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Reionization is the process by which the neutral intergallactic medium of the early uni-

verse was ionized by the first galaxies, and took place somewhere between roughly redshift 30

and redshift 6, or from 100 Myr into the universe to 1 Gyr. The details of this transition are

still not well understood, but observational constraints suggest that reionization happened faster

than naive estimates would suggest. In this thesis, we investigate the theory that galaxies which

form their stars in short bursts could complete reionization faster than galaxies which emit their

photons continuously over their lifespans.

We began investigating this theory with a semi-analytic model of the early universe. We

used analytic methods to model the expansion of H II (ionized hydrogen) regions around isolated

galaxies, as well as the behavior of the remnant H II regions after star formation ceases. We

then compiled assortments of galaxies matching dark matter simulation profiles and associated

each with an H II region that could either grow continuously or grow quickly before entering a



dormant period of recombination. These tests indicated that the remnants of bursty star formation

had lower overall recombination rates than those of continuously expanding H II regions, and

that these remnants could allow for ionizing radiation from more distant sources to influence

ionization earlier.

We decided that the next step towards demonstrating the differences between continuous

and bursty star formation would require the use of a more accurate model of the early universe.

We chose a photon conserving ray tracing algorithm which follows the path of millions of rays

from each galaxy and calculates the ionization rate at every point in a uniform 3D grid. The mas-

sive amount of computation required for such an algorithm led us to choose MPI as the framework

for building our simulation. MPI allowed us to break the grid into 8 sub-volumes, each of which

could be assigned to a node on a supercomputer. We then used CUDA to track the millions of

rays, with each of the thousands of CUDA cores handling a single ray. Creating my own sim-

ulation library would afford us complete control over the distribution and time dependence of

ionizing radiation emission, which is critical to isolating the effect of bursty star formation on

reionization.

Once we had completed, we conducted a suite of simulations across a selection of model

parameters using this library. Every set of model parameters we selected corresponds to two

models, one continuous and one bursty. This selection allowed us to isolate the effect of bursty

star formation on the results of the simulations. We found that the effects we hoped to see were

present in our simulations, and obtained simple estimates of the size of these effects.
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Preface

My goal for this thesis is to build a story of my research over the course of my time at the

University of Maryland, College Park. Despite this, some of the the individual chapters are either

published (Chapter 2 and Chapter 3) or intended for publication (Chapter 4) in peer-reviewed

journals, and as such should stand alone. My hope is that the Introduction and Conclusions

(Chapters 1 and 5) add enough of a framework that the thesis as a whole tells a coherent story.
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Chapter 1: Introduction

The development of astronomical tools has allowed us to peer further and further back into

the history of the cosmos. The history of the Universe before the formation of the first stars

and galaxies is well understood through the study of cosmological models and observations of

the anisotropies of the Cosmic Microwave Background (e.g., Planck Collaboration et al., 2015).

However, between these two periods lies a span of cosmic history that is too far for instruments to

observe and too complicated for modern models to accurately simulate. Reionization is a process

which took place during this period, and it is this portion of cosmic history that we are interested

in investigating.

We begin this chapter with an introduction to the relevant aspects of cosmic history that

sets the stage for our work, including recombination, dark matter, the nature of the first stars and

galaxies, the thermal/chemical evolution of the Universe, and reionization. We then introduce the

computational methods and languages which underlie modern research in this area.

With this thesis, we hope to emphasize that a simple adjustment to the way in which the

stars form during reionization can make a large impact on how the Universe developed during

this period. Newer and bigger simulations of reionization are constantly being performed, and

we believe that this adjustment may be a piece in the puzzle to explaining how the Universe got

to be the way it is today.
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1.1 Early Cosmic History

After the Big Bang, the Universe was composed of very dense and hot plasma, radiation,

and dark matter, all of which were distributed uniformly. The Universe as a whole was expanding

and cooling rapidly, with the physics of this expansion governed by the Friedmann–Lemaı̂tre–

Robertson–Walker (FLRW) equations. These equations define a metric of space-time which is

homogeneous and isotropic, but changes in scale with time. We further refine this model into

the Λ-CDM (Λ Cold Dark Matter) model, which assumes that space is flat and permeated by a

combination of matter, radiation, and dark energy (Λ). We refer to the present day balance of

these species with Ωm (matter), ΩR (radiation), ΩΛ (dark energy). The C in Λ-CDM refers to

the fact that the dark matter is ”cold”, meaning that it doesn’t have much kenetic energy, which

would tend to prevent it from forming clumps. In this model, the rate of expansion is referred to

as H , or Hubble’s parameter. This parameter is fundamentally in units of [s−1], but is often given

in units of km/s/Mpc, so that points which are at rest x Mpc away from each other will move

away from each other at xH km/s.

Cosmologists measure time in this model using the time since the Big Bang, which is

called the Hubble time. There are other relevant measurements, such as the redshift (z), which is

a measure of how much light rays emitted at a given time have stretched by universal expansion

by the time they reach us in the present. There is also the scale factor (a), which is a measure of

how much smaller the Universe was at a given time compared to today. These are related by:

a =
1

1 + z
, z =

1

a
− 1.

2



The rate at which the Universe expands can also be calculated from the FLRW equations, and

in general depends on the values of Ωm, ΩR, and ΩΛ, or the form of matter/radiation/energy that

dominates the Universe’s composition. The values of these constants are measured by the Planck

experiment (Planck Collaboration et al., 2015):

Ωm = 0.27

ΩR 0

ΩΛ = 0.73

Ωb = 0.044

H0 = 67.3 km/s/Mpc.

Intuitively, these parameters tell us that today, as measured by the Planck experiment, the Uni-

verse is composed of 73% of dark energy and 27% of matter, and that matter is mostly dark

matter, with only 4.4% of the overall composition being visible matter or baryonic matter. These

parameters may then be used to determine the expansion rate of the Universe using one of the

Friedmann equations:

H2

H2
0

= ΩRa
−4 + Ωma

−3 + ΩΛ, (1.1)

where the Hubble parameter H = d ln a/dt describes the expansion rate of the Universe and H0

is the value of H measured at the present time. While the redshift and scale factor are simply

related, the expansion rate of the Universe needs to be calculated over its entire history to calculate

the relationship between time and redshift. If the Universe’s composition is dominated by a single

3



species, or when one term in Equation 1.1 dominates over the others, the right-hand side of the

Friedmann equation becomes a simple power law of the scale parameter, and the relationship

between time and redshift can be approximated easily. For example, in a matter dominated

Universe a ∝ t
2
3 , while in a radiation dominated Universe a ∝ t

1
2 . The value 1/H is known

as the Hubble time and has units of seconds, and can be thought of as the time it would take

for the Universe to expand to its current size at its current expansion rate. We also take this

moment to introduce the idea of a “comoving” distance unit, which is the given unit multiplied

by the (dimensionless) scale factor a. Thus, “cpc” is a comoving parsec, which at redshift z = 9,

a = 1/(1 + z) = 0.1, would be 0.1 ∼ pc in proper or physical units. These units are useful

because objects which grow with the expansion of the Universe have a constant size in comoving

units.

1.1.1 Recombination

As the Universe evolved, the balance of matter, dark matter, and radiation shifted. Inspect-

ing Equation 1.1 reveals that the radiation term will dominate for the smallest a values, which

lasted for the first 50,000 years. In terms of redshift, this would be z ∼ 3400 or a ∼ 0.0003,

meaning the Universe was 3400 times smaller than it is today. After 50,000 years, matter began

dominating the composition, but the radiation which permeated the Universe was still energetic

enough to maintain the ionization of the matter. After roughly 370,000 years, or at roughly

z ∼ 1100, the radiation had cooled enough that the hydrogen and helium that dominate the

Universe’s composition could recombine en masse. All the thermal radiation that permeated

the Universe was then not energetic enough to interact with matter. This radiation continued to
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permeate the Universe until the present day, with its wavelength continually being stretched by

universal expansion (i.e. redshifting). We now see these photons as the cosmic microwave back-

ground (CMB), which has a nearly perfect thermal spectrum (black body) with a temperature of

roughly 2.7 Kelvin. The CMB appears to come from a spherical surface, which is the matter

that the radiation last interacted with. This surface is known as the last scattering surface, and

is effectively the horizon of the observable Universe, as any photons from outside this sphere

(earlier in time) would have interacted with the the ionized matter that composed the Universe

before recombination.

1.1.2 Dark Matter

The matter that we can see only composes about 15% of the matter within the Universe.

The rest of it is known as dark matter, which only interacts with visible matter through gravitation.

As the Universe cooled and expanded, over-dense regions of matter began to collapse under their

own gravity, and dark matter dominated the development of these regions. The fact that dark

matter only interacts through gravity makes it significantly easier to model, a fact which has

allowed astronomers to study these processes very accurately. The over-dense regions clumped

and fragmented, developing into what are known as dark matter halos. This process proceeded

hierarchically, with smaller mass halos forming first and and massive halos forming later. This

means that objects which form in small mass halos (such as the first stars (Pop III) or dwarf

galaxies) likely formed before objects which form in massive halos (such as galaxies larger than

the Milky Way or galaxy clusters). How small galaxies could be when they formed, or how

numerous Pop III stars were, are is not well known, an uncertainty which is a key factor of our

5



motivation for studying this topic.

1.2 Thermodynamics of the expanding Universe

As the Universe expands under the FLRW model, the volume of a given portion increases

as (1+ z)−3 (redshift decreases with time), while little thermal energy flows. This means that the

Universe as a whole is a closed system, which means that this expansion is adiabatic as long as

there are no sources and sinks of heat. The thermal properties of the components of the Universe

thus obey the equation of adiabatic expansion:

TV γ−1 = constant,

where γ is the adiabatic index of the material. For monatomic gas, which the Universe was

mostly composed of at this time, γ = 5/3, so that TV 2/3 = constant, or T ∝ V −2/3 ∝ (1 + z)2.

For radiation, γ = 4/3, so that TV 1/3 = constant, or T ∝ V −1/3 ∝ (1 + z)1.

While the Universe was expanding, the self gravitation of gas clouds and dark matter halos

causes them to collapse. As this happens, the time scale of energy flow becomes lower than the

Hubble time, and the adiabatic assumption no longer applies. The cloud thus seeks an equilib-

rium which can be determined using the Virial Theorem, which relates the average kinetic and

potential energy of the cloud by < K >= −1
2
< V >. The kinetic energy of the gas is in its

thermal energy, so this balance tells us that larger clouds will reach equilibrium at higher temper-

atures. The temperature at which a given cloud will be able to collapse is referred to as its Virial

temperature.
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1.3 First Sources of Light

The collapse of dark matter halos accelerated the collapse of matter that was bound within

these halos. As these clouds grew in mass, they would begin to reach their Jean’s Mass, at

which point they could collapse under their own self gravity and form light emitting objects.

The properties of these objects, including mass, luminosity, lifespan and spectrum, show a large

variety. Some of the observed and proposed objects fall into the following categories:

• Population III Stars: The first generation of stars, composed of unenriched gas from the Big

Bang. None of these stars remain today, which makes the understanding of their properties

difficult. However, it is generally believed that these stars were extremely massive, burning

very hot and living short lives.

• Hypernovae: A hypernova is a proposed phenomenon that results at the end of the life of

an extremely massive star. This process could emit very high energy photons which would

have a long mean free path through the IGM. This could result in a “pre-ionization” of the

IGM, which could accelerate the process of reionization overall.

• Massive Galaxies: Large dark matter halos, with MDM > 108 h−1 M⊙, the virial temper-

ature of the cloud is above 104 K. H I emission is able to cool gas above this temperature,

meaning the cloud is able to cool and collapse without first forming molecular hydrogen.

These galaxies are known as large-halo protogalaxies.

• Dwarf Galaxies: For dark matter halos with mass MDM < 108 h−1 M⊙, the gas in the

cloud is cooler than the virial temperature of 104 K, meaning that the gas cannot cool fur-

ther without the presence of molecular hydrogen, or H2. During the virialization process,
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free electrons can bind to neutral hydrogen to form H−, which can then bind to another hy-

drogen atom to form H2 (and a free electron). This H2 then allows the gas to cool enough

to form small galaxies.

• Black Holes: An issue of tension in modern cosmology is the size of black holes today,

which are larger than standard accretion models would allow them to become. Quasars,

which are generally thought to be powered by a central black hole, also existed very early

in the Universe. Both of these facts indicate that black holes may have been present during

this time period. Active black holes are capable of emitting very high energy radiation,

similar to hypernovae.

• Compact Star/Globular Clusters: A Globular Cluster (GC) is a tightly bound group of

thousands to millions of stars. The globular clusters present within and in the vicinity of

the Milky Way indicate that GCs formed with a bimodal distribution in time, with one of

the modes happening roughly 13 Gyr ago, which makes them candidates for being one of

the first sources of ionizing radiation (Ricotti, 2002a).

Another important feature associated with these objects is their escape fraction fesc, or the

fraction of ionizing radiation which escapes the neutral gas that surrounds the regions where

they form and enters the IGM. Most of these objects are expected to have relatively low escape

fractions of fesc ∼ 0.05 − 0.2, though it is possible that some (such as GCs) could have had

fesc ∼ 1. Estimates of fesc are difficult to make in practice and form one of the biggest sources of

uncertainty in studying how these objects effect the IGM.
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1.3.1 Reionization

Now that we have laid a foundation in cosmology, we are ready to discuss the main topic

of this thesis, reionization. The first sources of light are thought to have begun appearing at

roughly a redshift of z ∼ 30, or 100 Myr into the life of the Universe. At this point, the IGM

was still fully neutral. Over the next several hundred million years, some combination of the

light emitting objects we discussed fully ionized the IGM, as direct observations have shown

that the IGM is fully ionized up to a redshift of at least z ∼ 5, or a Hubble time of just over

1 Gyr. This period, also known as the Epoch of Reionization (EoR) is a time during which the

complexity of the Universe’s structure developed massively, yet it is still generally beyond the

observational capabilities of modern observatories, which makes it the most poorly understood

part of the Universe’s history. Understanding this period is critical, however, as it bridges the

gap between the high redshift Universe and the Universe we see today, and tells us about the

processes that drove galaxy formation.

Over the past several decades, a coherent picture of the EoR has been gradually developed

by astronomers. The bedrock of this picture is the understanding of cosmological parameters

gained from modeling anisotropies in the Cosmic Microwave Background (Planck Collaboration

et al., 2020), which can provide the basis for a cosmological simulation. The properties of the

IGM between the Earth and distant quasars can be studied by way of a variety of experimental

methods, including:

1. Lyman-α Forest: The scattering of Lyman-α emission line (a resonant emission line pro-

duced by hydrogen recombination) from distant quasars, is known as the Lyman-α forest

and gives information about the distribution of Lyman-α absorbers (Becker et al., 2015).
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The number density of Lyman-α emitters can also be studied (Mason et al., 2018). The

damping wing of the Gunn-Peterson Trough of this emission can also yield information

about the presence of neutral hydrogen at high redshifts (Davies et al., 2018; Hsiao et al.,

2023).

2. 21 cm tomography: The 21 cm line produced by the spin-flip transition in neutral hydrogen

can be used to probe the distribution of neutral hydrogen before the end of reionization by

comparing its emission/absorption against the CMB (Furlanetto, 2016).

3. Optical Depth to Thompson scattering: The free electrons, which began appearing at the

start of reionization, scatter photons from the CMB. The cumulative optical depth of this

effect can be measured and compared to its predicted value from simulations (Planck Col-

laboration et al., 2015). This effect is more pronounced at high redshift when the IGM has

a higher density, so its value is relatively sensitive to the early conditions of reionization.

4. High-z galaxies: Infrared observatories such as HST and JWST are able to observe the rest-

frame (without redshift) ultraviolet emissions from high redshift galaxies using photometry.

These observations will allow for the development of statistics on the luminosity function

of these galaxies (Donnan et al., 2022).

These methods combined have created a generally accepted picture of the EoR spanning

∼ 5.5 to z ∼ 10, with individual ionized regions coalescing in the range of 5 <∼ z <∼ 6. It is also

generally accepted that the process was mostly powered by objects lower in the mass range, with

stellar mass M < 108M⊙, which had relatively high escape fractions (Gnedin, 2000a).

While this picture is generally accepted, confirming it with direct observations is only pos-

sible with an understanding of the IGM between galaxies and the formation of the first structures,
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a task which has proven daunting. To date, less than 10,000 galaxy candidates are known to

exist in the 6 <∼ z <∼ 8 range and much fewer at higher redshift (Bouwens et al., 2015). Despite

this, the catalog of galaxies above z ∼ 6 is growing due to efforts such as REBEL (Bouwens

et al., 2022) and ALPINE (Fè vre et al., 2020). Looking forward, many instruments that are

currently or soon to be operational will help build this picture, including the Atacama Large Mil-

limiter Array (ALMA), the James Webb Space Telescope (JWST), the Cerro Chajnantor Atacama

Telescopeprime (CCAT-p), and the Spectro-Photometer for the history of the Universe, Epoch of

Reionization and Ices Explorer (SPHEREx), the Low-Frequency Array (LOFAR), the Murchison

Widefield Array (MWA), the Hydrogen Epoch of Reionization Array (HERA), and the Square

Kilometer Array (SKA).

1.3.2 Computational Cosmology

To help guide the understanding of the influx of data from such observatories, astronomers

will lean on knowledge that has been gained from computational simulations of the EoR. How-

ever, it is extremely difficult to simulate the overall process of reionization, because such simula-

tions require: a) covering large enough volume for statistical representation; b) resolving galactic

or even sub-galactic scales, to understand the properties of the objects that form; and c) treat-

ing radiative transfer (RT) accurately. Simulations to date tend to either fail in one of these

categories, For example, simulations use volumes which are too small to represent the EoR as

a whole (Trebitsch et al., 2021) or resolutions which are not fine enough (Ocvirk et al., 2020).

Of particular interest to us is the third factor, which is the expensive cost of accurate radiative

transfer simulations.
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The physics of radiative transfer is is extremely difficult to simulate due to a number of

factors, including but not limited to: a) the complexity of Maxwell’s Equations; b) the amount of

information that needs to be tracked to follow radiation of every frequency from every source at

every time, and its interaction with every species of matter; and c) the small time scales neces-

sitated by the high value of the speed of light. Generally, all modern computational approaches

to this problem make the simplifying assumption of following a handful of discrete frequencies

(known as “bins”), but beyond this there are generally two paradigms for radiative transfer sim-

ulations: moment methods and ray-tracing. To understand these, we first note the continuity

equation for specific intensity:

1

c

∂Iν
∂t

+ n · ∇Iν = jν − κνρIν , (1.2)

where Iν is the intensity of frequency bin ν, jν is the emission term, and κν is the absorption

coefficient (Mihalas & Mihalas, 1984). Intuitively, this equations says that the change in intensity

(first term) decreases as the radiation spreads (second term), increases when there is new emission

(third term), and decreases when there is absorption (fourth term). Now, we can discuss the most

important prevalent methods of numerically approximating this equation in cosmic simulations:

Moment Methods: These methods track the radiation field at each location in the simulation

grid without tracking the detailed information about how the radiation moves away from each

source. This is accomplished by focusing only on the zeroth and first moments of Equation 1.3.2

(Kannan et al., 2019). This simplification effectively reduces the radiation field to a fluid, which is

a massive simplification. These methods have the benefit of having a computational workload that
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that doesn’t scale with the number of sources. However, these methods are generally diffusive,

meaning that the radiation tends to “flow” away from sources in ways that can be unphysical.

They also tend to make use of a reduced speed of light simplification (from c/1000 or c/100 up to

c/5 for modern methods, see Kannan et al. 2021), which allows for larger time steps at the cost

of some accuracy.

Ray Tracing: These methods model the radiation emitted by a source as a collection of

light rays that begin at the source. Equation 1.3.2 for each ray is then tracked individually, with

its effect on every grid cell it passes through individually evaluated and compiled (Abel et al.,

1999). The second term of Equation 1.3.2 is ignored not included in these calculations, as the

spreading of radiation is inherently handled by the geometric spread of propagating rays. These

methods are generally the most accurate, as in the limit of an infinite number of rays, they model

the process perfectly. However, these methods require O(N2) rays to cover an expanding sphere

of radiation, with N growing as the sphere of influence grows.

1.3.3 High Performance Computing

Most modern EoR simulations use moment methods, as the scale and resolution required

for these simulations make ray-tracing methods prohibitively expensive, and the use of ray-

tracing is limited to smaller scale simulations. With the size of processors shrinking and their

speed increasing rapidly, the amount of computational resources that can be devoted to a given

problem is growing exponentially, allowing astronomers to push the boundaries of resolution

and scale for cosmic simulations. Aggregated computational resources today are known as su-

percomputers, and these supercomputers are composed of a combination of Central Processing
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Units (CPUs) and Graphics Processing Units (GPUs). The computational frameworks associated

with these architectures are MPI (CPUs) and CUDA (GPUs):

MPI: MPI, or Message Passing Interface, is a framework for creating a library which can

be run on parallel computing architectures. MPI based methods function by allowing the user to

define “messages” which can be flexibly sent and and received by any node in the parallel compu-

tational network. It is portable, scalable, and high performance, and is the dominant framework

for high performance computing today (Message Passing Interface Forum, 2021).

CUDA: Cuda, or Compute Unified Device Architecture, is a parallel computing platform

and API (application programming interface) which allows software to leverage the massive and

ever growing amount of computational power in GPUs, or Graphics Processing Units (NVIDIA

et al., 2020). Modern GPUs have 2000+ cores, which means that a well designed CUDA program

is able to divide its calculations into 2000+ fragments, which can be computed in parallel.

While working on our project, we realized that it would be possible to harness MPI and

CUDA simultaneously. This means we would be able to divide the computational work between

supercomputer nodes using MPI, then perform the math on thousands of rays simultaneously

with CUDA. The principle of superposition means that the math being performed by each su-

percomputer node and GPU core is often independent, which minimizes the amount information

sharing the MPI cores and GPU threads would have to share. This information sharing is often

the bottleneck when it comes to the speed of computational method.
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Figure 1.1: Redshift of reionization for slices through the seven THESAN simulations The large
scale of the simulation and high resolution produce amazing and beautiful results.
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1.3.4 Recent Reionization Simulations

With an idea of the computational methods in mind, we now present a snapshot of modern

computational reionization research. One of the more recent large scale EoR simulations is the

THESAN Project (Kannan et al., 2021). This project performed a suite of 7 simulations over

the course of reionization on a 95.5 cMpc (comoving megaparsec) box. These simulations were

fully hydrodynamic and tracked down to a distance scale of 10 pc, with dark matter particles as

small as 3.12× 106 M⊙ and gas particles as small as 5.82× 105 M⊙. These simulations used the

moment method for radiative transfer, with a reduced speed of light factor of c/5, which is one of

the largest of recent simulations. In Figure 1.1 we copy one of the more stunning visualizations

from Kannan et al. (2021), which shows the course of reionization over a slice through each of

the volumes.

1.3.5 Our Contribution to Reionization Research

This project began with a simple question: “does star formation happening in rapid bursts

during the EoR lead to a more efficient or rapid reionization?” Our initial research into this

question consisted of a semi-analytical model of the behavior of the IGM during and after star

formation. After these investigations into the topic, we decided to devote the bulk of our research

efforts into testing this idea in a robust and self consistent way. The amount of computational

resources that modern EoR simulations have utilized is staggering, so we do not hope to be able to

compete with the scale or fidelity that these simulations have achieved. We thus hope to achieve

the following objectives with this thesis:

1. Introduce an algorithm that makes use of parallel GPU computing to tackle the ray tracing
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RT problem. The inherently parallel nature of GPU computing, compounded by using mul-

tiple GPUs, allows users of our algorithm to iterate rapidly on different ideas and parame-

ters. We believe this will allow users to test ideas which would otherwise be prohibitively

expensive in terms of time and computational resources when using other algorithms.

2. Perform a suite of simulations using our algorithm to test our idea that short bursts of

star formation can ionize the IGM more effectively and rapidly than continuously growing

sources of star formation. Modern reionization simulations typically use a single model of

star formation across their suites of multiple simulations, so we hope that by isolating and

varying the mode of star formation, we can demonstrate an effect which is otherwise not

well studied.

1.4 Thesis Outline

This thesis tells the story of our attempts to investigate how the mode of star formation

affects the course of reionization. In Chapter 2, we discuss our initial investigation, which con-

sisted of a semi-analytic model that I was able to use to write my Master’s Thesis. This project

gave us the motivation to continue on this line of research and pursue a more accurate and robust

model of the effects we were investigating.

In Chapter 3, we present ARC, a fully functional ray-tracing radiative transfer library that

we wrote with the intention of testing our hypotheses. We demonstrate that our library is able to

match state of the art radiative transfer simulations in terms of accuracy, while also harnessing

the power of parallel GPU computing. We built this library with features designed specifically to

allow us to implement the types of bursty star formation we were interested in, which made it the
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ideal test bed for our work.

In Chapter 4, we present the improvements made to this algorithm in the following years,

as subsequent testing showed us that we needed more ways to evaluate and utilize data generated

by the library. We also present the results of a suite of simulations run using ARC, with each set

of simulations consisting of a pair of continuous and bursty models for direct comparison. These

simulations showed that the differences we hoped to see were present in these simulations, and

gave us various estimates of the magnitude of this effect on different parameters and observable

quantities.

In Chapter 5, we briefly discuss the future of our research and ARC. We only scratched the

surface of ideas for what bursty star formation look like during the EoR, so we present a selection

of hypotheses that could be used for future simulations. We also believe that ARC is capable of

answering many questions more quickly than would otherwise be possible because of our use

of GPU computing. The individual modules within the library can also be adapted for use in

other simulation platforms to allow them to harness GPU computing for their radiative transfer

calculations.

Finally, In Appendix 5.2, we include relevant calculations to Chapter 2.

1.5 Summary of Facilities and Software

Computational resources used in this dissertation:

1. University of Maryland: Deepthought2 HPC cluster

2. University of Maryland: Zaratan HPC cluster

3. University of Maryland: Astronomy Department computer resources
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4. Indiana University: Jetstream 2, through ACCESS

Software used in this dissertation:

1.

2. NumPy, Matplotlib, yt

3. ARC
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Chapter 2: Modeling Reionization in a Bursty Universe

In this chapter, we present semi-analytic models of the epoch of reionization focusing on

the differences between continuous and bursty star formation (SF). Our model utilizes physically

motivated analytic fits to 1D radiative transfer simulations of H II regions around dark matter

halos in a representative cosmic volume. Constraining our simulations with observed and extrap-

olated UV luminosity functions of high redshift galaxies, we find that for a fixed halo mass, stellar

populations forming in bursty models produce larger H II regions which leave behind long-lived

relic H II regions which are able to maintain partial ionization in the intergalactic medium (IGM)

in a manner similar to an early X-ray background. The overall effect is a significant increase in

the optical depth of the IGM, τe, and a milder increase of the redshift of reionization. To pro-

duce τe = 0.066 observed by Planck and complete reionization by redshift zre ∼ 6, models with

bursty SF require an escape fraction fesc ∼ 2% − 10% that is 2-10 times lower than fesc ∼ 17%

found assuming continuous SF and is consistent with upper limits on fesc from observations at

z = 0 and z ∼ 1.3− 6. The ionizing photon budget needed to reproduce the observed τe and zre

depends on the period and duty cycle of the bursts of SF and the temperature of the neutral IGM.

These results suggest that any remaining tension between observed and predicted ionizing photon

budget for reionization can be alleviated if reionization is driven by short bursts of SF, perhaps

relating to the formation of Population III stars and compact star clusters such as proto-globular
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clusters.

2.1 Introduction

Reionization is one of the least understood epochs of the history of the universe, mainly

because the dominant sources of ionizing radiation during this epoch are currently unknown.

After recombination, the density perturbations throughout the universe grew until the first stars

and galaxies formed. A fraction of the UV photons produced by these objects escaped from

their host halos and began ionizing the inter-galactic medium (IGM). Some combination of stars,

galaxies, and quasi-stellar objects (QSOs) produced enough ionizing photons to fully ionize the

IGM by a redshift of z ∼ 6, as required by a variety of observations Fan et al. (2002, 2006);

Becker et al. (2007); Bolton et al. (2011); Mortlock et al. (2011); Planck Collaboration et al.

(2015). The details of this phase transition are poorly understood, as few direct observations of

the universe at high redshifts are possible.

Observations of the Lyman-α forest absorption lines in the spectrum of distant quasars have

shown unambiguously that the IGM was ionized to a very high level by a redshift not much later

than z ∼ 6 (e.g., Fan et al., 2006). Observations of Lyman-α emissions from sources at redshifts

z > 6 indicate rapid changes in their abundance at these redshifts Ouchi et al. (2010); Kashikawa

et al. (2011); Caruana et al. (2014). These observations, as well as the optical depth to Thomson

scattering on free electrons of the IGM, τe ∼ 0.066, derived from CMB observations Planck

Collaboration et al. (2015) and observations of UV light from redshift z ∼ 10 galaxies McLure

et al. (2010); Pentericci et al. (2011); Bouwens et al. (2013); Oesch et al. (2014), suggest that

reionization was well underway significantly earlier. The duration of reionization and the nature
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of the sources which supplied the necessary photons remains the subject of observational and

theoretical research Venkatesan et al. (2001); Hansen & Haiman (2004); Madau et al. (2004);

Ricotti & Ostriker (2004b,a); Ricotti et al. (2005, 2008); Volonteri & Gnedin (2009); Trenti et al.

(2010); Wise et al. (2014); Boylan-Kolchin et al. (2015).

A number of different semi-analytic approaches exist for modeling reionization, including the

excursion set formalism that takes into account clustering of sources (inside-out reionization, see

Furlanetto et al., 2004; Alvarez & Abel, 2007) and inhomogeneous reionization models (outside-

in reionization, see Miralda-Escudé et al., 2000; Wyithe & Loeb, 2003; Choudhury & Ferrara,

2005), that take into account the inhomogeneous density distribution of the IGM. These methods

have historically required relatively high escape fractions (> 10%− 20%) or an escape fractions

which increase with increasing redshift. Recently, (Mitra et al., 2015) have shown that their semi-

analytic inhomogeneous reionization model is consistent with Planck’s optical depth τe = 0.066

and other observational constraints, assuming a non evolving fesc ∼ 10%. This is interesting

and encouraging, however high resolution cosmic zoom-in simulations of galaxy formation have

found fesc < 5% (Ma et al., 2015), and many authors found that fesc is likely to decrease with

increasing redshift Ricotti & Shull (2000); Kimm & Cen (2014). Observationally, measurement

of the escape fraction are hard, but in many cases upper limits fesc ≤ 4%− 8% are found in local

starburst galaxies (e.g., Hurwitz et al., 1997; Boutsia et al., 2011; Nestor et al., 2013).

Numerical methods have also been used with some success, including radiative transfer simula-

tions over static density fields (Zahn et al., 2011; Sokasian et al., 2001; Ciardi et al., 2003; Iliev

et al., 2006b; McQuinn et al., 2007; Croft & Altay, 2008; Trac et al., 2008; Aubert & Teyssier,

2010; Ahn et al., 2012). More recently, full radiation hydrodynamics simulations which follow

matter and radiation simultaneously and self consistently have been developed (Gnedin, 2000a;
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Petkova & Springel, 2011; Paardekooper et al., 2013; So et al., 2014; Gnedin, 2014; Gnedin &

Kaurov, 2014; Norman et al., 2015; Pawlik et al., 2015). However, all of these simulations treat

the ionizing radiation photons as monochromatic: the 3D transfer of radiation is done on a low

number (often one) of frequency bands.

In this paper we employ a simple model to explore the possibility that the sources of reionization

had an intermittent UV emissivity. Sources that are definitively characterized by a bursty mode

of star formation include Population III stars and the first small-mass dwarf galaxies Ricotti et al.

(2002a,c); Schaerer (2003); O’Shea et al. (2015). Our model also includes radiation transfer

of ionizing radiation well sampled in the frequency domain (about 400 logarithmically spaced

frequency bins), allowing us to properly reproduce the width of ionization fronts and specific

intensity of ionizing background radiation, that are affected by high energy photons. At low

redshift, the halo matching technique has proven to be a good ansatz to match observed galaxies

to dark matter halos from simulations Vale & Ostriker (2004, 2006); Guo et al. (2010); Moster

et al. (2010). This method works by successively placing the brightest stellar populations within

the most massive halos, neglecting the possibility that some halos may become significantly

brighter for a brief period of time. However, at high redshift the high merger rate and the small

masses of the first galaxies suggest that star formation in galaxies should be rather bursty, as

confirmed by simulations. In particular, it has been suggested Ricotti (2002b); Katz & Ricotti

(2013, 2014) that the formation of compact stellar systems before reionization, which may lead

relics such as globular clusters, ultra-compact dwarfs and dwarf-globular transition objects, may

dominate reionization. In these scenarios we expect an effective duty cycle for UV luminosity

of the first galaxies, leading to a large fraction of halos of any given mass to be nearly dark in

between short lived bursts.
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The simplest semi-analytic method typically used in literature to investigate the ionization evolu-

tion of the IGM is, essentially, to keep a budget of hydrogen ionizing photons needed to maintain

a fraction of the volume in IGM, QHII(t), fully ionized at a time t Madau et al. (1999); Kuhlen &

Faucher-Giguère (2012). This filling fraction evolves according to a simple differential equation:

dQHII

dt
=

ṅion

n̄H
− QHII

t̄rec
. (2.1)

Here, ṅion is the rate of ionizing photon production per comoving volume, n̄H is the mean co-

moving cosmic number density of atomic hydrogen, and

t̄rec =
1

CH IIαB(T0)n̄H(1 + Y/4X)(1 + z)3
(2.2)

≈ 0.93Gyr

(
CH II

3

)−1(
T0

2× 104K

)0.7(
1 + z

7

)−3

is a time scale of hydrogen recombination in fully ionized bubbles of H II . Here, αB is the case-

B hydrogen recombination coefficient, T0 is the IGM temperature at mean density, CH II is the

effective clumping factor in ionized gas, X = 0.75 is the hydrogen mass fraction and Y = 0.25

the helium mass fraction. We assume that helium is singly ionized at the same time as hydrogen,

but only fully ionized at z < 4 (see § 2.2.4). However, the rate of hydrogen recombination is

proportional to x2
e, where xe is the electron fraction in the IGM (so that ne = xen̄H). Thus, after

a burst of star formation recombination proceeds quickly at first, but slows down as lower levels

of partial ionization are reached. The method described by Equation (2.1) lumps the complicated

spatial dependence of electron fraction and recombination rate together into t̄rec, and as such

does not take into account the volume filling fraction of partially ionized gas and the reduced
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recombination rates in regions of partial ionization produced by intermittent star formation.

Here, we focus on investigating the observational implications of assuming either a continuous or

a bursty mode of star formation (SF) in the first galaxies, and how each affects the evolution of the

IGM during the epoch of reionization (EOR). A sudden burst of star formation produces a much

higher luminosity of ionizing photons than the same mass of stars forming continuously over a

period significantly longer than the lifetime of the brightest stars (∼ 5− 10 Myr). This increased

luminosity produces a larger H II region than in the continuous case. Once the brightest stars have

died, however, the larger region of ionization begins to recombine. The rate of recombination is

proportional to the electron fraction, so that the electron fraction within these regions remains

non-trivially boosted for long periods of time. We wish to investigate whether these relatively

long lived relic H II regions of partially ionized gas have a signature similar to hypothetical X-ray

preheating of the IGM Venkatesan et al. (2001); Ricotti & Ostriker (2004b); Ricotti et al. (2005)

and if they produce an observable effect on the optical depth to Thompson scattering of the IGM

τe. The model simulates a population of dark matter halos hosting star forming populations

in a representative cosmic volume between the redshifts of z = 30 and z ≈ 5.8, a period of

900 Myr. Luminosities are assigned through a halo matching process such that the galaxies UV

luminosity functions (and the mean ionizing emissivity) in both cases are identical and match

observations. In the Appendix we present physical models of cosmological H II regions and

the evolution of the relic H II regions in the presence of bursty star formation. These physical

models, calibrated to reproduce 1D radiation transfer simulations, provide useful equations for

the evolution of the volume filling fraction of partially ionized gas. We use the results of these

simulations to calculate the average electron fraction at a given time and the optical depth to

Thompson scattering of the IGM and analyze how different modes of star formation affect these

25



200 400 600 680 1000
tH (Myr)

1065

1066

1067

1068

1069

1070
N

co
m

γ
(c

M
p
c−

3
)

5.06.07.010.020.0
z

10−1

100

101

102

103

N
γ
/N

b

Figure 2.1: Cumulative photon count per comoving cubic Mpc for the FIT (blue), MIN (red),
and MAX (green) models presented in Kuhlen & Faucher-Giguère (2012). The shaded regions
represent the full range of emission hardness (ζ = 0.5 to ζ = 2.0; see text). The dotted line and
accompanying shaded region shows the comoving number density of baryons as derived from
the Planck results Planck Collaboration et al. (2015). We interpret the ratio of photon count to
baryon count (plotted on the right axis) as the upper limit of 1/fesc.

observable quantities. Near the redshift of reionization the overlap of individual H II regions

produces ionized bubbles containing many UV sources. Hence, in this final phase the time-

average UV emissivity within bubbles approaches the continuous limit even if the individual

galactic sources are bursty. The analytic approximation utilized by our model also breaks down

when H II of independent sources overlap. However, this is does not affect our main results as

we find that the ionization history in bursty models differs from the continuous models mostly at
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high-redshift, when the H II regions around individual sources hardly overlap. However, in order

to be more quantitative, in Section 2.3.3 we use the results of our simulations to quantify the

redshift at which these effects might become dominant, providing plots of the redshift at which

a given bursty star formation model becomes better described by the continuous star formation

model.

The paper is organized as follows. In section 2.2 we describe the methods used to simulate a cos-

mic volume during the EOR and how observable quantities are derived from the results. Most of

the technical aspects of the method and a physically motivated analytic model describing recom-

bining H II regions are presented in the Appendix. In section 2.3, we present results of a fiducial

set of simulations and a parameters study to asses how the results depend on the free parameters

in the model. In section 2.4, we present a summary and concluding remarks. Throughout this

paper we assume a flat ΛCDM cosmology with τe = 0.066± 0.012, H0 = 67.51 km s−1 Mpc−1,

(ΩΛ,Ωm,Ωb, ns, σ8)=(0.691, 0.309, 0.0489, 0.9667, 0.816), as presented by the Planck Collabo-

ration Planck Collaboration et al. (2015). A fiducial value for the redshift of reionization zre = 6.0

will be assumed as a constrain for parameter studies.

2.2 Overview and Methodology

Our simulation is a numerical representation of the evolution of a cosmic volume between

the redshifts of z ∼ 30 and z ∼ 5.8, or a time of roughly 1 Gyr. The volume is a cube with side

length 100 comoving Mpc (cMpc), which is enough to expect convergence of our results (e.g.,

Iliev et al., 2014). Dark matter halos, extracted from a Press-Schechter distribution, are placed

in the volume randomly (neglecting clustering). Newly virialized halos are added as the Hubble
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time increases and star formation begins with the addition of the halo. In the continuous case,

star formation proceeds continuously throughout the life of the halo, whereas in the bursty case

star formation occurs periodically with a given period ∆T and duty cycle fduty. In both modes

of SF the time averaged ionizing emissivity of the halos is the same.

2.2.1 Halo matching

We assign a luminosity to any given halo within our cosmic volume according to a halo

matching procedure (see, Guo et al., 2010). We randomly generate halos of mass M at redshift z

with a mass distribution ϕM(M, z) using the Press-Schechter formalism with the modification by

Sheth-Tormen Press & Schechter (1974); Sheth & Tormen (2002) using Planck 2015 cosmolog-

ical parameters. We limit the halos to a minimum mass mdm (which we will vary to understand

which halos contribute the most to our results.)

We assign a luminosity to each halo so that the population has a luminosity function described

by a Schechter function ϕL(L, z) consistent with HST deep field observations. We use fits to the

Schechter parameters evolution as a function of z from Kuhlen & Faucher-Giguère (2012). As

in their study, we consider three models: ”FIT,” ”MAX, and ”MIN.” These models are extrapola-

tions of Schechter function parameters fit to published luminosity functions at different redshifts

in the rest frame UV band at 1500 Å presented in Bouwens et al. (2015). The ”FIT” model

is the best linear regression for the time dependence of the Schechter parameters of the form

{M∗, log10 ϕ
∗, α} = A + B(z − 6), while the ”MAX” and ”MIN” models independently adjust

these parameters by ±1σ (see Kuhlen & Faucher-Giguère (2012) for a discussion). In Figure 2.1

we plot the cumulative comoving hydrogen ionizing photon density derived from these models
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Figure 2.2: (Left). Typical halo mass hosting a galaxy of UV magnitude MUV produced by the
halo matching method in equation (2.4). The solid lines represent the continuous star formation,
and the dashed lines represents bursty star formation with fduty = 5%. (Right). Star formation
efficiency f∗ ≡ M∗/Mdm as a function of halo mass derived by our halo matching procedure.
Halo matching in the bursty star formation models places brighter stellar populations in less
massive halos.

(blue, green, and red lines representing ”FIT,” ”MAX,” and ”MIN,” respectively) plotted along-

side the total comoving baryon density of the universe (dotted lines) and MUV,lim = −13. We

have used the same definition for the conversion between UV magnitudes and ionizing photon

luminosity S0 as in Kuhlen & Faucher-Giguère (2012):

S0 = 2× 1025 s−1

(
Lν,1500

ergs s−1Hz−1

)
ζ, (2.3)

where log10 (Lν,1500/(ergs s
−1Hz−1)) = 0.4(51.63 − MUV). The shaded regions represent the

range of possible spectral hardness (0.5 < ζ < 2.0). We interpret the crossing of the shaded

regions with the dotted line as the earliest epoch at which the universe may be fully reionized

(neglecting recombinations in the IGM). The addition of an escape fraction fesc < 1 reduces the

total number of photons reaching the IGM. So, this figure can be used to infer the absolute lower

limit for fesc in the tree models we consider for the emissivity to reionize by zre = 6. Shifting the
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cumulative photon counts down by fesc until the shaded region crosses the dashed line at z = 6

gives fesc for which each ionizing photon escaping into the IGM is used to ionize a hydrogen

atom only once by redshift z = 6.

Halos are matched so that in both continuous and bursty models the overall luminosity function

is identical. However, in the case of bursty star formation, we assume a periodic UV luminosity

with period ∆T with a simple step function functional form within each period:

L(t) =


LUV,1500/fduty 0 < t < fduty∆T

0 fduty∆T < t < ∆T,

where LUV,1500 is the time averaged rest frame UV luminosity at 1500 Å over a period ∆T , and

the burst has peak luminosity LUV,1500/fduty of duration Ton = fduty∆T . We assign a luminosity

L(z) to a halo of mass M(z) so that:

∫ ∞

L(z)

ϕL(L
′, z)dL′ =

∫ ∞

M(z)

fdutyϕM(M ′, z)dM ′. (2.4)

Here, we interpret fduty ≤ 1 as the fraction of halos emitting ionizing radiation at a given time.

We thus take the number of available luminous halos for halo-matching to be fdutyϕM(M, z). In

the case of continuous star formation, fduty = 100%.

In Figure 2.2 (left) we show the result of this halo matching procedure at three sample redshifts

indicated in the figure’s legend. The UV luminosities are given in terms of UV magnitudes

(MUV ) and the halo masses in solar masses. The solid lines represent the result of the procedure

assuming continuous star formation (fduty = 100%), while the dashed lines represent the result
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of the procedure for bursty star formation with fduty = 5%. The figure shows that if galaxies

are bursty, an observed galaxy at a given UV magnitude observed in HST deep fields lives in

dark matter halo that is less massive than it would be inferred if their stars formed continuously.

The reverse argument is also true: a dark matter halo of a given mass that hosts a bursty galaxy

has significantly higher UV luminosity (during the star burst) when compared to the luminosity

of the same mass halo forming stars continuously. This also has indirect consequences on the

theoretical expectations for fesc in the continuous vs bursty models. Assuming that for a given

mass halo the ISM structure is similar in the two models, the number of recombinations during

the burst is proportional to the burst duration: Nrec = tburst/trec. The mean escape fraction

over a burst cycle is fesc =1−Nrec/Nph, where Nph is the given total number of ionizing photons

emitted in one cycle (which is same in the two models by construction). Thus, the escape fraction

will be higher for shorter burst of star formation and the smallest for a continuous mode of star

formation. The right plot of Figure 2.2 shows the mean star forming efficiency M∗/M (stellar

mass per unit dark matter mass) as a function of halo mass for the same three sample redshifts.

The symbols toward the small mass end of the curves show the typical halo mass of galaxies

with UV magnitudes MUV,lim = −10 (circles) and MUV,lim = −13 (squares). This is going to be

relevant for models in which the faint end of the luminosity function is extrapolated to MUV,lim

and assumed to be zero at fainter magnitudes. The figure shows that galaxies of a given total mass

have higher star formation efficiency when assuming a bursty model instead of a continuous star

formation model.
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2.2.2 Analytic approximation of Strömgren spheres

The starting point to derive our physical model for recombining H II regions are the ra-

diation transfer simulations presented in Ricotti et al. (2001). This paper presents 1D radiative

transfer simulations around a point source of given spectrum (Population II and Population III

stars or miniquasars) in an expanding universe following the ionization state of hydrogen, helium

and the formation of H2 via the H− catalyst. We used the same code to generate the electron frac-

tion around a halo with a given time dependent spectral energy distribution (SED). We derived

simple analytic models of these outputs for both continuous and bursty star formation SEDs (see

Appendix A.1). The models allow to estimate the ionization fraction xe at a distance R from a

source or the distance from a source at which the electron fraction is xe:

xe(R) = f (z,R, L, zon(, zoff)) (2.5)

R(xe) = g (z, xe, L, zon(, zoff)) , (2.6)

where L is the luminosity of the halo, z is the redshift (independent variable), zon is the redshift

at which the star formation began, zoff is the redshift at which star formation ends in the case of

bursty star formation. The analytic description of our physical model can be divided into two

regimes:

1. During the burst of star formation the state of the IGM around an isolated halo is simulated

as a cosmological Strömgren sphere. The relatively low density of the IGM causes such

spheres to have non-trivial transition regions. We found that the profile of these bound-

aries are well approximated by a simple analytic formula dependent only on a scale radius
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RS (z, L, z0) (see Appendix A.1.2). The functional form of RS (z, L, z0) is taken to be that

of a Strömgren sphere around a constant UV luminosity source in an expanding universe

(see, Donahue & Shull, 1987; Shapiro & Giroux, 1987).

2. After the burst of star formation: we assume that the ionization rate becomes zero and

the gas recombines in the expanding universe. We solve analytically the equations for the

evolution of the electron fraction under these assumptions at a given distance from the

source as a function of time (see Appendix A.1.1). We take the state of the IGM at the

moment when star formation ends as the initial condition for the electron fraction and gas

temperature. Interestingly the results are quite sensitive to the assumed IGM temperature

outside the H II region, determined by the X-ray background radiation. With our analytic

model we can therefore explore different scenarios beyond what we could do using pre-

computed tables from a grid of 1D radiation transfer simulations.

Our simulation models a cosmic volume by randomly placing halos within the volume and as-

signing to each a set of parameters (L, zon(, zoff)) such that the luminosity functions at each

redshift match observations at z < 10 (see, Bouwens et al., 2015) and extrapolations to z > 10

(see, Faucher-Giguère et al., 2008, 2009; Kuhlen & Faucher-Giguère, 2012). The volume filling

fractions at a given electron fraction 0 < xe < 1 (sampled uniformly with 60 bins in linear scale)

are calculated using Equation (2.6) and output every 5 Myr.

2.2.3 Ionizing background

The evolution of the IGM ionization fraction obtained using the method presented in the

previous section approaches unity asymptotically as a function of cosmic time, but reionization
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is not fully complete (see Fig. 2.3). Thus, the value of τe can be calculated quite precisely but

the redshift of reionization remains undetermined. Methods which track the photon budget such

as Equation (2.1), assume ionizing photons are absorbed instantaneously and H II regions have

sharp boundaries. Our method allows for regions near ionizing sources to be fully ionized while

large regions of gas further from the sources are only partially ionized. When the average elec-

tron fraction of the universe is small, our method (for continuous star formation) reproduces

rather closely Equation (2.1), as photons are effectively absorbed locally and the mean free path

is shorter than the typical distance between sources. As the universe expands and the average

electron fraction of the universe increases, the average density of neutral hydrogen decreases

and the mean free path of photons in the IGM increases. These photons build up a ionizing

background which becomes more dominant as more ionizing sources appear. The harder pho-

tons of the ionizing spectrum build up a background earlier than the softer photons due to their

longer mean free path. Individual halos never produce large enough regions where the gas is

fully ionized to completely reionize the cosmic volume, so the derived average electron fraction

underestimates the true electron fraction. We correct for this underestimation by calculating and

including in the photon budget the ionizing background and its effect on the cosmic ionization

history. We quantify this effect solving the equation of radiation transfer in an homogeneous ex-

panding universe as in Gnedin (2000a); Ricotti & Ostriker (2004b), which we briefly summarize

here. We begin with the number density of ionizing background photons nν at a redshift z and

evolve it to z −∆z. During each code timestep ∆z, we add to the initial background at redshift

z (appropriately redshifted and absorbed by the neutral IGM) the photons produced by ionizing

sources within our simulation between the redshifts of z−∆z0 and z−∆z including absorption

and redshift effects (source term), where ∆z0 ≡ H(z)R0/c and R0 is the minimum comoving
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distance of any emitting source that contributes to the radiation background. Mathematically, we

solve the equation:

nν(z −∆z) = nν(z) exp

[
−
∫ z−∆z

z

dz′αν′(z
′)

]
+

∫ z−∆z

z−∆z0

dz′Sν′(z
′) exp

[
−
∫ z−∆z

z′
dz′′αν′′(z

′′)

]
, (2.7)

where ν ′ = ν(1 + z′)/(1 + z) we have defined a dimensionless absorption coefficient and source

function:

αν =
(1 + z)2

H(z)
cnHσν(H I)(1− xe(z)), (2.8)

Sν =
ṅion⟨hν⟩gν/hν
(1 + z)H(z)

, (2.9)

where the sources spectra are normalized as
∫∞
ν0

gνdν = 1, with hν0 = 13.6 eV and ⟨hν⟩−1 ≡∫∞
ν0
(gν/hν)dν.

Sources at R < R0 are local and their radiation is used to produce individual ionization bubbles

and are thus excluded from the background calculation. We take R0 to be the average distance

between the dimmest (and most numerous) objects, so that the background begins at the distance

of the nearest luminous objects. We also note that this distance decreases as more collapsed

structures form, allowing the background to become more prominent at later times. The redshift

of reionization zre is rather sensitive to the choice of R0 and the spectrum of the sources. Since it

is difficult to make a precise estimate of R0 (clustering of sources and other subtleties will affect

the value of R0) and because the frequency dependence of fesc is unknown from either theory or

observations, the redshift at which reionization is completed remains somewhat uncertain in our
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Figure 2.3: (Top panels). Volume filling fractions Qi of partially ionized gas with xe < xi as
a function of time for the continuous (left) and fiducial bursty (right) cases. (Bottom panels).
Weighted electron filling fractions (Q′

ixi) for the same models. The solid black lines represent
the derived xe from equation (2.11) for both models. Note that a given electron fraction Q′

i

increase towards 1, but decrease as the next higher electron fraction Qi+1 begins filling out the
space indicated by Qi.

approximate separation between background and local sources. However, the relative difference

in zre between continuous and bursty models with different duty cycles is robust.

For our background calculation, we consider sources with a simple power law spectrum gν ∝ ν−1

truncated at hν = 100 eV, absorbed by a column density NH I of neutral gas. In order to consider

the possibility that the preferential absorption of soft UV photons by neutral hydrogen inside the

galaxy halo may result in a hardening of the spectrum emitted into the IGM, we consider two

cases in our results: (i) NH I = 0, i.e., the spectrum is not affected by hydrogen absorption (ii)

NH I = 3.8×1018 cm−2, which corresponds to an escape fraction of fesc ∼ 5% and a significantly
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larger ⟨hν⟩ than in the case of an purely stellar spectrum.

2.2.4 Calculating observable quantities

Our simulation produces an array Qi(t) which represents the volume filling fraction of gas

with electron fraction xe < xi with i = 0, ..., n− 1. We assume that regions of higher ionization

are nested within regions of lower ionization, so that Q0 < Qi < ... < Q(n−1). The filling fraction

of gas with xj−1 < xe < xj is

Q′
i =


Qi −Qi−1 if 1 < i < n− 1,

Q0 if i = 0.

(2.10)

We compute the average electron fraction as:

⟨xe(t)⟩ =
n−1∑
i=0

xiQ
′
i(t) (2.11)

We let τe = τ0+∆τ , where τ0 is the contribution to τe from z = 0 to the time our simulation ends

(z0 = 5.8) and reionization has happen, and ∆τ is the contribution to τe from the simulation. The

average optical depth of reionization may now be calculated using the formula:

∆τe(t) = cσT

∫ t

t0

dt ne(t) = cσT

∫ t

t0

(
n−1∑
i=0

xinH(t
′)Q′

i(t
′)

)
dt′, (2.12)

τ0 =

∫ z0

0

dz
c(z + z)2

H(z)
σT (1 + η(z)T/4X) . (2.13)
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Here, H(z) is the Hubble parameter and σT is the cross section of Thomson scattering. We let

helium be singly ionized (η = 1) for z > 4 and doubly ionized (η = 2) at lower redshifts so that

we may directly compare our results with those presented in Kuhlen & Faucher-Giguère (2012).

2.3 Results

For the results presented in the following sections, we chose UV luminosity functions with

Schechter parameters from the FIT model. We take a fiducial choice of MUV, lim = −13 and

mdm = 107 M⊙. For the instantaneous star formation case, we make fiducial choices of ∆T =

100 Myr and ton = 5 Myr (thus, fduty = 5%). The top panels in Figure 2.3 show the primary

output of our simulation, Qi(t) ≡ Q(xe, t), for both continuous and instantaneous SF. We see

that the filling fraction for higher levels of partial ionization are smaller in the instantaneous SF

universe relative to those in the continuous SF universe. This is a result of the duty cycle of

star formation in the case of instantaneous SF, wherein only the fraction of the halos actively

producing stars are able to maintain high levels of ionization. We also see that the volume filling

fraction at lower electron fractions rise at earlier times in the instantaneous SF case. This is due to

the presence of relic regions of partial ionization around halos which have stopped forming stars

and the higher luminosity of the burst at a given halo mass. The neutral-ionized transition regions

surrounding star forming halos are not sharp for either star formation modes (see Appendix A.1.1

for a discussion), so there are large volumes of partially ionized H II in both cases. These regions

may be missed in full radiative transfer simulations which utilize only one or two frequency bins

for ionizing radiation.

The bottom panels of Figure 2.3 show the exclusive filling factors weighted by electron
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Figure 2.4: Average electron fraction (left panel) and integrated τe (right panel) plotted as a
function of time (and redshift) for the fiducial continuous model and two bursty models (fduty =
10% red line, fduty = 2.5%, blue line) with the same ∆T = 100 Myr and fesc = 17%. The dashed
line in the right panel shows the measured optical depth to Thompson scattering of the IGM due
to reionization Planck Collaboration et al. (2015), with the shaded regions representing the 68%
and 95% confidence regions. The plotted simulation results include the ionizing background,
so that reionization is complete at the expected time. The black line in both plots represents a
sample result produced by Equation (2.1) with fesc = 20%.

fraction, Q′(xe, t)xe, plotted for both continuous and instantaneous SF. We plot 20 of the 60 bins

color coded such that higher electron fractions are more red and lower electron fractions are more

yellow (0.001 < xe < 0.9 in 20 uniform intervals as noted above). Each Q′ increases as more

halos are formed until one of two things happen: (i) a large halo which dominates the region stops

forming stars, in which case the higher electron fraction filling factors decrease more rapidly than

the lower level filling factors; (ii) once a filling factor Q(xj, t) for a given electron fraction xj

reaches unity: its corresponding exclusive filling factor 1 − Q(xj+1, t) will only decrease as Q

for lower levels of ionization grow. The black lines in the bottom panels of Figure 2.3 show

the average electron fraction ⟨xe⟩, which is simply a sum of all of the curves below it. The left

plot of Figure 2.4 shows the average electron fraction as calculated with equation (2.11) for the

continuous star formation and two choices of bursty star formation (both with ∆T = 100 Myr
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Figure 2.5: Suite of runs for various values of (∆T, Ton) matched to fixed observational con-
straints. All plotted points assume spectra produced within the halos are unaffected by absorption
within the halos (NHI = 0 cm−2). (Top-Left). Escape fraction fesc as a function of duty cycle,
fduty, for five sets of runs completing reionization at zre = 6.25. Points connected by a line have
the same burst periods ∆T , as shown in the legend. We see here that runs with lower duty cycles
require lower escape fractions to produce the same optical depth of reionization. (Top-right).
IGM optical depth τe as a function of duty cycle for the same five sets of runs on the top-left.
The dashed line and shaded regions refer to Planck’s measurement of τe with 68% and 95% con-
fidence intervals for the measurement error. (Bottom-Left). Escape fraction fesc as a function of
duty cycle, for the same five sets of runs but keeping the optical depth to Thompson scattering
fixed at τe = 0.066. (Bottom-right). Reionization redshift zre plotted as a function of duty cycle
for the same five sets of runs on the bottom-left. In all plots, the continuous case is represented
by the black point at fduty = 1.0.
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and fduty = 10% and 2.5% respectively). We see that the electron fraction in the bursty case is

higher at higher redshifts than in the continuous case. In the right panel of Figure 2.4 we plot the

integrated optical depths to reionization as a function of redshift for the same models as in the left

panel. For redshifts less than z ∼ 5.8 at the end of our simulation, we integrated the formula for

τe assuming a fully ionized universe as in Equation (2.13). The shaded region shows the 1σ and

2σ confidence levels from Planck Collaboration et al. (2015). Here we see that τe is significantly

larger in the case of instantaneous SF even though fesc and all other parameters are kept constant.

2.3.1 Variation of parameters

Our simulations allow us to compare the continuous star formation model to the bursty star

formation model in a universe with freely chosen parameters including the burst duty cycle, fduty,

burst period ∆T , minimum halo luminosity MUV,lim, and minimum halo mass mdm. To help us

understand the role of these parameters, we take either τe or zre as observational constraints and

vary fesc for a given set of starting parameters to match the desired observational constraint.

The results of this parameter study are shown in Figure 2.5. In the top panels we show a set

of runs where we adjusted fesc to match zre = 6.0, allowing us to examine the effect of the

burst period and duty cycle on the best fit fesc (top-left panel) and resulting optical depth of

reionization τe (top-right panel). We ran suite of simulations with ∆T , Ton selected from the sets

{50, 100, 200, 400} Myr and {5, 10, 20, 40} Myr. Ton = 5 Myr was chosen as the shortest burst

length as this is the timescale for the life of stars in a truly instantaneous starburst. Here we see

that the duty cycle of the burst, that mainly affect the peak luminosity of the burst and the halo

mass in which such luminosity is observed, does not have a strong effect on fesc and therefore the
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Figure 2.6: Same plots as in Fig. 2.5 but assuming a spectrum of the sources absorbed by a fixed
column density of neutral hydrogen NHI = 3.8 × 1019 cm−2. Neutral hydrogen preferentially
absorbs softer photons, thus resulting in a harder final spectrum. The overall result is a lower
optical depth (for fixed zre), earlier completion of reionization (for fixed τe), and a lower escape
fraction (for fixed τe, zre.)
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Figure 2.7: Combined observational constraints on fesc in bursty (shaded regions) and continu-
ous (black bar on the top-right) models. The shaded gray region represents the set of (fduty, fesc)
values which, for a value of the absorption column density 0 ≤ NHI ≤ 3.8× 1019 cm−2, satisfy
the observational constraints 6.0 ≤ zre ≤ 6.3 and 0.053 ≤ τe ≤ 0.079. The colored regions
represent values of fesc which produce τe = 0.066 for the same range of NHI . The dashed line
represents the upper limit fesc ≤ 5% that would match all observational constraints on reioniza-
tion, including Lyman-α forest data at z < 6 presented in Figure 2.9 and Table 2.1, assuming fesc
does nor evolve with redshift throughout the cosmic history.
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Figure 2.8: Behavior of the complete model constrained to observable quantities under different
choices of Mlim and mdm. The blue and red lines represent the continuous and bursty cases,
respectively. For the bursty model we adhere to our original fiducial choice of (∆T, Ton) =
(50Myr, 5Myr). (Left). Model constrained to zre = 6.0. We see that increasing Mlim, thus
adding more photons to our simulation, increases τe while requiring a smaller fesc to maintain
zre = 6.0. We also see that increasing mdm, thus removing lower mass halos from our simulation,
decreases τe and increases fesc. Note that the bursty mode is more affected by this change, as in
our simulation bursty stellar populations inhabit lower mass halos. (Right). Model constrained to
τe = 0.066. We note that this plot exhibits similar trends as in the previous plot, with decreasing
zre replacing increasing τe. We also note that the effect of altering Mlim, mdm is greater in this
case. This reflects the fact that our zre is dominated by the ionizing background, and is thus less
sensitive to variations in these parameters.
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redshift of reionization (that is constrained). This makes sense because the redshift of reionization

is determined by the ionizing background that is sensitive to the average halo luminosity rather

than its bursty nature. However increasing the period between bursts has the effect of reducing

fesc needed to reionize at zrmre = 6. This is likely because the enhance electron fraction of the

IGM in bursty models makes the IGM transparent to ionizing radiation earlier. The increase of

the electron fraction in bursty models with increasing ∆T is evident as an increase in τe shown

in the top-right panel. In the bottom panels we show a second set of runs where we constrained

fesc to produce τe = 0.066, this time to examine the effect of ∆T and fduty on fesc (bottom-left

panel) and redshift of reionization zre (bottom-right panel). Here we see that decreasing the duty

cycle decreases the required escape fraction to produce τe = 0.066. However, the decrease in fesc

is more sensitive to an increase of the period between bursts. Hence, the parameter that affects

τe most significantly appears to be Toff ≡ ∆T − Ton = ∆T (1 − f−1
duty), allowing for the greater

contribution from the relic regions of partial ionization to the ionization history. To summarize,

we see that decreasing the duty cycle of bursty star formation (or increasing the period between

bursts) produces the same τe with a lower required escape fraction and given that our results for

continuous star formation agree with previous predictions found in the literature, we believe that

this effect may alleviate the need for high escape fractions or extrapolations of the faint end of

the luminosity function to very low values to explain the observed optical depth of reionization.

The results of Figure 2.5 assume a photon spectrum which is a pure stellar spectrum unaffected by

absorption by neutral hydrogen in the ISM or gas within halos. In Figure 2.6, we present the same

results as Figure 2.5, this time with a fixed absorption of a column density NHI = 3.8×1019 cm−2

of neutral hydrogen. Lower energy photons have a shorter mean free path in neutral hydrogen,

so that they are preferentially absorbed. The results presented in Figure 2.6 have the same total
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photon count as before, but with a higher ⟨hν⟩ of the harder spectrum. The top plots, for which

zre = 6.0, show a lower escape fraction and lower optical depth of reionization than Figure 2.5.

The harder photon spectrum produces a stronger ionizing background, thus lowering the required

escape fraction and resulting optical depth of reionization. The bottom plots, for which τe =

0.066, show a lower escape fraction and higher redshift of reionization than Figure 2.5. The

ionizing background dominates the redshift of reionization, so that the earlier build up of the

ionizing background due to higher average photon energy of the sources anticipates the redshift

of reionization zre.

We may combine the results presented in these plots to construct a simple constraint on the

allowed values of fesc as a function of fduty. The gray shaded region of Figure 2.7 represents

the values of (fduty, fesc) which satisfy the constraints 0.054 < τe < 0.078 and 6.0 < zre < 6.3

for some value of NHI < 3.8 × 1019 cm−2. The separate error bar represents the same quantity

for fduty = 1, i.e. continuous star formation. The dashed line represents the upper limit on fesc

which allows a constant fesc as a function of redshift to reproduce Lyman-α observations (see

Section 3.2). To emphasize the dependence of fesc on fduty and the period of the bursts ∆T , we

have also plotted the values in the (fduty, fesc) plane which produce τe = 0.066 in addtion to

reionize between 6.0 < zre < 6.3 for some value NHI < 3.8 × 1019 cm−2, represented by the

shaded colored regions of this figure. We see that for a given ∆T , a shorter duty cycle allows for

a lower fesc, and that a larger ∆T has also the effect of lowering fesc.

We also ran two suites of simulations to examine the effect of altering the parameters MUV,lim

and mdm. For the the first suite of runs we fixed ∆T = 50 Myr, Ton = 5 Myr, mdm =

107 M⊙ and let the luminosity cut at the faint end of the luminosity function vary: MUV,lim =

(−15,−14,−13,−12,−11). For the second suite of runs we fixed ∆T = 50 Myr, Ton =
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5 Myr, MUV,lim = −13 and let the cut of the halo mass function vary: log (mdm/1M⊙) =

(7.0, 7.5, 8.0, 8.5, 9.0). In Figure 2.8 we plot the results of these simulations, with τe and zre

constrained as in Figures 2.5-2.6. In both figures, the blue lines represent the continuous model,

while the red line represents the bursty model. The left plot of Figure 2.8 shows the results of

both suites with the constraint zre = 6.0. We see that increasing MUV,lim, thus increasing number

of halos emitting ionizing photons in the simulation, has the expected of effect of decreasing

the escape fraction necessary to produce the fixed reionization redshift. Similarly, we see that

increasing mdm, thus decreasing the number of low mass halos in the simulation, increases the

escape fraction necessary to match the constraint reionization redshift. In the left panel we note

that the increase in fesc is marginal, while the decrease in τe is significant, so that low mass halos

contribute significantly to τe, but not as significantly to the ionizing background and zre. We

also note that the change in both quantities is more significant for the bursty case, a result of the

fact that bursty stellar populations in our simulation inhabit lower mass halos. The right plot of

Figure 2.8 shows the results of both suites, now subject to the constraint τe = 0.066. The results

of this plot reflect those of the previous plot; increasing MUV,lim (adding photons) or decreasing

mdm (adding halos) decreases the escape fraction necessary to reach the constrained τe. We note

that the changes in fesc and zre are more significant than in the left panel, a reflection of the fact

that τe is more sensitive to these parameters. We also note that increasing MUV,lim too much

for this bursty model means that τe can be nearly or completely achieved before the background

completes reionization, so that these models can’t complete reionization within the span of our

simulation.
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Table 1
Observational constraints.

Constraint
# Redshift Constraint Technique References
1a. 5.9 QH II > 0.89 Dark Gaps in Quasar Spectra McGreer et al. (2015)
2a. 6.24-6.42 QH II < 0.9 (2σ) Lyα Damping Wing of Quasars Ota (2008)
3a. 7.0 QH II < 0.5 Clustering of Lyα Emitting Galaxies Tilvi et al. (2014)
1b. 6.0 ṅcom

ion < 2.6 (< 2.6) Lyα forest BH07, SC10
2b. 5.0 ṅcom

ion = 4.3± 2.6 (±2.6) Lyα forest BH07, SC10
3b. 4.2 ṅcom

ion = 3.5± 0.8 (+2.9
−2.2) Lyα forest FG08, P09

4b. 4.0 ṅcom
ion = 3.2± 0.4 (+2.2

−1.9) Lyα forest FG08, P09
5b. 3.8 ṅcom

ion = 2.8± 0.3 (+1.8
−1.6) Lyα forest FG08, P09

6b. 3.6 ṅcom
ion = 2.6± 0.3 (+1.7

−1.5) Lyα forest FG08, P09
7b. 3.4 ṅcom

ion = 2.8± 0.7 (+2.5
−1.8) Lyα forest FG08, SC10

Table 2.1: (a) Observational Constraints on the reionization history of the universe (b) Observa-
tional Constraints on the high redshift ionizing emissivity. Total uncertainties for ṅcom

ion , which
include systematic effects due to the spectral shape of the observational UV background and the
thermal history of the IGM, are shown in parenthesis. ṅcom

ion is shown in units of 1050s−1 cMpc−3.
Constraints are taken from Bolton & Haehnelt (2007)(BH07), Songaila & Cowie (2010)(SC10),
Faucher-Giguère et al. (2008)(FG08), and Prochaska et al. (2009)(P09).

2.3.2 Consistency with Lyman-αorest observations

We have thus far focused on how the calculated τe or zre may be constrained for a model

with fixed parameters (∆T, Ton,Mlim,mdm) by varying fesc. For any given set of these param-

eters, our model produces an average electron fraction ⟨xe(z)⟩ and ionizing emissivity ṅcom
ion (z)

at all times throughout our simulation. The value of these quantities may be estimated from to

redshifts as high is z = 6− 7 using observations of the Lyman-α forest. We included a collection

of such data in Table 2.1. We may compare these observations to the outputs of our simulation

(which ends at z ∼ 5.8) to see how well our outputs compare to real data, and if the inclusion

of partially ionized precursor of H II regions and relic H II regions improves the agreement with

observations.

In the left plot of Figure 2.9 we plot the derived ⟨xe⟩ for three simulations against the

observational constraints on the average electron filling fraction QH II in Table 2.1. The model
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Figure 2.9: (left) A comparison of the simulated average electron filling fraction of the continuous
model and two bursty models to observational data presented in Table 2.1. All three runs have fesc
adjusted so that zre ∼ 6.0. The black line represents a sample calculation using equation (2.1).
The ionizing background dominates when reionization is completed, and is most sensitive to
the escape fraction, so that fesc is similar for all three models. The bursty models, however,
have higher electron fractions at high redshifts, so that τe is higher for these models. (right) A
comparison of the integrated photon production rate for the continuous model and two bursty
models with observational data presented in Table 2.1. All three runs have fesc adjusted so that
τe = 0.066. We see that a lower duty cycle allows for a lower escape fraction to produce the same
τe, allowing for better agreement with observational data.

49



with fduty = 10% has (∆T, Ton) = (100, 10) Myr while the model with fduty = 2.5% has

(∆T, Ton) = (200, 10) Myr. All three models have fesc scaled as in the previous section so that

zre = 6.25 for best agreement with the data. The ionizing background dominates the completion

of reionization, as can be seen from the sharp decrease in 1 − ⟨xe⟩ around z ∼ 8. The ionizing

background is proportional to fesc, so that all three models have similar matched escape fractions

(as in the fixed zre plots of Figures 2.5 and 2.6). The primary effect of decreasing the duty cycle

is a boost in ⟨xe⟩ at high redshifts, resulting in an increase in τe, which we note in the figure.

In the right plot of Figure 2.9 we plot the derived ionizing emissivity ṅcom
ion (z) for the same three

models as a function of Hubble time against the observational constraints on this quantity shown

in Table 2.1b. All three models have fesc scaled as in the previous section so that τe = 0.066 to

emphasize the effect of altering the duty cycle on τe. The three models thus represent three points

shown in Figure 2.5; the escape fractions of the continuous, fduty = 10%, and fduty = 2.5%

models are fesc = 11.5%, fesc = 6.5%, and fesc = 3.9%, respectively. The short-dashed line

shows nb(z)/tH(z), the average number of baryons in the universe per Hubble time. The point

at which the solid lines in each model crosses the short-dashed line gives a rough estimate of

the lower bound for the redshift of reionization. The universe should be fully ionized once the

average rate of ionizing photon production is a few times greater than nb/tH , which is in good

agreement with our findings from the previous section. We see that continuous models must have

an evolving fesc, higher at high-z and decreasing toward lower redshifts in order to agree with the

data points at z < 4. An attractive feature of the bursty models is that a fesc nearly constant with

redshift agrees with observational data, because of the lower values of fesc at z > 6 needed to to

produce τe = 0.066 and reionize by z = 6.
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2.3.3 Transition to continuous star formation due to overlap of H II egions and

massive galaxies

A limitation of our simulations is the inability to accurately account for the overlap of

nearby H II regions and source clustering. At early redshifts, such overlap will be negligible,

while near the completion of reionization several individual H II regions will overlap into larger

ionized regions containing many sources, and the ionizing background will start dominating. We

may estimate the redshift at which overlap of H II regions becomes important by determining

when the volume filling fraction Q(x′
e) of gas with electron fraction xe < x′

e becomes larger than

a given threshold. We examine the outputs from our simulations for different duty cycles and

burst periods to find an approximate redshift at which ionized bubble overlap becomes important.

In the left plot of Figure 2.10, the solid lines show the redshift at which the volume filling fraction

of gas with xe ≤ 0.5 reaches Q = 10% in the NHI = 0 simulations constrained to reionize at

zre = 6.25 (i.e. the same outputs presented in the top plots of Figure 2.5). We take a conservative

Q = 10% as the threshold at which overlap may begin to be important, and thus find an indicative

redshift at which star formation begins to gradually transition to a more continuous mode of star

formation. We see that only for the most bursty models the overlap becomes relevant before

reionization is complete. In the same figure we also address the effect of source clustering in

overdense regions, neglected in our simulations. The growth of halos within overdense regions

is accelerated, so that the overlap becomes relevant at higher redshifts. Roughly, in a region with

an overdensity 1 + δ, the redshift of overlap z′ is higher by a factor 1 + z′ = (1 + δ)(1 + z). The

dashed lines in left plot of Figure 2.10 are the same as the solid lines but for an overdense region

of the universe with δ = 0.2.
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Figure 2.10: (Left.) Redshift at which the volume filling fraction of gas with xe ≤ 50% reaches
Q = 10% for the same models as in Fig. 2.5. We interpret this as the redshift at which overlap of
H II regions begins to be relevant and star formation transitions to a more continuous mode. We
see that for all but the most bursty scenarios, the time between the beginning of general overlap
and the domination of the ionizing background is relatively short. The dashed lines represent the
same results in a region with an overdensity 1+ δ = 1.2. (Right.) Limiting UV magnitude above
which 10% (blue line) and 50% (green line) of the total ionizing photon budget is emitted. If we
take MUV = −19 (dashed line) as the luminosity above which a halo will always produce stars
continuously, we see that such large halos do not dominate the total luminosity until very late.

Finally, we note that massive halos (M > 1011M⊙) host bright galaxies with many star forming

regions, and satellite sub-halos forming stars independently. Even though star clusters may form

in short bursts, the overall effect is that the halo behaves as though it was forming stars contin-

uously. We assume that this effect becomes dominant for halos with stellar masses greater than

106M⊙, which corresponds to a UV magnitude of roughly MUV ∼ −19. In the left plot of Fig-

ure 2.10, we plot the UV magnitude MUV of galaxies at which brighter galaxies contribute 10%

(blue line) and 50% (green line) of the total ionizing photon budget. We see that halos which are

too massive to be ”bursty” don’t dominate the total ionizing luminosity until close to the com-

pletion of reionization, so that we believe that galaxies dominating the reionization process are

bursty nearly until reionization.
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2.4 Summary and Discussion

The model and analysis presented in this paper builds on the idea that bursty star formation

in the early universe may increase significantly the average electron fraction of the universe when

compared to continuous star formation, thus alleviating possible tensions between the observed

high redshift UV luminosity functions and measurements of τe. Stellar populations which form in

bursts are luminous in the UV for about 5 Myr and mostly dark afterwards. Constraining models

using high redshift UV luminosity functions and the halo matching method assuming bursty star

formation, we found that the Strömgren spheres which formed around halos of a fixed mass are

larger than assuming continuous star formation, but begin to recombine once star formation ends.

The recombination rate of ions in these halos is proportional to the square of the electron fraction,

so that relatively long lived relic regions of ionization will be left behind in the IGM. Our goal

was to build models to test whether this effect would have a non-negligible contribution to the

average electron fraction of the universe, thus altering predictions of the volume filling fraction

of H II regions, QH II(z), the Thompson optical depth τe, and the redshift of reionization zre, all

of which are constrained to varying accuracy by observation.

In Section 2.2 and in the Appendix, we presented the details of the model we used to compare

ionization histories in cosmic volumes containing continuous and bursty star formation. The

semi-analytic model tracks the evolution of stellar populations within statistically generated dark

matter halos uniformly distributed throughout a volume and constrained to reproduce observed

and extrapolated UV luminosity functions at high redshift. The electron fraction as a function

of time around a given halo hosting bursty or continuous star formation is derived from writing

down and solving the basic physics equations calibrated using one-dimensional radiative transfer
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simulations presented in Ricotti et al. (2001). The analytic equations we derived in the continuous

and bursty cases are used to calculated volume filling fractions of partially ionized IGM gas for a

uniformly sampled array of electron fractions. To calculate the cosmic ionization history we also

include the contribution of the ionizing background. These quantities allowed us to derived the

average electron fraction ⟨xe⟩ throughout the volume as a function of time, from which we were

able to calculate the relevant observable quantities.

We presented an in-depth analysis of the behavior of the our model and its predictions in Sec-

tion 2.3. Our model allows us to freely choose the length of the starburst, Ton, the period of

repeated bursts, ∆T , the escape fraction of ionizing photons, fesc, the hardness of the ionizing

spectrum, the lower limit of halo luminosity function, MUV,lim, and the lower limit of dark matter

halo mass, mdm. We took fesc as an adjustable parameter to constrain either τe or zre keeping

fixed each time the other parameters, but exploring a range of possible parameter combinations.

The main results of this study are the following:

• By performing halo matching with the assumption of a duty cycle of star formation (fduty =

Ton/∆T ), we find that the dark matter halos hosting galaxies of a given magnitude in

the HST deep fields are less massive than they would be if we assume that stars formed

continuously.

• We speculate that the inferred smaller masses of these halos and the short duration of the

luminosity burst should result in a larger fraction of the ionizing radiation produced by the

stars escaping into the IGM.

• For a fixed halo mass, stellar populations forming in the bursty mode are more luminous

and produce larger H II regions than in models where star formation is continuous. The
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relatively long-lived relic regions of partial ionization left behind by these bursts are able

to maintain partial ionization throughout much of the IGM in a manner similar to X-ray

pre-ionization, but heating the IGM less efficiently than X-rays. The overall effect is an

increase in ⟨xe⟩ at high redshifts, resulting in an increase in τe and a slightly higher redshift

of reionization zre.

• By constraining the galaxy UV luminosity density in our simulation, we find that to produce

the τe = 0.066 observed by Planck and complete reionization by redshift zre ∼ 6.0, models

with bursty star formation require an fesc ∼ 2% − 10% that is 2 − 10 times lower than in

continuous star formation models (fesc ∼ 17%− 20%).

• The ionizing photon budget needed to reproduce the observed τe depends strongly on the

duty cycle of star formation but also the temperature of the partially ionized IGM that

affects the life time of relic H II regions. Thus even a relative low intensity of X-ray back-

ground radiation sufficient to increase the temperature of the IGM but not its ionization

fraction may have an important indirect effect on the life span of relic H II regions and

therefore τe.

• The hardness of the ionizing spectrum and radiation background instead affects zre. The

hardness of the spectrum for stellar sources is determined mainly by the dependence of

fesc (ν) on the frequency. We find that increasing the column density ⟨NH I⟩ of neutral gas

within the halo seen on average by the sources, produce a higher mean energy of escaping

photons. A more energetic photon spectrum has a greater mean free path in the IGM,

allowing the ionizing background to become dominant at earlier times and complete the

reionization process earlier.
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• Our results suggest that any shortcoming of the ionizing photon budget suggested from

extrapolated observations of the UV luminosity functions at high redshift and low values

of fesc ∼ 5% typically measured in local starburst galaxies (e.g., Hurwitz et al., 1997;

Boutsia et al., 2011; Nestor et al., 2013), would be alleviated if reionization was driven by

short bursts of star formation, perhaps relating to the formation of Population III stars and

compact star clusters such as proto-globular clusters, as suggested by previous studies Katz

& Ricotti (2013, 2014). A non-evolving fesc (z) = 5% in our bursty model is consistent

not only with local observations of fesc, τe from Planck, redshift of reionization zre ∼ 6

from quasars, but also with the ionizing photon emissivity between redshifts z ∼ 2 and 6

inferred from observation of the Lyman-alpha forest.

The present study is only the first step to asses the effects of a bursty mode of star formation

on the reionization history and on the the properties of halos hosting high-redshift galaxies. Our

model is fundamentally very simple and has several limitations but also some advantages and

important improvements even with respect to full 3D radiative transfer simulations.

3D radiative transfer in cosmological simulations is basically monochromatic: because of compu-

tational limitations one can only afford to consider one frequency band for H I ionizing radiation

(sometimes also He I , He II ionizing bands are considered, e.g.. Gnedin, 2000a, 2014). This may

lead to an underestimate of the width of cosmological ionization fronts and therefore miss large

volumes of partial ionization around H II regions, in addition to the relic H II regions left behind

in a bursty mode of SF. Our analytic model is instead calibrated to reproduce 1D radiation trans-

fer simulations in which the radiation field is sampled with more than 400 logarithmically spaced

frequency bins. We are therefore able to capture the true width of cosmological H II regions that
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is significant in the low density IGM (see Figure 1(left) of the Appendix: the radius of the H II

region defined where xe = 90% is 0.2 Mpc, while the radius where xe drops to 20% is 1 Mpc;

that means that the region of partial ionization around H II regions extends at least 5 times fur-

ther than the Strömgren radius and the volume is 125 times larger). This may explain why our

continuous SF model requires a slightly lower fesc to produce τe = 0.066 than that found in other

semi-analytic models that do not take into account regions of partial ionization.

The main limitations of our treatment are: i) we neglect clustering of sources and therefore the

topology of reionization and size distribution of H II regions Furlanetto et al. (2004). Realis-

tically, the redshift of reionization will have a variance along different lines of sight. ii) Our

treatment of the radiation background is an approximation. This is because without full radiative

transfer calculation and clustering of the sources it is difficult to precisely account for the frac-

tional contribution of local sources vs background sources (in practice because of this somewhat

artificial separation, photons in the background can be slightly underestimated or overestimated).

The background calculation is important in determining the redshift of reionization zre but af-

fects the value of τe only weakly. This is because the electron fraction produced by individual

sources of reionization neglecting the background reaches values of ⟨xe⟩ ∼ 80% − 90% while

the background completes reionization bringing ⟨xe⟩ to unity with a sharp rise similar to a phase

transition Gnedin (2000a). Therefore in our model the absolute value of zre may not be accurate.

However, the trend of zre as a function of the various free parameters in the model are robust.

Theoretical estimates of fesc are very uncertain (e.g., Ricotti & Shull, 2000; Gnedin, 2008; Gnedin

et al., 2008; Wise & Cen, 2009; Yajima et al., 2011, 2014) and observations are only possible in a

limited number of cases, particularly local starburst galaxies and Lyman brake galaxies at z ∼ 3

that in most cases set upper limits fesc <∼ 4%−8% (e.g., Hurwitz et al., 1997; Steidel et al., 2001;
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Fernández-Soto et al., 2003; Inoue et al., 2006; Shapley et al., 2006; Siana et al., 2007; Iwata

et al., 2009; Vanzella et al., 2010; Boutsia et al., 2011; Nestor et al., 2013). Our study found that

values of fesc ∼ 5% are consistent with the observed values of τe and zre and with direct or indirect

measurements at z = 0 and z ∼ 1.3− 6, even assuming truncation of the faint end of the high-z

luminosity functions at MUV,lim = −15 or truncation of the dark matter mass function at 109 M⊙.

We thus believe that bursty star formation, that is likely to be prevalent in the early universe, is

an important physical process neglected or overlooked in previous works on reionization. Once

this effect is included, the need for missing sources of reionization suggested in past works is

either eliminated or greatly reduced. This different result follows from taking particular care in

modeling partially ionized gas in front of H II regions and in relic H II regions, thus reducing

the number of ionizing photons used up by hydrogen recombinations (therefore increasing the

effective trec in Equation (2.1)). We therefore caution of simply using Equation (2.1) to constrain

the ionizing emissivity and fesc from the observed τe. We also point out that the redshift of

reionization zre cannot be used to constrain the ionizing emissivity at z ∼ 6 − 8 because it is

determined by the radiation background emitted by sources that might be at higher redshift and

not yet observable, and its value is sensitive to the hardness of the sources spectra.
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Chapter 3: ARC: Adaptive Ray-tracing with CUDA, a New Ray Tracing Code

for Parallel GPUs

We present the methodology of a photon-conserving, spatially-adaptive, ray-tracing radia-

tive transfer algorithm, designed to run on multiple parallel Graphic Processing Units (GPUs).

Each GPU has thousands computing cores, making them ideally suited to the task of tracing

independent rays. This ray-tracing implementation has speed competitive with approximate mo-

mentum methods, even with thousands of ionization sources, without sacrificing accuracy and

resolution. Here, we validate our implementation with the selection of tests presented in the

”cosmological radiative transfer codes comparison project,” to demonstrate the correct behavior

of the code. We also present a selection of benchmarks to demonstrate the performance and

computational scaling of the code. As expected, our method scales linearly with the number of

sources and with the square of the dimension of the 3D computational grid. Our current im-

plementation is scalable to an arbitrary number of nodes possessing GPUs, but is limited to a

uniform resolution 3D grid. Cosmological simulations of reionization with tens of thousands of

radiation sources and intergalactic volumes sampled with 10243 grid points take about 30 days

on 64 GPUs to reach complete reionization.
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3.1 Introduction

The propagation of ionizing and dissociating radiation from stars and black holes and its

effect on the interstellar medium (ISM) and the intergalactic medium (IGM), is one of the most

fundamental and computationally difficult problems in theoretical astrophysics. A number of

schemes have been implemented for tackling radiative transfer. As the computational power

available for astrophysical simulations has increased over the past few decades, the full seven

dimensional (three spatial, two angular, one frequency, one time) radiative transfer problem has

been solved in earnest. There are multiple popular methods for approaching this problem, includ-

ing:

1. Moment Methods: The first three moments of the radiation intensity, which are the energy

density, flux, and radiation pressure, are tracked by the simulation (Auer & Mihalas, 1970;

Norman et al., 1998; Stone et al., 1992). Simulations of this type have been implemented

with short characteristics (Stone et al., 1992), long characteristic (Finlator et al., 2009),

utilizing the optically thin variable Eddington Tensor method (Gnedin & Abel, 2001; Ri-

cotti et al., 2002b,d; Petkova & Springel, 2009), and with a two moment model using a

closure relation (González et al., 2007; Aubert & Teyssier, 2008). These methods have

the advantage of being fast, with computation times that don’t depend on the number of

radiation sources. However, these methods are fundamentally diffusive, so that radiation

will in some cases flow around occluding regions in non-physical ways, resulting in incor-

rect behavior for shadows. In addition, since the radiation is treated as a photon fluid with

characteristic speed equal to the speed of light, the condition for stability of the integration
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typically requires taking very small time step (similarly to the CFL condition). A reduced

speed of light approximation is often adopted in order to be able to take larger timesteps

(Deparis et al., 2018).

2. Ray-tracing Methods: Radiation from a point source is approximated as a collection of

linear rays propagating away from the point source. Along the rays the heating/ionization

of the gas and extinction of the radiation are tracked through a grid (Abel et al., 1999;

Razoumov & Scott, 1999; Ciardi et al., 2001; Sokasian et al., 2001; Alvarez et al., 2006;

Mellema et al., 2006; Rijkhorst et al., 2006; Whalen & Norman, 2006; Krumholz et al.,

2007; Trac & Cen, 2007; Paardekooper et al., 2010) or collection of particles (Susa, 2006;

Johnson et al., 2007; Altay et al., 2008; Pawlik & Schaye, 2008, 2011; Hasegawa et al.,

2009). These methods are computationally more expensive, as the amount of computation

scales linearly with the number of sources and the number of grid points or gas particles.

The results, however, are a better approximation of the true solution.

3. Non-simulation methods, such as the excursion set formalism (inside-out reionization,

see Furlanetto et al., 2004; Alvarez & Abel, 2007), inhomogeneous reionization models

(outside-in reionization, see Miralda-Escudé et al., 2000; Wyithe & Loeb, 2003; Choud-

hury & Ferrara, 2005), and semi-analytic inhomogeneous reionization methods (Mitra

et al., 2015). These methods require much fewer computational resources than simulation

methods, allowing for the exploration of a much larger range of simulation parameters.

However, they lack the accuracy of computational methods.

Our approach is of the second type, based on the photon-conserving, spatially-adaptive ray-

tracing method originally presented in Abel & Wandelt (2002), but designed for use on parallel
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Graphics Processing Units (GPUs). GPUs have slower clock speeds than CPUs of the same gen-

eration, but they possess thousands of parallel cores which operate independently of each other.

The cost of calculations for each individual ray is computationally small and independent of other

rays, which makes GPUs ideally suited for the task. Despite the large ongoing effort to model the

epoch of reionization (EOR) by various teams, our proposed approach is complementary to pre-

vious and ongoing investigations, and has new and unexplored aspects to it as explained below.

We are writing our numerical code with the future goal of incorporating it in widely used hydro-

dynamical cosmological codes. At the moment, the focus of our effort is on ray-tracing radiative

transfer, meaning we limit ourselves to simulations with fixed grid (i.e., the adaptive mesh refine-

ment (AMR) grid structure is not implemented at this point) and no coupling to hydrodynamics,

thus making this code a purely post-processing method on previously run cosmological simula-

tions. This approximation is not poor when focusing on simulations of cosmological reionization

on scales much larger than galaxy-halo scales, which are the focus of our test runs and future

science investigations.

This paper is organized as follows. In Section 3.2 we describe the underlying physics and

computational implementation used by our code. In Section 3.3 we present the results produced

by our code when running the battery of tests laid out in the radiative transfer codes comparison

project (Iliev et al., 2006a). We also present a selection of benchmarks demonstrating the speed of

the code in Section 3.4. Finally, in Section 3.5 we summarize the methods and results presented

in this paper.
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3.2 Methodology

Our code utilizes the power of GPU processing to attack the computationally intensive

problem of adaptive ray-tracing radiative transfer. The tracing of a single ray of photons is a

very simple task, but a ray tracing radiative transfer simulation requires the tracking of a large

number of such rays, making the task well suited to GPU computing. Classically, memory sharing

between GPUs is only possible if those GPUs are all located on the same node of a computer.

This limits the scale of a purely GPU algorithm, and lead us to add MPI parallelization. MPI

parallelization allows us to share the results of GPU calculations between GPUs on different

nodes, thus allowing for a highly scalable code and also overcoming the problems associated with

the limited memory of a single GPU. In addition to the relatively straightforward parallelization

of radiation from different sources, we break up the computational volume and therefore the ray

tracing and the ionization/heating calculations into equal portions and distribute them among each

node of the process using MPI. There, the GPU algorithm performs the calculations, sharing ray

data between nodes using MPI as necessary. The results of the calculations are then consolidated

using MPI and the next time step can be taken. An earlier and simpler version of the code shared

copies of the whole the grid data among nodes and distributed only the work from different

ionization sources using MPI. This way, there was no need for ray data sharing among nodes.

However, this method was severely limited by the available memory of each GPU. With current

GPUs, the maximum resolution of reionization simulations we could run without breaking up the

volume was between 2563 and 5123 grid points. The current code is indeed faster and not limited

by these memory restrictions.
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3.2.1 Program Design

Each GPU in our code calculates the radiation field produced by sources within the sub-

volume assigned to the node which hosts that GPU. In addition each sun-volume can share the

work with multiple GPUs. The direction of the rays is assigned using the HEALPix (Górski

et al., 2005) scheme to distribute rays in all directions. The HEALPix scheme assigns to each ray

equal solid angle by dividing the sphere around each sources in equal areas. In order to maintain

constant spatial resolution as the rays travel further from the source, each subsequent level of the

scheme breaks this area into four sub-areas, allowing the algorithm to easily keep track of the

splitting of rays. We initialize an array of photon packets for each ray in the initial HEALPix

array (typically HEALPix level 1, or 48 photon packets, or rays). Each photon packet traced by

our code contains the ID of the ionizing source which emitted it, the unique HEALPix PID which

determines the direction of the photon’s motion, the distance each photon has traveled, and the

optical depth of each frequency bin along the photons path. The position of the ionizing source

is stored in the GPU’s shared memory, allowing for a reduction of the required per-photon packet

memory. Once the calculation of the radiation fields by the GPUs is complete, we combine the

radiation fields from other sources distributed on different nodes linearly using MPI. We then

divide and distribute all these fields to the processes to evolve the gas fields over a single time

step. The algorithm’s overall structure is described in steps below.

1. Initialize radiation field arrays to zero at the start of a new time step.

2. Use MPI to divide distribute photon source data and source array to all nodes of the process.

3. Loop through each photon source one at a time using the GPU kernel as follows:
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(a) Initialize all photon packets to radius zero and zero optical depth in all frequency bins.

(b) Trace all photon packets at a single HEALPix level until the ray moves to an adjacent

sub-volume, terminates or splits. If the photon moves into an adjacent sub-volume, we

store it in a sharing buffer to be sent later. If the photon terminates, set the radius of the

packet to zero, signaling that it should be ignored in future calculations. Otherwise,

leave the radius and optical depth at the point of splitting unchanged.

(c) Create a new array of child rays populated by the unterminated rays from the previous

step. The radius of all four child rays is the same as the parent rays, but the newly

populated array have directions based on the next level of the HEALPix scheme.

(d) If any rays are unterminated, return to step (b).

(e) Use MPI to share rays between adjacent sub-volumes, and return to step (a).

4. Use MPI to linearly combine radiation fields produced by all of the kernels, thus giving us

the overall radiation field produced by all the sources.

5. Apply the ionization/heating calculation to the current radiation field and gas fields to cal-

culate the changes to the grid over a single time step.

6. Use the execution times of each GPU to redistribute the sources between GPUs handling

the same sub-volume to balance the computational load.

7. Return to (i) until the simulation reaches the desired time.

Each node and corresponding GPU loops through this code to advance the simulation. We

can also send the same sub-volume to multiple GPU’s, allowing us to break a set of sources in

the same sub-volume between multiple GPUs. When any timing information about the entire

65



simulation, or outputs of the full grid, are required, MPI is used to consolidate the data from all

of the nodes.

In the next subsections we describe in more detail the implementation of the physics and

equations solved by each module of the code.

3.2.2 Photon Data

Photon packets in our code are polychromatic. As each ray is traced through the grid,

we calculate the total optical depth due to all atomic species (hydrogen and helium) and their

ions, for each frequency bin. Each bin is a single frequency which represents the frequency

averaged ionization cross section of all present species. We are able to track an arbitrary number

of frequency bins, subject to memory limitations.

3.2.3 Grid Data

The basis of our code is a uniform 3-dimensional cubic grid of N3 cells which store the

neutral/ionized fraction, temperature, and photoionization rate of a given set of atomic/molecular

species as a function of time. The current version of our simulation tracks the neutral fractions

xH I and xHe I (future versions will include tracking of more species as required). We assume that

helium is either neutral or singly ionized over the course of the simulation. Thus, we calculate

the electron number density as:

ne = nb

[
1− Yp

AH

xH II +
Yp

AHe

(xHe II + 2xHe III)

]
,
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where nb ≡ np + nn is the baryon number density, Yp ≡ ρHe/ρb is the Helium fraction, AH = 1

and AHe = 4 are the atomic weights of hydrogen and helium, respectively.

We are able to sub-divide this volume as desired. The first science runs of our code will

divide the volume evenly into 8 cubic regions, each of which will be handled by a subset of

the available GPUs. The current implementation of the code is limited to a fixed grid; however,

the structure of the code would allow for a transition into an adaptive mesh refinement scheme

(AMR) should it be required in the future.

3.2.4 Photon Transmission

Ionizing sources within our volume are represented by a set of photon packets, or rays,

which are initialized at the location of the source. These rays are traced through the grid of our

simulation one step at a time, with each step corresponding to the distance through the volume it

takes to reach the next X, Y, or Z cell boundary within the volume. Each ray is initialized with

an ionizing photon production rate (Sν [s−1] for each frequency bin ν) which corresponds to the

luminosity of the source divided between the rays. For each step, we increment the total optical

depth along the ray τν for each frequency bin by ∆τν , the optical depth of ray within a single

simulation cell. We use this optical depth to calculate the fraction of ray’s photons absorbed by

gas within the cell, and thus calculate the ionization rate of the cell for each frequency bin ν per

absorbing atom:

sν =
Sν(1− e−∆τν )

V nabs

, (3.1)
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where nabs is the physical number density of absorbers, and V is the volume of the simulation

cell. More specifically, in our code nabs is the neutral number density nSI of a species S, where

S refers to hydrogen and helium. The flux along the ray in each frequency bin is reduced by this

amount, so that this method conserves the total number of photons. Each ray in the simulation

is traced by a single CUDA core, with the work distributed as evenly as possible by the CUDA

kernel. Each GPU contains all of the grid data necessary to trace the rays, and the ionization

rate at a given cell in the grid is altered ”atomically” by each core, eliminating the chance for

interference between simultaneous processes.

The directions of the rays are chosen according to the HEALPix scheme (Górski et al.,

2005), which assures that each ray is assigned an equal solid angle relative to the source. This

means that we can assign a photon emission rate for each ray by dividing the overall fesc,νSν of

the source evenly between all rays (where fesc,ν is the mean ionizing radiation escape fraction

from each source), or we can adopt a more sophisticated (and realistic) scheme in which the

escape fraction is anisotropic. We can, for instance, obtain the wanted escape fraction by only

assigning the mean Sν per-ray, to a fraction fesc,ν of the rays, while completely blocking the

radiation escaping from the remaining rays.

Each ray is traced independently by a CUDA core until it reaches a set distance from the

source, at which point the ray is split into four child rays corresponding to the next level of the

HEALPix scheme. The distance at which the ray is split is a free parameter which allows us to

control how many rays pass through the average simulation cell at a given distance, giving us

control over the spacial accuracy of the ray tracing method. In Figure 3.1 we plot a schematic

of the adaptive ray tracing process. The two trees represent the progress of a single pixel at

the lowest HEALPix level traced out through three branches. The two trees demonstrate the
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Figure 3.1: Schematic example of the adaptive ray tracing method based on HELPix. As rays
propagate outwards, they split to maintain a constant number of rays per unit area crossing the
surface of the sphere centered on the source. The left and right trees illustrate the difference
between assuming at least 3.0 and 1.0 rays intersect a given simulation cell for the left and right
ray trees, respectively.

difference between thresholds for ray splitting, with the left tree guaranteeing three times as

many pixels through a given cell than the right tree.

It is important to emphasize that, as mentioned above, HEALPix method gives us the ability
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to control to any desired accuracy the directions into which the ionizing source emits photons,

allowing simulations in which ionizing photons leak out of a galaxy anisotropically. Numerical

simulations of galaxy formation have shown that ”chimneys” of low optical depth through which

most ionizing photons escape into the intergalactic voids are a more realistic description of the

radiation escaping into the IGM than an overall isotropic attenuation of the emission. We can

control these directions on a source by source basis, giving us a versatile tool to study different

types of sources in different cosmic environments. This desirable feature of the code is only

possible because the ray tracing method is non-diffusive and can capture shadows accurately.

The faster ”radiation moments” methods discussed in the introduction, are probably too diffusive

to allow the implementation of anisotropic emission from the sources.

3.2.5 Geometric Correction

The rays in our code are one-dimensional lines which represent a cone of radiation extend-

ing from a point source, or from a splitting ray, with a fixed solid angle. The intersection of the

ray volume with a given grid cell is a complicated geometric shape whose volume is impratical to

calculate exactly. The ray tracing method approximates this volume as a truncated cone created

by the segment of the ray whose length is the distance between the points where the ray enters

and exits the grid cell. Thus, when the ray remains closer to the edge of the grid cell than the

radius of the ray (along the length of the ray), a portion of the ray remains entirely outside of

the grid cell. We make a first order correction to this problem following the method presented in

Wise & Abel (2011). We let LPix be the width of the pixel and let Dedge be the distance from the

midpoint of the segment of the ray within the cell to the nearest edge of the cell. We reduce the
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ionization within the cell by a factor fc defined by:

fc =


1
2
+

Dedge

LPix
Dedge < LPix/2,

1 Dedge ≥ LPix/2.

(3.2)

This correction factor is slightly different from the one used in Wise & Abel (2011) in which

(1/2 +Dedge/LPix) is squared. We remove the square from the first expression, so that fc = 1/2

when Dedge = 0, which physically corresponds to half of the ray lying within the grid cell when

the ray travels along the edge of the cell. However, this correction factor only serves to reduce

the ionization rate in a given cell, and thus has the effect of reducing the global ionization rate in

the simulation and breaks photon conservation, that is one of the most desirable properties of the

method. We find that adopting this correction makes a non-negligible reduction to the volume

filling fraction in the simulation, which is more pronounced at the points where the rays split (as

may be seen in the radial profiles of Wise & Abel (2011) Figure 5 and Figure 6).

We decided to keep the correction factor as it mitigates small spatial artifacts in azimuthal

directions (see Section 3.3.6), but we also compensate in order to maintain photon conservation

by adding the ionization removed by the correction factor to the nearest cell using a secondary

correction factor:

f ′
c = (1− fc)

xabs

x′
abs

, (3.3)

where xabs and x′
abs are the absorber fraction in the cell intersected by the ray, and in the nearest

adjacent cell to the ray, respectively. Here we have multiplied by the ratio of the density of
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absorbers between the cells, as the ionization rate in Equation 3.1 is an overall absorption rate, and

needs to be corrected in case the the densities of absorbers vary between the cells. This second

correction factor is another slight difference with respect to the method used in Wise & Abel

(2011), but we find it very beneficial. The combination of these correction factors corrects for

geometric artifacts while maintaining photon conservation and the correct volume filling factor

of the H II regions (see Section 3.3.6). This secondary correction relies on the regularity of the

Cartesian grid, and in the case of non-regular grids or AMR it would need to be generalized or

removed.

3.2.6 Optically Thin Approximation

In regions of low neutral fraction surrounding active sources of ionization, the ray tracing

process tracks an optical depth which is almost unchanging over the grid cells. This allows us

to implement a procedure for calculating the ionization within a certain volume without tracing

rays, and thus start the ray tracing process at a greater distance and save significant computation

time. Our optically thin approximation proceeds as follows:

1. To each ionizing source within the simulation we assign a radius Rτ<0.1, which we initially

set to zero.

2. As rays are traced from the ionizing source, we set Rτ<0.1 to be the minimum of all the ray

lengths for which τν < 0.1 in the softest frequency band.

3. When Rτ<0.1 > 0, we assume all cells within a distance of Rτ<0.1 of the ionizing source

to be directly exposed to the ionizing source without absorption. We approximate the
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ionization rate as:

sν ≈ Sνxabsσabs(ν)

4πR2
,

which is the approximation of Equation 3.1 for small τν and replacing the dilution of

spreading rays with a 4πR2 term.

4. We initialize rays at a radius of Rτ>0.1. This allows us to skip ray tracing within the

optically thin region.

This approximation is trivial at early times in simulation, when Rτ>0.1 is small for most

sources, but the amount of calculation is then also small. However, when the average neutral

fraction of the simulation decreases, this approximation becomes more and more efficient, saving

significant computational resources. Beginning the rays outside of these these highly ionized

regions decreases the ray tracing computation time by a factor of the order of the mean neutral

fraction in the simulation box, while the calculation itself is orders of magnitude faster than the

ray tracing module.

3.2.7 Ionization Calculation

Each GPU in our code loops through all sources it is assigned using the procedure detailed

in the previous section. Once all the GPUs have completed their assigned work, they return the

radiation array which represents the ionization rate due to all of the sources assigned to that GPU.

The host node then sums these arrays using MPI, giving us the overall ionization rate at each point

in the grid due to all sources in the simulation.
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Once the ionization rate, Γν , is calculated, we compute the change in the neutral density,

nSI of species S of the gas according to the differential equation:

ṅSI = −nSI

∑
ν

sν − CS(T )nenSI + αS(T )nenSII , (3.4)

where CS is the collisional ionization rate, αS(T ) is the recombination rate, ne is the electron

number density and nSII is the ionized number density of species S.

The ray tracing algorithm is computationally the most expensive part of the simulation, so

we have designed the code to limit the number of calls to the ray tracer as much as possible.

We solve the non-equilibrium chemistry and energy equations for all species under consideration

sub-cycling between the radiative transfer time steps (Anninos et al., 1997). The non-equilibirum

chemistry equations are stiff ordinary differential equations (ODEs). Thus, for individual steps

in the sub-cycle, we tested several integration methods, including predictor-corrector methods,

Runga-Kutta methods, semi-implicit methods, backwards difference, etc. We found that the

backwards difference formula (BDF) gave the best combination of speed, accuracy, and compu-

tational stability in our tests, in agreement with the results presented in (Anninos et al., 1997).

Effective use of the BDF requires writing the non-equilibrium chemistry equations in the form:

ṅSI = D − C · nSI , (3.5)

where D represents source terms which do not depend on nSI (to the first order) and C represents

sink terms which are linear in nSI (to the first order). The photon conserving method we use

(Equation 3.1) calculates the photo ionization rate per absorbing atom within a cell at a given
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neutral fraction. In order to use Equation 3.5, we must assume that the photo-ionization (sν) and

heating per absorber within the cell, which depend on (1 − e−∆τ )/nSI , is either independent of

the neutral fraction or is ∝ 1/nSI , so that nSIsν ∼ const. Since ∆τ is proportional to nSI, we

are effectively treating single cells as having either ∆τ ≪ 1 (i.e., 1 − e−∆τ ∝ ∆τ ∝ nSI) or

∆τ ≫ 1, over a set of sub-cycles. We note that where this approximation is less accurate, the

cells ionize faster than in the accurate case, becoming rapidly optically thin and transitioning

into the more accurate regime. We also have the option of treating the cells as optically thick in

cases of particularly high density. However, in the bulk of the cases we consider, high density

cells at the ionization front are pre-ionized by photons with a long mean-free-path because of a

spectrum which has been hardened by absorption along the ray. In summary, the optically thin

approximation is almost always sufficiently accurate.

We choose sub-cycle time steps for the ionization/energy ODEs to limit the fractional

change in any quantity which our equations is tracking, including the energy of the cell. Thus:

dt = min

(
ϵE

|dE/dt|
,

ϵnH I

|dnH I/dt|

)
.

The choice of ϵ is free; we find that a choice of ϵ = 0.1 following the convention of

similarly written codes (Anninos et al. (1997), Wise & Abel (2011)) gives a good balance of

speed and accuracy.

The solution of the ODEs for ionization/heating is also parallelized. The computational

volume is divided into sub-volumes and distributed between MPI processes, with multiple copies

distributed to independent processes when there are a large number of sources. Each process then

calls a CUDA kernel to assign these cells to the CUDA cores of each GPU. While the processes
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operate independently, MPI is used to consolidate data as necessary between ray tracing steps.

Once the calculation in each process is complete, the sub-volumes are recombined in the

host process and redistributed between all processes. In some cases, the time required to dis-

tributed and recombine the grid data may be larger than the time required to actually perform the

full ionization calculation; in these cases, we are also able to perform the ionization calculation

locally in each process, eliminating the need to send any data between the processes during this

step of the simulation.

3.2.8 Heating and Cooling

The heating of gas within each cell is calculated at the same time ionization rate is calcu-

lated. The energy per unit volume and per unit time added to each cell by a given ray is calculated

based on the ionization rate:

Ėν =
∑
S

h(ν − νS)sνnSI ,

where νS is the ionization edge frequency of the species being tracked. We then use the available

physical quantities (such as temperature, free electron density, ionized/neutral hydrogen/helium

density) to calculate the cooling rate for a variety of physical processes, including collisional

ionization, recombination, collisional excitation, bremsstrahlung, and adiabatic expansion due to

the Hubble flow (Hui & Gnedin, 1997). In Figure 3.2, we plot the cooling function we use in our

simulations. In order to save memory, the simplest version of the code only tracks hydrogen and

singly ionized helium fractions, meaning we assume a soft spectrum of radiation (stellar spec-

trum) in which He III number densities is negligible. In our initial simulations, all of the sources
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Figure 3.2: Cooling function Λ(T ) (black solid line) as a function of temperature for a gas of
primordial composition (Hui & Gnedin, 1997). The solid lines represent the contribution to the
cooling from different processes for hydrogen and the dashed lines for helium as shown in the
legend.
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are initialized with spectra corresponding to stellar sources, so that temperatures above 2×104 K

is rare, and we thus expect our cooling rates to be accurate. We initially omit tracking He III and

primordial H2 chemistry to save on computer memory; however, we have the ability to include

other relevant chemistry, for instance when we include sources of X-rays and Population III stars

that emit harder photons and H2 dissociating radiation (cite).

3.2.9 Radiative Transfer Time Step

The previous section describes how we dynamically sub-cycle the time integration between

radiative transfer calls; however, the choice of time step between calls of the radiative transfer

routine is more difficult. The radiation field does not evolve between ray tracing calls, so that the

velocity of the I-front is limited by the choice of this time step. This means that if the time step is

chosen to be too large, the speed of the I-front is unphysically reduced. However, the I-front still

approaches the correct asymptotic solution at large times regardless of choice of time step.

The ray tracing step is by far the most computationally expensive part of the simulation, so

we wish to maximize the time step between ray tracing calls while keeping the required accuracy.

In cases where the velocity of the ionization front is not important, we can opt to use a constant

time step chosen based on physical considerations. In cases where higher accuracy is required,

we have implemented two different schemes for determining the optimal time step adaptively:

1. Minimum neutral fraction change: The simplest method for adaptively correcting the

time step is regulate the maximum rate at which the neutral fraction in any given cell
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changes. For a single cell:

dtn =
ϵnH I

|dnH I/dt|
,

where ϵ is the maximum fractional change in the neutral fraction. We calculate this quantity

for every cell within the computational volume and calculate the minimum time step. We

find that this method constrains the time step to be unnecessarily small in regions with small

neutral fraction, where a large fractional change in neutral fraction results in a negligible

change in the neutral density. We thus add the constraint to only consider cells with a

relatively high optical depth:

τ = nH Iσid > 0.5,

where d is the width of the cell and σi is the cross section of the lowest frequency bin. This

condition also limits us to cells near the ionization front.

2. Minimum intensity change: Our second scheme for adaptively controlling the time step

is to regulate the maximum rate at which the photon flux changes in a single cell. Similar

to above, we define the time step for a given cell as:

dtI =
ϵIν

|dIν/dt|
,

Where Iν = A exp(−τν). We calculate this expression at runtime by using the following
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simplification:

∣∣∣∣dIνdt
∣∣∣∣ = ∣∣∣∣ ddtA exp(−τν)

∣∣∣∣
=

∣∣∣∣A exp(−τν)
dτν
dt

∣∣∣∣
=

∣∣∣∣Iνσid
dnH I

dt

∣∣∣∣ ,
dtI =

ϵ

σid|dnH I/dt|
.

We find that this method gives significantly larger time steps than the previous methods,

with a minimal loss of accuracy when the ionization rate is very high.

We note here that for a given choice of time step, smaller H II regions are underrepresented

compared to larger H II regions. We also note that the choice of time step makes much less of

a difference in regions without radiation (as chemistry subcycles accurately solve the equations)

and when H II region overlap becomes prevalent (as most H II regions are large and I-front veloc-

ities are low).

3.2.10 Ionizing Background

As the universe expands and the average electron fraction of the universe increases, the

average density of neutral hydrogen decreases and the mean free path of photons in the IGM

increases. These photons build up a ionizing background which becomes more dominant as more

ionizing sources appear. The harder photons of the ionizing spectrum build up a background

earlier than the softer photons due to their longer mean free path. Individual halos never produce

large enough regions where the gas is fully ionized to completely reionize the cosmic volume, so
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the derived average electron fraction underestimates the true electron fraction. We correct for this

underestimation by calculating and including in the photon budget the ionizing background and

its effect on the cosmic ionization history. We quantify this effect solving the equation of radiation

transfer in an homogeneous expanding universe as in Gnedin (2000a); Ricotti & Ostriker (2004b),

which we briefly summarize here. We begin with the number density of ionizing background

photons nν at a redshift z and evolve it to z − ∆z. During each code timestep ∆z, we add to

the initial background at redshift z (appropriately redshifted and absorbed by the neutral IGM)

the photons produced by ionizing sources within our simulation between the redshifts of z−∆z0

and z − ∆z including absorption and redshift effects (source term), where z − ∆z0 represents

the redshift at which we begin adding the contribution of the sources to the background radiation.

This parameter is used, as explained later, to avoid double counting the emission from low redshift

(local) sources, that is already included in the radiation transfer calculation. Mathematically, we

solve the equation:

nν(z −∆z) = nν(z) exp

[
−
∫ z−∆z

z

dz′αν′(z
′)

]
+

∫ z−∆z

z−∆z0

dz′Sν′(z
′) exp

[
−
∫ z−∆z

z′
dz′′αν′′(z

′′)

]
, (3.6)

where ν ′ = ν(1 + z′)/(1 + z) we have defined a dimensionless absorption coefficient and source

function:

αν =
(1 + z)2

H(z)
cnHσν(H I)(1− xe(z)), (3.7)

Sν =
ṅion⟨hν⟩gν/hν
(1 + z)H(z)

, (3.8)
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where the sources spectra are normalized as
∫∞
ν0

gνdν = 1, with hν0 = 13.6 eV and ⟨hν⟩−1 ≡∫∞
ν0
(gν/hν)dν. We use this equation to calculate two quantities which we track throughout the

simulation:

1. The overall background nall
ν (z − dz) is calculated using ∆z0 = 0, so that we include

background and local radiation. This quantity is used as nν(z) in Equation 3.6 for the next

time slice.

2. The mean local radiation emission nloc
ν (z − dz) is calculated assuming ∆z0 = H0R0/c,

where R0 represents the size of the simulation box. By combining the local radiation

background (from stars inside the box but within ∆z) with the overall background nall
ν

from previous slices, we find the background radiation from all stars at higher redshifts in

the simulation without double counting the contribution of sources inside the box.

3.2.11 MPI/CUDA Parallelization

The N3 uniform grid of our full simulation represents a simple first application of our

ray tracing algorithm. In the first version of ARC (v1) every GPU requires the full grid data to

perform the ray tracing calculations, which limits the possible size of the simulation grid. In the

current version (v2), if the grid required for the simulation is larger than can be stored on a single

GPU, the code allow the code to break the volume into smaller regions. When rays reach the

edge of a sub-volume, they are sent to the adjacent sub-volume into which they move, much in

the same way as AMR methods perform the calculation. This means our method is applicable in

AMR settings, though our current iteration of the code is limited to Cartesian grids which may

be subdivided. Regardless of these considerations, GPUs excel at performing these ray tracing
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calculations as long as the number of rays within a single computational volume is large and the

CUDA core occupancy is near optimal (> 104).

3.3 Radiative Transfer Tests

Consistency tests are paramount in demonstrating that a new radiative transfer code pro-

duces results that are consistent with well established methods or scenarios that have exact ana-

lytical solutions. In this section we present the results produced by our code when running the

tests presented in (Iliev et al., 2006a) (RT06). These tests include 0) Tracking chemistry in a

single cell 1) expansion of an isothermal H II region in pure hydrogen gas 2) expansion of an H II

region in a pure hydrogen gas with evolving temperature 3) I-front trapping and the formation

of a shadow 4) multiple sources in a cosmic density field. We show that our code performs well

when compared to CPU codes that use similar ray-tracing methods. The various codes used for

comparison in RT06 show a good deal of variability for several of the tests. The method imple-

mented in our code most closely resembles C2-Ray (Mellema et al., 2006) and MORAY (Wise

& Abel, 2011). Where possible we compare our results to the publicly available RT06 results

for C2-Ray. Since at the moment our ray tracing algorithm is used in a post-processing setting,

it neglects hydrodynamic evolution. We therefore limit ourselves to tests which do not require

accurate tracking of the hydrodynamic properties of the gas.

3.3.1 Test 0 - Chemistry in a Single Cell

The test presented in RT06 applies a constant radiation field of plane-parallel radiation to

a single cell of the simulation. Our code is limited to tracking point sources of radiation, so we
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place a single source of photons at one side of a 6.6 kpc cube with 1283 cells. The source is

given a luminosity 5.2× 1057 photons s−1 so that the flux at the cell is 1012 photons s−1 cm−2.

The density of the cell is n = 1 cm−3 and it is initially neutral at temperature T = 100 K. The

radiation is approximated to be a blackbody of temperature 105 K; following Wise & Abel (2011),

we use four frequency bins with central energies Ei = (16.74, 24.65, 34.49, 52.06) and relative

luminosities Li/L = (0.277, 0.335, 0.2, 0.188). The radiation is applied for 0.5 Myr, after which

the radiation is turned off and the cell is tracked for 5 Myr.

In figure 3.3 we plot the neutral fraction and temperature of the cell as a function of time.

We find that these results agree with those presented in RT06. The only discrepancy between

our results and those presented in RT06 is in the electron fraction for the first time step. This

is a result of the optically thin approximation for sub-cycles. The first ray tracing calculation

occurs at xH I = 1, at which point the cell absorbs more soft photons, so that the chemistry

calculator doesn’t reach the correct equilibrium point. After this step, however, the optically thin

approximation is satisfied and the solution agrees from the second step on.

3.3.2 Test 1 - Expansion of Isothermal H II egion in Pure Hydrogen

The most fundamental test for a radiative transfer code is the simulation of an expanding

H II region around a constant luminosity source in a constant density medium of pure hydrogen

Assuming the medium is initially neutral and that the H II region has a sharp boundary, we have
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Figure 3.3: Test 0 - Chemistry in a single cell. In this test, a single cell is subject to intense
radiation for 5×105 yr, at which point the radiation stops. (Top.) Plot of the neutral fraction (solid
line) and ionized fraction (dashed line) as a function of time. (Bottom.) Plot of the temperature
as a function of time. These results agree well with the results presented in RT06, except at the
first time step, which is expected given our use of a fixed time step.

the well known analytic solution:

rI(t) = rS

(
1− exp

(
t

trec

))1/3

, (3.9)

vI(t) =

(
rS
3trec

)
exp(t/trec)

(1− exp(t/trec))2/3
, (3.10)
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where:

rS =

(
3Ṅ

4παB(T )n2
H

)1/3

,

trec = [αB(T )nH ]
−1.

The test domain is a 6.6 kpc cube with a 1283 element cubic grid. The gas has a fixed

density nH = 1.0 × 10−3 and temperature T = 104 K and an initial equilibrium ionization

fraction of 1.2 × 10−3. We place a single ionizing source in the corner of the simulation box,

and assume a monochromatic spectrum with energy hν = 13.6 eV and luminosity of S0 =

5 × 1048 photons s−1. The chosen physical parameters give a Strömgren radius RS = 5.4 kpc

and a recombination time trec = 122.4 Myr. We track the evolution of this simulation for 500

Myr, or roughly four recombination times.

In Figure 3.4 we plot a slice through the computational volume at t=500 Myr (top left).

This panel shows that the code produces a spherically growing region of ionization, as expected.

In the top-right panel of Figure 3.4 we plot the radially averaged profile of the H I fraction as a

function of radius at four times throughout the simulation. The shape of this profile agrees well

with the results of RT06. In the bottom-left panel of Figure 3.4 we plot the comparison of our

simulation with the model in Equation 3.9. We see that our model agrees with the analytic fit

within 5% for the majority of the simulation. The underestimation of the radius at early times

is a result of using a fixed time step for these tests; with an adaptive time step, the agreement is

much better (see Figure 3.11). Finally, in the bottom-right panel we show the histogram of H I

fraction for three times in the simulation (solid lines). The dashed lines represent the same plots

produced using the C2-Ray data from RT06. We see that our code produces the expected results
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for this test.

3.3.3 Test 2 - Expansion of H II egion in Pure Hydrogen with Evolving Tem-

perature

The second test is similar to the first test, but with the reintroduction of heating and cooling

processes to the simulation. We give the source a blackbody spectrum with T = 105 K, using the

same spectrum and luminosity as Test 0. The gas is given an initial temperature T = 100 K.

In the top and middle left panels of Figure 3.5 show a slice through the neutral fraction at

t = 10 Myr and t = 100 Myr, respectively. We see that the boundaries of the H II region in these

plots is less sharp than those of Fig. 3.4, as anticipated with the harder radiation present in the

T = 105 K black body spectrum. We plot t = 100 Myr instead of t = 500 Myr for this test

because the edge of the H II region and heating reaches the boundary by then, meaning the plots

show less relevant information. In the top and middle right panels of the same figure, we plot

a slice through the temperature at the same times to show how the radiation is able to heat at a

larger radius than the ionization front. In Figure 3.6 we show the respective radial profiles of the

neutral fraction (top-left) and the temperature (top-right). We plot our results (solid lines) against

the RT06 results for C2-Ray (dashed lines) for comparison. In contrast to Figure 3.4, we see that

the neutral fraction increases more gradually, in good agreement with the results of C2-Ray. We

note that our model heats the gas outside of the Strömgren sphere more than the C2-Ray results

from RT06. This is a result of the difference between the blackbody spectrum from Wise & Abel

(2011) and the one used in RT06.

In the bottom-left panel of Figure 3.6 we show the growth of the radius of the Strömgren
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sphere as a function of time. We see that the radius of the ray tracing model begins lagging behind

the analytic model while the gas is being heated, and later moves beyond the analytic model once

the gas is heated beyond 104 K. These results are in good agreement with the models presented in

RT06. Finally, the bottom-right panel of Figure 3.6 shows the histogram of neutral fractions (left

plot) and temperatures (right plot) at t = 10, 100, and 500 Myr (solid lines) against the C2-Ray

results (dashed lines). Again, we see the neutral fractions are in excellent agreement, while our

model heats the lower temperature gas slightly more, due to the adoption of a harder spectrum

that was chosen to match the one adopted in Wise & Abel (2011).

3.3.4 Test 3 - I-front Trapping and Formation of a Shadow

Test 3 in RT06 is designed to test the diffusivity and angular resolution of the radiative

transfer code. In this test, a field of uniform radiation is projected towards a dense sphere of

uniform hydrogen surrounded by a very thin medium. We plot the results of our model in Fig-

ure 3.7. The I-front propagates at a constant velocity towards the clump until it reaches the

surface, at which point the optically thick clump begins slowly absorbing the radiation. The lines

of sight which pass through the sphere are trapped in the clump, causing a shadow to form behind

the clump. The sharpness of the edge of the shadow is a measure of the diffusivity of the method.

The edges of the sphere become ionized before the rest of the clump, causing the shadow to

shrink; this allows to visually assess the angular resolution of the code. The test also tracks the

rate at which the I-front progresses through the clump.

The original test presented in RT06 is contained within a 6.6 kpc box with resolution 1283.

The ambient medium has a density nout = 2 × 10−4 cm−3 and temperature Tout,init = 8000
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K, while the clump has a density nclump = 0.04 cm−3 and temperature Tclump,init = 40 K.

The clump has a radius 0.8 kpc and is centered at (xc, yc, zc) = (97, 64, 64) in grid units. The

original test assumes plane-parallel radiation with flux 106 s−1 cm−3. However, as in Test 0, we

follow Wise & Abel (2011) and replace the plane parallel radiation with a single point source of

radiation opposite the clump, with (xc, yc, zc) = (0, 64, 64). The luminosity of the source is set at

S0 = 3× 1051 photons s−1, so that the flux at the center of the clump matches the plane parallel

flux of the original test. The simulation is evolved for 15 Myr, at which point RT06 find that the

I-front is just past the center of the clump.

The top and middle left panels in Figure 3.7 show the neutral fraction in a slice through the

center of the volume at t = 1 Myr and t = 15 Myr, respectively. The corresponding panels in the

top and middle right show the temperature for the same slice and times. We notice immediately

that the shadows in our simulation are opening with distance, a result of the relatively small

distance of the point source from the clump, as opposed to the plane parallel radiation in the

original test. We also see that the diffuse gas outside the clump is immediately ionized and

photo-heated to the point of becoming optically thin. We also see that edge of the shadow is very

sharp, with the neutral fraction going from ∼ 1 to ∼ 10−4 in the space of ∼ 1− 2 cells.

The bottom panels in Figure 3.7 show the neutral fraction (bottom-left) and temperature

(bottom-right) within the clump along the ray passing trough the center of the clump. The clump

is centered at r/Lbox = 0.75 and extends between r/Lbox ∼ 0.6 and r/Lbox ∼ 0.90. We see that

the photo-heated gas outside the clump reaches values above 3 × 104 K, while the photo-heated

gas inside the clump has a temperature below 2×104 K, a result of the increased cooling at higher

gas density. We see that the neutral fraction rises and the temperature falls as we move through

the I-front. The neutral fraction reaches 50% at r/Lbox ∼ 0.8, a result consistent with RT06.
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For comparison we also plot the results of C2-Ray as similarly colored dashed lines. While the

neutral fractions agree well, there is more of a discrepancy in the temperatures. We believe this

is a result of the ray divergence present with a point source that is absent in the case of plane

parallel radiation. The diverging rays overheat the gas behind the front and underheat the gas in

front of the front, an effect we see in our plot.

Finally, in Figure 3.8 we plot the average neutral fraction and temperature inside the clump

for our model (solid lines) against the results from C2-Ray (dashed lines). While we see that our

model both heats and ionizes the clump less effectively than C2-Ray, we again believe this is a

result of the diverging nature of our radiation, which exposes a smaller portion of the sphere to

the full radiation, at least initially. Despite this discrepancy, our results are still well within the

spread of models shown in RT06.

3.3.5 Test 4 - Multiple Sources in a Cosmic Density Field

The final test in RT06 is a simple simulation of a cosmological density field. The simulation

volume is cube with side 0.5 h−1 cMpc at redshift z = 9 and resolution 1283 (here h = 0.7).

The source of ionization is 16 point sources centered within the 16 most massive halos, and emit

fγ = 250 ionizing photons per baryon with the same T = 105 K blackbody spectrum used in

tests 2 and 3. The sources are assumed to live for ts = 3 Myr, which is longer than the length of

the simulation, so that they remain on for the entire simulation. The luminosity of each source is

thus:

Ṅγ = fγ
MΩb

ΩmmHts
.
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Here M is the mass of the halo, Ωb = 0.043, and Ωm = 0.27. It is assumed that radiation

leaving the box is lost, and the volume is tracked for a total period of 0.4 Myr. The density grid

and halo position/luminosities are currently available from the Cosmological Radiative Transfer

Comparison Project website. In Figure 3.9 we show a selection of plots from this simulation.

The top four figures are slices through the center of the simulation to allow for visual comparison

between our results and the RT06 results. The ML and MR plots show slices through the neutral

fraction grid at the z = zsim/2 plane of the simulation at t = 0.05 Myr and t = 0.2 Myr,

respectively. The LL and LR plots show slices through the temperature grid at the z = zsim/2

plane of the simulation at t = 0.05 Myr and t = 0.2 Myr, respectively. The results are in good

agreement, although the difference in colormap between our plots and those of RT06 may make

visual comparison difficult. Our plots may also be visually compared to those of Wise & Abel

(2011), which use a similar colormap and thus closely resemble our results.

The bottom-left panel in Figure 3.9 shows histogram of neutral fraction (left) and temper-

ature (right) at times of 50, 200, and 400 kyr. These results are in good agreement with the

codes presented in RT06. The bottom-right panel of Figure 3.9 shows the volume averaged (χv,

solid black line) and mass averaged (χm, dashed red line) ionized fraction within the volume as a

function of time. We see that the mass averaged ionized fraction is larger at early times, in agree-

ment with the expectation of inside-out reionization within the RT06 simulation (Gnedin, 2000b;

Miralda-Escudé et al., 2000; Sokasian et al., 2004). These results are again in good agreement

with those presented in RT06.
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3.3.6 Methodology Test: Spherical Correction Factor

The spherical correction factor defined in Section 3.2.5 represents an attempt to approx-

imate the true overlap between the cubic grid cells and the conic ray intersecting at arbitrary

angles. The true correction factor depends on too many factors to calculate exactly, so any simple

approximation will necessarily be somewhat flawed. In Figure 3.10 we plot a collection of slice

plots from Test 1 using different choices for the power used in the correction factor formula. The

top and bottom rows of this figure represent the same slices with different choices of ray splitting

rate (Φ = 1 and Φ = 3, respectively), while each column represents a different choice for the

correction factor. The first column shows the case with no correction, and the artifacts are clearly

visible. The second column shows the linear correction factor, and the second plot includes the

secondary correction (which moves the excess radiation from a given cell to the adjacent cell

which the ray is closest to). Finally, the last column shows the squared correction, as described

in Wise & Abel (2011). We see that the linear power correction with the secondary correction

results is the closest approximation of a true sphere. The inclusion of this secondary correction

also serves the purpose of compensating for the lost radiation due to the primary correction fac-

tor. In Figure 3.11 we plot the comparison of the model radius to the analytic Strömgrem radius

for the same four models in Figure 3.10. We see that the linear and square models reduce the

radius of the model by factors of 5% and 10%, respectively. The correction factor, however,

restores the accuracy of the model radius quite well. We thus chose to use in our simulations

the secondary correction in combination to the fc factor as it preserves photon conservation and

removes azimuthal artifacts.
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3.4 Benchmarks

The way in which our code processes individual rays with GPUs is inherently parallel

(CUDA kernel). For a single GPU, the number of cores over which this work is distributed is

fixed by the specifications of the individual GPU. We thus choose to benchmark our code by

measuring its performance on a simple test problem varying the number of source of radiation

and the dimension of the computational grid. Our test problem is based on a test in Wise &

Abel (2011). We place the ionizing source(s) at the center of a cubic 643 grid of size 15 kpc. The

medium is pure hydrogen of density 10−3 cm−3, and the ionizing source(s) have a monochromatic

17 eV spectrum with luminosity 5×1048 photons/s. The simulation is run with the radiation-base

adaptive time step (see Section ) for 250 Myr. For each simulations, we plot the time it takes for

the entire ray tracing algorithm to run (Total Rad) as well as the time it takes for the algorithm to

run on a single sub-volume (we divide the volume in 8 sub-volumes).

Dimension Scaling: We measure how our code performs with varying grid size by per-

forming the test simulation on grids by running the same simulation with grid resolutions of 643,

1283, 2563, 5123, 10243. The red line shows the time it takes for the full radiative transfer cal-

culation, while the blue line shows the line shows the time it takes for a single sub-volume to

complete its ray tracing calculation (the blue dashed line is the time it takes for the CUDA kernel

to execute in isolation; this time is measured locally on the GPU, while the rest of the times are

measured on the host node). The difference between these lines is the time it takes for the rays

to be shared between the nodes and for the rays to propagate through the rest of the volume. We

plot the difference between the total radiation calculation and the kernel execution times with the

green line, as a measure of the MPI overhead during the radiative transfer calculation. Finally,
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we include the time taken for the ionization calculation with the cyan line. We see that the MPI

overhead varies little with dimension, while the overall execution time scales with grid dimension

as a power-law with slope between N2
dim and N3

dim. The problem should theoretically scale with

N3
dim: two powers of Ndim for the number of rays, and one power of Ndim for the number of

steps along a ray of the same physical length. However, our GPU code doesn’t perform as well

when the number of rays is small, as the occupancy of the GPU processors is lower and some

computational power is wasted.

Source Scaling: We measure how our code performs with a varying number of sources by

measuring how long the code takes to perform a single step of the calculation with N sources at

the same location, with the luminosity of each reduced by a factor of N , so that the final result

should be the same. In the left plot of Figure 3.12 we plot the resulting times for 1, 10, 100, and

1000 sources. We see that the code’s overall time scales linearly with the number of sources, as

anticipated.

Cosmic Simulation Benchmark: We also include a benchmark based on a full cosmic

simulation run using our code on a 1283 grid divided evenly into 8 sub volumes, each 643. In

Figure 3.13 we plot the time taken for a complete ray tracing step divided by the total number

of sources (blue) and by the number of sources in the most populated sub-volume (green). In

such cosmic simulations, the bottlenecked is the sub-volume which takes the longest time to

process, which is why we plot the time divided by the number of sources in the most populated

volume. However, the since the GPU’s process the rays independently, the time divided by

the total number of sources is a better proxy for the time taken per step per source, as long as

the sources are relatively evenly distributed between the sub volumes. In this simulation, when

xe ∼ 0.2, the simulation is able to fully process rays from ∼ 104 sources on a 2563 grid in ∼ 20
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seconds.

3.5 Summary

We have described our implementation of the spatially adaptive ray tracing radiative trans-

fer code ARC which is designed to take advantage of the extremely parallel processing power of

the GPUs available in today’s supercomputers. Our algorithm is based on the well known method

presented in Abel & Wandelt (2002). We have presented the methodology of our code, as well

as a novel approach to a correction method for ray tracing in a Cartesian grid. Our code is able

to split a computational volume into sub-volumes, each of which is contained on an independent

GPU linked by MPI, allowing our code to tackle very large problems avoiding the limitations

related to the available memory on the GPU. We verified the accuracy of our method by per-

forming a selection of tests presented in Iliev et al. (2006a). Finally, we discussed a selection of

benchmarks to demonstrate the speed and scaling of our code.

We believe that the unique characteristics of GPUs make them ideal for the computational

problem of ray tracing. ARC already takes advantage relatively recent innovation such as CUDA

aware MPI (only becoming available in 2013), but the optimization and speed up of our code is an

ongoing process that will take advantage of new capabilities of GPUs as they become available.

The speed, number of cores and the memory of GPUs has been growing rapidly over the years

allowing us to tackle problems which were computationally unfeasible only a few years ago.

The first application of ARC will be to simulate the reionization epoch using pre-computed

dark matter simulations in a (10 cMpc)3 volume, with sufficient resolution to capture minihalos

with masses > 106 M⊙. These simulations can resolve the sites of formation of Population III
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stars, which we will be able to model adopting the model in (Ricotti, 2016), and have a sufficiently

large volume to capture the formation of galaxies observed in the Hubble ultra-deep fields. We

will take advantage of the non-diffusive nature of the ray-tracing method to simulate realistic

emission of ionizing radiation from the minihalos, including the short duration of the bursts of

radiation and anisotropic emission expected if the dominant star formation mode is in compact

star clusters (Ricotti, 2002a; Katz & Ricotti, 2013, 2014; Ricotti et al., 2016). Based on our

previous analytical study (Hartley & Ricotti, 2016), we believe that properly accounting for these

effects will have a major impact on both the topology of reionization and the budget of ionizing

photons necessary to reionize by redshift z ∼ 6.2.
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Figure 3.4: Test 1 - Expansion of an isothermal H II region in a gas of pure hydrogen. (Top-
left.) Slice plots of the neutral fraction at 500 Myr into the simulation. The size and shape of
the H II region are in good agreement with the results in RT06. (Top-right.) Radially averaged
neutral fraction as a function of distance from the source, in kpc. The dashed lines are the same
plots reproduced from RT06 using C2-Ray. (Bottom-left.) Ionization front plotted along with
the analytical model (top) and the ratio of these models (bottom). We note that the simulation
deviates from the analytic solution at the beginning and end of the simulation. This is a result
of the soft 13.6 eV spectrum being the worst case scenario for our optically thin approximation
for non-equilibrium chemistry calculation. (Bottom-right.) Histogram of neutral fractions at
t = 10, 100, 500 Myr. The dashed lines are the same plots reproduced from RT06 using C2-
Ray. We see that our model matches C2-Ray very well.
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Figure 3.5: Test 2 - Expansion of H II region in a gas of pure hydrogen with evolving tempera-
ture. (Top and bottom left.) Slice plots of the neutral fraction at 10 Myr and 500 Myr into the
simulation, respectively. (Top and bottom right.) Slice plots of the temperature at 10 Myr and
500 Myr into the simulation. The adopted 105 K blackbody spectrum introduces harder photons
which heat the gas to a much larger radius than the size of the Strömgren sphere, in agreement
with the results presented in RT06.
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Figure 3.6: Test 2 - Expansion of H II region in a gas of pure hydrogen with evolving temper-
ature. Radially averaged neutral fraction (top-left) and temperature (top-right) as a function of
distance from the source, in kpc. The shaded thickness of the solid neutral lines represents the
variance of the radial average. The dashed lines in both plots represent the same plots reproduced
from RT06 using C2-Ray. The slight disagreements are a result of a different assumption on the
spectrum of the source (monocromatic vs blackbody spectrum) between our code and the C2-Ray
run in RT06. (Bottom-left.) Ionization front plotted along with the analytical isothermal-model
(top) and the ratio of these models (bottom). This model deviates more than in test 1, a result of
the non-isothermal nature of the simulation. (Bottom-right.) Histograms of the neutral fraction
and temperature within the simulation, respectively. The dashed lines represent the same results
calculated from C2-Ray data from RT06. We find that our code produces slightly higher tem-
peratures than C2-Ray, a result of the difference assumption on the source spectrum between our
code and the C2-Ray run used in RT06.
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Figure 3.7: Test 3 - I-front trapping and formation of a shadow. (Top and middle left.) Slice
plots of the neutral fraction at 1 Myr and 15 Myr into the simulation, respectively. (Top and
middle right.) Slice plots of the temperature at 1 Myr and 15 Myr into the simulation. The
shape of our shadow region expands with distance, a result of the point-like nature of the source
of ionizing photons. Our results agree well with Wise & Abel (2011), a simulation which uses
the same point-like configuration. Neutral fraction (bottom-left) and temperature (bottom-right)
along a ray going through the center of the dense clump. The dashed lines represent the same
plots calculated using C2-Ray using data from RT06. We interpret the discrepancy in the right
figure as the result of using a point source, as in our simulation, rather than a plan-parallel front.
The diverging rays heat more effectively closer to the source (low r) and less effectively further
from the source (high r).
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Figure 3.8: Test 3 - I-front trapping and formation of a shadow. Average neutral fraction (top)
and temperature (bottom) within the dense clump as a function of time during the simulation. The
dashed lines represent the same results plotted using C2-Ray data from RT06. We see that our
ionization and heating are lower; we interpret this discrepancy as the result of adopting a point
source of radiation rather than a plane-parallel front.
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Figure 3.9: Test 4 - Multiple sources in a cosmic density field. (Top and middle left.) Slice plots
of the neutral fraction at 0.05 Myr and 0.2 Myr into the simulation, respectively. (Top and middle
right.) Slice plots of the temperature at 0.05 Myr and 0.2 Myr into the simulation, respectively.
These results are almost identical to those presented in Wise & Abel (2011), which uses a similar
adaptive ray tracing scheme to ours. (Bottom left.) Histograms of neutral fraction (left) and
temperature (right) at fixed times in the simulation. (Bottom right) Mass averaged (dashed line)
and volume averaged (solid line) ionized fraction as a function of time throughout the simulation
box. These results are in good agreement with the results presented in RT06.
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Figure 3.10: This figure shows a selection of correction methods for two different ray splitting
rates. The parameter Φ represents the number of rays per cell area, so that the bottom row have
three times the splitting rate of those in the top row. The first column represents the method with-
out correction factors. The second column illustrates the case with a primary correction, or the
application of Equation 3.2 to the rate of ionization in every cell. The third column represents the
case with primary and secondary correction, or the application of Equation 3.3 to the cell which
is closets to the cell face has the greatest overlap. The fourth column represents the case with only
the primary correction with fc squared, as presented in Wise & Abel (2011). The low Φ = 1 plots
were included to emphasize the difference between these configurations; clearly a higher value
of Φ improves the accuracy for any configuration, but also increases the computational work for
the simulation.
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Figure 3.11: Same as the bottom panel in Fig. 4 (left) but using different spherical correction
factors. We see that the fc and f 2

c corrections shrink the size of the ionized region by roughly 5%
and 10%, respectively, while including a secondary correction to the fc correction restores the
size of the region to the uncorrected size.
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Figure 3.12: Benchmarks for a Strömgren sphere in a cubic grid. (Left.) The time taken to trace
rays from a single source through the entire grid for grid sizes 643 through 10243. The time taken
scales between N2 and N3. This is expected for this problem, as the number of rays scales with
N2 and the number of steps along each ray scales with N . (Right.) The time taken for a single
radiative transfer step at grid size 643 for a number of sources between n = 1 and n = 1000. For
small source counts the per-step overhead can be seen, and as the number of sources increase, the
time taken scales linearly, as expected.
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Figure 3.13: Execution times (in seconds) for a 1282 simulation of cosmic reionization plotted
as a function of simulation time (on 8 GPUs). The plot shows the time taken by a full radiative
transfer calculation divided by the total number of sources (blue line) and divided by the max-
imum number of sources in any sub-volume (green line). The eight sub-volumes are processed
in parallel, so as long as the sources are well distributed within the volume, the blue line should
represent the mean time to execute the radiative transfer step per source at this resolution. We
note that the times are unusually large at the beginning of the simulation, as the constant overhead
dominates when the number of radiation sources is very small (i.e., zero or one source)
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Chapter 4: Simulating Bursty and Continuous Reionization with ARC

4.1 Introduction

The goal of this thesis is to demonstrate that bursty star formation is able to drive reion-

ization more effectively than continuous star formation. The semi-analytic models presented in

Chapter 2 gave us enough confidence that this effect is real and substantive to work towards cre-

ating a more robust model which is able to accurately evaluate how these modes of star formation

affect the course of reionization. In Chapter 3, we presented ARC, the library we developed to

accomplish this task. In this chapter, we present the results of a suite of simulations run using

ARCand our conclusions from the results of these simulations.

In Section 4.2, we present several improvements and adjustments that we made to ARC

while working towards a satisfactory comparison of bursty and continuous models. In Section

4.3, we describe all of the details and parameters that we chose for our simulations. In Section

4.4, we report the results of these simulations. In Section 4.5, we discuss the implications of these

results. Finally, in Section 4.6 we conclude our findings and discuss what the next steps going

forward will be.
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4.2 Updates

The version of ARC that we presented in Chapter 2 was fully operational, and accurate to

the standards presented in (Iliev et al., 2014). However, early attempts to simulate reionization

showed us that the library and the results it produces would benefit greatly from a collection of

relatively minor tuning changes and upgrades. Here we motivate and describe these updates.

4.2.1 Enforcing and Tracking Photon Conservation

Ray tracing methods are inherently photon conserving, meaning that all photons that are

emitted by sources are absorbed by the gas in the grid in a one-to-one fashion. Thus, the overall

rate of photon emission, ΣN
i=1S0 is equal to the density-weighted sum of all the photon ionization

rates over the grid, The caveat is that when the universe becomes transparent to ionizing photons

– near the epoch of reionization – the photons can escape from the simulation box without being

absorbed. These photon ionization rates are then used to calculate the change in ionization of each

cell, and it was at this step that we encountered difficulties in maintaining photon conservation.

This difficulty can be attributed to two systematic sources of error, both of which are the result of

using finite instead of infinitesimal time steps:

• Local: The rate at which the ionization of a cell changes is the ionization rate of the cell

minus the recombination rate of the cell. The recombination rate (which depends on the

square of the number of ionized particles) tends to increase, with the overall result being

that a cell approaches complete ionization asymptotically. The semi-implicit calculation of

Chapter 3 approximates this process very accurately; however, using different recombina-
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tion rates over the course of a time step means breaking photon conservation. Each cell is

also only able to absorb as many photons as there are absorbers within the cell, meaning

that photon conservation will drift away from equilibrium as time steps get longer, and

break down for time steps on the order of or larger than the ionization time of the cell.

• Inter-cell: As a cell becomes more ionized, its opacity decreases, which means that the

intensity of a ray which has passed through the cell increases. Because the intensity remains

constant between ray-tracing calculations, the overall result is an underestimation of the

number of photons absorbed, which is qualitatively seen as the propagation of ionization

fronts at slower than accurate rates. The error becomes relevant when the ionization fronts

move through the grid at rates comparable to a single grid cell per time step.

While it is fundamentally impossible to eliminate these errors, they can be managed due

to the fact that both are correlated to the length of the time step between ionization calculations.

We added a system to the library for keeping track of the all quantities associated with photon

conservation at the global level, which will allow us to adjust time steps in accordance with error

management on the fly. The tracked quantities include:

• S0: The cumulative rate at which photons are emitted by all sources within the simulation

during a given time step.

• Γi: The cumulative ionization rate for species i in a given time step. This number represents

the sum of the photon ionization rates after they have been distributed within the grid of

species i by the ray tracing section module of the library.

• Ai: The cumulative recombination rate for species i in a given time step. This number is
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calculated within the chemistry module of the library.

• ∆xi/∆t: The cumulative rate of change of the ionization fraction for species i in a given

time step. This number is calculated within the chemistry module of the library, and unlike

the previous quantities, the change in ionization fraction for a given cell is capped by the

initial ionization of that cell, as the ionization fraction must be within the interval [0, 1].

In Figure 4.1 we plot a sample of these quantities from a short section of one of our trial

simulations. In theory, photon conservation is enforced when S0 = Γ and ∆x/∆t = S0 − A,

where Γ, ∆x, and A are the appropriately weighted averages of Γi, ∆x/∆t and Ai, respectively.

In this example, all of the sources are steadily increasing in brightness, and when we read pre-

calculated density files of cosmological volumes ever 10 Myr, the number of source and their

locations is updated. The result of this is a jump in the recombination rate, as sources appearing

in neutral gas quickly form H II regions that contribute to the overall recombination rate, and a

resulting decrease in the overall ionization rate. The difference in S0 and Γh is due to the fact that

helium is also absorbing photons. Finally, the transient oscillatory behavior is due to the wave

front traversing individual high density cells close to the sources themselves.

The tracking of these quantities allows us to evaluate to what degree and at what point in

the calculation photon conservation is violated, and adjust parameters as necessary. To this end,

there are two comparisons that are of particular interest to us:

• S0 and Γ: The difference between the weighted sum of the Γi’s and S0 represents total error

in the ray tracing process. Processes that can contribute to this include floating point error,

rays leaving the computational grid, or rays that are terminated because their flux is below

the threshold for tracking. This quantity does not depend on the length of time step.
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Figure 4.1: Example rates of photon production, hydrogen ionization, hydrogen recombination,
and ionization change taken from a 50 Myr segment of one of our simulations.
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Figure 4.2: An example of the errors taken from a 50 Myr segment from on of our simulations
(Left). The S0 and Γ error plotted as the deviation of S0/Γ from 1. A positive error indicates that
photons are not being absorbed. (Right). The Γi −Ai and ∆xi/∆t error shown for hydrogen and
helium separately.

• Γi−Ai and ∆xi/∆t: The difference between the target rate of change in ionization (Γi−Ai)

and the actual rate of change in ionization (∆xi/∆t). The actual rate of change in ionization

is capped, meaning that this error is an indication that the ionization rate or recombination

rate for a set of cells is larger than the amount of ionization or recombination that they can

support in a given time step. In practice, this is error is generally the result of cells very

close to newly appearing sources ionizing on time scales shorter than the time step of the

simulation.

In Figure 4.2 we plot a sample of these quantities. The left plot shows the S0 and Γ error,

which in general does not depend on the length of the time step, and is negligible when all of the

photons are being absorbed. The right panels shows the conservation error comparing Γ − A to

∆x/∆t for both hydrogen and helium (we show [(Γ − A) − ∆x/∆t]/Γ). This error is mostly
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due to cells which have ionization timescales shorter than the time step of the simulation.

Because photon conservation is critical to this thesis (i.e., we want to compare the number

of photons needed to reionize the universe at z ∼ 6 in “bursty” versus “continuous” models of star

formation in galaxies), we created a new adaptive time step paradigm focused on managing this

error. The library calculates these error quantities before performing the ionization calculation,

and reduces the time step as necessary to keep the photon conservation error below a supplied

threshold level. The distributed nature of ARC made this computationally non-trivial, and we

accomplish it with the following iterative process:

1. Calculate the local ionization rate from the ray tracing module.

2. Calculate the local recombination rate and ionization rate from a simplified version of the

ionization module.

3. Average these rates over all nodes to determine the global error rate. This step introduces

a round of message sharing between all computational nodes, making it the major compli-

cating factor of this process.

4. Compute a new time step reduced by the ratio of the calculated error and the target error.

This error depends sensitively on the details of the cells which violate conservation, making

the calculation of an acceptable timestep impossible with a single guess.

5. Repeat until the computed error rate is below the target error.

In the right plot of 4.2, we enforce a 2% error limit on the photon conservation error for

hydrogen. Helium generally has a higher error than hydrogen because it is more exposed to the

hard photons which are able to reach greater distances into the neutral medium and affect more
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cells. However, helium contributes much less to the cumulative quantities because: it is roughly

25% of the intergalactic medium by mass, each absorber corresponds to four baryons, and it does

not absorb only from the harder photon bins.

In Figure 4.3 we plot a sample of time steps corresponding to the plots in Figure 4.2. The

time step decreases dramatically when new sources appear in a previously dark halo (especially

common in bursty models) as the error spikes when the intensity is very high in dense neutral

regions. As the H II regions grow, the time step constraint is relaxed and the simulation proceeds

more quickly. We can also see an overall trend towards longer time steps later, which is a result

of the overall density of the simulation decreasing due to cosmological expansion. However, gas

near or within dark matter halos continues to maintain high densities, so the initial drop in time

step persists.

4.2.2 Periodic Boundary Conditions

The version of ARC presented in Chapter 3 treats rays which leave the simulation volume

as immediately entering the ionizing background. While computationally accurate, we found

that this was unphysical at early times, as the optically thick IGM would begin receiving ionizing

radiation from a “background” that shouldn’t able to reach it. Our solution to this was to upgrade

the library to allow for periodic boundary conditions, which are defined such that rays leaving the

computational volume in the x = x0, y = x1, or z = x2 direction are transported to the opposite

side of the axis they escaped on, with all other properties of the rays maintained. Explicitly, we
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Figure 4.3: Example time steps used to enforce photon conservation at a 2% level, taken from
the continuous model of Set 1.
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write this as:

xi =



xi − L, if xi ≥ L

xi + L, if xi < L

xi, otherwise

(for i = 1, 2, 3).

Under periodic boundary conditions, rays do not have any fundamental limit to how far

they can be tracked. However, the resolution constraints we described in Chapter 3 imply that the

number of rays tracked by ARC is generally proportional to the distance the rays travel squared,

which means the computational work will increase rapidly as the rays travel distances larger

than the size of the box. We thus implement a hard distance limit for how long to track rays,

thereby also limiting the maximum possible computational load. We fix this limit to be
√
3

times the length of the side of the simulation, which represents a single diagonal crossing the of

cubic simulation volume. This choice means that rays will only stop being tracked once they’ve

been able to travel at least once through the computational volume, which will only be possible

when the simulation approaches reionization and the background we described in Chapter 3 is an

accurate physical approximation.

4.2.3 Smooth Emission Adjustment

Our simulation allows us set the location, luminosity, and time of appearance of sources

as desired. This process is inherently discrete, which means that the cumulative luminosity will

jump discontinuously when new sources appear. To alleviate this effect, we added two paradigms

for smoothing the cumulative flux:

• Flat luminosity boosting: in this paradigm, we calculate the cumulative flux for two con-
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secutive source adjustments, Si at ti and Si+1 at ti+1. We then apply an interpolation factor

to the luminosity of every halo in the simulation:

ti+1 − t

ti+1 − ti
+

Si+1

Si

t− ti
ti+1 − ti

This factor transitions linearly from 1 to Si+1/Si, which allows a smooth transition in the

cumulative flux. However, there is still some discontinuous behavior: the factor drops from

Si+1/Si to 1 at a transition, and new sources appear with their full luminosity. This is the

paradigm we chose for the simulations presented in this chapter.

• New source suppression: in this paradigm, new sources appear with a luminosity of 0 and

ramp linearly to full luminosity over a time period of ∆t, which is manually set.

4.2.4 Memory Management

We built ARC from the ground up, learning MPI and CUDA techniques as we worked. The

method we used for storing rays relied on the creation of a new memory allocation for each level

of HEALPix split. This meant that the library would repeatedly allocate and free memory for

the array of rays through the course of a single ray-tracing step. This process is relatively slow,

so we overhauled the library to use fixed portions of memory allocated at runtime, thus saving

significant computational time. The library actively monitors the amount of this memory being

used and is capable of processing more or fewer rays to saturate the memory and CUDA cores

more effectively.
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4.2.5 Source Clustering

As reionization simulations approach completion, the number of sources increases rapidly

while the distance that rays need to be tracked from each source also increases. Both of these fac-

tors contribute to a workload which increases very rapidly as the ionization fraction approaches

1. Because of this, we implemented a simple procedure for merging halos within close proximity

of each other in a way that minimizes the change in the simulation’s output while significantly

reducing the workload required to complete the computation, which we describe in this section.

Once the position and luminosity of all halos has been assigned at a given time step, we

apply an out-of-the-box K-means clustering algorithm to all of the sources with a K value which

is smaller than the total number of sources within the simulation. The K centroids produced by

this algorithm are then each uniquely associated with a single source within the volume. The

library then calculates the total luminosity of all of the sources associated with a given centroid

and assigns that total to the centroid. These K centroids are then used as alternative sources

within the simulation, reducing the amount of computation required for each ray-tracing step by

a factor of roughly the ratio of the total number of original sources to K.

In Figure 4.4 we present an example of what this algorithm looks like. The left plot shows

a 3D scatter plot of the 1171 sources taken from a snapshot at T = 700Myr from one of the

continuous models presented later in this Chapter. The right plot shows the result of applying the

algorithm with K = 500, effectively reducing the number of sources by more than 50%. The

algorithm preserves the spatial distribution of sources, including the overall mass distribution and

location of isolated groups of sources.

The spatial accuracy of ARC’s ray-tracing module is the most important factor in our choice
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Figure 4.4: Example of the effect of source clustering from a snapshot of sources at T = 700
Myr. The left plot is all 1171 sources, and the right plot is the K-Means algorithm applied with
K = 500. The size of the dots represents the stellar mass/luminosity of the sources. We see that
the algorithm maintains the overall distribution as well as the isolated and outlier sources.

of this library, yet clustering sources sacrifices some of this accuracy by effectively smearing the

resulting HII regions. Thus, great care is taken in the time and K values for which this method is

applied to ensure that little accuracy is sacrificed. As the ionization fraction approaches 1, all H II

regions within the simulated volume are relatively large and amorphous, meaning that it becomes

easier and easier to find K that satisfy the necessary conditions for application. The simulations

we present in this Chapter do not necessitate the use of this method; early tests suggested that

the large number of sources present at late times would make the computations prohibitively

expensive, however we settled on a luminosity cutoff that solved this issue.
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4.3 Simulation Parameters

The goal of our simulations is to study the difference between bursty and continuous star

formation models on the time evolution of the cosmic reionization process. To begin our simula-

tions, we need to make a few specific choices for the parameters of the simulations:

4.3.1 Shared Properties

• Volume: The volume of our simulations is a cube with a side length of 10 cMpc. The

simulations begin at z = 30, or roughly 100 Myr after the big bang. This is generally

thought to be before any significant amount of Pop III stars had formed, making it a safe

choice for a reionization study. There is no fundamental limit to how long we can follow a

simulation, but the rest of our input data spans a length of 910 Myr, or up to a redshift of

z ∼ 5.8.

• Baryon Density: ARC uses user supplied density grids and halo data. The choices we made

for these in our simulations are the results generated by a dark matter only simulation run

by Emil Polisensky using Gadget-2 (Springel, 2005). These simulations produced outputs

every 10 Myr, and we update the density information with this frequency. The outputs

consist of overdensity grids, which represented the density of the dark matter at every

point in the grid relative to the mean density of the entire volume. We further cap this

overdensity factor at 200, to prevent the gas near the largest bursts of star formation from

absorbing unrealistic amounts of photons.

• Temperature: We assume all of the ionized gas within the simulation is at a fixed temper-
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ature of 104 K, which is a reasonable approximation for the temperature that gas reaches

when ionized by a burst of star formation. Though this is unphysical, the temperature in

our simulations only enters in the calculation of the recombination rate (A(T )). The ra-

tionale for assuming a fixed temperature is to more easily compare differences between

continuous and bursty models, as a different temperature structure in these models would

change the recombination rate. This choice should marginalize a possible confounding fac-

tor in our attempt to compare the two models. In future simulations we will use the already

implemented calculation of the temperature evolution in the ionized and neutral IGM.

• Halo locations: The output of the DM-only simulation includes a halo merger tree produced

using AHF (Gill et al., 2004; Knollmann & Knebe, 2009), which identifies and tracks dark

matter halos that are more massive than 106M⊙ at every 10 Myr interval of the simulation.

These merger trees include the positions, masses, and unique identifiers for every halo

within the simulation volume, allowing us to tag halos which have hosted star formation

and restart star formation in host halos that grow significantly by mergers or accretion

between two consecutive snapshots.

• Halo luminosity: We assume a luminosity function of galaxies (i.e., number of galaxies per

unit comoving volume as a function of galaxy luminosity at a given redshift) consistent with

measurements of candidate high-redshift galaxies in Hubble and JWST deep fields. The

parameters of the luminosity functions in the rest-frame UV Lν1500 (at 1500 Å, modeled

as a Schechter function) are taken from the FIT model presented in Kuhlen & Faucher-

Giguère (2012). The rate of ionizing photon emission S0 in each frequency bin is what

we require to advance our simulations of reionization. Depending on the spectral energy
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distribution of the galaxies, we use a conversion parameter between the UV luminosity

and S0 as S0 = 2 × 1025(Lν1500)ζion, where ζion is a parameter related to the hardness of

the spectrum (see, Kuhlen & Faucher-Giguère, 2012). The integrated luminosities of these

models, assuming a luminosity cutoff of M < −14, is shown in Figure 4.5.

We then determine the luminosity of individual halos through the halo-matching procedure

described in Chapter 2. We assume a luminosity cutoff of M < −14 in the continuous

case, and thus generate a list Li of length N to match the list Mi of the N most massive

halos. We then apply the same luminosity list to the N most massive halos which have

not hosted star formation in the last 100 Myr, thus achieving the bursty halo matching

procedure described in Chapter 2. This choice of 100 Myr periodicity in 10 Myr bursts

gives us an effective duty cycle of 10%. We also assume that halos host a burst of star

formation when there is a merger of two halos that are large enough to host star formation,

regardless of whether they are currently tagged as hosting star formation. We made this

choice to emulate the idea that colliding galaxies tend to host star formation.

• Escape fraction of ionizing photons: Our suite of simulations include two different escape

fraction assumptions: a constant fesc = 0.2, and a variable fesc which is 0.5 until z = 10,

then decreases as a power law according to fesc = 0.5((1+z)/11)2. We chose this variable

escape fraction model to attempt to represent the fact that more of the baryonic mass in

a DM halo goes into star formation at higher redshift, making the star formation more

efficient and allowing for a higher escape fraction.

• Spectrum: We assume that all of the halos emit the same spectrum with two frequency
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Figure 4.5: Cumulative photon count per comoving cubic Mpc for our models. The blue line
represents a flat escape fraction fesc = 0.20, while the orange line represents an escape fraction
fesc = 0.50 until z = 10, at which point the escape fraction drops with the inverse square of
redshift.
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Figure 4.6: (Left). Typical halo mass hosting a galaxy of UV magnitude MUV produced by the
halo matching method. The stars represent the halos hosting continuous star formation, while the
dots represent the halos hosting bursty star formation with fduty = 10%. (Right). Star formation
efficiency f∗ ≡ M∗/Mdm as a function of halo mass associated with the our halos. Halo matching
in the bursty star formation models places brighter stellar populations in less massive halos.

bins, defined by:

Bin 0 =



E0 = 13.6 eV

g0 = 0.414

σ0(h) = 3.007× 10−18 cm2

σ0(he) = 0 cm2

Bin 1 =



E1 = 24.6 eV

g1 = 0.586

σ1(h) = 5.687× 10−19 cm2

σ1(he) = 4.478× 10−18 cm2

This spectrum is based on one used in RAMSES simulations (Rosdahl et al., 2013).

• Time step: We use an adaptive time step which prioritizes keeping the error in hydrogen

ionization fraction for a given time step below 2%. This results in shorter time steps at ear-

lier times in the simulation (when density is high) and shortly after new halos first appear,
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when ionization fronts are moving rapidly. Towards the end of some of our simulations,

we relax this constraint to save on computational work, but also keep track of the moving

average of the errors, which tend to be lower than the enforced limit.

4.3.2 Parameters Space Exploration of Simulation’s Models

Our suite of simulations include three sets of runs – with two runs per set assuming either

bursty and continuum galaxy formation models – with distinguishing properties as follows:

• Set 1: High Resolution, Constant fesc. Our primary run is a 5123 grid points cube with an

escape fraction fesc = 0.2. This escape fraction, paired with a luminosity cutoff of absolute

magnitude MUV = −14, allows for the continuous model to reionize at a realistic redshift

of z ∼ 6. This set includes a continuous and a bursty model.

• Set 2: Low Resolution, Constant fesc. This set is the same as the first, but with a resolution

of 2563. This model was actually run first, as we tested various parameters until the time

at which the models reached reionization was consistent with observations. The higher

resolution simulation is more accurate, so we label it as the primary run. However, the

differences between the low and high resolution simulations allow us to evaluate which

aspects of the simulation are converging with increasing resolution. This set also includes

a second bursty model with a tuned fesc, with the goal being to reach reionization at the

same time as the continuous model.

• Set 3: Low Resolution, Variable fesc. This batch is the same as the second, but with

a redshift-dependent mean escape fraction described in Section 4.3.1. Our goal with this

set was to test how a higher photon emissivity at early times would affect the course of
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reionization and the differences in our models. In addition, observations of the number of

ionizing photons at z < 6 suggest that reionization was completed in a regime where the

number of ionizing photons emitted is nearly balanced by the mean recombination rate, or

a “photon-starving” regime (Bolton et al., 2011). Our choice of fesc will also create these

conditions at the end of the simulations.

4.4 Results

4.4.1 Set 1 - High Resolution Simulations

We begin our analysis of the results of our simulations with a set of 3D visualizations

from Set 1. In Figures 4.7, 4.8, and 4.9 we plot 3D volume renderings of the continuous (left)

and bursty (right) models at 6 different times throughout the simulations. The color map, which

assigns a color to each ionization level, is a combination of Gaussian distributions centered at

xH I = 0.1 (blue, high ionization), xH I = 0.5 (orange, medium ionization), and xH I = 0.9 (red,

low ionization) on a log scale. This color map is provided in the bottom row of Figure 4.9 for

reference. The rows correspond to times of 150, 250, and 350 Myr (Figure 4.7), 450, 550, and

650 Myr (Figure 4.8), and 750, 850 Myr (Figure 4.9) into the simulation, which gives a diverse

sample of the course of reionization in both models. We also place a white dot at the locations

where star formation is currently happening in every rendering.

Initially, both models are very similar. In the continuous model, H II regions generally

grow monotonically as time moves on, with new bubbles appearing and overlapping as sources

continue to appear. The presence of a blue shell within the red outer region is indicative of the

presence of active star formation. In the bursty model, galaxies turn off after 10 Myr of activity,
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Figure 4.7: 3D visualizations from the high resolution Set 1 simulations at various times. The
left and right columns correspond to the continuous and bursty models, respectively. The rows
correspond to times of 150 Myr, 250 Myr, and 350 Myr into the simulations.
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Figure 4.8: 3D visualizations from the high resolution Set 1 simulations at various times. The
left and right columns correspond to the continuous and bursty models, respectively. The rows
correspond to times of 450 Myr, 550 Myr, and 650 Myr into the simulations.
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Figure 4.9: 3D visualizations from the high resolution Set 1 simulations at various times. The
left and right columns correspond to the continuous and bursty models, respectively. The rows
correspond to times of 750 Myr and 850 Myr into the simulations. The bottom row represents the
color map transfer functions and associated histograms of neutral fraction for the 750 Myr plots.
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which drives star formation into regions that aren’t active in the continuous model. After 250 Myr,

more small H II regions are forming, and relic H II regions that are recombining can be seen as

regions pervaded by medium/orange ionization. This trend continues in the 350 Myr plots.

At 450 Myr (Figure 4.8), the continuous model is continuing to grow, while the bursty

model is able to connect nearby H II regions more easily due to their abundance. The intense blue

color can be more difficult to see in the continuous model because the blue, orange, and red shades

typically appear together at the edge of the monotonically growing H II regions characteristic of

continuous star formation. At 550 and 650 Myr, it is clear that the bursty model is ahead in overall

coverage of the ionization, though this does not necessarily indicate that it will reach ionization

first, as the partially ionized regions characteristic of the bursty model may take longer to fully

ionize.

Finally, at 750 Myr, we can see the translucent fully ionized regions growing in both mod-

els, but more advanced in the bursty model. At 850 Myrs, the bursty model has reached full

ionization, while the continuous model still has a few small regions to fill out.

Next, we examine the behavior of the quantities associated with photon conservation,

namely ionized fraction rate of change (∆xi/∆t), ionization rate (Γi), and recombination rate

(Ai). In Figure 4.10, we plot these rates over the course of the simulation for both hydrogen and

helium, as well as the combined rates. We notice immediately that both species, and helium in

particular, exhibit transient oscillations on the 10 Myr time scale over which we update the halo

properties. Much of this transient effect, particularly in the ∆xi/∆t and Γi plots, is the result of

the ionization fronts crossing individual cells on timescales on the same order as the time step,

with the differences exaggerated by the difference in energy and travel distance of the different

photon frequency bins. We also reiterate that a deviation in the helium fraction is of relatively
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Figure 4.10: Ionization rates of change, ionization rates, and recombination rates for hydrogen,
helium, and combined over the course of the simulation for both simulations.
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Figure 4.11: Ionization, absorption, and recombination rates for hydrogen, helium, and combined
from 120 Myr to 170 Myr
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small significance due to the properties and relative scarcity of helium. The combined results

show that these transients are mostly an oscillation between ionization of hydrogen and helium

as the front travels. The remaining oscillation is the result of the discontinuous behavior of our

halo position and luminosity assignment scheme. Aside from these numerical issues, the main

result shown in these plots is that the bursty and continuous models share the same ionization

rate (as expected by construction), while the bursty model has a lower average recombination

rate, resulting in a higher rate of increase of the gas ionized fraction. The rate of change of the

ionized fraction and the ionization rate both drop by several orders of magnitude when reion-

ization is completed, and it can be easily seen from these plots that the bursty model completes

reionization first.

We also plot the same quantities over a smaller interval time (between 120 Myr to 170 Myr)

in Figure 4.11. In addition to showing all of the same local properties discussed for the plots for

the entire reionization history, these plots show more clearly that the transient behavior persists

for only brief periods.

Next, we examine the behavior of the adaptive time step used in both simulations. The

left plot of Figure 4.12 shows the (adaptive) time step in Myr, that was required to maintain the

2% error in hydrogen ionization fraction change rate throughout both simulations. We see that

the introduction and redistribution of sources among halos every 10 Myr dominates the overall

behavior of this quantity. The dips themselves tend to be less deep at later times, as the overall

density of the universe decreases, the optical depth of a given cell decreases, and the error be-

comes easier to manage. The bursty model generally requires shorter time steps, which is in line

with our expectation that the bursty model will place new halos in neutral regions much more

frequently than the continuous model. The continuous model also reaches the step length cap of
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Figure 4.12: (Left). The adaptive time step used for the entire time span of both simulation runs.
General trends such as longer time steps at later times and the drop in time step every 10 Myr
can be seen. (Right). A smaller slice of the left plot. We can see that the required time step to
maintain a fixed error drops dramatically when halos move or are introduced, but rises gradually
as the H II regions grow. In both plots, we also show the moving averages over a 10 Myr interval
to smooth out the noise.

Figure 4.13: (Left). The error in H II associated with the time steps taken in both simulations
(which are shown in Figure 4.12). At late times we relax the constraint on the bursty model.
(Right). A smaller slice of the left plot. In both plots, we also show the moving averages over a
10 Myr interval to smooth out the noise.
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Figure 4.14: A visualization of the redshift of reionization (specifically xH II > 0.9) for a slice
through the continuous (left) and bursty (right) models, respectively. In the continuous model,
gas generally reionizes radially outwards from the brightest sources, while in the bursty model
there smaller and more spread out regions of ionization.

1 Myr earlier and more frequently than the bursty model. In the right plot of Figure 4.12, we

plot a zoom in to a smaller segment of the left plot, which shows that both models exhibit similar

behavior.

In the left plot of Figure 4.13, we plot the fractional error for the hydrogen ionization rate

associated with the time steps shown in Figure 4.12. While there are significant oscillations over

the thousands of time steps, we see that the hard limit of 2% is being maintained. In the right plot

of Figure 4.13, we plot a zoom in to the same time interval as the right plot of Figure 4.12. The

smaller error in the bursty model is an artifact of the adaptive time step algorithm.

With a detailed understanding of how the models evolve, we can now examine how and

when both models reach reionization. In Figure 4.14 we plot the redshift at which each point in

a slice through both simulations reaches an ionization of level of xH II > 0.9, which allows us to

visualize the entire course of reionization for that slice. In the plot of the continuous model (left),

we see that ionization propagates outwards from a handful of locations, extending outwards into
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Figure 4.15: (Left). Overall mass-weighted ionization rates of hydrogen and helium. (Right).
Physical density of free electrons.

the voids until the entire volume is filled. In the plot of the bursty model ((right), we see that

the reionization begins in roughly the same places, but the behavior is very different away from

these areas. Smaller pockets of reionization from bursts of star formation appear at various times,

which drives the overall course of reionization towards earlier completion.

Finally, we plot the mean ionization fractions (for hydrogen and helium) as a function of

time in the left plot of Figure 4.15. We see that the helium ionization fraction leads over the

hydrogen ionization fraction, which is a result of harder photons with longer mean free paths

ionizing helium more effectively. We then combine the free electron density from both hydrogen

and helium ionization and convert them to physical units, as opposed to comoving units, to deter-

mine the physical electron number density as a function of time (and redshift), which we plot in

the right panel of Figure 4.15. Later, we will use this result to calculate and compare the optical

depth to Thompson scattering τCMB (i.e., scattering between CMB photons and free electrons)

between different models.
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4.4.2 Set 2 - Low Resolution Simulations

Our second set of runs is the same as the first in all ways except for the resolution, which

is halved to become 2563. In Figure 4.16 we plot the combined conservation quantities for these

models against the same plots from Set 1, comparing the continuous and bursty models of both

sets independently. We see that the ionization rates are nearly identical between the simulations,

which we expect due to the halo luminosity function being identical between the two models. On

the other hand, the recombination rate is higher in the higher resolution simulation, a difference

which is more pronounced in the continuous model. This is the result of the method we used to

produce the density field, which is essentially a moving average over the DM particles. The higher

resolution density field has a smaller effective window size for the moving average, which allows

for higher densities in the vicinity of DM haloes. This results in a higher average recombination

rate near larger halos. This effect is present in both models, and is more pronounced in the

continuous model, where star formation happens exclusively in the most massive halos.

With this set of lower resolution simulations, we also ran a third simulation with a lower

escape fraction. Our goal with this run was to see if we could complete reionization using a bursty

model at the same time as a continuous model with similar parameters but a higher relative escape

fraction. We used analytic models of ongoing bursty models to predict a value of fesc = 0.15

would roughly compensate for the difference. In Figure 4.17, we plot the results of this simulation

along with the other simulations from Set 2. In the top plot, we plot the photon conservation rates,

and we see that the ionization rate is lower, as expected from lowering the escape fraction. The

recombination rate also decreases to a level lower than the other two simulations. However, the

ionization rate of change keeps pace with the continuous model, which is a result of the more
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Figure 4.16: Ionization rates of change, ionization rates, and recombination rates for hydrogen,
helium, and combined over the course of the simulation for both simulations plotted alongside
the same quantities for the higher resolution simulations.
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Figure 4.17: (Top). Ionization rates of change, ionization rates, and recombination rates for the
Set 2 models. The bursty model has a lower escape fraction, which results in lower ionization
and recombination rates, but a similar ionization rate of change. (Bottom). Hydrogen ionization
over the course of the simulation for these models.
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efficient use of photons in the bursty model. In the bottom plot of Figure 4.17, we see that the

bursty model keeps pace with the higher emissivity continuous model, thus demonstrating the

effect we hoped to see.

4.4.3 Set 3 - Variable escape fraction

Our third set of runs is identical to the second, with a variable escape fraction. The moti-

vation of this choice in parameters is twofold.

1. The time evolution of the luminosity function is different from that of the mass distribution

of DM halos. Over the course of our simulations, the mass of DM halos grows faster than

the mass of stars in those haloes, meaning that the ratio of stellar mass to dark matter mass

M⊙/MDM tends to decrease with time. This can be seen clearly in Figure 4.6, where the

halos of a given star formation mode at higher redshift are higher on the y-axis than those

at lower redshift. Star formation in lower mass halos may then have less neutral gas to

penetrate before entering the IGM, which would result in a higher escape fraction.

2. At higher redshift the density of the IGM is higher, which means that the recombination rate

is correspondingly higher. As discussed in § 2, higher recombination rates may accentuate

the differences between a bursty and continuous model of star formation.

In Figure 4.18 we plot the combined rates associated with this model alongside those from

Set 2. The ionization rate Γi ramps up faster at early times before plateauing at z ∼ 10. The

recombination rate increases monotonically as the gas is ionized, and we see that its growth also

slows at z ∼ 10. The rate of change of the ionized fraction actually begins to decrease at the same

time, which is expected when the ionization rate plateaus while the recombination rate continues
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Figure 4.18: Ionization rates of change, ionization rates, and recombination rates for hydrogen,
helium, and combined over the course of the simulation for both simulations.
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Figure 4.19: (Left). Overall mass-weighted ionization rates of hydrogen and helium. (Right).
Physical density of free electrons.

increasing.

We show the overall course of reionization for these models in the left plot of Figure 4.19.

We see that the fixed and variable fesc models diverge early, with the variable models growing

quickly before an inflection point at z ∼ 10. Both continuous models achieve reionization at

roughly z ∼ 5.9, while bursty variable fesc reaches reionization even earlier than the bursty

model with fixed fesc. In the right plot, we see that the density of free electrons is significantly

higher than in the variable fesc model, which means that these models will have correspondingly

larger τCMB values.

4.4.4 Physical Results

Although we have full information about the state of the IGM at all locations and all times

in our simulations, most of this information is impossible to compare to current astrophysical ob-

servations. However, there are two observational quantities that we can use to evaluate the results
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Figure 4.20: (Left). Overall mass-weighted ionization rates of hydrogen and helium. (Right).
Optical depth of reionization.

of our simulations: high redshift hydrogen neutral fraction and the optical depth of Thompson

Scattering for the CMB.

In the left panel of Figure 4.20, we plot the neutral fraction from our simulations beginning

at z = 15 until reionization is complete, along with the same observational data presented in

Table 2.1 of Chapter 2. Here, we clearly see the effect of bursty star formation, which for a given

model pushes the neutral fraction down and the completion of reionization back to earlier times.

In the right plot of Figure 4.20, we plot the τCMB for our models against two different

observational estimates for this quantity. τCMB is essentially the integral of the free electron

density over time since recombination. Before reionization there are few free electrons, and the

total ionization of the IGM after reionization makes the contribution from after z = 5 well known

to be τ ∼ 0.03. We then use the results of our simulations to complete this calculation, which

we show as the integral beginning at z = 5. The final result is the value that these integrals reach

at z = 15. The hatched regions represent two different observational estimates of this quantity.
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Here again we see that the bursty model pushes this quantity to higher values, with the region

from z ∼ 7 to z ∼ 12 being most relevant.

4.5 Conclusion

In this chapter, we presented the distillation of a vast amount data produced over months of

computation requiring hundreds of thousands of SU (Service Units, equivalent to an hour of wall

time for a single CPU) by our simulations. These samples represent what we believe to be the

most useful for exemplifying the important features of our exploration of continuous and bursty

star formation. These features include:

• Bursty star formation spreads ionizing sources more evenly throughout the computational

volume, allowing for a more even distribution of ionized gas. By forcing the stars to form

away from places where there has been past star formation, sources with a given stellar

mass tend to be able to form in less massive DM halos.

• Recombination happens less rapidly in lower mass DM halos, which means that fewer

photons are wasted maintaining ionization in high density regions, and ionization happens

more efficiently. The result of this is a neutral fraction which drops more quickly, an

earlier reionization completion time, and a higher optical depth of the CMB to Thompson

Scattering. This also means that a bursty model can complete reionization at the same time

as a continuous model with a higher escape fraction.

• Our higher resolution simulations had higher fidelity in the density of DM, which meant

higher recombination rates near the center of DM halos. This effect is more pronounced
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near more massive halos, meaning it would tend to emphasize the effects we wanted to

study.

• Increasing the ionizing emissivity at early times speeds up the process of reionization, but

doesn’t necessarily result in a larger difference between the continuous and bursty models.

Our simulations have only scratched the surface of what is possible with ARC. As we

continue our work, we will further explore simulations with different parameters to understand

how the effects we have described here behave at different scales, in different environments, and

with different underlying assumptions. We will also work to make ARC more publicly accessible,

with the goal being to allow other scientists to explore ideas relating to radiative transfer with high

accuracy and speed.
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Chapter 5: Conclusion and Future Work

5.1 Summary and Conclusions

This thesis presented our work towards demonstrating the idea that bursty star formation is

a more efficient driver of reionization than continuous star formation. In Chapter 2, we discussed

the motivation for beginning this study, which was based on a semi-analytic model built on Pro-

fessor Ricotti’s 1D radiative transfer simulation. These simulations showed us that, in theory, the

reduced recombination rate in relic H II regions would lead to an overall increase in the speed of

reionization. This observation provided the motivation for us to develop a more robust approach

for studying these effects.

In Chapter 3 we presented ARC, the library we developed to test these ideas to a much

higher accuracy and fidelity. ARC uses multiple levels of parallel computing: the computational

volume is split between CPU nodes, and the ray tracing and chemistry calculation on individual

nodes are split between the thousands of cores available on each independent GPU. Both levels

of parallelization required careful handling of memory and messages between nodes and cores,

but the overall effect is a fast and efficient ray tracing algorithm. We also demonstrate that this

library is accurate to modern standards, and that its speed scales as desired with the use of GPU

computing.

In Chapter 4 we presented results of our explorations into the ideas motivated by Chap-
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ter 2. First, we discussed the additions and improvements made to ARC which lead to improved

simulations. Next, we presented the suite of simulations we ran on ARC, which tested bursty and

continuous star formation for different choices of fesc and simulation resolution. We found that,

for our choice of a 10% duty cycle of bursty star formation, reionization would complete roughly

60 Myr sooner, or could complete reionization at the same time with an escape fraction that is

roughly 75% lower. We also found that bursty star formation leads to a higher optical depth of

reionization to Thompson scattering, and a more even distribution of H II regions in the IGM

during the reionization process.

5.2 Future Work

The work presented in this thesis represents the motivation, development, testing, and

demonstration of a flexible and fast library for performing cosmic simulations at a variety of

scales. Our next goal for this work is to package and annotate ARC in such a way that the scien-

tific would be able to compile, configure, and run their own simulations without assistance. We

believe that there are many questions that ARC is uniquely situated to investigate, as mentioned

below, and handing it off to the scientific community is the first step towards making this a reality.

ARC is already available for access on GitHub at ARC with a README that would allow

someone familiar with these types of simulations and accustomed to working on a supercomputer

to run the library without assistance. Moving forward, we plan to maintain this database and

update it as we continue running simulations and improving the base library.

We also find that it would not be difficult to continue the work towards examining star

formation mode on the EoR using our library. Though there are endless possibilities, we present
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a few that would likely be next steps along our current trajectory:

• Non-uniform emission/jets: all of the simulations we presented in Chapter 4 used spher-

ically symmetric emission from all sources. However, the HEALPix foundation of ARC

allows users to control the spherical profile of emission to any desired accuracy within

memory constraints. Non-uniform/non-symmetric emission is something that astronomers

believe to be likely.

• Updated simulation parameters: the simulations presented in this thesis were constrained

by time and computer allocation considerations. We were continuously iterating on the

library and performing runs until eleventh hour. Moving forward, we would like to run

more simulations with tighter accuracy constraints, different values of fesc, different light

spectra, more thermal physics, and different duty cycles of bursty star formation.

• Simulations on different scales: our simulations were also at a fixed scale of 10 cMpc. This

volume, while large, is not necessarily large enough to represent a truly definitive statistical

sample of a cosmic volume during the EoR. Thus, we would like to run simulations at

larger and smaller scales, to see how a larger representative/more accurate simulations,

respectively, would behave.

• Simulations with more physics: The simulations presented in Chapter 4 are essentially ra-

diative transfer post-processing simulations on the DM-only simulations we used as inputs,

so we would also like to incorporate more physics into future simulations.
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A.1 Analytic Approximations

A.1.1 Ionization Profile During Star Formation

A simple model for the shape of the ionization profile may be found by solving the follow-

ing formula iteratively:

x2
e(u) = − 1

3u2

d

du
exp

(
−τ0

∫ u

0

(1− xe(u
′))du′

)
, (1)

where u = r/Rs is the dimensionless distance from the source and Rs is a scale length of the

Strömgren sphere and τ0 = nHIσν(H I)Rs is the optical depth of neutral hydrogen for a column

density of NHI = nHIRs. From this formula we see that τ0 represents a scale length in the u

domain for the drop in electron fraction. While this model is fairly precise, we require a simple

analytic formula to construct our statistical model. We may, however, use the above formula to

note that both since τ0 ∝ NHI , the width of the ionization profile in comoving coordinates should

scale with NHI .

A broad analysis of our suite of simulations showed that the ionization profile around a test

halo during star formation was well fit by the following class of functions:

xe(R) =
1

1 +
(
R−A
B

)1/C (2)

R(xe) = A+B

(
1

xe

− 1

)C

. (3)

The fit of Equation (2) approximates the electron function as a function of radius for a fixed
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Figure 1: (Left) An example of the simple analytic fit to the ionization profile outside a halo. The
red lines represent the neutral and ionized fractions produced by the numerical simulation. The
blue line represents the best fit of the analytic model. (Right) An example of the recombination
model compared to the numerical simulation. The solid lines represent the electron fraction at
four fixed radii as a function of time from the numerical simulations. The dashed lines represent
the behavior of the electron fraction as described by (7).

moment in time. The parameters A, B, and C may be interpreted as a distance offset, a scale

factor, and a power law, respectively (this sentence needs work). These parameters are, in prin-

ciple, functions of the Hubble time, time since star formation began, and luminosity of ionizing

photons. An example of one such fit is given in Figure 1(top). We have included the inverse of

the model fit because our simulation calls for the radius at which the ionization reaches a given

level, as given by Equation (3).

An analytic model for the time dependence of the scale radius Rs of a Strömgren sphere

in an expanding universe is presented in Donahue & Shull (1987) (see also Shapiro & Giroux
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(1987)). Explicitly:

Rs(t) = (21 kpc)
[(

S0

1049 s−1

)
· f1(t)

]1/3
(4)

f1(t) =
(8.95× 105)λ

(1 + z0)3
exp

(
λ

tc

)
×
[
tcE2

(
λ

tc

)
− E2(λ)

]
Myr (5)

∆Rs(t) = (3.2 Mpc)
(
1 + z

10

)0.7

×
(

S0

1049 s−1
t

)0.18

t−0.466
c (6)

Here, λ = tH/trec, tc = 1 + t/trec, and En(x) is the exponential integral of the nth order.

This more complicated model is needed to replace the simple Strömgren sphere model because

of the Hubble expansion freezes recombinations when the recombination time becomes longer

than the Hubble time.

We found that the parameters (A,B,C) of Eq. (3) are well fit using the following formula:

A(t, S0) ∝ S0 ·Rs(t)

B(t, S0) ∝ S0 ·∆Rs(t)

C(t, S0) = 2.0.

A.1.2 Ionization Profile After Star Formation

When star formation ends, the ionized gas begins to recombine. This process is modeled

by the differential equation ˙nHI = (αne)nHII. Assuming a purely hydrogen medium, this equation
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Figure 2: Full analytic model for ionization profile for (left) continuous and (right) instantaneous
SF against the numerical model for at initial redshifts z0 = 30, 20. The solid lines represent
the radii at which a fixed electron fraction is found for the numerical model. The dotted lines
represent the corresponding analytic fits. (left) For the continuous case, deviations observed are
consistent with imperfections in the model as documented in Donahue & Shull (1987). (right)
For the instantaneous case, deviations occur due to the spatial dependence of temperature.

is solved in an expanding universe by the following equation:

xe(R, t) =

(∫ t

t0

α(2)n(t)dt+
1

xe(R, t0)

)−1

. (7)

The correction for this equation for the more general case of helium and hydrogen is well

approximated by an multiplicative constant outside the integral that represents the extra elec-

trons from ionized helium. The integral, in general, is impossible to solve without an analytic

expression for the temperature. However, the recombination coefficient α depends weakly on

temperature (α ∝ T−0.7), we may assume α is constant as an approximation. The integral may

then be solved explicitly:

∫ t

t0

n(t′)dt′ =
2n0Ωb

3H0Ω
1/2
m

[
(1 + z0)

3/2 − (1 + z)3/2
]
. (8)
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This formula provides an excellent description of the time domain behavior of the elec-

tron fraction. A comparison between this model and a radiative transfer simulation is shown in

Figure 1(bottom).

In the case of continuous star formation, the initial profile expands according to the time

dependent scale in equation (4). An example of the resulting fit is plotted in Figure 2 against two

examples of continuous star formation produced from the suite of numerical simulations. The

analytic model captures both the transient behavior as the sphere initial expands and the long

term steady expansion of sphere as recombinations freeze out with the expansion of the universe.

In the case of instantaneous star formation, the initial profile expands according to equa-

tion (4) while the brightest stars remain alive. After the luminosity begins to plummet as massive

stars die, the ionized region begins decaying according to equation (7) and equation (8). An

example of the resulting fit is plotted in Figure 2 against two examples of instantaneous star for-

mation produced from the suite of numerical simulations. The analytic model captures both the

growth and decay phases of the region. The largest deviation is the time taken by the outer re-

gions to decay as compared to the numerical model; this is due to the dependence of temperature

on radius.

A.1.3 Time-dependent Spectral Energy Distribution

A numerical model for the evolution of the ionization in a region around a source of ioniza-

tion is presented in Ricotti et al. (2001). This numerical model takes a spectral energy distribution

(SED) and outputs the density profile of neutral and ionized hydrogen (as well as several other

elements) as a function of time.
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In our statistical simulation, we take a star forming halo to be a point source of ionization.

We make use of the code from Ricotti et al. (2001) to simulate the behavior of the IGM around

a model point source for a suite of (S0, z0) values, where S0 is the rate of ionizing photon pro-

duction and z0 is the redshift of initial star formation. The SED used for these simulations are

produced using the Starburst99 code Leitherer et al. (1999) with the lowest possible metallicity

(Z = 0.001).

The suite of (S0, z0) values was chosen to be large enough to cover the range of relevant

luminosities and redshifts in our statistical simulation. The number of values in each range was

increased until the change in behavior between adjacent luminosity and redshift points changed

continuously and predictably.

A.1.4 Simulation Details

The simulation is divided into 72 intervals with ∆T = 12.5 Myr. The start of each time

interval is denoted Ti. At T0, a number k of halos with mass Madded are added following a Poisson

distribution with average masses extracted from a Sheth-Tormen distribution Press & Schechter

(1974); Sheth & Tormen (2002):

f(k;λ) = P (M < Madded < M + dM) =
λke−λ

k!
(9)

λdM = N(Madded, T0)dM (Sheth-Tormen). (10)

For later times, halo counts are drawn by the same Poisson process with λ = N(Madded, Ti) −

N(Madded, Ti−1). Thus, at any time Ti, the total population is drawn from Poisson distribution

with λ = N(Madded, Ti), consistent with the Sheth-Tormen model.
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A.1.5 Convergence Tests

The statistical simulation requires the discretization of several continuous variables. We

decreased the spacing of these variables systematically until convergence of the simulation results

was observed. Here we discuss in depth the relevant details of this process for all of the relevant

variables:

• Electron fraction spacing (∆x): The minimum electron fraction x0 was chosen to be 0.001.

At this electron fraction, ∆τe between Q = 1 and Q = 0 integrated across the redshift

range of our simulation is negligible, so that smaller electron fractions are irrelevant. The

maximum electron fraction xm−1 was chosen to be 0.9. Our analytic model for the profile

produces r(x), where r → 0 as x → 0. The radius at which x = 0.9 in the analytic model

is a good representation of the area of total ionization within the simulation. The number

of xi points was increased until the results were found to converge beyond m = 20.

• Halo addition time step (∆T ): Halos are added to the simulation at constant time intervals.

It was found that the results converged beyond 50 intervals, but computational complexity

does not increase significantly with the number of time intervals, so a value of 72 was

settled on.

• Output time step (∆t): The time interval between output reports does not have any effect

on the results of the simulation, so convergence is not relevant.

• Comoving volume (V ): Computational complexity scales linearly with the volume of the

box. We found that a volume of V = 106 Mpc3 produced sufficiently large halos to ensure

complete reionization by a redshift of z ∼ 5.8. Larger simulations are possible, but require
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significant time resources and will be performed moving forward.
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