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Star formation is a crucial process that lies at the center of many important topics in as-

trophysics: the nature of the first sources of radiation, the formation and evolution of galaxies,

the synthesis of elements, and the formation of planets and life. Recent advances in computing

technology have brought about unprecedented opportunities to deepen our understanding of this

complex process. In this dissertation, I investigate the physics of star formation in galaxies and

its role in shaping the galaxies and the Universe through numerical simulations.

My exploration of star formation begins with a large set of simulations of star cluster

formation from isolated turbulent Giant Molecular Clouds (GMCs) with stellar feedback using

RAMSES-RT, a state-of-the-art radiation-magneto-hydrodynamic (radiation-MHD) code. While

resolving the formation of individual stars, I have pushed the parameters (mass and density)

of the simulated GMCs well beyond the limit explored in the literature. I establish physically

motivated scaling relationships for the timescale and efficiency of star formation regulated by

photoionization feedback. I show that this type of stellar feedback is efficient at dispersing dense



molecular clouds before the onset of supernova explosions. I show that star formation in GMCs

can be understood as a purely stochastic process, where instantaneous star formation follows a

universal mass probability distribution, providing a definitive answer to the open question of the

chronological order of low- and high-mass star formation. In a companion project, I publish the

first study of the escape of ionizing photons from resolved stars in molecular clouds into the in-

tercloud gas. I conclude that the sources of photons responsible for the epoch of reionization,

one of the most important yet poorly understood stages in cosmic evolution, must have been very

compact star clusters, or globular cluster progenitors, forming in dense environments different

from today’s galaxies.

In follow-up work, I use a novel zoom-in adaptive-mesh-refinement method to simulate the

formation and fragmentation of prestellar cores and resolve from GMC scales to circumstellar

disk scales, achieving an unprecedented dynamic range of 18 orders of magnitude in volume

in a set of radiation-MHD simulations. I show that massive stars form from the filamentary

collapse of dense cores and grow to several times the core mass due to accretion from larger

scales via circumstellar disks. This suggests a competitive accretion scenario of high-mass star

formation, a problem that is not well understood. We find that large Keplerian disks can form

in magnetically critical cores, suggesting that magnetic braking fails to prevent the formation

of rotationally-supported disks, even in cores with mass-to-flux ratios close to critical. This is

because the magnetic field is extremely turbulent and incoherent, reducing the effect of magnetic

braking by roughly one order of magnitude compared to the perfectly aligned and coherent case,

which proposes a solution to the “magnetic braking catastrophe.”
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Preface
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• Chapter 4 – C.-C. He and M. Ricotti, “Massive prestellar cores in radiation-magneto-

turbulent simulations of molecular clouds”, MNRAS, 10.1093/mnras/stad1289 (2023)

• Chapter 5 – C.-C. He and M. Ricotti, “Magnetic braking fails to work: formation of large
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correlation functions”, ApJ 921, 59, 59 (2021).

ii

https://ui.adsabs.harvard.edu/abs/2019MNRAS.489.1880H/abstract
https://ui.adsabs.harvard.edu/abs/2020MNRAS.tmp..162H/abstract
https://doi.org/10.1093/mnras/stad1289
https://ui.adsabs.harvard.edu/abs/2021ApJ...921...59H/abstract


The contents of this dissertation form a coherent story. In the first act, I conduct a large

set of simulations to explore the laws of star formation. In the second act, I investigate the

implications of star cluster formation for the source of radiation during the epoch of reionization.

In the third and fourth acts, I delve into smaller scales, focusing on the collapse of prestellar cores

and the formation of circumstellar disks. Finally, as an appendix, I present part of my ongoing

project on stellar dynamics, which is the subsequent evolution of those simulated star clusters.

Throughout, we witness how each of the many characters of star formation drives the behavior

of the natal cloud, which ultimately affects star formation itself.

Originally, I researched star formation to study the source of radiation for cosmic reioniza-

tion but ended up discovering some mysterious and intriguing theories of star formation, which

lured me to dive deeper into the subject. In the end, I attempted to uncover its identity and push

back its frontier, but it appears what I discovered so far is just the tip of the iceberg.
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Chapter 1: Introduction

Stars are the fundamental building blocks of the universe. The problem of how stars form

lies at the center of many important topics in astrophysics: the nature of the first sources of

radiation, the formation and evolution of galaxies, the synthesis of elements, and the formation

of planets and life.

Stars are not born in isolation; they are mostly found in groups called star clusters. These

clusters form from molecular clouds, which serve as nurseries for stellar objects. They are sites

of intense stellar feedback processes such as UV feedback, jets, winds, and supernovae.

It is difficult to formulate a general theory for star formation due to the wide range of

physical processes involved. However, recent advances in computing technology have brought

about unprecedented levels of understanding of this complex process. My research has focused

on understanding the physics of star formation in galaxies and its role in shaping the galaxies

and the universe, using multiscale radiation magneto-hydrodynamics (MHD) simulations of star

formation from molecular clouds.

This chapter begins by reviewing two major problems in star formation: the star formation

rate and the initial mass function, which provide background for Chapter 2 and Chapter 4. I

then review the role of magnetic field in star formation, raising an open question that motivates

the work presented in Chapter 5. Next, I provide a brief introduction to the topic of cosmic
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reionization, which serves as a background for Chapter 3. Then, I present a summary of the

techniques used to simulate star formation. Finally, this chapter closes with the thesis outline and

a list of software and facilities used in this thesis.

The essence of this thesis and what we hope to convey is that we desperately need more

physically-grounded models of star formation to advance our understanding of this fundamental

process in the universe. We are in the midst of an exciting period of rapid advancement in

computational technology, and future work with the help of large-scale simulations and advanced

observations holds the promise of uncovering the full mystery of star formation.

1.1 Star Formation

1.1.1 The star formation rate

One parameter to characterize how fast stars form in a region is the dimensionless star

formation rate (SFR) per free-fall time,

ϵff =
ṁ∗
mgas

tff , (1.1)

where tff is the free-fall time of the gas at average density and ṁ∗ is the SFR. A gas cloud that

is not supported against collapse will naturally produce stars at a rate corresponding to ϵff ≈ 1,

since the free-fall time is the natural evolutionary timescale for a self-gravitating system with

nothing inhibiting star formation. A direct way to measure ϵff is to estimate the SFR by counting

young stellar objects (YSOs) and estimating their masses and the duration of the YSO phase

(e.g. Krumholz et al., 2012). A second approach is to match catalogs of star-forming regions
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identified by tracers such as IR or free-free emission with catalogs of molecular clouds identified

by CO or dust emission, and then using the mass, free-fall time, and SFR of the matched clouds

and star-forming regions to estimate ϵff (e.g. Lee et al., 2016). A third approach, available for

extragalactic systems with extensive molecular gas and star-formation tracer maps, is to pixelate

the entire galaxy and estimate masses, densities, and free-fall times in each pixel (e.g. Krumholz

et al., 2012).

These methods, applicable to scales from the Milky Way and its satellites to extragalactic

systems, provide reasonable consistency in results. In a recent review article, Krumholz et al.

(2019) conclude that the preponderance of the current observational evidence favors ϵff ≈ 0.01

for regions ≳ 1 pc in size with small dispersion and systematic uncertainty.

The observed value of ϵff is surprisingly low. A number of authors have proposed theoret-

ical models aiming at explaining this low ϵff . Earlier models propose magnetic regulation as the

reason. Recent measurements of magnetic fields have shown that they are too weak to support

the gas (Crutcher, 2012). The unbound cloud models propose that ϵff is low because most of

the materials observationally defined as molecular clouds are not actually self-gravitating. How-

ever, this hypothesis does not explain the YSO counting studies where the gas is almost certainly

bound (Kauffmann et al., 2013). Consequently, attention has been focused on two possibilities:

turbulence support and feedback regulation.

There is considerable evidence that GMCs obey the relations discovered by Larson (1981):

the 1D velocity dispersion, σ, is supersonic and varies with the size as σ ∝ Lp, where p ≈ 0.5 in

the Milky Way. At a randomly chosen subregion of a cloud, the binding energy per unit mass of

a region of mass M scales as GM/R ∝ R2, assuming a mean density, while its kinetic energy

per unit mass scales as σ2 ∝ R, therefore the virial ratio obeys αvir ∝ 1/R. A virial parameter,
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or virial ratio, is defined as the ratio of the total kinetic energy to the gravitational energy of a

dynamical system, αvir ≡ 2K/|W|, where the numerical coefficient is chosen so that αvir = 1

indicates virial equilibrium (W = −2K), and αvir > 1 (αvir < 1) means unbound (bound)1. Most

regions smaller than the size of the cloud are unbound (Krumholz & McKee, 2005). Numerous

recent works have focused on modeling the density PDF and the evolution of the self-gravitating

parts of a cloud with increasing accuracy (e.g. Hennebelle & Chabrier, 2011). The consensus of

these models is that turbulence does substantially reduce ϵff but not to ϵff ≈ 0.01 as required by

observations.

The density PDF of a self-gravitating cloud deviates and develops a prominent power-law

tail on its high-density end that causes ϵff to rise with time. This density build-up is likely to

be counterbalanced by feedback processes that break up high-density clumps. Recently, Grudić

et al. (2018) propose that cloud disruption by stellar feedback is so fast and efficient that a typical

cloud never has time to develop power-law tails substantial enough to bring ϵff to large values.

However, the nature and existence of turbulence in molecular clouds are still not well under-

stood. There is considerable debate in the literature between the turbulent theory and the theory

of coherent gravitational collapse (Heitsch et al., 2009). Although there is significant evidence

from analytic theories (Klessen & Hennebelle, 2010), numerical simulations (e.g. Robertson &

Goldreich, 2012), and kinematic measurements with Gaia that accretion flows inevitably drive

turbulence, the question of the low value of ϵff is still unsettled.

1Note that there is another definition commonly used in the literature where αvir ≡ K/|W| and αvir = 0.5
indicates virial equilibrium.
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1.1.2 Initial Mass Function

Zooming in even further from star-forming molecular clouds, we reach the scale of indi-

vidual stars. One of the properties of stars that is important for determining their observable

characteristics and evolutionary path is their mass. The distribution of stellar masses at birth is

known as the initial mass function (IMF). Almost all inferences of light or physical properties for

unresolved stellar populations, as well as most models of galaxy formation, rely on an assumed

form of the IMF.

The first attempts to measure the IMF were carried out by Salpeter (1955), using stars in

the Solar neighborhood. Observations using the field star, young cluster, and globular cluster

methods all appear to produce roughly consistent results. Current evidence suggests that the IMF

appears to be quite universal in many locations throughout the Milky Way, with the possible

exception of star clusters formed very near the Galactic Center. The IMF has a distinct peak

in the mass range 0.1 − 1M⊙ and falls off as a powerlaw dN/dm ∝ m−α at higher masses,

with α ≈ 2.35, the value originally determined by Salpeter (1955). A widely-used functional

representation of the IMF is a two-piece powerlaw given by Kroupa (2002):

Φ(m) =
dN

d logm
∝





m−(α1−1) (m0 < m < m1)

km−(α2−1) (m > m1)

(1.2)

with m0 = 0.08 M⊙, m1 = 0.5 M⊙, α1 = 1.3, α2 = 2.3, and k = 0.5 (to guarantee continuity

across the powerlaw break). A large uncertainty is in the brown dwarf regime below 0.08 M⊙,

where there is a clear fall-off from the peak, but its exact functional form is poorly determined.
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There may also be an upper cutoff between 100 and 150 M⊙ (Figer, 2005), although whether

this is an aspect of star formation or a result of a sharp increase in instability and mass loss is

undetermined (Tan et al., 2014).

Various theoretical models have been constructed to explain the universality of the IMF

based on gravoturbulent fragmentation of the host cloud (Padoan et al., 1997; Padoan & Nord-

lund, 2002; Mac Low & Klessen, 2004; Hennebelle & Chabrier, 2008; Hopkins, 2012a). Early

pioneering numerical simulations with pure hydrodynamics and gravity based on this model do

sometimes return a mass distribution that looks much like the empirical IMF, as illustrated in

Figure 1.1. However, this is largely depending on the choice of initial conditions. Simulations

that start with more realistic initial conditions, namely with turbulent density structures or with

supervirial/subvirial initial state, do not appear to collapse as predicted by the empirical IMF

(e.g., Clark et al., 2008). Besides, they were often limited in terms of statistics, resolution, or

cloud size.

More recent work, with increasing computing power, provided more reliable statistics and

IMF distributions (e.g., Bonnell et al., 2011; Girichidis et al., 2011; Krumholz et al., 2011; Bate,

2012; Ballesteros-Paredes et al., 2015). Furthermore, radiative stellar feedback has been invoked

to explain the precise shape of the IMF, using both simulations (e.g., Bate, 2009a; Krumholz

et al., 2011; Gavagnin et al., 2017) and analytic models (e.g., Guszejnov & Hopkins, 2016). The

core idea is that radiative feedback shuts off fragmentation at a characteristic mass scale that

sets the peak of the IMF. Simulations including radiation seem to support the idea that stellar

feedback can pick out a characteristic peak mass. However, the limitation of this hypothesis

is that it has little to say about the powerlaw tail of the IMF. Indeed, by sacrificing resolution,

Gavagnin et al. (2017) captured a large number of massive stars, which emit large quantities of
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Figure 1.1: The IMF measured in a radiation-hydrodynamic simulation of the collapse of a
500 −M⊙ cloud with uniform initial density. The single-hashed region gives all objects, while
the double-hashed region gives those that have stopped accreting. Credit: Bate (2009b).

ionizing radiation, and argued that this alters the high mass end of the IMF. So far no radiation-

MHD simulation has managed to follow the evolution of a cloud with realistic size and resolve

the formation of individual high- and low-mass stars that match the empirical IMF.

1.1.3 Magnetic field and the magnetic braking problem

Molecular clouds are observed to be permeated by magnetic fields (Crutcher, 1999; Lee

et al., 2017). Observers use the Zeeman effect to measure magnetic fields in GMCs and find

strengths ranging from tens to thousands of µG, with higher-density gas generally showing

stronger fields. For a low-density envelope of a GMC with n ∼ 100 cm−3 (ρ ∼ 10−22g cm−3),

the typical dynamic velocity v ∼ a few km s−1, giving a kinetic energy density

eK =
1

2
ρv2 ∼ 10−11 erg cm−3. (1.3)
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With a magnetic field strength of 20 µG, typical of molecular clouds on large scales, the energy

density is

eB =
B2

8π
∼ 10−11 erg cm−3, (1.4)

comparable to the kinetic energy density. Therefore, the magnetic field is dynamically significant

in the flow of gas.

The strong magnetic field in high-density prestellar cores can in principle strongly affect the

evolution of angular momentum during the core collapse. The twisting of the magnetic field lines

produced by disk rotation in the flux-freezing regime of ideal magnetohydrodynamics (MHD),

can apply a force counter to the rotation velocity, also known as magnetic braking, effectively

slowing down rotation and increasing radial gas infall. In idealized numerical MHD simulations,

the timescale of the braking can become so short that protostellar disks fail to form or are much

smaller than the observed sizes, a phenomenon known as the “magnetic braking catastrophe” in

the theoretical literature of disk formation (e.g. Allen et al., 2003; Galli et al., 2006; Hennebelle

& Fromang, 2008; Li et al., 2014). What is the minimum required magnetic field strength so that

magnetic braking significantly affects disk formation?

To answer this question, let us first examine how magnetic fields affect the collapse of a

molecular cloud. Magnetic fields support charged gas against gravitational collapse. A common

characterization of the relative importance of the gravitational and magnetic forces in a molecular

cloud or core is the normalized mass-to-flux ratio,

µ ≡ M/ΦB

MΦ/ΦB

=
M

MΦ

, (1.5)
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where M is the total mass contained within a spherical region of radius R, ΦB = πR2B is the

magnetic flux threading the surface of the sphere assuming a uniform magnetic field strength B,

and

MΦ = cΦ
ΦB√
G

(1.6)

is the magnetic critical mass, the mass at which the magnetic and gravitational forces balance

each other. The constant cΦ is a dimensionless coefficient that depends on the assumed geometry

of the system. For a spherical cloud of uniform density, cΦ =
√
10/(6π) = 0.168. Note that

the definition of the normalized mass-to-flux ratio µ is simplified here because the critical value

depends on the geometry of the gas and the magnetic fields.

In a sub-critical cloud (defined as a cloud with µ < 1), the magnetic field should prevent

the collapse of the cloud core altogether. Analytical predictions (Joos et al., 2012) suggest that

there are no centrifugally-supported disks in models with µ ≤ 10, although there are disk-like

over-densities of gas in which the magnetic fields, rather than the centripetal force, support the

gas against collapse in the radial direction. Observations suggest typical values of µ ≈ 2 − 10

in molecular cloud cores (e.g. Crutcher, 1999; Bourke et al., 2001), and this value could be even

smaller after correcting for projection effects (Li et al., 2013). Theoretically, disk formation

should be completely suppressed in the strict ideal MHD limit for the level of core magnetization

deduced from observation – analytic study and numerical simulations have shown that the angular

momentum of the idealized collapsing core is nearly completely removed by magnetic braking

close to the central object (e.g., Mestel & Spitzer, 1956; Mellon & Li, 2008).

However, these results seem to be in contrast to recent high-resolution observations reveal-

ing the existence of Keplerian disks around Class 0 protostellar objects (e.g. Tobin et al., 2012;
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Codella et al., 2014; Lee et al., 2017; Johnston et al., 2020). How the catastrophe is averted for

disk formation is still a question under debate. Recent studies have revealed that the catastrophe

can be avoided if the magnetic field and the rotation axis are not aligned (Joos et al., 2012; Gray

et al., 2018), the magnetic field is diffused by turbulent velocity field (Santos-Lima et al., 2012;

Joos et al., 2013), or the magnetic field is less coherent (Seifried et al., 2013). However, these

results largely depend on the choice of artificial initial conditions and fall short on explaining the

existence of large (> 1000 AU) disks revealed by recent radio/mm and optical/IR observations

(van Kempen et al., 2012; Takahashi et al., 2012; Johnston et al., 2015, 2020). This motivates the

work presented in Chapter 5.

1.2 Epoch of Reionization

The epoch of reionization (EoR) is a period in the early universe when the first stars and

galaxies formed and began to emit ultraviolet radiation. This radiation ionized the neutral hydro-

gen atoms that filled the universe, marking the transition from the “Dark Ages” to the “Cosmic

Dawn”. Cosmic reionization involves the coupling of galaxy formation with the physics of grav-

ity and radiation transfer to produce a global phase transition of ionization, making for a complex

problem.

Ionization occurs when photons with energies E ≥ IH = 13.6 eV, a.k.a. ionizing photons,

or Lyman-continuum (LyC) photons, interact with neutral hydrogen atoms. The radiation from

luminous objects will ionize the surrounding IGM once it escapes from its host galaxies. This

ionized IGM is known as cosmological H II regions. Recombination occurs when the Coulomb

force attracts protons and electrons, which is efficient at temperatures T ≲ 104 K. In regions with
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ionizing radiation, the gas approaches ionization equilibrium when the recombination rate equals

the ionization rate. The recombination rate is proportional to the product of the number density

of protons and electrons, nenp.

The H II regions then evolve. The ionizing photons in a radial direction penetrate until all

of them are absorbed by newly recombined atoms inside the H II region and there is no more

flux left at the ionization front. The radius of the H II region at this initial stage is determined

by the Stromgren radius Rs, by balancing the total number of ionizations and recombinations.

At this stage, the H II region is heated to over 10, 000 K and is embraced by the cold ambient

medium. The gas expands because it has higher pressure than its surroundings, and it transitions

to the second intermediate stage after the time it takes a sound wave to cross the H II region. As

the shock wave sweeps up most of the gas in its path and accumulates mass, the H II region ex-

pands and diffuses. Eventually, the H II region comes into pressure equilibrium with the ambient

medium, and the ionization front stalls out at the final Stromgren radius. Any ionizing radiation

that escapes from the galaxy creates a cosmological H II region, which is the building block of

cosmic reionization.

What sources are responsible for producing the required ionizing radiation in the EoR? Al-

though quasi-stellar objects (QSOs, or quasars) are some of the brightest objects in the Universe,

the latest studies have shown that they only contribute 1− 5% of the UV photon budget at z = 6

due to their low number densities (e.g. Willott et al., 2010). X-rays from compact binaries can

penetrate much deeper into the IGM and create large partially ionized regions to a distance of 100

kpc with ionization fraction between 1% and 2% (Xu et al., 2014). However, observations (e.g.

the Gunn–Peterson trough or Gunn-Peterson test) have shown that the universe is fully ionized

(with a neutral fraction below 10−4) at z ∼ 6. Therefore, stellar radiation from galaxies must be
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the dominant source of radiation responsible for cosmic reionization. Two important questions

that follow are (1) How abundant are galaxies as a function of luminosity and redshift? (2) What

fraction of ionizing photons escaped from theses galaxies into the IGM?

Recent observations have provided valuable constraints on the nature of the first galaxies

and their role in the EoR. The Hubble Space Telescope Ultra Deep Field (Ellis et al., 2013) and

Frontier Fields (Coe et al., 2015) projects probe galaxies with stellar masses as small as 107M⊙

at z ≳ 6 and galaxies as early as z ≳ 11. There could be an unseen population of even fainter

and more abundant galaxies that may eventually be detected by JWST.

In the calculations of reionization, the key quantity is the ionizing emissivity, ργ (in units of

erg s−1Hz−1Mpc−3). The intrinsic ionizing emissivity can be inferred by integrating the product

of the luminosity function ϕ(L) and star formation rate (SFR), given a relation between total

luminosity L and SFR. To get ργ , we need another parameter, namely the fraction of ionizing

photons that escape into IGM, fesc. It is arguably the most uncertain parameter in the models of

reionization.

By measuring the hydrogen ionizing photon budget and constraining the best-fit Schechter

parameters for the galactic luminosity function, Ouchi et al. (2009) suggests that galaxies at

z = 7 need large fesc (≳ 0.2) to keep the universe ionized. Khaire et al. (2016) use cosmological

radiation simulations and find that the updated QSO emissivity and star formation history have

similar implications on the fesc at z > 5.5. This value is too large with respect to what is observed

in local galaxies.

A number of attempts have been made to calculate the escape fraction of hydrogen LyC

photons from galaxies using analytic models and simulations of galaxy formation (Ricotti &

Shull, 2000; Gnedin et al., 2008; Wise et al., 2014; Ma et al., 2015; Xu et al., 2016). However,
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because of the complexity of the problem and the uncertainty about the properties of the sources

of reionization, the results are inconclusive. Furthermore, any realistic theoretical estimate of

fesc must take into account the escape fraction of LyC radiation from the molecular clouds in

which the stars are born, ⟨fMC
esc ⟩, a sub-grid parameter in galaxy-scale and in cosmological-scale

simulations.

Typically ⟨fMC
esc ⟩ is set to unity in these simulations, which could dramatically overpredict

the galactic fesc (Ma et al., 2015). Observational constraints of ⟨fMC
esc ⟩ are very limited and suffer

from significant uncertainty (Doran et al., 2013). Therefore, a calculation of ⟨fMC
esc ⟩ from simula-

tions of star formation from molecular clouds is essential to the understanding of the EoR, which

is the motivation of the work presented in Chapter 3.

1.3 Techniques for Simulating Star Formation

The analytic theory is essential for understanding the big picture for star formation, but

only numerical models can capture the nonlinear behaviors of the turbulent collapse of a GMC

and take into account the effects of magnetic fields. On this scale, fluid dynamics and gas cooling

play a dominant role in structure evolution. The complexity of hydrodynamic processes such as

shock heating, atomic radiation cooling, and star formation requires an accurate treatment of the

gas and radiation components.

For the sake of completeness, we give a short discussion of the MHD equations. The
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standard form of the ideal MHD equations is

∂ρ

∂t
+∇ · (ρv) = 0, (1.7)

ρ

[
∂v

∂t
+ (v ·∇)v

]
= −∇P +

(∇×B)×B

4π
, (1.8)

ρ

[
∂e

∂t
+ (v ·∇)e

]
= −P (∇ · v)− ρL, (1.9)

∂B

∂t
= ∇× (v ×B), (1.10)

where ρ is the mass density, v is the fluid velocity, e is the specific total energy, and L represents

the net loss function that describes the radiative heating and cooling of the gas. To close the

system of equations, we must complement it with an equation of state. For the ISM, a perfect gas

is a good assumption, with P = (γ − 1)ρϵ, where γ is the adiabatic index and ϵ is the specific

energy excluding kinetic energy of the gas.

To get a better physical understanding of the MHD equations and the role of magnetic

fields, we write the Lorentz force as

fL =
(∇×B)×B

4π
= −∇

(
B2

8π

)
+

(B ·∇)B

4π
. (1.11)

The first term is the magnetic pressure gradient and the second term is called the magnetic tension.

In computational astrophysics, two main techniques are employed to solve hydrodynamical

equations: smoothed-particle hydrodynamics (SPH) and grid-based methods. The fundamental

difference is how the fluid is discretized. An SPH solver divides fluid into mass elements (par-

ticles), whose evolution is then followed, in line with the Lagrangian approach. Grid methods,

however, subdivide the computational domain into volume elements (cells) that are fixed in space,
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following the Eulerian formulation of hydrodynamics.

The natural outcome of an SPH code is it automatically adapts the numerical resolution

in dense regions, with more particles concentrated in those areas, which makes it a valid tool in

situations with large density contrasts such as self-gravitating fluids. Grid-based methods can

increase their spatial resolution using the adaptive mesh refinement (AMR) technique, introduc-

ing new grid elements from the partition of a cell into smaller cells triggered by some specified

refinement criteria.

RAMSES (Teyssier, 2002) is a massively parallel grid-based adaptive mesh refinement code,

originally developed to study the co-evolution of dark matter and gas in a cosmological context.

RAMSES is now a complete tool for simulations of self-gravitating fluid dynamics, equipped

with a magneto-hydrodynamic (MHD) solver (Fromang et al., 2006) and several modules which

implement AGN feedback, star formation recipes (Bleuler & Teyssier, 2014), interstellar medium

cooling functions, and stellar feedback (Rosdahl et al., 2013; Rosdahl & Teyssier, 2015). More

physics including stellar evolution, photoionized metal chemistry, and dust dynamics are recently

implemented (Geen et al., 2021; Katz, 2022; Moseley et al., 2023).

The AMR structure implemented in RAMSES is tree-based. Every cell can be refined into

2dim child cells called octs. Each oct at refinement level l points to all the child cells in the next

refinement level (l+ 1), its parent cell in level l− 1, and all the sibling cells of the parent cell. A

cell can be refined according to several criteria of the user’s choice. The refinement criteria used

in this thesis work is the Jeans length criteria, stating that the local Jeans length must be resolved

by at least Ns cells, where Ns = 10.

The formation of stars is modeled with sink particles, following the implementation of

Bleuler & Teyssier (2014). When the density is higher than a certain value, the Jeans length
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criterion (with a smaller Ns) is violated at the highest refinement level and the high-density peak

is replaced with a sink particle. Sink particles are allowed to merge and accrete gas according

to different merging or accretion schemes (threshold, Bondi, flux). The dynamical interaction

between sinks can be computed using direct summation and the force between a sink and gas can

be computed using the same technique used for other particles (particle-mesh method).

Rosdahl et al. (2013) have integrated radiation hydrodynamics into RAMSES by enclosing

the radiation transfer (RT) equations using the M1 approximation of the Eddington tensor and

then solving the differential equations using the first-order Godunov scheme. This moment-based

approach has the advantage of being independent of the number of radiative sources and is much

more computationally efficient compared to ray-tracing techniques.

Combining all these techniques presented above, RAMSES-RT has become a highly sophis-

ticated and powerful tool in the field of computational astrophysics for cosmological simulations

as well as small-scale star formation simulations.

1.4 Thesis Outline

This thesis investigates star formation processes from GMC to protostellar disk scales. In

Chapter 2, I explore the physics and laws of star formation from molecular clouds based on a set

of radiation-MHD simulations. Next, I postprocess the simulation data and calculate the escape

of LyC photons from GMCs into the intercloud medium that takes into account contributions

from spatially resolved stars. This part is reported in Chapter 3. In Chapter 4, I investigate the

fragmentation of massive prestellar cores and the formation of circumstellar disks using a series

of extremely high-resolution simulations of prestellar cores. Then, in Chapter 5, I explore the
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magnetic braking problem in disk formation and propose a solution to the “magnetic braking

catastrophe”. As part of an ongoing project on stellar dynamics, I study star clustering by quan-

tifying the clumpiness of the stars using the two-point correlation function ξ(r) in Chapter 6.

Finally, in Chapter 7, I summarize the main conclusions and introduce future research directions

building on the work presented in this thesis.

1.5 A summary of software and facilities

Computational resources used in this dissertation:

1. The Deepthought2 HPC cluster of the University of Maryland supercomputing resources2

2. The Yorp Cluster of the Department of Astronomy, University of Maryland3

3. Student workstations of the Department of Astronomy, University of Maryland4

Software/codes used:

1. RAMSES-RT (Teyssier, 2002; Bleuler & Teyssier, 2014; Rosdahl et al., 2013)

2. NUMPY (van der Walt et al., 2011), MATPLOTLIB (Hunter, 2007), and YT (Turk et al.,

2011)

3. RAMTOOLS5

4. HEALPIX6 (Zonca et al., 2019), HEALPY (Górski et al., 2005)

2http://hpcc.umd.edu
3https://www.astro.umd.edu/twiki/bin/view/AstroUMD/YorpCluster
4https://www.astro.umd.edu/twiki/bin/view/AstroUMD/StudentWorkstations
5https://chongchonghe.github.io/ramtools-pages/
6http://healpix.sf.net
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Chapter 2: Simulating Star Clusters Across Cosmic Time: I. Initial Mass Func-

tion, Star Formation Rates and Efficiencies

In this chapter, we present radiation-magneto-hydrodynamic simulations of star forma-

tion in self-gravitating, turbulent molecular clouds, modeling the formation of individual mas-

sive stars, including their UV radiation feedback. The set of simulations have cloud masses

between mgas = 103 M⊙ to 3 × 105 M⊙ and gas densities typical of clouds in the local universe

(ngas ∼ 1.8 × 102 cm−3) and 10× and 100× denser, expected to exist in high-redshift galax-

ies. The main results are: i) The observed Salpeter power-law slope and normalisation of the

stellar initial mass function at the high-mass end can be reproduced if we assume that each star-

forming gas clump (sink particle) fragments into stars producing on average a maximum stellar

mass about 40% of the mass of the sink particle, while the remaining 60% is distributed into

smaller mass stars. Assuming that the sinks fragment according to a power-law mass function

flatter than Salpeter, with log-slope 0.8, satisfies this empirical prescription. ii) The star forma-

tion law that best describes our set of simulations is dρ∗/dt ∝ ρ1.5gas if ngas < ncri ≈ 103 cm−3,

and dρ∗/dt ∝ ρ2.5gas otherwise. The duration of the star formation episode is roughly 6 cloud

sound crossing times (with cs = 10 km/s). iii) The total star formation efficiency in the cloud is

f∗ = 2%(mgas/10
4 M⊙)0.4(1 + ngas/ncri)

0.91, for gas at solar metallicity, while for metallicity

Z < 0.1 Z⊙, based on our limited sample, f∗ is reduced by a factor of∼ 5. iv) The most compact

18



and massive clouds appear to form globular cluster progenitors, in the sense that star clusters

remain gravitationally bound after the gas has been expelled.

2.1 Introduction

Star formation in galaxies is a complex and only partially understood astrophysical phe-

nomenon. It is difficult to formulate a general theory in part because of the wide range of scales

and of physical processes involved. From an observational point of view, quantifying star forma-

tion efficiency (SFE) in nearby molecular clouds has been the focus of much recent research (e.g.,

Lada et al., 2010; Heiderman et al., 2010; Gutermuth et al., 2011). A power-law relationship be-

tween the gas surface density of galaxies and their star formation rate (SFR) was first proposed by

Schmidt (1959) and later tested by large, multi-galaxy data (Kennicutt, 1998). This relationship

has been widely used in cosmological simulations of galaxy formation. However, on sub-galactic

scales the dispersion of star formation rates for a given gas surface density of H I is large, and

other parameters such as gas metallicity (Bolatto et al., 2011; Krumholz, 2013) and stellar surface

density (Leroy et al., 2008) appear to become important. As the resolution of surveys improved,

numerous studies have shown that star formation on kpc scales is more strongly correlated with

H2 surface density (e.g. Krumholz, 2014) rather than atomic gas. Therefore, modern cosmolog-

ical simulations of galaxy formation aim at reproducing the molecular phase of the interstellar

medium (ISM) and adopt an empirical sub-grid recipe for star formation within partially resolved

molecular clouds of the form ρ̇∗ ∝ ρnH2
, where typically n = 1 or 1.5. The molecular phase of

the ISM is treated in simulations using different prescriptions: Robertson & Kravtsov (2008) pre-

computed a grid of models from a photo-chemistry code, Gnedin et al. (2009) directly solved the
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formation and dissociation equations for H2, but with an increased formation rate to model unre-

solved clumping, and Kuhlen et al. (2012) used an analytic model to estimate the equilibrium H2

abundance. The sub-grid recipe (with grid maximum resolution typically between few parsecs to

few kpc) is calibrated to reproduce observational data in galaxies at z = 0.

However, the conditions in the ISM of high-redshift galaxies are likely different to those

found in the present day. Krumholz et al. (2012) argue that the SFR is in fact correlated to

the local free-fall time set by the gas density, not to the column density. Simulations show that

densities and pressures of star-forming regions in high-redshift galaxies are much higher than

in today’s ISM (e.g., Ricotti, 2002; Wise et al., 2014; Ricotti, 2016). Using Adaptive Mesh

Refinement (AMR) simulations of the first stars and galaxies with parsec-resolution, Ricotti et al.

(2016) found that compact molecular clouds in primordial galaxies can either form gravitationally

bound star clusters that resemble the progenitors of today’s globular clusters (GC)1, or the clusters

may disperse and fill up a large fraction of the dark matter halo of primordial dwarf galaxies. In

this second case the stars would appear as spheroids 20-200 pc in radius, dark matter dominated

and with very low surface brightness. These objects would be identified today as “ultra-faint”

dwarf galaxies observed in the Local Group (e.g., Willman et al., 2005; Zucker et al., 2006a,b;

Belokurov et al., 2007; Walsh et al., 2007; Majewski et al., 2007; Martin et al., 2009). Star

formation in compact star clusters appears to be especially important, even perhaps the dominant

mode of star formation at high-redshift. Thus, in order to make progress in understanding the

formation of the first dwarf galaxies and the sources of reionisation, it is important to focus on

understanding the small-scale physics of this process, which is poorly resolved in cosmological

1The compact bound stellar objects found in the simulations are actually not only globular cluster progenitors,
but also ultra-compact dwarfs and dwarf-globular transition objects, depending on whether the stellar cluster forms
at the center of the halo, in the disk’s spiral arms, or even in satellite minihalos.
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simulations.

Most numerical work on star formation in molecular clouds focuses on star formation in

the local universe, aiming at explaining observed young star forming regions. In this chapter

we analyse the results of a large grid of simulations of realistic molecular clouds with initial

conditions chosen to reproduce not only local molecular clouds but also clouds that form in

higher density and pressure environments, typical of star formation in high redshift galaxies. We

vary the masses of the clouds, their compactness (central density), and in few cases explore the

effect of changing the gas metallicity and therefore the gas cooling function.

The motivation for this chapter is twofold. The first goal is to deepen our understanding

of the physics of star formation in high-pressure environments to justify and inform the sub-grid

star formation recipe used in cosmological simulations. A closely related important question in

Near Field Cosmology is: how does the formation of self-gravitating bound star-clusters relate to

the star formation efficiency, compactness, mass and gas metallicity of molecular clouds found in

cosmological simulations? We will only touch on this questions in the present chapter, but more

detailed work will be presented in a followup work.

The second goal is to estimate the escape fraction of H I ionising radiation from molecular

clouds as a function of cloud compactness and mass. This is the first necessary step for a realistic

estimate of the escape fraction from galaxies. Ricotti (2002) have shown that, if a non-negligible

fraction of today’s GCs formed at z > 6 with ⟨fMC
esc ⟩ ∼ 1, their progenitors would be a dominant

source of ionising radiation during reionisation. Katz & Ricotti (2014) presented arguments

in support of significant fraction of today’s old GCs forming before the epoch of reionisation.

However, although it is naively expected, it has not been shown with numerical simulations that

⟨fMC
esc ⟩ from GC progenitors forming in compact molecular clouds is higher than ⟨fMC

esc ⟩ in more
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diffuse clouds. The answer to this question and the contribution of compact star clusters to

reionisation will be presented in the next chapter.

This chapter is organized as follows. In Section 2.1.1 we present a brief review of the

current status of numerical simulations of star cluster formation. In Section 2.2 we provide an

overview of our numerical methods, including details on the initial conditions of our simulations

and the recipes for formation of sink particles and feedback. In Section 2.3 we present some

results from the analysis of our large set of simulations with emphasis on the stellar initial mass

function (IMF) and the star formation rate (SFR) and efficiency (SFE). A summary and conclu-

sions are presented in Section 2.4.

2.1.1 The IMF and SFE of Molecular Clouds

Simulations of molecular cloud dynamics are valuable tools in understanding the condi-

tions in the ISM. Typically these simulations adopt idealized initial conditions similar to those in

observed clouds: a gas cloud∼ 1−10 pc in size supported against gravity by a turbulent velocity

field such that the initial virial ratio, i.e. the ratio of the kinetic energy to the potential energy of

the cloud, is ≲ 0.5. One model involves injecting turbulence into a volume of gas in the initial

conditions and allowing it to decay over time. This can be done by either using smoothed parti-

cle hydrodynamics (SPH, e.g. Klessen, 2001; Bonnell et al., 2006) or grid-based methods (e.g.,

Gammie et al., 2003). Another model involves adding turbulence continuously over time, simu-

lating the effect of momentum injection from outside flows or energy from massive stars inside

the cloud (Vazquez-Semadeni et al., 1997; Ballesteros-Paredes et al., 2006; Padoan et al., 2007).

Many of these models adopted an isothermal equation of state, while others have included self-
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consistent cooling and heating functions (e.g. Koyama & Inutsuka, 2004; Audit & Hennebelle,

2005) and molecular chemistry (e.g. Glover et al., 2010).

The fragmentation of molecular clouds into stars is a long-standing problem. Observational

studies (Salpeter, 1955; Kroupa, 2002; Chabrier, 2005) have found that the masses of stars follow

a “Initial Mass Function” (IMF) with a power law dN/ d logM ∝ M−Γ at the high-mass end

(Salpeter 1955 calculate Γ ≈ 1.35). Various theoretical models have been constructed to explain

this (Padoan & Nordlund, 2002; Mac Low & Klessen, 2004; Hennebelle & Chabrier, 2008; Hop-

kins, 2012a) based on gravoturbulent fragmentation of the host cloud. Radiative stellar feedback

has been invoked to explain the precise shape of the IMF, using both simulations (e.g., Bate,

2009b) and analytic models (e.g., Guszejnov & Hopkins, 2016). Early pioneering simulations

of cluster formation approached the problem of producing a well-defined IMF (e.g., Bate et al.,

2003; Bate & Bonnell, 2005; Klessen et al., 2008; Offner et al., 2008), but were often limited in

terms of statistics or resolution. More recent work, with increasing computing power, provided

more reliable statistics and IMF distributions (e.g., Bonnell et al., 2003; Bate, 2009b; Bonnell

et al., 2011; Girichidis et al., 2011; Krumholz et al., 2011; Bate, 2012; Ballesteros-Paredes et al.,

2015).

Simulations attempting to capture the stellar IMF require a high dynamic range to resolve

both brown dwarfs and OB stars. Most recently, Bate (2019) resolve in detail the mass spectrum

of brown dwarfs while only producing stars of up to 3 M⊙, finding that low metallicities do not

produce observable differences in the stellar IMF, while increasing fragmentation. Gavagnin et al.

(2017) have lower mass resolution but capture more massive stars that emit significant quantities

of ionising radiation, arguing that this alters the high mass end of the IMF. In the absence of

radiation and cooling, Lee & Hennebelle (2018b) and Lee & Hennebelle (2018a) study the early
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formation of protostellar Larson cores, and find that the choice of equation of state (eos) has

a strong influence on the peak of the IMF. In general, these works are relatively successful at

reproducing not only the IMF but also stellar multiplicity and separation.

Previous authors have included ideal MHD in their simulations (Myers et al., 2013; Krumholz

et al., 2016; Cunningham et al., 2018). However, since these authors only form stars up to ∼20

M⊙, they neglect ionising radiation. Non-ideal MHD effects, while challenging to include in

resolving the IMF for reasons of computational cost, appear to affect the dynamics of protostar

formation on small scales (Masson et al., 2016; Vaytet et al., 2018). The physics that shapes

the IMF is complex, and a full treatment that covers non-ideal MHD, both low and high energy

radiation, chemistry and the full mass range of stars remains difficult with modern computational

resources.

As well as the stellar IMF, an important consideration is how many stars are formed out of

a given mass of gas, or the Star Formation Efficiency (SFE). The efficiency of conversion of gas

into stars is typically much lower than 100% since energetic processes from massive stars are able

to disperse the cloud in which a star cluster forms before all of the gas collapses into protostars.

These processes are widely termed “feedback” (see review by Dale et al., 2015). Recent work

favours ionising radiation as the main driver of molecular cloud dispersal (Dale et al., 2005;

Gritschneder et al., 2009; Peters et al., 2010; Walch et al., 2012; Dale et al., 2012), as opposed to

other effects such as stellar winds (Dale et al., 2014), although Howard et al. (2016) find that UV

photoionisation has little effect on the initial evolution of the SFE.

The relationship between gas properties and the SFE is a matter of ongoing study. Lada

et al. (2010) and Heiderman et al. (2010) argue for a constant ratio between SFE and cloud mass

for gas above a certain surface density, although this is still subject to discussion (Gutermuth
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et al., 2011; Hony et al., 2015). There is no clear theoretical link between the SFE and projected

column density, although Clark & Glover (2014) argue that there may be a link between the

observed column density and the local density around the star. Geen et al. (2017) reproduce the

SFE observed by Lada et al. (2010), although they find that the result is likely to be dependent

on the average density of the neutral gas in the cloud. These simulations produce similar results

to the simulations of Colin et al. (2013). Geen et al. (2018) finds that SFE can change by up

to a factor of 4 by varying the initial velocity field of the cloud and the stellar IMF, although

relationships can be found between the early cloud state and the final SFE. Semi-analytic models

by Vázquez-Semadeni et al. (2018) also find considerable scatter in the SFE.

2.2 Numerical Simulations and Methods

We conduct our numerical simulations using the AMR radiative magneto-hydrodynamical

code RAMSES (Teyssier, 2002; Bleuler & Teyssier, 2014). Radiative transfer is implemented us-

ing a first-order moment method with M1 closure described in Rosdahl et al. (2013). Kim et al.

(2017) demonstrates that M1 closure method is inaccurate near sources only in regions where the

flux is about an order of magnitude smaller than the mean value (due to shielding), while it agrees

with adaptive ray-tracing methods (e.g., Wise et al., 2014; Hartley & Ricotti, 2016) both at larger

distances from individual sources and on global scales. M1 closure, however, is significantly

more computationally efficient than ray-tracing methods. The ionising photons interact with neu-

tral gas and we track the ionisation state and cooling/heating processed of hydrogen and helium

(see Geen et al., 2017, for details). Our simulations include magnetic fields in the initial condi-

tions, but we do not include the chemistry of molecular species (i.e., formation/dissociation). 3-D
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‘zoom-in’ simulations of the chemical evolution of molecular clouds suggest that, for gas at solar

metallicity, the cloud is almost fully molecular with H2 fractions around 0.9 in the later stages of

transition to dense molecular phase (Seifried et al., 2017).

We simulate a set of isolated and turbulent molecular clouds that collapse due to their own

gravity. We explore a grid of simulations varying the initial gas mass and compactness (i.e., the

core density) of the clouds. In our simulations, dense proto-stellar cores collapsing below the

resolution limit of the simulations produce sink particles. These sinks may represent single stars

or multiple stars or even clusters of stars if the resolution is not sufficiently high. However, in all

our simulations we aim at reproducing a realistic high-mass end of the stellar IMF and therefore

realistic feedback from individual massive stars. To accomplish this goal, sink particles emit

hydrogen and helium ionising photons according to their mass as described in § 2.2.3. The gas

is ionised and heated by massive stars, producing over-pressurised bubbles that blow out the gas

they encounter. In our simulations low mass stars and proto-stellar cores do not produce any

feedback. In this work we do not include mechanical feedback from supernova (SN) explosions

and from stellar winds and we also neglect the effect of radiation pressure from infrared radiation.

However, with the exception of the two most massive clouds in the set of simulations representing

today’s molecular clouds (the lowest density set), all the simulations stop forming stars before the

explosion of the first SN. Therefore, neglecting SN feedback is well justified in these cases. We

find that in all simulations star formation has ceased before ∼ 5− 6 tff , which is the typical time

it takes for feedback to act. We stop simulations no earlier than this point. A few simulations are

continued beyond this time. This does not have an effect on the IMF since the mass function of

sink particles does not change after star formation has ceased.

For the simulations in the set in which SN explosions should occur while star formation is
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ongoing, in order to compensate for this missing feedback, we do not shut down UV radiation

feedback from massive stars after the time the star should have exploded as SN. In the following

sections we provide some more details on the simulations set up.

2.2.1 Initial Conditions

We run a grid of 14 simulations of clouds with a range of central densities and initial gas

masses. We also run some additional simulations varying the initial gas metallicity and therefore

the gas cooling function. The magnetic field strength in the initial conditions is set such that

va = 0.2 σ3D, where va is Alfven wave velocity and σ3D is the turbulence velocity dispersion.

This νa is ∼ 2 times smaller than that measured in a group of molecular clouds by Crutcher

(2012) who finds νa ≈ 0.5σ3D.

The clouds have initially a spherically symmetric structure with density profile of a non-

singular isothermal sphere with core density nc. The cloud extends out to rgas = 3rc, where rc

is the core radius. Beyond rgas the cloud is embedded in a uniform density envelope that extends

to 6rc with a density 0.01 nc. Outside of the envelope the number density is constant at 1 cm−3.

The box length Lbox is set to 48rc in each simulation. The initial value of the (isothermal) sound

speed of the cloud is set to cs = 0.24 km/s, while the envelope and background densities are in

pressure equilibrium.

The initial density profile is perturbed with a turbulent velocity field, analogously to the set

up used in Geen et al. (2017). The initial turbulence of the clouds follows a Kolmogorov power

spectrum with random phases and has an amplitude such that the cloud is approximately in virial
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equilibrium. All simulations have the same set of random phases. The initial cloud virial ratio

αvir =
5σ2

3DR

3GM
≈ 0.4, (2.1)

is kept constant in all the simulations. Therefore the ratio tff/tturb, where tturb ≡ R/σ3D is kept

constant in all the simulations. However, the sound crossing time tcr ≡ R/cs, where throughout

this chapter we assume cs = 10 km/s, is not constant. The virial parameter, αvir, is small enough

to ensure collapse and fragmentation, but sufficiently large to prevent a rapid radial collapse

of the cloud. Before allowing any star formation in the cloud we evolve these idealized initial

conditions for ∼ 3tff , so that the turbulent velocities develop into density perturbations and the

initial conditions relax into a quasi-equilibrium turbulent medium. If we do not allow the initial

conditions to relax before forming stars, the stars form mostly near the center of the cloud during

the transient relaxation phase.
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Figure 2.1: Simulation parameters in this work (colored ovals) compared to previous works
(stars). The parameter space considered here is mass of the gas cloud (x-axis) versus mean
particle number density of the cloud (y-axis). The labels showing the previous work found in the
literature include: Bonnell et al. (2003, 2011); Ballesteros-Paredes et al. (2015); Bertelli Motta
et al. (2016); Gavagnin et al. (2017); Jones & Bate (2018); Lee & Hennebelle (2018a); Bate
(2019).

A detailed list of the parameters in our simulations is shown in Table 2.1. The clouds in

Table 2.1 are labelled with letters of two or three parts. The first part is either ‘XXS’ (extra-

extra-small), ‘XS’ (extra-small), ‘S’ (small), ‘M’ (medium), ‘L’ (large), or ‘XL’ (extra-large),

representing various initial gas masses of 103, 3.16×103, 104, 3.16×104, 105, and 3.16×105 M⊙,

respectively. The second part is either ‘F’ (fiducial, which are the most similar to clouds in the

solar neighbourhood), ‘C’(compact), or ‘VC’ (very compact), in order of increasing initial mean

gas density. The mean particle number density of the cloud, ngas = ρgas/(µmp), where µ = 1.4

is the mean molecular weight of the atomic gas, increases by a factor of ten between each set of

simulations from 1.8× 102 cm−3 to 1.8× 104 cm−3. The ‘L-C’ setup has two more simulations

that have a third part in the name, ‘lm’ and ‘xlm’, representing ‘low-metallicity’ and ‘extra-low-

metallicity’. A comparison of our setups with the literature is shown in Figure 2.1.
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2.2.2 Resolution and Sink Formation

We use a Cartesian grid with an octree structure with cells that we subdivide into 23 child

cells as the simulation evolves (“adaptive refinement”). Our starting refinement level is ℓmin = 7

(corresponding to ∆x = Lbox/2
7) and maximum level of refinement is ℓmax = 15 for runs

with the lowest mean density and ℓmax = 14 for all the other runs. The resolution is therefore

∆xmin = Lbox/2
15 for the ”fiducial” runs, which corresponds to resolutions between 500 AU and

2300 AU. The ”compact” clouds have resolution between 460 AU and 1500 AU and the ”very

compact” clouds between 150 AU and 680 AU.

In order to resolve the Jeans length with N grid cells it is required that

λJ = cs

√
π

Gρ
> Nsink∆x. (2.2)

From Equation (2.2), the Jeans length is resolved with at least Nsink grid points if ρ < ρJ , where

ρJ =
πc2s

GN2∆x2
. (2.3)

In our simulations we enforce the refinement criterion that the Jeans length is resolved with at

least Nref = 10 cells. Hence, when the local density goes up and reaches a point where λJ

becomes smaller than Nref∆x, each cell is refined individually into eight new child cells. This

refinement condition is always true, up to the maximum refinement level (when ∆x = ∆xmin).

When the gas density exceeds ρmax
J = ρJ(∆x = ∆xmin, N) at the maximum refinement level,

we cannot continue to resolve the Jeans length with at least Nref cells. We therefore create sink
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particles to trace material above these densities. We set ρsink = ρJ(∆x = ∆xmin, N = Nsink)

as critical density threshold to form sink particles. Sink particles are created on the fly using a

peak detection algorithm (see Bleuler & Teyssier, 2014, for details on sink particle formation in

RAMSES). We first detect density clumps above a density threshold fcρsink, with fc = 0.1. Then,

the algorithm performs a peak density check, a collapsing check (∇ · v = 0), and virial check

before forming a sink particle.

In order to avoid numerical fragmentation it is usually suggested that Nsink ≥ 4 (Truelove

et al., 1997). In our simulations we adopt Nsink = 5 for reasons detailed in Appendix A.1. With

an initial sound speed cs = 0.24 km/s the Jeans mass at the sink density threshold is

MJ =
4π

3
ρJ

(
λJ

2

)3

= 0.55M⊙

(
∆xmin

1000AU

)
, (2.4)

which results in MJ ∼ 0.08M⊙–0.8M⊙ for the compact and very compact clouds and∼ 0.3M⊙–

1.3M⊙ for the fiducial clouds.

The sink particles are then treated like point masses and accrete gas based on the mech-

anism described as ‘threshold accretion’ in Bleuler & Teyssier (2014). The dynamics of the

sink particles takes into account gravitational force from gas and stars and it is evolved using a

leap-frog integration scheme. The effect of gas dynamical friction is not included.

2.2.3 Feedback and Properties of UV source

In our simulations, ionising UV photons are emitted from sink particles from the time they

form to the end of the simulation. Massive stars have lifetime of few Myrs, shorter than the

duration of some of our simulations, and they may explode as SNe during the simulation. Since
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we are not implementing SNe feedback, we keep the stars emitting radiation after their death

to compensate for the lack of SNe in the attempt of avoiding underestimating feedback effects.

While SN explosions produce a significant amount of mechanical energy (typically 1051 egs),

the energy associated with ionising radiation from massive stars integrated through their main-

sequence lifetime is comparable (or larger for more massive stars) and this feedback starts acting

earlier than SN feedback. For an O-star, more than half of the radiation is emitted in hydrogen

ionising photons. Typically ∼ 10% of a star’s hydrogen is burned in the nuclear fusion process,

with an energy efficiency of ∼ 0.7%. Thus the amount of energy radiated by a massive star

during its life time is ∼ 2× 10−3M∗, or ∼ 4× 1052 ergs for a 20 M⊙ star.

For each simulation we estimate the total hydrogen-ionising photon emission rate at a given

time as Scl(mcl) = 8.96× 1046 s−1 (mcl/M⊙) (see Geen et al., 2017), where mcl is the total mass

of the sink particles. This is calculated by Monte Carlo sampling a stellar population as described

in Geen et al. (2016) (See Sec. A.2). The fraction of the total hydrogen ionising photon emission

rate attributed to each sink particle is based on the following relation

q(mi) = V (0.3mi)

(
Scl(Σimi)

ΣiV (0.3mi)

)
, (2.5)

where V (m) is the hydrogen-ionising photon emission rate from a star with mass m, using the

fits from Vacca et al. (1996).

The factor 0.3 is an empirical factor to account for the scaling between the masses of sink

particles and those of massive stars, necessary because we do not fully resolve the fragmentation

of sink particles into proto-stars. See Section 2.3.1 for further discussion. The correction factor

X ≡ Scl(Σimi)/ΣiV (0.3mi) is very close to unity in most simulations in which we resolve
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massive stars and it is introduced only to prevent overproducing ionising radiation in case massive

stars are poorly resolved. In all simulations we also impose X ≤ 1.

For the fiducial clouds we also include He0 and He+ ionising photons with total emission

rates being SHe0 = (1.178×1046 s−1)(M∗/M⊙) and SHe+ = (2.422×1043 s−1)(M∗/M⊙). These

rates are calculated using the same method as for hydrogen ionising photons described above us-

ing a Kroupa IMF (Kroupa, 2002). For the luminosity of individual stars we use Schaerer (2002)

fitting for Q(He0) and Q(He+) with extrapolations above 150 M⊙. This is contrasted by the

model of Gavagnin et al. (2017), who assume blackbody spectra for each star. See Appendix A.2

for details.

Various authors have concluded that UV photoionisation is typically the most important

process in regulating star formation on a cloud scale. Haworth et al. (2015) find that additional

processes beyond hydrogen photoionisation have a correcting factor of 10% at best. Radia-

tion pressure mainly becomes important at very high surface densities, which principally affects

smaller scales than the ones studied here - see Crocker et al. (2018) for idealized conditions

and Kim et al. (2018) for simulations with self-consistent star formation feedback. Dale et al.

(2014) further find that winds have a minimal effect on the star formation efficiency of molecular

clouds. We are thus justified in our choice to focus on UV photoionisation feedback in this work,

but discuss cases where this may not be sufficient later in the chapter.

2.2.4 Cooling

We use the radiative cooling function described in Geen et al. (2016). The cooling in

neutral gas is based on the prescription in Audit & Hennebelle (2005), which includes cooling
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from carbon, oxygen and dust grains as well as the effect of the ambient UV background in

the ISM. For collisionally ionized gas at temperatures > 104 K we use Sutherland & Dopita

(1993) cooling function. The out-of-equilibrium cooling of photoionised hydrogen and helium

is treated as described in Rosdahl et al. (2013). Out-of-equilibrium cooling of photoionised

metals is treated with a piecewise fit to the cooling curve given in Ferland (2003). We assume a

uniform metallicity as listed in Table 2.1. For most simulations, this is solar metallicity, though

we perform some simulations at sub-solar metallicity. We do not implement out-of-equilibrium

molecular chemistry.

2.3 Results

In this section we present and discuss the results of our simulations. In § 2.3.1, we study

the mass function of cores (sink particles) and the IMF. In § 2.3.2 we focus on the star formation

efficiency and in § 2.3.3, on the star formation rate.

A representative sample of snapshots from our simulation set is shown in Figures 2.2 and

2.3. These figures show the time evolution of the density-weighted projections of the gas density

and temperature as well as the position of the sink particles along line of sight for three simula-

tions with different mean cloud densities (fiducial on the left column, compact, middle column,

and very-compact on the right column), and a cloud mass of 3.2× 104 M⊙.

We observe clearly that the star formation efficiency increases with increasing cloud den-

sity, and the stellar cluster that is formed at the end of the simulation remains more compact and

self-gravitating for the densest cloud. The effect of radiative feedback from massive stars is also

clearly visible in the density and temperature projections. H II regions break out of the dense
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Figure 2.2: Line-of-sight projections of the (density-weighted) gas density for three simulations
with cloud mass 3.2× 104 M⊙. From left to right we show clouds with increasing mean density:
ngas ∼ 1.8 × 102 cm−3, representing our fiducial clouds in the local universe, ngas ∼ 1.8 ×
103 cm−3 and ngas ∼ 1.8 × 104 cm−3, respectively. From top to bottom we show the time
evolution of the clouds. Sink particles are displayed as cyan dots. The snapshots shown in the
top row represent the initial conditions of the turbulent cloud: no stars have formed at this time
because the highest density is below the threshold for star formation, but the cloud idealized
initial conditions have been already evolved for ∼ 3 tff in order to develop a turbulent density
field. In the bottom row snapshots, star formation has stopped and most of the gas has been
expelled as a result of UV feedback from massive stars.
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Figure 2.3: Same as Fig. 2.2 but showing the density-weighted projection of the temperature.
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Figure 2.4: Temporal evolution of the mass functions of the stars, obtained by multiplying by 0.4
the masses of the sink particles (see text). The dashed lines are analytic Kroupa IMF for systems
normalised to the total mass of the sink particles at the corresponding time. The time and total
mass in sink particles are shown in the legend. We see good agreement between the shifted sink
particles mass function and the analytic mass-normalised Kroupa IMF at the high-mass end, both
in terms of the power-law slope and normalisation.

filaments destroying them and reducing the overall mass in dense gas in which stars are formed.

2.3.1 Stellar Initial Mass Function

2.3.1.1 Cores Fragmentation and Initial Mass Function

Maps in the continuum of cluster regions and larger areas in star-forming systems allow us

to construct a core mass function (CMF), that is the mass function of high-density gas concen-

trations (starless cores) with mass sufficiently large to be identified given the resolution of the

observations (e.g., Motte et al., 1998). Observations of a well-resolved CMF in the Pipe nebula

show a striking similarity to the stellar IMF, but shifted to higher masses by a factor of a few,
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which suggests that the IMF is the direct product of the CMF with a roughly constant core-to-star

conversion efficiency ∼ 30% (e.g., Matzner & McKee, 2000; Alves et al., 2007)

Previous works on star formation in molecular clouds which adopted sink particles (like

in the present chapter) have investigated the mapping between the masses of pre-stellar cores

at the time they become self-gravitating and the final masses of the stars that form within them

(e.g., Padoan et al., 2001; Smith et al., 2009). For instance, Smith et al. (2009), using SPH

simulations, find that at early times the relationship between stellar masses and the parent cores

can be reproduced within a modest statistical dispersion with the star being about one-third of the

parent core mass.

We find results in agreement with these previous studies. Figure 2.4 (and Figure 2.7) show

the stellar mass function for our grid of simulations obtained assuming that the sink particles

are about a factor of 2.5 more massive than the corresponding massive stars they produce. This

means that the number of stars of a given mass (> 1 M⊙) is given by a Kroupa IMF for a star

cluster with total mass equal to the total mass of the sinks. In Figure 2.7 the IMF is shown at the

end of the simulation when star formation has stopped, while in Figure 2.4 we also show the time

evolution of the IMF, together with the Kroupa IMF for a cluster with total mass equal to the total

mass in sink particles (dashed lines). This means that we are assuming nearly 100% efficiency

of star formation in the cores (i.e., the cores fragment into stars) or a lower efficiency but the gas

expelled by feedback is later transformed into low-mass stars. However, we think that this second

model is less physically motivated. We can see that the shifted sink mass function (SMF) matches

the Kroupa IMF at the high-mass end, both in terms of the slope and normalisation at any time

during the formation of the star cluster. The figure suggests that the birth of stars in a cluster

follows the same random sampling of the universal mass function throughout the star-formation
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process. In other words, it appears that there is not a bias toward formation of high mass-stars or

low-mass stars during the early times when the cluster is in the formation process.

As discussed above the sink particles can be interpreted as pre-stellar cores, and each sink

particle converts ∼ 40% of its mass to a single massive star, with the rest of the mass ending

up in low-mass stars, filling up the lower mass end of the IMF. The flattening or cut-off of the

IMF at the low-mass end observed in our simulations is likely due to insufficient spatial and mass

resolution to capture the formation of low mass cores or the fragmentation of more massive pre-

stellar cores. To further clarify, we note that the interpretation that only 40% of the core mass is

converted into a star and the remaining 60% is returned to the gas phase, never to participate in

star formation, would not produce the correct normalisation of the IMF. This is because in this

scenario, although the stellar masses are ∼ 40% of the core masses, the total stellar mass and the

star formation efficiency would be reduced by a factor of ∼ 2.5, lowering the expected number

of massive stars below the value found in the simulations.

So far we have assumed that all the gas in the cores fragments into stars with η = 100%

efficiency. In this case we find a conversion factor ε = 0.4 between the CMF and the IMF (such

that the normalisation of the IMF agrees with the observed one). However, it is possible to match

the observed IMF also in models in which η < 1. Note that in this case the TSFE shown in all our

plots should be re-scaled by a factor η. In models with η < 1, the conversion factor ε that matches

the mass-normalised empirical IMF, is ε = 0.4η1/Γ. For η = 1, 0.69 and 0.4, ε = 0.4, 0.3 and

0.2, respectively.

The results of this section justify our assumptions to model radiative feedback in Sec-

tion 2.2.3 and it further implies that our simulations are self-consistently treating the formation

of individual massive stars, their feedback effects, and can be used reliably to estimate of the
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Figure 2.5: Comparing IMFs from simulations with different resolutions. Fewer massive stars
and more lower-mass stars form from simulations with higher resolution.

escape fraction of hydrogen and helium ionising photons.

2.3.1.2 Resolution Studies

We conduct four extra runs at lower resolution to evaluate the numerical convergence of our

simulations. All other simulations have the highest resolution we could afford computationally,

and increasing the resolution is unfeasible for the relatively large cloud masses considered in

this study. More massive sink particles and fewer low-mass sink particles form in simulations

with lower resolution (see Figure 2.5). The mean mass of the IMF, represented by the vertical

dashed line in the figure, increases by a factor ∼ 2− 3 when the spatial resolution halves. As the

resolution increases, while there is no significant change in the total mass in sinks, the mean mass

of sinks decreases, suggesting that some of the sinks fragment into smaller sub-clumps. A model

in which the cores form stars with∼ 30% efficiency and, as we increase the resolution, additional

small mass cores form from unused gas at the low-mass end of the CMF, is instead less consistent

with our results for two reasons. i) Allowing more of the diffuse gas to form low mass cores would

produce, in some simulations, a total core formation efficiency above unity (in simulations that

have f∗ > 0.3 − 0.4). ii) Figure 2.5 shows that the core formation efficiency, which is ∼ f∗,
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Figure 2.6: Top: Numerical experiments showing the results of fragmenting each sink particle
into stars using a power-law PDF with slope Γ for the XL-F simulation. Similar results are
obtained for all the other simulations. The green solid and dashed histograms are the sink mass
function (SMF) and the ”shifted” sink mass function (i.e., sinks masses are multiplied by 0.4),
respectively. The blue and orange solid histograms show the mass functions of the stars obtained
by fragmenting each sink particle into smaller particles using a power-law probability distribution
with a slope Γ in the range of 0.1 M⊙ to msink, as shown in the legend as ‘sample I’. Mass-
normalised analytic Chabrier IMF are plotted for comparison. A power-law sampling of the
sinks with Γ = 0.8 produces an IMF in very good agreement with a Chabrier IMF over the whole
range of star masses. Bottom: Similar to the Top but the lower limit of the sampled masses is set
to max(0.01 M⊙, 0.01msink) (sample II).

is close to being converged. Thus, by increasing the resolution we do not add new cores from

the gas, otherwise we would observe an increase of f∗, which instead slightly decreases with

increasing resolution. Increasing the resolution simply changes the CMF, but the total mass in

cores remains nearly the same. For these reasons, we find that the cores-fragmentation model is

the most likely, although we cannot rule out alternative scenarios.

2.3.1.3 Monte-Carlo Numerical Experiments for Fragmentation

To demonstrate more convincingly that our interpretation is robust, we perform a simple

numerical experiment. We assume that each pre-stellar core (sink particle) fragments into smaller

sub-units with a power-law mass function (MF) with index Γ, and with limits on the fragment

masses between 0.1 M⊙ and the sink mass. We draw randomly from this distribution until the
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total mass of the fragments equals the sink mass. We repeat this procedure for all the sinks. Such

sampling is done 20 times and the average of the bins is taken. Figure 2.6 shows the resulting

mass function for the XL-F cloud, but we obtain similar results for all the simulations. The mass

function we obtain by fragmenting the sinks is shown as the solid histogram (blue for Γ = 1.35

and orange for Γ = 0.8). The original SMF is shown by the green solid histogram and the shifted

mass function is shown by the dashed histogram. The black solid curves show the Chabrier IMF

for a cluster with total mass equal to the total mass in sink particles, which are in very good

agreement with the mass function of the fragmented pre-stellar cores assuming Γ = 0.8.

This sampling method does not produce a modal mass for the IMF. To address this, we

tried another sampling method. However, if we assume that the lower mass limit in the sampling

is set to max(0.01 M⊙, 0.01msink), instead of 0.1 M⊙, the resulting IMF has a similar shape to

the SMF but peaks at a mass 100 times smaller, resulting in a model mass of the IMF ∼ 0.1 M⊙

(see bottom panel in Figure 2.6).

In summary, the fragmentation of the pre-stellar cores into numerous small mass stars, a

process which is not captured in our simulations due to limited resolution, explains the deficit of

stars with mass below ∼ 1 M⊙ in our simulations with respect to the number expected assuming

a Chabrier IMF.

2.3.1.4 High-mass Slope of the IMF

In this section we quantify more rigorously the slope of the IMF. In Figure 2.7 the IMF

is shown at the end of the simulations when star formation has stopped. The green lines show

the best fit power-law at the high-mass end of the IMF using Bayesian inference as explained
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Figure 2.7: Same as Fig. 2.4, but showing the IMF at the end of the simulations along with the
best fit power-law (solid green lines). Only sinks above a critical mass are used for the Bayesian
fit. Stars more massive than the critical mass account for 70% of the total cluster mass. The
mass range of the sinks used in the fit is also shown as the range of the solid green lines. The
power-law slopes lie in a range from 1.0 to 1.6 (excluding the simulations that produces less than
50 sink particles), in agreement with the slope of the Salpeter IMF (Γ = 1.35).

below. We do not notice any significant relationship between the high-mass end slope of the IMF

and the mass or compactness of the cloud. We notice, however, a flattening of the IMF at 1-10

M⊙ in very compact clouds of high-mass (M> 103 M⊙), which is instead not observed in the

fiducial and massive clouds. Since these clouds have the highest star formation efficiency and

the strongest radiative feedback, a speculative interpretation would be that we are observing the

effect of photo-evaporation of small fragments. When a proto-star is exposed to the ionising flux

of a new-born OB star, the disk mass decreases rapidly with time. This may regulate the mass

accretion rate through the disk and therefore to the star.

Here are some details of the Bayesian inference of the IMF slope. We assume a power-

law slope mass distribution with general form dN/d logm = Am−Γ where A is a constant of
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normalisation and mmin < m < mmax. When the total number of stars is N0, this constant

becomes A = ln 10N0 Γ/(m−Γ
min − m−Γ

max). The likelihood is proportional to the distribution

function, N (µi|Γ) = Am−Γ
i , where µi ≡ log(mi). To find the most likely Γ we calculate the

value of Γ that maximises the log of the likelihood:

lnL ∝
∑

i

ln N (µi|Γ)

= N0

[
ln Γ− ln(m−Γ

min −m−Γ
max)

]
− ln 10 Γ

∑

i

µi. (2.6)

Model-independent constants are removed from this equation. We do the un-binned fitting only

to stars with masses above a critical value. This value is chosen somewhat arbitrarily as the point

at which the IMF starts to deviate from the Kroupa IMF. In each panel the best fit line is shown

as a segment between the critical mass and the maximum stellar mass along with the slope Γ and

1-σ errors. The errors are calculated as the 16% and the 84% points of the cumulative likelihood

for Γ between Γ = 0.5 to 1.8. The fitted value of Γ has a dependence on the critical minimum

mass for the points included in the fit, but we find that the values of Γ agree with a Kroupa IMF

within the 1-σ errors in most cases. Here, we adopt a critical mass such that particles above this

mass account for 70% of the total mass in stars.

2.3.1.5 Maximum Stellar Mass in the Cluster

Figure 2.8 shows the maximum stellar mass (Mmax) as a function of the mass of the star

cluster. The relationship between Mmax, obtained by multiplying the maximum sink mass by 0.4,
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Figure 2.8: Maximum stellar mass in a cluster v.s. the mass of the star cluster. We use a least-
square method to fit the data to a power-law with slope 0.66 ± 0.06. The radius of each circle
is proportional to the square root of the half-mass effective radius of the cluster and the color
represents the compactness of the cloud: orange for fiducial, blue for compact, and green for
very compact.

and the stellar cluster mass, mcl, is tight. The best fit power-law is

Mmax/M⊙ ≈ 205m0.66
4 , (2.7)

where m4 = mcl/10
4 M⊙, valid when mcl ≳ 100 M⊙. The relationship is well correlated, with a

coefficient of determination R2 = 0.93. A power-law relationship between the maximum stellar

mass and the cluster mass is consistent with observations, although the observed power-law slope

is 0.45 (Larson, 1969), which is slightly flatter than the value found in our simulations. However,

the slope we find is in good agreement with numerical studies of star formation in clusters using

SPH codes (Bonnell et al., 2003, 2004). We also neglect smaller-scale feedback from protostellar

outflows that can reduce the final mass of stars. In addition, it should be kept in mind that the

maximum stellar mass here is defined as 0.4 times the maximum sink mass, therefore it is possible

that the fragmentation of the largest sinks may produce stellar masses systematically smaller than
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Mmax.

Given the uncertainty due to Poisson statistical fluctuations, the SMF appears to be con-

sistent with power-law all the way to the mass bin that is expected to have ∼ 1 particle in it

(the horizontal dashed-dotted lines in Figure 2.7). Hence we do not have strong evidence for a

high-mass truncation of the CMF. We conclude that the CMF, as represented by the SMF, does

not have a fundamental upper mass limit below ∼ 1000 M⊙ (the maximum sink mass in all si-

mulations). Since our simulations have the same initial turbulence field and we have only one

random realisation for each set of parameters (mass, and density of the cloud), we are not able to

address the question of whether the maximum stellar mass in a cluster is determined by physical

(Kroupa & Weidner, 2003) or statistical effects (e.g. Fumagalli et al., 2011). In addition, we use

an empirical relationship between sinks mass and massive stars, rather than resolving the frag-

mentation of sinks into massive stars using a physical model. This also prevents us from drawing

robust conclusions about this open question.

2.3.2 Star Formation Efficiency

We define star formation efficiency (SFE, or f∗) in our simulated clouds as the fraction of

the initial gas mass that is converted into sink particles. Figure 2.9 shows the SFE as a function

of time in units of the free-fall time tff (shown at the top-right of each panel), for the simulations

in Table 2.2. The top panel refers to the fiducial clouds, the middle panel to the compact clouds

and the bottom panel to the very compact clouds. Lines in each panel refer to different cloud

masses as explained by the simulation IDs in the legend. The vertical lines mark the time of the

explosion of the first two SNe in the simulation, where the lifetimes of stars are given by Schaller
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Figure 2.9: Dimensionless star formation efficiency f∗ as a function of the dimensionless time
t/tff for all the simulations shown in Table 2.1. The top, middle, and bottom panels show the
fiducial, compact, and very compact clouds, respectively. The black vertical lines indicate the
time of the first two SN explosions, if they exist, for each simulation, where the lifetimes of
stars are given by Schaller et al. (1992) fit. The duration of the star formation episode is roughly
proportional to the sound-crossing time of the cloud (see Sec. 2.3.3).
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et al. (1992) fitting functions. As discussed before we do not include mechanical feedback from

SNe, but star formation has already stopped or it is mostly terminated before the explosion of the

first SN in all simulation but XL-F, i.e. the fiducial run with mass mgas = 3.2× 105 M⊙.

When time is measured in units of the free-fall time, the shape of the SFE curves are

qualitatively similar: the SFE increases rapidly with time and peaks at t ≈ 2−3tff . Generally the

total SFE at the end of the simulations increases with increasing cloud mass and with increasing

cloud compactness. This is shown more clearly in Figure 2.10. The top panel in Figure 2.10

shows the stellar mass of the cluster mcl as a function of the cloud gas mass for the 3 set of

simulations with different compactness (as shown in the legend). The smaller open circle with

the label Z = 1/40 Z⊙, shows a compact cloud simulation but with lower gas metallicity (see

Section 2.3.4). The dot-dashed line shows SFE= 100%, while the dashed lines are fits to the

simulation results with the following function:

mcl = 200 M⊙ ·
(

mgas

104 M⊙

)1.4(
1 +

ngas

ncri

)0.91

+mfl , (2.8)

where ncri ≈ 103 cm−3 is the critical density and mfl is the mass floor. The dashed lines show

the fit assuming mfl = 0, while the dotted line has mfl = 10 M⊙. Equation (2.8) is a good fit to

the points when excluding the 3 lowest mass simulations for the fiducial run (shown as smaller

sized open squares). The motivation for excluding these 3 simulations from the fits is explained

below.

The open symbols show star cluster that become dynamically unbound (i.e., open star clus-

ters), while the solid symbols show star cluster that at the end of the simulations, after most of the

gas has been used up for star formation or expelled, remain gravitationally bound (i.e., globular
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Figure 2.10: (Top.) Stellar mass of the cluster mcl as a function of the initial mass of the gas
cloud (mgas) for the set of simulations with different initial cloud densities (see legend). The
gray dot-dashed line is plotted as a reference for 100% star formation efficiency. Excluding the 3
fiducial cloud simulations with the lower masses, we observe a clear power-law relation between
mcl and mgas. We speculate that the minimum cluster mass floor observed for the fiducial clouds
data points is due to inefficient UV stellar feedback due to lack of realistic implementation of
low-mass stars feedback in our simulations. Indeed the simulations by Jones & Bate (2018),
shown as magenta stars, are in excellent agreement with the extrapolation of out power-law fits
as shown by the brown diamonds, assuming Eq. (2.8) and Eq. (2.9) fits with mf = 10M⊙ (see the
brown dashed line for our fit to the smallest density of the three Jones18 data points). (Bottom.)
Same as the top panel but showing the total star formation efficiency (TSFE), i.e. the SFE once
star formation ends and the cloud is dispersed. The solid horizontal line at f∗ = 15% roughly
separates clouds that form globular cluster progenitors from open star clusters.
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cluster progenitors).

The star symbols show the results of simulations by Jones & Bate (2018) for clouds with

mass mgas = 500 M⊙ and for mean densities ngas = 3 × 102, 3 × 103, and 3 × 104 cm−3, from

bottom to top, respectively. These densities are slightly different from the mean densities in our

fiducial, compact and very compact simulations, thus we show as diamonds the corresponding

points obtained using our fitting formula in Equation (2.8) with mfl = 10 M⊙. These simulations

do not include feedback by massive stars being very small mass clouds in which the most massive

star that forms has is < 10 M⊙. However, the resolution of these simulations is higher than our

simulations and, contrary to our simulations, feedback by IR radiation is included. In addition,

these simulation are run using an SPH code. It is interesting to note that despite the different codes

and physics included, the results are consistent with the extrapolation of our fitting formulae to

low mass clouds if we assume a minimum mass floor for the star cluster mass of ∼ 10 M⊙.

The bottom panel in Figure 2.10 is the same as the top panel but shows the total star for-

mation efficiency f∗,tot ≡ mcl/mgas and the best fit:

f∗,tot = 2.0%

(
mgas

104 M⊙

)0.4(
1 +

ngas

ncri

)0.91

. (2.9)

The solid horizontal line at TSFE ∼ 15% roughly separates star clusters that become glob-

ular cluster progenitors (f∗ > 15%) from open star clusters (f∗ < 15%). This separation is based

on the dynamical state of the cluster at the end of the simulations, but a more detailed analysis of

the dynamics of the stellar cluster will be the subject of a followup study.

Let’s now address the reason why we excluded the 3 lower mass fiducial simulations from

our analysis. We observe that the star cluster mass in these simulations does not obey a simple
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power-law relationship with the initial gas mass of the molecular cloud. The discrepancy does

not appear to be a convergence issue due to insufficient resolution, as confirmed by the lower-

resolution simulations (shown as lighter color small squares), but rather lack of the necessary

physics for self-regulation feedback. This can be understood inspecting Figure 2.8 which relates

the mass of massive stars to the cloud gas mass. The low TSFE of the diffuse clouds in combi-

nation with the small cloud gas mass produces stellar masses below 102 M⊙, which corresponds

to a maximum stellar mass Mmax < 10 M⊙. Such stars do not produce significant quantities of

ionising UV radiation, therefore the cloud can continue to form stars. This is due to our neglect-

ing feedback mechanisms from lower mass stars. This requirement for stars that produce ionising

radiation to disperse the cloud leads to a minimum cluster mass floor mcl ∼ 300 M⊙, much larger

than the ∼ 10 M⊙ floor which is a good fit to the simulations of Jones & Bate (2018).

This large mass floor is not evident in the compact and very compact clouds: if it exists,

it must be at masses mcl < 100 M⊙. The reason for this apparent inconsistency is not fully un-

derstood, but it appears to be related to the smaller ratio of the crossing to free-fall time for the

fiducial cloud when compared to the more compact clouds (Sec. 2.3.3). We offer the following

hypothesis: Inspecting the middle and bottom panels in Fig. 2.9, we observe a longer delay for

onset of star formation in the small mass clouds for the compact and very compact runs, which

is not observed in the fiducial runs. This can be understood in terms of the necessary number

of crossing times required by the supersonic turbulence to create dense clumps for star forma-

tion (with n > nsink). In the fiducial cloud this enhancement of the density due to supersonic

turbulence is faster when compared to the free-fall timescale, hence the steeper rise of f∗ as a

function of time. When feedback from massive stars is absent due to random sampling of a small

mass stellar cluster, this rapid increase of f∗ can lead to significant overshooting of star forma-
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tion above the threshold expected from self-regulation. This overshooting does not happen, or is

milder, for more compact clouds in which f∗ increases with t/tff more slowly. The existence of

a minimum cluster mass floor, however, should eventually become evident also in more compact

clouds when decreasing further the initial cloud masses.

We observe a power-law relation between the mass of the cloud and the mass of the star

cluster. Howard et al. (2018a) find that the stellar mass of the most massive cluster that forms

from a molecular cloud has a power-law dependence on the mass of the cloud with an exponent

of 0.78. In our work, this relation, taking all sink particles as the cluster, has an exponent of

1.4 (Equation 2.8). By multiplying it with the exponent of the Mmax-mcl relation, 0.66 (Equa-

tion 2.7), we get an exponent of 0.92. Similar to Howard et al. (2018a), our work suggests that

young massive star clusters are natural extensions of low-mass cluster formation.

Our results (Figure 2.10, or Table 2.2) are in good agreement with Kim et al. (2018), who

find that the TSFE depends primarily on the initial gas surface density, such that the TSFE in-

creases from 4% to 51% as Σ increases from 13 to 1300 M⊙ pc−2.

To summarise, we believe that the increase in TSFE observed for the fiducial simulations

with masses mgas ≤ 104 M⊙ is unphysical, meaning that it is due to missing feedback processes

in our simulations. When the most massive star has mass M < 10 M⊙, IR radiation feedback or

proto-stellar jets feedback should be included in the simulation. In all the other simulations UV

feedback by massive stars is likely the dominant feedback at play; therefore these simulations

incorporate the relevant physics for the formation of realistic star clusters.

53



0.0

0.1

XS-F S-F M-F L-F XL-F

0.00

0.05

0.10

f ∗
or

SF
R

ff

XS-C

Data
Fit
SFRff

S-C M-C L-C

0 2 4 6
0.0

0.2

0.4

XS-VC

0 2 4 6

S-VC

0 2 4 6
t/tff

M-VC

0 2 4 6

L-VC

0 2 4 6

XXS-VC

Figure 2.11: Dimensionless star formation efficiency (f∗ = m∗/mgas) and dimensionless star
formation rate per free-fall time (SFRff = df∗/dτ ) as a function of dimensionless time τ = t/tff
for the simulations in Table 2.1. The points show f∗ as a function of time from the simulations,
the solid orange line shows a fit to f∗(τ) using Fermi function (Eq. 2.10), and the solid blue line
shows SFRff using the fit formula. The Fermi function is a good fit to the data, and from it we
can calculate the peak star formation rate and star formation time (shown in Fig. 2.12).

2.3.3 Star formation law in molecular clouds

Next, we ask the question of what is the physical interpretation of the empirical relationship

we derived for the star formation efficiency as a function of cloud mass and compactness. To

answer this question we first fit the SFE f∗(τ) with an analytic function, where τ ≡ t/tff , in order

to minimise the stochastic noise of the simulations. The f∗(τ) has a shape that can be fit by an

arctan function or the Fermi function:

fF (τ) =
f0

e−(τ−τ0)/∆τ + 1
. (2.10)
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Figure 2.12: (Top): Maximum dimensionless star formation rate per free-fall time, SFRff |max =
df∗/dτ |max, where τ = t/tff v.s. gas mass of the cloud. The dashed lines show a power-law
fit to the data (see Eq. 2.11). The smaller squares are data points not used for the fit because of
the lack of a realistic feedback loop in these simulations. (Bottom): The ratio of star-formation
time ∆tSF to sound-crossing time tcr = rgas/cs, where cs = 10 km s−1. This ratio is close to
a constant (the gray dashed line). Over-pressured H II regions require approximately 6 crossing
times to suppress star formation.

Both fits give similar results for the purpose of interpreting f∗(τ). In Figure 2.11 we show the fit

to f∗(τ) using the Fermi function fF (orange solid curves) and its time derivative (blue curves),

or the dimensionless SFR per free-fall time, SFRff ≡ df∗/dτ ≈ dfF/dτ . The fits are a good

approximations to the data points from the simulations (solid points), except for a few clouds

where f∗(τ) has a pit near the end of the star formation process.

The value of the peak of SFRff has a weak dependence on the cloud mass (see top panel

in Figure 2.12) and a stronger dependence on the cloud mean density. We fit the SFRff |max with

a power-law similar to Eq. (2.9):

SFRff |max ≈ 1.1%

(
mgas

104M⊙

)0.36(
1 +

ngas

ncri

)αf

(2.11)
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where αf ≈ 1.0 and ncri is the same critical density as in Eq. (2.8)2. The duration of the star

formation burst in units of tff , ∆τSF , is proportional to the width of the SFRff shown as the blue

lines in Fig. 2.11. The function dfF/dτ has a peak value f0/4∆τ and a full-width half-maximum

3.526∆τ . We define ∆τSF ≡ 4∆τ so that

f∗,tot ≈ f0 =
dfF
dτ
|max ×∆τSF . (2.12)

Inspecting Fig. 2.11 we see that ∆τSF increases with the cloud mass, and appears to be propor-

tional to the dimensionless sound crossing time of the cloud. Here we define the sound crossing

time, tcr, as the ratio of the time it takes for a sound wave with cs = 10 km/s to cross the cloud

radius. Similarly to the dimensionless ∆τSF, we define τcr ≡ tcr/tff , where the free-fall time

is defined at the cloud’s mean density. We find that ∆τSF/τcr = ∆tSF/tcr ≈ 6 (the horizontal

line in the bottom panel of Fig. 2.12). This results makes physical sense because the feedback

mechanism stops star formation by creating over-pressured H II regions which require a constant

number of crossing times to expel the gas.

Since tcr ∝ rgas ∝ (mgas/n)
1/3, we have ∆τSF ∝ tcr/tff ∝ m

1/3
gasn1/6. From Equa-

tion (2.12) we derive f∗,tot ∝ m 0.69
gas n 0.17

gas (1 + ngas/ncri)
1.0, which is in good agreement with

Eq. (2.9) for n > ncri. The agreement can be improved further by considering a more accurate fit

to τSF/τcr rather than assuming a constant value∼ 6. Namely, considering the weak dependence

of the star formation timescale on the cloud mass and density: ∆τSF/τcr ∝ m −0.3
gas n −0.2

gas .

From the analysis and interpretation of these results we can thus derive a star formation

law in molecular clouds that can be used as a more accurate sub-grid recipe in cosmological

2The value of αf is somewhat correlated with ncri. We sample a sequence of ncri for which we obtain a good fit
and find that for ncri in the range ∼ 400 – 1600cm−3, the corresponding αf is in the range 0.85− 1.1.
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simulations that resolve the molecular cloud phase. Assuming a constant mean volume for the

cloud we have f∗ ≡ m∗/mgas ≈ ρ∗/ρgas. Therefore, assuming ρgas = const (i.e., assuming

f∗ ≪ 1) during the episode of star formation, which has a duration ∆tSF , we have SFRff |max ≡

df∗/dτ |max ≈ dρ∗/dt|max(tff/ρgas), which implies:

dρ∗
dt

= ϵ

(
mgas

104M⊙

)0.36(
1 +

ρgas
ρcri

)1.0 ρgas
tff
∝ (ρgas)

2.5, (2.13)

if ngas > ncri ≈ 103cm−3

with ϵ = 1.1% for solar metallicity and ϵ = 0.36% for Z < 0.1 Z⊙ (see § 2.3.4). A star formation

law dρ∗/dt ∝ ρngas with n = 1 or n = 1.5 is most often used as a sub-grid star formation recipe

in cosmological simulations. Therefore we suggest that a steeper power-law index n ∼ 2.5 is

a better description of the star formation rate at densities typical of molecular clouds in high-

redshift galaxies. This theoretical result can, in principle, be tested against observations of young

stellar clusters in our galaxy.

Krumholz et al. (2012) suggests a universal star formation law in which the star formation

rate is ∼ 1.5% of the molecular gas mass per local free-fall time. Eq. 2.11 results in SFRff ≈

1%− 2% at ngas ≲ 103cm−3, in agreement with this work for local molecular clouds. However,

Krumholz et al. (2012) finds this universal value also for high-redshift galaxies but averaged over

the whole galaxy. We find that SFRff can be as large as ∼ 10% for more compact clouds typical

of high-redshift galaxies, and/or more massive clouds (see also the top panel of Fig. 12). A

direct comparison to Krumholz’s results is not trivial for the galaxy as a whole, as it depends on

modelling the multi-phase ISM of high-z galaxies.
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Figure 2.14: Same as Fig. 2.9 but for the L-C cloud with different gas metallicities, as shown in
the legend.

2.3.4 Effects of Lowering the Gas Metallicity

The set of compact and very compact molecular clouds we have analysed are meant to

represent clouds typical of the ISM in dwarf galaxies forming at high-redshift. However, we

also know that the gas metallicity in these dwarf galaxies is less than solar. In order to keep

the parameter study consistent we have not changed the gas metallicity in the compact and very

compact clouds, but in this section we briefly test the influence of gas metallicity [Fe/H] on the
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star formation rate and IMF. In our simulations, changing the gas metallicty affects the cooling

of the gas (see Section 2.2.4).

Figure 2.13 is the same as Figure 2.7 but for the LC clouds with metallicity Z = 1 Z⊙,

0.1 Z⊙, and 0.025 Z⊙. The shape of the IMF is not affected by the gas metallicity. Only the nor-

malisation of the IMF is influenced because of the lower SFE in the low-metallicity simulations.

This is in agreement result of previous theoretical works (e.g. Myers et al., 2011; Bate, 2014).

Lower metallicity translates into lower cooling rates, which should result in lower effi-

ciency of star formation. Figure 2.14 shows f∗ as a function of time for the large compact cloud

(LC) with intermediate (0.1 Z⊙) and low (0.025 Z⊙) metallicity. The effect of lowering the

metallicity by a factor of ten, from Z = 1 Z⊙ to Z = 0.1 Z⊙ is to lower f∗ at the end of the

simulation by roughly a factor of 5. But lowering further the metallicity from Z = 0.1 Z⊙ to

Z = 0.025 Z⊙ does not change f∗, suggesting that f∗ decreases almost linearly with the metallic-

ity from solar to Z = 0.2 Z⊙, but this effect saturates when further lowering the metallicity. The

SFE decreases mainly because the peak SFR decreases by roughly a factor of 3 with decreasing

metallicity, while the duration of the star formation episode is nearly unchanged (see small circles

in Fig. 2.12).

In order to better understand what is causing a decrease of the SFR at lower metallicity,

we have analysed the density and temperature structure of these two simulations. We found that

lowering the metallicity causes the temperature and the thermal pressure inside H II regions to

increase by roughly a factor of 3, as shown in Figure 2.15. This result is in agreement with

observations and theoretical models of H II regions. The strength of feedback, due to the increase

of thermal pressure inside the H II regions, is therefore stronger at lower metallicity, resulting in a

lower star formation efficiency. This result on the effect of the gas metallicity goes in the opposite
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Figure 2.15: (Left and Middle). Slice plots of the gas temperature from simulations with metal-
licities Z = 1Z⊙ (left) and Z = 0.1Z⊙ (middle). The snapshots from these two simulations are
chosen to be nearly at the same evolutionary stage. We observe a factor a∼ 3 increase in temper-
ature (and thermal pressure) within the H II region as the metallicity of the gas is decreases from
solar metallicity to a tenth of it. Right: Phase plot of gas temperature vs hydrogen ionising frac-
tion for the H II regions shown in the left and middle panels. The blue shaded area refers to the
Z = 0.1Z⊙ simulation for a small range of evolutionary times around the time of the Z = 1Z⊙
snapshot (shown as black line).

direction of what was found by Howard et al. (2018a). In their work, lowering the metallicity of

the gas cloud reduces the opacity of the gas to radiation and results in higher gas accretion which

leads to an increase of the total star formation efficiency. However, this can be understood because

in their simulations the dominant feedback mechanism is IR radiation pressure while, contrary

to our work, UV feedback does not play a major role. However, their simulations describe more

massive clouds and have much lower resolution than the simulations in our work.

2.4 Summary and Conclusions

In this chapter, the first of a series, we present a large set of radiation-magneto-hydrodynamic

simulations of star formation in self-gravitating, turbulent molecular clouds. The initial condi-

tions for the clouds are isothermal spheres initially close to virial equilibrium, being supported

by turbulent motions.

We model the formation of individual massive stars, replacing self-gravitating clumps that
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are collapsing below the resolution of the simulations with sink particles, which represent in-

dividual massive stars, therefore including their UV radiation feedback self-consistently. We

consider a grid of simulations varying the cloud masses between mgas = 103 M⊙ to 3× 105 M⊙.

Depending on the cloud mass, we resolve scales between 200 AU to 2000 AU. In addition, we

consider three compactness for the molecular clouds. The fiducial clouds have gas mean num-

ber densities typical of those observed in the local universe (ngas = 1.8 × 102 cm−3). Compact

(ngas = 1.8 × 103 cm−3) and very compact (ngas = 1.8 × 104 cm−3) clouds represent clouds

expected to exist in high-redshift galaxies. We also partially explore varying the gas metallic-

ity. Our goal is to run a realistic set of simulations of formation of star clusters in molecular

clouds to understand the physics of star formation across cosmic time: from conditions typical

of present-day ISM to the the higher-pressure environments found in the ISM of higher redshift

galaxies.

In this chapter we focus on understanding the IMF, the SFR and SFE as a function of the

cloud mass and compactness. We derive a star formation law valid at densities typical of high-

redshift molecular clouds that will help to justify and inform the sub-grid star formation recipe

used in cosmological simulations.

A summary of simulations results is presented in Table 2.2. The main findings of this

chapter are the following:

1. We find that a Chabrier (or Kroupa) stellar IMF with the correct normalization can can be

reproduced in all of our simulations if we assume that each star-forming gas clump (sink

particle) fragments into stars with a power-law mass function with log-slope Γ ∼ 0.8, flatter

than the mass function of the sink particles, which have Kroupa slope Γ ∼ 1.3. With this
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Table 2.2: A collection of results. (a) Stellar mass of the cluster formed from the cloud. (b)
Total star formation efficiency, equal to mcl/mgas. (c) Peak dimensionless star formation rate per
free-fall time. (d) Negative IMF power-law slope Γ: dN/d logm ∝ m−Γ. (e) Number of SNe
explosions in 7 free-fall time of simulation.

Cloud name mgas(M⊙) ngas(cm
−3) Σ (M⊙ pc−2) Z(Z⊙) mcl(M⊙) TSFE (%) SFRff IMF slope nSN

XS-F 3.2× 103 1.8× 102 41 1 3.8× 102 12.1 0.18 1.0+0.4
−0.3 2

S-F 1.0× 104 1.8× 102 61 1 5.1× 102 5.1 0.062 1.3+0.3
−0.3 2

M-F 3.2× 104 1.8× 102 89 1 1.4× 103 4.3 0.042 1.1+0.2
−0.2 12

L-F 1.0× 105 1.8× 102 131 1 5.7× 103 5.7 0.053 1.2+0.2
−0.1 38

XL-F 3.2× 105 1.8× 102 193 1 2.5× 104 7.8 0.043 1.1+0.1
−0.1 142

XS-C 3.2× 103 1.8× 103 193 1 1.0× 102 3.3 0.033 0.5+0.8
−0.0 0

S-C 1.0× 104 1.8× 103 283 1 5.3× 102 5.3 0.052 1.6+0.1
−0.3 1

M-C 3.2× 104 1.8× 103 415 1 3.0× 103 9.4 0.047 1.2+0.2
−0.2 5

L-C 1.0× 105 1.8× 103 609 1 1.4× 104 13.7 0.099 1.2+0.1
−0.1 47

L-C-lm 1.0× 105 1.8× 103 609 1/10 3.4× 103 3.4 0.021 1.2+0.2
−0.2 5

L-C-xlm 1.0× 105 1.8× 103 609 1/40 3.3× 103 3.3 0.025 1.0+0.2
−0.2 5

XXS-VC 1.0× 103 1.8× 104 609 1 9.8× 101 9.8 0.099 0.5+0.9
−0.0 0

XS-VC 3.2× 103 1.8× 104 894 1 5.1× 102 16.1 0.2 1.0+0.3
−0.2 0

S-VC 1.0× 104 1.8× 104 1312 1 3.2× 103 32.2 0.31 1.5+0.2
−0.2 0

M-VC 3.2× 104 1.8× 104 1925 1 1.5× 104 46.6 0.25 1.4+0.1
−0.1 0

L-VC 1.0× 105 1.8× 104 2827 1 2.7× 104 27.4 1.3+0.1
−0.1 0

prescription we find that statistically about 40% of the mass of the sink particle is locked

into a single star, while the remaining 60% is distributed into smaller mass stars. This result

is in agreement with the observed mass function of dense cores in some molecular clouds.

The resolution study shows that increasing the resolution changes the CMF, but the total

mass in cores remains nearly the same. For these reasons, we find that the model in which

cores fragment with nearly 100% efficiency into stars is the most likely model, although

we cannot rule out alternative scenarios.

2. The IMF of stars at any time during the star formation burst is Chabrier-like. Because the

total mass in stars is initially small and grows with time, at the beginning of the simula-
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tions, statistically, there are fewer high-mass stars. The apparent behaviour is that low and

intermediate-mass stars form first, followed by the most massive stars.

3. The star formation law that best describes star formation in molecular clouds found in the

local universe (i.e., in fiducial simulations) is dρ∗/dt ≈ 1.1%ρgas/tff . In dense molecular

clouds with ngas > ncri ≈ 103 cm−3, more typically found in high-redshift galaxies, we

find dρ∗/dt ≈ 1.1%ρ2gas/(ρcritff ) ∝ ρ2.5gas. The duration of the star formation episode in all

simulations is roughly 6 sound crossing times of the cloud radius (with cs = 10 km/s).

4. For gas at solar metallicity the total star formation efficiency in the cloud is f∗,tot =

2%(mgas/10
4 M⊙)0.4(1 + ngas/ncri)

0.91, where ncri ≈ 103 cm−3, also in agreement with

(iii).

5. At metallicity Z < 0.1 Z⊙, f∗ is reduced by a factor of ∼ 5 due to more efficient UV

feedback caused by the higher temperature and pressure of H II regions. We do not observe

a dependence of the IMF on the metallicity, in agreement with previous studies.

6. We note that the most compact and massive clouds appear to form globular cluster pro-

genitors, in the sense that star clusters remain gravitationally bound after the gas has been

mostly expelled. We plan to explore in detail the dynamics of these bound star clusters and

possible relationships with the star formation efficiency and the escape fraction of ionising

photons in future works.

The second project of this series we will focus on calculating the escape fraction of ionising

photons, ⟨fMC
esc ⟩, from molecular clouds. This is the first necessary step for a realistic estimate

of the escape fraction from galaxies. Finally, in a third project we will take a closer look at the
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dynamics of the star clusters and connect with important questions on the role of compact star

clusters in creating seed black holes that might grow into supermassive black holes, and questions

in Near Field Cosmology on the origin of globular clusters and ultra-faint dwarfs.
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Chapter 3: Simulating Star Clusters Across Cosmic Time: II. Escape Fraction

of Ionizing Photons from Molecular Clouds

In this chapter, we calculate the hydrogen and helium-ionizing radiation escaping star form-

ing molecular clouds, as a function of the star cluster mass and compactness, using a set of high-

resolution radiation-magneto-hydrodynamic simulations of star formation in self-gravitating, tur-

bulent molecular clouds. In these simulations, presented in He, Ricotti and Geen (2019), the for-

mation of individual massive stars is well resolved, and their UV radiation feedback and lifetime

on the main sequence are modelled self-consistently. We find that the escape fraction of ionizing

radiation from molecular clouds, ⟨fMC
esc ⟩, decreases with increasing mass of the star cluster and

with decreasing compactness. Molecular clouds with densities typically found in the local Uni-

verse have negligible ⟨fMC
esc ⟩, ranging between 0.5% to 5%. Ten times denser molecular clouds

have ⟨fMC
esc ⟩ ≈ 10% − 20%, while 100× denser clouds, which produce globular cluster progen-

itors, have ⟨fMC
esc ⟩ ≈ 20% − 60%. We find that ⟨fMC

esc ⟩ increases with decreasing gas metallicity,

even when ignoring dust extinction, due to stronger radiation feedback. However, the total num-

ber of escaping ionizing photons decreases with decreasing metallicity because the star formation

efficiency is reduced. We conclude that the sources of reionization at z > 6 must have been very

compact star clusters forming in molecular clouds about 100× denser than in today’s Universe,

which lead to a significant production of old globular cluster progenitors.
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3.1 Introduction

A large observational effort is underway to understand the epoch of reionization, both by

observing the high-redshift sources of radiation with HST and JWST (Ellis et al., 2013; Sharma

et al., 2016; Oesch et al., 2016) and detecting the 21cm signal from neutral hydrogen in the

intergalactic medium (IGM) (e.g. Bowman et al., 2018). Numerical simulations of galaxy forma-

tion are becoming increasingly realistic, but the question of which are the sources that propelled

reionization is largely unanswered. To answer this question it is necessary to know the mean

value of the escape fraction of ionizing radiation, ⟨f gal
esc ⟩, from dwarf and normal galaxies into

the IGM at redshift z > 6. This quantity is arguably the most uncertain parameter in models

of reionization. It is difficult to measure, and for the cases in which it has been measured in

galaxies at z ≈ 1, upper limits of fesc ≈ 2 per cent has been typically found (Bridge et al., 2010,

e.g.,). Using staking techniques in Lyman-break galaxies at z ∼ 3 some authors claimed higher

values of fesc at 5–7 per cent (Vanzella et al., 2012; Nestor et al., 2013). However, according to

simulations of reionization a mean value of ⟨f gal
esc ⟩ >∼ 10 − 20% is required to reionize the IGM

by z ∼ 6.2 (Ouchi et al., 2009; Robertson et al., 2015; Khaire et al., 2016). This value is too

large with respect to what observed in local galaxies, unless at high-redshift the value of ⟨f gal
esc ⟩ is

significantly larger than in the local Universe.

Recently, a handful of galaxies at high redshifts have been confirmed to have large Lyman

continuum (LyC) escape fractions. Ion2 and Q1549-C25 are the only two z ∼ 3 galaxies with

a direct spectroscopic detection of uncontaminated LyC emission (Vanzella et al., 2016; Shapley

et al., 2016). Escape fractions of ≳ 50% are inferred for both of them. Vanzella et al. (2018)

reported the highest redshift individually-confirmed LyC-leaky galaxy, Ion3, at z = 4. As a
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proxy for high-z galaxies, Izotov et al. (2018) selected local compact star-forming galaxies in

the redshifts range z = 0.2993 − 0.4317, using the Cosmic Origins Spectrograph on HST. They

found LyC emission with fesc in a range of 2-72 per cent. We should note that ⟨f gal
esc ⟩ in models of

reionization is the averaged value over all star forming galaxies, but also a time-average of fesc(t)

over the duration of the starburst.

A number of attempts have been made to predict the escape fraction of hydrogen LyC

photons from galaxies using analytic models and simulations of galaxy formation (Ricotti &

Shull, 2000; Gnedin et al., 2008; Wise & Cen, 2009; Razoumov & Sommer-Larsen, 2010; Yajima

et al., 2011; Wise et al., 2014; Ma et al., 2015; Xu et al., 2016), but because of the complexity of

the problem and the uncertainty about the properties of the sources of reionization, the results are

inconclusive. In addition, any realistic theoretical estimate of ⟨f gal
esc ⟩ must take into account the

escape fraction of ionizing radiation from the molecular clouds in which the stars are born, ⟨fMC
esc ⟩,

a sub-grid parameter in galaxy-scale and in cosmological-scale simulations. Typically ⟨fMC
esc ⟩ is

set to unity in cosmological simulations of reionization, which could dramatically overpredict

⟨f gal
esc ⟩ (e.g., Ma et al., 2015). More recent simulations which do not make a priori assumptions

about subgrid escape fractions (e.g., Rosdahl et al., 2018) remain very sensitive to small-scale

effects. In addition, they require that outflows from star-forming regions clear channels in the

galaxies while ionising radiation is still being emitted in large enough quantities, for example by

invoking binary stellar evolution models.

A small body of work exists that estimates ⟨fMC
esc ⟩ in star-forming molecular clouds (Dale

et al., 2014; Howard et al., 2017, 2018b; Kimm et al., 2019), although systematic studies remain

limited in number. Dale et al. (2014) finds that ⟨fMC
esc ⟩ ∝ 1/Lcl, or that the escaping ionizing radi-

ation rate from star clusters of different masses is roughly constant at a few ×1049 s−1. However,
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in this work the calculation of ⟨fMC
esc ⟩ assumes that all the radiation is emitted from a point source

located at the center of the cloud. Also, in this work the clouds have the same initial density, simi-

lar to today’s molecular clouds associated with young star forming regions. Howard et al. (2018b)

find the overall escape fraction is not a monotonic function of the cloud mass, mgas, varying from

31% for mgas = 104M⊙, to 100% for mgas = 105M⊙, and 9% for from mgas = 106M⊙. They

also use a rather crude estimation of ⟨fMC
esc ⟩ in their simulations by assuming that all the radiation

is emitted from a point source located at the center of the star cluster. Observationally, escape

fractions from molecular clouds remain uncertain. Doran et al. (2013) find an escape fraction of

ionising photons of 6% from 30 Doradus in the Large Magellanic Cloud, but their error bars give

a maximum possible escape fraction of 71%.

In this chapter, the second of a series, we estimate ⟨fMC
esc ⟩ using a large set of realistic simu-

lations of star cluster formation in molecular clouds. These are radiation-magneto-hydrodynamic

simulations of star formation in self-gravitating, turbulent molecular clouds, presented in He,

Ricotti & Geen (2019) (hereafter, Chapter 2). We model self-consistently the formation of in-

dividual massive stars, including their UV radiation feedback and their lifetime. We consider a

grid of simulations varying the molecular cloud masses between mgas = 103 M⊙ to 3× 105 M⊙,

and resolving scales between 200 AU to 2000 AU. We also varied the compactness of the molec-

ular clouds, with mean gas number densities typical of those observed in the local Universe

(ngas ∼ 1.8×102 cm−3) and denser molecular clouds (ngas ∼ 1.8×103 cm−3 and 1.8×104 cm−3)

expected to exist, according to cosmological simulations (Ricotti, 2016), in high-redshift galax-

ies. We also partially explored the effects of varying the gas metallicity.

Previous works have suggested that the progenitors of today’s old globular clusters, and

more generally compact star cluster formation, may have been the dominant mode of star forma-
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tion before the epoch of reionization, and that GC progenitors may have dominated the reioniza-

tion process (Ricotti, 2002; Katz & Ricotti, 2013, 2014; Schaerer & Charbonnel, 2011; Boylan-

Kolchin, 2018). Ricotti (2002) have shown that if a non-negligible fraction of today’s GCs formed

at z > 6 and had ⟨fMC
esc ⟩ ∼ 1, they would be a dominant source of ionizing radiation during reion-

ization. Katz & Ricotti (2013) presented arguments in support of significant fraction of today’s

old GCs forming before the epoch of reionization. However, although it seems intuitive, it has

not been shown that ⟨fMC
esc ⟩ from proto-GCs forming in compact molecular clouds is higher than

⟨fMC
esc ⟩ in more diffuse clouds. Answering this question, and quantifying the contribution of com-

pact star clusters to reionization is a strong motivation for this work.

In a scenario in which the progenitors of today’s GCs dominate the reionization process, we

expect a short effective duty cycle in the rest-frame UV bands, leading to a large fraction of halos

of any given mass being nearly dark in between short-lived bursts of star formation. In addition,

large volumes of the universe would be only partially ionized inside relic H II regions produced by

bursting star formation. Hartley & Ricotti (2016) have shown that the number of recombinations

and therefore the number of ionizing photons necessary to reionize the IGM by z = 6.2 is lower

in this class of models with short bursts of star formation with respect to models in which star

formation is continuous (producing fully ionized H II bubbles). In summary, for the reasons

discussed above, compact star clusters are a very favorable candidate to propel reionization: i)

deep field surveys of sources at z > 6 suggest that the sources of reionization are a numerous

but faint population. Compact star clusters would fit this requirement, also due to their short duty

cycle. ii) The value of ⟨fMC
esc ⟩ necessary for reionization is reduced if star formation is bursty.

iii) We naively expect that compact star clusters have higher star formation efficiency (SFE) and

⟨fMC
esc ⟩ than less compact star clusters. This last point is the focus of this chapter.
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This chapter is organised as follows. In Section 3.2 we present the simulations and the

analysis methods. Section 3.3 presents all the results from the numerical simulations regarding

⟨fMC
esc ⟩, while in Section 3.4 we discuss the physical interpretation of the results and their analyt-

ical modelling. We also discuss the implications for reionization assuming a simple power-law

distribution of the cluster masses, similar to what is observed in the local universe. A summary

of the results and conclusions are in Section 3.5.

3.2 Numerical Simulations and Methods

3.2.1 Simulations

The results presented in this chapter are based on a grid of 14 simulations of star formation

in molecular clouds with a range of initial gas densities and masses, and 2 simulations varying

the initial gas metallicity. For details about the simulations and main results regarding the IMF,

star formation efficiency and star formation rate, we refer to Chatper 2. Here, for the sake of

completeness, we briefly describe the main characteristic of the code we used, and the simulations

set up.

We run the simulations using an Adaptive Mesh Refinement radiative magneto-hydrodynamical

code RAMSES (Teyssier, 2002; Bleuler & Teyssier, 2014). Radiative transfer is implemented us-

ing a first-order moment method described in Rosdahl et al. (2013). The ionising photons interact

with neutral gas and we track the ionization state and cooling/heating processes of hydrogen and

helium. We include magnetic fields in the initial conditions. We do not track the chemistry of

molecular species.

We simulate a set of isolated and turbulent molecular clouds that collapse due to their own
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gravity. The clouds have initially a spherically symmetric structure with density profile of a non-

singular isothermal sphere with core density ρc. The initial density profile is perturbed with a

Kolmogorov turbulent velocity field with an amplitude such that the cloud is approximately in

virial equilibrium. A summary of the parameters of the simulations is presented in Table 3.1.

Proto-stellar cores collapsing below the resolution limit of the simulations produce sink

particles. These sinks represent molecular cloud cores in which we empirically assume that

fragmentation leads to formation of a single star with a mass roughly 40% of the mass of the

sink particle, and the remaining 60% of the mass fragments into smaller mass stars. With this

prescription we reproduce the slope and normalization of the IMF at the high-mass end. Stars

emit hydrogen and helium ionising photons according to their mass using Vacca et al. (1996)

emission rates with a slight modification. We extend the high-mass-end power-law slope down

to about 1M⊙, therefore increasing the feedback of stars with masses between 1 and 30M⊙1.

The gas is ionized and heated by massive stars, producing over-pressurised bubbles that blow out

the gas they encounter. In our simulations low mass stars and proto-stellar cores do not produce

any feedback. We do not include mechanical feedback from supernova (SN) explosions and

from stellar winds and we also neglect the effect of radiation pressure from infrared radiation.

However, with the exception of a sub-set of simulations representing today’s molecular clouds

(the two most massive clouds in lowest density set), all the simulations stop forming stars before

the explosion of the first SN. Therefore, neglecting SN feedback is well justified in these cases.

1This modification was an unintended result of a coding error, but further investigations have shown that it is
important in producing the correct slope of the IMF.
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Figure 3.1: Time sequence plot of line-of-sight projections of density-weighted gas density from
the Medium mass-Fiducial (M-F), Compact (M-C), and Very Compact (M-VC) clouds. These
clouds have initial mass of 3× 104M⊙ and initial mean density of 2× 102, 2× 103, and 2× 104

cm−3. Sink particles are plotted as filled circles on top of the density map. These circles have
radii related to the mass. The circles are filled with colors according to their escaped ionizing
luminosity with the colorbar shown at the bottom. Sink particles with greater mass are plotted
on top of those with lower mass to make the former ones more prominent. The time marked at
the top-left corner is counted from the end of relaxation. Red circles represent stars that are dead
and radiation has been shut off. The very compact cloud does not have SNe explosion during the
duration of the simulation (∼ 7tff ≈ 3 Myr), as all stars live longer than 3 Myr. For the other two
less compact clouds, SNe explosions occur when most of the gas is already expelled by radiation.
Thus, SNe have little effect on the overall ⟨fMC

esc ⟩. For these compact clouds, most of the ionising
photons are emitted during middle stage (3− 5tff).
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3.2.2 Calculation of the Ionizing Escape Fraction

We trace rays from each sink particle and calculate the column density and the optical

depth as a function of angular direction. We extract a sphere with radius of the size of the

box around each sink particle and pick 12 × 162 = 3072 directions evenly distributed in the

sky using the Mollweide equal-area projection. In each direction we implement a Monte Carlo

integration method to calculate the neutral hydrogen column density by doing random sampling

of ∼ 4000 points in each ray, achieving an accuracy on the escape fraction within 1%. The

column density is then converted to the escape fraction of ionizing photons in that direction (see

Section 3.2.2.1). The escape fraction from each sink particle is calculated in all directions, then

the escape fractions are averaged over all stars, weighting by their ionizing photon luminosity,

to get the escape fraction as a function of direction and time, fesc(θ, t), from the whole cluster

(see Figure 3.2). We can also define a mean mean escape fraction (averaged over the whole solid

angle) from individual sink particles, which is then multiplied by the hydrogen LyC emission

rate, Q, to get the LyC escaping rate, Qesc, as shown in Figure 3.1.

In the calculation of the ionizing escape fraction, the emission from sink particles is shut

down after the stellar lifetime, which depends on the mass of the star. We use the equation from

Schaller et al. (1992) as an estimate of the lifetime of a star as a function of its mass, where M is

in units of M⊙:

tMS(M) =
2.5× 103 + 6.7× 102M2.5 +M4.5

3.3× 10−2M1.5 + 3.5× 10−1M4.5
Myr, (3.1)

Note that due to the short lifetime of the clouds after the first star is formed, we do not

expect the end of the star’s main sequence to significantly affect the dynamical evolution of the
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simulations (see Section 3.2.1).

For a subset of simulations we also implement radiative transfer of helium ionizing ra-

diation and helium chemistry (simulations that include this have He escape fractions listed in

Table 3.2). The calculation of the helium ionizing escape fraction is implemented analogously

to hydrogen as explained above. We use fits from Vacca et al. (1996) for the H-ionizing photon

emission rate from individual stars, QH (or Q for simplicity), and fits from Schaerer (2002) for

QHe and QHe+ .

3.2.2.1 Conversion from column density to escape fraction

The neutral hydrogen ionization cross section as a function of frequency is well approxi-

mated by a power-law (e.g. Draine, 2011):

σ(ν) ≈ σ0

(
hν

IH

)−3

for IH < hν ≲ 100IH,

where σ0 = 6.304× 10−18 cm2 and IH = 13.6 eV. The escape fraction of photons at a frequency

ν and direction θ from a given star is

fesc,∗(ν,θ) = e−τ(ν,θ) = e−σ(ν)NHI(θ), (3.2)

where NHI(θ) is the neutral hydrogen column density from the surface of a star to direction θ.

If we assume that the stars radiate as perfect black bodies at temperature T , then the frequency-
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averaged escape fraction of hydrogen-ionizing photons is

fesc,∗(θ;T ) =

∫ ∞

IH

Bν(ν, T )

hν
fesc,∗(ν,θ) d(hν)

∫ ∞

IH

Bν(ν, T )

hν
d(hν)

, (3.3)

where Bν(ν, T ) is the Planck function. The details on how fesc,∗(θ;T ) behaves for stars with

different masses and therefore black-body temperatures is discussed in Appendix B.1.

3.3 Results
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Figure 3.2: Equal-area projection of angular distribution of escape fraction of ionizing photons
at three different times (top to bottom) from the Medium mass-Fiducial (M-F), Compact (M-
C), and Very Compact (M-VC) clouds, left to right, respectively. The time labelled is the time
since relaxation. The escape fraction fesc(θ), is calculated as a ionizing luminosity weighted
average over all stars. The fesc shown in the legend at the top-left corner of each panel, is the
average over the whole sky. Escaped radiation from star-forming molecular clouds is anisotropic
when the cloud is partially ionized. Ionizing chimneys form on part of the sky and expand to
the whole sky. See the text for how escaped photon emission rate is calculated for individual
stars. The hemispherical feature appearing in the bottom-left panel is a numerical artifact that is
evident only when ⟨fMC

esc ⟩ ∼ 1 and is due to the finite size of the simulation box and the boundary
condition.
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Figure 3.1 shows snapshots at times t ≈ 1, 3, 6 tff (top to bottom) for three medium-mass

(3 × 104M⊙) cloud simulations with initial mean densities ngas = 2 × 102, 2 × 103, and 2 ×

104 cm−3, from left to right, respectively. The free-fall time tff for these clouds are 4.4, 1.4, and

0.44 Myr, respectively. Each panel shows the density-weighted projection plots of the density

(see colorbar on the right of the figure), while the circles show the stars with radii proportional

to the cube root of their masses (see Chapter 2 for results on the mass function of the stars)

and colors representing the number of ionizing photons escaping the cloud per unit time, Qesc

(photons/sec), as indicated by the colorbar at the bottom of the figure (see Section 3.2.2 for details

on how Qesc is calculated). Red circles represent stars that are dead so that their radiation has

been shut off. Inspecting the figure, it is clear that the radiation from massive stars that form in

the cloud is initially heavily absorbed by the cloud, while at later times, when radiative feedback

has blown bubbles and chimneys through which radiation can escape, the radiation from stars can

partially escape the cloud. Massive stars are born deeply embedded in dense clumps, thus their

ionising radiation is initially absorbed by the gas and their overall contribution to the total LyC

photons is reduced. A summary of quantitative results for all 16 simulations in Table 3.1 is shown

in Table 3.2. The meaning of the different quantities in the table is explained in the remainder of

this section.

3.3.1 Sky maps of the Escaping Ionizing Radiation

Initially, when the radiation starts escaping the cloud (i.e., when the mean value of the

escape fraction is small), it does so only in certain directions as illustrated in Figure 3.2 for

compact clouds of different masses. The panels are analogous to Figure 3.1 (except that the time
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Figure 3.3: Time evolution of the LyC emission rate (Q), escaping rate (Qesc), and escaping frac-
tion (fesc ≡ Qesc/Q) for our grid of simulations with varying masses (columns) and compactness
(rows). We notice that in most clouds fesc(t) becomes significant at 3 − 5tff , when most of the
volume in the simulation box is ionized. At this time, the Fiducial clouds have a much lower
emission rate of ionizing photons (Q(t)) with respect to the peak value because the most massive
stars in cluster have died, resulting in a low ⟨fMC

esc ⟩. The very compact clouds, on the other hand,
have a high Q after 3tff , resulting in relatively high ⟨fMC

esc ⟩. The free-fall times for the clouds in the
top (Fiducial), middle (Compact), and bottom panels (Very Compact) are 4.4, 1.4, and 0.44 Myr,
respectively. The purple stars mark the time when the first SN explosion occurs. Except for the
two most massive Fiducial clouds, the first SN explosion happens when fesc is already close to
unity and/or when Q has dropped by over an order of magnitude from the maximum, hence in
most simulations SN explosions would have little effect on the escape of LyC photons from the
cloud.

sequence is chosen differently). Each column shows, for different cloud compactness (density),

a time-sequence of sky maps of the leakage of ionizing photons in different directions across the

sky using Mollweide projection maps. Columns, from left to right, refer to simulations: M-F,

M-C, and M-VC, respectively. Each row refers to a different time: t = 3, 4, and 6 times tff .

The clouds start fully neutral and as the first stars form and produce feedback, they start to carve

chimneys of ionized gas from where ionizing photons escape. These chimneys then expand and

overlap covering larger portions of the sky and finally totally ionizing the whole solid angle. At
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this time most of the cloud’s volume is ionized and fesc(t) is above 10%. The neutral fraction

in most of the volume is tiny, but due to the large hydrogen column density, the optical depth to

LyC photons is typically ∼ 1, preventing fesc(t) from reaching unity.

However, for the small and medium mass clouds, by the time most of the radiation escapes

isotropically, the emission rate of ionizing photons is small because all massive stars have died.

In addition, if we consider that these molecular clouds are embedded into galactic disks, the high

fesc(θ) channels will be randomly oriented with respect to the disk plane, further reducing ⟨fMC
esc ⟩

and increasing the anisotropic leaking of ionizing radiation.

The escape fraction is anisotropic at early times when most of the radiation from massive

stars is emitted. Later, when the leakage of ionising radiation become more isotropic, massive

stars, which dominate the ionizing radiation emission, start to die. In the next section we will

average the rates of ionizing radiation emitted, Q, and escaping Qesc, over the whole solid angle

and analyse in detail the time evolution of these quantities and calculate the instantaneous escape

fraction defined as fesc(t) ≡ Qesc(t)/Q(t). We will see that unless ⟨fMC
esc ⟩ >∼ 50% (averaged over

the whole sky and over time), the radiation escaping a star cluster is highly anisotropic.

3.3.2 Time Evolution of the Sky-Averaged Escape Fraction

Figure 3.3 shows the emission rate of hydrogen-ionizing photon, Q (dashed lines), the

portion that escapes from the cloud, Qesc (shaded regions), and the instantaneous escape fraction,

fesc(t) ≡ Qesc/Q (solid lines) as a function of time for all our simulations with solar metallicity.

The stellar lifetime is calculated as the main-sequence lifetime Schaller et al. (1992) of a

star with mass 40% of the sink mass (see Chapter 2). Radiation from a star is turned off after the
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Figure 3.4: (Left). Time evolution of the SFE for the large Compact (L-C) run with solar metal-
licity (black line) and Z = 1/10 Z⊙ (red line). (Right). Hydrogen ionizing-photon emission rate
(dashed lines) and escaping rate (shaded area) for the same simulations as in the left panel. The
lower-metallicity run (red lines) has ∼ 3 times lower photon emission rate Q due to the lower
SFE. The stronger stellar feedback in the lower-metallicity cloud clears out the gas in less than
3tff , when star formation is quenched and the escape fraction approaches unity as indicated by the
convergence of the Qesc and Q curves, resulting in higher ⟨fMC

esc ⟩ but substantially lower number
of total escaped ionizing photons.

star is dead. As a result, there is a sharp drop of Q(t), thus Qesc(t), after about 3-5 Myr from

the beginning of star formation due to the death of the most massive stars in the cluster. Some

of our simulations have not been run sufficiently long for all massive stars to die, as we stop the

simulations after roughly 6tff , when feedback has shut down star formation in the cloud. In all

our simulations, except for the ‘L-VC’ run, the SFE reaches its maximum long before the end of

the simulation, therefore we are able to extrapolate Q(t) beyond the end of the simulation. We

calculate the total number of ionizing photons emitted by the star cluster S =
∫ tend

0
Q(t′) dt′, and

the total number of ionising photons that escape the molecular cloud, Sesc =
∫ tend

0
Qesc(t

′) dt′,

where tend is chosen to be the end of the simulation or a sufficiently long time after the end of

the simulation such that all massive stars in the simulation have died. We define a time-averaged

total escape fraction of ionizing photons as ⟨fMC
esc ⟩ ≡ Sesc/S, which is shown in the top-left

corner of each panel in Figure 3.3. The figure shows that fesc(t) is practically zero at the time star
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formation begins when massive stars start emitting ionising radiation. After a time delay fesc(t)

increases almost linearly with time and in several simulations it reaches a roughly constant value

as a function of time after t ∼ 5tff . This is the time when the bulk of the gas is blown away by

radiation feedback and the remaining gas is mostly ionized (see Chapter 2). For the simulations

in which we do not have a sufficiently long time evolution to measure fesc(t) until the time all

massive stars have left the main sequence, we assume that fesc(t) maintains the same value found

at the end of the simulation and we calculate Qesc(t) from Q(t) and fesc(t) up to the time when

all massive stars are dead. We will further discuss the results for the integrated ionising photon

emission in Section 3.3.3.

Mechanical energy and metal enrichment from SN explosions is not included in our simu-

lations. We compensate for the missing feedback by not shutting down UV radiation after the

star dies (see Chapter 2). Note, however, that in the calculation of ⟨fMC
esc ⟩ we consider realistic

lifetimes of massive stars. As shown in Figure 3.3 (star symbols), SNe explosions happen typi-

cally either when Q is already small and ⟨fMC
esc ⟩ ∼ 1, or after the end of the simulation. The only

exception is the two most massive fiducial clouds. For the Compact and Very Compact clouds

as well as the less massive fiducial clouds, both the star formation time scale and feedback time

scale (related to the sound crossing time) are shorter than the first SN explosion time (∼ 3 Myr).

Therefore, we may have underestimated ⟨fMC
esc ⟩ in the two most massive fiducial clouds, although

enrichment from SN may also reduce ⟨fMC
esc ⟩ if dust is produced on sufficiently short time scale.
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3.3.2.1 Effects of Gas Metallicity

Figure 3.4 compares two simulations of the L-C cloud, with the only difference being

the gas metallicity which affects the cooling of the gas. For a given cloud mass and density,

lowering the gas metallicity increases ⟨fMC
esc ⟩, even though here we do not consider dust opacity.

In Chapter 2 we found that for gas metallicity Z < 0.1 Z⊙, the SFE is reduced by a factor of

∼ 5 due to more efficient UV feedback caused by the higher temperature and pressure inside H II

regions, but we do not observe a dependence of the IMF on the metallicity. From Figure 3.4 we

can see that the peak value of Q(t) for the lower metallicity simulation is reduced with respect

to the solar metallicity case by a factor of 4 due to the lower SFE. However, the timescale over

which fesc increases from 0 to some value of order unity is shorter with decreasing metallicity,

suggesting a faster destruction of the cloud due to a more efficient feedback, in agreement with

what we found in Chapter 2. We will investigate quantitatively the dependence of ⟨fMC
esc ⟩ on

feedback time scale in Section 3.4.1 with an analytic model.

3.3.3 Time-Averaged Escape Fraction ⟨fMC

esc ⟩

Figure 3.5 summarizes the final result for the escape fraction for all our simulations, show-

ing ⟨fMC
esc ⟩ ≡ Sesc/S as a function of the mass of the star cluster, mcl, for different molecular cloud

compactness (as shown in the legend). The two least massive fiducial clouds are removed from

the analysis because we believe that the SFE of these simulations is overestimated due to missing

physics (i.e., IR feedback, that is not included in these simulations, becomes significant in this

regime. See Chapter 2 for more explanation). We find that ⟨fMC
esc ⟩ increases with decreasing mass

of the cluster and with increasing compactness. We also find a strong dependence of ⟨fMC
esc ⟩ on
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Figure 3.5: The total escape fraction of ionizing photons ⟨fMC
esc ⟩ = Sesc/S. The blue, orange, and

green lines in both panels connect clouds with same density to guide our eyes. The low-mass
clouds have high ⟨fMC

esc ⟩ due to lower mass stars dominating UV radiation (and lower mass stars
live longer)

the gas metallicity.

As we decrease the gas metallicity, the typical pressure inside H II regions increases. There-

fore the feedback becomes stronger, leading to an increases of ⟨fMC
esc ⟩, but also a reduction of the

SFE. Therefore, the total number of escaped LyC photons decreases with decreasing metallicity,

because of the reduced SFE.

Figure 3.6 shows ⟨fMC
esc ⟩ as a function of the SFE for 12 out of our 16 simulations. For

comparison, results from Kimm et al. (2019) are plotted as purple squares. The methodology

in the simulations by Kimm et al. (2019) is rather different from ours, because star formation

is not modelled self-consistently but rather a fixed SFE (of 1% or 10%) is assumed and stars

placed at the center of the cloud inject energy and radiation according to a pre-computed stellar

population. They assume gas clouds of fixed density, similar to our fiducial case, and explore

masses of 105 M⊙ and 106 M⊙ and metallicities of 0.1 solar and solar metallicity.

In Chapter 2 we have shown that there is a tight positive correlation between the SFE and
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Figure 3.6: ⟨fMC
esc ⟩ plotted against SFE for 11 out of our 16 simulations. Magenta squares are data

from Kimm et al. (2019). In the labels the number after ‘M’ refers to log10(mMC/M⊙), and the
number after ‘SFE’ is the SFE in per cent. The metallicity is 0.1Z⊙ unless otherwise specified.

mcl. Therefore in our simulations ⟨fMC
esc ⟩ decreases with increasing cloud mass and therefore with

increasing SFE. The results for gas at solar metallicity and the dependence of ⟨fMC
esc ⟩ on the cloud

mass are in qualitative agreement with Kimm et al. (2019), as well as the significant increase of

⟨fMC
esc ⟩ as the gas metallcity is reduced with respect to the solar value.

For the fiducial clouds, with densities typical of star forming regions in the local Universe,

⟨fMC
esc ⟩ is extremely small: going from ⟨fMC

esc ⟩ ∼ 8% for star clusters of 103 M⊙, to 1.4% for

clusters of 3 × 104 M⊙. Clearly if high-redshift star clusters had the same properties as today’s

ones, their ⟨fMC
esc ⟩ would be too low to contribute significantly to the reionization process. How-

ever, for our compact and very compact clouds, we find higher values of ⟨fMC
esc ⟩: ranging from

⟨fMC
esc ⟩ > 50% for clusters of mass < 500 M⊙, to 20% (compact) and 35% (very compact) for star

clusters with masses ∼ 2× 104 M⊙.

We emphasize that ⟨fMC
esc ⟩ we are reporting in this work is an upper limit for ⟨f gal

esc ⟩ from

galaxies. Here we are simulating the escape fraction just from the molecular clouds, without
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Figure 3.7: Time-integrated number of hydrogen-ionizing photons per unit star cluster mass emit-
ted (top) and escaping the cloud (bottom) as a function of the star cluster mass and for gas cloud
densities as in the legend. The relation between S/mcl and mcl is a tight power-law function with
a slope∼ 0.4, independent of the density of the initial cloud, as expected. For clusters forming in
molecular clouds with same initial density, the relationship between Sesc/mcl and mcl is also well
approximated by a power-law with negative slope for the fiducial clouds (local Universe clouds)
and increasing positive slope with increasing cloud compactness.

including a likely further reduction of ⟨f gal
esc ⟩ due to absorption of ionising radiation by the ISM in

the galaxy. We also do not include the effect of dust. Therefore, even for compact clouds, ⟨fMC
esc ⟩

is already quite close to the average value required for reionization, which is an interesting result

in order to understand the nature of the sources of reionization.

A complementary way to characterise the ionising radiation escaping molecular clouds is in

term of Sesc or Qesc. Since more massive star clusters emit more ionizing radiation per unit mass,

these quantities show more directly the relative importance of clusters with different mass to the

total ionising photons escaping a galaxy. The top panel in Figure 3.7 shows the total number of

ionizing photons emitted by the cluster per unit mass, S/mcl, over its lifetime as a function of the

mass of the star cluster for all the simulations in Table 3.1. The dashed line shows a power-law

fit to S/mcl as a function of mcl, excluding the two data points with mcl
<∼ 300 M⊙:

S

mcl

= 1.2× 1060
(

mcl

100M⊙

)0.4

. (3.4)
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We exclude from the fit star clusters with mass below 300M⊙ because for small mass clusters

the scatter of S becomes very large due to sparse sampling of massive stars in small clouds

(see Figure 7 in Chapter 2). We can roughly understand the 0.4 slope of the power-law fit by

assuming that the most massive star in a cluster dominates the emission of ionising radiation. In

Chapter 2 we found that the most massive star in the cluster has a mass Mmax ∝ m0.66
cl , and for

stellar masses M >∼ 30M⊙, Q(M) ∝ M1.9 with a lifetime on the main sequence tMS(M) nearly

constant as a function of mass. Thus, we get S ∝ Q(Mmax) ∝ m1.3
cl and S/mcl ∝ m0.3

cl , which

is close to the exponent in Eq. (3.4). We will show later that the most massive star in the cluster

typically contributes a fraction 25% to 95% of all the emitted ionising photons.

The bottom panel in Figure 3.7 shows the total number of ionising photons escaping the

cloud per unit mass, Sesc/mcl, as a function of the cluster mass for the same simulations as in the

top panel. The dashed lines show power-law fits

Sesc

mcl

= E

(
mcl

100M⊙

)α

, (3.5)

where E = 2.8 × 1059, 8.8 × 1059, and 6.8 × 1059M−1
⊙ and α = −0.1, 0.1, 0.4 for the fiducial,

compact and very compact clouds, respectively. The figure shows that for clouds in the local

Universe (fiducial clouds) and for compact clouds, the number of escaping ionising photons per

unit mass (Sesc/mcl) is nearly constant with increasing cluster mass, while for very compact

clouds Sesc/mcl increases with increasing cluster mass. We will see in Section 3.4.2 that this

trend is reflected in the total number of escaping ionising photons integrated over the observed

(in the local Universe) star cluster mass function.
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Figure 3.8: Top: Mean escaped ionizing-photon emission rate Qesc as a function of cluster mass
mcl. Power-law fits to each group of data is shown as dashed lines with corresponding colors.
The slopes are 1.7, 2.2, and 0.4 for the VC, C, and F clouds, respectively. Bottom: Duration of
ionizing-photon escaping.

Combining Eqs. (3.4) and (3.5), the power-law fitting function for the escape fraction is

⟨fesc⟩ = F

(
mcl

100M⊙

)β

, (3.6)

where the power-law slopes are β = α − 0.4 = −0.5,−0.3, 0.0 and normalizations F =

0.23, 0.73, 0.57 for the fiducial, compact and very compact clouds, respectively.

In cosmological simulations and analytic models, the sources of ionising radiation are typ-

ically modelled as sub-grid physics in terms of the mean ionising photon escape rate Qesc during

the UV burst, and the duration of the ionising burst tesc. The duration of the burst and the

anisotropy of the radiation escaping galaxies actually plays an important role in determining the

photon-budged for completing IGM reionization and the topology of reionization (Hartley & Ri-

cotti, 2016). These quantities for star forming molecular clouds are shown in Figure 3.8 as a

function of the stellar cluster mass mcl, where we approximate Qesc as the peak value of Qesc(t)

and define tesc ≡ Sesc/Qesc.
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Figure 3.9: Fractional cumulative radiation emission (black) and escaping (orange) as a function
of the mass of the star. The gray histogram shows the numbers of stars per log bin. The black
lines show that, although there are on average only a few massive stars in clusters, they dominate
the emission of ionizing radiation. Inspecting the orange lines, we see that, except for the two
most massive fiducial runs (L-F and XL-F), the same is true for the total escaped radiation from
the cluster. In the massive fiducial clouds, very massive stars live shorter than a free-fall time
(∼ 4 Myr) and die before the gas is ionized and radiation can escape. This also results in lower
(≲ 5%) ⟨fMC

esc ⟩ (the numbers on the top-left corner of each panel.)
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The dashed lines are power-law fits to the data. We find

Qesc = Q0

(
mcl

100M⊙

)γ

(3.7)

where γ = 0.9, 1.1, 1.7 and Q0 = 1.5 × 1047, 1.1 × 1048, 2.5 × 1047 s−1, for the fiducial,

compact and very compact clouds, respectively. For the local Universe clouds (fiducial case),

Qesc ∼ 1048 − 3 × 1049 s−1 in the range mcl ∼ 103 − 3 × 104 M⊙, increasing nearly linearly

with increasing cluster mass. We have also noticed that, if we consider Qesc of radiation at the

hydrogen ionization edge (13.6 eV) rather than the weighted mean over the stellar spectrum (see

Appendix B.1), we find that Qesc is nearly constant as a function of the cluster mass, in good

agreement with Dale et al. (2014). For very compact star clusters, however, the dependence on

the mass is quite strong: Qesc ∼ 5 × 1048 s−1 for mcl ∼ 500 M⊙, but increases to 1051 s−1

for mcl ∼ 20, 000 M⊙. For the very compact and, to some extent, for the compact clouds, the

duration of the burst of ionising radiation escaping the molecular cloud reflects the duration of

the emitted radiation, that is roughly the lifetime of the most massive star formed in the cluster

(i.e., tburst ∼ tuv ≈ tMS(Mmax)), although the emitted radiation is partially absorbed by the gas

cloud. Hence, for small mass clusters the duration of the burst is longer: increasing from 2 Myr

for mcl ∼ 104 M⊙ to 10 Myr for mcl ∼ 100 M⊙. However, this trend with the cluster mass is

not observed for the two most massive fiducial clouds, for which tburst ∼ 7 Myr, about twice as

large as the duration of the emitted burst of ionising radiation tuv ∼ tMS(Mmax). The reason for

why the effective timescales of the emitted and escaping radiation differ from each other, can be

found inspecting Figure 3.9 for those two clusters. For massive clusters, especially when ⟨fMC
esc ⟩

is very small, not only the most massive star, but also stars with M ∼ 10− 20 M⊙ contribute to
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Qesc. Hence, the effective timescale for the escaping radiation can be longer than the effective

timescale when most of the ionising radiation is emitted.

3.3.4 Escape Fraction of Helium Ionising Photons

Having discussed the emission rate of hydrogen-ionising photons, we explore another

group of photons that ionize He and He+. We enable the emission of these photons from sink par-

ticles in a subset of our simulations (the fiducial simulations plus the least massive compact and

very compact runs). Massive stars with non-zero metallicity do not emit He II ionising photons

with energy > 54 eV, hence we will not consider this energy bin2.

We find that in all the simulations in which we include photon bins that ionize He, the

escape fraction of HeI-ionising photons is nearly identical to that of HI-ionizing photons, with

the only exceptions of the three most massive fiducial clouds where the ⟨fMC
esc ⟩ for HeI is lower

by a factor of 2 – 3.

We interpret this result arguing that the sizes of H II and He+ ionization fronts are com-

parable around the sources that dominate the emission of ionising radiation. The radius of the

ionization front can be estimated using the Strömgren radius equation:

Ri
S0 ≡

(
3Qi

4πni
2αi

B

)1/3

, (3.8)

with i being H or He+. At 104 K, the case-B recombination rate, αHe+

B , is about 1.9 times higher

than that of hydrogen. With a He abundance ratio nHe/nH = (µ − 1)/(4 − µ) ≈ 0.154, where

µ = 1.4 is the mean atomic weight of the gas in our simulations, the He II front is larger or equals

2Wolf-Rayet stars actually emit some He II ionising radiation, but so far we have not included these type of stars
in our simulations.
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the radius of the H II I-front when the hardness of the spectrum, QHe/QH, is greater than 0.29.

Hot O stars have spectrum hardness close to or above this critical value, therefore around massive

stars, which dominate the ionizing radiation, the He I-front is slightly larger than the H ionization

front. Therefore, we expect that ⟨fMC
esc ⟩ for He-ionizing photons is close to or slightly larger than

that of H-ionizing photons. This expectation is supported by the analysis of all our simulations

that include radiation transfer in the He-ionizing frequency bins (see Table 3.2 as well as left

panel of Figure 3.10).

3.3.5 Absorption by Dust

It is well known that dust may contribute significantly to the absorption of ionizing radiation

(e.g., Weingartner & Draine, 2001). In this section we estimate the effect of dust absorption on

the escape fraction of LyC photons by adopting the dust extinction parameterization for the Small

Magellanic Clouds (SMC) in Gnedin et al. (2008), which is based on Pei (1992) and Weingartner

& Draine (2001). When dust absorption is included, the escape fraction in each direction is

fesc(ν,θ) = fesc,gase
−τd(ν,θ) = e−(τgas+τd). (3.9)

If we assume that dust is completely sublimated inside H II regions, we find that the ratio of

the dust extinction optical depth to the gas optical depth, τd/τgas, is below 8 × 10−4 along any

line of sight. This is estimated by taking the peak value of the fitting formula for τd(ν), that is

τd ≈ 5NH/(10
21 cm−2). In this scenario the effect of dust is always negligible in our simulations.

Estimates based on observations and numerical simulations (Inoue, 2002; Ishiki et al., 2018),

have shown that radiation pressure creates a dust cavity inside H II regions, with a typical size of
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Figure 3.10: Escape fraction of photons as a function of hν from two of the clouds: Medium-
Fiducial (left) and Medium-Very Compact (right). From the simulation with He and He+ ionizing
photons enabled, we observe that the escape fraction of He ionizing photons is nearly identical
to the escape fraction of H ionizing photons. Stars generally do not emit enough high energy
photons to ionize He+, hence fesc(ν) at the He+-ionizing edge is close to zero.

∼ 30% of Strömgren radius. It has also been shown that the grain size distribution is less affected

by the radiation from a star cluster than by a single O or B star.

In this section, we estimate the effects of dust extinction on ⟨fMC
esc ⟩ by assuming no subli-

mation, therefore setting an upper limit on the effect of dust. In this case, the dust column density

is directly proportional to the total hydrogen column density:

τd(ν) = NH

(
Z

Z0

)
σd,eff(ν), (3.10)

where Z0 = 0.2Z⊙ is the gas-phase metallicity of the SMC and we use the fitting formula from

Gnedin et al. (2008) for the effective cross section σd,eff(ν).

In Figure 3.10, we plot the escape fraction, ⟨fesc(ν)⟩, as a function of photon energy. Here

⟨fesc(ν)⟩ is averaged over the whole sky, weighted by the ionising luminosity of stars in the

correspondent bin, and averaged over time. The luminosity per frequency below the hydrogen

ionization edge is approximated as a constant fraction of QH , i.e. L/(ergs s−1) = c1QH/(s
−1),
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Table 3.3: Escape fraction (percentages) at the Lyman edge with and without dust extinction.
We consider four models in the calculation of photon optical depth: pure hydrogen and helium
gas and gas plus dust with metallicities Z = 0.1, 0.2, and 1.0. The numbers highlighted in bold
face mark the metallicity at which including dust extinction causes a relative decrease > 20%
with respect to ⟨fMC

esc ⟩ without dust. a The gray data in this table is from the ‘XS-F’, ‘S-F’, and
‘XS-C’ clouds where the simulation results are less reliable because the SFE is overestimated
due to missing feedback processes in low-mass stars (see Chapter 2).

Compactness Job Names ⟨fMC
esc ⟩ ⟨fMC

esc ⟩ +dust
Z=0.1 ⟨fMC

esc ⟩ +dust
Z=0.2 ⟨fMC

esc ⟩ +dust
Z=1.0

Fiducial XS-F 43.7 a 43.0 42.3 37.1

Fiducial S-F 53.3 52.3 51.4 44.7

Fiducial M-F 5.2 5.0 4.9 3.7
Fiducial L-F 1.3 1.2 1.1 0.6
Fiducial XL-F 0.5 0.4 0.3 0.1
Compact XS-C 91.6 91.3 91.0 88.7

Compact S-C 23.5 22.5 21.5 15.1
Compact M-C 15.8 14.5 13.3 7.4
Compact L-C 13.7 11.8 10.3 3.9
Compact L-C-lm 35.2 31.8 28.9 15.5

Very Compact XXS-VC 78.6 77.6 76.5 68.9

Very Compact XS-VC 63.2 59.9 56.8 37.9
Very Compact S-VC 39.7 35.5 31.8 14.5
Very Compact M-VC 26.9 16.2 12.3 4.4

where c1 is constant as a function of stellar mass. As shown in Table 3.3, we find that dust

extinction becomes increasingly dominant with increasing cloud mass and cloud compactness,

especially for clouds with Z = 1.0 Z⊙. More compact clouds have higher total hydrogen column

density, thus higher dust column density, even though ⟨fMC
esc ⟩ due to dust free gas is large because

the neutral hydrogen column density becomes low. The most compact and most massive cloud

in the table have 80% reduction of ⟨fMC
esc ⟩ for gas with solar metallicity, while the reduction is

between 3% to 50% for less massive and less compact clouds. The effect of dust on ⟨fMC
esc ⟩,

however, becomes small or negligible for a gas with metallicity below 1/10 solar.
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3.4 Discussion

3.4.1 Analytic Modelling and Interpretation of ⟨fMC

esc ⟩

In this section we investigate the trends observed in the simulation for ⟨fMC
esc ⟩, using a simple

analytic model to better understand the dominant physical processes which determine ⟨fMC
esc ⟩, and

make informed guesses on the extrapolation of the results to a broader parameter space. In this

model we ignore dust extinction.

The qualitative trends for ⟨fMC
esc ⟩ as a function of compactness and cloud mass can be ex-

plained rather simply in terms of two timescale: tuv that is the time interval during which the bulk

of ionizing radiation is emitted, and tesc that is the typical timescale over which fesc increases

from being negligible to unity, that is related to the timescale of the duration of the star formation

episode, tSF , because UV feedback is responsible for stopping star formation and clearing our

the gas in the star cluster. When tesc ≫ tuv, most of the ionising radiation is absorbed in the

cloud and ⟨fMC
esc ⟩ is very small. In Chapter 2 we found that tSF ≈ 6 tcr, where

tcr = 0.40 Myr

(
mgas

104 M⊙

)1/3(
ngas

103 cm−3

)−1/3

, (3.11)

is the sound crossing time (assuming cs = 10 km/s), which increases with the mass of the cloud

and decreases with increasing compactness of the cloud.

In other words, ⟨fMC
esc ⟩ in the two most massive fiducial clouds is very small because massive

stars are short lived with respect to the star formation timescale of the cloud, therefore they spend

most of their life on the main sequence deeply embedded inside the gas rich molecular cloud and
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their radiation is mostly absorbed. Vice versa, the very compact clouds form all their stars and

expel/consume their gas on a timescale shorter than tuv ∼ 3 Myr, therefore ⟨fMC
esc ⟩ is closer to

unity.

Next we describe the quantitative details of our analytic model for ⟨fMC
esc ⟩, that we will show

can reproduce quite accurately the simulation results. Informed by the results of the simulations,

we assume that fesc(t) grows linearly with time from a value of zero at time t ≤ tin to a maximum

value fmax
esc at time tesc:

fesc(t) =





0 if t < tin,

t−tin
tesc

if tin ≤ t < tin + tesc,

1 if t ≥ tin + tesc.

(3.12)

For the sake of simplicity, we model the UV burst as a simple top-hat function with origin at t = 0

and width tuv. This assumption appears to be a good approximation for most of the simulations

(see Figure 3.3) because the dominant fraction of the ionising radiation is emitted by the most

massive stars in the star cluster that have a rather constant main-sequence lifetime as a function

of their mass, tMS ∼ 3 Myr, for masses above ∼ 30M⊙. The mass of the most massive star in

the cluster, M∗,max, correlates with the mass of the star cluster, mcl, according to the relationship

(see Chapter 2):

Mmax ≈ 205M⊙

(
mcl

104M⊙

)0.66

. (3.13)

Note that Eq. (3.13) is a numerical fit to the simulation data, and it seems to overestimate Mmax

in massive clouds, likely due to our finite resolution and the inability to fully resolve sink frag-
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mentation. We then convert this mass to the main-sequence lifetime using Eq. (3.1) and set

tuv = tMS(Mmax).

Our assumption may fail for the cases in which ⟨fMC
esc ⟩ is very small (the most massive

fiducial clouds), because fesc(t) remains negligibly small for nearly the duration of the life on the

main sequence of massive stars (i.e., tuv <∼ tin), and only slightly less massive stars are able to

stay on the main sequence long enough when fesc(t) starts to rise to larger values.

In order to test this assumption we compare tMS calculated as explained above, with the

values of tuv measured in the simulations as the full-width half maximum of the Qesc(t) curve.

Figure 3.11 shows that indeed tMS(Mmax)/tuv is close to unity with small scatter, even for the

fiducial clouds, demonstrating the goodness of our assumption.

With these two simple assumptions on the shape of fesc(t) and Q(t), we find that the time-

averaged ⟨fMC
esc ⟩ is:

⟨fMC

esc ⟩ =





tuv−tin
tuv

− 1
2
tesc
tuv

if tesc < (tuv − tin),

1
2
(tuv−tin)

2

tuvtesc
if tesc ≥ (tuv − tin).

(3.14)

Guided by a physically motivated prior for tesc and tin, we found that they are both pro-

portional to tSF ∝ tcr, being the timescale over which feedback is able to destroy the molecular

cloud and stop star formation.

Assuming tuv = tMS(Mmax), we fit Eq. (3.14) to the data, using tin/tcr and tesc/tcr as

free parameters. In Figure 3.12 we show the best fits compared to the data for two models:

in the top panel we fit the data with a one-parameter model by setting tin = 0 (hence ⟨fMC
esc ⟩

= 1−0.5tesc/tuv when tesc < tuv and 0.5tuv/tesc otherwise). The best fit parameter in this model

is tesc = 21tcr ≈ 3.5tSF , where we have used tSF = 6tcr, found for simulations with gas at solar
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Figure 3.11: Ratio of tMS(Mmax) to the measured tuv. The tuv is measured as the Full-Width
Half-Maximum of the Q(t) curve.
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Figure 3.12: Comparing model ⟨fMC
esc ⟩ (dashed lines) with ⟨fMC

esc ⟩ from simulations (shapes). The
models have tesc (top) or tin and tesc (bottom) as parameters. Both models work equally well on
the Compact and Very Compact clouds while only the latter model works well on the Fiducial
clouds. Bottom: The modeled ⟨fMC

esc ⟩ using pure cloud parameters. Eq. (3.14) and (3.18) are used.
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Figure 3.13: Conversion from theR parameter to ⟨fMC
esc ⟩, following Eq. (3.15).

metallicity (see Chapter 2). This model works well for the Very Compact clouds and slightly

underestimates ⟨fMC
esc ⟩ for massive Compact clouds by a factor of ≲ 2. It also overestimates

⟨fMC
esc ⟩ for the Fiducial clouds where the lifetime of the most massive star (∼ 3 Myr) is shorter

than several free-fall times and UV radiation is shut down before the gas is expelled, resulting in

⟨fMC
esc ⟩ below 10%.

The bottom panel of Figure 3.12 shows the two-parameter model in Eq. (3.14). This model

resolves the discrepancy between the model-predicted ⟨fMC
esc ⟩ and the simulation results from the

massive fiducial clouds. This model, similar to the one-parameter model, slightly underestimates

⟨fMC
esc ⟩ from the massive Compact clouds. We believe that part of the discrepancy is due to second

order effects from weighting ⟨fMC
esc ⟩ over the stellar spectra of different mass stars. As shown in

Table 3.2, ⟨fMC
esc ⟩ at the Lyman edge from these clouds, being significantly smaller, is closer to

the model predictions. For this model the best fit parameters are tin = 0.5tcr ≈ 0.08tSF and

tesc = 18tcr ≈ 3tSF . In both models we find that at the end of the star formation episode (at

t = tSF ) the value of the escape fraction is fesc(t = tSF ) ∼ 30% (see Eq. (3.12)), and this value

100



keeps increasing approximately linearly as a function of time after that.

Hence, if we define R ≡ tuv/tSF , using the best fit parameters for the two-parameters

model, we can rewrite Eq. (3.14) as

⟨fMC

esc ⟩ =





1− 1.58
R ifR > 3.1,

0.167 (R−0.08)2

R if 0.08 ≤ R ≤ 3.1.

(3.15)

Eq. (3.15) is shown in Figure 3.13. Due to the non-linear term (R − 0.08)2/R, when R ≲ 1,

⟨fMC
esc ⟩ becomes very small and approaches zero as R → 0.08. This is the limit when tuv = tin

and all massive stars have died by the time fesc(t) > 0. In this limit our model assumption fails

and we need to consider longer lived (less massive) stars. But for these cases we expect ⟨fMC
esc ⟩

≪ 1%. WhenR ≲ 3 (or ⟨fMC
esc ⟩ < 50%), ⟨fMC

esc ⟩ is roughly proportional toR: ⟨fMC
esc ⟩ ∼ 0.17R.

This equation can help us interpret the results on ⟨fMC
esc ⟩ for simulations with gas at sub-

solar metallicity. In Chapter 2 we found that for gas metallicitities < 1/10 Z⊙, the duration of

the star formation in the cloud was reduced by roughtly 1/2 (i.e., tSF = 3tcr). Hence, for a given

molecular cloud mass and compactness, we expect that R is roughly twice the value found for

solar metallicity, and ⟨fMC
esc ⟩ is also roughly twice as large if ⟨fMC

esc ⟩ < 50%. We also note that

lowering the metallicity reduces the SFE of the cloud, hence for a given molecular cloud mass,

the mass of the star cluster is reduced and ⟨fMC
esc ⟩ increases with respect to the solar metallicity

case. The overall effect is a strong sensitivity of ⟨fMC
esc ⟩ on the gas metallicity for two clusters of

equal stellar mass.

Using the results in Chapter 2 for a cloud at solar metallicity we can write R as a function

of the cloud’s parameters. For star masses M > 10 M⊙ we can approximate tuv = tMS =
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2.86 + 1.9× 103(M/M⊙)−2 Myr and using Eq. (3.13) we have

tuv = 2.86 + 0.045m−1.32
cl,4 Myr (3.16)

where mcl,4 ≡ mcl/10
4 M⊙, For clouds with solar metallicity, we can also write tcr in Eq. (3.11)

as a function of mcl and the cloud compactness, by expressing mgas as a function of the cluster

mass using the following relationship found in Chapter 2 (valid for clouds at solar metallicity):

mcl = 200 M⊙ ·
(

mgas

104M⊙

)1.4(
1 +

ngas

ncri

)0.91

+mfl , (3.17)

where ncri ≈ 103 cm−3 is the critical density and mfl = 10 M⊙ is the mass floor. Therefore,

neglecting the mass floor (i.e., mfl = 0), since tSF = 6tcr, we find:

R = (0.473 + 0.008m−1.32
cl,4 )m−0.24

cl,4

(
ngas

ncri

)0.33(
1 +

ngas

ncri

)0.22

. (3.18)

3.4.2 Ionising Photons from OB Associations

In our Galaxy and nearby dwarf and spiral galaxies, the mass function of young massive

star clusters (or OB associations) is a power-law with slope ξ ≃ −2 ± 0.5 (Rosolowsky, 2005;

Hopkins, 2012b):

dN

dmcl

= Amξ
cl,

where, assuming ξ = −2 (Hopkins, 2012b), we find A = M∗,gal/Λ, with Λ = ln (mmax
cl /mmin

cl ).

Assuming mmax
cl = 106 M⊙ and mmin

cl = 100 M⊙, we estimate Λ ≈ 9.2. Therefore, assuming

an escape fraction f ISM
esc from the atomic phase of the ISM in the galaxy (defined excluding the
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absorption due to the molecular cloud) that is constant as a function of the cluster mass, we find:

Sgal
esc = f ISM

esc

∫ mmax
cl

mmin
cl

dN

dmcl

Sesc(mcl) dmcl

= f ISM

esc

M∗,gal
Λ

∫ mmax
cl

mmin
cl

m−1
cl

Sesc

mcl

dmcl

≈ f ISM

esc

(
M∗,gal
1M⊙

)
·





7.4×1060

Λ/9.2

(
mmax

cl

106 M⊙

)0.4

(very compact),

1.4× 1060 (compact)),

1.8× 1059 (fiducial).

(3.19)

Therefore, as anticipated before in Section 3.3.3, in the local Universe (fiducial clouds) the es-

caping ionising radiation from a galaxy is produced by roughly equal contribution from small

and large mass star clusters, and the number of escaping photons is ∼ 1059 per unit solar mass

in stars. Therefore, the total escaping radiation is quite insensitive to the upper and lower mass

limits of the mass distribution of OB associations. Compact star clusters are similar but with

∼ 10 times more ionizing photons per mass in stars. For very compact clouds (100 times denser

than the fiducial clouds) the escaping ionising radiation is dominated by the few most massive

star clusters in the galaxy, and the number of escaping photons per units star mass is about 40

times higher than for the fiducial clouds.

Also, if we make the simple assumption that the mass of the most massive star cluster

is related to the total stellar mass M∗,gal of the galaxy, by setting
∫ +∞
mmax

cl
dN/d lnmcl = 1, we

find mmax
cl ∼ M∗,gal/Λ. Hence, if star clusters in high-redshift galaxies form in very compact

molecular clouds, massive galaxies would be more efficient contributor to propel reionization
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than dwarf galaxies. Of course the discussion above is only valid if f ISM
esc is constant not only as a

function of the star cluster mass but also as a function of the mass of the galaxy.

Similarly to Sesc,tot, we can estimate the total emitted ionising radiation by OB association:

Stot =

∫
dN

dmcl

S(mcl) dmcl (3.20)

≈ 1.2× 1062

Λ

(
M∗,gal
1M⊙

)(
mmax

cl

106 M⊙

)0.4

, (3.21)

and the mean escape fraction from a galaxy by taking the ratio Sgal
esc/Stot:

⟨f gal
esc ⟩ ≈ f ISM

esc ·





56.7% (Very Compact),

10.7%
(

Λ
9.2

) ( mmax
cl

106 M⊙

)−0.4

(Compact),

1.4%
(

Λ
9.2

) ( mmax
cl

106 M⊙

)−0.4

(Fiducial).

(3.22)

This last equation confirms that ⟨f gal
esc ⟩ from galaxies in the local Universe (fiducial clouds) is

extremely small ⟨f gal
esc ⟩ ≈ f ISM

esc ×1.4%, and only assuming that molecular clouds at redshift z > 6

were 100× denser than in the local Universe is possible to propel reionization with UV radiation

from massive stars in galaxies.

3.5 Summary and Conclusions

In this chapter, the second of a series, we calculate the hydrogen and helium ionizing ra-

diation escaping realistic young star cluster forming in turbulent molecular clouds. To the best

of our knowledge this is the first work in which ⟨fMC
esc ⟩ is calculated by self-consistently simu-

lating the formation, UV radiation feedback, and contribution to the escaping ionising radiation
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from individual massive stars producing the observed IMF slope and normalization. We used

a set of high-resolution radiation-magneto-hydrodynamic simulations of star formation in self-

gravitating, turbulent molecular clouds presented in He, Ricotti and Geen (2019), in which we

vary the mass of the star forming molecular clouds between mgas = 103 M⊙ to 3 × 105 M⊙ and

adopt gas densities typical of clouds in the local universe (ngas ∼ 1.8× 102 cm−3), and 10× and

100× denser, expected to exist in high-redshift galaxies.

We find that ⟨fMC
esc ⟩ decreases with increasing mass of the star cluster and with decreasing

initial gas density. Molecular clouds with densities typically found in the local Universe have

negligible ⟨fMC
esc ⟩, ranging between 8% to 1.4% for clouds with masses ranging from 3 × 104 to

3 × 105M⊙. Ten times denser molecular clouds have ⟨fMC
esc ⟩ ≈ 20% − 30%, while 100× denser

clouds, which produce globular cluster progenitors, have ⟨fMC
esc ⟩ ≈ 30% − 50%. Star clusters

with mass ≲ 500 M⊙ have ⟨fMC
esc ⟩ > 50% independently of their compactness but assuming

the observed OB association luminosity function, dN/dmcl ∝ m−2
cl , fall short in providing the

required ionising photons for reionization.

We reproduce the simulation results for ⟨fMC
esc ⟩ using a simple analytic model, in which

the observed trends with cloud mass and density are understood in terms of the parameterR, the

ratio of the lifetime of the most massive star in the cluster to the star formation timescale, that, for

clouds with solar metallicity is about 6 times the sound crossing time of the cloud. We find that

it takes about 20 times the sound-crossing time (tcr = rgas/10 km/s), or 3.5× the star-formation

time, for the stars to ionize the cloud and for fesc(t) to become of order of unity. Since rgas,

therefore tcr, increases with increasing cloud mass and decreasing density and the lifetime of the

dominating LyC sources is constant at ∼ 3 Myr, our model quantitatively reproduce the increase

of ⟨fMC
esc ⟩ with decreasing cloud mass and increasing cloud density, observed in the simulations.
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We find that ⟨fMC
esc ⟩ increases with decreasing gas metallicity, even when ignoring dust

extinction, due to stronger LyC radiation feedback and faster ionization of the cloud. However,

as the metallicity decreases, the SFE declines, therefore the total number of escaped LyC photons

decreases. For the L-C cloud which we use to investigate this effect, the value of Qesc decreases

by a factor of 2 as we decrease the metallicity from Z⊙ to 0.1Z⊙, although the value of ⟨fMC
esc ⟩

doubles.

We find that in all our simulations the values of ⟨fMC
esc ⟩ for He LyC photons are nearly

identical to ⟨fMC
esc ⟩ for H LyC photons. We explain this result by noting that the ionization fronts

of H II and He II are comparable around the dominant sources of ionization, namely hot O stars.

When dust extinction is considered, assuming no sublimation inside H II region, ⟨fMC
esc ⟩ is

nearly unaffected compared to dust-free estimates for values of the metallicity < 0.1 solar (see

Table 3.3). Assuming solar metallicity, while ⟨fMC
esc ⟩ for the least massive and least compact

clouds is nearly unchanged, ⟨fMC
esc ⟩ for the more massive and more compact clouds is reduced

significantly, by up to 80%. SN explosions have little effect on the time-averaged ⟨fMC
esc ⟩ for

nearly all the star clusters considered in this work, unless we consider fiducial clouds (local

Universe) with mass >∼ 105M⊙. In these simulations SN explosions occur before fesc(t) becomes

significantly larger than zero, hence mechanical feedback may increase ⟨fMC
esc ⟩.

In conclusion, we find an upper limit on ⟨f gal
esc ⟩ < 3% − 10% for star clusters forming in

molecular clouds similar in compactness to today’s clouds (see discussion in § 3.4 and Eq. (3.22)).

Therefore, since large scale simulations show that cosmic re-ionization requires ⟨f gal
esc ⟩ >∼ 10%−

20%, we conclude that the stellar component of the sources of reionization at z > 6 must have

been very compact star clusters forming in molecular clouds about 10 to 100× denser than in

today’s Universe. This result indirectly suggests a significant formation of old globular cluster
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progenitors at redshifts z > 6.
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Chapter 4: Massive Prestellar Cores in Radiation-magneto-turbulent Simula-

tions of Molecular Clouds

In this chapter, we present simulations of the formation and collapse of prestellar cores at

few-AU resolution in a set of radiation-magneto-hydrodynamic simulations of giant molecular

clouds (GMCs) using the grid-based code RAMSES-RT. We adopt, for the first time to our best

knowledge, realistic initial/boundary conditions by zooming in onto individual massive prestellar

cores within the GMC. We identify two distinct modes of fragmentation: “quasi-spherical” and

“filamentary”. In both modes, the fragments eventually become embedded in a quasi-steady

accretion disk or toroid with radii ∼ 500 − 5000 AU and opening angles H/R ∼ 0.5 − 1. The

disks/toroids are Toomre stable but the accreted pre-existing fragments are found orbiting the

outer disk, appearing as disk fragmentation. Each core converts nearly 100 per cent of the gas

mass into a few massive stars forming near the disk centre. Large and massive disks around high-

mass stars are supported by magnetic pressure in the outer disk, at radii > 200 − 1000 AU, and

turbulent pressure in the inner disk. The most massive core accretes several times more mass than

its initial mass, forming a cluster of 8 massive (proto)stars enshrouded by a toroid, suggesting a

competitive accretion scenario for the formation of stars above ∼ 30 M⊙. We also find that the

H II regions produced by a single massive star remain trapped in the dense circumstellar disks for

a few hundred kiloyears, while the dynamic motions of massive stars in wide binaries or multiple
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systems displace the stars from the densest parts of the disk, allowing UV radiation to escape

producing steady or pulsating bipolar H II regions.

4.1 Introduction

Whether high-mass (HM) stars form from the monolithic collapse of massive prestellar

cores – supported by turbulence, and/or magnetic fields rather than thermal pressure – known

as the Turbulent Core (TC) scenario (McKee & Tan, 2003; Tan et al., 2014), or via accretion

inflows from larger scales, known as the Competitive Accretion (CA) scenario (Bonnell et al.,

2001; Padoan et al., 2020), still remains an open question. Observations (Fuller et al., 2005;

van der Tak et al., 2019) of accreting HM young stellar objects (YSOs) suggest that HM stars

form similar to their low-mass counterparts via infall from a surrounding envelope and from

anisotropic accretion flow from an accretion disk. However, the physical processes involved are

not well understood partially due to the lack of high-resolution observations of structures below

∼ 1000 AU owing to the large distances of the sources, high dust extinction, high multiplicity,

and complexity of the environment typical of high-mass star formation. The shorter timescale

of formation and rarity of the objects result in a low probability of finding a O-type massive

(proto)star or massive starless core.

The CA model postulates that low-mass protostellar seeds accrete unbound gas within the

clump from large scales in a hierarchical structure. To test the idea of the CA scenario from a

theoretical perspective, we need to simulate the formation of prestellar cores from the collapse of

turbulent giant molecular clouds (GMCs), which is the site of star formation. Several numerical

studies have investigated the formation of star clusters from GMCs (Jones & Bate, 2018; Lee &
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Hennebelle, 2018a; Kim et al., 2018; Bate, 2019; Fukushima et al., 2020; Grudić et al., 2021;

Kim et al., 2021). In He, Ricotti & Geen (2019); He, Ricotti & Geen (2020) we have conducted

a series of simulations of the collapse of isolated turbulent GMCs using RAMSES-RT. In these

works we have run a large grid of GMC simulations and pushed the parameters of the GMC mass

and density to include very massive (∼ 105 M⊙) and extremely dense (∼ 104 cm−3) clouds,

resolving the formation of individual stars with masses M ≳ 1M⊙, significantly improving the

resolution with respect to previous works (see a summary in Table 2 of Lee & Hennebelle 2018a).

The initial mass functions (IMFs) of the stars forming in these simulations have not only charac-

teristic power-law slopes very close to Kroupa (2002) at the high-mass end, but also the correct

normalization to a mass-normalized Kroupa IMF if we assume that each sink particle converts

∼ 40% of its mass to a single star and the remaining mass forms several smaller mass stars. This

scaling is also inferred from the mapping between the observed core mass function (CMF) and

stellar IMF that preserves the slope and normalization of the IMF. Hence, we hypothesize that the

unresolved sinks in the simulation form stars with high efficiency but fragment into lower-mass

stars.

Motivated by these previous results, in this work we aim at testing our assumption on

the fragmentation of sink particles in order to understand the mass function, star multiplicity, and

kinematics which is important to eventually understand the long-term evolution of the star cluster

and a possible role of high-z compact star clusters in forming and growing intermediate-mass

black holes (IMBHs) seeds. The methodology we use is to perform higher-resolution “zoom”

simulations of the fragmenting protostellar cores, while simultaneously following the collapse of

the GMC in which the cores are located.

There is growing evidence from ALMA observations that accretion disks around mas-
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sive proto-stars undergo fragmentation and produce companion stars (e.g., Johnston et al., 2015;

Guzmán et al., 2020; Williams et al., 2022; Olguin et al., 2022). Ilee et al. (2018) reported the

observation of a fragmented Keplerian disk around an O-type protostar, with a fragment in the

outskirts of the disk at ∼ 2000 AU from the primary. Johnston et al. (2020) observed spiral arms

and instability in a disk of radius ∼ 1000 AU around an O-type star.

Disks are observed to not only possess substructures in the (r, θ) plane, but also show

clear signs of substructures in the vertical (z) direction (Muzerolle et al., 2009; Espaillat et al.,

2011). Warped geometries or misalignment (“broken” disks) have been inferred kinematically

with resolved spectral line data (Rosenfeld et al., 2012; Casassus et al., 2015) and scatter light

shadows at larger r (Marino et al., 2015).

A considerable amount of research has studied disks around nearby solar-type stars. How-

ever, the number of disks studied around more distant, massive stars (type A and earlier) is com-

paratively small. This is because massive protostellar cores that may form massive stars, multiple

systems or even a mini-cluster of stars are fewer and short-lived, and hence are less likely to be

found nearby.

Recent advances in radio/mm and optical/IR interferometers have enabled important progress

in the field of disks around intermediate-mass (IM) and HM YSOs. These observations of em-

bedded IM protostars (A to late-B spectral type) (Zapata et al., 2007; Sánchez-Monge et al., 2010;

van Kempen et al., 2012; Takahashi et al., 2012) have revealed circumstellar disks with typical

radii of a few hundred of AU. These disks are geometrically thick with a scale height that is more

than 20-30 per cent of their radius. The disks have masses of a few solar masses and could be

in Keplerian rotation. Evidence for circumstellar disks has been reported (Cesaroni et al., 2005;

Patel et al., 2005; Kraus et al., 2010; de Wit et al., 2011; Ginsburg et al., 2018; Law et al., 2022)
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for HM (proto)stars (early-B to late-O type) that correspond to zero-age main sequence stars of

about 25-30 M⊙ with typical radii of a few thousands of AU, although radii smaller than 1000 AU

have been estimated in some samples. These geometrically thick structures have scale heights

of > 30 − 40 per cent of their radii and masses that range from a few M⊙ to a few tens of M⊙.

They are gravitationally stable as suggested by Toomre’s stability parameter Q > 1. In short, the

basic properties of the disks around HM (proto)stars appear as a scaled-up version of those found

for disks around low-mass and intermediate-mass protostars (see Beltrán & de Wit, 2016, for a

review).

For stars of extremely high mass (> 30M⊙), the existence of a circumstellar disk has been

elusive in observations. Simulations have shown that radiation pressure does not prevent disk

accretion to form stars up to 140M⊙ (Krumholz et al., 2009; Kuiper et al., 2010). However,

no models of protostars allow the formation of a hydrostatic object beyond this limit. Large,

dense (n ≳ 107 cm−3) and massive (a few ×100 M⊙) rotating cores have been detected around

early-O-type protostars. These are likely non-equilibrium structures that favour the formation

of young stellar mini-clusters instead of individual massive stars (Cesaroni et al., 2007; Beltrán

et al., 2011).

In this work, we study the collapse of prestellar cores and the structure of protostellar

disks around massive stars in realistic simulations of turbulent GMCs. These disks span a large

range in sizes and masses. In this chapter, we emphasize the dominant role of turbulence and

magnetic field in determining the formation and support against the gravity of massive disks

within prestellar cores. In a companion work, we will address in more detail the structure and

evolution of the magnetic field and the problem of magnetic braking.

The rest of this article is organized as follows. We describe our simulation method in
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Table 4.1: (17) disk aspect ratio.

Core
Mcore

(M⊙)
M∗,base
(M⊙)

nsink,base

(cm−3) αvir βrot µ lmax
nsink

(cm−3)
∆xmin

(AU)
M∗,tot
(M⊙)

M∗,max

(M⊙) Nstars mode
Rdisk

(AU)
Hdisk

(AU) Hdisk/Rdisk

Ahr∗ 27.7 12.0 1.4× 107 0.270 0.095 3.146 20 5.7× 1010 7.2 12.6 4.9 12 spherical 600 100-200 0.17-0.33
B∗ 119 309 3.0× 106 0.489 0.071 2.351 18 7.7× 108 60 ¿601 75.1 9 filamentary 6000 3000 0.5-1.3
C 50.8 32.6 1.4× 107 0.348 0.058 2.114 18 3.6× 109 29 43.1 42.7 4 spherical 200 100 0.5
D 63.3 8.4 6.5× 106 0.182 0.060 1.826 18 1.7× 109 42 14.7 14.7 1 filamentary 600 200 0.33

Section 4.2. We present the basic results in Section 4.3, where we discuss the formation of

turbulent massive disks. In Section 4.4, we discuss the properties of the core fragments. We

provide discussions and the summary in Section 4.5.

4.2 Methods and Simulations

We conduct “zoom-in” radiation-MHD simulations of collapsing molecular clouds resolv-

ing individual prestellar cores. We focus on the fragmentation of the cores and the formation

of protostellar disks. We have conducted a set of 6 simulations on a large range of sink masses

selected from several parental GMCs. We summarize the key parameters and results in Table 4.1.

We perform simulations using the grid-based adaptive mesh refinement (AMR) MHD code

RAMSES-RT (Teyssier, 2002; Fromang et al., 2006). Radiation transfer is modelled using a

moment-based method with the M1 closure relation for the Eddington tensor (Rosdahl et al.,

2013). The ionizing photons emitted from stars interact with neutral gas and we keep track of the

ionization chemistry of hydrogen and helium, but we do not include the chemical evolution of

the molecular phase. Heating from photoionization and cooling from hydrogen, helium, metals,

and dust grains are implemented (see Geen et al. 2017 for details). Cooling below 10 K is shut

down to keep the temperature floor at 10 K. We carry out simulations starting from a subset of

simulations presented in He et al. (2019) and zooming into prestellar cores to resolve their frag-

mentation and disk formation. We refer to the original paper for details of the method and key
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results of these baseline simulations. Here we briefly summarize the AMR technique and sink

particle recipe before getting into the zoom-in method.

The baseline simulations (He et al., 2019) are started from idealized spherical isothermal

clouds in hydrostatic equilibrium surrounded by a low-density shell, in which gravity is nearly

balanced by turbulent motions (αvir ≡ K/|W| = 0.4). We let the GMC evolve for three free-

fall times with gravity reduced by 1/2, to allow the turbulence to develop. Then, gravity is fully

turned on and the cloud undergoes filamentary collapse and fragments to form sink particles in

dense regions that represent singular stars or small clusters of stars, as described in Bleuler &

Teyssier (2014). Adaptive mesh refinement is applied to the whole domain to make sure at any

time and any location the local Jeans length, LJ = cs
√

π/(Gρ), is resolved by at least 10 grid

points. The maximum refinement level lmax is set to 14, reaching a minimum grid size ∆xmin

that is 1/214 of the box size, or around 200 - 1600 AU. When the density reaches the critical

density, nsink, defined such that the corresponding Jeans length equals 5× the grid size at the

maximum refinement level lmax, a sink particle is placed to prevent the increase of the gas den-

sity beyond nsink at which a local Jeans length is not fully resolved. The critical density for

sink formation is set to nsink = 2.16 × 1010 cm−3(∆xmin/10 AU)−2, motivated by the criterion

that a Jeans length must be resolved by no less than 5 grid cells. The corresponding Jeans mass

is 0.0055 M⊙(∆xmin/10 AU). In the baseline simulations in He et al. (2019) used as initial

conditions, nsink ranges from 106 cm−3 to 6 × 107 cm−3, while in the zoom-in simulations pre-

sented here, we reach densities three orders of magnitude higher: nsink ranges from 109 cm−3

to 5 × 1010 cm−3. Accretion onto the sink particles is modelled using a threshold method such

that 75% of the mass above nsink is transferred to the sink particle in each time step (Bleuler &

Teyssier, 2014). Ionizing photons are emitted from the sink particles to ionize and heat the gas,
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Figure 4.1: Outline of the simulation method. We pick a zoom region which is a box at the
formation location of a sink particle. Inside the box, we allow a high level of refinement to reach
high density before star formation. The whole simulation spans a dynamic range up to 220 ≈ 106

in linear scale, or a volumetric dynamic range of 18 orders of magnitude.

dispersing the cloud and quenching star formation. These sink particles in the baseline simula-

tions are shown to resemble prestellar cores observed in local star-forming regions.

In the “zoom-in” simulations presented in this chapter, we start a simulation from a snap-

shot of a baseline AMR simulation right before the formation of a sink particle (Figure 4.1). We

define a “zoom” region, about 0.5 to 1 pc in size, where the sink particle is about to form and

allow a higher lmax only within this region. To reach the best possible resolution, we use a nested

refinement structure where lmax increases as it gets closer to the domain centre. In the simulation

with the best resolution (Core A-hr, as we will introduce later), lmax at the centre of the “zoom-in”

region is set to 20, reaching a dynamic range of 220 ≈ 106, or 18 orders of magnitude in volume.

The corresponding critical density of sink formation ρsink is 1.4 × 10−13 g cm−3, approaching

the density at which the core transitions from isothermal to adiabatic (Masunaga et al., 1998;

Masunaga & Inutsuka, 2000). The corresponding spatial resolution and other parameters for all

simulations are listed in Table 4.1. This “zoom-in” AMR method has been applied to MHD si-

mulations of low-mass star formation without radiation feedback (Kuffmeier et al., 2017, 2019).
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In this work we report the first application of this method in radiation-MHD simulations of star

formation.

Hydrogen and helium-ionizing photons are emitted from sinks and heat the gas. The

hydrogen-ionizing luminosity of a sink particle with mass Msink is given by:

S = 9.63× 1048 s−1

(
0.4Msink

27.28M⊙

)1.86

. (4.1)

This is the same as the fits given in Vacca et al. (1996) for high-mass stars (≳ 30 M⊙). However,

Vacca et al. (1996) fits are described by a broken power law and have a steeper slope for masses

< 10 M⊙. Hence, we are overestimating the ionizing radiation emitted by stars with masses

smaller than ∼ 10 M⊙. The excess of ionizing photons from low/intermediate-mass stars is

used to compensate for the lack of protostellar outflows or jets in our simulations. This recipe

proved to be effective in reproducing the canonical IMF in our previous simulations (He et al.,

2019).1 However, we acknowledge that the lack of protostellar outflows and radiative heating

(e.g. Krumholz et al., 2007) in our feedback recipe may cause the gas temperature during the

protostellar phase to be underestimated and the efficiency of conversion of core gas mass into

stars to be overestimated. We also neglect radiation pressure from stars that could be important

in high-mass star formation (e.g. Krumholz & Matzner, 2009; Kuiper et al., 2010; Rosen et al.,

2016). Further simulations with more realistic feedback mechanisms are left for future work.

We set a magnetic field with moderate strength in the x-direction threading the isothermal

cloud in the initial conditions. The GMC starts from an idealized sphere with an isothermal core

1In He et al. (2019) we adopted a broken power-law as in Vacca et al. (1996), but due to a bug in the code, the
change in power-law slope at the low-mass end did happen at much lower masses. When we found and fixed the
bug, we observed that the IMF at the high-mass end was not reproduced as well as before. We interpreted this result
as the need for stronger feedback from the low-mass end, perhaps produced by protostellar outflows.
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Figure 4.2: Gallery of the collapsing prestellar cores A-hr, B, C, and D, from top to bottom,
respectively. The colours are the column density of the gas in a direction aligned with the box
but nearly parallel to the angular momentum direction of the gas. The first snapshot for each core
shows its initial morphology and the second snapshot shows how the core collapses. The third
snapshot is at a time when the disk reaches a quiescent, nearly steady-state phase. Sink particles
representing single stars are plotted on top as coloured circles, with darker shades indicating
higher masses. The cores display two distinct kinds of morphology. Cores A-hr and C are
examples of a spherical mode of collapse, while Cores B and D are examples of the filamentary
collapse mode. Note that the colourmap in the second row has a higher upper limit.

117



surrounded by a low-density shell that extends twice the radius. The magnetic intensity is about

10− 25µG at a density of 103 cm−3 and the mass-to-flux ratio is µ ≈ 5 averaged over the whole

GMC. The value of µ in the isothermal core of the GMC is higher (≈ 8) due to the fact that the

mass is more concentrated in the core but the magnetic field is more evenly distributed. After a

period of relaxation to let the turbulence develop, the initial mean density decreases slightly and

µ settles at 3 – 4, averaged over the whole molecular cloud. Instead of the traditional definition of

the mass-to-flux ratio, µ ≡M/MΦ, where MΦ is the magnetic critical mass, we adopt a definition

that takes into account the non-homogeneity of the density and magnetic field, µ =
√
|W|/B,

whereW is the gravitational binding energy and B is the magnetic energy. The two definitions

are equivalent for a uniform spherical cloud with uniform magnetic field. We will explain further

the derivation and significance of the µ parameter in § 4.3.

The motion of the sink particles is determined by combining direct N-body integration

(using the leapfrog method) between the sinks and between the sinks and the gas based on the

particle mesh method. A softening length of 2∆xmin is set to avoid singularities.

4.3 Results. I. Turbulent massive disks

The main result of this study is the formation of rotationally supported thick disks, char-

acterized by supersonic turbulence and a moderately strong magnetic field. Figure 4.2 shows

snapshots for a grid of simulations illustrating the evolution of the prestellar cores inside turbu-

lent GMCs. In all four simulated prestellar cores with various initial masses and morphologies,

quasi-Keplerian disks form around the central proto-star/binary. The morphologies of the disks

are very similar to those found in many previous studies (Bate et al., 2003; Goodwin et al., 2004a;
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Figure 4.3: Schematic of the two modes of prestellar core fragmentation and disk formation. In
the spherical mode, the core begins with a spherical/oblate shape and fragmentation occurs in
arms, bars or mini-filaments inside the core. In the filamentary mode, or mode B, the core starts
from a long, thin tube and instabilities occur on the arms of the filament. In both scenarios, a
centrifugal disk forms at the core centre a few hundred kiloyears after the initial phase. The disks
have sizes up to several thousand AU. The central star/binary and secondary stars that form from
the core fragments orbit around the disk centre, entering a quiescent phase.

Hennebelle & Fromang, 2008): spiral arms that could potentially transport angular momentum

are prominent features. We summarize the key properties of the disks in Table 4.1.

In the classical picture, the gravitational collapse of a magnetized prestellar core occurs

from an initially spherical structure that tends to flatten along magnetic field lines, leading to the

formation of an oblate pseudo-disk (Galli & Shu, 1993). These pseudo disks are disk-like but are

not supported by centrifugal force and may transition into centrifugally supported disks (Galli &

Shu, 1993; Joos et al., 2012). The collapse of turbulent cores in our simulations spans a wide

variety of morphologies (Figure 4.2) that are far different from idealized spherical collapse.

Examples of spherical collapse geometry are cores A-hr and C in Figure 4.2. In the second

119



geometry, the core collapses into a thin elongated filament, which breaks into aligned quasi-

spherical fragments. This fragmentation mode is represented by cores B and D. In the filamentary

fragmentation the prestellar cores form from a larger-scale filament structure, hence they are

aligned in one direction before reaching the centre of mass and become randomized. This is in

contrast to the spherical collapse in which the core initial positions are already randomized during

the fragmentation phase. Even in the spherical collapse geometry small filaments are visible but

not aligned on large scales: the fragments form in hierarchical arms or bars probably due to

the higher angular momentum of the gas in this mode of collapse. Regardless of the different

modes of collapse, the outcome is a geometrically thick massive disc, in which the pre-existing

fragments are collected (see Figure 4.3). The orbiting fragments may lead to the formation of

low-mass stars that are either ejected or spiral toward the centre.

The 5th, 6th, and 7th columns in Table 4.1 report the initial (when the core density reaches

106 − 107 cm−3) kinetic, rotational, and magnetic energy compared to the gravitational potential

energy of each core. We do not find any strong correlation between these initial properties of

the cores and their subsequent collapsing mode. For instance, in the case of Core B, the core

has initially large kinetic energy (high αvir) and weak rotation (low βrot), consistent with a strong

radial infall along the arms, hence filamentary collapse. However, this interpretation fails to apply

to Core C which similarly has large kinetic energy and weak rotational support but collapses in the

spherical mode. We, therefore, do not find a strong connection between the aforementioned initial

properties of the cores and their collapsing mode other than their initial geometry, as shown in

Figure 4.2. With only 4 cores reported in this work, we do not have enough statistics to comment

on the probability of one mode over the other. At this time we simply conclude that different

modes are primarily determined by the initial degree of elongation of the cores.
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As the gas collapses and the density becomes higher than ∼ 106 − 107 cm−3, almost in-

evitably conservation of angular momentum produces quasi-Keplerian protostellar disks. Almost

all the gas with density above 107 cm−3 is in disks rather than turbulent quasi-spherical cores

(see Figure 4.2). This is in contrast to the hierarchical structure of the molecular cloud at larger

scales and lower densities, better described as clumps composed of more compact mini-clumps

(see, He et al., 2019). The cores in our zoom-in simulations have masses between ∼ 27 M⊙ and

∼ 120 M⊙, and the protostellar disks forming from their collapse are thick and supported in the

vertical direction by magnetic pressure and turbulent pressure rather than thermal pressure. This

is contrary to what is observed in simulations of standard lower mass protostellar disks around

solar mass protostars, in which the disk scale height is determined by thermal pressure (e.g.,

André Oliva & Kuiper, 2020). We will discuss this result in detail in § 4.3.3.

Apart from a central star/binary that eventually grows to have a large fraction of the total

mass of the core, multiple secondary stars form at the outskirt of the pseudo-disk. These stars

form from pre-existing fragments formed uniformly inside a quasi-spherical turbulent core or

from the fragmentation of a collapsing filament. Shortly after their formation, some of these

fragments spiral into the centre of the disk owning to either dynamical friction or torques exerted

by accretion or gravity from the asymmetric core, and some are ejected from the system. In the

last phase of the evolution, between 1 to 12 stars form in the core. This is consistent with previous

numerical studies (Bate & Burkert, 1997; Goodwin et al., 2004a,b). Nonetheless, these small N-

body systems are unlikely to be observed because they evaporate into the field on timescales

shorter than the lifetime of the disks. It remains to be understood whether the stars produced by

the dissolution of this small hierarchical N-body system retain their original binary fraction.

In the rest of this section, we closely examine the properties of the centrifugal disks in
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cores A-hr and B, demonstrating that the disk’s scale-height is primarily determined by magnetic

support and turbulent motions.

Let us first introduce some definitions useful to describe the stability of the cloud to frag-

mentation and the importance of the magnetic field.

The dynamical importance of the magnetic field in a cloud of mass M is often parameter-

ized in terms of the dimensionless ratio µ ≡ M/MΦ, where MΦ is the magnetic critical mass:

the mass at which the pressure from the magnetic energy, B, balances the gravitational binding

energy,W , of the cloud. For a spherical cloud of uniform density and uniform magnetic intensity,

W = −3GM2/(5R) and B = B2R3/6 = Φ2
B/(6π

2R), where ΦB ≡
∫
B⊥dS = πR2B is the

magnetic flux. By setting |W| = B, we get the magnetic critical mass

MΦ =

√
5

2

ΦB

3πG1/2
. (4.2)

Then,

|W|
B =

18π2

5

GM2

Φ2
B

=
M2

M2
Φ

= µ2. (4.3)

In our analysis, we adopt the equivalent definition µ =
√
|W|/B to calculate the mass-to-flux

ratio in our simulations. The advantage is that it accounts for the inhomogeneity of the density

and magnetic field distribution as well as the binding energy between the central stars and the

disk. For a cloud or a core that is centrally concentrated, µ calculated using this definition is

slightly higher than the classical definition because the binding energy is increased by the mass

concentration in the centre.

Simulations (Joos et al., 2012) have shown that if µ ≲ 1, the cloud does not collapse due to
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the support of the magnetic field. If 1 ≲ µ ≲ 5 the cloud collapses but magnetic braking prevents

the formation of a disk and the gas collapses quasi-spherically. If µ ≳ 5 a quasi-Keplerian disk

can form. We will show that in our simulations pre-stellar cores have µ ∼ 1 − 5, however, we

nevertheless observe the formation of quasi-Keplerian disks.

Neglecting the effect of the magnetic forces, we define the Toomre Q parameter

Q =
Ω σ(vz)

πGΣ
, (4.4)

where we have replaced cs with the vertical turbulent velocity σ(vz) since, as we will show later,

the support of the disk against gravity in the vertical direction is dominated by turbulent motions

rather than thermal pressure.

4.3.1 Evolution of a 27 solar mass core (Core A-hr)

In this subsection, we describe the properties of one of the smaller cores in our set of

simulations: core A-hr. The general properties of this core are shown in Table 4.1, also showing

that the resolution of this simulation is ∼ 7 AU, the highest in our set. This core forms in the

quasi-spherical geometry of fragmentation. Each panel in the top two rows of Figure 4.4 shows

the gas density on a slice through the centre of the core/disk and the smaller insert shows the

projected gas density in a view parallel to the angular momentum of the gas (face-on, first row)

and a view perpendicular to it (edge-on, second row). From left to right, each panel shows the

time evolution of the core as indicated by the labels.

When the core starts collapsing it has a spheroidal shape; we define time t = 0 when the

central density of the core reaches ∼ 106 cm−3. In Figure 4.4, the snapshots are shown at times
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Figure 4.4: Density slices of the ∼ 27 M⊙ core (Core A-hr) at the mid-plane (first row) or
cross-section (second row) at various ages. The images measure 2 × 104 AU (∼ 0.1 pc) on a
side, and the circles mark the positions of the star particles with darker shades indicating higher
mass. Density-weighted projections of the gas density are inserted at the bottom right corners
of each panel to better demonstrate the core structure. The first snapshot is chosen at the initial
isothermal phase when the central density reaches 106 cm−3. The second snapshot is picked when
the instability occurs in the centre. The third snapshot is picked when the first stars form at the
centre. The fourth snapshot is picked when the disk comes to a quiescent phase. The last two rows
display a zoomed view of the disk which is characterized by volume density above 108−9 cm−3,
or surface density above ∼ 10 g cm−2. The core spherically collapses from the initial sphere into
a disk whose spiral arms could potentially transport angular momentum outward. A mini-cluster
of stars orbits around the disk centre.
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t = 0, 50, 200 kyr and 400 kyr, from left to right. The last three snapshots correspond to times

when: i) a disk forms and becomes Toomre unstable at its centre; ii) when the first star forms;

and iii) when a quasi-steady (quiescent) disk forms.

Due to the conservation of angular momentum, the spherically symmetric collapse tran-

sitions into a rotation-dominated but turbulent fragmentation. As the central density increases

and the disk becomes more gravitationally (Toomre) unstable, a spiral arm forms at the centre of

the core. The subsequent evolution of the core is crucially dependent on supersonic turbulence.

Eddies of eddies emerge and dense sub-cores at their centres spiral inward. This is a well-known

mechanism that allows rapid gas accretion and transport of angular momentum in an unstable

disk. These dense blobs are the locations where later on a single-star or a multiple-star system

will form. When the first star forms at the centre of the system, accretion of gas into the cen-

tral star clearly appear as a protostellar disk with prominent spiral arms, similar to those seen in

many previous studies (Bate et al., 2003; Goodwin et al., 2004a; Hennebelle & Fromang, 2008).

A zoom-in view of this smaller disk at times 200 kyr and 400 kyr is shown in the last two rows

of Figure 4.4. The first two columns show the gas density in a slice through the disk face-on

(third row) and edge-on (fourth row) to emphasize the typical flared shape of the disk in the

edge-on view. The last two columns show the gas surface density, emphasizing the presence of

spiral arms and the presence of other smaller disks forming from the contraction of other nearby

smaller fragments, in good agreement with recent observations discussed above.

In Figure 4.5 we show a detailed quantitative characterization of the time evolution and

properties of the collapsing core leading to the formation of the disk. We consider either spher-

ically averaged profiles, most appropriate to describe the initial phases of the evolution and the

outer parts of the core that maintain quasi-spherical geometry, or cylindrical coordinates, most
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Figure 4.5: Radial and vertical profiles of the 27 M⊙ core A-hr. The x axis represents the radius in a
spherical coordinate rsph, i.e. the distance to the centre, or the radial distance in a cylindrical coordinate
rcyl, or the longitudinal position zcyl. The curves are averaged values of the following physical quantitates:
(a) Number density at spherical radius rsph. (b) Mass infall rate at rsph. The dashed curve indicates a nega-
tive infall rate. (c) Mass-to-flux ratio at rsph, defined as the square root of the ratio of gravitational binding
energy to magnetic energy, β =

√
W/B, enclosed within rsph. This is equivalent to the common mass-to-

critical mass definition. (d) Column density at cylindrical radius rcyl in a depth of 5000 AU. (e) Number
density of a cylinder with radius 6000 AU at cylindrical height zcyl. (f) Temperature at rcyl. (g) Non-
Keplerianity on the disk plane defined as (vϕ − vkep)/vkep. (h) Toomre Q at rcyl. (i) Vertical-component
velocity dispersion at rcyl. (j) Square of z-component thermal Mach number,M2

th = pturb,z/pth at rcyl.
(k) Magnetic field strength at rcyl. (l) Plasma beta, β = pth/pmag, at rcyl. (m) Square of the z-component
Alfven Mach number,M2

A = pturb,z/pmag, at rcyl. (n) Disk’s azimuthal velocity as a function of rcyl. (o)
Disk’s specific angular momentum as a function of rcyl.
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appropriate to describe the disk structure. The origin of the coordinate system is set at the centre

of the disk or core. For the cylindrical coordinate system, the z-axis is set along the direction of

the angular momentum of the gas. The different lines show the profiles at times corresponding to

the three times shown in the legend, which also corresponds to the 1st, 3rd, and 4th columns in

the top two rows of Figure 4.4, with an increasing shade of darkness indicating later times in the

evolution.

1) Evolution and structure of the collapsing core and the disk. Panel (a) shows the

density profile of the gas in spherical coordinates, n(rsph). At the time t = 0 the core can

be approximated by an isothermal cloud in hydrostatic equilibrium, showing a Bonnor-Ebert

density profile with a central density 6 × 106 cm−3 and core radius ∼ 900 AU. The envelope of

the isothermal sphere extends up to 0.25 parsec (5× 104 AU), despite being beyond the range of

the x axis and not visible in the figure. The collapsing core has an enclosed mass of ∼ 27 M⊙

within 0.25 parsec, or above a density of 3000 cm−3. The density of the isothermal core increases

self-similarly as the core collapses and reaches a density of 5× 109 cm−3 before a protostar (sink

particle) forms at the centre. The density profile has a power-law slope of about−2 in the outskirt

of the core, consistent with an isothermal sphere in hydrostatic equilibrium. The net mass infall

rate (panel b) is between 10−5 and 10−4 M⊙/yr and the total accreted mass into the centre is

about 17 M⊙ by the end of the simulation at t = 0.4 Myr.

At the time t = 0 the core is marginally magnetically supercritical as shown in panel (c): µ

ranges from 0.6 to 3 from the inner region to the outer region. Over time, as the mass accumulates

into the central stars in a compact region, the gravitational binding energy increases dramatically

while the magnetic energy does not increase as rapidly, due to the decoupling of the magnetic

fields from gas as a result of star formation. We will discuss the properties of the magnetic fields
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and the disk formation in follow-up work.

The remaining panels show the properties of the pseudo-disk in cylindrical coordinates.

Panel (d) shows the face-on surface density profile of the disk, which increases from 1 g cm−2 at

rcyl = 104 AU to 10 − 100 g cm−2 at the centre. This surface density is comparable to what is

observed in Class II disks around young stellar objects in Ophiuchus (e.g. Andrews et al., 2009).

The density profile of the disk in the vertical (z-axis) direction n(|z|) (the average of z

and −z) is shown in panel (e). The disk thickness is 400 - 500 AU at a threshold density of

107 cm−3 at times t > 200 kyr. At the same mean density cutoff, the radius of the disk is roughly

1000-2000 AU, therefore the disk is rather thick with an aspect ratio H/R ∼ 1/2− 1/4.

The average gas temperature in the disk (panel f) remains near 10 Kelvin throughout the

simulation. In the centre of the disk after the formation of the first star, the gas temperature

increases to ∼ 100 K as a result of photoionization heating from massive stars. As will be

discussed in § 4.5.2, the ionizing UV radiation from the stars at these early times is trapped in the

thick dense disk and the disk remains cold at radii > 100 AU in most simulations.

2) Keplerianity and stability of the disk. The disk has a quasi-Keplerian rotation, with

a deviation from Keplerianity βkep ≡ (vϕ − vkep)/vkep of the order 50% (see bottom of panel

g). The deviation is mainly due to the relatively large accretion rate of gas: as shown in panel

(b), where and when the mass accretion rate is higher, corresponds to a larger deviation from

Keplerianity. In addition, both the radial infall rate and the deviation from Keplerianity are larger

when the disk is more strongly gravitationally unstable as illustrated in panel (h) showing the

profile of the Toomre Q parameter. The pseudo-disk starts more strongly gravitationally unstable

(Q < 1) and transitions into a stable disk after about 0.3 Myr from t = 0.

3) Turbulent, thermal and magnetic support of the disk. The disk is very turbulent: the
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turbulent velocity in the vertical direction, σ(vz)2 = ⟨v2z⟩− ⟨vz⟩2, is between 1 km/s and 10 km/s

(panel i) and the turbulence is highly supersonic as shown by the square of the thermal Mach

number in the vertical direction (or the ratio of the turbulence pressure over the thermal pressure

in the z-direction) shown in panel (j). The core starts with negligible turbulence, supported by

thermal pressure. The pseudo-disk phase is instead dominated by turbulence motions, with rms

velocity in the z-direction of about a third of the Keplerian velocity and significantly higher than

the sound speed of the gas (cs ∼ 0.3 km/s), reaching Mach numbers of 10-30. Hence, we expect

a geometrically thick disk supported by supersonic turbulent motions, as discussed in more detail

in § 4.3.3.

The core is magnetized with an initial magnetic strength of about 50 – 300 µB (panel k).

The magnetic field is amplified by the accretion of gas and increase of the surface density of

the gas, which can be partially explained owning to magnetic flux freezing, i.e., µ ∝ M/ΦB =

Σ/B ∼ const. The turbulence also grows dramatically due to non-axisymmetric collapse, despite

the existence of relatively strong magnetic fields. During this process, the core transitions from a

thermal and magnetic pressure-dominated phase into a turbulent pressure-dominated phase (pan-

els j and l), with a plasma β as low as 10−2 at a few 100 AU and thermal Mach number as high

as 10 − 102 in the inner region (< 100 AU). Finally, in the quasi-steady phase of the disk, the

turbulent pressure in the inner parts of the disk still dominates over the magnetic pressure but this

is reversed at radii rcyl ≳ 100 AU (see panel m).

4) Analysis of velocity gradients in comparison to observations. In this part, we analyze

this simulation with the objective of comparing it to observations in terms of the velocity gra-

dients and specific angular momentum and discuss whether or not our simulations successfully

reproduce some features of the observations.
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Figure 4.6: Same as Figure 4.4 but for the very massive core (Core B). Starting from a thin tube,
the core undergoes fragmentation at the centre as well as along the arms of the cylinder. With
large feeding of gas along the filament, the central stars grow in mass rapidly, ending in a total
mass of over 600 M⊙. The gas keeps feeding the central stars via a large, thick disk, tens of solar
masses in mass.

In an axis-symmetric model with initial rotation, the angular momentum measured at vari-

ous scales is perfectly aligned.

We analyze the magnitude of the angular momentum in our simulated disk and its align-

ment at various scales. We consider a cylinder of height h = 500 AU centred by the disk and

aligned with the spin axis of the disk. The average specific angular momentum is measured to

be 4 × 10−3 km s−1 pc and 1.5 × 10−2 km s−1 pc, measured within R = 800 AU, the radius of

the disk, and R = 5000 AU, enclosing the envelope, respectively. These values are consistent

with observations of the protostellar regime from the CALYPSO dataset (j ∼ 10−3 km s−1, see

Belloche 2013; Gaudel et al. 2020 and the citations therein). The specific angular momentum as

a function of distance to the centre (panel o of Figure 4.5) also follows the power-law relation

j ∝ r1.6−1.7, highly consistent with observations of Class 0 envelopes (Goodman et al., 1993;
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Caselli et al., 2002). The relative angle between the angular momentum measured at two scales

is 12◦. This misalignment is largely due to the turbulence of the initial core. This is in agree-

ment with Verliat et al. (2020), who find that the formation of a disk can be a result of small

perturbations of the initial density field in the core in the absence of large-scale rotation.

Panel (n) in Figure 4.5 displays the azimuthal velocity at various distances. We see a

transition from the inward velocity gradient in the initial core to the outward velocity gradient of

the disk and envelope, which indicates an evolution from a slowly rotating rigid body (i.e., nearly

constant angular velocity) to a differentially rotating Keplerian disk. The amplitude profile of

the velocity gradient, or the angular velocity with respect to the disk centre, roughly follows a

power law Ω ∼ r−1.4, close to that of a Keplerian disk with all the mass concentrated at the

centre, which gives r−1.5. These features can be tested with observations of molecular lines in

nearby star-forming regions which can measure velocity gradients in the cores (at large scales)

and in the disks (at smaller scales) with a precision of about 1 km s−1 pc−1 (e.g. Cheng et al.,

2022), which is sufficient to detect the slow rotation (at subsonic/sonic speeds) of cores out to

10,000 AU scales.

4.3.2 Evolution of a 130 solar mass core

The properties of core B, a very massive core that grows from 130 M⊙ to a mass of over

600 M⊙, are qualitatively similar to core A-hr once we account for the fact that it is much more

massive. In this section, we will emphasize the differences between this core and the less massive

core A-hr discussed above. Figure 4.6 shows the projected density distributions of the core from

face-on (top) and edge-on (bottom) views, as in Figure 4.4.
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Figure 4.7: Same as Figure 4.5 but for the∼ 130M⊙ core B. Refer to the texts for the implications
and interpretations.
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Unlike core A-hr which collapses spherically, core B starts from the collapse of a fila-

mentary structure and fragments along the length of the filament. This filamentary collapse of a

massive core is observed in recent ALMA continuum maps at mm wavelength of a highly magne-

tized clump (Fontani et al., 2016). However, the final outcome of the collapse is a disk similar to

the case of core A-hr, although much more massive. At the time t = 0 the initial density structure

is better described by a cylindrical geometry than a spherical core (see the first and second frames

in Figure 4.6). The fragmentation of the core starts at the centre of the frame where the density

is highest. As the density reaches 109 cm−3, the Jeans length drops to a few hundred AU and the

local free-fall time is a few kyr. The filament undergoes fragmentation along the length of the

cylinder and breaks into blobs that become eddies (the third frame). Finally, these eddies migrate

into the centre of the system in about one dynamic time. Conservation of angular momentum

turns the filamentary collapse into rotational collapse, forming a large, thick disk (the last frame).

We plot the properties of this filament/disk as a function of time in Figure 4.7, with times-

tamps corresponding to the four snapshots in Figure 4.6.

Even though the geometry of the core at t = 0 is not spherical but filamentary, the spheri-

cally averaged density profile is well described by a Bonnor-Ebert density profile with a central

density 2×106 cm−3 and core radius∼ 2000 AU (panel a). Between 0.1 Myr and 0.4 Myr, the ra-

dial distribution of density displays a power-law profile with an exponent close to −1.5, which is

flatter than an isothermal sphere, likely because the geometry is clearly filamentary at these times.

After ∼ 0.4 Myr, the core exhibits a nearly constant density profile with n ∼ 107 cm−3 within

4000 AU, indicative of a disk with nearly constant density and constant surface density as shown

in panel (d). This disk is about 4 times larger than disk A-hr at the same density threshold, but

disk A-hr has an increasing density and surface density toward the centre. By t = 0.9 Myr (the
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dark blue curve), a large, thick, near-Keplerian disk forms with a surface density of∼ 10 g cm−2.

The radius of the disk is about 4000 AU at a cutoff density 107 cm−3, equivalent to a column

density of 3 g cm−2 (panel d). Within this radius, the disk is near Keplerian (panel g) and at late

times is Toomre-stable (Q > 1, see panel h): even though in the outer parts Q ∼ 1 we do not

observe late time fragmentation probably due to the stabilizing effect of magnetic fields. The

thickness of the disk is about 2000 AU at the same cutoff density of 107 cm−3 (panel e).

Unlike disk A-hr where the radial component is extremely turbulent and the mass inflow is

discontinuous, disk B has a steady inflow at a constant velocity of 2 − 3 km/s, which is close to

the escape velocity at the edge of the disk at 5000 AU from the centre. With a ρ ∼ r−2 relation,

the inflow of mass has a constant rate 3 × 10−4M⊙/yr (panel b). This inflow rate results in an

accreted mass of > 400 M⊙ in the accretion period of 0.5 Myr.

Due to the large central mass, the Keplerian velocity of the disk is high, reaching 7−20 km/s

at 1000 AU. The turbulent velocity is also very high, between 3 and 6 km/s in the z component

(panel i).

Due of magnetic flux freezing, the large mass in the disk results in large magnetic strength,

reaching between 103 to 5 × 104 µG (panel k). Despite of the strong magnetic field, the mass-

to-flux ratio µ stays high between 3 and 7 (panel c) due to the large gravitational binding energy

from the large mass of the cluster at the centre. Although the inner part of the disk is heated

by UV radiation to 100 - 3000 K (panel f), the disk is supported primarily by magnetic pressure

and secondarily by turbulence in the axial direction (see panels j, l, and m). We will discuss the

support of the disk in more detail in the next section.
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Figure 4.8: (Top) Left panel: radial profiles of the sound speed (dot-dashed line), the Alfven
speed (dashed line), and the z-component turbulent velocity (rms velocity in the z-direction,
solid line) for our lower-mass disk (Disk A-hr). Right panel: the same quantities normalized
to the Keplerian velocity vkep. This ratio reliably predicts the scale height H/r of a gas disk in
hydrostatic equilibrium, where the vertical component of gravity is balanced by the pressure ρv2

gradient. The panels illustrate that the vertical support of the disk is dominated by turbulence and
by the magnetic field, while thermal pressure support is negligible. The right panel also shows
that σeff/vkep ∼ 0.5, and hence the disk is geometrically thick, i.e., the disk has an aspect ratio of
about 0.5. (Bottom). The same as the top panels but for our most massive disk (Disk B). We note
that in both disks the turbulent support dominates from the centre to 200 AU and the magnetic
support from rcyl∼ 200 AU to ∼ 104 AU.

4.3.3 The disk thickness is determined by magnetic support and supersonic tur-

bulent motions

The disks in the six simulated cores measure from 200 AU to 6000 AU in radius, with Disk

B being the largest and most massive one. They are generally very thick as well, mostly with an

aspect ratio (thickness to diameter ratio) of 0.2 to 0.5. Here we explore the physics behind the
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existence of these large disks.

For a disk of gas around a massive central object that is in hydrostatic equilibrium with the

z component of gravity from the centre,

dP

dz
= − GMρz

(r2 + z2)3/2
≈ −GMρz

r3
. (4.5)

where r is the radial cylindrical coordinate for the distance from the centre and z is the altitude

cylindrical coordinate for the distance from the disk midplane. Assume the pressure P can be

expressed as P = ρ⟨v2⟩, then

⟨v2⟩dρ
dz

= −GMz

r3
ρ, (4.6)

therefore

ρ = ρ0 exp

(
−

v2ϕz
2

2⟨v2⟩r2
)

= ρ0 exp

(
− z2

H2

)
, (4.7)

where vϕ =
√

GM/r is the Keplerian velocity and H is the disk scale height,

H/r ≈
√
2 ⟨v2⟩1/2
vϕ

. (4.8)

The rms velocity σeff ≡ ⟨v2⟩1/2 should account for all the possible pressure supports:

thermal, turbulent or magnetic. These three components can be identified as the sound speed cs,

the dispersion (rms) of the z-component velocity σvz , or the Alfven speed vA, respectively. We

compare these three velocities and σeff = (σ2
vz + v2A + c2s)

1/2 as a function of r in Figure 4.8.

It is clear that turbulent pressure dominates the vertical support of the disk in the inner disk

and magnetic pressure dominates in the outer disk, while thermal pressure support is negligible
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everywhere. For the two disks shown in Figure 4.8, the transition from turbulent support to

magnetic support occurs at ∼ 200 AU. However, in another disk, we observed the transition

radius to be closer to 1000 AU. We will further investigate the dependence of the critical radius

on the physical parameters of the core in future work.

We notice that σvz decreases with the distance to the centre with an empirical relation

σvz ∼ r−0.6, while vA peaks at rcyl = 200 AU and decreases slowly outward. The effective rms

velocity σeff scales with radius as σeff ∼ r−0.5. Assuming a roughly Keplerian azimuthal velocity

profile vkep ∼ r−0.5, we have σeff/vkep ∼ r0. The predicted disk aspect ratio H/r according to

Equation 4.8 is nearly constant as a function of radius and of the order of unity, as shown in the

right panels of Figure 4.8. Assuming an isothermal density profile ρ ∝ r−2 as for disk A-hr, the

disk surface density is Σ ∝ r−1, while disk B has ρ ∝ r−1 and a nearly constant surface density

profile, Σ ∼ const(r). Indeed the disks have nearly constant opening angles and the surface

density profiles we derived above are consistent with the actually geometrical properties of the

disks shown in the fourth column of Figures 4.4 and 4.6.

The magnetic field plays a more significant role in determining the structure of the outer

disk. At large radii (≳ 200 AU in both disk A-hr and disk B) the magnetic pressure dominates

over turbulent pressure. Even though the initial strength of the magnetic field (10 − 25 µG) of

the cloud at density 103 cm−3 is in the typical range of what is observed in present-day molecular

clouds and the initial velocity dispersion is 5 times higher than vA, the strengths inside both

disks are above 1000 µG and even stronger at the very centre. The Alfven velocity is between

1 and 4 km/s in Disk A-hr and between 4 km/s and 15 km/s in Disk B, many times higher than

the thermal sound speed. Therefore, we expect that the magnetic field could become dominant

dynamically over turbulence even in the inner parts of the disk in simulations with mildly stronger
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initial values of the magnetic field. We will explore this possibility in a follow-up work.

In our simulations, the gas temperature is underestimated near sources of radiation due to

neglecting heating processes important at high densities (i.e., gas heating from stellar radiation

absorbed by dust grains). With a more complete description of stellar feedback, the gas tem-

perature could reach a value between 20 and 100 K at n ∼ 108 cm−3 (Krumholz et al., 2007;

Krumholz et al., 2011), corresponding to a sound speed of up to 0.9 km/s. Nevertheless, even

assuming these higher temperatures, the thermal pressure is still small when compared to the

turbulent and magnetic pressures found at these densities in our simulations. Thus, we speculate

that even though we have neglected gas heating from dust grains, the enhanced thermal pressure

support that this process provides should not play an important role in determining the structure

of the disk and the protostars, at least for the massive cores studied in this work.

4.4 Results. II. Low-mass stars form from the fragmentation of massive pre-

stellar cores

4.4.1 Fragmentation into low-mass stars before the formation of a steady disk

structure

In the classical picture of prestellar disk formation, an unstable disk undergoes fragmenta-

tion and stars likely form from the disk fragments (Agertz et al., 2007; Kratter & Lodato, 2016).

Recent simulations of Pop III star formation (Machida et al., 2008; Stacy et al., 2010; Sugimura

& Ricotti, 2020; Park et al., 2021a,b, 2022) clearly show that high-mass stars in a metal-free gas

disk, although they form near the centre of the disk, which is most gravitationally unstable, nearly
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Figure 4.9: Snapshots of projected density of core A-hr after 180 kyr (top) and 450 kyr (bottom)
from the isothermal core formation (defined as when the core density reaches 106 cm−3). In
the top panel, we identify the positions of the prestellar cores where sink particles form at later
times, and show the IDs of the sink particles that form in them. In the bottom panel, the circles
and numbers indicate the locations and IDs of the sink particles existing at the time shown in the
snapshot. The figure shows that most sinks form from the fragmentation of a turbulent disk at an
early time, but the sinks form with a time delay, and they either spiral in toward the centre of the
disk or are ejected (or in the process of being ejected). The image measures 2 × 104 AU on a
side.

all of them migrate outward due to accretion of gas with higher specific angular momentum from

the disk (but see also Chon & Hosokawa (2019), reporting exceptions to this behaviour for small

mass fragments).

However, although we recognize a few low-mass disk fragments in our simulations, we find

that steady quasi-Keplerian disks form only after the initial collapse and fragmentation phase of

the cores: when clear disk morphologies can be identified these disks are relatively Toomre-

stable.

André Oliva & Kuiper (2020) characterize the temporal evolution of protostellar disks start-
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Figure 4.10: The mass distribution of the stars forming in each core in our ‘zoom-in’ simulations,
labelled ‘zoom-in’, compared to the stars that form from the same core in the baseline run, la-
belled ‘baseline’. The mass functions of the stars in the ‘zoom-in’ simulations are plotted in two
colours to distinguish the central stars (orange) and companion stars (green), or in black when
these two groups of stars are indistinguishable. In the case of cores D and E, because they are
in close proximity to each other, their central stars, as well as their companion stars, are grouped
together. Overall, the number of stars that form from the fragments of a core ranges from 1 to 12.

ing from idealized initial conditions into four epochs: the initial setup, the disk formation epoch,

the fragmentation epoch, and the quiescent epoch. In our simulations, we also identify four

phases of the core evolution: the quasi-hydrostatic phase, the core fragmentation phase, the disk

formation phase, and the steady-state (quiescent) phase.

In core A-hr, almost all of the self-gravitating fragments in which a star or a multiple stellar

system forms, originate from high-density perturbations that appear and grow during the quasi-

spherical collapse phase of the core, well before the formation of the pseudo-disk, as shown in

Figure 4.9. Keeping in mind the caveat that our disks are generally more massive than those in

André Oliva & Kuiper (2020), the main qualitative difference between these two sets of simula-

tions is that in the present work the fragmentation epoch precedes the disk formation phase. In
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other words, the formation of low-mass (disk) stars is initiated during the fragmentation of the

core and before the disk formation phase. These phases are discussed in § 4.3, and illustrated in

Figure 4.3.

A more realistic model of star formation from core fragmentation should take into account

accurate modelling of stellar evolution. In our simulations, the formation time of protostar parti-

cles is instantaneous when a clump centre exceeds a given density threshold (see § 4.3 for details

on the sink formation criteria in RAMSES-RT (Bleuler & Teyssier, 2014)). More realistically, the

formation of protostars follows a thermal timescale, or the Kelvin-Helmholtz (KH) timescale.

This time is extremely short for massive stars. For a low-mass star, say a solar-mass star, even

though the KH timescale is about 30 Myr long, the protostar shrinks to 100 solar radii, or about

0.5 AU, by 1/100 of the KH time, or 0.3 Myr, assuming a constant rate of radiating thermal en-

ergy. This means that in a very short time after sink particle formation, a star becomes a subgrid

particle in the simulation, well-tracked by a point-source sink particle.

The N-body integrator in the code uses a softening length of 2∆xmin, which is 14 AU

for Core A-hr and 120 AU for Core B. As a consequence, the formation of hard binaries is not

captured and their dynamical evolution is not accurately resolved. We leave a robust treatment of

the dynamics of these multiple systems for future work.

4.4.2 Star formation efficiency in cores and multiplicity

The observed core mass function (CMF) closely resembles the stellar IMF but is shifted to

the higher-mass end by a factor of ∼ 3 (e.g. Alves et al., 2007). This similarity seems to suggest

the idea that the efficiency of star formation in dense cores (n > 104 cm−3) is of the order of
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30 per cent. Previous studies tend to explain this offset invoking feedback, namely, protostellar

outflows acting on core scales, entraining and expelling a large fraction of the core (Hansen et al.,

2012; Kuiper et al., 2016). Numerical simulations (Kuiper et al., 2010; Offner & Chaban, 2017)

of isolated core collapse suggest outflows have a mass-loading factor of ∼ 3. In He et al. (2019)

we instead argue that cores have close to 100 per cent star formation efficiency (SFE) but the

cores fragment into several smaller mass stars with a relatively flat IMF. We show that such a

model can reproduce both the shape and normalization of the IMF in our MC scale simulations,

which we refer to here as ”baseline” simulations. One of the main motivations of this present

work is to test this hypothesis by zooming on a few selected cores with high resolution.

Figure 4.10 shows the mass function of the stars forming in each core in our simulations.

The mass functions are plotted in two colours to distinguish the central stars (orange) from the

companion stars (green). Black histograms are used when these two groups of stars are indistin-

guishable. We can see that each core fragments into a mini cluster consisting of 1 to 12 stars,

as found in previous numerical studies (Bate & Burkert, 1997; Goodwin et al., 2004a). In each

panel, we compare the stellar masses in our zoom simulations to the sink masses of the “base-

line” lower-resolution simulation of the same core, shown in the lower half of each panel. In

the zoom-in simulations the spatial resolution increases by a factor ∼ 20 (∼ 60 for core A-hr),

reaching densities 3 orders of magnitude larger with respect to the baseline.

The labels in each panel of Figure 4.10 compare the total stellar masses in the zoom-in si-

mulations to the corresponding sink mass (representing a prestellar core) in baseline simulations.

We find that the total masses of stars in the zoom-in simulations are either equal to or higher

than the sink mass in the baseline, indicating that star formation efficiencies in cores are close to

100 per cent, independent of the core mass. In addition, we find that the cores in the zoom-in
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simulations have nearly 100 per cent efficiency of conversion of gas into stars: i.e., the final mass

in stars is between 50 to 100 per cent the initial core mass, and for core B the mass in stars is

higher than the initial core mass. However, the core forms multiple stars with the masses of the

highest mass stars reduced by approximately 1/3. Hence, we argue that the CMF/IMF scaling

parameter is due to the fragmentation of the core into multiple smaller mass stars rather than the

inefficient conversion of gas into stars due to feedback effects. However, most of the mass in

stars is locked in a few (2 to 3) relatively massive stars at the center of the disk, while low mass

stars – that can be numerous, e.g., core A-hr forms a total of 12 stars – account for a minority

of the total mass of the core. Regardless of the mass of the fragments, the central stars accrete

gas rapidly and grow in mass, contrary to disk star that instead remain of small mass, especially

if they are ejected from the disk. Note that after sink particles are formed, they are not allowed

to merge. Due to the small-number statistics, we cannot infer a shape for the mass function of

stars in cores, but it appears to be flat. Additionally, the lack of proper treatment of protostellar

outflow could result in an overestimation of the SFE in cores. A more rigorous study of feedback

mechanisms in zoom-in simulations is necessary to better understand the SFE at these scales.

Recent studies have painted a picture of star formation as a highly dynamic process, re-

placing the idea that cores evolve slowly via ambipolar diffusion with one in which cores form

in converging flow within a highly turbulent molecular cloud (Elmegreen, 2000; Elmegreen &

Scalo, 2004). Goodwin et al. (2004a) suggests that low levels of turbulence (i.e. αvir ∼ 0.025)

are enough to cause a core to fragment and form more than one star, with the average number of

stars growing as the level of turbulence is increased (Fontani et al., 2018). This trend is reflected

in our simulations; as demonstrated in Table 4.1, the number of fragments increases from 1 to 4

to 9 as the turbulent Mach number grows from 0.18 to 0.35 to 0.49.
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In most of our zoom-in simulations where the resolution is lower and the peak density is

below 109 cm−3, the total number of stars is ≤ 9, the total mass in stars exceeds by roughly 30

per cent the sink mass in the corresponding baseline simulation and the most massive star have

sometimes a higher mass than 1/3 of the sink mass. We partially attribute this non-convergent

result to the limited resolution. Indeed in core A-hr, that is our highest resolution zoom-in simu-

lation, where the sink formation density reaches ∼ 1010 cm−3 (close to the density where the gas

becomes adiabatic), 12 stars are formed, we reproduce very closely the stellar mass of the sink in

the baseline simulation, our highest mass star is < 1/3 of the baseline sink mass and we resolve

low mass stars down to 0.01 M⊙.

It has been argued that the formation of low-mass stars from the fragmentation of massive

cores contradicts the observations of a high binary fraction of low-mass stars (Goodwin et al.,

2007). However, if the low-mass stars form in a hierarchical system as in our simulations, when

they are ejected from the systems they can retain their binary companion. Indeed in core A-hr we

observe binaries in disk stars and ejected binary systems, even though the limited resolution pre-

vents us from resolving close binaries with separations < 14 AU. We will study stellar dynamics

in more detail in future work.

It remains to be seen if this type of fragmentation is realistic in small (< a few M⊙) cores,

given the observed levels of non-thermal motion therein which rules out any significant highly

supersonic turbulence found in high-mass cores.
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4.5 Discussion

4.5.1 Formation of ultra-high-mass stars – a competitive accretion scenario

Recent advancement of radio/mm and optical/IR interferometers has enabled important

progress in the field of disks around high-mass (early-B to late-O type) YSOs (see Davies et al.,

2011; Mottram et al., 2011). The current unambiguous evidence for circumstellar disks around

high-mass young stars is limited to objects with masses up to 30 M⊙ (late-O type) (Beltrán & de

Wit, 2016). Stars with these spectral types or brighter have strong UV emissions that can heat and

disperse the gas. Typical disk radii of these sources are a few thousand AU with rare exceptions

of radii as small as 300-400 AU. Most of the protostars in our simulations (Cores A-hr, D, E,

F) fall in the range of high-mass stars, with Cores B and C forming stars that are over 40 M⊙.

The range of the radii of the simulated disks in this work (see Table 4.1) agrees well with the

observations.

In the observations mentioned above, the circumstellar disks have typical gas masses rang-

ing from 4 to a few ×10 M⊙. In our simulations the masses of disks, defined as disk gas above

a density threshold of ∼ 105 cm−3, ranges between 3 M⊙ to 50 M⊙, in agreement with the ob-

served range. The disk mass remains relatively low (∼ 40 M⊙) even in the very massive core

B where the central star cluster mass is above 600 M⊙. This is due to the surface density being

roughly constant at 8 g/cm2 up to a disk radius of ∼ 6000 AU, where the azimuthal velocity

becomes comparable to the gas velocity dispersion, typically 1 to 3 km/s. Higher mass (up to 200

M⊙) disks are only reported in a few cases where the angular resolution is not enough to properly

separate the envelope from the disk (Beltrán et al., 2004).
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At the lower bound of the high-mass range where there are enough nearby sources, ob-

servers are able to estimate the hydrostatic scale height of these structures from (sub)millimetre

observations of the line width. The typical line width is found to be∼ 2 km s−1 and the estimated

scale height is in most cases > 30 − 40 per cent of the disk radius, indicating that the disks of

embedded protostars are likely geometrically thick (e.g., Beltrán et al., 2006).

Both the velocity field probed via molecular lines at high angular resolution (≤ 0.5
′′) and

the CO bandhead profile suggest that the rotation of the majority of the disks is consistent with

Keplerian or quasi-Keplerian rotation (e.g. Wang et al., 2012; Cesaroni et al., 2014; Beltrán et al.,

2014). For some sources, observations reveal both sub-Keplerian (e.g. Cesaroni et al., 2005;

Wang et al., 2012; Beltrán et al., 2014) and super-Keplerian (Beuther et al., 2008). Wang et al.

(2012) argues that sub-Keplerian motions suggest a role for magnetic fields that could slow down

the rotation below pure Keplerian by, i.e., magnetic braking. In our simulations, the disks are

generally sub-Keplerian, with the non-Keplerianity parameter βkep being in the range of -0.5 to -

0.1. The low values of βkep indicate a relatively large accretion rate from the large-scale envelope.

Another feature of protostellar disks of high-mass stars is the presence of asymmetries and

inhomogeneities (e.g. Cesaroni et al., 2014). The authors claim that these asymmetries could be

caused by the presence of spiral arms or infalling filaments accreting material onto the disk or

by interacting with companions nearby. Disks that have been observed with an extremely high

angular resolution where a clear disk structure could be resolved, appear to be slightly elongated

and oriented perpendicular to molecular outflows (Wang et al., 2012; Beltrán et al., 2014). This

structure is similar to the early phase of collapse of our simulated Case B core.

During the initial phase of collapse, our simulated core B has a spherical shape with a radius

of ∼ 0.5 parsec within a density threshold of 3000 cm−3, enclosing a total mass of 131 M⊙. The
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Figure 4.11: Top: The growth of Core B from a 130 M⊙ core into a mini-cluster of stars with a to-
tal mass of∼ 600M⊙ and average mass of 70 M⊙ via filamentary accretion from the background,
demonstrating a competitive accretion scenario for ultra-high-mass star formation. Bottom: The
collapse of 27 M⊙ Core A-hr into a central binary of ∼ 10 M⊙ plus low-mass companions,
demonstrating a “turbulent core” scenario for intemediate- to high-mass star formation. The
colour curves show the evolution over time of the total mass in stars, labelled as ‘stars’, or the
mass of the disk, labelled as ‘disk’.

core has a density profile that is shallower than that of a Bonnor-Ebert sphere, with both magnetic

and turbulent pressure in the envelope being 10 times stronger than thermal pressure (Figure 4.5).

However, the mass accreted in the central (proto)star cluster is > 600 M⊙ over a timescale of

about 0.9 Myr, more than four times the initial gas reservoir in the core (Figure 4.11). This is

due to the sustained high accretion rate (10−4–10−3 M⊙/yr) over 0.9 Myr at a inflow velocity of

1 to 3 km/s. We, therefore, argue that the large masses (50 – 100 M⊙) of the YSOs in core B

can be described, at least partially, in the context of the competitive accretion scenario, in which

the gas is collected over time from scales beyond the initial core radius. This agrees with Gong

& Ostriker (2015) who, through a set of simulations of turbulent, unmagnetized GMCs, find that

sink particles accrete at a nearly constant rate even after the initial mass reservoir is depleted.

However, this kind of “competitive accretion” is only seen in the most massive (> 50M⊙) core

in our simulations.

Observational evidence of circumstellar structures in the most massive protostars, i.e.,
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early-O type, is very limited. Huge, dense, massive, rotating cores have been detected around

early-O-type protostars in studies performed at moderate spatial resolutions. These objects are in

all likelihood non-equilibrium structures surrounding clusters of young protostars and not merely

individual massive stars (see Beltrán et al., 2011, and references therein). These structures are

characterized by a much higher mass and larger size than the rotationally supported disks around

lower-mass protostars discussed above. Beltrán et al. (2005) referred to these massive structures

as “toroids” to make a distinction. The reported toroids have radii of a few ×1000 AU to up

to 104 AU (e.g. Zapata et al., 2008). The hydrostatic scale height of these toroids, estimated by

assuming hydrostatic equilibrium, is > 50% of the radius – these structures are extremely thick.

We find that the most massive stars in our star cluster formation simulations form as clusters

inside large and dynamically stable toroids with significant mass infall. Our simulated Core B

matches the properties of the toroids discussed above. The structure that enshrouds the central

protostar cluster forms a toroid that is both large (4000–8000 AU in radius) and thick (3000–8000

AU in thickness) and is largely sub-Keplerian. The high infall rate, of the order of 10−3 M⊙/yr,

could be high enough to quench the formation of an H II region or to slow down its expansion

(Yorke 1986, see also § 4.5.2). In the next section, we will show that core B produces a bipolar

H II region and an outflow. However, in general, the question of whether or not the launching of

outflows could be quenched initially by the massive envelope requires further studies that take

into account jet-driven outflow and perhaps stellar winds.
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Figure 4.12: The trapping (left) and escaping (right) of H II regions. Left: Density (top) and
temperature (bottom) slices of core D showing the UV radiation from a ∼ 10M⊙ star is trapped
inside an ultra-compact region at the centre of a disk. Right: Similar to Left but for the Core B
showing the escaping of an ultracompact H II region. The dynamical motions of the multi-star
system create a channel for radiation to escape.

Figure 4.13: The escaping of UV radiation from a dense filament due to dynamical motion. From
left to right, it shows a time sequence of the density (top) and temperature (bottom) slices. The
dancing of the stars creates a channel for UV photons to escape from the dense region when
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4.5.2 UV radiation trapping

High-mass stars are often observed to be deeply embedded in dense gas and their H II

regions in the gas above a density of ∼ 104cm−3 can remain trapped forming ultracompact H II

regions (Jaura et al., 2022; Churchwell, 2002). In our simulated prestellar cores, we notice two

main distinct scenarios: A) when a single massive star is deeply embedded in a thick disk, where

the density reaches ∼ 108 cm−3, the H II regions remain trapped at least during the first 0.5 Myr

while the disk is still relatively massive. B) Often massive stars orbit a common centre of mass

in binary or multiple star systems: in these cases the stellar orbit may displace the massive star

from the densest regions in the disk or in a filament, allowing the H II regions to break out the

dense disk or filament. Case A) can be observed in the left panels of Figure 4.12), showing core

D, where a single massive star forms from the collapse of the small core. The UV radiation of

the protostar is trapped inside the dense neutral gas The H II region remains trapped for a few

hundred kiloyears. Note that the consumption rate of ionizing photons, emitted uniformly within

the sink particles, is equal to the recombination rate in the ionized gas calculated in each cell,

even inside the sink particles. However, here we do not adopt any sub-sink recipe to account

for the radiation transfer inside the poorly resolved density structure within the sinks, as done in

other studies (Jaura et al., 2022; Park et al., 2022). In Core A-hr, however, multiple stars form at

or migrate into the disk centre (see right panels of Figure 4.12). The dynamics of the few-body

star system displaces the stars by about the virial radius of the star system, which is tens of AU,

close to or higher than the disk thickness. In this case, radiation can escape when one of the

massive stars approaches the edges of the disk. Once a channel of lower-density ionized gas is

created a long-lasting bipolar H II region and outflow are created.
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Finally Figure 4.13) shows another interesting mechanism that allows UV ionizing radi-

ation to break out of a dense filament. The figure shows the density (top panels) and the tem-

perature (bottom panels) in a set of snapshots showing a disk embedded in a filament in which

a multiple system, including a massive star, forms. The stars are shown as circles colour-coded

according to their masses from white (1 M⊙) to dark green (10 M⊙). From the time sequence, it

is clear that H II regions are created intermittently on either side of the filament when the massive

star in its orbit is further from the densest part of the filament, allowing the H II region to break

out of the filament. This is more evident in the animation that we make available in the electronic

version of this paper.

4.5.3 Influence of metallicity on disk stability

Our simulations are conducted at solar metallicity and the cooling from hydrogen, he-

lium, carbon, oxygen, and dust grains. Lower metallicity could make a big difference in how

the disk fragments. Recent study (Matsukoba et al., 2022) of the metallicity dependence of

protostellar-disk fragmentation has shown that fragmentation of spiral arms is more common in

lower metallicities where dust cooling is effective. At high metallicity, the disk is stabilized by

stellar irradiation. We find that despite being cold (close to 10 K) due to the lack of effective

heating from the stars, the disks are stable and do not undergo fragmentation, as discussed in

§ 4.4.1.
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4.6 Summary

We have simulated the formation and collapse of prestellar cores in a set of grid-based

radiation-MHD simulations, resolving from GMC scales, tens of parsec in size, down to disk

scales, with resolutions up to 7 astronomical units in our highest resolution simulation.

We studied a set of 4 massive (∼ 10 M⊙) or very massive (∼ 100 M⊙) cores in two

GMCs, following their collapse, fragmentation, and the formation of (proto)stars embedded in

circumstellar disks with sizes ranging from 200 AU to 6000 AU. The properties of the simulated

cores, and the (proto)stars and disks that form therein are listed in Table 4.1.

The following is a list of the main results:

1. The disks are generally large (R = 200 − 6000 AU), thick (aspect ratio H/R = 0.2 − 1.3),

and massive with masses spanning from a few to 40 M⊙ (Table 4.1 and Figure 4.2). These disks

or toroids sit in the range of observed disk properties around high-mass YSOs.

2. Each core undergoes fragmentation in the early collapsing phase with geometries that can be

separated into two main distinct modes: “quasi-spherical” collapse and “filamentary” collapse

(see Figure 4.3). However, in both modes of collapse, the fragments eventually become embed-

ded in a quasi-steady accretion disk or toroid.

3. We observe the formation of multiple massive stars at the centre of the disk, but also lower-

mass stars apparently forming in outer parts of the disk. However, the disk is on average Toomre-

stable. We find that “disk stars” form from pre-existing self-gravitating fragments created before

the formation of the gravitationally stable disks and are accreted into the disk as mentioned in

the point above (see Figures 4.3 and 4.9). We, therefore, conclude that in order to realistically
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simulate the formation and evolution of massive stars and their circumstellar disks it is crucial to

capture the environment and initial conditions of the protostellar core. Idealized initial conditions

starting from smooth disk structures, often used to model circumstellar disks around solar-mass

stars, will likely not capture the full picture of fragmentation of the disk for the high-mass case.

4. Large and massive disks around high-mass stars are supported by both magnetic and turbulent

pressure. This is in contrast to the case of disks around lower-mass stars, supported instead

by thermal pressure. Regardless of the core mass/size, the magnetic pressure dominates in the

envelope as well as the outer disk at radii ≳ 200− 1000 AU, while turbulent pressure dominates

in the inner disk at < 200− 1000 AU (see Figure 4.8). The turbulent velocity of the disk is close

to the virial velocity of the core, including the central protostars (∼ 1 km/s), which suggests that

the source of the turbulence is the non-axisymmetric gravitational collapse of the gas.

5. The final number of (proto)stars that form in a core is between 1 and 12 (Figure 4.10). Most of

the accreted mass is distributed among 1 to 3 stars of similar mass (up to a mini cluster of 8 stars

for our most massive core) that form near the centre of the disk/toroid. The disk stars account for

a small or negligible fraction of the mass of stars.

6. In our highest resolution simulation (∆xmin = 7 AU) where the sink formation density is

above 1010 cm−3, close to the density where the gas becomes adiabatic, the total mass in stars

(12.6 M⊙) is approximately equal to the mass of the sink particle in the baseline run, which is

believed to represent a prestellar core. This suggests a nearly 100 per cent SFE in high-mass

cores.

7. In the most massive core we simulated, the core evolves from a spherical shape with a radius
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of 0.5 parsec and a mass of 131 M⊙ into a (proto)star cluster that is over 600 M⊙ enshrouded by

a massive toroid over a timescale of about 0.9 Myr (Figure 4.11). We explain the large masses in

these ultra-high-mass (proto)stars in the context of the competitive accretion scenario, in which

gas is continuously supplied from larger scales beyond the mass reservoir of the core.

8. O/B stars that form as a single star typically produce an ultracompact H II region that remains

trapped in the dense and thick circumstellar disk for an extended period of time (∼ 500 kyrs).

However, when high-mass stars form as wide binaries or in multiple systems, the dynamic motion

of the system displaces the stars periodically from the densest parts in the disk plane or filament

where the density is lower allowing UV radiation to escape and creating a long-lasting or periodic

bipolar H II regions (see Figures 4.12-4.13).

In Chapter 5, we will further study the properties and growth of the magnetic field in

magnetically critical and sub-critical cores, where we will also address the origin of the density-

B relationship and the magnetic braking problem.
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Chapter 5: Magnetic Braking Fails to Work: Formation of Large Keplerian

Disks in Magnetically Critical Giant Molecular Clouds

The formation of circumstellar disks is a critical step in the formation of stars and planets.

However, magnetic fields can strongly affect the evolution of angular momentum during prestellar

core collapse, potentially leading to the failure of protostellar disk formation. This phenomenon,

known as the magnetic braking catastrophe, has been observed in idealized MHD simulations.

In this chapter, we present a numerical study of circumstellar disk formation from realistic ini-

tial conditions of strongly magnetized massive cores resolved by zooming into Giant Molecular

Clouds (GMC) with initial mass-to-magnetic flux ratios 0.6 ≤ µ0 ≤ 3. Due to the large tur-

bulence caused by the non-axisymmetric gravitational collapse of the gas, the dominant vertical

support of disks is turbulent motions, while magnetic and turbulent pressures contribute equally

in outer toroid. The magnetic field topology is extremely turbulent and incoherent, reducing the

effect of magnetic braking by roughly one order of magnitude and leading to the formation of

large Keplerian disks even in magnetically critical cores (with µ ≈ 1) that form in magnetically

critical/supercritical GMCs. Only cores in GMCs with µ0 = 0.6 fail to form disks. Instead, they

collapse into a sheet-like structure and produce a large number of low-mass stars. We also discuss

the geometry of the B field in cores and the emergence of a universal B − ρ relation valid over a

large range of scales from the GMC to massive cores, independently of the GMC magnetization.
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This study provides insights into the initial conditions of prestellar core collapse and their role in

determining disk formation.

5.1 Introduction

The formation of protostellar disks is ubiquitous during the collapse of prestellar cores.

As a molecular core collapses under its own self-gravity, the angular momentum of the gas will

slow down its collapse at small scales promoting the formation of a protostellar disk. This simple

argument of conservation of angular momentum is corroborated by observations, also suggesting

that protostellar disk formation is a natural byproduct of the star formation process (O’dell &

Wen, 1992; Tobin et al., 2012; Murillo et al., 2013; Codella et al., 2014; Lee et al., 2017).

However, molecular clouds are observed to be permeated by magnetic fields (Crutcher,

1999; Lee et al., 2017), which can in principle strongly affect the evolution of angular momentum

during the core collapse. The twisting of the magnetic field lines produced by the disk rotation

in the flux-freezing regime of ideal magnetohydrodynamics (MHD), can apply a force counter

to the rotation velocity, also known as magnetic braking, effectively slowing down rotation and

increasing radial gas infall. In idealized numerical MHD simulations, the timescale of the braking

can become so short that protostellar disks fail to form or are much smaller than the observed

sizes, a phenomenon known as “the magnetic braking catastrophe” (e.g. Allen et al., 2003; Galli

et al., 2006; Hennebelle & Fromang, 2008; Li et al., 2014). Indeed, disk formation should be

completely suppressed in the strict ideal MHD limit for the level of core magnetization deduced

from observation – the angular momentum of the idealized collapsing core is nearly completely

removed by magnetic braking close to the central object (e.g., Mestel & Spitzer, 1956; Mellon
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& Li, 2008). These results seem to be in contrast to the observed existence of Keplerian disks

around Class 0 protostellar objects.

Magnetic fields support charged gas against gravitational collapse. A common characteri-

zation of the relative importance of the gravitational and magnetic forces in a molecular cloud or

core is the normalized mass-to-flux ratio,

µ ≡ M/ΦB

MΦ/ΦB

=
M

MΦ

, (5.1)

where M is the total mass contained within a spherical region of radius R, ΦB = πR2B is the

magnetic flux threading the surface of the sphere assuming a uniform magnetic field strength B,

and

MΦ = cΦ
ΦB√
G
, (5.2)

is the magnetic critical mass, the mass at which the magnetic and gravitational forces balance

each other. The constant cΦ is a dimensionless coefficient that depends on the assumed geometry

of the system. For a spherical cloud of uniform density, cΦ =
√
10/(6π) = 0.168. However,

the mass-to-flux ratio µ should be used with caution, since the definition of the critical value

dependents on the geometry of the gas and the magnetic fields.

In a sub-critical cloud (defined as a cloud with µ < 1), the magnetic field should prevent

the collapse of the cloud core altogether. Observations suggest typical values of µ ≈ 2 − 10 in

molecular cloud cores (e.g. Crutcher, 1999; Bourke et al., 2001), and this value could be even

smaller after correcting for projection effects (Li et al., 2013). Moreover, analytical predictions

(Joos et al., 2012) suggest that there are no centrifugally-supported disks in models with µ ≤ 10,
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although there are pseudo-disks which are disk-like over-densities of gas in which the magnetic

fields, rather than the centripetal force, support the gas against collapse in the radial direction.

More recent studies have explored how magnetic configurations, i.e., misalignment, may

reduce the power of magnetic braking. Joos et al. (2012) and Gray et al. (2018) explored the

misalignment between the magnetic field and the rotation axis of the gas. However, in models of

Joos et al. (2012) with µ = 2, disks never form, independent of the misalignment angle. Thus, the

effect of misalignment on disk formation is inconclusive. Several studies have investigated the

effects of turbulent initial magnetic fields on disk formation (e.g. Santos-Lima et al., 2012; Joos

et al., 2013; Li et al., 2014; Fielding et al., 2015; Gray et al., 2018; Lewis & Bate, 2018). How-

ever, these simulations reach contradicting results, with some suggesting increased turbulence

promotes disk formation while others suggest it hinders disk formation. Seifried et al. (2013)

argued that the turbulent velocity field diffuses the magnetic field and makes the structure of the

magnetic field less coherent, producing disks 50 – 150 AU in size in strongly magnetized cores.

These works have shown that misalignment and turbulence can promote disk formation. How-

ever, none of these previous studies predicts the formation of large disks (> 500 AU) in strongly

magnetized cores, even in cores that are massive (e.g., > 100 M⊙). However, the existence of

massive disks is revealed by recent radio/mm and optical/IR observations (Zapata et al., 2007;

Sánchez-Monge et al., 2010; van Kempen et al., 2012; Takahashi et al., 2012; Johnston et al.,

2015, 2020). For example, Johnston et al. (2015) and Johnston et al. (2020) observed disks of

radii ≳ 1000 AU around an O-type star. The initial conditions of prestellar core collapse will

likely play an important role in determining disk formation.

Motivated by the above discussion, we present this study of circumstellar disk formation

from realistic initial conditions of strongly magnetized cores resolved in simulations of∼ 104 M⊙
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GMC/core name µ0 M B (µG) MA β ∆xmin (AU)
µ3Ma15 3 15 10 5 0.1 60
µ3Ma15-large∗ 3 15 10 5 0.1 60
µ1Ma15 1 15 30 1.7 0.01 60
µ0.6Ma15 0.6 15 50 1 0.004 60
µ3Ma7 3 7 5 5 0.5 29
µ3Ma7-hires 3 7 5 5 0.5 7
µ1Ma7 1 7 15 1.7 0.06 29
µ0.6Ma7 0.6 7 25 1 0.02 29

Table 5.1: List of zoom-in simulations presented in this chapter. All the cores are chosen as the
first star-forming core in the corresponding GMC, except for the one with a ∗, which is chosen
from the later stage of the GMC evolution and is a very massive core with over 100 M⊙.

GMCs, along with realistic boundary conditions from the co-evolving GMC. This is an extension

of the work presented in He & Ricotti (2022) (hereafter Paper I), in which we studied the for-

mation and fragmentation of high-mass prestellar cores and the formation of large circumstellar

disks. In this work, we focus on the magnetic phenomenon and the influence of varying magnetic

intensity.

The rest of this chapter is organized as follows. We describe the methods in our simulations

in § 5.2. We present the results in § 5.3, where we provide a solution to the magnetic braking

catastrophe. We summarize our conclusions in § 5.4.

5.2 Method

In Paper I we have conducted a set of “zoom-in” radiation-MHD simulations of prestellar

core formation and evolution within collapsing GMCs. In this work we extend the set of simu-

lations to explore the effects of stronger magnetic fields. We present a suite of six “zoom-in”

simulations of prestellar cores in molecular clouds with varying magnetization and turbulence.

We summarize the key parameters of the simulated GMCs and cores in Table 5.1. Two GMCs,
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µ3Ma15 and µ3Ma7 are fiducial runs with the same initial magnetization (µ0 = 3.0) as those

presented in Paper I and in He et al. (2019), in which we present the results for the larger scale

GMCs evolution. The two clouds have initial turbulent Mach numbers M = 15 and M = 7

and masses of 3 × 104 M⊙ and 3 × 103 M⊙, respectively. These two GMCs are the XS-C and

M-C clouds in He et al. (2019), respectively. They both have an initial average number density

of 1000 cm−3. The other four GMCs on which we zoom in (µ1Ma15, µ1Ma7, µ0.6Ma15,

and µ0.6Ma7) have the same properties as the two fiducial clouds but increased magnetic field

intensities with µ0 = 1.0 and µ0 = 0.6, as shown by the name of the run. We also list the Alfven

Mach number MA and the Plasma beta β of the initial GMC, as well as the spatial resolution

∆xmin of the zoom-in simulations.

For all the six zoom-in simulations mentioned above, we zoom into the first cores forming

in each GMC, and study their subsequent collapse. In this work we also include two extra cores

selected from Paper I: 1) µ3Ma7-hires – which corresponds to Core A-hr in Paper I – is

a higher-resolution zoom-in version of µ3Ma7; 2) µ3Ma15-large corresponds to Core B in

Paper I, which is a very massive core that forms in the later stage of star formation in the fiducial

GMC µ3Ma15.

The sink particle (star formation) and stellar feedback recipes and “zoom-in” method used

in this work are described in Paper I. Here, we provide only a brief summary. We perform si-

mulations of star formation using the grid-based adaptive mesh refinement (AMR) MHD code

RAMSES-RT (Teyssier, 2002; Fromang et al., 2006). Radiation transfer is modelled using a

moment-based method with the M1 closure relationship for the Eddington tensor (Rosdahl et al.,

2013). The ionizing photons emitted from stars interact with neutral gas and we keep track of the

time-dependent ionization chemistry of atomic hydrogen and helium, but we do not include the
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Figure 5.1: (Top) Surface density of the cores µ3Ma15, µ1Ma15, µ1Ma7, and µ0.6Ma15,
showing their morphology at t = 0, shortly before the formation of stars. (Bottom) Density
slices of the corresponding cores centred at the peak density overplotted with magnetic field
streamlines. The field of view and viewing angle orientation are the same as in the top panels.
The magnetic field streamlines are colour-coded according to their magnitudes and a colorbar is
shown at the bottom-left corner. Note how the surface density of the core µ0.6Ma15 does not
intuitively reflect the actual geometry of its sheet-like shape.

chemical evolution of the molecular phase and metal chemistry, used only for cooling/heating

rates, is treated assuming equilibrium abundances. Heating from photoionization and cooling

from hydrogen and helium, metals, and dust grains are implemented. Cooling below 10 K is shut

down to keep the temperature floor at 10 K. The photoionization feedback from stars heats the

gas, dispersing the cloud and quenching star formation.

The baseline simulations of GMCs are started from idealized spherical isothermal clouds

in hydrostatic equilibrium surrounded by a low-density shell, in which gravity is nearly balanced

by turbulent motions (α ≡ K/|W | = 0.4). The clouds measure 3×103 M⊙ (3×104 M⊙) in mass

and 4.6 pc (10 pc) in radius for the Ma7 (Ma15) runs. The simulation box is 4 times larger than
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the diameter of the cloud to follow the expansion and dissolution of the cloud. We let the cloud

relax for three free-fall times to allow the turbulence to develop before turning on full gravity and

sink particle formation (i.e., star formation). Adaptive mesh refinement is applied to the whole

domain to make sure at any time and any location the local Jeans length, LJ = cs
√
π/(Gρ), is

resolved by at least 10 grid points. The maximum refinement level lmax is set to 14 in the whole

domain.

In the zoom-in simulations presented in this work, we rerun each GMC simulation starting

right before the first sink particle (prestellar core) forms in the baseline run. We define a “zoom”

region, about 2 pc in size, at the location where the first core forms and set a higher refinement

level of lmax = 18 inside this region. To reach the best possible resolution with manageable

computational power, we use a nested refinement structure where lmax increases as it gets closer

to the domain centre. The critical density for sink formation is nsink = 3.6 × 109 cm−3 and

7.7× 108 cm−3 for the Ma7 and Ma15 clouds, respectively.

In order to measure the cloud magnetization we use an alternative formulation of the di-

mensionless mass-to-flux µ given by Equation (5.1), which is more reliable for systems that

depart from uniform density and physical symmetry. The following definition remains accurate

for general inhomogeneous mass distribution and/or asymmetric geometry:

µ2 ≡ |W |B =
18π2

5

GM2

Φ2
B

=
M2

M2
Φ

. (5.3)

Here, W is the gravitational potential energy and B ≡ V B2/(8π) is the magnetic energy. The last

equal sign holds for the uniform spherical geometry, in which case the µ defined in Equation (5.3)

is equivalent to the mass-to-flux ratio definition. For a more centrally concentrated geometry, e.g.,
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a non-singular isothermal sphere, the equivalent geometrical factor cΦ is up to 70% higher and µ

is 40% lower than the uniform density case (see Appendix C.1).

5.3 Results

In this section we present results focusing on the core morphologies and evolution in

§ 5.3.1, the magnetic field-gas density relationship in § 5.3.2, the pressure support of the disks in

§ 5.3.2, and a solution to the magnetic braking problem in § 5.3.4.

5.3.1 Morphology of Gas Density and Magnetic Field in Cores

For the same GMC simulation and sink particle we zoom into, the strength of the back-

ground magnetic field has an effect on the early phase of collapse and the initial morphologies of

the collapsing cores. The top row of Figure 5.1 shows the surface density of the gas for a repre-

sentative set of 4 simulations while to bottom row shows the density in a slice through the same

filament and the magnetic field lines. In the weaker magnetic field cases (µ3Ma15, µ1Ma15, and

µ1Ma7), the core collapses starting from a gas filament oriented perpendicular to the magnetic

field lines. This nearly one-dimensional structure is denser near its centre of mass and the density

decreases in the outer parts of the filament. Both the projection plots and the slice plots show

similar morphology and orientation of the filament geometry, which is also confirmed by an in-

spection of the 3D rendering of the gas density. In the stronger magnetic field case (µ0.6Ma15),

the gas also collapses along the field lines but into a two-dimensional sheet-like structure. The gas

surface density of the sheet is also not uniform and the peak density defines a one-dimensional

curve, or filament, that is not necessarily oriented perpendicular to the B-field lines. This can be
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µ3Ma15 µ1Ma15 µ1Ma7 µ0.6Ma15

Figure 5.2: Density projections of the four cores (from left to right) inspected in Figure 5.1,
showing their time evolution (from top to bottom) and the formation of stars. The circles mark
the positions of the sink particles which represent individual stars. The colors of the circles, from
white to dark green, correspond to their masses from 0.1 M⊙ to 10 M⊙ in log scale. A large
Keplerian disk forms in all cores in GMCs with µ0 ≳ 1. In the case where µ0 < 1 (µ0.6Ma15),
the core collapses into a sheet-like shape with negligible angular momentum with respect to the
center of mass, preventing disk formation.

observed in the projection plot for run µ0.6Ma15 in Figure 5.1, showing a filament structure

apparently oriented along the B-field lines. However, the slice plot indeed shows the magnetic

field lines threading through the sheet are perpendicular to its surface. To summarize, since the

surface density is the quantity more readily observable, in the weak B-field case the surface den-

sity maps reflect the actual filamentary shape of the gas leading to core formation. In the strongly

magnetized cloud, however, the surface density map may lead observers to mistakenly think that

the structure is a filamentary or disk-like structure rather than a two-dimensional sheet structure.

During the next stage of collapse, the gas fragments along the filament or along the central
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Figure 5.3: Temporal evolution (from left to right) of the magnetic field morphology of core
µ3Ma15-hires in a face-on view (top row) and edge-on view (bottom row). Each panel shows
a slice of the gas density centred at the peak density overplotted with magnetic field streamlines.
The color of the streamlines shows the magnetic strength as indicated by the colorbar at bottom
right. Note that the last column shows a zoomed view of the center of the disk for the same time
snapshot shown in the third column panels. These figures show how the magnetic field lines are
wound up as the disk forms and that the magnetic field is extremely turbulent especially near the
disk centre.

Figure 5.4: 3D view of the magnetic field lines on top of the volume rendering of the disk
µ3Ma15-hires. The rendering in blue shows the gas at densities above 106 cm−3. The tubes
indicate the direction of the field lines and their colours indicate the strength of the magnetic field
with red to blue meaning strong to weak. The disk measures 10,000 AU in diameter.
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high-density line of the sheet (Figure 5.2). In the supercritical/critical (µ0 ≥ 1) cases, the core

fragments into multiple stars along the filament. Due to the conservation of angular momentum,

the filament spirals inward and forms a Keplerian disk. The fragments are ultimately embedded

in the Keplerian disk, as already shown in our previous work (Paper I). In the cases where µ0 < 1,

the sheet-like structure collapses toward the central high-density line. When the central density

reaches the local Jeans density, the gas collapses to form numerous stars that are clustered into

clumps. Due to magnetic braking, as will be discussed in § 5.3.4, the angular momentum of

the gas is transferred outward and the gas flows directly into the centre of local clump without

forming a disk.

To take a peek at how the magnetic field morphology evolves over time, we plot the mag-

netic field lines of core µ3Ma7-hires at four snapshots in Figure 5.3. As the cores collapse,

the magnetic field is bent by the rotation of the gas through the dynamo effect. The field lines are

twisted and the magnetic strength is enhanced at the disk centre, which is also demonstrated by

the 3D volume rendering of the magnetic field lines in Figure 5.4. The field is dominated by the

toroidal component in the inner region and by the poloidal component in the outer region, which

has implications on the strength of magnetic braking as will be discussed in § 5.3.4.

5.3.2 B − ρ Relationship

Understanding the relationship between density and magnetic field, as well as their physical

origin, is crucial for both observations and theoretical models. According to simple models (e.g.,

Crutcher, 1999), the magnetic field and gas density of a collapsing molecular cloud follow a

power-law scaling relationship, B ∼ ρκ. Assuming flux-freezing in ideal MHD, in the scenario
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Figure 5.5: The global B − ρ relationship at GMC scales for the µ3Ma15, µ1Ma15, µ1Ma7,
and µ0.6Ma15 runs. At low density (≲ 103 cm−3), the magnetic field intensity is independent
on the density and the global value is determined by the initial magnetization. At high density up
to ∼ 109 cm−3, we find a universal B − ρ relation: B ≈ 86 µB (n/105 cm−3)1/2, corresponding
to a constant Alfven velocity of ∼ 0.5 km/s. The first four panels show the 2-D phase diagram
of magnetic intensity B vs gas number density n of the four clouds, respectively, and the colors
representing the log of the gas mass with increasing mass from dark to bright. The red curves are
the mass-weighted 1-D relationship. The last panel plots the Alfven velocity vA as a function of
n, converted from the 1-D B − n relationship for all four clouds.

of the isotropic collapse of a spherical cloud threaded by uniform parallel magnetic field lines,

the relationships B ∝ R−2 and ρ ∝ R−3, imply B ∝ ρ2/3. In the scenario of the anisotropic

collapse of a flattened structure or disk, the evolution of the gas collapse consists of two stages:

during the first stage the cloud collapses along the field lines to form a disk. The gravitational

acceleration at the disk surface, according to Gauss’s law, is approximately g ≈ −2πGΣ, where

Σ = ρH = M/(πR2) is the gas surface density, and H , R and M are the disk thickness,

radius and mass, respectively. In the second stage, assuming flux-freezing, the mass-to-flux ratio

M/ΦB = Σ/B is conserved, therefore B ≈ ΣΦB/M . Assuming g ≈ σ2/H , i.e., the disk is
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Figure 5.6: Enhancement of the magnetic intensity at high density inside the core µ1Ma15. The
first panel shows the temporal evolution of the mass in stars and in disk. The rest of the panels
show 2-D phase diagram of B − n, similar to Figure 5.5, inside the core at various times as
marked in the first panel. We show that as the gas is accreted by sink particles while the magnetic
field is retained outside, the magnetic intensity is boosted by nearly an order of magnitude at a
density above 107 cm−3. As the accretion stops, the strong magnetic field disperses itself due to
magnetic pressure/tension.

supported by turbulent pressure in the vertical direction, we find σ2 ≈ 2πGρH2 ∼ 2πGΣ2/ρ.

Therefore,

B ≈ σ√
2π cΦµ

ρ1/2, (5.4)

or expressed in terms of the Alfven velocity

vA =
B√
4πρ
≈ σ

2
√
2πcΦµ

. (5.5)
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An even simpler interpretation of this relation is the equipartition between magnetic and kinetic

energy, B2/(4π) ∝ ρσ2, noting that

v2A
σ2

=
1

8π2c2Φµ
2
=

0.45

µ2
. (5.6)

In flattened cores where µ is marginally greater than 1, this relationship predicts that magnetic

pressure is slightly weaker than turbulent pressure.

5.3.2.1 B − ρ Relationship in GMCs

It is well established (Troland & Heiles, 1986; Crutcher et al., 2010) that at low densities (≲

103 cm−3), the intensity of the magnetic field does not depend on gas density. This phenomenon

is clearly seen in our simulations (Figure 5.5), and the intensity is determined by the strength

in the initial condition. At higher densities, up to ∼ 109 cm−3, the magnetic field scales with

density as B ∝ ρ1/2, resulting in a universal value of the Alfven velocity of vA ∼ 0.5± 0.1 km/s.

This exponent suggests that the collapse is anisotropic in all clouds, regardless of whether the

turbulent energy is stronger (MA = 5) or equal to the magnetic energy (MA = 1). This result

differs from a previous study (Mocz et al., 2017), which suggests that the collapse is isotropic

(B ∝ ρ2/3) when turbulence dominates over the magnetic field and transitions into anisotropic

when magnetic energy dominates. In Figure 5.5 we show phase plots of B vs gas number density

n for GMCs with a range of µ0 from 3 to 0.6 and for turbulent Mach numbersM = 7 and 15. The

red line, showing the median value of B at a given n, suggests that the Alfven velocity derived

from this median relationship is nearly constant independently of µ0 andM. It is important to

note, however, that the Alfven velocity is only approximately constant above the critical density,
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and the exact value may also depend on other properties of the cloud. In Section 5.3.2.3, we

will explore the physical mechanisms that govern the scaling of the magnetic field with density

in more detail. The critical density at which there is a transition from B = B0 = const. to

vA = const. is:

ncr ≡
1

4πmHµH

(
B0

vA

)2

≈ 2.2× 104 cm−3

(
B0

30 µG

)2

. (5.7)

This critical density is roughly consistent with the observed density of cores in GMCs, suggesting

that cores form when the magnetic field is no longer strong enough to support the cloud against

gravitational collapse.

5.3.2.2 B − ρ Relationship in Cores

In Figure 5.6, we show the B − ρ relationship at smaller scales in the zoom-in simulations

(for gas in the cores). Also in the cores, the B − ρ relationship follows the same universal

relationship B ∝ ρ1/2 with the same normalization as at GMC scales (Figure 5.5). However, at

densities > 107 cm−3we notice that the magnetic field intensity at a given density is enhanced

with respect to the universal value when the sink particle accretes gas. Probably this phenomenon

is a result of the release of magnetic field during sink accretion, as the sink particles accrete gas

but not magnetic field, hence the conservation of mass-to-flux ratio, valid in ideal MHD, is broken

within the sink particles. This recipe for sink accretion is particularly motivated by the magnetic

flux problem in star formation: the mass-to-flux ratio in a star is 105−8 times higher than that

at the cores’ scale. The boost in the B field at a given ρ persists as long as the sink particle is

accreting gas. Shortly after the accretion stops, the magnetic field strength reduces back to the
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average value following the global B − ρ relationship. Evidently, the accumulation of B-field

lines in the sink produces a temporarily stronger magnetic pressure diffusing the magnetic field

lines outward.

5.3.2.3 Interpretation of the Universal B-ρ Relationship

In all the phase plots we observe two regimes: (A) a low-density regime where the mean of

the magnetic field is constant as a function of ρ, even though the spread around the mean can be

large, especially for weaker values of the initial B-field (large µ cases); (B) a high-density regime,

where B ∝ ρ1/2, or vA = const(ρ). These two regimes are observed for the GMC as a whole (in

this case the constant B value is the one set in initial conditions), and for individual cores: in this

second case the constant B value regime is the one at the boundary of the core where the density

is lowest.

The regime (A) is the case when the density of the gas can increase or decrease while

leaving B constant: this happens when the motion of the gas is along the magnetic field line.

For instance, the initial turbulent motions of the gas can compress or de-compress the gas: when

the gas is compressed (de-compressed) in the direction of the magnetic field lines, B remains

the same but the density increases (decreases). If the motion is perpendicular to B, the value

of B can increase or decrease for compression/decompression. However, this will just produce

a constant scatter in the B − ρ relationship around the mean if there is no preferred direction

for the turbulence (isotropic turbulence). We expect the scatter around the mean to be small

for smaller µ, as the stronger magnetic tension/pressure suppresses compression/de-compression

perpendicular to the B-filed direction. This is indeed observed in Figure 5.5.
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This regime no longer exists at cores scales (high densities) when the gas motion is no

longer isotropic, rather it is mostly compression due to the self-gravity of the cores. Assuming

that cores can be initially approximated as isothermal spheres embedded in a uniform magnetic

field supported by thermal and turbulent pressure in the direction of the magnetic field lines,

one can apply the derivation in § 5.3.2 and Eq. (5.6). After the initial phase of compression in

the z-direction at constant Σ and B, any further density increase is produced by compression

perpendicular to the B-field lines, producing B ∝ ρ1/2 or vA = const(ρ). But what sets the

constant value of vA ∼ 0.5 km s−1 observed across different scales and densities?

The value of σ and µ in Eq. (5.6) are not the initial values for the GMC, but rather the initial

values for self-gravitating cores. If the cores are in quasi-hydrostatic equilibrium supported by

turbulence and magnetic pressure, W ∼ (B+Kturb). If the initial value of the magnetic pressure

is comparable to or dominates over turbulence we expect µ ≡
√
|W/B| ∼ 1. Assuming that the

core is marginally Jeans unstable and partially supported by turbulent pressure, the equivalent

Jeans mass is given by

MJ =
π5/2

6

σ3

(G3ρ)1/2
, (5.8)

where σ is the rms of the turbulent velocity. In GMC simulations by He et al. (2019) the typical

masses of prestellar cores (the most numerous cores in the core mass function) is M ≈ 1−5 M⊙,

and n = 107 cm−3 is their typical gas number density. Using these values in Eq. (5.8) we

get σ ≈ 0.6 km/s. Finally, using Eq. (5.6) with µ ∼ 1 we have vA ≈ 0.67σ ≈ 0.4 km/s,

in agreement with the mean value for the whole GMC and for individual cores. Because σ is

weakly dependent on MJ and the core mass function in the GMC is dominated by small-mass

cores with M ∼ 1 − 5 M⊙, most of the dense gas in the GMC is in cores with σ ∼ 0.6 km/s.
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Figure 5.7: The magnetic, turbulent, and thermal support of the cores and disks. From left to
right are the cores µ3Ma15, µ1Ma15, µ1Ma7, and µ0.6Ma15. Row 1: the mass-to-flux ratio
radial profile of the gas at the core phase (initial time t = 0) and disk phase (later stage) as
a function of radius. Row 2: radial profiles of the Alfven velocity, turbulence velocity, sound
speed, and Keplerian velocity at the core phase as a function of the radius. Row 3: radial profiles
of the Alfven velocity, z-component turbulent velocity, sound speed, and the effective velocity of
support veff = (v2A+σ(vz)

2+c2s)
1/2 during the disk phase as a function of the radius in cylindrical

coordinates. Row 4: radial profiles of the effective velocity, the azimuthal velocity, and the
Keplerian velocity during the disk phase as a function of the radius in cylindrical coordinates.
Quasi-Keplerian disks with vϕ ≈ vkep extending to radii rcyl ∼ 500 − 5000 AU form in all
runs but µ0.6Ma15. The cores are initially supported by magnetic pressure, while thermal and
turbulent pressures are sub-dominant. The toroids that form in the cores are supported by both
turbulent and magnetic pressure, with the former slightly dominating in the quasi-Keplerian disks
found in the inner part of the cores (≲ 1000 AU) and the latter slightly dominating in the outer
part (toroid). Thermal support is negligible in all the massive cores in this study.
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Therefore, in the high-density regime vA ≈ 0.4 km/s when averaged over the whole cloud. Note,

however, that our most massive cores have M ∼ 130M⊙. Indeed, the B-ρ phase diagram for the

most massive core in our set (µ3Ma15-large) shows higher values of vA, consistent with our

interpretation.

5.3.3 Magnetic and Turbulent Support in the Cores and Disks

The cores initially have nearly critical magnetic field strengths, with values of the mass-to-

flux ratio radial profiles, µ(r), ranging from 0.5 to 2 from the inner to the outer part of the core

(see the top row in Figure 5.7). The µ radial profiles in cores that form from GMCs with different

initial magnetic field strengths are virtually indistinguishable from each other: the mass-to-flux

ratio in the µ0.6Ma15 core is only slightly lower than that in the µ3Ma15 core. This is likely

due to a selection effect because magnetically sub-critical “clumps” would fail to collapse and

form a sink particle. During the quasi-spherical initial collapse of the cores, the magnetic pressure

dominates over the turbulent and thermal pressure, and the core is nearly in hydrostatic equilib-

rium with the magnetic pressure supporting the core against gravitational collapse as shown by

vkep ∼ vA in the panels in the second row of Figure 5.7.

The bottom two rows in Figure 5.7 show that, as the core collapses, the turbulence is

amplified especially in the inner parts of the disk/core. In the outer disk, turbulent kinetic energy

and magnetic energy are nearly in equipartition. In the disk, the Alfven velocity (vA) remains

around 1 km/s, occasionally increasing to 5 km/s in the inner part. The effective velocity, v2eff =

v2A + σ2 + c2s, always approaches the Keplerian velocity within the disk radius, while it drops

significantly below vkep outside of the disk radius. The disk remains quasi-Keplerian (vϕ ≈ vkep)
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up to a characteristic radius of about 1000± 500 AU in all the cores but the sub-critical one with

µ = 0.6: in this run vϕ << vkep at all radii and a Keplerian disk fails to form (see Figure 5.2).

The grey dashed lines in the top row of Figure 5.7 show the µ profiles of the disks at late

times. The disks have µ(r) ∼ 10 in the inner parts where turbulent support is dominant, but µ(r)

decreases to ∼ 2 in the outer envelope. This decrease of µ(r) in the outer parts of cores has al-

ready been observed: Yen et al. (2022) has shown that the mass-to-flux ratio increases from 1-4 to

9-32 from 0.1 pc to 600 AU scales, which suggests that the magnetic field is partially decoupled

from the neutral matter from large to small scales. The authors suggest non-ideal MHD (e.g.,

ambipolar diffusion) as the cause of this µ radial profile that allows the formation of a Keplerian

disk. In our simulations, modelling of non-ideal MHD processes is not included in our equations,

other than indirectly in our recipe for sink accretion: sinks accrete mass, momentum and angular

momentum but not magnetic field. Hence, a deviation from flux-freezing is caused by the accu-

mulation and subsequent diffusion of the magnetic field within sink particles described before.

The increase of µ in the inner part is mainly produced by the increase of the gravitational poten-

tial energy |W | from the mass increase of the sink particle which, however, does not accumulate

magnetic energy.

5.3.4 Magnetic Braking Problem

As discussed before, the formation of a toroid or a disk can be suppressed or its radius

reduced by magnetic braking. The spinning of the gas twists up the magnetic fields, creating a

tension force that opposes rotation. The magnetic field exerts a Lorentz force per unit volume on
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Figure 5.8: Explanation of the weak overall magnetic braking in disk µ3Ma7-hires. From
left to right are the distributions of the radial component of the magnetic field, the azimuthal
component of the magnetic field, and their product, which is proportional to of t−1

br , as a function
of disk radius in cylindrical coordination. The thick curve displays the median values and the
shaded area displays the 1-σ and 3-σ contours for the probability distribution function. Positive
and negative values of BrBϕ (therefore tbr) cancel each other, resulting in a small overall mag-
netic braking effect.

the fluid element which, at a given radius r, can be written as

f =
1

4π
[(∇×B)×B] (5.9)

=
1

4πr
[Bp · ∇p(rBϕ)] ϕ̂ (5.10)

=
1

4π

(
BrBϕ + rBr

∂

∂r
Bϕ + rBz

∂

∂z
Bϕ

)
ϕ̂ (5.11)

≈ BrBϕ

4π
ϕ̂, (5.12)

where we have only considered the ϕ component of the torque and assumed that the gradient of

Bϕ with respect to the z-direction vanishes due to symmetry. The second term in the parenthesis

of Equation (5.11) is negligible compared to the first term for a B-field with azimuthal component

that is nearly constant as a function or radius (i.e., d lnBϕ/d ln r < 1). Therefore, we have

d

dt
(ρvϕ) = −

|f |
r
≈ −BrBϕ

4πr
. (5.13)
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The magnetic braking time is defined as the characteristic timescale for the magnetic torque to

remove completely the gas angular momentum:

tbr =
ρvϕ

− d
dt
(ρvϕ)

≈ 4πρvϕr

BrBϕ

. (5.14)

To compare tbr with the dynamic timescale, we assume BrBϕ ≈ B2 and get

tbr ≈
4πρvϕr

B2
=

(
vϕ
vA

)2
r

vϕ
=

(
vϕ
vA

)2

tcr. (5.15)

This means that if a cloud has a magnetic field nearly in equipartition with gravitational potential

energy and if the field is marginally wound up such that the poloidal and toroidal components

become comparable, we expect tbr ∼ tcr, i.e., the field is capable of stopping Keplerian rotation

in a timescale of the order of the disk rotation period. For instance, at r = 500 AU in the disk

of core µ3Ma15, vϕ ≈ 6 km/s, vA ≈ 1 km/s, and tcr = 0.4 kyr. From Eq. (5.15) we have

tbr ≈ 36tcr ≈ 14 kyr that is significantly shorter of the disk lifetime ≳ 300 kyr. A timescale tbr a

factor of two times longer is obtained if we assume BrBϕ ≈ B2/2.

However, (near-)Keplerian disks can exist in strongly magnetized cores, as demonstrated

by both our simulations and numerous observations. As shown in Figure 5.7, within the typical

radius of disks (∼ 2000 AU) the azimuthal velocity is nearly Keplerian velocity (vϕ ∼ vkep).

Previous numerical studies have also shown that, when turbulence was taken into account, the

build-up of early-type Keplerian disks was reported even for strong magnetic fields (Santos-Lima

et al., 2012; Seifried et al., 2013). In general, these results are based on idealized initial condi-

tions, not extracted from turbulent GMCs. The particular choice of the initial conditions, namely
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the inclusion of supersonic or near-supersonic turbulence determines the disk formation for a

given strength of the magnetic field. However, no large Keplerian disks with radii > 100 AU

were found in those simulations, even in very massive cores. Using realistic initial conditions

extracted from larger scales in GMCs with different initial magnetization, we also find that the

controversy surrounding the timescale for magnetic braking and the critical µ value suppress-

ing disk formation can be attributed to the turbulent and incoherent nature of magnetic fields in

turbulent cores/toroids. In Figure 5.8, we plot the distribution of the toroidal and poloidal com-

ponents of the magnetic field, Bϕ and Br, as a function of the distance to the disk centre for core

µ3Ma7hires. We can see that while the azimuthal component of the magnetic field is mostly

directional, the radial component, on the other hand, evenly scatters around zero. The radial

component Br is extremely turbulent and the turbulent velocity rms is roughly of equal strength

with respect to the median velocity and the velocity rms of the azimuthal component (Figure 5.9).

Consequently, the magnetic torque, proportional to BrBϕ, also scatters around zero. This results

in the torque exerted on the gas cancelling itself out, greatly weakening the magnetic braking

effect. This reduction of roughly a factor of ten of the torque increases the braking timescale tbf

by the same factor, ultimately influencing the longevity and stability of the disks.

As demonstrated by Figure 5.9, showing the radial profile of the mean and rms of Bϕ,

Br and BrBϕ for three cores in Table 5.1, this incoherent character of the magnetic field does

not depend on the initial turbulence of the GMC, which ranges from M = 7 to 15, nor on

the magnetic strength, which ranges from marginally-supercritical to critical (1 < µ < 3). Disk

µ1Ma15 has the strongest magnetic strength (lowest µ) in the disk and also the smallest degree of

turbulence-induced weakening of the magnetic braking effect among the three disks inspected.

We have also performed a resolution study, presented in Appendix C.2, to rule out resolution
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Figure 5.9: The extremely turbulent and incoherent magnetic field on the circumstellar disks as
a solution to the magnetic braking problem. The columns from left to right are disks µ3Ma15,
µ1Ma15, and µ1Ma7, respectively. Top row: the mean and standard deviation of the azimuthal
component of the B field as a function of the cylindrical radius. Second row: the mean and
standard deviation of the radial component of the B field. Third row: the mean and standard
deviation of the products of the azimuthal and radial components of the B field. Bottom row:
The ratio of the magnetic braking time, tbr ∝ |⟨BrBϕ⟩|−1, to the naive estimation, proportional
to ⟨(BrBϕ)

2⟩−1/2 ≈ ⟨B2⟩−1.
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effects as cause for the formation of large disks.

5.3.5 Evidence for Magnetically-Driven Winds

Protostellar outflows, which are streams of gas emitted from young, low-mass protostars,

have been the subject of many studies in recent years (Arce & Shepherd, 2007; Bally, 2016). The

outflows are of great interest to astrophysicists because they are believed to play a significant role

in star formation, shaping the structure and composition of the interstellar medium.

Our simulations have revealed the ejection of neutral gas from one of the poles of the

circumstellar disk, as shown in Figure 5.10. We believe that this outflow is caused by strong

magnetic tension or pressure gradients, which are captured by our MHD simulations even though

we do not include a sub-grid model for protostellar outflows. Magnetically-driven outflows with

velocities of a few km/s specifically occur at the low-density poles of the disk where the plasma

beta is extremely low, indicating that the magnetic pressure is much stronger than the thermal

pressure. This provides strong evidence for the existence of magnetically-driven winds around

young protostars, which are thought to be driven by the conversion of gravitational energy into

magnetic and kinetic energy (Bontemps et al., 1996). This process contributes to driving the

outflow through magnetic pressure or magneto-centrifugal forces around the circumstellar disk.

Overall, our simulations provide valuable insights into the formation and evolution of

young protostars and the role of magnetic fields in these processes. Further research and ob-

servations will be needed to fully understand the complex interplay between magnetic fields,

gravitational energy, and the evolution of young protostars.

180



Figure 5.10: Demonstration of magnetically driven outflow from the disk µ3Ma7-hires, also
shown in Figure 5.3. (Top left): a density slice extracted from an edge-on view of the disk
through its center, with overplotted velocity field. The vectors show the direction of gas velocity,
and their length indicates the magnitude with a scale bar shown at bottom left of the panel. The
circles mark the positions of stars. The colors of the circles, from white to dark green, correspond
to their masses from 0.1 M⊙ to 10 M⊙ in log scale. (Top right): gas temperature divided by
mean molecular weight T/µ. (Bottom left): magnetic pressure. (Bottom right): plasma beta
β = pth/pmag. The outflow is driven by the magnetic force at the poles where the density,
temperature and thermal pressures are low, while the plasma beta is extremely small indicating
dominance of magnetic pressure over thermal pressure by 3 to 4 orders of magnitude.
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5.4 Summary

We have studied the collapse of strongly magnetized prestellar cores from a set of zoom-

in radiation-MHD simulations of star formation in GMCs. The study includes a suite of six

simulations of prestellar cores in molecular clouds with varying magnetization (µ0 = 3, 1, 0.6)

and turbulence (M = 15, 7). We come to the following main conclusions:

1. We find a universal B-ρ relationship, B ≈ 86 µG(n/105 cm−3)
1
2 , for number density in the

range between 105 cm−3 and 109 cm−3 in the evolution of magnetically critical or marginally

super-critical GMCs, regardless of the initial magnetic intensity or cloud size (see Figure 5.5).

2. Magnetic fields at a given density are enhanced by up to 10 times in the highest density gas

near the protostar when the protostar forms and accretes gas from the environment (see Fig-

ure 5.6).

3. Keplerian circumstellar disks can form in critical and supercritical cores. Subcritical cores,

however, fragment into numerous low-mass clumps that undergo direct collapse without any

accretion, causing the absence of circumstellar disks (Figure 5.2).

4. Large disks can form in magnetically (near-)critical cores because the magnetic field is ex-

tremely turbulent and incoherent, which reduces the effect of magnetic braking by roughly one

order of magnitude (see Figure 5.9).

5. The cores at the initial phase are near critical with µ ranging between 0.6 and 2 (Figure 5.7).

The cores are initially supported by magnetic pressure, while thermal and turbulent pressures

are sub-dominant. The disks that form in the cores are supported by both turbulent and magnetic
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pressure, with the former slightly dominating in the inner part (≲ 1000 AU) and the latter slightly

dominating in the outer part. Thermal support is negligible.

6. Although our model does not have a sub-grid recipe for protostellar outflow, our simulations

have revealed magnetically-driven outflow of neutral gas from the poles of the circumstellar disk

(Figure 5.10) where the plasma beta is extremely low.

Despite the success of our model in reproducing some key features of circumstellar disk

formation, we acknowledge that it has known limitations. For instance, we do not account for

the effects of protostellar outflow/jet feedback, radiation pressure, and radiative heating by low-

energy photons on disk evolution. These feedback mechanisms could significantly alter the disk

structure and dynamics. In future work, we plan to incorporate more realistic stellar feedback

prescriptions in our code to overcome these limitations and improve the accuracy of our circum-

stellar disk models.

183



Chapter 6: A Fast and Accurate Analytic Method of Calculating Galaxy Two-

point Correlation Functions

In this chapter, we present a new analytic method to calculate the galaxy two-point corre-

lation functions (TPCFs) accurately and efficiently, applicable to surveys with finite, regular, and

mask-free geometries. We have derived simple, accurate formulas of the normalized random-

random pair counts RR as functions of the survey area dimensions. We have also suggested

algorithms to compute the normalized data-random pair counts DR analytically. With all edge

corrections fully accounted for analytically, our method computes RR and DR with perfect ac-

curacy and zero variance in O(1) and O(Ng) time, respectively. We test our method on a galaxy

catalogue from the EAGLE simulation. Our method calculates RR+DR at a speed 3 to 6 orders

of magnitude faster than the brute-force Monte Carlo method and 2.5 orders of magnitude faster

than tree-based algorithms. For a galaxy catalogue with 10 million data points in a cube, this

reduces the computation time to under 1 minute on a laptop. Our analytic method is favored

over the traditional Monte Carlo method whenever applicable. Some applications in the study

of correlation functions and power spectra in cosmological simulations and galaxy surveys are

discussed. However, we recognize that its applicability is very limited for realistic surveys with

masks, irregular shapes, and/or weighted patterns.
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6.1 Introduction

The two-point correlation function (TPCF) ξ(r) has been the primary tool for quantifying

large-scale cosmic structures (Peebles, 1980). ξ(r) is defined as the fractional increase relative

to a random Poisson distribution in the probability δP of finding objects in two volume elements

δV1 and δV2 separated by distance r:

δP = [1 + ξ(r)]n2dV1dV2, (6.1)

where n is the mean number density of objects (galaxies or dark matter halos).

The Fourier transform of ξ(r) is the galaxy power spectrum, which is often used to describe

the structure of the Universe (Peebles, 1980). Starting from Eisenstein et al. (2005), ξ(r) has

become a popular tool for the detection of the galaxy clustering signal at 150 Mpc known as the

baryon acoustic oscillations. It is a signature of the density difference that arose from the first

million years of the Universe.

Given a survey or simulation containing the 3D coordinates of all galaxies, the most straight-

forward way to estimate ξ(r) is to take the ratio of the number of data-data pairs, DD, to that

expected from a random distribution in the same area, the random-random pair counts RR, prop-

erly normalized, minus one:

ξ0(r) =

⌢

DD
⌢

RR
− 1. (6.2)

This is known as the natural estimator. Other estimators involving cross-pair separation count

DR between the data set and random set have been proposed to reduce the estimation variance,
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notably induced by edge effects. The Landy-Szalay estimator (Landy & Szalay, 1993),

ξLS(r) =

⌢

DD −2
⌢

DR +
⌢

RR
⌢

RR
, (6.3)

is the most commonly used estimator because it has minimal variance and converges to the direct

estimate the fastest (Kerscher et al., 2000).

For surveys with non-periodical boundary conditions, it is a common practice to measure

the average available bin using Monte Carlo integration, by generating a comparison random dis-

tribution of a large number of points over the same survey area. To reduce statistical fluctuations,

it is standard to use densely populated random fields, usually 50 times denser than the survey

population. Because the number of computations needed to measure the separations between N

objects scales as N2, the random-random pair counts RR dominates the computing time. For a

large survey or simulation, especially, the computation of RR can be extremely time-consuming.

Tree-based algorithms and codes exist that are much faster than the brute-force method

(Moore et al., 2001; Jarvis et al., 2004; Zhang & Pen, 2005). TREECORR, for instance, is a

widely used tree-based code that computes TPCFs in O(N logN) time (Jarvis et al., 2004). This

improvement in speed, however, comes with a sacrifice in accuracy. As pointed out in Siew-

ert et al. (2020), TREECORR shows noticeable errors in the computation of angular correlation

function under any setting that has a significant advantage in speed. Computationally efficient

approaches to calculating TPCFs have also been proposed (Demina et al., 2018; Keihänen et al.,

2019). However, they reply on a populated random catalogue and their efficiency and accuracy

are limited.

The random-random pair counts
⌢

RR (r) is a purely geometrical quantity that depends
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only on the geometry of the galaxy catalogue and the radial selection function in the case of

cosmological survey. The data-random pair counts
⌢

DR (r) is also a well-defined quantity given

a galaxy population in a given geometry. However, analytic methods of estimating pair counts

that apply to finite geometries are very sparse in the literature, with only two such works found

to our best knowledge. Demina et al. (2018) developed a semi-analytic method to compute RR

and DR in two of the three dimensions, but still using a random catalogue to account for angular

correlations. Breton & de la Torre (2021) proposed a method to estimate the angular pair counts

based on analytic integral expressions. This scheme, however, relies on conducting numerical

integrations of terms including the angular selection function over the full sky, which is non-

trivial for surveys in subregions of the sky or surveys with masks.

In this chapter, we derive analytic formulas of
⌢

RR (r) with simple closed-form expressions

and analytic algorithms of
⌢

DR (r) with perfect accuracy and zero variance, applicable to mask-

free surveys with regular geometries. 1 We apply these formulas and algorithms to a mock galaxy

catalogue from the EAGLE simulation (McAlpine et al., 2016) and assess the accuracy and speed

of the method compared to traditional methods that utilize random catalogues.

The remainder of this chapter is organized as follows. In Section 6.2 we derive analytic

formulas of
⌢

RR (r) for four groups of survey geometries. In Section 6.3 we estimate the frac-

tional corrections on
⌢

RR (r) caused by edge corrections. In Section 6.4 we present algorithms to

compute
⌢

DR (r) analytically. We compare our analytic method with the traditional Monte Carlo

method in Section 6.5, followed by summaries and discussions in Section 6.6.

1A code written in Python is published (doi:10.5281/zenodo.5201479), as developed on https://github.
com/chongchonghe/analytic-2pcf/tree/v1.0.0.
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6.2 Analytic Formulas of
⌢

RR

We start with deriving formulas of the random-random pair counts
⌢

RR (r) of a mask-

free survey with boundaries, taking into account all edge corrections. The survey geometries

we consider here are rectangles, cuboids, circles, and spheres. For each case, we first compute

the bulk random-random pair counts ignoring any edge effects. Then we do edge corrections,

excluding the pairs where the second data point is outside of the survey region. This method of

calculating
⌢

RR is equivalent to the Monte Carlo method with infinite number of random points.

With all done analytically, this algorithm of computing
⌢

RR (r) has O(1) scaling, i.e., it does not

scale with the number of data points at all.

It is necessary to point out that the number of random-random pair counts from r to r+ dr

is
⌢

RR (r)dr. One would need to integrate
⌢

RR (r) over r from r1 to r2 in order to get a bined

⌢

RR (r).

6.2.1 Rectangles

In the first geometry, we consider a rectangular region with sides a and b. We compute
⌢

RR

(r) in three steps where we take care of 1) the whole region ignoring boundaries, 2) corrections

of the edges, and 3) corrections of the corners.

In step I, we consider all possible pairs where the first object is drawn inside the rectangle.

The number of such pairs with separations between r and r + dr is simply

ΘI(r) dr = (ab)(2πr)n2 dr = 2πabrn2 dr, (6.4)
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Figure 6.1: Diagrams showing edge corrections in the calculation of random-random and data-
random pair counts. From left to right are corrections of the edges of a rectangle, the corners of
a rectangle, and the edges of a circle. Cuboids and spheres are similar.

where n is the number density of objects. For simplicity, the dr is omitted on both sides of the

formula for the rest of this article.

In step II, we exclude all the pairs where the second point is in either x < 0, or x > a, or

y < 0, or y > b. The number of such pairs for y < 0 is

ΘII,y<0(r) =

∫ r

0

dy ϕ(y)arn2 = 2ar2n2, (6.5)

where

ϕ(y) = 2 cos−1(
y

r
) (6.6)

is the angle of the arc at y < 0 (Fig. 6.1, left). Similarly,

ΘII,y>b(r) = 2ar2n2, (6.7)

ΘII,x<0(r) = 2br2n2, (6.8)

ΘII,x>a(r) = 2br2n2. (6.9)
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The total number of pairs to exclude in this step is therefore

ΘII(r) = ΘII,x<0(r) + ΘII,x>a(r) + ΘII,y<0(r) + ΘII,y>b(r) = 4(a+ b)r2n2. (6.10)

In step III, we add back the pairs that are excluded twice. These are the pairs where the

second object is either x < 0 & y < 0, or x > a & y < 0, or x < 0 & y > b, or x > a & y > b.

The number of pairs in these four cases is all identical and their total is given by

ΘIII(r) = 4

∫ r

0

dx

∫ √
r2−x2

0

dy ϕ(x, y)r = 2r3n2, (6.11)

where

ϕ(x, y) =
π

2
− sin−1 x

r
− sin−1 y

r
, (6.12)

is the angle of the arc at x < 0 & y < 0 (Fig. 6.1, center).

Finally, combining steps I, II, and III, the total number of valid random-random pairs for

the rectangular field with sides a and b and object density n is given by

Θ(r) = ΘI −ΘII +ΘIII (6.13)

=
[
2πabr − 4(a+ b)r2 + 2r3

]
n2, (6.14)

The normalized random-random pair count is therefore

⌢

RRrect (r) =
Θ(r)

(abn)2
=

2π

ab
r − 4(a+ b)

a2b2
r2 +

2

a2b2
r3, (6.15)
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for r ≤ a ≤ b. The antiderivative is given below for an easy calculation of its integration over r.

F [
⌢

RRrect (r)] =
π

ab
r2 − 4(a+ b)

3a2b2
r3 +

1

2a2b2
r4. (6.16)

In a special case where a = b, Eq. (6.15) becomes

⌢

RRsquare (r) =
2π

a2
r − 8

a3
r2 +

2

a4
r3. (6.17)

We further discuss the situation when a < r ≤ b. In this case, ΘI is unchanged. In the

calculation of ΘII, integrations over y is unchanged and yield 4ar2n2. In the integration over x,

however, the upper limit of the integral in Eq. (6.5) needs to be replaced by a. Summing up, it

yields

ΘII(r) =
[
4ar2 + 4br

(
r −
√
r2 − a2 + a cos−1 a

r

)]
n2. (6.18)

In ΘIII, similarly, the upper limit in the first integral needs to be changed to a in the integration

over x, yielding

ΘIII(r) =
[
1 + (2− a

r
)
a

r

]
r3n2. (6.19)

Adding together and conducting normalization, we find

⌢

RRrect (r) =
2π

ab
r − 4a+ 4b

(
1−

√
1− (a

r
)2 + a

r
cos−1 a

r

)

a2b2
r2 +

1 +
(
2− a

r

)
a
r

a2b2
r3 (6.20)

for a < r ≤ b.
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6.2.2 Cuboids

Now we consider a cuboid in 3D space with sides a, b, and c. We calculate
⌢

RR (r) in four

steps where we take care of 1) the whole region ignoring edge effects, 2) corrections from the

faces, 3) corrections from the edges, and 4) corrections from the corners.

In step I, consider all possible pairs where the first point is inside, ignoring any edge effects,

ΘI(r) = (abc)(4πr2)n2 = 4πabcr2n2. (6.21)

In step II, we exclude the pairs where the second point is outside one of the faces of the

cuboid. There are a total of 6 cases, corresponding to the 6 faces of a cuboid. Two of them are

related to the particle being outside of the x dimension, either x < 0 or x > a. The number of

such pairs is

ΘII,x(r) = 2

∫ a

0

dx Ω(x)bcr2n2 = 2πbcr3n2, (6.22)

where

Ω(x) = 2π
(
1− x

r

)
(6.23)

is the solid angle of the area outside of one face. Other terms related to y and z axis are obtained

by simply replacing bc with ac or ab. Therefore,

ΘII = ΘII,x +ΘII,y +ΘII,z = 2π(ab+ ac+ bc)r3n2. (6.24)

In step III, we include back those pairs that are counted at least twice in step II. Those are

the pairs where the second point is outside of the domain of two of the three axes. There are a
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total of 12 cases, corresponding to the 12 edges of a cuboid. The four cases related to x and y are

identical. Here we focus on the case where x < 0 & y < 0,

1

4
ΘIII,xy(r) =

∫ r

0

dx

∫ √
r2−x2

0

dy c Ω(
x

r
,
y

r
)r2n2 =

∫ 1

0

dx

∫ √
1−x2

0

dy Ω(x, y) c r4n2 (6.25)

where Ω(x, y) is the solid angle of the area on a unit sphere Sph(x′, y′, z′) with x′ > x, y′ > y

for positive x and y with x2 + y2 < 1.

It can be shown that the surface area of a constant latitude strip on a sphere between two

longitudes is simply R∆z∆l, where ∆z and ∆l are the differences on the cylindrical height and

on the longitudes, respectively. Using this fact, we can express the solid angle as

Ω(x, y) =

∫ √
1−x2

y

dy′ 2 cos−1 x√
1− y′2

. (6.26)

plugging into Eq. (6.25) gives

ΘIII,xy(r)

4cr4n2
=

∫ 1

0

dx

∫ √
1−x2

0

dy

∫ √
1−x2

y

dy′2 cos−1 x√
1− y′2

(6.27)

=

∫ 1

0

dx

∫ √
1−x2

0

dy′
∫ y′

0

dy 2 cos−1 x√
1− y′2

(6.28)

=

∫ 1

0

dx

∫ √
1−x2

0

dy′ y′2 cos−1 x√
1− y′2

(6.29)

=

∫ 1

0

dy′
∫ √1−y′2

0

dx y′2 cos−1 x√
1− y′2

(6.30)

=

∫ 1

0

dy′ y′2
√

1− y′2 (6.31)

=
2

3
, (6.32)
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where we swapped the order of y and y′ integration in step 1 and swapped the order of x and y′

integration in step 3. Here we have found ΘIII,xy(r) = 8 c r4n2/3. Similarly, other terms related

to x and z or to y and z is simply obtained by replacing c with b or a. Therefore,

ΘIII =
8

3
(a+ b+ c)r4n2. (6.33)

In step IV, we exclude those that are overlapped in step III. Those are the pairs where the

second point is outside of the domain in all three axes. There are a total of 8 identical cases,

corresponding to the 8 corners of a cuboid. Here we focus on the case where x < 0 & y <

0 & z < 0.

1

8
ΘIV(r) =

∫ r

0

dx

∫ √
r2−x2

0

dy

∫ √r2−x2−y2

0

dz Ω(
x

r
,
y

r
,
z

r
) r2n2

=

∫ 1

0

dx

∫ √
1−x2

0

dy

∫ √1−x2−y2

0

dz Ω(x, y, z) r5n2, (6.34)

where Ω(x, y, z) is the area on a unit sphere Sph(x′, y′, z′) with x′ > x, y′ > y, z′ > z for positive

x, y, and z with x2 + y2 + z2 < 1.

Following the same logic of Eq. (6.26), we have

Ω(x, y, z) =

∫ √1−x2−y2

z

dz′
(
cos−1 x√

1− z′2
− sin−1 y√

1− z′2

)
(6.35)
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Plugging into Eq. (6.34) and we get

ΘIV(r)

8r5n2
=

∫ 1

0

dx

∫ √
1−x2

0

dy

∫ √1−x2−y2

0

dz

∫ √1−x2−y2

z

dz′
(
cos−1 x√

1− z′2
− sin−1 y√

1− z′2

)

(6.36)

=

∫ 1

0

dx

∫ √
1−x2

0

dy

∫ √1−x2−y2

0

dz′
∫ z′

0

dz

(
cos−1 x√

1− z′2
− sin−1 y√

1− z′2

)
,

(6.37)

where we have swapped the order of z and z′ integration. Perform the integration on z and rename

z′ to z for notational simplicity

ΘIV(r)

8r5n2
=

∫ 1

0

dx

∫ √
1−x2

0

dy

∫ √1−x2−y2

0

dz z

(
cos−1 x√

1− z2
− sin−1 y√

1− z2

)
. (6.38)

Noticing that x, y, z are integrated over an octant, we swap the order to put z on the outside

ΘIV(r)

8r5n2
=

∫ 1

0

dz

∫ √
1−z2

0

dx

∫ √
1−x2−z2

0

dy z

(
cos−1 x√

1− z2
− sin−1 y√

1− z2

)
. (6.39)
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Perform variable change u = x/
√
1− z2, v = y/

√
1− z2, and move forward

ΘIV(r)

8r5n2
=

∫ 1

0

dz

∫ 1

0

du

∫ √
1−u2

0

dv z(1− z2)(cos−1 u− sin−1 v) (6.40)

=

∫ 1

0

dz z(1− z2)

∫ 1

0

du

∫ √
1−u2

0

dv(cos−1 u− sin−1 v) (6.41)

=

∫ 1

0

dz z(1− z2)

∫ 1

0

du (1− u) (6.42)

=

∫ 1

0

dz z(1− z2)
1

2
(6.43)

=
1

8
. (6.44)

Therefore,

ΘIV(r) = r5n2. (6.45)

Finally, combining steps I, II, III, and IV, the total number of valid random-random pairs

for the cuboidal region with sides a, b, and c and object density n is given by

Θ(r) = ΘI −ΘII +ΘIII −ΘIV =

[
4πabcr2 − 2π(ab+ ac+ bc)r3 +

8

3
(a+ b+ c)r4 − r5

]
n2.

(6.46)

The normalized random-random pair count is therefore

⌢

RRcuboid (r) =
Θ(r)

(abcn)2
=

4π

abc
r2 − 2π(ab+ ac+ bc)

a2b2c2
r3 +

8

3

a+ b+ c

a2b2c2
r4 − 1

a2b2c2
r5, (6.47)

for r ≤ min(a, b, c). The antiderivative is given below for an easy calculation of its integration
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over r.

F [
⌢

RRcuboid (r)] =
4π

3abc
r3 − π(ab+ ac+ bc)

2a2b2c2
r4 +

8

15

a+ b+ c

a2b2c2
r5 − 1

6a2b2c2
r6. (6.48)

In a special case where a = b = c, Eq. (6.47) becomes

⌢

RRcuboid (r) =
4π

a3
r2 − 6π

a4
r3 +

8

a5
r4 − 1

a6
r5. (6.49)

6.2.3 Circles

Now we consider a circle in 2D space. Without loss of generality, we assume the radius

of the circle is unity. The calculation of
⌢

RR (r) is done in two steps where we take care of the

whole region ignoring boundaries and then make corrections from the edge.

In step I, consider all possible pairs where the first point is inside the circle and ignore edge

effects. The number of pairs separated by r is given by

ΘI(r) = π12 2πr n2 = 2π2rn2. (6.50)

In step II, we exclude the pairs where the second point is outside of the circle. The number

of such pairs is given by the following integral

ΘII(r) =

∫ 1

1−r

dx 2πxϕ(x)rn2, (6.51)
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where

ϕ(x) = 2 cos−1 1− x2 − r2

2xr
(6.52)

is the angle of the arc outside of the circle (Fig. 6.1, right). Substituting it into Eq. (6.51) gives

ΘII(r) =
(
πr2
√
4− r2 + 4πr sin−1 r

2

)
n2 (6.53)

Combining steps I and II, the total number of valid random-random pairs for a unitary

circular region with object density n is given by

Θ(r) = ΘI(r)−ΘII(r) =
(
2π2r − πr2

√
4− r2 − 4πr sin−1 r

2

)
n2, (6.54)

and the normalized random-random pair count,

⌢

RRcirc (r) =
Θ(r)

(π · 12 · n)2 = 2r − 1

π
r2
√
4− r2 − 4

π
r sin−1 r

2
, (6.55)

for r ≤ 1. The antiderivative is given below for an easy calculation of its integration over r.

F [
⌢

RRcirc (r)] = r2 − 1

4π

√
4− r2

(
r2 + 2

)
r +

2

π

(
1− r2

)
sin−1 r

2
. (6.56)

6.2.4 Spheres

In the final one of the four geometries, we consider a unit sphere. We calculate
⌢

RR (r) in

two steps where we take care of the whole region ignoring boundaries and then make corrections

from its edge.
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In step I, we consider all possible pairs where the first point is inside the circle and ignore

edge effects. The number of pairs separated by r is given by

ΘI(r) =
4π

3
134πr2n2 =

16π2

3
r2n2. (6.57)

In step II, we exclude the pairs where the second point is outside of the unit sphere. The

number of such pairs is

ΘII(r) =

∫ 1

1−r

dx 4πx2Ω(x)r2n2 =

(
4π2r3 − π2

3
r5
)
n2, (6.58)

where

Ω(x) =

(
1 +

x2 + r2 − 1

2xr

)
2π (6.59)

is the solid angle of the area on a sphere of radius r that is outside of the unit sphere.

Combining step I and step II, the total number of valid random-random pairs for the unitary

spherical region with object density n is given by

Θ(r) = ΘI −ΘII =

(
16π2

3
r2 − 4π2r3 +

π3

3
r5
)
n2, (6.60)

and the normalized random-random pair count,

⌢

RRsph (r) =
Θ(r)
(
4π
3
n
)2 = 3r2 − 9

4
r3 +

3

16
r5, (6.61)
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Table 6.1: Percentage errors ϵ(r̂) of the calculated
⌢

RR (r̂) when certain edge corrections are not
included. It is shown that all corrections in the rectangular, circular, and spherical cases must be
considered in order to limit the relative error to sub-percent. For the cuboidal case, however, the

corner correction causes at most sub-percent changes (highlighted) to the calculated
⌢

RR at all
radii.

Field geometry Corrections included ϵ(0.001) ϵ(0.01) ϵ(0.1) ϵ(0.2) ϵ(0.4)
Rectangle None 0.13 1.3 14 32 85

Edge -3.2e-05 -0.0032 -0.36 -1.7 -9.4
Edge + Corner 0 0 0 0 0

Cuboid None 0.15 1.5 17 38 100
Face -6.4e-05 -0.0065 -0.73 -3.4 -19
Face + edge 8e-09 8.1e-06 0.0093 0.088 1.0
Face + edge + corner 0 0 0 0 0

Circle None 0.064 0.64 6.8 15 34
Edge 0 0 0 0 0

Sphere None 0.075 0.76 8.1 18 42
Edge 0 0 0 0 0

for r ≤ 1. The antiderivative is given below for an easy calculation of its integration over r.

F [
⌢

RRsph (r)] = r3 − 9

16
r4 +

1

32
r6. (6.62)

6.3 Accounting for Edge Corrections in
⌢

RR

The formulas of
⌢

RR (r) derived in this work, Eqs. (6.15), (6.47), (6.55), and (6.61), have

included all edge corrections and are precise. However, the calculation of
⌢

DR (r) is more com-

plex because iteration over all data points is required. Given the complexity of the edge-correction

formulas, it would be beneficial if some of the terms could be ignored without sacrificing accu-

racy.

To account for the contributions from various edge effects, we break the formulas of
⌢

RR,

Eqs. (6.15), (6.47), (6.55), and (6.61), into various terms based on the powers of r and rewrite
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them as follow:

⌢

RRrect (r) =
2π

ab
r

(
1− 2(a+ b)

πab
r +

1

πab
r2
)
, (6.63)

⌢

RRcuboid (r) =
4π

abc
r2

(
1− ab+ ac+ bc

2abc
r +

2

3π

a+ b+ c

abc
r2 − 1

4πabc
r3
)
, (6.64)

⌢

RRcirc (r) = 2r

(
1− 2

π
r +

1

12π
r3 +

1

320π
r5 +O(r7)

)
, (6.65)

⌢

RRsph (r) = 3r2
(
1− 3

4
r +

1

16
r3
)
. (6.66)

The 0th, 1st and 2nd-order terms of
⌢

RRrect correspond to the inside, the edges, and the corners

of the rectangle. The 0th, 1st, 2nd, and 3rd-order terms of
⌢

RRcuboid are the inside, the faces, the

edges, and the corners of the cuboid. The 0th-order term of
⌢

RRcirc or
⌢

RRsph is the inside of the

circle or sphere and the other terms are edge correction.

⌢

RR are calculated up to various degrees of edge corrections and are compared to its precise

values. The fractional errors at a list of radii are listed in Table 6.1. Of all the geometries, unitary

sides or radius is assumed. We conclude that in all but the cuboidal case, all the edge-correction

terms are necessary in order to limit the errors of
⌢

RR (r) to within 1% at all r. In the cuboidal

case, the error caused by ignoring the corner correction is sub-percent even at large r. This latter

fact helps to significantly simplify the computation of
⌢

DRrect in the following section.

6.4 Computing
⌢

DR Analytically in O(Ng) Time

The computation of
⌢

DR requires iterations over all data particles. For a data point away

from the edges of the survey area, the number of data-random pairs shared by this data point is

simply 2nπrdr in 2D case or 4nπr2dr for 3D case, where n is the mean number density of the
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random catalogue. When a data point is close to the edges, corrections are necessary to exclude

pairs where the random point is outside.

In the previous section, we have derived various edge-correction terms for the four geome-

tries. In this section, we use those terms to calculate the contribution of each data point to the

data-random pair counts with full edge corrections. We work out extra steps of integrating over

r for an easy calculation of the edge corrections without numerical integration. The subsequent

algorithms to compute the edge-corrected
⌢

DR (r) in O(Ng) time is presented in Appendix D.1.

6.4.1 Rectangles

For a data point D that is close to any of the edges of a rectangle, a circle around D with

radius r has a part outside of the region when r > y, where y is the distance from D to the edge.

The angle of this arc, ϕ(y), is given by Eq. (6.6). The integration of the length of the arc, ϕ(r)r,

over r is therefore

F(r; y) =
∫

ϕ(y)r dr =

∫
2 cos−1

(y
r

)
r dr = r2 cos−1 y

r
− y

√
r2 − y2. (6.67)

When D is close to a corner, i.e.,
√

x2 + y2 < r, where x and y are the distances to the two

sides, the part of the arc outside of both extended sides are excluded twice in the previous step

(see Fig. 6.1, Center), therefore we need to include them back. The angle of this arc, ϕ(x, y), is

given by Eq. (6.12). The integration of the length of the arc, ϕ(r)r, over r is therefore

F(r;x, y) =
∫

ϕ(x, y)rdr =
1

4

[
πr2 − 2x

√
r2 − x2 − 2y

√
r2 − y2 − 2r2

(
sin−1 x

r
+ sin−1 y

r

)]
+ C

(6.68)
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where C = xy is chosen such that F(r;x, y) approaches 0 when r →
√

x2 + y2.

Based on Eq. (6.67) and Eq. (6.68), we write an algorithm to compute the data-random pair

counts analytically by doing iterations over all data points where the contribution from each data

point is calculated 1) as 2πr dr if not touching the edges, or 2) using Eq. (6.67) and Eq. (6.68) it

touches at least one of the edges. This algorithm has a time complexity of O(Ng), where Ng is

the number of galaxies or particles. The pseudocode is presented in Appendix D.1.

6.4.2 Cuboids

The calculation of Data-Random pair counts in a cuboidal region is similar to that in a

rectangular region, with the angle ϕ replaced by a solid angle Ω, plus an extra step to take care of

the corners of the cuboid.

For a data point D that is close to any of the faces of a cuboid, the part on a sphere centered

at D with radius r that is outside of the cuboid is given by Eq. (6.23), where x is the distance to

the edge. The integration of the area of this part, Ω(x)r2, over r is therefore

F(r;x) =
∫

Ω(x)r2dr =

∫
2π(r2 − xr)dr = 2π

(
r3

3
− xr2

2

)
. (6.69)

When D is close to one of the edges of the cuboid such that
√
x2 + y2 < r, where x and y

are the distances to two adjacent faces, the part of the sphere outside of both faces are excluded

twice in the previous step, therefore we need to include them back. The solid angle of this surface,

when assuming r = 1, is given by Eq. (6.26), which equals

Ω(x, y) =

(
1

2
− x− y

)
π + 2x tan−1 y

t
+ 2y tan−1 x

t
+ tan−1 t

2 − x2y2

2xyt
, (6.70)
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where t ≡
√

1− x2 − y2. Replacing x with x/r and y with y/r, we get Ω(r;x, y). The integra-

tion of the area of the surface, Ω(r;x, y)r2, over r is therefore

F(r;x, y) =
∫

Ω(r;x, y)r2dr

=

∫ [
π

(
r2

2
− rx− ry

)
+ 2ry tan−1

(x
h

)
+ 2rx tan−1

(y
h

)
+ r2 tan−1 r

2h2 − x2y2

2xyrh

]
dr

= r2
(
y tan−1

(x
h

)
+ x tan−1

(y
h

))
+

1

6
πr2(r − 3(x+ y))

+ x3 cot−1
(y
h

)
+ y3 cot−1

(x
h

)
+ 2xyh

+
x3

3

[
tan−1

(
rx+ x2 + y2

hy

)
+ tan−1

(−rx+ x2 + y2

hy

)]

+
y3

3

[
tan−1

(
ry + x2 + y2

hx

)
+ tan−1

(−ry + x2 + y2

hx

)]

− r3

3
tan−1

(
x2y2 − r2h2

2xyrh

)

− 4

3
yxh+ C (6.71)

where h ≡
√
r2 − x2 − y2 and C = −π

3
(x3 + y3) is chosen such that lim

r→
√

x2+y2
F(r;x, y) =

0, or limh→0+ F(r;x, y) = 0.

To compute
⌢

DR (r) with perfect accuracy, one would need to take into account the effects

of the corners, which is when a sphere around D is outside of three adjacent faces simultaneously.

They are included back twice in the previous step and need to be subtracted again. However, this

effect is ignored in this work because the computation is too complicated and its contribution is

at most sub-percent (Table 6.1).

An algorithm to compute
⌢

DR (r) analytically is presented in Appendix D.1.
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6.4.3 Circles

When a data point D is close to the edge of a unitary circular survey region, a circle around

D with radius r has a segment outside of the region when r > 1 − x, where x is this point’s

distance to the regional center. The angle of this arc is given by Eq. (6.52). The integration of the

length of the arc, ϕ(r)r, over r is therefore

F(r;x) =
∫

ϕ(x)rdr =
η

2
+ r2 cos−1

(
1− r2 − x2

2xr

)
+ sin−1

(
1− r2 + x2

2x

)
+ C, (6.72)

where η ≡
√

(−r + x+ 1)(r − x+ 1)(r + x− 1)(r + x+ 1) and C = −π/2 is chosen such

that limr→(1−x)+ F(r) = 0.

An algorithm to compute
⌢

DR (r) analytically is presented in Appendix D.1.

6.4.4 Spheres

When a data point D is close to the edge of a unitary spherical region, a circle around D

with radius r has a segment outside of the region when r > 1−x, where x is this point’s distance

to the center of the region. The solid angle of this segment is given by Eq. (6.59). The integration

of the surface area of this segment, Ω(r)r2, over r is therefore

F(r;x) =
∫

Ω(x)r2dr =
πr2 (−6 + 3r2 + 8rx+ 6x2)

12x
. (6.73)

An algorithm to compute
⌢

DR (r) analytically in O(n) time is given in Appendix D.1.
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6.5 Comparisons with the Monte Carlo Method

In this section, we compare the accuracy and speed of the analytic method from this work

with the Monte Carlo method used in most literature.

The test data set we use is a mock galaxy catalogue inside a 100 cMpc cube from the

RefL0100N1504 Subhalo simulation of the EAGLE database (McAlpine et al., 2016). The

positions of the galaxies are normalized to a unitary box for simplicity. For the 2D geometries,

the third dimension of the positions is removed. For the circular or spherical cases, the box is

shifted, normalized, and trimmed to a unit sphere centered at the origin.

We compare the ξ(r) computed using our analytic method with that using a brute-force

Monte Carlo code2 (Fig. 6.2), using both the Natural estimator (left column) and the Landy-

Szalay estimator (right column), applying to the four geometries we have discussed. For a quick

runtime, we choose 1000 galaxies from the galaxy catalogue and adopt a low random-to-data

ratio 16 to make the computation manageable on a laptop. A total of 40 random catalogues are

generated to estimate the mean and standard deviation of
⌢

RR (r) and
⌢

DR (r) in 25 separation

bins, evenly distributed in logarithmic scale. They are then passed to ξ(r) to estimate its mean

(red dots) and standard deviation (errorbars). Our analytic calculation is, by construction, the

asymptotic limit of the Monte Carlo calculation as Nr →∞, hence zero variance.

We observe that the Monte Carlo estimations of ξ(r) have means strictly following the

analytic results 3. The perfect agreement with the Monte Carlo estimations demonstrates the

validity of the analytic formulas of
⌢

RR and the analytic algorithms of
⌢

DR proposed in this work.

2The code we are using is scipy.spatial.cKDTree, which is supposed to embrace a tree-based algorithm
and have better performance than brute force. However, what we observe is that both its performance and accuracy
under default setting are very close to brute force with a scaling close to O(N2).

3The only exception is ξcuboid(r) at r ≥ 0.4. This is caused by the exclusion of corner corrections (Section 6.4.2).
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Figure 6.2: Comparing the two-point correlation functions ξ(r) of a mock galaxy population
calculated from the analytic method from this work (solid black curve) with that from brute-force
Monte Carlo method (red dots and error bars). The former is shown to be the asymptotic limit of
the latter as the size of the random catalogue goes to infinity, evident from the fact that the means
(red dots) of the brute-force Monte Carlo estimations strictly follow the analytic predictions. The

natural estimator, ξ0 =
⌢

DD /
⌢

RR −1, and the Landy-Szalay estimator, ξLS =
⌢

DD /
⌢

RR −2
⌢

DR

/
⌢

RR +1, are applied in the left and right panel, respectively. The error bars are the standard
deviations estimated from 40 random catalogues. Negative ξ is donated as dotted lines. While
the Monte Carlo estimations exhibit significant scattering at small r, the analytic method has zero
variance at all scales.

While the brute-force Monte Carlo estimations exhibit significant scattering at small scales, the

analytic method has zero variance at all scales.

In practice, the brute-force Monte Carlo method is usually used for accurate computation

of the TPCF of a small galaxy catalogue. For large galaxy catagloues, people tend to faster

tree-based algorithms with some sacrifice in accuracy. We compare the time it takes to compute

⌢

RR (r) and
⌢

DR (r) using different methods (Fig. 6.3). The brute force Monte Carlo code
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Figure 6.3: Comparing the speed of the analytic approach from this work to that of the traditional
Monte Carlo method. The performance of our analytic method is 3 to 6 orders of magnitude
higher than the brute force method and 2.5 orders of magnitude higher than a fast tree-based
algorithm for sizes of galaxy catalogues explored.

is running with a random catalogue 50 times bigger than the data catalogue, a typical practice

in the community. TREECORR (Jarvis et al., 2004) is used as a representative of tree-based

code. Our method does not use random catalogues since all terms are calculated analytically.

Despite running with Python, all the programs do the actual computation either with C/C++ or

using NUMBA to achieve comparable speed to C. Our analytic method computes RR + DR at

a speed 3 to 6 orders of magnitude faster than brute-force Monte Carlo method and 2.5 orders

of magnitude faster than tree-based code4 for galaxy catalogues with sizes up to 10 million. At

Ng = 107, while it takes the brute force Monte Carlo code a projected time of 100,000 hours

and the tree-based code 6 hours, our analytic method gets it done in under 1 minute on a single

core. Particularly, the calculation of
⌢

RR through our analytic method takes only 10−4 second,

independent of the size of the galaxy catalogue.

4The benchmarking of TREECORR is performed under the default setting (bin slop=1). For a better accuracy,
say bin slop=0.1, the computation time of TREECORR is supposed to be ∼ 30 times longer (Siewert et al.
2020).
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6.6 Summary and Discussion

We have proposed a new analytic method to compute the galaxy TPCF in an extremely

efficient and accurate way, applicable to mask-free surveys with regular geometries. We have

derived simple closed-form formulas of the normalized random-random pair counts
⌢

RR (r) for

mask-free surveys with the following geometries: rectangles with sides a and b (Eqs. (6.15) and

(6.20)), cuboids with sides a, b, and c (Eq. (6.47)), a unit circle (Eq. (6.55)), and a unit sphere

(Eq. (6.61)). With all edge corrections fully considered, these formulas calculate
⌢

RR (r) with

perfect accuracy and zero variance in O(1) time. We have also presented a set of pseudocode

to compute the data-random pair counts
⌢

DR (r) analytically and precisely with zero variance

in O(Ng) time, applicable to the above-mentioned geometries. These algorithms are presented

in Appendix D.1 with a link to the Python code.
⌢

RR (r) and
⌢

DR (r) together can be used to

calculate ξ(r) using any estimator.

We have applied our method to a mock galaxy catalogue from the EAGLE simulation

(McAlpine et al., 2016) and compared the calculated ξ(r) with that from the brute-force Monte

Carlo method (Fig. 6.2). Perfect agreement is found. We have also compared the speed of our

method with that of the brute-force Monte Carlo method, which has O(N2) scaling, and the tree-

based method, which has O(N logN) scaling. Our analytic method is 3 to 6 orders of magnitude

faster than the brute force Monte Carlo method and 2.5 orders of magnitude faster than the tree-

based code. Our proposed method is favored over the traditional numerical method whenever

applicable.

Our method can be used to replace the brute-force Monte Carlo method as the benchmark

of evaluating the accuracy of existing or new code. It could also be particularly useful in the
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study of non-linear correlation functions and power spectra of galaxies, dark matters, and haloes

with exceptional accuracy and efficiency. While most cosmological simulations are done with

periodic boundary conditions where the correlation is trivially analytic, researchers may find its

applications in particular cases: the study of local clustering of a subregion with high precision,

or the study of isolated systems.

For a realistic survey with masks, weight patterns, and/or irregular shapes, the applicability

of our approach is very limited, although in special circumstances some applications can be

found. Our method can be used to account for masks with regular shapes on top of a mask-free

background. Clustering in subregions of a large survey can be explored with ease and with high

precision. Although, in both cases, the correlation between the mask or weighted area and the

background has to be computed numerically.

Our proposed analytic method is also directly applicable to galactic angular TPCFs when

the survey area is close to Euclidean (flat).
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Chapter 7: Conclusion and Future Work

7.1 Conclusion

My thesis has focused on understanding the physics of star formation from giant molecular

clouds and its role in shaping the galaxies and the Universe using multiscale radiation-magneto-

hydrodynamics simulations. Along the path, I explored star formation efficiency laws regulated

by photoionization feedback, the escape of ionizing photons from molecular clouds and its impli-

cations on the sources of cosmic reionization, star and galaxy clustering, and formation of large

circumstellar disks in massive prestellar cores, and proposed a solution to the ‘magnetic braking

catastrophe’ for disk formation.

In Chapter 2, I explored the physics and laws of star cluster formation from molecular

clouds. Using RAMSES-RT, I simulated the collapse of GMCs spanning a large parameter space in

mass (103 - 3×105 M⊙), density (102−104 cm−3), and metallicity (0.025 - 1 Z⊙), while resolving

the formation of individual stars. This remains one of the largest sets of resolved simulations of

SF with stellar feedback. I found a physically motivated scaling relation for SF timescale and

efficiency regulated by photoionization feedback. I established a simple law of star formation

efficiency where the GMC forms stars at a rate that depends on the density of the cloud (ϵff ∝

ρ1−2) throughout a timescale of several sound-crossing time of the cloud, proportional to the

cloud size. The simulated stars have mass distributions in excellent agreement with the mass-
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normalized empirical IMF in both the characteristic power-law slope and normalization if shifted

to the left by 40%. The implication is a physical model where a sink particle converts ∼ 40%

of its mass to a single star and the rest to smaller stars, a mechanism inferred from the mapping

between the observed core mass functions and stellar IMFs. I have shown convincing evidence

that star formation in GMCs can be understood as a purely stochastic process: instantaneous

star formation follows a universal mass probability distribution similar to the empirical IMF. An

apparent behavior of this stochastic process is that low-mass stars form first followed by both

low- and high-mass stars, providing the first definitive answer to an open question – do low-mass

or high-mass stars form first?

In Chapter 3, I published the first study of the escape of LyC photons from GMCs into the

intercloud medium that takes into account contributions from spatially resolved stars. I showed

that the LyC escape fraction increases with the cloud density. I explained this by showing that

high-density GMCs form stars so fast that the cloud is dispersed and fully ionized ≲ 2 Myr

after the formation of O/B stars, allowing a significant fraction of their LyC photons to escape,

whereas the most massive stars in low-density clouds live most of their lives deeply embedded

in neutral gas. I, therefore, concluded that the stellar component of the sources of LyC photons

responsible for cosmic reionization must have been very compact star clusters, or globular cluster

progenitors, forming in more compact environments than the Milky Way’s.

In Chapter 4, I followed up with a series of extremely high-resolution simulations of

prestellar core formation and fragmentation using a novel zoom-in AMR technique. With this

approach, I was able to push the state of the art of prestellar core simulations by accurately fol-

lowing the accretion and tidal forces on protostellar environments, rather than assuming idealized

initial and boundary conditions as in most literature. I showed that stars more massive than 30
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M⊙ form from the filamentary collapse of cores and grow to masses several times bigger than

the initial core mass owing to fast accretion from larger scales. This result provides compelling

evidence for the ‘competitive accretion’ scenario of high-mass SF, a problem that is still un-

der debate. The fragments eventually become embedded in large, thick, quasi-steady accretion

disks/toroids that are Toomre stable and supported by magnetic and turbulent pressure, explaining

puzzling features in recent ALMA observations of high-mass star-forming regions.

In Chapter 5, I explored the magnetic braking problem in disk formation. Protostellar disk

formation is a critical step between the collapse of prestellar cores and the formation of stars and

planets. However, magnetic fields can in principle transport away angular momentum during the

core collapse through magnetic braking and hence suppress disk formation, a phenomenon known

as the magnetic braking ‘catastrophe’. I showed that the magnetic field in large prestellar cores

is extremely turbulent and incoherent, reducing the effect of magnetic braking by roughly one

order of magnitude compared to the perfectly aligned and coherent case. This effect leads to the

formation of large Keplerian disks even in magnetically critical cores, averting the catastrophe.

In Chapter 6, I studied star clustering by quantifying the clumpiness of the stars using

the two-point correlation function ξ(r). The computation of ξ(r) is usually a time-consuming

task when the number of particles is large due to the O(N2) scaling. I develop a novel analytic

method of computing ξ(r) which is both more accurate and more efficient than the traditional

brute-force or tree-based numerical method, achieving a boost of 2 to 6 orders of magnitude in

speed in certain applications. This method can expedite the calculation of galaxy and halo ξ(r)

in large-scale cosmological simulations.
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7.2 Future Work

The work presented in this thesis marks the beginning rather than the endpoint of a long

journey. In this section, I outline a few future projects that build on the research presented in

previous chapters.

7.2.1 Resolving the Complete IMF of a Star Cluster

Stars in the local Universe form from GMCs with masses between 104 and 106 M⊙ (McKee

& Ostriker, 2007). So far no radiation-MHD simulation has managed to follow the evolution of

a cloud with this size and resolve the formation of individual high- and low-mass stars. I plan to

combine a series of high-resolution simulations of star cluster formation from GMCs (Chapter 2,

He et al. 2019) that resolves individual intermediate- to high-mass stars with ultra-high-resolution

zoom-in simulations (Chapters 4 and 5, He & Ricotti 2022) that resolve the collapse of low-mass

prestellar cores.

For this purpose, I will continue to use the RAMSES-RT code and adapt the novel zoom-in

AMR technique presented in Chapter 4 (He & Ricotti, 2022). I propose to extend the parameter

space of both the GMC simulation set and the prestellar core simulation set (Figure 7.1). I will

also add updated physics, including protostellar jets from low-mass stars, radiation pressure, and

more realistic cooling. Consistently simulating the formation of prestellar cores in GMCs and

their subsequent collapse in realistic environments may bring unique opportunities for the study

of some of the most important questions in star formation: How do gravity, turbulence, and

magnetic fields interplay at various scales? What sets the SFE of a cloud or a core? What does

the similarity between core mass function and stellar IMF imply? What can we learn about the
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Figure 7.1: Demonstration of the set of proposed simulations in the context of my past work
(circles) and the literature (other shapes in gray). The relevant physics are marked in dashed
lines with blue representing protostellar outflow (vesc = 1 km/s), orange photoionization feed-
back (vesc = 15 km/s), black radiation pressure (Σ = 3000 M⊙ pc−2). The relevant physics is
important in the parameter space above the line.

binary formation and stellar dynamics from the observed binary period/eccentricity distribution?

This project will also provide a set of realistic initial conditions for the simulation of star cluster

dynamics discussed in the following section.

7.2.2 Dynamics of Massive Compact Star Clusters and SMBH Growth

The origin of supermassive black holes (SMBHs) that exist at the center of most galaxies

remains an open question. The recent detection of 1.5 billion solar mass quasars at z = 7.5

put a strong constraint to the early SMBH growth, which requires a seed BH of ≳ 104 M⊙

just 100 Myr after the Big Bang (Yang et al., 2020; Wang et al., 2021), considering that the

SMBH growth model shows an order of magnitude growth every 100 Myr. High-redshift nuclear

star clusters (NSCs) are very promising candidates for the formation of intermediate-mass black

holes (IMBHs) at a very early time. Analytic work, as well as simulations, demonstrate that,
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under the right conditions, runaway stellar collisions in a dense star cluster can produce a very

massive star that may collapse to form an IMBH that could be the seeds of SMBHs (Spitzer, 1969;

Portegies Zwart et al., 2004; Katz et al., 2015). Pushing the formation of SMBH seed of 105 M⊙

to 200 Myr after the Big Bang would allow growing the observed quasars. I plan to conduct the

first self-consistent simulations of the resolved formation of massive, dense star clusters and their

dynamic evolution. My goal is to advance our understanding of the properties and dynamics of

high-redshift NSCs and investigate their potential role in the production of SMBH seeds.

Simulations of NSC dynamics in the literature rely on simplified initial conditions using

statistical properties of observed star clusters, missing a very important and dramatic phase of

star cluster evolution (Goodwin & Whitworth, 2004). For instance, a random sample of stars

with a Plummer sphere density profile is often generated as the initial condition. My thesis

work (Chapters 2, 4, and 6), however, indicates that star clusters forming in turbulent molecular

clouds have a fractal structure with significant hierarchical sub-clumping. This suggests that the

distribution of stars in realistic young compact star clusters is significantly different from the

simplified initial conditions used in most literature. In a review article, Latif & Ferrara (2016)

called out that self-consistently simulating the formation and evolution of NSCs is necessary for

a better understanding of this BH formation channel.

Based on the results of the work planned in Section 7.2.1, I will use a semi-analytic ap-

proximation to sample more realistic star clusters by breaking sink particles (cores) into stars

following a mass distribution and dynamical state inferred from zoom-in simulations of prestel-

lar cores described in Chapter 4 and Chapter 5. I will then simulate the dynamical evolution

of such hierarchical compact young star clusters using a direct N-body code (e.g. NBODY6++,

Aarseth 2003) and study possible channels of IMBH formation and growth. With this novel and
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promising approach which combines resolved simulations of the formation of massive, dense

star clusters and their dynamic evolution, I aim to understand the dynamics of dense nuclear star

clusters at high redshift and put constraints on the possibility of SMBH seed formation from

run-away stellar collisions. The seed BH may potentially reach 104 M⊙ in a star cluster of a few

×106 M⊙, extrapolating the results of Katz et al. (2015). The substructure and clumpiness of the

realistic initial conditions that I will create could potentially allow more rapid core collapse and

lead to higher seed BH mass (Goodwin & Whitworth, 2004; Allison et al., 2010).

7.2.3 GPU-accelerated Computing Methods for Astrophysics in the Era of Ex-

ascale Computing

Exascale computers – supercomputers that can perform 1018 floating point operations per

second (exaFLOPS) – debuted in 2022. The first exascale computer on record, the Frontier super-

computer at the Oak Ridge National Laboratory in Tennessee, USA, clocked in at 1.1 exaFLOPS

in May 2022. Supercomputers offer unprecedented opportunities for modeling complex astro-

physical processes.

The new exascale computing systems raise the question of how to design an efficient, het-

erogeneous computing approach with optimal use of central processing units (CPUs) and graph-

ical processing units (GPUs) for dedicated tasks in astrophysical simulations. These new ap-

proaches will generate enormous amounts of data, whose management and efficient exploitation

in advanced AI models will pose major challenges.

This project aims to develop GPU-accelerated computing methods for astrophysics that can

drive supercomputers to peak performance in the era of exascale computing. GPU-accelerated
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computing is a technique that uses GPUs to perform computations that are traditionally done

by CPUs. GPUs have a parallel architecture that allows them to process large amounts of data

simultaneously, making them ideal for applications that require high performance and scalability.

The specific objectives of this research project are:

• To design and implement GPU-accelerated algorithms for solving MHD and radiative

transfer equations on adaptive meshes.

• To evaluate the performance and accuracy of the GPU-accelerated algorithms against ex-

isting CPU-based methods, and to identify the challenges and opportunities for further

improvement.

• To optimize the algorithms for exascale computing platforms by reducing load balancing

and communication and increasing scalability and energy efficiency.

• To apply the GPU-accelerated algorithms to simulate and analyze complex astrophysical

phenomena of interest, such as predicting star formation activities in galactic environments,

unveiling the winds of star-forming galaxies, and resolving protoplanetary disk formation

from giant molecular clouds.
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Appendix A: Appendices for Chapter 2

A.1 Clump finder criteria

density

length

λs ∝
1

√
ρs

ns

(2Nref/Nsink)2

2Nref∆xmin

fcns

Nsink∆xmin√
fc

ns

(Nref/Nsink)2

Nref∆xmin

ns

Nsink∆xmin

clump

unresolved

l = lmax = 14

l = 13

Figure A.1: Explanation of the sink formation criteria in Equation (A.1). The x-axis is the density
of a given cell and the y-axis is the corresponding Jeans length. Refer to the text for the meaning
of the labels. We impose that the clump finder acts at the highest refinement level but before the
clump becomes unresolved.

In this appendix we justify out choice for the value of Nsink = 5 in Section 2.2.2. We find

that Nsink should be constrained by the relationship:

Nref

√
fc < Nsink < 2Nref

√
fc, (A.1)

where Nref is number of Jeans lengths for the refinement criteria, and fc = 1/10 is the ra-
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tio of clump-finder threshold density to the sink threshold density. In our case, for fc = 0.1

and Nref = 10, we have 3 < Nsink < 6. Therefore in all our simulations we set Nsink = 5

to satisfy Equation (A.1). The constraint in Equation (A.1) can be understood by inspecting

the sketch in Figure A.1, showing the Jeans length as a function of the gas density in a cell at

different refinement levels (horizontal bands). As the gas density increases the Jeans length de-

creases and the level of refinement increases up to the maximum level in the simulation (e.g.,

nrefine = 14). The clump finder has a lower density threshold than the sink formation threshold in

order to identify structures that should form sinks. In order to ensure that these clumps are maxi-

mally resolved, we set all clumps to be at the highest refinement level. This gives the constraint

1
(2Nref/Nsink)2

< fc <
1

(Nref/Nsink)2
, and therefore Equation (A.1) follows.

A.2 Emission from clusters
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Figure A.2: Ionising photon emission rate as a function of stellar mass. The colored lines are QH

from Vacca fit and QHe0 , QHe+ from Schaerer fit. The gray lines are their extrapolations.

In this appendix, we estimate the approximate helium-ionising photon emission rate from
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Figure A.3: He0 (top) and He+(bottom) ionising photon emission rate as a function of the star
cluster mass. The black solid lines are given by S∗ = kM∗, where M∗ is mass of the star cluster
and k is 1.178× 1046 s−1M−1

⊙ and 2.422× 1043 s−1M−1
⊙ for He0 and He+, respectively.

stellar clusters of a range of masses. The ionising photon emission rate from individual stars is

plotted in Figure A.2. We do a Monte Carlo sampling of clusters of stars with a Kroupa IMF and

calculate the He0 and He+ ionising photon emission rates using Schaerer (2002) fit for each star.

We assume a upper and lower limits of the star masses of 0.08M⊙ and 100M⊙. These results are
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Figure B.1: Color plots of f(τ0, T ) where τ0 ≡ NHIσ0/mp. Top: Eq. (3.2) assuming τν = τ0;
Right: Eq. (3.3). At high temperatures, the escape fraction calculated from Eq. (3.3) is much
higher than exp(−Nσ0) when Nσ0 > 2. This modulation makes the calculated escape fraction
higher than estimated from exp(−Nσ0).

plotted in Figure A.3, along with a linear fit assuming a perfect sampling of the stellar population.

Appendix B: Appendices for Chapter 3

B.1 Converting column density to escape fraction

A comparison between Eq. (3.3) and Eq. (3.2) is shown in Figure B.1. The x axis is

τ0 ≡ NHIσ0/mp and y axis is the surface temperature of a star. On the top panel is f(τ0, T ) =

exp(−τ0). On the bottom panel is f(τ0, T ) = fesc(NHI , T ), following Eq. (3.3). Clearly Eq. (3.3)

drops much slower with τ than Eq. (3.2) does at high temperatures. In order to compute Eq. (3.3)

effectively, we do an interpolation of it and apply it in our code.

In the calculation of escape fraction, some classical mass-luminosity (Bressan et al., 1993)

and mass-radius (Demircan & Kahraman, 1991) relations are used.
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Appendix C: Appendices for Chapter 5

C.1 Mass-to-flux ratio of a non-singular isothermal sphere

The density profile of a non-singular isothermal core in hydrostatic equilibrium is given by

ρ(r) =
ρ0

1 + ( r
rc
)2
. (C.1)

Defining the dimensionless radius ξ ≡ r/rc, we can show that the mass of the gas within ξ is

M(ξ) = 4πρ0r
3
c (ξ− arctan ξ). Assuming a parallel magnetic field threading the midplane of the

sphere with the magnetic strength proportional to ρ1/2 and equal to B0 a the centre, then we have

ΦB =

∫ ξ1

0

2πrcξ
B0√
1 + ξ2

rcdξ = 2πB0r
2
c

(√
1 + ξ21 − 1

)
. (C.2)

The magnetic critical mass is given by Equation (5.2).

The gravitational binding energy of a core with radius ξ1 is given by this integral

W = −
∫ ξ1

0

GM(ξ)4πrρ(r)rcdξ

= −(4π)2Gρ20r
5
c

∫ ξ1

0

ξ(ξ − arctan ξ)

1 + ξ2
dξ. (C.3)
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The total magnetic energy inside radius ξ1 is

eB =

∫ ξ1

0

2πr2cξdξ2rc

√
ξ21 − ξ2

1

8π

B2
0

1 + ξ2

=
1

2
B2

0r
3
c

∫ ξ1

0

ξ
√

ξ21 + ξ2

1 + ξ2
dξ. (C.4)

We plot µ1 = M/MΦ and µ2 =
√
|W |/eB for an isothermal core with ρ0 = 109mp cm

−3,

rc = 1000 AU, and B0 = 0.01 Gauss in the top panel of Figure C.1. In the bottom panel, we show

the value of the equivalent geometrical factor cΦ =
√
GM/(ΦBµ2) in Equation (5.2), required to

have µ2 = µ1.

−2 −1 0 1 2 3

log(r/rc)

0

2

4

6

8

µ

µ1 = M/MΦ

µ2 =
√
|W |/eB

−2 −1 0 1 2 3

log(r/rc)

0.18

0.20

0.22

0.24

0.26

0.28

c Φ

uniform sphere

Figure C.1: Comparing two definitions of the relative importance of the gravitational and mag-
netic forces in a non-singular isothermal sphere as a function of its radius: the relative mass-to-
flux ratio µ1 = M/MΦ and the square root of the binding to magnetic energy µ2 =

√
|W |/eB.

In the former case, the geometrical factor cΦ in Eq. (5.2) equals 1/
√
2. The value of cΦ required

for the two definitions of µ to be equivalent to each other (i.e., µ1 = µ2) is shown in the bottom
panel, showing that cΦ increases as the core becomes more centrally concentrated.

C.2 Resolution study

In this section we explore the numerical convergence of the results by comparing µ3M7

with µ3Ma7-hires which differs only in resolution, with the latter being 4 times higher in
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linear resolution. We show edge-on projections of the disks from these two simulations in Fig-

ure C.2. We observe no significant difference in the morphology of the disks among them, ruling

out resolution effect on large disk formation.

Figure C.2: A comparison of disk structure between two simulations with different resolutions.
The figure shows an edge-on view of the disks from two simulations with the same initial condi-
tions but varying resolution. The left panel is run µ3M7 with l = 18 and ∆xmin = 29AU, and the
right panel is run µ3M7-hires with l = 20 and ∆xmin = 7AU. The disk structure is similar in
both runs, indicating numerical convergence of the resolution.

Appendix D: Appendices for Chapter 6

D.1 Algorithms to Compute
⌢

DR Analytically in O(Ng) Time

In this appendix, we present pseudocode to calculate
⌢

DR (r) precisely in O(Ng) time,

applicable to survey areas with rectangular (Fig. D.1), cuboidal (Fig. D.2), circular (Fig. D.3), or

spherical (Fig. D.4) shapes. The explanations of the algorithms are discussed in Section 6.4. A
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Figure D.1: An algorithm for precise calculations of
⌢

DR (r) in O(Ng) time, applying to rectan-
gular regions.

1: a, b: dimensions of the rectangular region.
2: N : the total number of data points.
3: rlist: array of boundaries defining the real space radial bins in which pairs are counted.
4: rsteps: a list of discrete differences along rlist.
5: for i ∈ 1 : (len(rlist)− 1) do
6: drpair ← 0
7: rthis← rlist[i]
8: rnext← rlist[i+ 1]
9: r ← rnext

10: for par ∈ data set do
11:
12: drpair ← drpair + pi ∗ (rnext2 − rthis2) ▷ All the pairs, assuming a periodic boundary condition.
13:
14: x, y: coordinates of par
15: if x < r then
16: xgapl← x
17: else
18: xgapl← −1
19: if x > a− r then
20: xgapr ← a− x
21: else
22: xgapr ← −1
23: if y < r then
24: ygapl← y
25: else
26: ygapl← −1
27: if y > b− r then
28: ygapr ← b− y
29: else
30: ygapr ← −1
31: ▷ Exclude the edges
32: for igap ∈ [xgapl, xgapr, ygapl, ygapr] do
33: if igap > 0 then
34: if igap > rthis then
35: F1← 0
36: else
37: F1← int rec edge(rthis, igap) ▷ Eq. (6.67)
38: F2← int rec edge(rnext, igap)
39: drpair ← drpair − (F2− F1)
40: ▷ Include the corners back
41: for (xgap, ygap) ∈ [(xgapl, ygapl), (xgapl, ygapr), (xgapr, ygapl), (xgapr, ygapr)] do
42: if xgap > 0 & ygap > 0 & xgap2 + ygap2 < r2 then
43: if xgap2 + ygap2 ≥ rthis2 then
44: F1← 0
45: else
46: F1← int rec corner(rthis, xgap, ygap) ▷ Eq. (6.68)
47: F2← int rec corner(rnext, xgap, ygap)
48: drpair ← drpair + F2− F1
49:
50:

⌢

DR [i]← drpair/(N ∗ a ∗ b)
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Figure D.2: An algorithm for precise calculations of
⌢

DR (r) in O(Ng) time, applying to cuboidal
regions.

1: a, b, c: dimensions of the cuboidal region.
2: N : total number of data points.
3: rlist: array of boundaries defining the real space radial bins in which pairs are counted.
4: rsteps: a list of discrete differences along rlist.
5: for i ∈ 1 : (len(rlist)− 1) do
6: drpair ← 0
7: rthis← rlist[i]
8: rnext← rlist[i+ 1]
9: r ← rnext

10: for par ∈ data set do
11: drpair ← drpair + 4

3
∗ π ∗ (rnext3 − rthis3)

12: x, y, z: coordinates of par
13: if x < r then ▷ Calculate the gaps between the particle and the edges
14: xgapl← x
15: else
16: xgapl← −1
17: if x > a− r then
18: xgapr ← a− x
19: else
20: xgapr ← −1
21: if y < r then
22: ygapl← y
23: else
24: ygapl← −1
25: if y > b− r then
26: ygapr ← b− y
27: else
28: ygapr ← −1
29: if z < r then
30: zgapl← z
31: else
32: zgapl← −1
33: if z > c− r then
34: zgapr ← c− z
35: else
36: zgapr ← −1
37: for igap ∈ [xgapl, xgapr, ygapl, ygapr, zgapl, zgapr] do ▷ Exclude the faces
38: if igap > 0 then
39: if igap > rthis then
40: F1← intface(igap, igap) ▷ Eq. (6.69)
41: else
42: F1← intface(rthis, igap)
43: F2← intface(rnext, igap)
44: drpair ← drpair − (F2− F1)
45: xgaps← (xgapl, xgapr) ▷ Include back the edges
46: ygaps← (ygapl, ygapr)
47: zgaps← (zgapl, zgapr)
48: for (igaps, jgaps) ∈ [(xgaps, ygaps), (xgaps, zgaps), (ygaps, zgaps)] do
49: for gapi ∈ igaps do
50: for gapj ∈ jgaps do ▷ 3× 2× 2 = 12 is the number of edges in a cuboid.
51: if gapi > 0 & gapj > 0 & gapi2 + gapj2 < r2 then
52: if gapi2 + gapj2 ≥ rthis2 then
53: F1← 0
54: else
55: F1← intedge(rthis, gapi, gapj) ▷ Eq. (6.71)
56: F2← intedge(rnext, gapi, gapj)
57: drpair ← drpair + F2− F1

58:
⌢

DR [i]← drpair/(N ∗ a ∗ b ∗ c) ▷ Calculate the normalized data-random pair counts
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Figure D.3: An algorithm for precise calculations of
⌢

DR (r) in O(Ng) time, applying to circular
regions.

1: N : the total number of data points.
2: rlist: array of boundaries defining the real space radial bins in which pairs are counted.
3: rsteps: a list of discrete differences along rlist.
4: for i ∈ 1 : (len(rlist)− 1) do
5: drpair ← 0
6: rthis← rlist[i]
7: rnext← rlist[i+ 1]
8: r ← rnext
9: for par ∈ data set do

10:
11: drpair ← drpair + π ∗ (rnext2 − rthis2)
12:
13: x, y: coordinates of par
14: d←

√
x2 + y2

15: gap← 1− d
16: if r > gap then
17: if rthis ≤ gap then
18: F1← 0.
19: else
20: F1← int unit circle edge(rnext, d) ▷ Eq. (6.72)
21: F2← int unit circle edge(rnext, d)
22: drpair ← drpair − (F2− F1)
23:
24:

⌢

DR [i]← drpair/(N ∗ π)

Figure D.4: An algorithm for precise calculations of
⌢

DR (r) in O(Ng) time, applying to spherical
regions.

1: N : the total number of data points.
2: rlist: array of boundaries defining the real space radial bins in which pairs are counted.
3: rsteps: a list of discrete differences along rlist.
4: for i ∈ 1 : (len(rlist)− 1) do
5: drpair ← 0
6: rthis← rlist[i]
7: rnext← rlist[i+ 1]
8: r ← rnext
9: for par ∈ data set do

10: drpair ← drpair + 4
3π ∗ (rnext3 − rthis3)

11: x, y, z: coordinates of par
12: d←

√
x2 + y2 + z3

13: gap← 1− d
14: if r > gap then
15: if rthis ≤ gap then
16: F1← int unit sphere edge(gap, d) ▷ Eq. (6.73)
17: else
18: F1← int unit sphere edge(rthis, d)
19: F2← int unit sphere edge(rnext, d)
20: drpair ← drpair − (F2− F1)
21:
22:

⌢

DR [i]← drpair/(N ∗ 4
3π)

228



Python code based on these algorithms is published as doi:10.5281/zenodo.5201479, as devel-

oped on https://github.com/chongchonghe/analytic-2pcf/tree/v1.0.0.
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