11, where we plot the absolute
inferred magnitude of the host galaxy in the observed V, Y and
H bands as a function of redshift. For completeness we cut
each line at the point where 1216 Å ×(1 + z) passes the central
wavelength of the band. At z = 0.1, close to the minimum of our
lower redshift solution, we obtain inferred absolute magnitude
limits of MV > −10.6, MY > −9.9, MH > −10.5, these
exceptionally deep limits are comparable to the luminosities
of bright globular clusters, and significantly fainter than any
known GRB or supernova host galaxy; indeed, they place limits
of "10−4 L∗ (Blanton et al. 2003). Even at z = 1 the observed Y-
band limits would imply MB > −15.1, or "0.001L∗ (Ryan et al.
2007).

In this regard it is worth noting that the lower redshift
solutions are only viable in cases where the host galaxy
extinction is high, whereas such faint galaxies typically have low
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Figure 1.8 Photometry from GRB 090429B, the most distant imaged GRB, at
z ∼ 9.4 taken from Cucchiara et al. (2011). Two models are overlaid: (solid red)
z=9.36 with rest-frame extinction AV =0.10, (dashed blue) z∼0 with high-extinction
AV =10.6. The high-extinction model is ruled out due its low confidence level.

1.2 Gamma-ray Burst Host Galaxies

1.2.1 Galaxy Properties

GRB afterglows act as a bright backlight to study the intervening material

between the GRB and us. In particular, GRB afterglows can be used to study

the properties of the GRB host galaxies. The GRB afterglow flux, at a fixed time

from the prompt emission, is nearly independent of its redshift (Ciardi & Loeb,
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Figure 1.9 An example of absorption line identification from a GRB afterglow, GRB
130606A taken from Chornock et al. (2013). The metal lines at the same redshift
of the burst are shown in red while metal lines for material along the line-of-sight
are shown in blue, cyan, orange, and pink at z ∼ 2.3− 5.8. Also in green is a fit to
the Ly-α line that gives a measurement of the atomic hydrogen column density.

2000); therefore GRB afterglows can be used to study high-redshift galaxies that

may otherwise be too faint to detect from galaxy surveys. The GRB afterglow can

be used to identify the redshift (discussed in §1.1.5) and host galaxy metallicities

(e.g. Figure 1.9).

Due to the transient nature of GRBs, the host galaxies can be observed after

the GRB afterglow has faded. Late-time observations of the host galaxy can be used

to measure the star formation rates (SFRs) and SED models can be used to infer

other galaxy properties like stellar mass and dust extinction (e.g. Savaglio et al.,

2009; Perley et al., 2009, 2016a). GRBs have been spectroscopically observed at

redshifts between z = 0.0085 (GRB 980425; Tinney et al., 1998) and z = 8.2 (GRB

090423; Tanvir et al., 2009) and therefore can be used to probe different galactic
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environments throughout the observable Universe. However, observations of GRB

host galaxies suggest that these galaxies may be biased towards low metallicity, low

mass, and high SFR environments (Kocevski et al., 2009; Levesque et al., 2010;

Wang & Dai, 2014).

1.2.2 Reionization

While at the present time the Universe is almost completely ionized, measure-

ments of the Cosmic Microwave Background (CMB) have shown that recombination

occured at z ∼ 1100 and analysis of Planck data indicate that reionization occured

at z = 8.8+1.7
−1.4 (Planck Collaboration et al., 2016). Reionization occurs due to the

formation of galaxies and stars in the Universe outputting radiation that ionize the

surrounding environments; the Epoch of Reionization is a critical time to study the

evolution of metallicity, star formation, and stellar masses.

Gunn & Peterson (1965) theorized that the presence of neutral hydrogen along

a quasar line-of-sight would cause a trough in the quasar spectrum where the flux

of the quasar almost drops to zero; this feature is called a Gunn-Peterson trough.

SDSS 1030+0524 was the first object observed to have a Gunn-Peterson trough at

z = 6.28, while other distant quasars at z = 5.80, z = 5.82, and z = 5.99 did not

have Gunn-Peterson troughs (Figure 1.10; Becker et al., 2001). This indicates that

reionization occurs at z ∼ 6−11. While the initial Gunn-Peterson trough prediction

was for quasar spectra, GRB afterglow spectra should also show the same effect at

high redshifts.
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FIG. 1.ÈOptical spectra of quasars observed with Keck/ESI in the observed frame. The spectra have been smoothed to 4 pixel~1 and have beenz Z 5.8 A!
normalized to the observed z-band Ñux. The spectrum of SDSS 1044[0125 has been taken from Fan et al. (2000). In each spectrum, the expected wavelengths
of prominent emission lines, as well as the Lyman limit, are indicated by the dashed lines.

j1402 feature is detected at D9800 but it is difficult to ÐtA! ,
its proÐle because of the weakness of the line and possible
absorption lines nearby. We therefore adopt a redshift of
5.99 ^ 0.02 for SDSS 1306]0356.

In the spectrum of SDSS 1306]0356, we notice a strong
absorption feature at D7130 where over D80 there isA! , A!
no detectable Ñux. The rest-frame equivalent width is D15

typical for a damped Lya system, at a redshift ofA! , zabs \

4.86. A strong absorption feature is detected at j \ 9080 A! ,
corresponding to C IV absorption at the same redshift. This
feature is double peaked in absorption, consistent with the
jj1548, 1551 components of the C IV doublet, although the
signal-to-noise ratio is low at that wavelength. This system,
if conÐrmed by high-S/N spectroscopy, is the highest-
redshift damped Lya system known (the previous record
holder was at z \ 4.47, et al. 2001 ; Dessauges-Pe" roux

Figure 1.10 Four quasar spectra at z ∼ 5.5 − 6.5 taken from Becker et al. (2001).
The bottom panel is of SDSS 1030+0524 at z = 6.28 which is the first detection of
the Gunn-Peterson trough. The flux in the trough goes to zero which indicates a
large amount of neutral hydrogen. The top three panels do not have Gunn-Peterson
troughs and indicate that the end of reionization is z ∼ 6 for these lines-of-sight.
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1.3 Outline of Thesis

1.3.1 Open Issues

This thesis sets out to explore the environments around GRBs. We look both

locally, trying to understand how long GRB and SN properties are related, and on

larger scales, examining the star formation properties of distant host galaxies with

large column densities of atomic hydrogen identified by GRBs. A large component

of this thesis is the development of a near-infrared (NIR) GRB afterglow follow-up

instrument, the Rapid infrared IMAger-Spectrograph (RIMAS). RIMAS’s primary

science motivation is to probe the environments of high redshift GRBs.

1.3.2 Organization

This thesis combines astronomical instrumentation with GRB afterglow sci-

ence. RIMAS will be able to quickly follow-up high-redshift (z & 7) GRB afterglows

that cannot be observed with optical instruments due to the Ly-α forest. These

bursts are of interest because they allow us to probe the environments of the early

Universe and possibly study the very first stars and galaxies. More excitingly, we can

potentially map reionization along multiple lines-of-sight using high-redshift GRB

afterglows.

In this thesis we first explore a nearby GRB-SN (GRB 130702A/SN 2013dx)

at z = 0.145 in chapter 2. Only nearby GRB-SNe can be studied in detail with

photometry and spectroscopy and thus far there have only been 10 GRB-SNe, in-
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cluding SN 2013dx, with extensive photometric and spectroscopic follow-up of the

SNe. In this chapter we perform a detailed analysis of SN 2013dx: constructing a

quasi-bolometric light curve of the SN and fitting SN parameters. We also compare

SN 2013dx to other GRB-SNe and attempt to determine if SN parameters are cor-

related with GRB properties: a correlation between these properties would allow us

to infer information about the SN at large distances where we can detect the GRB

but not the SN.

RIMAS would prove useful in future GRB-SNe studies as the near-infrared

makes up ∼ 15− 30% of the flux at late times and consequently excluding the NIR

component can greatly affect SN parameters. Currently there is a dearth of NIR

photometers and spectrographs on mid-sized telescopes like RIMAS.

Then, in chapter 3, we explore the host galaxy properties of Damped Lyman-

α systems (DLAs) identified with GRBs. GRBs are extremely well suited for this

purpose because (1) GRBs can be used as bright backlights to identify the DLA,

(2) GRBs occur within the host galaxy associated with the DLA unlike other bright

sources like quasars, and (3) GRBs are transient in nature which allows us to follow-

up the host galaxy after the GRB afterglow has faded. We begin with a sample of

DLAs identified by GRBs and analyze the host galaxy photometry of these objects.

In particular, we examine the host galaxies’ SFRs and star formation efficiencies.

Our sample of GRB-DLA host galaxy detections triples the number of previously

known DLA host galaxies.

Once RIMAS is commissioned, RIMAS would be able to add on to this study

of GRB-DLA host galaxies. Additional NIR photometry would allow us to extend
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to higher redshifts and allow more objects to be modeled by constraining SEDs to

understand more about the host galaxy properties.

In chapter 4 we turn towards instrumentation and describe the RIMAS hard-

ware. We go in depth on how RIMAS’s NIR detectors operate and describe the

RIMAS detector hardware. RIMAS will be very a precise photometer and spec-

trometer so we detail the RIMAS detector characterization. Our characterization

includes dark current, read noise, saturation, conversion gain, and linearity mea-

surements. Finally, we discuss general NIR detector troubleshooting methods at

both room temperature and at cryogenic temperatures.

In chapter 5 we describe software products developed for RIMAS. We outline

a quick reduce RIMAS pipeline that outputs a single result frame from a multiple

frame acquisition. We then describe the development of a generalized photome-

try data reduction pipeline that can and has been used for multiple photometers.

We also summarize our detailed instrument throughput models as well as our RI-

MAS observer calculators for limiting magnitudes and exposure times that use our

throughput models. All of our software products are built with open-source software

and are publicly available on GitHub that is packaged with detailed documentation.

Finally, in chapter 6, we summarize the results of this thesis work.
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Chapter 2: GRB 130702A/SN 2013dx

2.1 Introduction

The evidence for the association between long-duration gamma-ray bursts

(GRBs) and the death of massive stars has been steadily growing over the last

two decades (see Woosley & Bloom 2006 and Hjorth & Bloom 2012 for reviews).

The first direct evidence of this link was a spatially and temporally coincident su-

pernova (SN), SN 1998bw, with GRB 980425 at redshift z = 0.0085 (Galama et al.,

1998; Iwamoto et al., 1998; Kulkarni et al., 1998). Since SN 1998bw, there have been

a number of spectroscopically confirmed supernovae (SNe) associated with GRBs

(Table 2.1).

While most, if not all low-z long-duration GRBs appear to be accompanied

by SNe (the exceptions being GRB 060614 and GRB 060505; Fynbo et al. 2006;

Gal-Yam et al. 2006; Della Valle et al. 2006), only a small fraction of core-collapse

explosions are capable of generating relativistic ejecta (Berger et al., 2003; Soder-

berg et al., 2010; Bietenholz et al., 2014). Even when limited to the specific subtype

of SNe associated with GRBs, the broad-lined Type Ic SNe, those with and without

relativistic ejecta appear to be indistinguishable based on their light curves (e.g.,

Drout et al. 2011). However, spectra of the host galaxies reveal that GRB-SNe pre-
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Table 2.1. GRB-SN References

GRB-SN References

GRB 980425/SN 1998bw Galama et al. (1998); Iwamoto et al. (1998); Kulkarni et al. (1998)
GRB 030329/SN 2003dh Stanek et al. (2003); Matheson et al. (2003)
GRB 031203/SN 2003lw Malesani et al. (2004); Gal-Yam et al. (2004); Thomsen et al. (2004)
GRB 060218/SN 2006aj Campana et al. (2006); Modjaz et al. (2006); Mirabal et al. (2006); Ferrero et al. (2006)

Sollerman et al. (2006); Pian et al. (2006); Kocevski et al. (2007)
GRB 091127/SN 2009nz Cobb et al. (2010); Berger et al. (2011)
GRB 100316D/SN 2010bh Starling et al. (2011); Bufano et al. (2012); Olivares E. et al. (2012)

Cano et al. (2011); Chornock et al. (2010)
GRB 120422A/SN 2012bz Melandri et al. (2012); Schulze et al. (2014)
GRB 130427A/SN 2013cq Xu et al. (2013); Levan et al. (2014); Melandri et al. (2014); Perley et al. (2014)
GRB 130702A/SN 2013dx This work; D’Elia et al. (2015)
GRB 140606B/iPTF14bfu Cano et al. (2015)

Note. — We do not include the recent detection of GRB 111209A/SN 2011kl associated with a superluminous SN
(Greiner et al., 2015a) because it is believed to be powered by a magnetar and not solely powered by 56Ni.

fer more metal-poor environments than Type Ic-BL SNe without associated GRBs

(Modjaz et al., 2008; Graham & Fruchter, 2013).

Furthermore, within the GRB population, there is a considerable diversity in

the observed prompt gamma-ray energies spanning six orders of magnitude, Eγ,iso =

1048–1054 erg. It has been suggested that low-luminosity GRBs (Eγ,iso . 1049 erg)

have “failed” jets that cannot pierce their stellar envelope and instead dissipate

energy into the star to create relativistic shock breakout (Bromberg et al., 2011;

Margutti et al., 2014b; Nakar, 2015). But despite their very different appearance

at high energies, as of yet there is no clear distinction between SNe associated

with low-luminosity GRBs (e.g., SN 1998bw) and the larger (observed) cosmological

population (e.g., SN 2003dh, SN 2013cq).

With still only a handful of well-observed examples, each new nearby GRB af-

fords a unique opportunity to understand the central engine powering these outflows.

In particular, we can probe the progenitor from two different angles by studying the
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SN simultaneously with the GRB. Here we present observations of SN 2013dx asso-

ciated with GRB 130702A. At z = 0.145, SN 2013dx is sufficiently nearby to enable

a detailed photometric and spectroscopic study of the SN evolution. Furthermore,

with Eγ,iso = 6.4 × 1050 erg (for 1 keV to 10 MeV in the rest frame), the prompt-

emission properties place GRB 130702A between most low-luminosity GRBs and

the more energetic cosmological population.

Throughout this paper we use the convention Fν(t) ∝ ν−βt−α and photon index

Γ = β + 1. We assume a ΛCDM model with H0 = 69.6kms−1Mpc−1, Ωm = 0.286,

and ΩΛ = 0.714 (Bennett et al. 2014). All photometry is in the AB system (Oke

& Gunn, 1983), and quoted uncertainties are 1σ (68%) confidence intervals unless

otherwise noted. Dates and times are UT in all cases.

2.2 GRB 130702A/SN 2013dx

GRB 130702A was detected by the Gamma-Ray Burst Monitor (GBM; Mee-

gan et al. 2009) on the Fermi satellite at 00:05:23.079 on 2013 July 2 (Collazzi

& Connaughton, 2013). As observed by the GBM, the prompt-emission duration1

was T90 ≈ 59 s (50–300 keV). High-energy emission was also detected by the Fermi

Large Area Telescope (LAT; Atwood et al. 2009; Cheung et al. 2013), as well as by

Konus-Wind (Golenetskii et al., 2013). We adopted the Konus-Wind 20–1200 keV

fluence of fγ = (6.7 ± 0.8) × 10−6 erg cm−2 (assuming a power-law spectrum with

photon index Γ = 1.87± 0.11).

1T90 is defined as the time over which a burst emits from 5% of its total measured counts to
95%.
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Figure 2.1 Optical and NIR light curves of GRB 130702A, corrected for Galactic
extinction and host extinction (assuming AV,host = 0.10 mag). Note that the host-
galaxy contribution is not removed. Diamonds are P48/P60 data, circles are RATIR
data, and stars are Liverpool data; error bars are overplotted on all datapoints. Solid
lines indicate power-law fits with α1 = 0.57 and tb = 1.17 d taken from Singer et al.
(2013a) and α2 = 1.25 from the XRT power-law decay index. Dashed lines mark
the extrapolated power law where we assume α2 for all times beyond tb.

Employing the wide-field imaging and rapid transient identification capabil-

ities of the Intermediate Palomar Transient Factory (iPTF; Law et al. 2009; Rau

et al. 2009), Singer et al. (2013b) discovered the optical afterglow of GRB 130702A.

The source, also referred to as iPTF13bxl, is located at (J2000.0) coordinates

α = 14h29m14s.78, δ = +15◦46′26′′4.

Subsequently, the redshift of GRB 130702A was determined to be z = 0.145

based on the detection of narrow host-galaxy emission lines ([O III] and Hα) at the

afterglow location (Mulchaey et al., 2013b,a; D’Avanzo et al., 2013). Several other
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galaxies at or near this redshift located in the field indicate that GRB 130702A

occurred in a group or cluster environment, which is highly unusual for a GRB

(Kelly et al., 2013; D’Elia et al., 2015). The GRB host galaxy may be a metal-poor

satellite of an adjacent massive spiral (SDSSJ142914.57+154619.3), which has an

offset of only ∼ 19 kpc in projected distance and < 60 km s−1 in line-of-sight velocity

(Kelly et al., 2013).

At z = 0.145, the observed Konus-Wind fluence corresponds to an isotropic

energy release of Eγ,iso = 6.4+1.3
−1.0×1050 erg (1 keV to 10 MeV in the rest frame). This

places GRB 130702A securely between the low-luminosity class of events represented

by GRB 980425 / SN 1998bw and typical cosmologically distant events with Eγ,iso &

1052 erg.

Butler et al. (2013) reported a flattening of the optical afterglow 5.26 d after

the burst. A spectrum taken ∼ 6 d after the burst showed broad features resembling

those of SN 1998bw (Schulze et al., 2013). Cenko et al. (2013) and D’Elia et al.

(2013) obtained spectra that confirmed the presence of an emerging SN, dubbed SN

2013dx, and identified similarities with SN 1998bw and SN 2006aj. D’Elia et al.

(2015) (hereafter D15) reported GRB 130702A/SN 2013dx light curve, spectra, and

SN energetics properties with which we will compare throughout this paper.
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Table 2.2. Log of Spectroscopic Observations

∆t Instrument Exposure Wavelength Range Slit Grating/Grism Airmass
(d) (s) (nm) (′′)

1.17 DBSP 1800 340–1000 1.0 1200/5000 + 1200/7100 1.06
3.25 DBSP 1800 340–1000 1.0 600/4000 + 316/7500 1.36
6.22 DBSP 1800 340–890 2.0 600/4000 + 600/10000 1.25
9.33 DEIMOS 600 450–950 1.0 600/7500 1.19

11.34 DEIMOS 600 490–1010 1.0 600/7500 1.32
14.21 DBSP 1200 350–1000 1.5 600/4000 + 316/7500 1.27
31.28 DEIMOS 900 450–950 1.0 600/7500 1.30
33.27 LRIS 1200 330–1020 1.0 400/3400 + 400/8500 1.30

330.39 LRIS 1460 330–1020 1.0 400/3400 + 400/8500 1.04

Note. — ∆t is the time from Fermi trigger in observer frame.

2.3 Observations and Data Reduction

2.3.1 Optical/Near-Infrared Imaging

We obtained optical and near-infrared (NIR) images of the location of GRB 130702A

/ SN 2013dx with the robotic Palomar 60 inch telescope (P60; Cenko et al. 2006),

the 2 m Liverpool Telescope (LT; Steele et al. 2004), the Reionization and Transients

Infrared/Optical camera on the 1.5 m Harold L. Johnson Telescope (RATIR; Butler

et al. 2012; Watson et al. 2012), the Large Monolithic Imager on the 4.2 m Discov-

ery Channel Telescope (LMI/DCT), and the Low Resolution Imaging Spectrometer

(LRIS; Oke et al. 1995) on the 10 m Keck-I telescope. Additionally, we included

early-time Palomar 48-inch r′ observations (0.17 d and 0.21 d after the GRB trigger)

from Singer et al. (2013a). The reduction procedures for each individual facility

are described below, while the resulting photometry is presented in Table 2.7 and

plotted in Figure 2.1. Photometry from different telescopes is calibrated to same
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stars for uniform calibration. After removing extinction, afterglow, and host galaxy

(see §2.4.1), the cross-calibration errors are ∼ 0.03–0.05 mag (approximately 3–5%

in flux).

2.3.1.1 P60 Photometry

P60 observed the location of GRB 130702A in the g′, r′, i′, and z′ filters begin-

ning 1.17 d after the Fermi GBM trigger. Basic CCD reductions are provided in real

time by a custom IRAF2/PyRAF3 pipeline. At later times (∆t & 3 d), images were

stacked with SWarp (Bertin et al., 2002) on a nightly basis to increase the signal-

to-noise ratio (SNR). We performed aperture photometry at the afterglow location,

calibrating with respect to nearby point sources from the Sloan Digital Sky Survey

(SDSS; Aihara et al. 2011).

2.3.1.2 LT Photometry

LT began observing the location of GRB 130702A with the IO:O CCD camera

9.87 d after the GBM trigger. Observations were obtained in the g′, r′, i′, and

z′ filters. Standard reduction techniques were applied to detrend the data, and

photometry was performed in the same manner as for the P60 images (including the

same SDSS reference stars for photometric calibration).

2IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the
Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement
with the National Science Foundation (NSF).

3See http://www.stsci.edu/institute/software_hardware/pyraf.
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2.3.1.3 RATIR Photometry

RATIR obtained simultaneous multi-color (r′i′z′yJH) imaging of the location

of GRB 130702A beginning 2.16 d after the GBM trigger. The RATIR data were

reduced using an automatic python pipeline with bias subtraction and twilight-sky

flat fielding. Given the lack of a cold shutter in RATIR’s design, IR dark frames

were not available. Laboratory testing, however, confirmed that the dark current

is negligible in both IR detectors (Fox et al., 2012). Astrometric solutions were

calculated from astrometry.net (Lang et al., 2010) and the individual frames are

stacked using SWarp.

We performed aperture photometry on the resulting stacked images using

Sextractor (Bertin & Arnouts, 1996) with an inclusion radius determined from

the median full width at half-maximum intensity (FWHM) of the images. The re-

sulting instrumental magnitudes were compared to SDSS in the optical and 2MASS

(Skrutskie et al., 2006) in the NIR to calculate zeropoints. For the y band, we

created a spectral energy distribution (SED) from the combination of optical and

NIR catalog sources and interpolated to the appropriate wavelength. To place all

photometry on the AB system, we used the J- and H-band offsets from Blanton &

Roweis (2007).

2.3.1.4 Keck/LRIS Photometry

The location of GRB 130702A was observed with Keck/LRIS on 2014 May 28

(∆t = 330 d) in the u′, g′, and R-band filters. The resulting images were reduced
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using the LPipe package4. Because the host galaxy was clearly resolved in some of

the better-seeing images (FWHM = 0′′75), we adopted an aperture radius of 1′′5

to incorporate all of the flux from the visible extent of the galaxy (Figure 2.2).

Photometric calibration was performed relative to point sources from SDSS.

10"

+

Figure 2.2 Keck/LRIS g′-band image of the host galaxy of GRB 130702A, obtained
at ∆t = 330.48 d after the GBM trigger (i.e., when the afterglow and SN emission
had faded away). The location of the transient is displayed in the inset with the
white cross. The dwarf host is clearly elongated in the N-S direction, with the
bulk of the star formation (as evidenced by the transient location and the nebular
emission lines) apparent in the northern component. The image is oriented with N
up and E to the left.

2.3.1.5 Keck/MOSFIRE Photometry

We imaged the location of GRB 130702A with the Multi-Object Spectrometer

For InfraRed Exploration (MOSFIRE; McLean et al. 2012) on the 10 m Keck I

telescope on 2014 June 16. Images were obtained in the J and Ks filters and

reduced using custom IDL scripts. We performed aperture photometry using a 1′′5

inclusion radius (see §2.3.1.4), with photometric calibration relative to 2MASS.

4See http://www.astro.caltech.edu/~dperley/programs/lpipe.html for details.
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2.3.1.6 LMI/DCT Photometry

The location of GRB 130702A was observed with LMI/DCT on 2015 March

27 (∆t = 633 d) in the g′, r′, i′, and z′ filters. The resulting images were detrended

with a custom IRAF pipeline. Individual frames were astrometrically aligned with

Scamp (Bertin, 2006) and coadded using SWarp. Photometry was calculated in the

manner described in §2.3.1.3.

2.3.2 Optical Spectroscopy

We obtained a series of optical spectra of GRB 130702A, beginning at ∆t =

1.17 d after the Fermi -GBM trigger, with the Double Spectrograph (DBSP; Oke &

Gunn 1982) on the 5 m Palomar Hale telescope, Keck/LRIS on Keck-I, and the DEep

Imaging Multi-Object Spectrograph (DEIMOS; Faber et al. 2003) on the 10 m Keck-

II telescope. An observing log is presented in Table 2.2. All spectra were obtained

with the slit oriented at the parallactic angle to minimize differential losses due to

atmospheric dispersion (Filippenko 1982; though note also that LRIS employs an

Atmospheric Dispersion Corrector to further mitigate against differential slit losses).

The resulting reduced one-dimensional spectra are displayed in Figure 2.3.

All spectra were reduced using standard routines and optimally extracted

(Horne, 1986) within the IRAF environment (see, e.g., Cenko et al. 2008 for de-

tails). A dispersion solution was computed using calibration spectra of comparison

lamps, and then adjusted for each individual exposure using night-sky emission lines.

For the LRIS and DEIMOS spectra, sky background emission was subtracted using
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Figure 2.3 Spectra uncorrected for slit losses, extinction, afterglow, or host-galaxy
contamination. Early-time spectra are dominated by the afterglow component. The
broad features associated with SN 2013dx become visible after about a week.
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the algorithm described by Kelson (2003). Telluric atmospheric absorption features

were removed using the continuum from spectrophotometric standard stars (Wade

& Horne, 1988; Matheson et al., 2000). Finally, a sensitivity function was applied

using observations of spectrophotometric standards at a comparable airmass. We

caution that the final Keck/LRIS spectrum obtained at ∆t = 330.39 suffered from

a failure of the blue shutter, which may impact the relative-flux calibration.

Upon publication of this manuscript, all one-dimensional spectra will be made

publicly available via the Weizmann Interactive Supernova data REPository (WIS-

eREP; Yaron & Gal-Yam 2012).

2.3.3 X-Ray Observations

The afterglow of GRB 130702A was observed by the X-Ray Telescope (XRT;

Burrows et al. 2005) onboard the Swift satellite (Gehrels et al., 2004) beginning at

∆t = 1.03 d after the Fermi -GBM trigger (e.g., Singer et al. 2013a). We downloaded

the X-ray light curves from the XRT Light Curve Repository5. The time-averaged

spectrum was well described (W-stat = 299.10 for 374 degrees of freedom) by a

power-law model, Γ = 1.84±0.12, with no evidence for NH in excess of the Galactic

value (NH,Gal = 1.83× 1020 cm−2; Kalberla et al. 2005).

We initiated deep X-ray follow-up observations of GRB 130702A with the

Chandra X-ray Observatory on 2013 September 5, corresponding to ∆t = 65.2 d

since trigger (PI R. Margutti). The data were reduced with the CIAO software

5See http://www.swift.ac.uk/xrt_curves and the associated description in Evans et al.
(2009).
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package (version 4.6) and corresponding calibration files. Standard ACIS data fil-

tering has been applied. In 14.9 ks of observations we find clear evidence for X-ray

emission at the location of GRB 130702A, with significance > 50σ. The spectrum

was well modeled by an absorbed power law with Γ = 1.66 ± 0.15, consistent with

the Swift-XRT time-averaged spectrum. We found no evidence for an intrinsic ab-

sorption component, with a 3σ limit of NH,host < 1.5 × 1021 cm−2. Adopting these

spectral parameters, the unabsorbed flux is FX = (1.20± 0.08)× 10−13 erg s−1cm−2

(0.3–10 keV).

A second epoch of Chandra observations was obtained on 2013 December 6

(∆t = 157.5 d) with an exposure time of 34.6 ks. GRB 130702A was clearly detected

with significance > 40σ, which allows us to constrain the spectral evolution (or

lack thereof) of GRB 130702A at very late times. Our spectral analysis reveals no

evidence for spectral evolution. The best-fitting power-law index was Γ = 1.85±0.16,

with NH,host < 1.6×1021 cm−2 at 3σ confidence level. The corresponding unabsorbed

flux is FX = (4.5± 0.45)× 10−14 erg s−1cm−2 (0.3–10 keV).

The X-ray light curve of GRB 130702A, comprising Swift-XRT and Chandra

observations, is presented in Figure 2.4.

2.4 Light-Curve Analysis

2.4.1 Isolating the Supernova Component

Emission from the location of GRB 130702A results from three distinct com-

ponents: the GRB afterglow, the associated SN, and the underlying host galaxy.
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Figure 2.4 X-ray light curve of GRB 130702A.

Here we try to isolate the emission resulting from the associated SN, including a

proper accounting for line-of-sight extinction, in order to study the properties of SN

2013dx.

First, we correct our broadband photometry for extinction, both in the Milky

Way and in the host galaxy. For the Galactic component, we employ the dust-map

calibration of Schlafly & Finkbeiner (2011), resulting in E(B − V )MW = 0.038 mag,

and the Milky Way extinction law of Cardelli et al. (1989). In order to estimate

the host extinction, AV,host, we create an SED at ∆t = 2.25 d from linear inter-

polation. We assume the observed emission at this stage will be dominated by the

(synchrotron) afterglow, and thus we fit the SED to a simple power-law model of the

form fν ∝ ν−β (e.g., Sari et al. 1998). We incorporate AV,host as a free parameter,

assuming a Small Magellanic Cloud (SMC)-like extinction law (Pei, 1992). We find

AV = 0.13 ± 0.23 mag and β = 0.52 ± 0.19 with a reduced χ2
red = 0.83. Adopting

Large Magellanic Cloud (LMC) and Milky Way (MW) dust extinction laws did not
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alter the derived parameters or fit quality. For the rest of this paper we assume

AV,host = 0.10 mag. This is consistent with other GRB host-extinction values: 50%

of GRBs have AV,host < 0.4 mag and 87% of GRBs have AV,host < 2 mag (Covino

et al., 2013).

Next, we attempt to remove any contribution from the afterglow. Singer et al.

(2013a) modeled the early-time optical emission (∆t . 4 d) as a broken power law

with an initial decay index of α1 = 0.57±0.03 up to the break time, tb = 1.17±0.9 d,

after which the model followed a power-law decay index of α2 = 1.05 ± 0.03. We

repeat this analysis with our larger photometric dataset and find mostly consistent

results. However, even as early as several days post-trigger, the observed emission

will likely have some contribution from the emerging SN (e.g., the broad features

becoming apparent in the ∆t = 3.25 d DBSP spectrum in Figure 2.5). Consequently,

the true afterglow decay index may be steeper than indicated here.

Instead, we consider the decay of the corresponding X-ray emission, which

is unlikely to be contaminated by the SN at ∆t & 1 d. We fit the X-ray light

curve to a power-law model and find αX = 1.25 ± 0.03. Combining this with the

measured X-ray spectral index from the Swift-XRT data, βX = 0.84± 0.12, we can

use standard afterglow closure relations (e.g., Racusin et al. 2009, and references

therein) to evaluate where the X-rays fall on the broadband synchrotron spectrum.

The best fit is found for a constant-density circumburst medium with the X-rays

falling below the synchrotron cooling frequency, νc.

As a result, the optical bandpass must fall below νc as well, which is consistent

with the measured X-ray to optical spectral index of βOX ≈ 0.7 at ∆t = 2 d. Thus,
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Figure 2.5 SN 2013dx spectra with host galaxy and GRB afterglow removed. They
are smoothed using a Savitzky-Golay filter with a 30 Å window. We excluded the
spectrum at t = 1.17 d because it is dominated by the afterglow. Red filled circles
mark the position of Si II λ6355 calculated in §2.5.3, used to determine the photo-
spheric velocity of the ejecta. The uncertainties are smaller than the symbol width;
they are 20 Å for t = 9.33 d and 10 Å for subsequent epochs.
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since the optical emission falls on the same segment of the SED as the X-rays, it

should decay with the same power-law index, αO = 1.25. We further assume that

both the optical afterglow spectral and temporal indices remain constant in time

over the course of our observations. We use this model to calculate the afterglow

contribution for all our photometric observations.

We note that this is a significantly shallower decay index than the αO = 2.2

adopted by D15, who did not incorporate multi-wavelength observations into their

afterglow analysis. A steeper αO may overestimate the SN flux at early times, but

is negligible at the peak and late times when the SN is significantly brighter than

the afterglow.

Finally, we must remove the contribution from the underlying host galaxy. In

our best-seeing images at late times (FWHM ≈ 0′′.75), the host is clearly resolved,

with the afterglow/SN location falling on a blue “knot” to the north (Figure 2.2).

This location is also responsible for the nebular emission lines seen in the final

Keck/LRIS spectrum (Figure 2.3).

To remove the host contribution from our photometry, we adopt host flux val-

ues from our late-time DCT (g′r′i′z′) and Keck/MOSFIRE (J) imaging and directly

subtract these from the measured transient fluxes. While this does not account for

the resolved nature of the host, since the typical seeing in our SN data (∼ 1′′.5) is

comparable to the size of the extended emission, this should have minimal impact

on the resulting photometry. We do not have host-galaxy detections in the y and

H bands, but the host contribution is negligible compared to the afterglow and SN

components.
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Figure 2.6 Observed SN 2013dx g′r′i′z′ data (top left, top right, bottom left, and bot-
tom right, respectively), with synthetic SN 1998bw light-curve fit (dashed red line)
and an optimized synthetic SN 1998bw light-curve fit scaled by a peak-amplitude
factor k and time-stretch factor s (solid red line; see §2.4.2) overlaid. SN 1998bw
template created from Clocchiatti et al. (2011), Galama et al. (1998), Sollerman
et al. (2002), and Patat et al. (2001). Diamonds are P48/P60 data, circles are
RATIR data, and stars are Liverpool data.

The resulting SN light curves are displayed in Figure 2.6. The peak times

of the light curves are useful for constraining theoretical models, in particular the

convolution of total ejected mass, kinetic energy, and opacity of the SN explosion

(via the diffusion time). We measure the rest-frame peak times by fitting a second-

order polynomial at 7 ≤ ∆t < 20 d and find the following: tp(g′) = 11.7 ± 0.3 d,

tp(r′) = 13.2 ± 0.3 d, tp(i′) = 14.7 ± 0.6 d, and tp(z′) = 15.1 ± 1.6 d (statistical

uncertainties only). These values generally agree well with those reported by D15.

We do not include peak times for yJH because the data are not well sampled close
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Table 2.3. SN 1998bw Template Fits

Filter s k χ2
red

g′ 0.76 ± 0.05 1.02 ± 0.06 7.78
r′ 0.79 ± 0.01 1.05 ± 0.02 4.67
i′ 0.82 ± 0.02 0.92 ± 0.03 4.07
z′ 0.74 ± 0.04 0.91 ± 0.05 2.85

to the peak.

There is marginal evidence in the i′-band light curve (Figure 2.6) of a decline

in flux at early times (∆t . 3 d). This is consistent with early signatures of shock

cooling (e.g., SN 2006aj, Campana et al. 2006; SN 2010bh, Cano et al. 2011). How-

ever, shock breakout should be significantly stronger in bluer bands and we see no

indication of it in either the g′ or r′ bands. The relatively bright optical afterglow

of GRB 130702A, compared to the optical afterglows of (for example) GRB 060218

and GRB 100316D, greatly complicates isolating the SN component at early times.

Thus, it is difficult to reach firm conclusions regarding the presence or absence of a

shock-breakout signature.

2.4.2 Comparison with SN 1998bw

Following past studies of GRB-associated SNe in the literature, we next at-

tempt to compare SN 2013dx to the well-studied SN 1998bw (associated with

GRB 980425). We create K-corrected synthetic SN 1998bw light curves in the g′r′i′z′

filters at the redshift of SN 2013dx, z = 0.145, using methods described by Hogg

et al. (2002). We utilize SN 1998bw photometry and spectra from Clocchiatti et al.

(2011), Galama et al. (1998), Sollerman et al. (2002), and Patat et al. (2001). The
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K-corrected synthetic SN 1998bw light curves were also time dilated to match the

observer frame of SN 2013dx.

Owing to gaps in the temporal coverage of SN 1998bw photometry, especially

in the rising phase, we fit the synthetic SN 1998bw light curve in each filter with

the empirical functional form from Cano et al. (2011),

U(t) = A+ pt

(
e(−tα1/F )

1 + e(p−t/R)

)
+ tα2 log(t−α3), (2.1)

allowing A, p, F,R, p, α1, α2, and α3 to vary. The resulting SN 1998bw synthetic light

curves are plotted as dashed lines in Figure 2.6.

We then assume the light curves of SN 2013dx in each of our four filters can

be modeled by simply varying the peak amplitude (k) and stretch factor (s):

L13dx(t) = k U98bw(t/s). (2.2)

The resulting fits are plotted in Figure 2.6, while the measured stretch and amplitude

values are displayed in Table 2.3. We find that SN 2013dx has a peak flux comparable

to that of SN 1998bw in all four filters reported here (slightly more luminous in the

bluer filters, and slightly less luminous in the redder filters). With a constant stretch

value of s ≈ 0.8 in all four filters, the evolution of SN 2013dx (in particular the rise

time) is noticeably faster than that of SN 1998bw.

However, it is also clear from the fits that SN 1998bw is not an ideal match

to SN 2013dx, especially in the redder i- and z-band filters. Given these important
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differences, we refrain from drawing any physical inferences (e.g., MNi, EK) from

these fits, and instead use the more model-independent bolometric light curve in

§2.6.

Cano (2014) and Lyman et al. (2014a) suggested that GRB-SNe can be used

as standardizable candles. Cano (2014) proposed that s and k (measured relative

to SN 1998bw) are analogous to the absolute peak SN magnitude and the amount

the light curve fades from maximum light to 15 d later (∆m15) used in the Phillips

relation (Phillips, 1993) for SNe Ia. We add the uncertainties from our s and k fit in

quadrature and find that our measurements of SN 2013dx deviate by 3.7σ from the

Cano (2014) fits. The worst fits to Cano (2014) are for g′ and r′ at 3.7σ; however,

z′ is within 0.9σ. This further supports the notion that SN 1998bw is not a perfect

match for all GRB-associated SNe.

2.4.3 Bolometric Light Curve

We construct the quasi-bolometric light curve of SN 2013dx using our pho-

tometry in the g′, r′, i′, z′, y, and J filters (H had only upper limits at ∆t & 5 d).

We include synthetic photometry for ∆t = 31.28 and 33.27 d from our spectra (see

§2.5.1) to supplement photometric coverage at these epochs. We assume a 10% flux

error on all synthetic photometry data points. We convert the extinction, host-

galaxy, and afterglow-corrected magnitudes to monochromatic fluxes and create

SEDs from linear interpolation of the data for each epoch between 1 d and 70 d with

0.25 d spacing. Epochs that are > 0.5 d from observations are removed to mitigate
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linear-interpolation errors, which only affects observations in the y and J bands

(see below). We assume that the flux is constant across the bandwidth of each

filter and use trapezoidal integration to calculate the quasi-bolometric luminosity.

We note that our photometry provides coverage over the observer-frame bandpass

0.4–1.35µm (rest-frame 0.35–1.18µm).

At ∆t ≈ 15–25 d and ∆t > 35 d, the y- and J-band data are relatively sparse.

We therefore calculate the bolometric luminosity for the entire light curve both

including y and J (g′r′i′z′yJ) and excluding them (g′r′i′z′) to determine the NIR to

integrated flux ratio. We find that the fraction of flux at these wavelengths increases

monotonically as a function of time, from 13% at ∆t ≈ 6 d to 23% at ∆t ≈ 29 d.

For epochs when only g′r′i′z′ observations were available, we add a fractional NIR

contribution for the y- and J-band from our linear fit. At late times we adopt the

last NIR ratio measurement at ∆t ≈ 29 d of ∼ 23% instead of extrapolating our

linear fit. This may underestimate the NIR contribution at late times. Our NIR

contribution measurements are consistent with an analogous measurement for SN

2008D (Modjaz et al., 2009), though slightly smaller than for SN 2009bb and SN

2010bh (Cano et al., 2011), which have maximum NIR contributions of 35–45% at

∆t ≈ 25 d.

The resulting bolometric light curve is displayed in Figure 2.7. Our associ-

ated uncertainty measurements incorporate errors from the flux measurements, as

well as bandpass uncertainties, but do not include errors introduced from linear

interpolation.

Lyman et al. (2014b) have created a model for core-collapse SN bolometric
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Figure 2.7 g′r′i′z′yJ bolometric light-curve fit with Arnett-Valenti relation fit for
4 ≤ t ≤ 30 d (solid black line). Bolometric light curves of other spectroscopically
confirmed GRB-SNe are included for comparison. Note that these “bolometric”
light curves are actually “quasi-bolometric” and cover different wavelength ranges.

corrections using two filters for nearby events. The corrections include ultraviolet

and NIR contributions. Since SN 2013dx is at z = 0.145, we use our K-corrected

spectra (see §2.5.1) to extract g′ and r′ synthetic photometry. We apply the method-

ology described by Lyman et al. (2014b) and find that this model leads to excellent

agreement with our brute-force g′r′i′z′yJ bolometric light curve. This confirms that

we are not underestimating the ultraviolet and NIR contributions in our quasi-

bolometric light curve.
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2.5 Spectral Analysis

2.5.1 Isolating the SN Component

In a similar manner to that of §2.4.1, we wish to isolate the SN component from

our spectroscopic observations of GRB 130702A. First, for absolute-flux calibration,

we normalize our spectra to (uncorrected) broadband photometry at the appropriate

epoch. This accounts for slit losses caused by variable seeing.

We next deredden our spectra of SN 2013dx in an analogous manner to that of

§2.4.1. This includes contributions from both the Milky Way [E(B−V ) = 0.038 mag]

and the host galaxy (AV,host = 0.1 mag).

To remove the afterglow contribution, we assume that the spectrum can be

described at all times (and frequencies) as a power law of the form fν(t, α) ∝ t−αν−β,

with α = 1.25 and β = 0.52 (§2.4.1). We normalize this function to our (extinction-

corrected) broadband photometry, and subtract the appropriate power-law model

at the epoch of each spectrum.

Finally, we fit the LMI/DCT late-time photometry to a variety of template

galaxies from Kinney et al. (1996). Similar to D15, we find that the best-fit tem-

plate is a starburst galaxy, and we adopted this (appropriately normalized) as the

host contribution to the spectra. We take this approach instead of using our final

Keck/LRIS spectrum because of the blue-shutter failure.

After these corrections, only the SN component remains. Figure 2.5 displays

the resulting spectra of SN 2013dx after smoothing. We exclude the first spec-
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trum (∆t = 1.17 d) because it is completely afterglow dominated. In addition, we

manually excise nebular emission lines from the host galaxy of SN 2013dx.

2.5.2 Comparison with Other Type Ic-BL SNe

The early-time spectra of SN 2013dx are fairly featureless, but after a week,

broad (v ≈ 3 × 104 km s−1) features appear. Together with the lack of obvious H

and He emission, this leads us to classify SN 2013dx as a broad-lined Type Ic SN

(Ic-BL), as has been the case for essentially all well-studied GRB-associated SNe

thus far (e.g., Woosley & Bloom 2006).

In Figure 2.8, we plot the spectrum of SN 2013dx obtained around maximum

light (∆t = 14.2 d) and at late times (∆t = 33.3 d) with pseudocontinuum removed,

bandpass filtered, scaled, and binned to a common logarithmic wavelength scale

along with mean spectra of Type Ic-BL SNe both with and without GRBs from

Modjaz et al. (2015). We note that the mean spectra include spectra of SN 2013dx

from D15, but this is one of many objects. The absorption features from mean

Type Ic-BL SNe both with and without GRBs align well with SN 2013dx absorption

features. This indicates that SN 2013dx has similar photospheric velocities as other

Type Ic-BL SNe.

At maximum light SN 2013dx has a similar blueshifted, broad Si II λ6355 line

as both SNe Ic-BL with and without GRBs. The blended Fe II absorption feature

around a blueshifted wavelength of 4800 Å is similar to that of SNe Ic-BL with GRBs

but is weaker than that of SNe Ic-BL without GRBs. SN 2013dx has a stronger
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Figure 2.8 SN 2013dx spectrum with pseudocontinuum removed and bandpass fil-
tered, binned to a common logarithmic wavelength scale (black). The mean (white)
and standard deviation (red) of Type Ic-BL spectra from Modjaz et al. (2015) with
(left) and without (right) GRB within 2 rest-frame days of the SN 2013dx spectrum.
(top) Spectrum taken at ∆t = 14.2 d, closest to maximum light in r′ (∆t = 13.2 d)
and i′ (∆t = 14.7 d). (bottom) Spectrum taken at ∆t = 33.3 d.

Ca II absorption feature around 7900 Å and weaker O I absorption feature around

7200 Å than most SNe Ic-BL both with and without GRBs.

At later epochs, SN 2013dx does not deviate from the mean SN Ic-BL both

with and without GRBs except beyond 8200 Å. However, the relative variation from

the continuum seems weaker than the mean spectra of both SNe Ic-BL with and

without GRBs. SN 2013dx has a similar Ca II absorption feature around 7900 Å as

SNe Ic-BL with GRBs but weaker than that of SNe Ic-BL without GRBs.

To search for other similar objects in the literature, we use the cross-correlation
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tool SN Identification code (SNID; Blondin & Tonry 2007). Several SNe Ic-BL that

were not associated with GRBs, such as SN 1997ef (Iwamoto et al., 2000) and

SN 2007I (Blondin et al., 2007; Modjaz et al., 2014), also provide good matches

to SN 2013dx. In addition, D15 highlight similarities to the energetic SN 2010ah

(PTF10bzf; Corsi et al. 2011; Mazzali et al. 2013).

2.5.3 Photospheric Velocity Measurements

In order to estimate the photospheric velocity of SN 2013dx, we measure the

velocity of the most prominent spectral feature, the Si II 6355 Å absorption line.

We employ a fitting code in IDL that removes a linear pseudocontinuum and fits a

Gaussian to the absorption line (see Silverman et al. 2012 and Silverman et al. 2015

for a detailed description of the code). Table 2.4 displays the inferred velocities for

each spectrum. Our results are also consistent with those reported by D15. The

first three spectra (∆t = 1.17, 3.25, and 6.22 d) are too noisy for reliable velocity

measurements.

We note that Parrent et al. (2015) suggests the absorption feature at ∼ 6100 Å,

normally identified as Si II 6355 Å, may be instead associated with Hα. Therefore,

we compare mean SN Ic-BL photospheric velocities measured using Fe II 5169 Å

(Modjaz et al., 2015) at maximum light. We find that our measurements are con-

sistent with the measurements from the less-contaminated Fe II 5169 Å.
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Table 2.4. Velocity of Si II λ6355

∆t Velocity
(d) (km s−1)

9.3 28,100 ± 1000
11.3 25,200 ± 500
14.2 21,300 ± 500
31.3 11,700 ± 500
33.3 10,800 ± 500

Note. — In observer
frame. The reported un-
certainties come from fit-
ting the Si II λ6355 ab-
sorption feature with a
single Gaussian function
and do not include errors
from potential blending.

2.5.4 Line Identification

We use SYN++ (Thomas et al., 2011) to help identify the ions present in

our spectra of SN 2013dx. SYN++ is derived from SYNOW (Fisher et al., 1997),

which uses the Sobolev approximation (Sobolev, 1960; Castor, 1970; Jeffery, 1989) to

produce synthetic spectra of SNe during the photospheric phase. SYN++ assumes

that spectral lines are formed via resonance scattering above a sharp photosphere.

The location of the photosphere is expressed in velocity coordinates as vph (in km s−1)

and takes into account the homologous expansion of the ejecta.

The optical depths for each species must also be input and line strengths are

computed assuming Boltzmann excitation (i.e., local thermodynamic equilibrium,

LTE) using a specified excitation temperature Texc (in K). Non-LTE effects are

partially taken in account by allowing different Texc values for each species, all of

which can be different from the photospheric temperature Tphot. The latter is used
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only in computing the blackbody radiation emitted by the photosphere. All our

SYN++ fits are computed with all ions turned on simultaneously with a blackbody.

We attempt to model the major spectral features of SN 2013dx at ∆t = 9.3

and 33.3 d and look for evolution during the photospheric phase (see Figure 2.9). At

9.3 d after the burst, SYN++ indicates a photospheric velocity of 30,000 km s−1, an

outer velocity of the line-forming region of about 90,000 km s−1, and an estimated

photospheric temperature of 16,000 K. The spectrum contains absorption from O I,

Si II, and Fe II, and possible absorption signatures of Fe III, Mg II, C II, Ca II, and

Na I. We caution that because of the relatively uncertain line identifications, the

derived velocities are robust indicators only for the lines of Fe II and Si II.

By 33.3 d after the burst, according to our second SYN++ fit, the SN ejecta

have slowed down and cooled off significantly. This model indicates approximate

values for the photospheric velocity, outer velocity, and photospheric temperature

of 11,000 km s−1, 60,000 km s−1, and 9000 K, respectively. The majority of the ab-

sorption in this spectrum is likely produced by Fe II and Ti II, though there is some

evidence of Si II, Ca II, and possibly O I as well. While the fit to this spectrum

at wavelengths below ∼ 4700 Å is not perfect, the broad peaks and troughs roughly

match. This part of the spectrum is notoriously difficult to model owing to hundreds

of overlapping spectral features, mostly from iron-group elements.
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Figure 2.9 SYN++ fits to the 9.3 d (top) and 33.3 d (bottom) spectra of SN 2013dx.
The spectrum of each individual ion is labeled. Their sum – plus a 16,000 K (top)
and 9000 K (bottom) blackbody – is plotted in red on top of the actual observed
spectra of SN 2013dx (binned to 6 Å per pixel).
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2.6 Supernova Explosion Parameters

2.6.1 Derived Parameters

We model the basic explosion parameters of SN 2013dx by fitting its bolometric

light curve with the Type I SN analytical model of Arnett (1982) and Valenti et al.

(2008). This model assumes (1) homologous expansion of the ejecta, (2) spherical

symmetry, (3) all 56Ni is located at the center of explosion and no mixing, (4)

radiation-pressure dominated ejecta, (5) the initial radius before explosion is small,

(6) the diffusion approximation is appropriate for photons (i.e., the ejecta are in the

photospheric phase), and (7) a single opacity over the duration of the explosion.

The peak luminosity correlates with the mass of 56Ni (MNi), while the light-

curve shape is determined by the total ejecta mass (Mej) and the ejecta kinetic

energy (EK). We can break the degeneracy between Mej and EK with photospheric-

velocity measurements from our optical spectra.

The timescale of the light curve is given by

τm =

(
κ

βc

)1/2(6M3
ej

5EK

)1/4

, (2.3)

where β ≈ 13.8 is an integration constant. For a uniform density (Arnett, 1982)6,

EK ≈
3

5

Mejv
2
ph

2
. (2.4)

6Note there is a typo incorrectly stating EK ≈ 5
3

Mejv
2
ph

2 in the original text that was corrected
by Arnett (1996). This has been taken into account in Equations 2.3 and 2.4. This typo has been
propagated throughout the literature.
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We assume κ = 0.07 cm2 g−1 to directly compare with the literature for other GRB-

SNe (e.g., Cano et al. 2011).

We fit our quasi-bolometric light curve (§2.4.3) with the Arnett-Valenti rela-

tion,

Lph(t) =MNie
−x2

×
[
(εNi − εCo)

∫ x

0

A(z)dz + εCo

∫ x

0

B(z)dz

]
,

(2.5)

with

A(z) = 2ze−2zy+z2 ,

B(z) = 2ze−2zy+2zs+z2 ,

x ≡ t/τm,

y ≡ τm/(2τNi), and

s ≡ τm(τCo − τNi)/(2τCoτNi).

(2.6)

The decay times of 56Ni and 56Co are τNi = 8.77 d and τCo = 111.3 d, and the

energies produced in one second by one gram of 56Ni and 56Co were taken as εNi =

3.90×1010 erg s−1 g−1 and εCo = 6.78×109 erg s−1 g−1 (Sutherland & Wheeler, 1984;

Cappellaro et al., 1997).

From our spectra and light curves, the SN component was dominant starting

at ∆t ≈ 4 d (compare with SN 2010bh, where shock breakout was prominent out

to 7 d; Cano et al. 2011). The Arnett-Valenti relation assumes that the material is

in the photospheric phase, which is no longer valid at ∆t & 30 d. Therefore, our fit
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only includes 4 ≤ ∆t ≤ 30 d. We find MNi = 0.37±0.01 M� and τm = 11.35±0.17 d

(statistical errors only). Using vph = 21, 300 km s−1 from our spectral fit near peak

(§2.5.3), we calculate Mej = 3.1± 0.1 M� and EK = (8.2± 0.43)× 1051 erg.

2.6.2 Comparison with Other GRB-SNe

We compare our bolometric light curve of SN 2013dx with that of other spec-

troscopically confirmed GRB-SNe in Figure 2.7 (SN 1998bw, Galama et al. 1998;

SN 2003lw, Mazzali et al. 2006; SN 2003dh, Deng et al. 2005; SN 2006aj, Pian et al.

2006; SN 2009nz, Olivares E. et al. 2015, SN 2010bh, Olivares E. et al. 2012; SN

2012bz: Melandri et al. 2012 and Schulze et al. 2014; SN 2013cq: Melandri et al.

2014; iPTF14bfu: Cano et al. 2015). We note that the NIR contribution to the

bolometric luminosity for SN 2012bz is assumed to be the same as that observed

for SN 2010bh. Although these GRB-SN bolometric light curves cover different

wavelength ranges, we can get a sense of the light-curve evolution. SN 2013dx most

closely matches the light-curve shape of SN 2012bz, but with the caveat that SN

2013dx has a steeper rise than SN 2012bz.

After 30 days, SN 2013dx appears to drop in luminosity rapidly. This is unlike

the three bursts with late-time coverage – SN 2003lw, SN 2003dh, and SN 1998bw –

seen particularly well juxtaposed against SN 1998bw, which has extensive observa-

tions out to hundreds of days. This drop in luminosity is not from underestimating

the NIR contribution at late times; we still observe a rapid drop in luminosity at 30 d

if we continue the monotonically increasing NIR ratio function from §2.4.3 instead
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Table 2.5. Physical Parameters of GRB-SNe

GRB-SN z Eγ,iso vph MNi Mej EK Reference
(erg) (km s−1) (M�) (M�) (1052 erg)

GRB 980425/SN 1998bw 0.0085 (9.29± 0.35)× 1047 18,000 0.42± 0.02 6.80± 0.57 1.31± 0.10a (1), (2)
GRB 030329/SN 2003dh 0.1685 1.33× 1052 20,000 0.54± 0.13 5.06± 1.65 1.21± 0.39a (1), (2)

GRB 031203/SN 2003lw 0.105 1.67+0.04
−0.10 × 1050 18,000 0.57± 0.04 8.22± 0.76 1.59± 0.15a (1), (2)

GRB 060218/SN 2006aj 0.0335 4.33+0.41
−1.74 × 1049 20,000 0.21± 0.03 2.58± 0.55 0.61± 0.14a (1), (2)

GRB 091127/SN 2009nz 0.49 (4.3± 0.3)× 1052 17,000 0.33± 0.01 4.69± 0.13 0.81± 0.02a (1), (3)
GRB 100316D/SN 2010bhb 0.059 ≥ (3.9± 0.3)× 1049 25,000 0.12± 0.02 2.47± 0.23 0.92± 0.08a (1), (4)
GRB 120422A/SN 2012bzb 0.283 4.5× 1049 20,500 0.57± 0.07 6.10± 0.49 1.53± 0.13a (1), (5)
GRB 130427A/SN 2013cq 0.3399 (9.6± 0.04)× 1053 32,000 0.28± 0.02 6.27± 0.69 6.39± 0.70 (6)

GRB 130702A/SN 2013dx 0.145 6.4+1.3
−1.0 × 1050 21,300 0.37± 0.01 3.1± 0.1 0.82± 0.04 (7)

GRB 140606B/iPTF14bfu 0.384 (3.47± 0.02)× 1051 19,820 0.42± 0.17 4.8± 1.9 1.1± 0.7a (8)

Note. — aEK originally calculated as EK =
Mejv

2
ph

2
, scaled by a factor of 3/5 to directly compare with our values. All Eγ,iso values

calculated over 1 keV – 10 MeV, except those indicated by superscript “b” which are calculated over 15–150 keV or superscript “c”
which are calculated over 20–1400 keV. (1) Cano (2013), (2) Kaneko et al. (2007), (3) Troja et al. (2012), (4) Starling et al. (2011),
(5) Zhang et al. (2012), (6) Xu et al. (2013), (7) this work, (8) Cano et al. (2015).
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of adding a flat NIR contribution of 23% after 29 d.

In order to compare the derived properties of SN 2013dx with a broader sam-

ple of GRB-associated SNe, we use the derived values for MNi, Mej, and EK for all

well-sampled events from Cano (2013). The authors fit a template of SN 1998bw to

determine the appropriate stretch and scale parameters (e.g., §2.4.2). Using average

s and k values for each burst, the authors then fit a scaled version of the UBV RIJH

SN 1998bw light curve to the Arnett-Valenti model to derive the explosion parame-

ters. This method has the benefit of (effectively) uniform wavelength coverage, even

for events that were only observed in a few filters. However, the primary drawback

is the assumption that all bolometric light curves are well fit by an appropriately

scaled version of SN 1998bw. As evidenced by Figure 2.6, this assumption breaks

down at the very least for the redder filters for SN 2013dx (see also Lyman et al.

2014a). Nonetheless, the explosion parameters for all well-studied GRB-associated

SNe derived in this manner7 are presented in Table 2.5.

To avoid any biases introduced by GRB-SNe that are not well matched with

SN 1998bw, we also create our own quasi-bolometric light curves by compiling pho-

tometry from the literature (Table 2.6). We fit these light curves with the Arnett-

Valenti relation described in §2.6.1 and break our results into those events with only

optical datasets and those with optical and NIR photometry in Figure 2.10 (right

panel). This provides an estimate of the fundamental explosion parameters that is

independent of any assumed similarity with SN 1998bw.

7We note that Cano (2013) and Cano et al. (2015) assume that EK =
Mejv

2
ph

2 , so we scaled their
reported EK values by a factor of 3/5.
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We plot the inferred MNi as a function of both the isotropic prompt gamma-ray

energy release (Figure 2.10) and the derived SN kinetic energy (EK; in Figure 2.11).
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Figure 2.10 (left) Comparison of SN explosion parameters from template GRB-SNe
and SN 2013dx from Table 2.5. The size of the points indicates vph near the SN
brightness peak. There does not appear to be any correlation between MNi and
Eγ,iso or MNi and vph.
(right) Comparison of SN explosion parameters using photometric data reported in
the literature with our quasi-bolometric fitting procedure. This avoids using SN
1998bw as a template for other GRB-SN bolometric fits (see text for details). Blue
points are fit to only optical data, red points are fit to optical and NIR data. Black
line connects points that have both.

2.6.3 Caveats and Conclusions

From Figure 2.10, it is clear that there is no correlation between MNi and the

prompt energy release using either method for calculating SN explosion parameters

of other GRB-SNe. For example, SN 2013dx has a comparable mass of synthesized

56Ni as the subluminous GRB 980425 / SN 1998bw and the extremely luminous

GRB 130427A / SN 2013cq (Levan et al., 2014; Melandri et al., 2014). Even if we

were to apply a beaming correction, GRB 130427A would still have Eγ several orders

of magnitude larger than GRB 980425 (Perley et al., 2014), but comparable MNi.
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Figure 2.11 There is a clear correlation between explosion energy, EK, and MNi

for SNe Ib, Ic, Ic-BL (Cano 2013, and references therein), IIP (Hamuy 2003, and
references therein), and GRB-SNe from Table 2.5. See Filippenko (1997) for a review
of SN classification.

Similarly, there is no clear correlation between MNi and photospheric velocity at

peak. Numerical simulations unambiguously predict that the mass of synthesized

56Ni should be correlated with the degree of asymmetry in the explosion (González-

Casanova et al., 2014; Umeda & Nomoto, 2008); to the extent that our models

faithfully reproduce the relevant (global) SN explosion parameters, this result is

clearly not borne out by the data.

On the other hand, the explosion energy of the SN ejecta is clearly correlated

with MNi, particularly when including other core-collapse events. As shown by pre-

vious authors (e.g., Cano 2013 and Lyman et al. 2014a for recent compilations),

GRB-associated SNe on average have a higher mass of synthesized 56Ni and larger

kinetic energies than any other class of core-collapse SNe (except perhaps the super-

luminous SNe; Gal-Yam 2012). That said, the SN explosion energies are typically
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Table 2.6. Photometry References for SN 1998bw-Independent Bolometric Light
Curves

GRB-SN Filter Coverage References

GRB 980425/SN 1998bw UBV RIJHK Clocchiatti et al. (2011)
GRB 030329/SN 2003dh UBV R Deng et al. (2005)
GRB 031203/SN 2003lwa —
GRB 060218/SN 2006aj BV RIJHK Ferrero et al. (2006); Kocevski et al. (2007)
GRB 091127/SN 2009nza —
GRB 100316D/SN 2010bhb grizJH Olivares E. et al. (2012)
GRB 120422A/SN 2012bz grizJ Schulze et al. (2014)
GRB 130427A/SN 2013cqc BV RI Melandri et al. (2014)
GRB 130702A/SN 2013dx grizyJ This work
GRB 140606B/iPTF14bfu griz Cano et al. (2015)

Note. — aSimultaneous epochs near peak were limited and were insufficient for our analysis
tools. bUsed lower host-galaxy extinction from Cano et al. (2011) and Bufano et al. (2012).
cPoor fit using our analysis tools; we fit to the bolometric curve provided by E. Pian (private
communications).

narrowly clustered and do not appear to significantly exceed 1052 erg, consistent

with (perhaps even indicative of) a magnetar origin for these events (Mazzali et al.,

2014). SN 2013cq (associated with GRB 130427A) appears to be a significant outlier

in terms of its inferred EK, however, which remains to be fully explained.

D15 created a bolometric light curve over the range 3000–10,000 Å extrapo-

lated from u′ and i′. We examined the bolometric light curve from D15 and found

that our peak luminosity is consistent with theirs when accounting for our addi-

tional NIR coverage. D15 report MNi ≈ 0.2 M�, a factor of two lower than our

quoted value. On the other hand, they derive a total ejecta mass (Mej ≈ 7± 2 M�)

and a SN kinetic energy (EK ≈ (3.5 ± 1.0) × 1052 erg) approximately a factor of

two and four (respectively) larger than those presented here. D15 scale numerical

simulations of the similarly shaped SN 2003dh (Mazzali et al., 2006) to estimate SN

explosion parameters, as opposed to using an analytical model (e.g., Arnett-Valenti)
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as adopted in this paper.

Since MNi is closely related to the peak luminosity, we believe that our reported

MNi estimate is more accurate than the value D15 report. When NIR contributions

are included, SN 2013dx has a similar peak luminosity as SN 1998bw. We therefore

expect SN 2013dx to have a similar 56Ni mass as SN 1998bw. Both numerical

simulations and analytical models produce MNi ≈ 0.4 M� for SN 1998bw (Mazzali

et al., 2006; Cano, 2013).

The discrepancy in ejecta mass and kinetic energy is caused mainly by different

opacity assumptions. Mazzali et al. (2006) assumed an opacity, κ = 0.5Ye cm2 g−1,

where Ye is the number of electrons per baryon. We assume the authors used

Ye = 0.46 for iron and recalculate our Arnett-Valenti fit. With an opacity of κ =

0.02 cm2 g−1, we report Mej = 9.2 ± 0.2 M� and EK = (2.5 ± 0.1) × 1052 erg. We

also note that from our fit of SN 1998bw in §2.4.2, we can see that the light-curve

evolution of SN 1998bw does not match that of SN 2013dx well (see Figure 2.6);

hence, the different values of Mej and EK are not unexpected.

We note that opacity greatly affects Mej and EK, but does not affect MNi.

Wheeler et al. (2015) found that a conflict exists when comparing properties de-

termined by fitting the peak (using Arnett-Valenti methods) to those determined

from fitting the late-time tail (using methods from Clocchiatti & Wheeler 1997).

This conflict is partially resolved by using a mean opacity determined from both

peak and late-time tail parameters. Wheeler et al. (2015) find that in general,

the opacity is often overestimated in the literature and the typical mean opac-

ity is κ ≈ 0.01 cm2 g−1. In view of this potential discrepancy, we report values
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for κ = 0.01 cm2 g−1 (Mej ≈ 21 M�, EK ≈ 6 × 1052 erg) and κ = 0.1 cm2 g−1

(Mej ≈ 2 M�, EK ≈ 6 × 1051 erg) to draw attention to the spread in Mej and EK

from this variable.

We also caution that numerical simulations of jet-driven SNe (e.g., González-

Casanova et al. 2014; Mazzali et al. 2013; Umeda & Nomoto 2008) imply that the

distribution of 56Ni is likely to be highly asymmetric. The derived ejecta mass may

therefore be biased by line-of-sight effects, and not representative of the total mass

ejected in the explosion.

2.7 Discussion and Summary

We present extensive optical and NIR photometry of GRB 130702A/SN 2013dx

spanning 1–63 d after the gamma-ray trigger, and optical spectra covering 1–33 d

after the trigger. At z = 0.145, GRB 130702A/SN 2013dx is sufficiently close to

clearly detect and model the underlying SN component that emerged a week after

the burst.

We isolate the SN component and present multi-band light curves, a quasi-

bolometric (g′r′i′z′yJ) light curve, and spectra of SN 2013dx. Detection of the

broad Si II λ6355 absorption line at velocities approaching 3×104 km s−1, combined

with the absence of H and He features, indicates that SN 2013dx is a broad-lined

SN Ic. We estimate the SN explosion parameters using the Arnett-Valenti analytical

relation and infer MNi = 0.37±0.01 M�, Mej = 3.1±0.1 M�, and EK = (8.2±0.4)×

1051 erg.
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Our analysis allows us to compare SN 2013dx with other GRB-SNe, as well

as other core-collapse SNe (those of identical spectral type and not). This is of

particular interest because GRB 130702A is of intermediate Eγ,iso, between low-

luminosity and cosmological GRBs. There seems to be no clear relation between

MNi, Mej, or EK with GRB isotropic energy (Figure 2.10), even when considering

beaming corrections. The SN appears to not be imprinted with any information

about the formation of the relativistic jet aside from the high photospheric velocity

and lack of H and He that allows us to classify all GRB-SNe as Type Ic-BL. This

is somewhat puzzling, given the predictions of a correlation between the degree of

asymmetry and mass of synthesized 56Ni for jet-driven explosions. We caution that

the Arnett-Valenti relations we use to derive MNi assume spherical symmetry and

this assumption may account for some but not all of the scatter in Figure 2.10. On

the other hand, our observations do provide support for predictions that MNi should

be strongly correlated with the kinetic energy of the SN itself.

Spectroscopically, SN 2013dx resembles both other GRB-SNe like SN 2006aj

and SN 1998bw, as well as non-GRB SNe Ic-BL such as SN 1997ef, SN 2007I, and SN

2010ah. In terms of light curves, SN 2013dx most closely matches the evolution of SN

2012bz, associated with an intermediate GRB, but has a similar peak luminosity

as SN 1998bw, associated with a low-luminosity GRB. Direct comparison of the

light-curve evolution between SN 2013dx and SN 1998bw indicates that SN 2013dx

has a quicker rise time than SN 1998bw. The faster rise time may suggest that SN

2013dx has a steeper distribution of 56Ni in the outer layers of the star (i.e., less

mixing) than SN 1998bw (Piro & Nakar 2013, Dessart et al. 2012).
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Late-time observations several months after the burst can test asymmetry

effectively both in photometry (Wheeler et al., 2015) and spectroscopy (Mazzali

et al., 2005; Maeda et al., 2002; Milisavljevic et al., 2015). We do not have enough

late-time observations of SN 2013dx to conduct these effective asymmetry tests, but

we strongly encourage late-time follow-up data for GRB-SNe when possible.

Finally, we suggest two potential avenues for future study, especially with re-

spect to GRB 130702A / SN 2013dx. Detailed numerical modeling of the SN ejecta

(e.g., Mazzali et al. 2006 for SN 1998bw), specifically tailored to the light curves

and spectra of SN 2013dx (instead of simply scaling results from previous simu-

lations), should help to improve the accuracy of estimates of the fundamental SN

explosions parameters. In addition, a broadband study of the afterglow emission, in

particular incorporating radio wavelengths, would enable a much-improved estimate

of the properties of the fastest-moving ejecta. This would greatly assist in placing

GRB 130702A in the context of other relativistic explosions, specifically how the

explosion energy is partitioned with respect to ejecta velocity (e.g., Margutti et al.

2014b).
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Table 2.7: Observing Log

Filter Epoch (days) Telescope Exp (s) AB mag

u′ 330.49 Keck/LRIS 203 24.50 ± 0.14
g′ 1.17 P60 120 18.80 ± 0.04
g′ 1.26 P60 120 18.86 ± 0.04
g′ 2.21 P60 270 19.52 ± 0.04
g′ 3.23 P60 450 20.02 ± 0.05
g′ 4.19 P60 1260 20.22 ± 0.04
g′ 5.27 P60 540 20.35 ± 0.04
g′ 6.28 P60 540 20.31 ± 0.04
g′ 7.20 P60 720 20.32 ± 0.04
g′ 9.87 Liverpool 130 20.35 ± 0.33
g′ 10.87 Liverpool 130 20.39 ± 0.35
g′ 11.26 P60 720 20.22 ± 0.05
g′ 11.87 Liverpool 130 20.06 ± 0.21
g′ 12.18 P60 660 20.23 ± 0.03
g′ 12.86 Liverpool 130 20.00 ± 0.23
g′ 13.86 Liverpool 130 20.39 ± 0.34
g′ 14.18 P60 720 20.31 ± 0.06
g′ 15.18 P60 720 20.43 ± 0.07
g′ 16.18 P60 720 20.36 ± 0.13
g′ 17.87 Liverpool 150 20.32 ± 0.13
g′ 19.87 Liverpool 150 20.78 ± 0.19
g′ 21.87 Liverpool 150 20.98 ± 0.15
g′ 23.87 Liverpool 150 21.25 ± 0.30
g′ 27.92 Liverpool 150 21.53 ± 0.07
g′ 29.21 P60 540 21.62 ± 0.12
g′ 30.19 P60 1080 21.72 ± 0.09
g′ 34.17 P60 1080 21.84 ± 0.08
g′ 37.89 Liverpool 450 22.06 ± 0.08
g′ 39.88 Liverpool 450 22.11 ± 0.09
g′ 45.88 Liverpool 450 22.64 ± 0.34
g′ 53.88 Liverpool 150 22.42 ± 0.07
g′ 58.88 Liverpool 150 22.56 ± 0.06
g′ 62.87 Liverpool 150 22.60 ± 0.09
g′ 330.48 Keck/LRIS 203 23.51 ± 0.03
g′ 632.37 DCT 1200 23.66 ± 0.04
r′ 0.18 P48 60 17.38 ± 0.04
r′ 0.21 P48 60 17.52 ± 0.04
r′ 1.26 P60 360 18.66 ± 0.05
r′ 2.16 RATIR 7600 19.23 ± 0.06
r′ 2.21 P60 420 19.32 ± 0.04
r′ 3.21 RATIR 5040 19.67 ± 0.04
r′ 3.25 P60 120 19.70 ± 0.08
r′ 4.18 P60 1320 19.97 ± 0.04
r′ 4.21 RATIR 5360 19.88 ± 0.05
r′ 5.21 RATIR 4960 19.95 ± 0.05
r′ 5.27 P60 540 20.00 ± 0.04
r′ 6.20 RATIR 4880 19.94 ± 0.05
r′ 6.27 P60 540 20.04 ± 0.04
r′ 7.19 RATIR 2640 19.90 ± 0.05
r′ 7.19 P60 720 20.06 ± 0.04
r′ 8.22 RATIR 3920 19.82 ± 0.05
r′ 9.87 Liverpool 130 19.86 ± 0.07
r′ 10.87 Liverpool 130 19.69 ± 0.07
r′ 11.25 P60 660 19.82 ± 0.02
r′ 11.87 Liverpool 130 19.73 ± 0.07
r′ 12.18 P60 660 19.78 ± 0.04
r′ 12.22 RATIR 2880 19.70 ± 0.04
r′ 12.87 Liverpool 130 19.74 ± 0.08
r′ 13.16 RATIR 1280 19.68 ± 0.05
r′ 13.87 Liverpool 130 19.68 ± 0.10
r′ 14.18 P60 660 19.70 ± 0.04
r′ 14.18 RATIR 3760 19.68 ± 0.07
r′ 15.16 RATIR 5280 19.70 ± 0.05

AB magnitudes, not corrected for Galactic extinction.
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Table 2.7 – Continued

Filter Epoch (days) Telescope Exp (s) AB mag

r′ 15.17 P60 660 19.64 ± 0.04
r′ 15.87 Liverpool 150 19.80 ± 0.07
r′ 16.17 P60 660 19.76 ± 0.08
r′ 17.87 Liverpool 150 19.83 ± 0.03
r′ 19.87 Liverpool 150 19.92 ± 0.04
r′ 21.88 Liverpool 150 20.00 ± 0.03
r′ 23.87 Liverpool 150 20.20 ± 0.02
r′ 25.17 RATIR 4560 20.16 ± 0.07
r′ 26.15 RATIR 2160 20.22 ± 0.05
r′ 27.15 RATIR 5200 20.31 ± 0.05
r′ 27.91 Liverpool 150 20.42 ± 0.03
r′ 28.16 RATIR 5120 20.38 ± 0.05
r′ 29.15 RATIR 5200 20.52 ± 0.06
r′ 29.19 P60 540 20.49 ± 0.05
r′ 30.18 P60 540 20.54 ± 0.06
r′ 30.19 RATIR 3120 20.63 ± 0.06
r′ 31.15 RATIR 3920 20.62 ± 0.15
r′ 32.15 RATIR 4960 20.73 ± 0.06
r′ 34.16 P60 540 20.87 ± 0.07
r′ 35.17 RATIR 3680 20.96 ± 0.06
r′ 37.88 Liverpool 150 21.22 ± 0.04
r′ 39.88 Liverpool 150 21.27 ± 0.06
r′ 41.16 RATIR 3840 21.25 ± 0.08
r′ 45.15 RATIR 2080 21.33 ± 0.12
r′ 45.87 Liverpool 150 21.46 ± 0.14
r′ 46.15 RATIR 3120 21.36 ± 0.11
r′ 47.88 Liverpool 150 21.42 ± 0.15
r′ 53.87 Liverpool 150 21.75 ± 0.06
r′ 58.87 Liverpool 150 21.81 ± 0.06
r′ 62.86 Liverpool 150 21.80 ± 0.10
R 330.48 Keck/LRIS 200 23.26 ± 0.06
r′ 632.39 DCT 1200 23.15 ± 0.04
i′ 1.17 P60 120 18.42 ± 0.04
i′ 1.26 P60 120 18.56 ± 0.06
i′ 2.16 RATIR 7600 19.09 ± 0.07
i′ 2.21 P60 420 19.12 ± 0.04
i′ 3.21 RATIR 5040 19.59 ± 0.06
i′ 3.24 P60 450 19.64 ± 0.05
i′ 4.17 P60 1320 19.97 ± 0.06
i′ 4.21 RATIR 5360 19.93 ± 0.06
i′ 5.21 RATIR 4960 20.05 ± 0.12
i′ 5.26 P60 540 20.13 ± 0.05
i′ 6.20 RATIR 4880 20.13 ± 0.09
i′ 6.27 P60 660 20.09 ± 0.05
i′ 7.18 P60 660 20.17 ± 0.05
i′ 7.19 RATIR 3280 20.07 ± 0.17
i′ 8.22 RATIR 3920 20.10 ± 0.07
i′ 9.87 Liverpool 130 19.93 ± 0.13
i′ 10.87 Liverpool 130 19.86 ± 0.16
i′ 11.17 P60 180 19.88 ± 0.11
i′ 11.87 Liverpool 130 19.87 ± 0.15
i′ 12.19 P60 660 19.94 ± 0.04
i′ 12.22 RATIR 2880 19.91 ± 0.05
i′ 12.87 Liverpool 130 19.94 ± 0.14
i′ 13.16 RATIR 1280 19.86 ± 0.05
i′ 13.87 Liverpool 130 20.01 ± 0.21
i′ 14.18 RATIR 3760 19.84 ± 0.05
i′ 14.19 P60 660 19.86 ± 0.06
i′ 15.16 RATIR 5280 19.83 ± 0.05
i′ 15.19 P60 660 19.77 ± 0.06
i′ 15.87 Liverpool 150 19.91 ± 0.10
i′ 16.19 P60 660 20.02 ± 0.10
i′ 17.87 Liverpool 150 19.94 ± 0.07
i′ 19.87 Liverpool 150 19.88 ± 0.05

AB magnitudes, not corrected for Galactic extinction.
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Table 2.7 – Continued

Filter Epoch (days) Telescope Exp (s) AB mag

i′ 21.87 Liverpool 150 19.97 ± 0.04
i′ 23.87 Liverpool 150 20.09 ± 0.05
i′ 25.17 RATIR 4560 20.04 ± 0.06
i′ 26.15 RATIR 2160 20.09 ± 0.05
i′ 27.15 RATIR 5200 20.15 ± 0.06
i′ 27.91 Liverpool 150 20.18 ± 0.02
i′ 28.16 RATIR 5120 20.21 ± 0.05
i′ 29.15 RATIR 5200 20.30 ± 0.07
i′ 29.22 P60 540 20.31 ± 0.06
i′ 30.19 RATIR 3120 20.41 ± 0.07
i′ 30.20 P60 540 20.44 ± 0.08
i′ 31.15 RATIR 4000 20.43 ± 0.14
i′ 32.15 RATIR 5440 20.52 ± 0.07
i′ 34.18 P60 540 20.67 ± 0.07
i′ 35.17 RATIR 3680 20.68 ± 0.07
i′ 37.88 Liverpool 150 21.01 ± 0.05
i′ 39.87 Liverpool 150 21.03 ± 0.08
i′ 41.16 RATIR 3840 20.88 ± 0.08
i′ 45.15 RATIR 2080 21.05 ± 0.11
i′ 45.87 Liverpool 150 21.16 ± 0.10
i′ 46.15 RATIR 3120 21.12 ± 0.10
i′ 47.88 Liverpool 150 21.14 ± 0.13
i′ 53.86 Liverpool 150 21.56 ± 0.09
i′ 58.86 Liverpool 150 21.65 ± 0.09
i′ 62.86 Liverpool 150 21.53 ± 0.12
i′ 632.39 DCT 1200 23.03 ± 0.06
z′ 2.16 RATIR 5700 18.91 ± 0.09
z′ 2.21 P60 870 19.02 ± 0.08
z′ 3.21 RATIR 3780 19.36 ± 0.07
z′ 3.24 P60 840 19.43 ± 0.09
z′ 4.19 P60 1320 19.53 ± 0.10
z′ 4.21 RATIR 4020 19.72 ± 0.12
z′ 5.20 P60 1020 19.84 ± 0.12
z′ 5.21 RATIR 3720 19.84 ± 0.08
z′ 6.20 RATIR 3660 19.94 ± 0.11
z′ 6.26 P60 540 19.95 ± 0.12
z′ 7.18 P60 540 20.04 ± 0.11
z′ 7.19 RATIR 2820 19.71 ± 0.35
z′ 8.22 RATIR 2940 19.98 ± 0.13
z′ 9.87 Liverpool 150 20.11 ± 0.12
z′ 10.87 Liverpool 150 19.99 ± 0.12
z′ 11.87 Liverpool 150 20.13 ± 0.11
z′ 12.22 RATIR 2160 19.94 ± 0.13
z′ 12.87 Liverpool 150 20.02 ± 0.11
z′ 13.16 RATIR 960 20.02 ± 0.12
z′ 13.87 Liverpool 150 19.82 ± 0.13
z′ 14.18 RATIR 2820 19.87 ± 0.12
z′ 15.16 RATIR 3960 20.01 ± 0.10
z′ 15.87 Liverpool 150 20.21 ± 0.20
z′ 17.88 Liverpool 150 20.10 ± 0.08
z′ 19.88 Liverpool 150 20.08 ± 0.05
z′ 21.88 Liverpool 150 20.19 ± 0.06
z′ 23.88 Liverpool 150 20.27 ± 0.04
z′ 25.17 RATIR 3300 20.46 ± 0.14
z′ 26.15 RATIR 1560 20.06 ± 0.13
z′ 27.15 RATIR 3900 20.30 ± 0.09
z′ 27.90 Liverpool 150 20.33 ± 0.07
z′ 28.16 RATIR 3780 20.23 ± 0.09
z′ 29.15 RATIR 3900 20.49 ± 0.10
z′ 30.19 RATIR 2340 20.44 ± 0.15
z′ 31.15 RATIR 2940 20.45 ± 0.11
z′ 32.15 RATIR 4080 20.81 ± 0.15
z′ 34.15 RATIR 3660 20.87 ± 0.12
z′ 35.17 RATIR 2820 20.96 ± 0.14

AB magnitudes, not corrected for Galactic extinction.
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Table 2.7 – Continued

Filter Epoch (days) Telescope Exp (s) AB mag

z′ 37.87 Liverpool 150 21.15 ± 0.15
z′ 39.87 Liverpool 150 21.33 ± 0.20
z′ 45.86 Liverpool 150 21.41 ± 0.30
z′ 53.85 Liverpool 150 21.27 ± 0.13
z′ 58.85 Liverpool 150 21.60 ± 0.20
z′ 62.85 Liverpool 150 21.85 ± 0.29
z′ 632.41 DCT 1200 23.02 ± 0.12
y 2.16 RATIR 5700 18.78 ± 0.08
y 3.21 RATIR 3780 19.23 ± 0.08
y 4.21 RATIR 4020 19.53 ± 0.09
y 5.21 RATIR 3720 19.70 ± 0.09
y 6.20 RATIR 3660 19.79 ± 0.07
y 12.22 RATIR 2160 19.49 ± 0.10
y 13.16 RATIR 960 19.70 ± 0.13
y 14.18 RATIR 2820 19.75 ± 0.09
y 15.16 RATIR 3960 19.73 ± 0.11
y 22.16 RATIR 2340 19.85 ± 0.13
y 25.17 RATIR 3300 19.69 ± 0.14
y 26.15 RATIR 1560 20.00 ± 0.13
y 27.15 RATIR 3900 20.05 ± 0.09
y 28.16 RATIR 3780 20.01 ± 0.09
y 29.15 RATIR 3900 20.03 ± 0.10
y 30.19 RATIR 2340 20.04 ± 0.11
y 31.15 RATIR 2940 20.28 ± 0.12
y 32.15 RATIR 4080 20.00 ± 0.11
y 34.15 RATIR 3660 20.49 ± 0.14
y 35.17 RATIR 2820 20.51 ± 0.14
J 2.16 RATIR 6380 18.75 ± 0.09
J 3.21 RATIR 4230 19.22 ± 0.07
J 4.21 RATIR 4500 19.65 ± 0.09
J 5.21 RATIR 4160 19.64 ± 0.10
J 6.20 RATIR 4090 19.85 ± 0.10
J 14.18 RATIR 3150 20.07 ± 0.12
J 15.16 RATIR 4430 19.86 ± 0.11
J 27.15 RATIR 4360 19.92 ± 0.13
J 28.16 RATIR 4230 20.05 ± 0.12
J 29.15 RATIR 4360 20.23 ± 0.13
J 349.45 Keck/MOSFIRE 132 23.18 ± 0.32
H 2.16 RATIR 6380 18.60 ± 0.09
H 3.21 RATIR 4230 18.96 ± 0.08
H 4.21 RATIR 4500 19.37 ± 0.11
H 5.21 RATIR 4160 19.83 ± 0.12
H 6.20 RATIR 4090 19.89 ± 0.13
Ks 349.44 Keck/MOSFIRE 79 > 22.29

AB magnitudes, not corrected for Galactic extinction.
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Chapter 3: GRB-DLA host counterparts

3.1 Introduction

There are several successful methods to identify galaxies in the early Universe.

For example, Lyman-break galaxies (LBGs; Steidel et al. 1996) are found using

the photometric drop-out technique around the Lyman-limit and have provided the

first sample of z & 8 galaxies (e.g. Bouwens et al. 2010; Oesch et al. 2012). Lyman-

α emitters (LAE), in which hydrogen recombines after ionization by young stars,

are identified at the highest redshifts with deep near-infrared observing campaigns

(z ∼ 7.7; Hibon et al. 2010; Tilvi et al. 2010; Krug et al. 2012). Because the

Lyman-α (Lyα) line is less sensitive to the overall stellar continuum, LAEs are

generally lower mass systems with negligible dust (Gawiser et al., 2007; Guaita

et al., 2011). Additionally, mm/sub-mm observations have opened a promising way

to study galaxies at z & 1 through CO molecular emission at high redshift (e.g.

Daddi et al., 2009). These methods mainly probe the bright end of the luminosity

function, at least at the highest redshifts, due to their strong stellar UV continuum.

Another method to identify high-redshift galaxies, while also characterizing

their chemical enrichment, utilizes bright background objects like high-redshift quasars

(QSO), gamma-ray burst (GRB) afterglows, or, even more recently, extended back-
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ground galaxies (Cooke & O’Meara, 2015; Mawatari et al., 2016) to identify absorption-

line systems. These detections depend only on the gas cross-section and therefore

are less sensitive to the luminosity of the associated object (an observing bias that

affects every high-redshift galaxy survey). Specifically, diffuse gaseous clouds in the

Universe are primarily described by their neutral hydrogen column density (NHI).

Recent surveys have demonstrated that Damped Lyman-α systems (DLAs, see Wolfe

et al. 2005), characterized by NHI ≥ 2×1020cm−2, contain ≥ 80% of the neutral gas

available for star formation (Péroux et al., 2003; Prochaska et al., 2005; Prochaska

& Wolfe, 2009; Noterdaeme et al., 2009, 2012a; Zafar et al., 2013). At z = 2 − 3,

they contain enough gas to account for a significant fraction (20-50%) of stellar

mass in all galaxies (Storrie-Lombardi & Wolfe, 2000; Wolfire et al., 2003; O’Meara

et al., 2007). Most importantly, they provide a powerful independent check on so-

phisticated models of galaxy formation which also include the effects of stellar and

supernovae feedback (e.g. Bird et al., 2014; Rahmati et al., 2015).

Some suggested scenarios to explain the nature of high-redshift DLA galax-

ies include rapidly-rotating proto-galactic disks (Prochaska & Wolfe, 1997; Wolfe

& Prochaska, 1998; Genzel et al., 2006; Förster Schreiber et al., 2009), low surface

brightness galaxies (Jimenez et al., 1999), faint and small gas-rich dwarf galaxies

(Tyson, 1988), compact galaxies (Nagamine et al., 2007), dwarf irregulars (Dessauges-

Zavadsky et al., 2007), or gaseous haloes of Lyman break galaxies (Fynbo et al., 1999;

Møller et al., 2002). There is a general consensus that the major contribution to the

DLA population at z ∼ 3 comes from haloes with virial masses of 1010−12M� (Cooke

et al., 2006; Barnes & Haehnelt, 2009; Font-Ribera et al., 2012). Also, Rahmati &
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Schaye (2014) found that most DLAs at those redshifts are hosted by haloes with

masses around or less than 1010M� (see top-right panel of Figure 6 in that paper)

and, more recently, Srianand et al. (2016) suggested a predominant contribution, at

high-redshift, of DLAs that are more compact than modern disk galaxies.

To understand both the nature and evolution of the DLA population it be-

comes critical to identify and characterize the galaxies associated with DLAs, e.g.

measuring their stellar mass, metallicity, size, and star-formation. Understanding

the types of galaxies DLAs represent will allow us to constrain which models bet-

ter describe the DLA population. There are thousands of DLAs identified from

absorption-line studies, thanks to the Sloan Digital Sky Survey (Eisenstein et al.,

2011) and the BOSS surveys (Dawson et al., 2013). We can measure the neutral gas

and metal content from absorption-lines, however, finding the DLA host galaxies

that actually produced the identified features has been difficult, particularly at high

redshift and/or at small impact parameters.

Thus far there have only been 13 QSO-DLA confirmed galaxy counterparts.

This small sample spans redshifts of z ∼ 0.9−3.4 and impact parameters of ∼1−25

kpc (Møller & Warren, 1993; Møller et al., 2002; Weatherley et al., 2005; Fynbo

et al., 2011; Noterdaeme et al., 2012b; Péroux et al., 2012; Krogager et al., 2012;

Bouché et al., 2013; Jorgenson & Wolfe, 2014; Péroux et al., 2016). The majority of

these DLA galaxies were found by taking spectra with multiple slit overlays. This

method has been successful but suffers from a strong bias towards small impact

parameters as this is where most of the slits overlap. Moreover, the bright QSO

precludes exploration at very small impact parameters. It is difficult to quantify
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selection biases with this method as non-detection statistics are not reported. An-

other interesting possibility is to use the Atacama Large Millimeter/submillimeter

Array (ALMA) to map out CO in QSO-DLAs. Neeleman et al. (2016) successfully

detected molecular emission from a galaxy along the projected background of a

quasar with ALMA.

An independent method to identify host galaxies is the double-DLA method

where a second DLA system along the line-of-sight of the QSO-DLA acts as a blue

filter for the QSO (O’Meara et al., 2006). This method has been successful in

placing limits on star formation rates (SFRs) but has so far yielded few detections

(Fumagalli et al., 2015).

Finally, one can target DLAs that are identified within GRB host galaxies

(GRB-DLAs): GRBs are extremely bright sources and can be seen up to z ∼ 9

(Tanvir et al., 2009; Salvaterra et al., 2009; Cucchiara et al., 2011). Their bright

afterglows enable the identification of the Lyα profile (which provides accurate H i

column density measurement) as well as metal lines at the same redshift of the GRB

host (different with respect to QSOs, where the DLA is usually at lower-redshift).

There are three key advantages of using GRB- DLAs: 1) GRBs are very bright

sources, providing exquisite high S/N spectra even at the highest redshifts; 2) the

simple power-law continuum of the afterglow emission simplifies line identification

and line profile fitting with respect to the more complex QSO underlying emission;

3) the afterglow emission fades away after a few days of the explosion, enabling direct

imaging galaxies at small impact parameters (. 1− 3 kpc, as shown by Blanchard

et al., 2016) which are often identified as the GRB host galaxies. Schulze et al.
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(2012) demonstrated this method with a dedicated campaign to identify the galaxy

counterparts for GRB-DLAs and sub-DLAs at z = 2−3.6. The authors successfully

detected a GRB-DLA counterpart for GRB 070721B.

The main drawback with this method is that the transient nature of GRBs

often makes it difficult to obtain spectra before the GRB afterglow has faded. Con-

sequently, it is challenging to assemble a large sample of GRB-DLAs; however, Cuc-

chiara et al. (2015) has reported a sample of 76 confirmed GRB-DLAs and GRB

sub-DLAs (for which log NHI < 20.3). In the following sections we will use this

sample as a starting point to identify and characterize the galaxy counterparts of

these DLAs and sub-DLAs. Our compilation represents a factor of & 3 increase in

the number of identified DLA galaxies to date.

The paper is divided as follows: in §3.2 we describe the GRB-DLA sample and

how it compares to other GRB hosts or QSO-DLA samples, in §3.3.1 we report star

formation rates and stellar masses from our GRB-DLA counterparts and investigate

if there is any correlation between SFR and either redshift or HI column density, in

§3.3.2 we examine the relationship between star formation rate surface density and

HI gas surface density to try to understand how star formation efficiency changes

with redshift and metallicity and we compare our star formation efficiencies with

galaxies in the local Universe, in §3.4 we report enrichment times to understand how

metals are formed in these counterparts, and in §3.5 we summarize our results.

Throughout this paper we assume a ΛCDM model with H0 = 69.6 km s−1 Mpc−1,

Ωm = 0.286, and ΩΛ = 0.714 (Bennett et al., 2014). All magnitudes are in the AB

system (Oke & Gunn, 1983) and quoted uncertainties are 1σ (68%) confidence in-
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tervals unless otherwise noted.

3.2 Sample and data reduction

3.2.1 Sample

We use the GRB-DLA sample described in Cucchiara et al. (2015) as a start-

ing point for our search for GRB-DLA counterparts. This sample is comprised

of 76 GRB host galaxies: 59 confirmed GRB-DLAs and the remaining 17 objects

are either GRB sub-DLAs or they only have either upper or lower limits on NHI

(the latter are likely sub-DLAs or Lyman limit systems). We conduct a literature

search for photometric observations of each associated GRB host galaxy (see Table

3.1 for individual observation references) and supplement these observations with

data from the Large Monolithic Imager (LMI) on the Discovery Channel Telescope

(DCT). All of the magnitudes are converted to AB magnitudes using Blanton &

Roweis (2007) and are corrected for Galactic extinction using the dust map from

Schlafly & Finkbeiner (2011). The photometry of the host galaxies is taken weeks

after the GRB trigger to ensure that the GRB afterglow contribution is negligible.

The majority of our sample is too faint to detect spectral emission lines, however,

Blanchard et al. (2016) performed a statistical analysis of 105 long GRBs with deep

HST imaging with 1′′positioning and found that 90% of long GRBs have physical

offsets of .5 kpc which makes chance associations of our sample improbable. Ad-

ditionally, one expects .0.5 DLA (Noterdaeme et al., 2012a; Crighton et al., 2015)

and ∼1 Lyman limit system (Prochaska et al., 2010; Ribaudo et al., 2011; O’Meara
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et al., 2013; Fumagalli et al., 2013) per line-of-sight at z = 3 which suggests that

these are not interloping DLA or Lyman limit systems.

Out of 59 GRB-DLAs, 45 have GRB host galaxy photometric detections in

at least one band or we are able to measure photometric limits in the rest-frame

ultraviolet (UV) which directly traces star-formation. We do not use any photometry

that is below the Lyman limit in the host galaxy rest-frame and our SED modeling

accounts for IGM absorption (described in detail in §3.3.1.1) for the three GRB-

DLA and one GRB sub-DLA host galaxies that have photometric detections in the

rest-frame Lyα forest. Throughout our paper we refer to these 45 GRB-DLAs as

our sample (Table 3.1). Our sample has a median z = 3.2 and log NHI = 21.6.

For completeness we also include 12 sub-DLAs in Table 3.2.

3.2.2 LMI data reduction

We use LMI to add 5 upper limits and 1 detection of DLA galaxy counterparts.

The LMI data were detrended with a custom IRAF1 pipeline. Individual frames

were astrometrically aligned with Scamp (Bertin, 2006) and coadded using SWarp

(Bertin et al., 2002). We performed aperture photometry on the resulting coadded

images using Sextractor (Bertin & Arnouts, 1996) with a static 5 pixel (1.2”)

radius aperture, which is typical of the average seeing. The resulting magnitudes

were calibrated against the Sloan Digital Sky Survey (SDSS; Aihara et al. 2011)

fields.

1IRAF is distributed by the National Optical Astronomy Observatories, which are operated by
the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with
the National Science Foundation.
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Figure 3.1 Distribution of R-band observations of GRB host galaxies with redshift;
all data have been corrected for Galactic extinction. Downward triangles are upper
limits and circles are detections. Red points are from R, r′, F606W observations,
using a flat SED to calculate R-band AB magnitude. Blue points are from using
scaled SEDs from MAGPHYS (§3.3.1.1) to determine R-band AB magnitudes (see
text for details).

3.2.3 Comparison to other samples

We compare the observer frame R-band and redshift distribution of our sample

with The Optically Unbiased Gamma-ray burst Host (TOUGH) survey (Hjorth

et al., 2012, see Figure 3.1). Our DLA sample covers the z ∼ 2− 6.3 redshift range

and a similar R-band luminosity distribution (which is usually a good proxy for

the host rest-frame UV luminosity) as TOUGH. In the cases where R-band is not

available but we have r′ or F606W observations, we convert to R-band assuming

a flat SED between these three filters. Additionally, 11 GRB-DLAs do not have

R-band, r′-band, or F606W observations (either detections or limits). For these

GRB-DLAs we scale the modeled SEDs (see §3.3.1.1) from our small sample of

eight GRB-DLA counterparts with extensive photometric coverage to the observed
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Figure 3.2 Cumulative redshift distribution of our GRB-DLAs compared with that
of the TOUGH sample. 2-sample Kolmogorov-Smirnov tests show that our sample
is consistent with being drawn from the same redshift distribution as TOUGH.

magnitude and present the median scaled R-band value of those eight SEDs in

Figure 3.1. Note that if the standard deviation of the R-band value from those eight

SEDs was larger than the median we report it as an upper limit. Also, at z & 4 the

R-band traces flux emerging at or below the Lyα line (1216 Å rest-frame), therefore

these values are more uncertain since they are subject to additional absorption.

After we remove objects from our sample that are in the TOUGH survey,

we run a 2-sample Kolmogorov-Smirnov test on the redshift distribution (see Figure

3.2) over the overlapping redshift range of z ∼ 2−5. The p-value of 0.78 is consistent

with our GRB-DLA counterpart sample and the TOUGH survey being drawn from

the same GRB host population. To the extent that TOUGH is a representative

sample of the overall GRB host population, this means that the GRB-DLAs hosts

are also representative of the overall GRB host population.

We also compare our sample throughout this paper to the Fumagalli et al.
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Figure 3.3 The metallicity distribution of our sample compared with the Fumagalli
et al. (2014) double-DLA sample. The majority of our absorption-line metallicity
measurements are lower limits which we do not include in this histogram.

(2010) sample of QSO-DLAs studied with the double-DLA technique which has

no selection bias towards large impact parameters. Our sample (which covers the

NHI = 1020.4−22.7cm−2 range) represents an extension of the work by Fumagalli et al.

(2015), which probes mainly lower column densities (NHI = 1020.2−21.2cm−2), pro-

viding further insights on the nature of the overall DLA counterpart population (see

Prochaska et al., 2007). We perform a Kolmogorov-Smirnov test on the column den-

sity distribution over the overlapping column density range of NHI = 1020.2−21.2cm−2

and the p-value of 0.74 is consistent with our GRB-DLA counterpart sample and

the QSO-DLA sample being drawn from the same DLA population for that range

of column densities. However, we caution that these samples may not be from the

same population for reasons discussed throughout the paper and because this p-value

suffers from problems associated with small number statistics.

Unfortunately, it is difficult to compare our GRB-DLA metallicities with other
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samples because the majority of our metallicities are lower limits. Instead we only

plot a histogram of our 11 GRB-DLA metallicity detections compared to the double-

DLA sample (Figure 3.3); our sample covers a similar spread in metallicity as the

double-DLA sample with the exception of a handful of metal rich systems above

log(Z/Z�) > −1. For more detailed analysis of our sample’s metallicity distribution

and a direct comparison with the largest compilation of QSO-DLAs to date we direct

the reader to the extensive published work by Cucchiara et al. (2015), Rafelski et al.

(2012), and Rafelski et al. (2014).

3.3 Star Formation

Star formation is correlated with the neutral gas content in a galaxy, but

it is not completely clear which phase has a stronger causal connection with star

formation: atomic, molecular, or total hydrogen (Schmidt, 1959; Kennicutt, 1998;

Krumholz et al., 2009; Rafelski et al., 2011; Elmegreen, 2015; Rafelski et al., 2016).

Here we use atomic neutral hydrogen column densities measured from the damped

Lyman-α absorption feature and assume that the molecular hydrogen has a neg-

ligible contribution. This is supported by the small (∼ 1%) molecular hydrogen

detection rate in a blind and uniformly selected DLA survey (Jorgenson et al., 2013,

2014) and by targeted surveys (Noterdaeme et al., 2008).

Additionally, it is rare to detect molecular absorption features in GRB after-

glow spectra (supported by the few H2 measurement along few GRB lines of sights,

e.g., Prochaska et al. 2009; Krühler et al. 2013; D’Elia et al. 2014; Stanway et al.
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2015) due to the unavailability of the required high-resolution instruments and blue

spectral coverage.

We caution that the GRB afterglow line-of-sight is probing a much smaller area

(∼parsec scale) of the much larger galaxy (∼kiloparsec scale); however, if GRBs oc-

cur in star-forming regions we expect them to encounter molecular hydrogen whereas

the QSO may be ouside of the star-forming region.

We calculate star formation rates (SFRs) from rest-frame UV luminosities (see

Section §3.3.1) and investigate if there is any correlation with redshift or the ISM

metallicities (as determined by the absorption features). We then calculate star

formation rate surface densities and HI surface densities to explore star formation

efficiencies (Section §3.3.2), and finally we examine possible redshift and absorption

metallicity trends in comparison with the Kennicutt-Schmidt relation at both local,

z = 0, and at higher redshifts (from cosmological simulations).

3.3.1 Star Formation Rates

We calculate SFRs using three methods. The first and preferred method is

SED modeling using MAGPHYS described in §3.3.1.1. We limit the use of SED

modeling to GRB-DLA counterparts that have photometric detections in at least

three separate bands which is the minimum for MAGPHYS to converge to a reason-

able SED fit (although with large parameter errorbars in cases with few photometric

points). The second method is using single band detections corresponding to rest-

frame UV bandpass to calculate rest-frame UV SFR (see §3.3.1.2). For consistency
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we compare SFRs based on the first two methods: SFR values from these two meth-

ods reasonable agree with each other usually within a factor of two, but in rare

cases may vary by a factor of five most likely due to different accounting of dust

extinction. Generally the single band SFRs are in agreement or are slightly lower

than those derived from SED modeling with MAGPHYS.

If we are unable to use either of the first two methods and we have at least one

detection in another filter, we scale the SEDs from the DLA counterparts that were

fit with the first method to match the detected host galaxy flux. We then use the

scaled SEDs to estimate the rest-frame UV flux and use the median and standard

deviation of the scaled SEDs to calculate the rest-frame UV SFR. Finally, if there

are no detections in any band but there are upper limits in the rest-frame UV band,

we calculate SFR upper limits using the second method.

Photometric measurement were made using aperture photometry technique,

using the Hubble Space Telescope (HST) point spread function (PSF) for GRB-

DLA counterparts with HST data and the DCT 1.2” PSF for the ground-based

data (corresponding to ∼2 and ∼17 kpc diameter apertures respectively). The

large difference in apertures comes from the fact that HST is able to resolve the

host galaxy. We assume that the light from unresolved sources is solely from the

host galaxy and background sky.

All SFRs are calculated from dust-corrected observations unless otherwise

stated. The host extinction, AV , is taken either from SED models or from GRB

afterglow measurements using a Small Magellanic Cloud (SMC)- like extinction law

which has been shown to best depict the GRB explosion environment (e.g. Schady
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et al., 2012).

We assume the host extinction is the same as the GRB line-of-sight extinction

which Perley et al. (2013) has shown is fairly consistent within a factor of 2-3. If the

host extinction is an upper limit, we use that value in all dust-corrected calculations

and report SFR upper limits. In Table 3.1 we report these GRB-DLAs with SFR

error estimates but treat these as SFRs upper limits in all plots using dust-corrected

SFRs. Our host extinction is in general higher than the AV . 0.1 reported for DLAs

in the SDSS survey for our sample’s column densities (Murphy & Bernet, 2016). This

may likely be because GRB-DLAs are found at smaller impact parameter of .5 kpc

(Blanchard et al., 2016) than the general DLA population of 1− 25 kpc (Fumagalli

et al., 2015) or more simply because our DLA sample traces in general metal rich,

and likely dust rich, systems (for example, see correlation between E(B − V ) and

metal lines equivalent widths in Murphy & Bernet, 2016).

3.3.1.1 SED fitting Star Formation Rate

We use MAGPHYS with the HIGHZ extension (da Cunha et al., 2008, 2015),

to model the host galaxy SEDs from photometry. MAGPHYS models templates to

the data and returns a SED with fitted parameters which include SFR, stellar mass

(M∗), dust mass (Mdust), and AV . This particular package is well suited for z > 1

galaxies and takes into account bursty star formation which is appropriate for GRB

host galaxies as suggested by Hunt et al. (2014). MAGPHYS uses a continuous

model of star formation with superimposed random bursts that happen at equal
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probability at all times up to the age of the galaxy. The probability is set such that

50% of the galaxies within the library have had a burst of star formation within

the past 2 Gyr with bursts lasting ∼107 − 108 years. MAGPHYS also accounts for

IGM absorption and uses a Gaussian distribution centered around the mean IGM

effective absorption from Madau (1995) for each model template.

We only select objects that have at least three photometric detections in order

to break some parameter degeneracy and then include, if available, upper limits.

We have nine GRB-DLAs that fit this criterion; however, GRB 080607 returns an

unconstrained SFR and M∗. This particular host galaxy has an extremely high host

extinction and HI column density that is atypical of the majority of galaxies (Wang

et al., 2012; Perley et al., 2011; Chen et al., 2010; Prochaska et al., 2009).

3.3.1.2 Single band UV Star Formation Rate

We use the relations for UV luminosities from Savaglio et al. (2009) to deter-

mine SFR from a single photometric band:

SFR1500 = 1.62× 10−40 L1500,corr

ergs−1Å
−1 M�yr−1 (3.1)

SFR2800 = 4.33× 10−40 L2800,corr

ergs−1Å
−1 M�yr−1 (3.2)

SFR3600 = 5.47× 10−40 L3600,corr

ergs−1Å
−1 M�yr−1 (3.3)
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Equations 3.1-3.3 were derived from samples with simultaneous Hα and UV de-

tection suitable for GRB host galaxies and are for dust-corrected rest-frame UV

luminosities. In Figure 3.4 we present only dust-uncorrected rest-frame UV lumi-

nosities to directly compare with Fumagalli et al. (2015), but in all other figures and

tables we present dust-corrected rest-frame UV SFRs. We note that other objects

that we compare with in this paper use H-α to SFR conversions from Kennicutt

(1998) (e.g. Fumagalli et al. 2015 and Rafelski et al. 2016): direct comparison to

Savaglio et al. (2009) can result in a difference of a factor of .2 in SFRs (which

includes factors for different initial mass functions).

To determine rest-frame UV SFR, we consider observations redward of the rest-

frame Lyα line and from filters that have rest-frame effective wavelengths within

250Å of 1500Å, 2800Å, or 3600Å when we use these relations. We have 12 GRB-

DLAs with rest-frame UV detections (four of which have AV upper limits so we list

the SFRs as upper limits) and 12 GRB-DLAs with rest-frame UV limits.

Additionally, we have another 12 GRB-DLAs that have detections redder than

the rest-frame UV (one of which has an AV upper limit so we list the SFR as an

upper limit). We use the scaled SEDs from the eight GRB-DLAs fit with MAGPHYS

(we do not include GRB 080607 in this fit for reasons described in §3.3.1.1) and

calculate the SFR using Eq. 3.1-3.3 for the closest wavelength to our rest-frame

observed effective wavelength. We report the median and standard deviation SFR

of these eight scaled SED in Table 3.1. We also find that our SFR measurements

are in good agreement with literature values (e.g. SHOALS sample; Perley et al.

2013).
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Figure 3.4 Comparing SFRs in our sample (black points) with Fumagalli et al.
(2015) double-DLA SFRs (green/blue unfilled points) for both ground-based and
HST data. Both datasets are uncorrected for dust for direct comparison. Triangles
represent upper limits. Our sample uses the DCT 1.2′′PSF (∼17kpc diameter)
apertures for ground-based data and the HST PSF (∼2kpc diameter) apertures for
HST data. (top left) Ground-based SFRs vs. redshift. There are three double-DLA
detections, but one may be contaminated by the QSO (see Fumagalli et al. 2015 for
details). The dashed green line is a deep limit from a composite image. (top right)
HST SFRs vs. redshift. The dashed blue line is a deep limit from a composite
image. (bottom left) Ground-based SFRs vs. HI column density. (bottom right)
HST SFRs vs. HI column density.

3.3.1.3 DLA host Star Formation Rates

In Figure 3.4 we compare the dust-uncorrected SFRs with the dust-uncorrected

SFR detections and limits derived by Fumagalli et al. (2015). Similar to this study,

we also take full advantage of our large dataset and probe in situ DLA counterpart
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SFRs within compact (∼2 kpc using HST data) and more extended regions (∼17

kpc using our ground-based observations). The majority of our sample has generally

higher SFRs than the double-DLA limits, however, in some cases we obtain SFRs

similar to the double-DLA limits both from ground-based and HST observations

(downward triangles). This result displays the effectiveness of targeting GRB-DLA

counterparts: not only is our DLA detection rate higher than Fumagalli et al. (2015),

but our DLAs (when we combine ground and HST data) span a larger range of both

redshift and column densities and trace intrinsic SFR over four orders of magnitude

(10−1 − 102M�/yr).

Nevertheless, some DLA counterparts identified along QSOs have measured

SFRs with 1− 30M�yr−1 (see Fumagalli et al. 2015 and references within). It may

be that it is more difficult to detect these high SFR DLAs along QSOs using an

unbiased impact parameter survey as we mentioned in §3.1 or they may be from an

entirely different counterpart population.

We caution that SFRs of DLAs within GRB hosts may be skewed towards

higher values than the general DLA population because our sample is taken from

long-duration GRBs which are known to be associated with the evolution of massive

stars (see Woosley & Bloom (2006) for review) and are therefore associated with

galaxies which have higher specific SFRs (Japelj et al., 2016).

Recent work by Perley et al. (2016b) has shown that the z & 2 GRB host pop-

ulation seems to be consistent with the general cosmic star-formation rate, strength-

ening the idea that our DLA sample may be an important complement to our current

understanding of the nature of DLAs.
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Also, DLA counterpart SFRs have been predicted to be higher for higher col-

umn densities and higher metallicities (Krumholz et al., 2009; Gnedin & Kravtsov,

2010; Rafelski et al., 2011; Noterdaeme et al., 2014; Rahmati & Schaye, 2014; Rafel-

ski et al., 2016). Our SFRs appear to be independent of column density in Figure

3.4: the 5 detections (including both ground and HST data) with NHI ≤ 1021cm−2

have similar SFRs of those with high HI column densities and Rahmati & Schaye

(2014) simulations show that only 5% of galaxies with NHI = 1020−21cm−2 have

SFRs > 10M�yr−1. Again, we caution that SFR is a global measurement of the

host counterpart whereas HI column density is measured along the line-of-sight of

the GRB afterglow and there may be some scatter in the line-of-sight measurement

compared to the average DLA HI column density. Since the majority of our metal-

licity measurements are lower limits it is difficult to determine if metallicity plays an

important role, if any at all, as presented in some cosmological simulations (Rahmati

et al., 2016).

We compare our distribution of SFRs within z = 2−4 and NHI = 1021.5−22cm−2

to simulation results from Rahmati & Schaye (2014) at z = 3 with the same NHI

range. Our sample has a total of 15 objects that meet these criteria and 33%± 8%

of them have SFRs < 1M�yr−1 where we assume the error is primarily poissonian.

This number is slightly lower than the predicted 45% by Rahmati & Schaye (2014).

While the number of GRB-DLAs in this comparison is still small, future and more

complete GRB-DLAs surveys (like the SHOALS survey) will provide more accurate

tests for cosmological simulations and the conversion of neutral gas into stars (e.g.

stellar mass).
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Figure 3.5 (top left, 1a) Ideal case where the GRB, and therefore the HI gas, is
extremely well localized (red circle is localization error) and can be identified relative
to the host galaxy. (top right, 1b) An observed case, GRB 050820A, close to the
top-left idealized configuation. The GRB-DLA is localized to sub-arcsec precision
(red circle) from rapid follow-up of the afterglow with HSTand the DLA galaxy
has been resolved using HST. (bottom left, 2a) Realistic case where the GRB, and
therefore the HI gas, has a large error circle (red circle) that can place the GRB
within the host galaxy or on the outskirts. (bottom right, 2b) An observed example,
GRB 060714A, close to the bottom-left realistic configuration. The GRB is localized
to .1′′(red circle) and, although observed with Keck, the host galaxy is unresolved.

It is also evident from our results that the DLA counterpart SFRs appear to

be independent of redshift and our detections are all above the double-DLA upper

limits for both the ground-based and the HST observed GRB-DLAs, although the

higher SFRs measured in the ground data may be affected by unresolved part of

the GRB hosts (especially at high-z). In fact, as pointed out by Fumagalli et al.

(2015), resolving the exact location of the emission of the DLA counterparts plays a

critical role in our understanding of the DLA properties (see Figure 3.5), and only

more HST data, in combination with more accurate GRB afterglow localization will

enable precise DLAs in situ SFR measurements. We note, for our current sample,

that the probability of chance association with HST are typically .0.05 so it is very
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unlikely that these are interloping galaxies (Blanchard et al., 2016), but are indeed

region of star-formation within the GRB host (Figure 3.5, panels 1a and 1b).

3.3.2 Kennicutt-Schmidt relation

The Kennicutt-Schmidt relation (KS-relation) connects the available neutral

hydrogen gas surface density to form stars (ΣHI) to the actual measured star forma-

tion rate surface density (ΣSFR). The KS-relation has been extensively studied in

the local Universe (Bigiel et al., 2008, 2010; Bolatto et al., 2011; Elmegreen, 2015).

As we mentioned previously we only consider the atomic hydrogen gas content since

the molecular hydrogen gas has a negligible contribution at these HI column den-

sities. This scenario may change with redshift, metallicity, or the actual regions in

which the SFR is measured - core vs. outskirts of galaxies (e.g. Glover & Clark,

2012; Krumholz, 2012, 2013; Rafelski et al., 2016).

3.3.2.1 Surface Density Estimates

In order to measure ΣHI, which is estimated along the line-of-sight of the GRB,

we assume that the neutral gas is equally distributed across the entire PSF used

for determining our SFR density. Figure 3.5 shows the idealized case (panel 1a)

where the GRB is well localized and the host galaxy is resolved. We include an

observed example of this idealized case (panel 1b) for the DLA galaxy identified in

the HST image of GRB 050820A (cigar shaped with bright nucleus to the south;

see Blanchard et al. 2016 for compilation of GRB host galaxy morphologies): the
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GRB location is identified with sub-arcsec precision due to rapid follow-up of the

afterglow with HST (red circle in 1a and 1b panels), and is in the outskirt of the

host galaxy (at radius rHI). Moreover, the NHI column is measured through the

same environment (which may vary at smaller impact parameters).

However, in general, due to the high-redshift nature and the quality of our

data, we encounter a less ideal scenario, as shown in Figure 3.5 panels 2a and 2b.

The uncertainty in the GRB localization, despite being often . 1′′ (1′′ is ∼6-9

kpc for z = 2-6), combined with the unresolved host morphology do not allow us

to accurately measure ΣHI and ΣSFR. In particular, as evident in panel 2a, the

uncertainty in the GRB localization (red circle) makes it difficult to determine the

actual neutral hydrogen line-of-sight (r1,HI and r2,HI are equally viable, but clearly

probe two very different environments).

In order to be consistent with the local observed KS-relation and the higher-z

theoretical models, we calculate ΣSFR using our dust-corrected SFR calculated in

§3.3.1 and the area covered by the unresolved ground-based aperture (1.2′′ radius

aperture) around the GRB location, which correspond to a circular area of ∼17 kpc

diameter for z = 2 − 6 (astropy’s FlatLambdaCDM; Astropy Collaboration et al.

2013), for all the objects in our sample. While this area decreases the ΣSFR for

our resolved HST objects by a factor of ∼70, this allows us to be consistent when

we compare both our resolved and unresolved observations to other samples and

models.

Furthermore, in this context we derive the atomic gas (HI) surface density,

ΣHI, directly from the DLA line-of-sight neutral hydrogen column density as shown
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by Lanzetta et al. (2002) and Hopkins et al. (2005) even though ΣHI and ΣSFR

are measured over different scales, the KS-relation is, on average, still valid (see

also, e.g., Zwaan & Prochaska, 2006; Wolfe & Chen, 2006; Rafelski et al., 2011, for

the limitations of such approximation). This is clearly an oversimplification, but

it is consistent with the analyses from other SF laws and cosmological simulations.

Note that we do not include GRB-DLAs that have no AV measurements as the

dust-corrected SFR measurements are usually lower limits.

3.3.2.2 Comparision with star formation laws & simulations

With these caveats in mind, and in order to be consistent with previous works,

we overplot the local Kennicutt-Schmidt relation of ΣSFR = K(ΣHI

Σ0
)β with K =

(2.5 ± 0.7) × 10−4M�yr−1kpc−2, β = 1.40 ± 0.15, and Σ0 = 1M�pc−2 (Kennicutt,

1998) in Figure 3.6 along with a dynamical star formation law for spiral and irregular

galaxies (Elmegreen, 2015) and a star formation law at z ∼ 3 from cosmological

simulations (Gnedin & Kravtsov, 2010). Note that the Gnedin & Kravtsov (2010)

SFR surface density is shown for the total neutral hydrogen gas (dash blue line),

only molecular hydrogen gas (dotted-dash blue line), and only atomic hydrogen gas

(solid blue line). We also, in the two panels, color code our points based on GRB

afterglow absorption-line metallicity (left) and redshift (right). The interpretation

of this plot is clearly non-trivial: a large fraction (∼50%) of our detected DLA

counterpart falls in the predicted local K-S relation (shaded area), while some very

low metallicity systems are below. Moreover, the presence of our upper limits seem
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Figure 3.6 Dust corrected SFR surface densities vs. HI gas surface densities of
our GRB-DLA counterpart sample. We do not include GRB-DLAs that do not
have host dust extinction measurements. Upper limits are shown as triangles as
are GRB-DLAs with host extinction upper limits. We overplot the local Kennicutt-
Schmidt relation with errors (gray and gray hash; Schmidt 1959; Kennicutt 1998),
the local SF law from Elmegreen (2015) (green), and z ∼ 3 Gnedin & Kravtsov
(2010) simulations for total hydogren, atomic, and molecular gas (blue solid, dashed,
and dotted respectively). The total neutral gas from Gnedin & Kravtsov (2010) SF
laws should be shifted to the right since we are plotting against the atomic hydrogen
gas content. Additionally the molecular hydrogen gas should be shifted to the left
since we expect there to be more atomic hydrogen gas than molecular hydrogen gas.
(Left) SFR surface densities vs. HI gas surface density color coded with metallicity;
black points have no metallicity measurements from absorption lines. (Right) SFR
surface densities vs. HI gas surface density color coded with redshift.

to indicate a very low ΣSFR for the amount of measured ΣHI. These discrepancies

can be due to different factors: GRB afterglow measured metallicities may be lower

than the average DLA-host metallicity or the distribution of neutral hydrogen may

be poorly approximated (Lanzetta et al., 2002; Hopkins et al., 2005). Finally, while

we emphasize here that most of our metallicity estimates are lower limits, the z ∼ 3

theoretical predictions seem to better predict some of the low metallicity and high

metallicity systems.

In Figure 3.7 we overlay our DLA counterparts onto results from Krumholz
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Figure 3.7 Dust-corrected SFR surface densities vs. HI gas surface densities from
our GRB-DLAs (black) on top of the compilation of observed SFR surface density
vs. gas surface density from Krumholz (2014). The purple points are Lyman break
galaxies outskirts at z ∼ 1 − 3 (uncorrected for dust) from Rafelski et al. (2011,
2016), the purple triangles are DLA limits from Wolfe & Chen (2006), the orange
triangles with error bars are composite image limits from dust-uncorrected double-
DLAs from Fumagalli et al. (2015). The red pixels are from lines-of-sight through
the outer disks of local spiral and dwarf galaxies (Bigiel et al., 2010). The red circles
are the median and 1− σ scatter. The blue pixels are from the inner parts of local
galaxies (Bigiel et al., 2008). The green pixels are from the SMC (Bolatto et al.,
2011). Note the SMC, LBG outskirts, and DLA limits are actually plotted for the
SFR surface densities vs. the total neutral hydrogen gas surface densities, not the
atomic hydrogen gas surface density. We expect that adjusting these measurements
to the HI gas surface densities will move the points to the left. The gray dashed
lines mark constant depletion times (tdep = Mgas/SFR).
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(2014) showing the star formation efficiencies in LBG outskirts (Rafelski et al.,

2011, 2016), previous DLA upper limits (Wolfe & Chen, 2006), double-DLA com-

posite image limits (Fumagalli et al., 2015), the outer disks of local spiral and dwarf

galaxies using 21cm emission to measure HI (Bigiel et al., 2010), the inner disks of

the local using 21cm emission to measure HI (Bigiel et al., 2008), and the Small

Magellanic Cloud (SMC; Bolatto et al. 2011). Rafelski et al. (2011, 2016) report

dust-uncorrected ΣSFR and use a different SFR conversion (see §3.3.1.2) which may

partially explain our higher ΣSFR for GRB-DLA hosts (although some discrepancies

may still remain). We note that Krumholz (2014) originally plotted the SFR surface

density against total neutral hydrogen gas surface density not the atomic hydrogen

gas surface density. We expect that adjusting these measurements to HI gas surface

densities will shift the magenta points to the left in the plot.

We also overplot lines of constant depletion times, tdep = Mgas/SFR. Depletion

time represents how long it would take to completely use up the neutral gas (in this

case, HI) with a constant SFR. Our sample covers a large range of depletion times,

some of which are longer than the age of the Universe as seen by the galaxy at

the DLA redshift. This indicates that some of these systems have not reached

equilibrium yet and that we are measuring a phase of lower star-formation than in

earlier times.

Our GRB-DLA counterparts seem to show no overlap with local outer disk

galaxies and seem to have similar depletion times as inner galaxy disks, the SMC, and

LBG outskirts (in a few cases). This is consistent with the observational evidence

that GRB hosts are compact, SMC type, star-forming galaxies (see also Noterdaeme
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et al. 2012b). However, we would caution the reader that GRB-DLAs may sample

higher SFRs than QSO-DLAs because GRBs are associated with massive stars that

are typically in galaxies with higher specific SFRs. From the DLA counterpart

perspective this shows that our sample traces DLAs with shorter depletion times

than other DLAs or LBG outskirts (magenta dots; note that these points are dust-

uncorrected SFRs), and that its higher metallicity, typically 1%-20% the solar value,

can be the cause of this offset (see Krumholz, 2014). For the same reason, most of

the magenta points in Figure 3.7 have much longer depletion times at fixed gas

surface density than most local spirals.

3.4 Enrichment time

Star formation is only process responsible for metal production. Supernova

feedback and stellar winds, on the other hand, contribute to the dispersion of metals

towards the outer regions or even outside the galaxy’s potential well. The enrichment

time is used to determine if the current star formation rate can solely account for

the current measured metallicity and the metal build up of these systems. We

assume a very simple scenario where the star formation rate is constant and the

metal mass is calculated from the absorption-line metallicity measured from GRB

afterglow spectra (“closed box” model).

We calculate the mass in metals:

Mz,obs = 10[X/H]Z�mpNHIπr2 (3.4)
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where [X/H] is the metallicity measured from absorption listed in Table 3.1, assum-

ing Z� = 0.0181 (Asplund et al., 2009) and r is the radius that we take to be 1.2”

across all redshifts. We then assume that the observed mass in metals is solely due

to star formation and we can calculate the enrichment time, ∆tz, from

Mz,SFR = yzψ̇∆tz (3.5)

where we assume a metal yield of yz = 1/42 (Madau et al., 1996) and use SFRs (ψ̇)

from Table 3.1. Note that Eq. 3.4 may overestimate the mass of metals particularly

because the metals could be not fully mixed and absorption features typically arise

in highly enriched gas. This may lead to inflated enrichment times.

We plot enrichment time against metallicity (Figure 3.8) and overplot the time

since z = 10 to z = 2 and z = 6 (where most of our DLAs are found). Some of our

DLA counterparts have enrichment times shorter than the age of their host galaxy.

This indicates that these galaxies have an underabundance of metals if the metals

were formed from a constant SFR. Therefore, it suggests that these systems could

have gone through episodic star formation or that feedback expelled metals from

the galaxy (stellar or supernova feedback; Davé & Oppenheimer 2007; Rahmati

et al. 2016). On the other hand, other DLA hosts have enrichment times longer

than the age of the galaxy. This means there is an overabundance of metals if the

metals were formed from a constant SFR. This may be evidence of either episodic

or exponentially declining star formation, poor mixing between the metals within

the DLA and the rest of the host galaxy, or another source of metal enrichment such
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Figure 3.8 Enrichment time assuming that the galaxy has maintained a constant
SFR and that the observed absorption-line metallicity is the same as the galaxy-
wide metallicity which is purely determined by internal star formation activity. We
only have lower limits or detections for metallicity and upper limits and detections
for SFRs. Limits are plotted with triangles and the colors represent detected SFRs
(green) or upper limit SFRs (blue). Black circles have measured metallicity and
measured SFR. The hatched gray area is the time from z=10 to our DLA redshifts
of 2-6.
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as an influx of metal-enriched gas from galaxy mergers. The former have been also

invoked by Hunt et al. (2014), which has shown that a significant amount of the

total stellar mass (≥ 10%) of some GRB host galaxies can be created in very short

(∼ 50Myr) star formation episodes.

3.5 Summary and Conclusions

We present a sample of 45 DLA galaxy counterparts from photometric follow-

up of the GRB host locations. We use a sample of spectroscopically confirmed GRB-

DLAs identified in Cucchiara et al. (2015) and collect all the publically available

GRB host galaxy photometry. We supplement these observations with DCT-LMI

photometric follow-up. We present 33 DLA galaxy counterpart detections (though

5 only have AV upper limits) and 12 upper limits. This quadruples the number of

detected DLA counterparts known to date (previously 13, all of which are QSO-

DLAs). These GRB-DLAs have a wider range of HI column densities than QSO-

DLAs because they are likely located at much smaller impact parameters than QSO-

DLA host galaxies.

Our rest-frame UV SFRs are usually higher than QSO-DLA in situ identified

using the double-DLA technique (Fumagalli et al., 2015) and, while long GRBs

come from high SFR areas within their galaxies, we still have upper limits that are

consistent with the double-DLA sample as well as other DLA surveys (see Table 2

in Fumagalli et al., 2015). From our sample, the SFR does not seem to be correlated

with either redshift or column density, and we cannot determine if SFR correlates
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with DLA metallicity due to the effect of line saturation and blending in GRB

afterglow spectra.

We investigate how our sample relates to the Kennicutt-Schmidt relation by

looking at the relationship between star formation surface density and HI column

density. Our GRB-DLA galaxy counterpart sample spans both high and lower

efficiency of star formation compared to a variety of star formation laws (local

Kennicutt- Schmidt relation; Schmidt 1959; Kennicutt 1998, Elmegreen 2015 SF

laws, and Gnedin & Kravtsov 2010 simulations at z ∼ 3). We also compare our

sample to objects in the local Universe and find that our sample is not consistent

with the star formation efficiencies of local spiral and dwarf galaxies. Instead, we

find similar efficiencies to local Universe inner disks, SMC, and LBG outskirts,

complementing what has been currently observed from QSO-DLA counterparts.

We caution the reader that our SFRs represent a measurement performed over the

integrated host galaxies light while the HI column densities are measured locally

along the line-of-sight of the GRB afterglows and may be subject to observational

biases (metal rich, star-forming environments) compared to the average HI column

density of the DLAs.

We also examine the depletion times of our systems. Depletion time is a

measure of how long it would take to completely deplete the DLA gas, HI gas in our

case, assuming that the current SFR remains constant. Our sample spans a large

range of depletion times (1-100 Gyr). Some of the our sample’s depletion times are

longer than the current age of the Universe as seen by the galaxy which indicates

that these systems have not reached equilibrium yet.
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Finally, we investigate the enrichment time of our DLA host counterparts.

Enrichment time is the measure of how long it would take to form all the current

metals assuming they were solely formed from star formation at the current constant

SFR. Some DLA counterparts have enrichment times that are much shorter than the

age of the galaxy which indicates that the galaxy underwent episodic star formation.

Some DLA counterparts have enrichment times that are longer than the age of the

galaxy which indicate an overabundance of metals assuming a constant SFR. This

suggests that these galaxies may have had episodic star formation histories, there

may be other sources of metal enrichment such as galaxy mergers, or that there is

poor metal mixing between the metals in the DLA and the rest of the host galaxy.

The higher detection rate of GRB-DLA host galaxies and their properties

(e.g. SFR, metallicity) may indicate that QSO-DLAs are an entirely different pop-

ulation than GRB-DLAs. While investigation of this issue is beyond the scope

of this study, we note that such a difference may be due to an intrinsic bias in

the GRB-DLA sample such that they represent actively star-forming regions with

special conditions correlated with the likelihood of GRB appearance (e.g. trace

different physical regions of galaxy). Additionally, metallicity may affect the GRB

environment differently than QSO-DLAs.

GRB-DLAs are unique objects that have good localization and can later be

followed up with photometry and spectroscopy. These are key advantages with

respect to the identification of DLAs along QSOs. However, it is unclear if these

objects are from the same DLA population. Our sample, complementary to the

QSO-DLAs, is the largest collection of DLA galaxy counterparts available to date
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bringing the total number of detected DLA counterparts from 13 to 58. Future deep,

multi-band, follow-up observations of the remaining GRB-DLAs, in particular with

HST and large aperture telescopes, will increase the sample size for comparisons

with cosmological simulations. Furthermore, we showed the importance of accurate

identification (sub-arcsecond or better) of GRB afterglows in precisely pinpointing

the DLA location within their host, especially in lieu of more powerful, parsec scale,

simulations. Finally, it will be important to investigate the morphology of DLA

hosts, in particular using GRB host galaxies, which seem to show signs of pair

interaction (Cooke in prep, private communication) and may open new insights on

the nature of DLAs and the in situ star-formation.
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Table 3.1. GRB-DLA Host Galaxy Sample

GRB-DLA Redshifta log NHI log Z/Z� AV SFRb log M∗ log Mdust Ref.
(cm−2) (M� yr−1) (M�) (M�)

000926 2.03621 21.30± 0.25 > −0.30 0.038 3.03+0.97
−0.36 9.90+0.16

−0.22 6.00+0.55
−0.00 (1)

011211 2.1427 20.40± 0.20 > −1.22 0.138 3.86+2.85
−1.00 8.94+0.18

−0.28 6.19+0.70
−0.19 (2)

020124 3.198 21.70± 0.20 · · · 0.280±0.330c < 0.35 · · · · · · (3),(4)
030226 1.98 20.50± 0.30 > −1.28 0.060±0.060c < 2.08 · · · · · · (4),(5)
030323 3.3714 21.90± 0.07 > −1.32 <0.020c < 0.69 · · · · · · (3),(4)

030429 2.658 21.60± 0.20 > −1.13 0.400±0.100c 3.82+0.79
−0.56

d · · · · · · (3),(4)

050319 3.24 20.90± 0.20 > −0.77 0.050±0.060c 2.05+1.14
−0.54

d · · · · · · (6),(7)

050401 2.899 22.60± 0.30 > −1.07 0.738 9.16+11.35
−4.52 9.56+0.23

−0.21 7.00+0.64
−0.63 (3),(6),(8),(9)

050730 3.96723 22.10± 0.10 −1.96± 0.11 0.120±0.020c < 0.54 · · · · · · (9),(10)

050820A 2.6145 21.10± 0.10 −0.78± 0.11 0.813 8.17+6.19
−3.57 9.16+0.17

−0.17 6.94+0.60
−0.59 (3),(6),(8),(9)

050904 6.26 21.30± 0.20 > −1.00 <0.050c < 0.64d · · · · · · (11),(12)
050922C 2.1996 21.55± 0.10 −1.88± 0.14 0.090±0.030c < 1.23 · · · · · · (3),(13)

060115 3.533 21.50± 0.10 > −1.53 0.763 5.85+8.02
−2.98 9.33+0.20

−0.28 6.81+0.64
−0.65 (6),(8),(9)

060206 4.048 20.85± 0.10 > −0.74 <0.170c < 0.77 · · · · · · (9),(13)

060210 3.913 21.55± 0.15 > −0.83 0.363 51.52+27.36
−22.21 9.99+0.15

−0.12 7.52+0.61
−0.65 (6),(14)

060223A 4.41 21.60± 0.10 > −1.80 · · · 1.03+0.24
−0.16

d · · · · · · (9)
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Table 3.1 (cont’d)

GRB-DLA Redshifta log NHI log Z/Z� AV SFRb log M∗ log Mdust Ref.
(cm−2) (M� yr−1) (M�) (M�)

060510B 4.94 21.30± 0.10 > −0.84 <0.500c < 2.23d · · · · · · (6),(14)
060522 5.11 21.00± 0.30 · · · · · · < 2.96 · · · · · · (15)

060707 3.425 21.00± 0.20 > −1.69 0.080±0.020c 6.54+0.37
−0.35 · · · · · · (8),(10)

060714 2.711 21.80± 0.10 > −0.97 0.210±0.020c 1.40+0.41
−0.32 · · · · · · (8),(10)

060926 3.206 22.60± 0.15 > −1.32 0.320±0.020c 6.31+3.52
−1.67

d · · · · · · (10),(16)

060927 5.464 22.50± 0.15 > −1.55 <0.170c < 0.32 · · · · · · (9),(13)

061110B 3.433 22.35± 0.10 > −1.84 0.230±0.030c 4.46+1.37
−1.05 · · · · · · (8),(10)

070110 2.351 21.70± 0.10 > −1.32 0.100±0.100c 3.43+0.63
−0.46

d · · · · · · (8),(10)

070506 2.308 22.00± 0.30 > −0.65 0.440±0.050c 5.09+0.98
−0.71

d · · · · · · (8),(10)

070721B 3.628 21.50± 0.20 > −2.14 0.200±0.020c 1.17+0.59
−0.39 · · · · · · (8),(10)

070802 2.455 21.50± 0.20 > −0.54 0.838 23.28+26.49
−13.12 9.71+0.11

−0.11 7.33+0.65
−0.67 (8),(9),(17),(18)

080210 2.641 21.90± 0.10 > −1.37 0.330±0.030c 5.53+1.96
−1.45 · · · · · · (5),(10)

080607 3.037 22.70± 0.15 > −1.72 2.938 116.68+0.00
−0.00 10.13+0.00

−0.00 8.36+0.49
−0.52 (6),(9),(17)

080804 2.20542 21.30± 0.10 −0.75± 0.16 0.170±0.110c 0.82+0.54
−0.23

d · · · · · · (6),(13)

081008 1.96 21.59± 0.10 −0.86± 0.14 0.290±0.070c 4.64+1.27
−0.82

d · · · · · · (7),(9)

090205 4.64 20.73± 0.05 > −0.57 · · · 6.14+0.59
−0.54 · · · · · · (19)
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Table 3.1 (cont’d)

GRB-DLA Redshifta log NHI log Z/Z� AV SFRb log M∗ log Mdust Ref.
(cm−2) (M� yr−1) (M�) (M�)

090516 4.109 21.73± 0.10 > −1.36 · · · 5.87+3.43
−2.17 · · · · · · (20)

090812 2.425 22.30± 0.10 > −1.64 0.230±0.080c < 561.26 · · · · · · (5),(13)

100219A 4.667 21.13± 0.12 −0.95± 0.18 0.130±0.050c 5.45+1.89
−1.12

d · · · · · · (21)

110205A 2.214 21.45± 0.20 > −0.82 0.350±0.060c 2.65+1.74
−0.75

d · · · · · · (6),(13)

111008A 4.98968 22.30± 0.06 −1.63± 0.13 0.110±0.040c < 7.16 · · · · · · (22)
120327A 2.813 22.01± 0.09 −1.51± 0.11 <0.030c < 14.16 · · · · · · (23)
120716A 2.487 21.55± 0.15 > −1.76 · · · < 2.84 · · · · · · (5)

120909A 3.9293 21.20± 0.10 −0.66± 0.11 · · · 3.31+0.39
−0.35 · · · · · · (20)

121024A 2.2977 21.50± 0.10 −0.40± 0.12 0.563 36.90+32.60
−16.39 10.15+0.16

−0.17 7.54+0.60
−0.60 (24)

121201A 3.385 21.70± 0.20 · · · · · · 6.45+1.38
−1.13 · · · · · · (20)

130408A 3.757 21.70± 0.10 −1.24± 0.12 · · · < 6.54 · · · · · · (20)
130505A 2.2687 20.65± 0.10 > −1.42 <0.128c < 7.47 · · · · · · (5),(25)
140423A 3.258 20.45± 0.20 > −1.44 · · · < 8.95 · · · · · · (5)

Note. — aSignificant digits of redshift reflect accuracy of measurement. bDust-corrected (except those without AV measure-
ments). cHost extinction from GRB afterglow measurements. dCalculates SFR from MAGPHYS SED scaling of photometric
detection. (1) Castro et al. 2003, (2) Fynbo et al. 2003, (3) Chen et al. 2009, (4) Kann et al. 2006, (5) This work, (6) Perley
et al. 2016b, (7) Schady et al. 2012, (8) Hjorth et al. 2012, (9) Blanchard et al. 2016, (10) Zafar et al. 2011, (11) McGuire et al.
2015, (12) Zafar et al. 2010, (13) Covino et al. 2013, (14) Perley et al. 2009, (15) Basa et al. 2012, (16) Laskar et al. 2011, (17)
Perley et al. 2013, (18) Krühler et al. 2011, (19) D’Avanzo et al. 2010, (20) Greiner et al. 2015b, (21) Thöne et al. 2013, (22)
Sparre et al. 2014, (23) D’Elia et al. 2014, (24) Friis et al. 2015, (25) Cannizzo et al. 2013
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Table 3.2. GRB sub-DLA Host Galaxy Sample

GRB sub-DLA Redshifta log NHI log Z/Z� AV SFRb log M∗ log Mdust Ref.
(cm−2) (M� yr−1) (M�) (M�)

021004 2.3289 19.00± 0.20 · · · 0.038 7.19+0.17
−1.21 9.29+0.06

−0.32 9.29+0.06
−0.32 (1),(2)

050908 3.344 19.40± 0.20 · · · <0.550c 3.21+1.65
−1.09 · · · · · · (3),(4)

060124 2.3 18.50± 0.50 · · · 0.170±0.030c 0.46+0.10
−0.07

d · · · · · · (5),(6)

060526 3.221 19.90± 0.15 · · · 0.700±0.180c 1.63+0.91
−0.43

d · · · · · · (6),(7)

060605 3.773 18.90± 0.40 · · · · · · 0.40+0.06
−0.05 · · · · · · (5)

060607A 3.075 16.95± 0.03 · · · 0.080±0.040c < 0.29 · · · · · · (3),(8)

080310 2.427 18.70± 0.10 · · · 0.100±0.020c 1.82+1.14
−0.51

d · · · · · · (4),(7)

080810 3.35 17.50± 0.15 · · · · · · 27.33+15.99
−10.09 · · · · · · (9)

080913 6.69 < 19.84 · · · 0.120±0.030c < 1.51 · · · · · · (10),(11)

090323 3.5778 > 19.90 · · · · · · 9.72+1.75
−1.49 · · · · · · (12)

090426 2.609 19.10± 0.15 · · · 0.088 3.03+0.00
−0.00 8.48+0.00

−0.00 8.48+0.00
−0.00 (13)

130606A 5.9134 19.93± 0.20 · · · · · · 1.63+0.37
−0.25

d · · · · · · (14)

Note. — aSignificant digits of redshift reflect accuracy of measurement. bDust-corrected (except those without AV measure-
ments). cHost extinction from GRB afterglow measurements. dCalculates SFR from MAGPHYS SED scaling of photometric
detection. (1) Fynbo et al. 2005, (2) de Ugarte Postigo et al. 2005, (3) Hjorth et al. 2012, (4) Perley et al. 2009, (5) Blanchard
et al. 2016, (6) Kann et al. 2010, (7) Perley et al. 2016b, (8) Schady et al. 2012, (9) Greiner et al. 2015b, (10) Basa et al. 2012,
(11) Zafar et al. 2011, (12) McBreen et al. 2010, (13) Thöne et al. 2011, (14) McGuire et al. 2015
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Chapter 4: RIMAS: Hardware

The Rapid infrared IMAger-Spectrometer (RIMAS) has been designed to quickly

follow-up dusty or high-redshift (z & 7) GRB afterglows in the near-infrared with

photometry and spectroscopy. This chapter describes the instrument hardware, in

particular, an overview of the instrument and the RIMAS detectors and detector

driver systems.

4.1 RIMAS Overview

RIMAS is a near-infrared (0.97-2.39 µm) instrument that can operate in three

observing modes: photometric imaging, low-resolution (R∼30) spectroscopy, and

high-resolution (R∼4000) spectroscopy. RIMAS is a fully cryogenic instrument that

operates in a vacuum nominally at ∼60K.

4.1.1 Discovery Channel Telescope

RIMAS will be permanently installed on the instrument cube at the f/6.1 po-

sition of the 4.3-meter Discovery Channel Telescope (DCT; Figure 4.1) near Happy

Jack, Arizona. RIMAS will share the telescope with four other instruments mounted

on the DCT instrument cube. The DCT can rapidly switch between instruments by
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placing either a folding mirror or dichroic beamsplitter in the center of the instru-

ment cube. When RIMAS is in use, a dichroic beamsplitter inside the instrument

cube will allow simultaneous use of RIMAS and an optical imager, the Large Mono-

lithic Imager (LMI), that has a 12.5′ × 12.5′ field-of-view. The DCT was declared

fully operational with its first light instrument, LMI, at the beginning of 2015.

Figure 4.1 The 4.3-meter Discovery Channel Telescope in the stowed position. The
instruments sit behind the primary mirror at the base of the telescope in an in-
strument cube that moves with the telescope. The image was retrieved from
http://www.bu.edu.
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4.1.2 RIMAS design

Figure 4.2 CAD model of RIMAS showing the main dewar with the front dewar
assembly attached in the upper left hand corner. The main components of the
instrument are labeled, components labeled in red are a significant part of this
thesis work and will be covered in more detail in §4.2.

RIMAS consists of a main dewar that includes all the main optics and detectors

and a front dewar assembly that includes a slit wheel (with an open position), a

filter wheel for custom filters that can be changed throughout the lifetime of the

instrument, and slit-viewer optics that allow guiding on the slit in spectroscopic

modes by using mirrored surfaces around the slits. Both the main dewar and front
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dewar assembly are shown in a computer-aided design (CAD) model in Figure 4.2

and the components of the front dewar assembly are shown in a more detail in Figure

4.3. Figure 4.4 shows the instrument during the integration phase.

Figure 4.3 CAD model of the interior of the front dewar assembly where the translu-
cent gray part demarks the border between the main dewar and the front dewar
assembly. Light is reflected off the mirrored surface of the slit into the slit-viewer
optics that sit below the slit wheel and is directed into the slit-viewer InSb detector.

In the main dewar, RIMAS has two optical arms (YJ and HK) split by a

dichroic beamsplitter which allows for simultaneous imaging or spectroscopy in two

separate bandpasses. For a detailed description of the RIMAS optical design see

Capone (2016). In addition to the slit wheel and filter wheel in the front dewar

assembly, each optical arm has a filter wheel with two filters, transmission spec-
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Figure 4.4 The RIMAS main dewar during the integration phase. Components
labeled in red are a significant part of this thesis work and will be covered in more
detail in §4.2.

troscopic elements, and an open and closed position. RIMAS can switch between

observing modes in less than a minute using these filter and slit wheels.

RIMAS has three detectors that sit on focusing stages: each optical arm cam-

era has a Teledyne HgCdTe Astronomy Wide Area Infrared Imager with 2K x 2K,

Reference Pixels and Guide Mode (H2RG) science detector and a slit-viewer Spitzer

Legacy Indium-Antimonide (InSb) detector sits below the collimator. The detectors

and detector electronics are described in detail in §4.2.

RIMAS has a 3′×3′ field-of-view and the slit-viewer has 80′′×80′′ field-of-view.

Both the main optics and slit-viewer optics have a plate scale of 0.35′′/pixel. The

instrument is held in vacuum < 10−8 Torr using a turbopump and is cooled with
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a two stage cryo-cooler that cools the optics, mechanical components, and science

detectors to ∼65K and the InSb detector is cooled to ∼15K.

4.2 RIMAS Detectors

The majority of this thesis work has focused on operating, characterizing, and

analyzing the RIMAS detectors. RIMAS uses three hybrid detectors: two science

Teledyne HgCdTe Astronomy Wide Area Infrared Imager with 2K x 2K, Refer-

ence Pixels and Guide Mode (H2RG) detectors (Figure 4.5) and one Spitzer Legacy

Indium-Antimonide (InSb) slit-viewer detector (Figure 4.6). We have characterized

multiple detectors for this thesis but here we only present the detector characteri-

zation of the final RIMAS detectors.

Figure 4.5 RIMAS science 2k x 2k pixel H2RG detector. Both detectors have the
same readout circuity. (left) Front of the mounted detector array. (right) Back of
the mounted detector array. A harness connects to the back of the array to deliver
clocks and biases to the detector and return the detector signal to the detector
acquisition system.
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Figure 4.6 RIMAS slit-viewer 256 x 256 pixel InSb detector. Three harnesses connect
to the circuit board to deliver clocks and biases to the detector and return the
detector signal to the detector acquisition system.

4.2.1 Detector Introduction

4.2.1.1 Semiconductors

Semiconductors either have free electrons or free “holes”. Unlike insulators

or conductors, semiconductors have a small but non-negligible separation between

the valence band (where electrons are tightly bonded) and conduction band (where

electrons are free flowing) which is called a band gap with energy Eg. If a photon

with E > Eg strikes the semiconductor it can free an electron, effectively turning a

photon into an electron. The band gap energy can be altered by adding impurities

to the semiconductor material; this process is called doping.

There are two types of semiconductors, N-type and P-type, which are created

with different types of impurities. A N-type semiconductor has free electrons when

bound in a lattice, whereas a P-type semiconductor has holes when bound in a lattice
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Figure 4.7 Examples of N-type and P-Type semiconductors. A N-type semiconduc-
tor has extra electrons that are not tightly bound, whereas a P-type semiconductor
has extra holes that will accept free electrons.

(Figure 4.7). When a P-type and N-type semiconductor are joined, the region where

they touch is called the PN junction. At this junction holes and electrons combine

to create a depletion zone which acts as an insulator and allows current to flow in

only one direction when an electric potential difference is applied, effectively acting

as a diode (Figure 4.8). When a photon with energy above the band gap energy

strikes the PN semiconductor, the potential sweeps the electron or hole through the

junction and current can flow through the system; effectively creating a photodiode

or detector.

4.2.1.2 Semiconductor Material

Optical detectors are typically made of silicon because silicon has band gap

energies that are well matched to optical wavelengths, silicon is a readily available

material, and the technology to process silicon is well developed and therefore cost

effective. Arsenic doped silicon (Si:As) can also be used for the mid-infrared but
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Figure 4.8 (left) When a P-type and a N-type semiconductor are joined they cre-
ate a PN junction called the depletion zone where holes and electrons have com-
bined to create a small insulation barrier. (middle) No current can flow when the
system is configuration in this way. (right) Electrons or holes can flow when the
electrical potential direction is switched. The combined material still maintains
its semiconductor properties but now also acts like a diode. Figure adapted from
http://www.imagesco.com/articles/photovoltaic/photovoltaic-pg3.html

the most common semiconductor materials in the near-infrared are mercury cad-

mium telluride (HgCdTe), indium antimonide (InSb), and indium gallium arsenic

(InGaAs). RIMAS detectors are made of HgCdTe and InSb.

4.2.1.3 Detector Types

The most common type of near-infrared detector is a hybrid array. Hybrid

arrays are made using photodiode material tuned for the near-infrared band gap,

but the readout circuitry is made of silicon which has much more developed manu-

facturing technology (Figure 4.9). The photodiode material is joined to the silicon

readout circuitry by bump bonding the two materials with electrical conductors

(usually indium) and filling the gaps with epoxy to ensure the array is rigid. The

readout circuitry uses multiplexed metal-oxide semiconductor field-effect transistors
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Figure 4.9 An example of the components in a hybrid array. The incoming light in-
teracts with a semiconductor absorber layer (in RIMAS’s case this is either HgCdTe
or InSb depending on the detector) and the array is read with silicon readout cir-
cuitry. The two layers are connected with electrical conductors (usually indium)
and the gaps are filled with epoxy to ensure that the array remains rigid. Image
from http://jwst.nasa.gov/infrared.html.

(MOSFETs).

MOSFETs have a metal electrode and semiconductor material that sandwich

an oxide/insulator (Figure 4.10). The metal electrode is commonly referred to as

a gate and when voltage is applied to the gate it creates a pile-up of electrons at

the barrier between the semiconductor and insulator. The amount of electrons that

can roll into that potential well is called the well depth of the detector. The semi-

conductor part of the MOSFET has either two N-type (or P-type) semiconductors

terminals separated and surrounded by P-type (or N-type) semiconductors (Figure

4.11). One of these terminals is called the source and the other is called a drain.

The drain is typically attached to ground and the source is attached to a positive
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voltage. Current is unable to flow when there is no voltage applied to the gate.

However, when voltage is applied to the gate, charge on the gate creates an inverted

channel between the source and drain and allows current to flow. A small voltage

applied on the gate can create a large amount of current through the transistor and

the amount of voltage on the gate is proportional to the amount of current. Since

hybrid arrays have MOSFETs for each pixel that means each pixel can be read out

separately.

Figure 4.10 Energy diagram of a MOSFET. The semiconductor has a conduction
band and valence band and the Fermi level is the typical energy of an electron.
(left) MOSFET with a small voltage applied to the metal electrode. The voltage
bends the conduction and valence bands a little towards lower energies, but the
Fermi level is still below the conduction band so most electrons stay bound. (right)
MOSFET with a large voltage applied to the metal electrode. The voltage bends
the conduction and valence bands a lot towards lower energies and the Fermi level
is above part of the conduction band allowing free electrons to fill the energy well.

Hybrid arrays typically have more noise than charge coupled devices (CCDs)

because each pixel must have additional circuitry for multiplexing, however, hybrid

arrays are able to run in non-destructive read mode. This means the charge accumu-

lated on each pixel’s gate will not be destroyed when the pixel is read and the pixel

can be read multiple times throughout an acquisition unlike a CCD. Multiplexed
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Figure 4.11 An example of a N-channel MOSFET. (left) MOSFET with uncon-
nected electrodes. Charge cannot flow between the P-type and N-type semicon-
ductors when there is no electric potential. (right) MOSFET with the source and
drain connected to a battery or voltage source and voltage applied to the gate.
In the N-channel MOSFET the positive voltage pushes electrons into the P-type
semiconductor which allows current to flow between the source and drain. Figure
adapted from http://www.allaboutcircuits.com/textbook/semiconductors/

chpt-2/insulated-gate-field-effect-transistors-mosfet/.

arrays can also run in windowing mode which means a user can choose to read a

small portion of the detector to greatly reduce the readout time.

4.2.2 Operating hybrid detectors

While each pixel in a hybrid detector can be read individually, it is impracti-

cal to read every pixel simultaneously, particularly for larger arrays. For instance

RIMAS’s H2RGs have over four million pixels. To read four million pixels simulta-

neously the system would require four million wires running to four million analog-

to-digital converters (ADCs). That would result in a very complex and difficult

system to debug. Instead, hybrid detectors often have multiple readout channels

ranging from ∼1-64 to decrease the total readout time without drastically increas-
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ANRV320-AA45-03 ARI 24 July 2007 18:32

ROIC: readout integrated
circuit

the signals from each detector sequentially to a small number of output amplifiers,
multiplexing the signals down to a small number of output wires. In fact, the readouts
are often termed multiplexers or MUXs. They are implemented in readout integrated
circuits (ROICs), fabricated in standard integrated circuit foundries. The simple array
circuit in Figure 3 illustrates how the readout functions are performed.

In principle, the circuit in Figure 3 allows addressing any pixel in the array, or
any sequence of pixels in any order. Pixels can also be reset individually. This high
degree of flexibility is usually considered to be too much of a good thing, and the
array is controlled by on-board circuits that advance the signals in response to a
simple clock pulse. Also, the readout amplifier can be simplified by eliminating the
capability to reset individual pixels and therefore allowing T3 to be removed from the
circuit.
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Figure 4.12 An example ROIC diagram from Rieke (2007). The gate of transistor
T1 collects charge from the photodiode (a single pixel). In order to measure the
signal on the pixel, power has to be applied to both R1 and C1 (row and column
drivers respectively) simultaneously which will subsequently be read out by external
circuitry. If the pixel is not being read out it will accumulate charge. Power is cycled
to other row and column drivers to read other pixels. To reset the pixel, the reset
line attached to T5 is powered (while R1 and C1 are powered) and sets the gate of
T1 to voltage VR effectively clearing the charge accumulated from the pixel.

ing the complexity of the system. In order to cycle through the detector and read

four million pixels with tens of readout channels, each pixel has multiple transistors

attached to it that allow us to cycle through the detector in a controlled manner

and reset each pixel (Figure 4.12). This circuitry is called the Readout Integrated

Circuit (ROIC) and is controlled with bias and timing boards. The bias boards set

the voltage levels on the transistors and can affect the sensitivity of the detector.

The optimal voltages are typically determined empirically.

The timing board sends a repeating set of digital signals called clocks that

the detector ROIC interprets into reading particular pixels. There are often 10 or
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more clocking signals sent to the detector ROIC simultaneously. The most common

clocking signals are (1) row clocks - a high value means to move to the next row,

commonly the rows are the “slow” clocks, (2) column clocks - a high value means

to move to the next column, commonly the columns are the “fast” clocks stepping

through each column within a row, (3) frame clock - a high value means the frame is

being read, (4) reset clock - a low value means to reset pixels, often while the reset

clock is active the column and row clocks go high very quickly to reset the detector

rapidly, and (5) read clock - a high value means to read the current pixel value. The

rail voltages of digital signals are called transistor-transistor logic (TTL) levels and

these must be within a certain range set by the ROIC.

When a detector is read it converts accumulated charge into voltage and the

signal is amplified and sent to an external readout circuitry with analog-to-digital

converters (ADC). Once the detector signal is digitized it is sent to a computer. The

digital signals combined with knowledge of the read, row, and column clock patterns

allows us to reconstruct the detector image from our multiple channel readout. The

ADC biases must be adjusted so the detector signal is within range of the ADC.

We refer to the combination of bias board, timing board, ADC boards, and

the software behind it as the detector driver system. RIMAS uses two types of

detector driver systems. Both H2RGs are controlled using Leach/Astrocam Reseach

Camera, Inc. (Leach/ARC) hardware and the InSb detector is controlled using

custom hardware controlled by a Labview compact Real-time Input Output (cRIO).
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4.2.2.1 Multiplexer sampling modes

Since multiplexed hybrid arrays have non-destructive reads there are several

different ways to sample the data: correlated double sampling (CDS), up-the-ramp

(UTR) sampling, Fowler sampling (also known as multiple frame CDS), and multiple

frame UTR sampling. In each mode the detector is reset at the beginning of a

frame by connecting transistors that allow the charge to drain. After the detector is

reset, the detector is immediately sampled before photoelectrons have accumulated.

Figure 4.13 shows an example of each type of sampling mode.

CDS consists of reading an initial frame (pedestal) immediately after a reset,

followed by an exposure time, then reading one final frame (signal). The pedestal

frame is subtracted from the signal frame to reduce fixed pattern noise (noise from a

certain location from the underlying structure of the array) and reset noise. Fowler

sampling is an extension of CDS where the pedestal and signal consist of multiple

frames instead of just a single frame each both the pedestal and signal. Fowler

sampling has the same number of frames in the pedestal and signal sets. The

median of each pixel in the set of pedestal frames is subtracted from the median

of each pixel in the set of signal frames. This reduces the read noise by a factor of

√
N where N is the number frames in the pedestal or signal sets (Fowler & Gatley,

1990). Traditionally N is chosen to be a power of two.

UTR sampling consists of reading one frame followed by an exposure time, then

repeating the process multiple times without removing the charge accumulated on

the pixels. Each read is separated by an exposure time of the same length and the

118



acquisition ends on a read frame. This mode was introduced as a way for space

missions to identify when cosmic ray events occurred. A best-fit straight line can

be applied to the data to get the mean flux rate. This readout mode also reduces

read, fixed pattern, and reset noise. Multiple frame UTR sampling consists of UTR

sampling with multiple frames taken for each read and is a combination of Fowler

and UTR sampling.

Time

Si
gn

al
 

Time

Si
gn

al
 

Time

Si
gn

al
 

Time

Si
gn

al
 

Figure 4.13 Examples of different readout modes used with hybrid detectors, see
text for description. In all four cases the detector is only reset once and is read in
non-destructive read mode. (it top left) Correlated double sampling. (it top right)
Fowler sampling or multiple frame correlated double sampling. Example with N=2.
(it bottom left) Up the ramp sampling. (bottom right) Multiple frame up the ramp
sampling with N=2.
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4.2.3 RIMAS detector drivers

4.2.3.1 Leach/ARC detector driver

We use two sets of identical ARC controllers (Leach & Low, 2000) to operate

RIMAS’s two H2RG science detectors. Each set includes a PCI card - ARC-64,

timing board - ARC-22, clock driver - ARC-32, and four video boards that output

biases to the detector and digitize the analog signals coming from the detector -

ARC-46 (see Figure 4.14). We run the H2RG detectors in 100 kHz 32-channel

mode and acquire images in UTR sampling mode or multiple UTR sampling mode.

Typical acquisition times are ∼2 seconds for each frame.

We have three layers of software that control the ARC hardware. The first

layer is assembly code written for a Motorola DSP56300 that set the clocks, biases,

and acquisition mode. The second layer is the ARC Application Programming In-

terface (API) written in C++ which allows the user to acquire multiple images from

the detector. The first two layers are the standard software for ARC components

(although the DSP code is alterable and can be configured for different detectors).

The third and last layer of our software is a custom C++ wrapper developed in

our laboratory that can run both of our H2RG detectors either simultaneously or

separately on different PCI cards.

We run the software on a Linux computer that can be accessed remotely and is

fully dedicated to driving the detectors to avoid timing delays. The Linux computer

will communicate over fiber optic cables to the Labview-based RIMAS instrument
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PCI Interface Board Rev. 5E

PC

ARC-80

Power Supply

ARC-46 ---> Video board
ARC-32 ---> Clock driver
ARC-22 ---> Timing board

ARC-73 ---> Power control board
ARC-80 ---> Power Supply
ARC-70 ---> 6-slot housing
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Figure 4.14 Leach/ARC hardware layout that we use to run RIMAS’s H2RG detec-
tors. Note that we use two identical sets of hardware, one for each H2RG detector.
We have two ARC-64 PCI Interface boards installed in our Linux computer so we
can run the detectors separately or simultaneously.

121



control system.

4.2.3.2 Labview detector driver

We have developed and built our InSb detector driver system based on National

Instruments Compact-RIO (cRIO) controller. Our cRIO-9074 utilizes four modules:

a high-speed digital I/O - NI-9401, a custom optoisolator, a digital I/O - NI-9403,

and an analog-to-digital converter - NI-9223. The cRIO is controlled by a Labview

program and acts as both the detector driver and acquisition system (Figure 4.15) in

conjunction with three external boards: voltage level setter, programmable bias, and

amplifier. We have developed a custom set of Labview programs that are alterable

and user-friendly.

This system is very versatile, robust, and can be made using commercial off-

the-shelf products. The cRIO-9074 has eight module slots which allows us to use two

additional modules to monitor temperature diodes and run a heater in our testbed

system. We acquire images from the InSb detector in 4-channel Fowler sampling

mode. The cRIO-9074 is a dedicated detector driver and acquisition system that

interfaces with the control computer over ethernet.

The clocking patterns are written in an easily alterable ASCII file that are

parsed to our cRIO FPGA and transmitted to an external voltage level-setter board

via the NI-9401 and optoisolator. The cRIO also generates commands to an exter-

nal programmable bias board through the NI-9403. Finally, the NI-9223 converts

differential analog signals from the InSb detector after they have passed through an
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external amplifier. While it has been developed for the 256x256 InSb detector, this

set of hardware/software can be modified for other systems due to its modifiable

clocks and biases.

Voltage 
level setter

board

Programmable
bias

board

Detector

Ampli er

NI-9401
Optoisolator

NI-9403
NI-9223

cRIO:
Detector Inputs

Acquisition

PC:

Figure 4.15 Hardware layout of the cRIO and custom bias and level setter boards
that we use to run RIMAS’s InSb slit-viewer detector.

4.2.4 Detector characterization parameters

Here we describe several important detector characterization parameters that

we use to both characterize our detectors and correct our raw readout.

4.2.4.1 Quantum efficiency

The quantum efficiency (QE) of a detector is defined as the ratio of electrons

produced for each incident photon on the detector. A perfect detector will convert

one photon to one electron and have a 100% QE. However, most detectors have a

lower efficiency of 60-80% due to impurities within the substrate which cause im-

perfect electron-hole recombination and reflection of light. The quantum efficiency

is determined by using the detector to measure a well-calibrated source (typically a

National Institute of Standards and Technology calibrated source) and compare the
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flux of the source with the output of the detector.

4.2.4.2 Conversion gain

In order to detect small signals we use electronic amplifiers for each pixel to

amplify the voltage before digitization. The conversion gain indicates how many

electrons are in an analog-to-digital unit (ADU) or voltage. The conversion gain

combined with quantum efficiency allows us to calculate the flux from a digital num-

ber. The conversion gain is typically calculated using the photon transfer method.

The photon transfer method uses the fact that a signal has two main noise

sources: photon and readout noise. These sources are independent and random and

therefore add in quadrature:

σ2
e− = p2

e− + r2
e− (4.1)

where the subscripts represent the units of the variables (electrons), σ is the total

noise, p is the photon noise multiplied by some quantum efficiency, and r is the

readout noise.

Assuming the photon noise follows Poisson statistics and the read noise is

independent of photon flux, p2
e− = ne− and SmV =

ne−
g

, where g is a conversion

gain, ne− is the number of detected electrons, and SmV is the mean signal. We can

convert from units of electrons to mV by dividing g2 and rewrite this as:

σ2
mV =

(
SmV
g

)
+ r2

mV (4.2)
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Therefore, we can measure the slope of the signal variance against the median

signal to determine the conversion gain. This is the photon transfer technique and

it can be used for measurements in voltage or ADUs.

4.2.4.3 Read noise

Read noise or readout noise comes from the non-zero noise from the readout

electronics. The main sources of read noise are shot noise, Johnson noise (thermal

noise), and 1/f noise. Typically the ultimate floor of the total noise in the system

is the read noise. In order to reduce read noise we employ different sampling modes

described in §4.2.2.1 to reduce random noise.

4.2.4.4 Dark current

Dark current is the small amount of electric current that flows into a detector

when there are no photons present. Dark current is dependent on the detector tem-

perature and is caused by Poissonian thermal fluctuations in the substrate releasing

electrons and holes in the detector’s depletion zone that are then swept away by the

electric field to create a current. For bright sources and short exposures this is not a

significant source of noise, but can contribute a large amount of photons especially

for spectroscopy frames where the number of incoming source photons is small and

the exposure time is long.
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4.2.4.5 Linearity

If we have a linear detector we can measure a source and then measure a

source with 10 times the signal and we should get 10 times the number ADUs.

Most detectors are linear to a certain point and then become non-linear as they

approach saturation. Each pixel behaves slightly differently, therefore, we need to

characterize the linearity of each pixel. If a pixel reads a completely flat number of

ADUs with increasing flux we called it a bad pixel; it is unresponsive to light. If a

pixel is extremely non-linear and quickly saturates we call it a hot pixel. Hot pixels

can often still be used as long as they stay below their saturation point. We can use

each pixel’s linearity curves to create both a bad pixel map and a hot pixel map as

well as correct the signal for linearity differences.

4.2.4.6 Saturation

Saturation occurs when adding more photons does not increase the number of

ADUs read out. At this point the potential well is full and the amount of current

does not change with increasing photons. Beyond saturation we cannot accurately

measure the flux of a source.

4.2.4.7 Dynamic range

Dynamic range is the range between the signal floor (e.g. the read noise) and

the signal ceiling (e.g. saturation or point of nonlinearity) that we can measure.

This is the range that the detector can measure flux and sources and exposure times
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should be chosen to fit within this range.

4.2.4.8 Persistence

Persistence is when charge is trapped after the detector is exposed to a very

bright source. This signal persists after the bright source is out of the field of view

and even after the detector array is reset. Persistence is caused by traps within

the active diode regions which eventually allow electrons or holes to tunnel back to

the photosensitive material to create afterimages. Persistence is typically measured

both as a measure of time and exposure signal.

4.2.5 RIMAS H2RG Detectors Characterization

We report the laboratory characterization of the RIMAS detectors at cryogenic

temperatures: conversion gain, linearity, saturation, read noise, dynamic range, and

dark current. We did not have enough time to measure the quantum efficiency or

persistence. The results are summarized in Table 4.1 and the analysis is explained in

detail in the remainder of this section. We note that we have received a replacement

detector for the YJ detector due to a large ramp in the dark current described in

this section. The replacement detector is in the process of being fully characterized.

To avoid confusion we refer to the original YJ detector as “YJ Detector A” and the

replacement detector as “YJ Detector B”. We report the available characterization

data for YJ Detector B.
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Table 4.1 RIMAS H2RG Detector Characteristics

Characteristics YJ Detector A YJ Detector B HK Detector

Conversion gain (e−/ADU) 4.00± 0.06 · · · 4.40± 0.03

aRead noise (e−) 8.73± 0.15 · · · 7.67± 0.05

Saturation (ADU) 37,725 · · · 32,467

Dynamic range (dB) 42.5 · · · 42.7

Dark Currentb (ADU/s) 5e-2c 3e-4 2e-4

aRead noise reported for Fowler 16 and error from conversion gain.
bTested at ∼80K.
cWas tested before baffles installed so likely dominated by light leak.

4.2.5.1 H2RG Detectors: Conversion Gain

We measure the conversion gain with an LED source outside the dewar window

with diffusers to create a uniform source of illumination. We take six datasets with

UTR 128 and exposure time of 500ms between each frame with filters in front of

the detectors.

We first subtract the first frame from all subsequent frames in each dataset,

then subtract another dataset frame-by-frame; this removes any large source vari-

ation. Note that there are still low levels of non-uniformity because the source is

not perfectly uniform. In order to mitigate this effect, we only use a small 100x100

pixel box near the center of the detector to calculate the conversion gain.

We use the photon transfer technique to measure the conversion gain. We

calculate the variance in the difference frame (corrected for a factor of two due to
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the increase in noise from subtracting the other dataset) and mean signal and plot

in Figure 4.16. Note that in Figure 4.16 the conversion gain (inverse of the slope)

starts to drift at larger median signals. This is likely due to the non-uniformity of

the source becoming more significant with larger signal; however, the deviation is

< 7% which indicates this is a minor non-uniformity. We mitigate this effect by only

using the first five points (where the slope is linear). We perform a linear regression

over five difference datasets and report the conversion gain in Table 4.1.

Figure 4.16 Conversion gain for YJ detector A and HK detector from 100x100 pixel
boxes near the center of the detectors. Note the drift from linearity at higher signals
is likely due to small non-uniformity in the signal becoming more significant with
more signal. The largest deviation in the gain is < 7%, but we only calculate the
conversion gain from the lower signal region (first five datapoints) and fit all five
difference datasets to avoid this non-uniformity.

4.2.5.2 H2RG Detectors: Linearity and Saturation

In order to measure the linearity and saturation of our detectors, we place an

LED source outside the dewar window with diffusers to create a uniform source of
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illumination. We use the same data as the conversion gain calculation (see §4.2.5.1).

Large scale variations are removed by subtracting the first frame from all subsequent

frames of each dataset. Our analysis is limited to a 500x500 pixel box near the center

of the detector to reduce signal variation. We perform a linear regression for the

first two datapoints on each pixel within the box to determine the bias voltage

and offset each pixel by this amount to effectively force each pixel to start at 0

ADUs. We then perform a second linear regression for the first six datapoints (this

is within the linear regime for most pixels). The middle pixel of the 500x500 pixel

box acts as a reference pixel and we scale the slopes of all other pixels to match this

reference pixel; this corrects for different scaling factors between pixels. We plot the

median signal in both ADUs and electrons (using the conversion gain in §4.2.5.1) for

both detectors in Figure 4.17. The detectors start to deviate from linearity around

∼20,000 ADU.

For strong signals, the detectors become extremely non-linear. The saturation

point is different for each pixel so we take the last frame of a single UTR 128 dataset

and subtract the first frame. We only look at the 500x500 pixel box we defined for

our linearity measurements and fit a Gaussian function to a histogram of the signal

in ADUs (see Figure 4.17). We report the saturation from the mean of the Gaussian

fit in Table 4.1. We note that we see an increase in the saturation point at lower

temperatures.
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Figure 4.17 (top) Linearity of median of 500x500 pixel box for YJ detector A and HK
detector. Pixels have been corrected for bias voltages and different scaling factors
between pixels. Black lines are linear fits to the first six frames. Detector starts to
behave non-linearly around ∼20,000 ADU. (bottom) Saturation point of last frame
for the 500x500 pixel box of the detector. We fit a Gaussian distribution (red) to
get an estimate of the saturation point of the detectors.
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4.2.5.3 H2RG Detectors: Read noise

We calculate the read noise from two identical datasets with UTR 255 and

exposure times of 500ms between each frame while the detector is cold and dark.

We make a pseudo-Fowler set by breaking the UTR 255 frames into Fowler sets

using the first and last 2, 4, 8, 16, 32, and 64 frames for Fowler sets of 1, 2, 4, 8,

16, and 32 respectively. We do this because read noise is commonly reported by

Fowler number. In order to calculate the read noise we calculate the variance of

each pixel as a function of Fowler number. This is done by first subtracting the

median of the pedestal frame per pixel and from the median in the signal frame

per pixel. We perform a 3-σ clip on the data and calculate the variance across the

difference frame, correcting the variance by a factor of two due to the increase of

variance from subtracting two datasets. We report our H2RG detector read noise

in Figure 4.18 and the read noise for Fowler 16 in Table 4.1. The increase in read

noise for Fowler 64 and 128 is from the source noise dominating over the read noise.

4.2.5.4 H2RG Detectors: Dynamic Range

The dynamic range of a detector is set at the low end by the read noise and at

the high end by the saturation. We report the dynamic range of both our detectors

in Table 4.1 using our reported conversion gain.
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Figure 4.18 Read noise for YJ detector A and HK detector. The increase in read
noise for Fowler 64 and 128 is from the source noise dominating over the read noise.

4.2.5.5 H2RG Detectors: Dark Current

We measure the dark current while the detector is cold (∼80K) and dark with

UTR 255 with exposure times of 200s between frames. This is a total integration

time of ∼ 14 hours. We perform a linear regression on the reference pixels along the

columns and subtract the fit from the entire array. This corrects for slowly varying

electrical noise in time and across the detector. We subtract the first frame from

all subsequent frames to remove fixed pattern noise. The dark current is shown

in Figure 4.19 and Table 4.1. Typically dark current is reported in e−/s but we

report it here in ADU/s because the YJ detector B conversion gain has not yet been

measured.

Our measurements of YJ detector A dark current were taken prior to installed

baffles around the detectors and are likely dominated by a light leak, however, we
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Figure 4.19 (top) Dark current for YJ detector B (left) and HK detector (right).
There are dark current ramps in both detectors from ADC biases settling after the
initial start up. The ramp can be reduced by waiting an hour after initializing the
detectors before acquiring data. The HK detector has additional noise on top of
the dark current likely originating from the detector driver electronics or thermal
fluctuations.

plan on replacing YJ detector A because there was evidence of a persistent non-

linear ramp that is associated with a known problem with the barrier layer of this

batch of detectors. However, despite the ramp and noisy signal, the dark current

measurements on the YJ detector B and HK detector are consistent with similar

H2RG detectors measurements of ∼0.005 e−/s measured at 100K; our dark current

is lower which is expected since our detectors are measured at a lower temperature

of ∼80K.

For the YJ detector B and HK detector, there is a “ramp” in the dark current

in Figure 4.19 that is likely due to a non-trivial settling time of the ADC bias levels

with the Leach/ARC electronics. This “ramp” can be reduced both in time and in

amplitude by adding a long delay time (∼60 minutes) after initializing the detectors

to allow time for the ADC biases to settle. There is an additional noise on the HK

detector dark current. The noise level is quite small (∼2 ADU) primarily due to

noise on the detector driver electronics or thermal fluctuations.
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Table 4.2 RIMAS InSb Slit-viewer Detector Char-
acteristics

Characteristics InSb slit-viewer
detector

Conversion gain (e−/mV) 48.77

aRead noise (e−) 14.71

bSaturation (mV) 3,264

Dynamic range (dB) 40.35

aRead noise reported for Fowler 16.
bReported for 10% deviation from linearity.

4.2.6 RIMAS InSb Detector Characterization

We report the laboratory characterization of the RIMAS InSb slit-viewer de-

tector at cryogenic temperatures. The InSb detector is used for guiding on the slit

and only needs to identify bright objects, therefore, we only characterize conversion

gain, linearity, saturation, read noise, and dynamic range. We did not have time

to perform quantum efficiency and persistence measurements. The results are sum-

marized in Table 4.2 and the analysis is explained in detail in the remainder of this

section.

4.2.6.1 InSb Detector: Conversion gain

We measure the conversion gain using room lights with a diffuser in front of

our dewar window for our uniform source. The five datasets are taken with Fowler

16 for 11 different exposure times (0.1s, 2s, 10s, 20s, 50s, 70s, 100s, 110s, 125s, 150s,
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200s). The exposure times were chosen so we could see the detector saturate.

We use the photon transfer technique to measure the conversion gain and

remove pixel-to-pixel variation by subtracting two datasets with the same exposure

time. Despite flat fielding the image, there is still non-uniformity because some hot

or dead pixels do not subtract out perfectly. We exclude these pixels by visually

examining the image and selecting a smaller area (50x50 pixels) that is visually

uniform. We plot the mean signal vs. variance in Figure 4.20 and report the

conversion gain in Table 4.2. The variance is corrected for a factor of two from the

increase in noise due to subtracting two datasets.

Figure 4.20 Conversion gain for InSb slit-viewer detector for 50x50 pixel box. Non-
linear behavior starts at ∼2500 mV and completely saturates at ∼3300 mV.

4.2.6.2 InSb Detector: Linearity and saturation

In order to measure the linearity and saturation of our detector, we place a

light bulb with a diffuser to create a uniform source of illumination. We acquire a
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Figure 4.21 Linearity from Fowler 16 acquisition. Each black dot represents a pixel
for the 32 frames taken, the gap in data at ∼3.7s is a 0.1s exposure time for the
Fowler sampling. (upper left) The raw data. (upper right) The data with the signal
offset removed. (bottom left) The data scaled to the linear fit of the first pixel in the
array. (bottom right) The deviation from linearity in mV and percent. If we ignore
the outliers, we can see that there is a large spread in the well depth.

dataset with Fowler 16 and a short integration time of ∼0.1 seconds. We plot the

exposure time against the measured signal for each pixel for the 32 images from

a Fowler 16 acquisition in Figure 4.21. In order to remove each pixel’s bias, each

pixel is fit with a linear regression for the first two datapoints and is forced to start

at 0V. This removes effects from the non-uniformity of the source and the readout

circuitry variation between pixels. Each pixel has a different gain, so each pixel’s

gain is scaled by the slope of the first pixel in the array.

The data in Figure 4.21 are tightly bunched for early exposure times but have
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a wide spread at saturation (∼1000 mV) because while the pixels appear to be well

fit to the first pixel in the linear regime, the pixels strongly deviate in the non-linear

regime. This allows us to measure the pixels’ deviation from linearity. We call the

point where the detector deviates 10% from linearity the saturation point. This is

reported in Table 4.2.

4.2.6.3 InSb Detector: Read Noise

We calculate the read noise by measuring the variance of the detector as a

function of Fowler number while the detector is cold and dark. We use 10 bias frames

for each Fowler number (1, 2, 4, 8, 16). We only use a small area of the detector

(20x50 pixels) which has low levels of illumination. We subtract the pedestal and

signal frames and calculate the standard deviation from a mean subtracted frame

of the 10 bias frames. The variation has been corrected by a factor of two due the

increased noise from subtracting the mean signal.

The read noise for each Fowler number is shown in Figure 4.22. We also report

the read noise for Fowler 16 in Table 4.2. Note that the increase in read noise at

Fowler 16 is because the signal noise starts to become more significant with the long

exposure times associated with higher Fowler numbers. Note that the read noise

does not decrease as a function of
√
N which is expected for white noise dominated

read noise. This discrepancy can be attributed to periodic pickup noise and higher

Fowler frames starting to pick up signal due to longer acquisition times. However,

this detector will primarily be used to identify bright objects and will not be read
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Figure 4.22 Read noise drops off with larger Fowler number. Can decrease the
readout noise by taking more frames with a tradeoff in acquisition speed. Note that
for Fowler 16 there is an increase in read noise, this is due to the long acquisition
times for higher frames starting to pick up signal.

noise limited.

4.2.6.4 InSb Detector: Dynamic Range

The dynamic range of a detector is set at the low end by the read noise and

at the high end by the saturation. We report the dynamic range of our slit-viewer

detector in Table 4.2 using our reported conversion gain.

4.2.7 Troubleshooting near-infrared hybrid detectors

In this section we outline some techniques to troubleshoot near-infrared hybrid

detectors. Hybrid detectors are complex and can be difficult to debug because NIR

detectors must be run at cryogenic detectors due to thermal noise. However, there

are some straightforward tests to run both at room temperature and at cryogenic
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temperatures to ensure that the detector is operating properly.

4.2.7.1 Testing detector driver systems

The first step is to perform a thorough safe-to-mate: attach all harnesses to the

detector driver systems without the detector and verify both the biases and clocks

on the harness the detector will be attached to. The most important checks during

a safe-to-mate are that the bias levels match the voltage level set in the detector

configuration files and that the clocks have the correct logic voltage levels. These

should also be referenced against the detector manuals which specify the range of

acceptable bias and clock logic levels. If the bias and clock signals are unacceptable,

methodically work backward from the cable that connects to the detector all the

way to the computer running the detector driver system. In particular, harnesses

should be checked for shorts and miswiring and the detector configuration file modes

should be set properly. For example, the detector may be hardwired for a particular

configuration which must be specified in the configuration file or the detector will

not properly read out. Once the biases and clocks are verified, attach the detector.

The detector should never be attached without first doing a safe-to-mate check.

4.2.7.2 Testing detectors at room temperature

The next step is to attach the detector and run at room temperature. Figure

4.23 shows two raw detector frames. These are uncorrected other than de-interlacing

the detector readout. The most obvious sign that the detector is reading properly
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Figure 4.23 Two raw hybrid detector frame examples at room temperature. The
picture frame pattern around corners and edges of the detector is highlighted in
both frames. There is also large scale variation across both detectors frames from
differences in crystal growth. In the red circle and inset is an example of a detector
defect. Any of these features can be used to identify if a detector is operating
properly at room temperature. Additionally, the black horizontal and vertical lines
are caused by reference pixel variation and ADC ramping respectively. These lines
are not necessarily useful in determining detector operability and can be removed
with flat-fielding.
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is that the corners and edges of the detector array have a “picture frame” pattern

on the raw frame readout. This pattern comes from the edges of the detector

substrate not adhering as well to the ROIC away from the center of the detector.

The detector will also show signs of wide scale variation which comes from the way

the crystal structure grows on the detector substrate. Detector variation is different

for each detector but is an obvious indicator that the detector is being read out

properly because the patterns stretch over large areas of the detector. Another

indicator that the detector is being properly readout are signs of obvious defects on

the detector. Not all detectors will have large defects, but it can often be a way

to identify a specific detector from raw images. Figure 4.24 is an example of an

unconnected detector. In this case, the readout columns are all flat and featureless.

This type of image can occur if the detector is not attached properly to the harness

or if the detector configuration files do not match the hardwired configuration on

the detector.

We see some features in our own system that can easily be removed with flat-

fielding. For example, in the top image in Figure 4.23 there are vertical lines at

the beginning of each readout channel. This comes from ADC ramping and can be

minimized by waiting for the ADCs to settle. Additionally, the randomly dispersed

horizontal lines in the bottom image in Figure 4.23 can be removed with flat-fielding.

This may be specific to our system because we set the ADC bias levels based on

the vertical reference pixels. If those reference pixels are at slightly different levels

than each other they will cause horizontal lines through the detector image. Both

of these problems can be mitigated with flat-fielding or just simply subtracting the
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Figure 4.24 An example of a unconnected detector. Note that while the readout
columns vary between each readout channel, the columns are all flat and featureless.
This type of raw frame indicates that the detector is not connected or the detector
driver has not been configured properly for a specific detector.

pedestal frame of the dataset.

Next, we have discovered that our NIR detectors respond to very bright sources

even at room temperature. We move the source across the detector at room tem-

perature to ensure that the detector is reading out properly. We have used this to

aid in aligning optics at room temperature and debug problems with the detector.

For instance we had a persistent problem where readout channels would appear as

a superposition of multiple readout channels (see Figure 4.25). We were able to

quickly debug the problem once we discovered we could test at room temperature.

The problem was crosstalk in one particular harness, once this harness was rewired

the problem went away.

At room temperature we saw two prevalent problems. One was a ramping sig-

nal over all readout channels at the beginning of a frame (Figure 4.26). This was due
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Figure 4.25 Example of a degraded detector at ∼ 65 K. There are a large number of
hot pixels. This frame also suffers from a superposition of readout channels caused
from crosstalk within a harness (shown in red). A typical detector readout should
not show these features.

to ADC levels taking a non-negligible time to settle after changing ADC bias levels.

Originally when we ran the acquisition system we would turn the detector driver on,

set the ADC biases, acquire, and then turn the detector driver off. The first frame

would show this prominent ramp, but placing a delay between setting the ADC

biases and acquiring a frame completely removed the ramp. We suggest allowing

settling time every time the ADC biases are altered significantly and additionally

suggest waiting at least 60 minutes to acquire an image after turning on the detector

driver systems in order to allow the entire system to settle (this is particularly true

for the Leach/ARC systems). The other problem we saw at room temperature was

that some readout channels sporadically jumped values in the middle of an image

(Figure 4.27). This ended up being a small problem in the ADC board software

that has been corrected.
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Figure 4.26 Example of ramping signal from ADC bias levels. Both frames are taken
with a function generator with a sawtooth signal attached to an input channel of
a detector driver. The signal changes in amplitude on the left because the ADC
biases are still changing during the readout. The frame on the right is taken after a
five second delay that allows the ADC biases time to settle.

4.2.7.3 Testing detectors at cryogenic temperatures

At cryogenic temperatures, the most prominent features to identify are hot

pixels. As the temperature decreases, the number of hot pixels should drastically

reduce because they are more sensitive to dark current. At operating temperature

the detector should only have a few percent hot pixels. Figure 4.25 shows a detector

image at operating temperature of ∼65K with a very large amount (> 10%) of hot

pixels. This is a sign of detector degradation and this particular detector came from

a batch of detectors that has a known defect in the barrier layer (Rauscher et al.,

2011, 2014).
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Figure 4.27 Example of column splitting. There is a sudden change in the column
readout. This type of problem was due to a software bug in the ADC board.
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Chapter 5: RIMAS: Software

Throughout this thesis we have built several software products for RIMAS and

other instruments. The following chapter presents these publicly available products.

5.1 RIMAS Quick Reduce Data Pipeline

We have created a quick data reduction pipeline for RIMAS that takes the

raw detector science frames from a single H2RG detector acquisition and returns

one result frame. The pipeline is available on GitHub1 and can be run in several

configurations.

RIMAS’s H2RG detectors have a border of four reference pixels around the

detector that are not illuminated and can be used for common noise rejection. We

allow the user to scale each raw image by the reference pixels in five different ways:

no correction, removing the median of each column’s reference pixels from a col-

umn (“col med”), removing the median of each row’s reference pixels from a row

(“row med”), perform a linear fit on the top and bottom reference pixels in a column

and remove the fit line from a column (“col allslope”), and perform a linear fit on

the median of the top and the median of the bottom reference pixels in a column

1https://github.com/vickitoy/rimas_quickreduce
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and remove the fit line from a column (“col medslope”). The corrected raw frames

are then cropped to exclude the reference pixels.

The user can then specify the acquisition sampling mode, either UTR sampling

or Fowler sampling. For UTR sampling we perform a least squares linear regression

on each pixel as a function of time. The result frame is the product of the total

integration time and the slope of the linear fit. Due to problems with the “ramping”

ADC biases described in §4.2.5.5, we also have implemented frame rejection which

ignores a particular raw image if the difference between subsequent frames is above

1-σ. This allows us to reject frames that are largely impacted by the ADC bias

ramp.

For Fowler sampling we split the raw images in half and calculate the median

of each pixel over the first half of the acquisition (pedestal) and the median of

each pixel over the second half of the acquisition (signal). The result frame is the

difference of the pedestal and signal frame. Note that the Fowler sampling does

not generally require frame rejection because the pedestal and signal frame use the

median of a group of frames.

5.2 Generalized Photometric Data Reduction Pipeline

We have created a generalized photometric data reduction pipeline. This

pipeline is based on a custom pipeline for the Keck Low Resolution Imaging Spec-

trometer (LRIS) developed by Dan Perley2, but we have made substantial changes to

the original pipeline. While we will not list all the changes to the pipeline here, the

2http://www.dark-cosmology.dk/~dperley/code/code.html
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changes have been well documented in our GitHub developmental pipeline repos-

itory3. Some of the major changes include migrating the pipeline from IDL to

Python, modularizing the code, reducing the runtime of the pipeline by a factor

of two, generalizing the pipeline to work with multiple instruments, improving the

astrometric solutions, and including instrumental zeropoint correction errors.

The generalized pipeline is entirely open-source and the most recent version

is publicly available on GitHub4 (this is a migrated version of the developmental

pipeline). The pipeline is written in Python and makes use of multiple Astromatic

packages (SExtractor - Bertin & Arnouts 1996, SCAMP - Bertin 2006, SWarp -

Bertin et al. 2002, MissFITS - Marmo & Bertin 2008) as well as standard Python

packages (numpy, scipy, pyfits, astropy - Astropy Collaboration et al. 2013). The

pipeline comes with a source bash script that automatically verifies that all the

Astromatic packages are installed and adds the pipeline Python code to the system

Python path.

The pipeline can be run autonomously or can be run manually with user inter-

action. We break the pipeline into three separate components: preprocessing, data

reduction, and photometry. The pipeline is written such that the only instrument

specific component is in the preprocessing stage. All subsequent components assume

that the data is formatted correctly.

3https://github.com/cenko/RATIR-GSFC
4https://github.com/vickitoy/photometry_pipeline
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5.2.1 Preprocessing Stage

The preprocessing component of the pipeline uses a defined class based instru-

ment structure that allows the user to process data from any photometric instru-

ment. The instrument class is made up of abstract methods that allow freedom in

defining different methods for individual instruments but creates a structure for the

rest of the pipeline to follow. Each instrument inherits this generalized instrument

class and a class is defined for each new instrument that the pipeline can use.

In the preprocessing stage, the pipeline takes the raw calibration and science

frames and formats the file name, fits header, and crops the frame according to the

defined class methods for the specified instrument. Additionally, the calibration and

science frames can be selected either manually or automatically. The user can set

limits on the pixel values of the frames based on percentage of saturation and can

also automatically reject any frame with saturated pixels. At the end of the selection

phase, the script will display all images for inspection. This section of the pipeline

also can be used to make master calibration files (bias, dark, flat) by calculating the

sigma-clipped median for each pixel.

5.2.2 Data Reduction Stage

The bulk of the pipeline is the data reduction stage which begins with automat-

ically setting paths for the Astromatic software and setting file naming conventions

from the user defined parameter file called “pipeautoproc.par”. These parameters

and others are saved into a Python dictionary that is passed to all subsequent steps
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in the data reduction stage.

The data reduction stage consists of seven possible steps that can be run

autonomously. The user can select which steps to run using the keywords “only”,

“start”, “stop”, or “step”. This gives the user the freedom to interrupt the pipeline

at any stage, rerun steps, or only run small portions of the pipeline. The data

pipeline component can also run in quiet mode, which displays minimal outputs,

and is entirely modularized making it easy to understand and debug. Finally, we

have increased the data reduction speed by a factor of two, resulting in a robust and

fast data reduction pipeline.

The pipeline assumes that the master calibration files are in the folder where

the data will be reduced. Step (1) is the “prepare” step. During this step the pipeline

performs dark and bias subtractions for cameras with master darks or biases in the

reduction folder. The pipeline also removes extraneous FITS header keywords in

this step and saves the altered files with a prefix “p” to denote that the files have

been prepared. Step (2) is the “flatten” step. During this step the pipeline divides

the images by a master flat based on the filter specified in the FITS header of each

image. The processed images are saved with a prefix of “f” to denote that the files

have been flat-fielded.

Step (3) is the “makesky” step. During this step the pipeline makes a master

sky flat for each filter. First the pipeline masks out saturated pixels for each image

with the same filter FITS header keyword. Then the sources within each image are

identified and masked by performing an iterative sigma-clipping using a specified

object threshold. Finally, the master sky flats are made from a sigma-clipped median
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of each pixel from a 3-D array of images for that filter with the saturated and source

pixels masked out. Step (4) is the “skysub” step. During this step the master sky

flat is scaled to and subtracted from each image. Then the each image is normalized

to zero and the processed images are saved with a prefix of “s” to denote that the

files have been sky-subtracted.

Step (5) is the “crclean” step. During this step the pipeline models and re-

moves cosmic rays from each image using an open- source Python script5 that makes

use of the Laplacian edge detection method described in van Dokkum (2001). The

processed images are saved with a prefix of “z” to denote that the files have been

cosmic ray zapped.

Step (6) is the “astrometry” step. During this step the pipeline calculates and

applies astrometric solutions that account for offset and distortion. The astrometric

solutions are created first using a coarse correction from pair-distance matching and

asterism matching and then secondly using a fine correction from Scamp. This cre-

ates better astrometric solutions because Scamp will fail if the astrometric solution

is not close enough to the actual solution and the pair-distance matching cannot

accurately account for distortion. The processed images are saved with a prefix of

“a” to denote that the files have astrometric solutions applied.

Finally, step (7) is the “stack” step. During this step the pipeline coadds all

the images of the same target and filter using SWarp and calculates the instrumental

zeropoint. In order to calculate the instrumental zeropoint, we create spectral energy

distributions (SEDs) for ugrizyBVRIJHK filters by combining catalogs from the Two

5http://obswww.unige.ch/~tewes/cosmics_dot_py/
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Figure 5.1 Example of pipeline processed images from RATIR’s J-band camera
aligned with World Coordinate Systems. Overlaid in green circles are 2MASS cat-
alog sources within the field. (A) A cropped raw J-band image. Note that the
astrometry has not been corrected. (B) A full corrected J-band image (an “azsfp”
frame). (C) A stack of all the J-band images for this particular target. The coadded
image is a stack of dithered frames so the field is larger than the single images shown
in (A) and (B).

Micron All Sky Survey (2MASS; Skrutskie et al., 2006) and either Sloan Digital Sky

Survey (SDSS; Aihara et al., 2011), AAVSO Photometric All-Sky Survey (APASS6),

or USNO-B1 (Monet et al., 2003) in that preferred order. We then calculate the

difference between SExtractor aperture photometry and the catalog photometry.

Robust statistics are used to remove outliers and the instrumental zeropoint and

associated error are written into the FITS header file. The coadded frames are

saved with a prefix “coadd” and saved with a median timestamp of the stacked

images as well as the target name and filter name.

6This research has made use of the APASS database, located at the AAVSO web site. Funding
for APASS has been provided by the Robert Martin Ayers Sciences Fund.
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If all the steps are run, the final corrected individual image will have prefix

“azsfp”. The pipeline will print the names of any failed images to the console after

processing all the data. The pipeline can be run so that after each step is complete,

the previous steps’ files are removed to save hard drive space. The pipeline requires

all steps to be run to proceed to the photometry stage except the cosmic ray zapping

step may be skipped with an optional flag. Additionally, the pipeline can be run to

not produce a master sky and instead simply subtract the median of entire frame.

Figure 5.1 shows an example of processed images from the pipeline for the J-band

camera of the Reionization and Transients InfraRed camera/telescope (RATIR).

5.2.3 Photometry Stage

In the photometry stage, the pipeline assumes that the stacked images have

been produced using the data reduction stage. The pipeline performs aperture

photometry with SExtractor using apertures that match the seeing. A composite

color image is created using SWarp by stacking all the filter images for the same

target. The pipeline creates an html page with the composite image along with

each filter image labeled with all the objects in the field. The html page displays a

photometry table that contains the photometry for each filter of every object. This

table also includes errors from the instrumental zeropoint correction.
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5.2.4 Pipeline Applications

The pipeline has been tested on two different photometers: RATIR and LMI.

We have compared our pipeline’s results with the automated RATIR pipeline (which

does not make quality cuts) and produce similar photometric results. However,

our pipeline includes instrumental errors, so our errors are larger but represent

more realistic associated errors. Additionally, we have compared our generalized

photometry pipeline’s results to our LMI custom IRAF pipeline and produce similar

photometric results. Finally, we have written an instrument class for RIMAS and

it will be tested once the instrument is commissioned.

5.3 RIMAS Instrument Throughput Models

We created instrument throughput models for all three observing modes. Fol-

lowing the light path for the instrument we include (1) atmospheric transmission

efficiencies from Kitt Peak (Hinkle et al., 2003), (2) reflection efficiencies from the

telescope’s primary and secondary mirrors, (3) transmission efficiency estimates for

the dichroic beam splitter in the center of the instrument cube, (4) transmission

efficiencies through windowed surfaces, (5) slit transmission efficiencies for low-

and high-resolution spectroscopy, (6) transmission efficiencies through collimator

(five AR coated lenses), (7) either reflection or transmission efficiencies through

dichroic beam splitter, (8) reflection efficiencies only for mirror on redder optical

arm (95%), (9) transmission efficiencies through filter (for photometry), grating (for

low-resolution spectroscopy), or cross-disperser+straightening prism+grating (for
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high-resolution spectroscopy), (10) transmission efficiencies through camera lenses

(five AR coated lenses each optical arm), and (11) quantum efficiency estimates for

the H2RG detectors (since we did not have time to measure the quantum efficiency

we use conservative estimates of 80% from measurements of similar detectors). The

effective instrument photometric throughput is shown in Figure 5.2 and the low-

and high-resolution spectroscopy throughputs are shown in Figure 5.3 and 5.4 re-

spectively.

Additionally, we calculate the instrument throughput for the slit-viewer cam-

era using items (1)-(4) from the main instrument model as well as (5) reflection

efficiency for the mirrored surfaces around the slits, (6) transmission efficiencies

through the slit-viewer optics (four AR coated lenses), (7) reflection efficiency for

mirror below collimator (95%), (8) transmission efficiencies for a J-band filter, and

(9) quantum efficiency estimates for the InSb detector (since we did not have time

to measure the quantum efficiency we use a conservative estimate of 70% from mea-

surements of similar detectors).

5.4 RIMAS Observing Calculators

We have developed observing calculators for RIMAS users. These calculators

are based on our instrument efficiency models and allow the user to calculate lim-

iting magnitudes and exposure times for RIMAS. These calculators are available at

http://rimas.astro.umd.edu/ and the code is available on GitHub7. Figure 5.5

is an example of the online RIMAS observing calculators. We also make guide star

7https://github.com/vickitoy/observing_calculators
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Figure 5.2 RIMAS photometric throughput.

calculations for the slit-viewer camera based on our instrument efficiency models.

5.4.1 Limiting Magnitudes

We calculate the limiting magnitude given a signal-to-noise ratio, exposure

time, and instrument mode. We can start with the background noise level. The

total noise of an image is a combination of dark noise, read noise, background

photon noise, and signal photon noise. These are all independent and can be added

in quadrature. We need to multiply the dark noise and read noise by the number of

pixels that an object is smeared over because each pixel will contribute more noise.

Thus the total background and detector noise is:

σ2
bgd+det = σ2

bgd + npσ
2
dark + npσ

2
read (5.1)

where np is the number of pixels the object is smeared over. Assuming the signal
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Figure 5.3 Low-resolution spectroscopy throughput for RIMAS.

follows Poisson statistics (S∗ = σ2
sig) and that we are measuring the signal and noise

in terms of electrons:

SN =
S∗√

σ2
sig + σ2

bgd+det

=
S∗√

S + σ2
bgd+det

(5.2)

This leads to a signal of:

S∗ = 0.5 ∗
(
SN2 +

√
SN4 + 4× SN2 × σ2

bgd+det

)
(5.3)

Once we know the signal we can calculate the limiting flux and therefore

limiting magnitude of the system for a particular signal-to- noise ratio. The flux of

the signal is:

F =
S∗

Aeff ×∆λ× t× ε (5.4)
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Figure 5.4 High-resolution spectroscopy throughput for RIMAS.

where Aeff is the effective area of the telescope, ∆λ is the bandpass, t is the exposure

time, and ε is the instrument efficiency for the observing mode.

5.4.2 Exposure time calculator

We can also calculate the exposure time given a signal-to-noise ratio, signal

magnitude, and instrument mode. From Equation 5.2 we know what the signal-to-

noise ratio in terms of electrons. Given a signal magnitude for a point source, we

can calculate the exposure time noting that the signal flux, background flux, and

dark current are functions of exposure time:

texp =
−B +

√
B2 − 4AC

2A
(5.5)

where:
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Figure 5.5 Example of RIMAS limiting magnitude calculator that can be found at
http://rimas.astro.umd.edu/

A = N∗ − SN2 ×D2 × np

B = −SN2 × (N∗ + S∗ × np) (5.6)

C = −SN2 × σ2
read × np

N∗ and S∗ are the count rate in electrons per second of the source and background

respectively. D is the dark current of the detector in electrons per second and σread

is the read noise in electrons.
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Table 5.1. Slit-viewer Limiting Magnitude SNR=5

tint (s) AB Mag

1 18.39
2 18.77
5 19.27

5.4.3 Guide Star Calculations

The InSb detector will be used as a guider during both high- and low-resolution

spectroscopy mode. The slit-viewer camera will need to quickly relay position cor-

rections to DCT and will guide on either the host galaxy or guide stars. In chapter

4 we reported the InSb detector characterization the InSb detector. If we assume

that the detector met the Spitzer specifications of 1 e−/s dark current and had a

quantum efficiency of 70% based on previous IRAC testing on similar grade InSb

detectors from the same batch, then we can use our instrument efficiency models to

calculate a slit-viewer camera efficiency of 41%. We calculate limiting magnitudes

from our limiting magnitude calculator for our slit-viewer camera using a J-band

filter for a signal-to- noise ratio of 5 (Table 5.1).

The host galaxy magnitude drops off with redshift (Figure 5.6; Jakobsson et al.,

2011) so even with our highest limiting magnitudes, we will be unable to guide on

host galaxies of z&0.5. Although the GRB afterglow will be observable, almost all

of the light from the GRB will be directed into the spectroscopic slit and we will

be unable to use the afterglow as a guider other than sending position corrections

when the afterglow shifts into view on the InSb detector. This will be more difficult

to model. The preferred method is to use a guide star. Thus, we calculated the
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Floc’h et al., 2003; Fruchter et al., 2006).HST observations
will be carried out to search for the missing hosts in the
sample.

Could a large fraction of faint hosts go undetected in
our survey? The probability for a galaxy to be detected
within an afterglow error circle by chance depends on the
magnitude of the galaxy. The number of galaxies per
arcmin2 has been well determined to deep limits in the var-
ious Hubble deep fields. To limits of R ¼ 24; 26 and 28
there are about 2, 6 and 13 galaxies arcmin"2 (e.g. Fynbo
et al., 2000). Hence, the probability to find an R ¼ 24 gal-
axy by chance in an error circle with a 0 :00 5 radius is about
4# 10"4. For a R ¼ 28 galaxy the probability is about
3# 10"3. If the error circle is defined only by the X-ray
afterglow with a 200 radius we expect a random R ¼ 24
and R ¼ 28 galaxy in 0.6% and 5% of the error boxes.
For our sample of 68 hosts with small error circle (radius
6 200), chance projection should hence not be a serious con-
cern. As a result, we are confident that the vast majority of
the host candidates are real.

Only 35% of the hosts are detected in the K-band. The
corresponding R" K color is shown in Fig. 4 with the hosts
predominantly lying in the range 2 < R" K < 4:5. There is
only a single possible extremely red object (ERO) with
R" K ¼ 5:6; this GRB had no reported OA to a limit of
around R > 24 at 1 h after the burst (Fynbo et al., 2009).
Although this might indicate the presence of dust, a chance
association cannot be excluded between the GRB and this
galaxy, given that the XRT error circle is among the largest
in the sample. Fig. 4 also confirms earlier findings (e.g. Le
Floc’h et al., 2003) that GRB hosts mostly have blue colors
(even considering bursts with no reported OA). It should
be noted that a blue host does not exclude dust in the sys-
tem, as recently demonstrated by the very red afterglows of
GRB 060923A (Tanvir et al., 2008) and GRB 070306
(Jaunsen et al., 2008). The most likely scenario here is a
host morphology where the line-of-sight to the GRB is
dusty, i.e. dust obscures only localized regions.

We attempted spectroscopic observations of all hosts
with R < 25 that did not have a reported reliable OA red-

Fig. 2. Finding charts (R-band) for two hosts in the LP sample. (Left) GRB 070802. Here the OA position is known and a (host) galaxy is detected at a
location fully consistent with it (Elı́asdóttir et al., 2009). (Right) GRB 051117B. A burst without a reported OA; the UVOT-enhanced XRT localization is
sufficient to select a viable host candidate.

Fig. 3. (Left) The R-band host magnitude as a function of redshift for all the bursts in the LP sample. Upper limits are shown with arrows. Hosts without
a reported redshift are plotted on the left side of the diagram. The dashed curve shows a galaxy with an absolute B-band magnitude of "21 assuming
F m / m"0:5. (Right) The absolute B-band magnitude as a function of redshift for all the hosts in the left panel with a reported redshift. The dotted curve
shows a galaxy with an observed magnitude of R ¼ 27.

1418 P. Jakobsson et al. / Advances in Space Research 47 (2011) 1416–1420

Figure 5.6 R-band host galaxy magnitude as a function of redshift. Figure from
Jakobsson et al. (2011).

probability that at least one guide star is in our field of view.

2MASS is a useful tool for finding the number of stars within a field based on

magnitude, however, 2MASS is only complete up to J-band magnitudes of ∼15.5-

16. Instead, we used the Diffuse Infrared Background Experiment (DIRBE) Faint

Source Model (Arendt et al., 1998) predictions for the cumulative counts of stars per

square degree with our limiting magnitude for three fields (Figure 5.7): (l,b)=(5,

20), (l,b)=(75, -75), and (l,b)=(90, 30).

We calculated the probability of finding at least 1 guide star in each of our

three test fields for a standard broadband J filter with tint = 1, 2, 5 seconds for SN=5

(Table 5.2). At moderately low galactic latitudes there is a >80-90% probability

of finding a guide star. At higher galactic latitudes there is 40-60% probability of

finding a guide star. In order to have a 99% probability of finding a guide star
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Table 5.2. Guide Star Probabilities SNR=5

tint (s) Field (l,b) N(<m) λ (stars/FOV) P(0) P(n>0)
(stars/deg2)

1 (5,20) 2.3e4 8.92 1.3e-4 ∼1
(75,-75) 1.4e3 0.54 0.58 0.42
(90,30) 5.0e3 1.94 0.14 0.86

2 (5,20) 3.0e4 11.64 8.8e-6 ∼1
(75,-75) 1.7e3 0.66 0.52 0.48
(90,30) 6.0e3 2.33 9.7e-2 0.9

5 (5,20) 4.4e4 17.07 3.86e-8 ∼1
(75,-75) 2.1e3 0.89 0.41 0.59
(90,30) 7.0e3 2.71 6.7e-2 0.93

at these latitudes, our limiting magnitude would have to be >25 AB which is not

realistic for the short integration times required for a guiding camera. Thus, there

will be a high probability of guide stars in moderately low galactic latitudes and if

there are no guide stars in the high galactic latitudes we will have to guide on the

afterglow source that shifts off the spectroscopic slit.
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Figure 5.7 Cumulative distribution function for three fields in J magnitudes from
DIRBE Faint Source Model in black and cumulative distribution from 2MASS in
red (from private communication with Rick Arendt).
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Chapter 6: Final considerations

This thesis has explored using GRB afterglows to probe the high-redshift uni-

verse. We began by examining the progenitors and host galaxies of long GRBs using

existing instrumentation (both ground-based and space-based). Then we described

the development of an upcoming near-infrared imager and spectrometer, RIMAS.

RIMAS will be able to extend the observational studies outlined in this thesis and

study both dusty and high-redshift GRB afterglows in the near future.

In chapter 2 we have performed a detailed analysis of a nearby supernova

associated with a GRB (GRB 130702A/SN 2013dx) to use as a template for other

GRB-SNe. SN 2013dx is a particularly interesting GRB-SNe because it has an

Eγ,iso that is intermediate between low-luminosity and cosmological GRB-SNe. We

compared SN 2013dx to both SN Ic-BL with and without GRBs and looked in depth

at the similarities and differences with the SN 1998bw. Then we examined the GRB

characteristics with SN parameters of all 10 well-studied GRB-SNe to determine if

we could use GRB parameters to identify SN explosion parameters for more distant

bursts. We found there is no correlation between the parameters which indicates

that the SN is not imprinted with information from the GRB. For future studies

of GRB-SNe, late time follow-up of the SN will be critical to understanding the
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asymmetric nature of these objects. We highly encourage deep and extensive study

of these rare transient objects due to the small sample of GRB-SNe with detailed

photometric and spectroscopic follow-up.

In chapter 3 we have analyzed the host galaxies of GRB associated with DLAs.

Our sample increases the number of detected host galaxies with associated DLAs

by a factor of three, from 13 to 46, and adds an additional 12 upper limits. We

examined the host properties of our sample (star formation rates, stellar masses,

etc.) and found that GRB-DLA galaxies tend to have higher detection rates and

star formation rates than QSO-DLA galaxies. We suspect, despite overlapping HI

column densities and redshift, that these objects may be from a different population

than our GRB-DLA galaxies. Our GRB-DLA galaxy sample should be considered

when comparing observations with cosmological simulations as our sample adds a

significant number of DLA galaxy detections to a previously small sample. Future

deep and multi-band observations can be conducted on the GRB-DLA host galaxies

on the remainder of our sample to increase the number of detected GRB-DLA

galaxies. Additionally, our sample only encompassed GRB-DLAs through mid-2014

and can be expanded to objects past this date.

In chapter 4 and chapter 5 we discuss the development of RIMAS’s hardware

and software respectively. In particular, these chapters cover the RIMAS detector

characterization, the data reduction pipeline, and observing calculators. Both the

detector hardware and data reduction software will allow observers to have better

constraints on both the photometry and spectroscopy. Once RIMAS is permanently

installed on the DCT, it will provide an extremely useful tool to rapidly follow-up
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high-redshift GRB afterglows allowing study of galaxies and stars in the very early

Universe.
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