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Observing an exoplanet’s atmosphere via photometry and spectroscopy has provided the

main window to understanding its properties and processes, as the atmospheric spectra encom-

pass information about the chemistry, thermal structure, surfaces, as well as formation history

and even biology. To this end, one key science goal of the James Webb Space Telescope (JWST)

is to establish whether rocky planets around M dwarfs can host atmospheres or not. JWST of-

fers unprecedented signal-to-noise and unlocks new parameter space regimes of planets available

for characterizing not only the atmosphere but also the surface. This advancement in observing

capability simultaneously poses novel challenges to atmospheric characterization. My disserta-

tion addresses some of the new challenges to atmospheric retrievals in the era of JWST and the

characterization of rocky planets.

Firstly, I quantified the effects of wavelength-correlated systematics on atmospheric re-

trievals. Wavelength-correlated noise can occur due to instrumental systematics or stellar effects



and the merging of discrete data sets. I investigated the effect of correlated noise and constrained

the potential biases incurred in the retrieved posteriors by performing retrievals on multiple noise

instances of synthetic data. The study found that correlated noise allows for overfitting the spec-

trum, thereby yielding a better goodness of fit on average but degrading the overall accuracy of

retrievals by roughly 1σ. In particular, correlated noise can manifest as an apparent non-Rayleigh

slope in the optical range, leading to an incorrect estimate of cloud/haze parameters. Finally, I

show that while correlated noise cannot be reliably distinguished with Hubble Space Telescope

observations, inferring its presence and strength may be possible with JWST.

Secondly, I studied the how the choice in parameterization of the atmospheric composition

can influence the posterior when performing retrieval analyses on terrestrial planet atmospheres,

for which the mean molecular weight is not known a priori. By performing self-retrievals and

varying the parameterization, I found that the centered log-ratio transform, commonly used for

this application, tends to overestimate the abundances of spectroscopically active gases when

inactive ones are present. Over multiple noise instances, I found that no one parameterization

method always outperforms others. Comparing the Bayesian evidences from retrievals on multi-

ple noise instances, I found that for a given spectrum, the choice in parameterization can affect

the Bayes factor of whether a molecule should be included. Alongside astrophysical effects, this

remains a fundamental challenge to atmospheric retrievals for small planet and can addressed by

more observations.

Finally, I constrained the atmospheric thickness and characterized the surface from the first

JWST measurement of thermal emission from a rocky exoplanet, TRAPPIST-1 b. I compared

TRAPPIST-1 b’s measured secondary eclipse depth to predictions from a suite of self-consistent

radiative-convective equilibrium models. I found that plausible atmospheres (i.e., those that con-



tain at least 100 ppm CO2) with surface pressures greater than 0.3 bar are ruled out at 3σ, re-

gardless of the choice of background atmosphere, and a Mars-like thin atmosphere with surface

pressure 6.5 mbar composed entirely of CO2 is also ruled out at 3σ. I modelled the emission spec-

tra for bare-rock planets of various compositions and found that a basaltic surface best matches

the measured eclipse depth to within 1σ.
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Preface

The work presented in Chapters 2 and 4 of this dissertation has been previously published

as first author papers. The work in Chapter 3 is an early draft of a paper currently in-prep that will

be submitted shortly as a first author paper. Chapter 5 contains a figure from an in-prep co-first

author paper.

The work in Chapter 2 was published in the Astronomical Journal (AJ) as ”Understanding

the Effects of Systematics in Exoplanetary Atmospheric Retrievals” [1] and is presented here

with minimal modification. I conducted the simulations and produced all graphics and tables. My

co-author (advisor) provided the initial topic and contributed feedback on methods and text.

The work in Chapter 3 is a draft of a paper that will be submitted shortly as a first author

paper. The work was presented in a number of virtual conferences and meetings in 2021. I con-

ducted the simulations and produced all graphics and tables. My co-author (advisor) contributed

feedback on methods and text.

Chapter 4 was published in the Astrophyiscal Journal Letters (ApJL) as ”Constraining the

Thickness of TRAPPIST-1 b’s Atmosphere from Its JWST Secondary Eclipse Observation at 15

μm” and is presented here with minimal modification. The observation that the work character-

izes was published in Greene et al. [2], and my co-author Emily Whittaker assisted with setting

up and troubleshooting the radiative transfer code HELIOS.

Chapter 5 contains a figure from an in-prep co-first author paper. Co-author Brandon Park

Coy collated the dataset.
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Chapter 1: Introduction

1.1 Why Observe Exoplanets and Their Atmospheres?

Hypothesizing alien worlds on planets orbiting stars other than our own Sun, known as

extrasolar planets or exoplanets, has deeper roots than what may be apparent from how relatively

young the field of exoplanetary science is. In one of the earliest examples, Democritus (c. 460 - c.

370 BCE) posited, “In some worlds there is no Sun and Moon, in others they are larger than in our

world, and in others more numerous. In some parts there are more worlds, in others fewer (...); in

some parts they are arising, in others failing. There are some worlds devoid of living creatures or

plants or any moisture.” The actual study of exoplanets did not take off until observations much

later, of course, when the first exoplanet around a pulsar was found in 1992 [8]; two years later,

the first exoplanet around a main sequence star was discovered [9]. Since then, 5,632 exoplanets

have been confirmed as of this writing according to the NASA Exoplanet Archive [10], spanning

various sizes, mass, and orbital periods, as shown in Figure 1.1.

Of course, studying exoplanets extends beyond the mere cataloging of distant worlds. We

also wish to characterize them; that is, identify the ongoing processes, composition, and struc-

ture of the atmosphere and the interior. In the bigger picture, there are a few related scientific

goals here. First and foremost, we aim to understand where we come from. How do planets

form, evolve, and possibly lead to the presence life? The diverse outcomes of planet formation
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Figure 1.1: Confirmed planets to date plotted in the orbital period-radius space. The solar system
planets are also indicated. This figure was created using the NASA Exoplanet Archive.

seen in exoplanets offer a broader sample size than the solar system (by a few order of magni-

tudes) for answering basic questions about planet formation (Figure 1.1). Secondly, we test our

knowledge of planetary and atmospheric physics, utilizing the various extreme environments that

exoplanets provide as scientific labs, especially those conditions that we cannot easily recreate

experimentally. This includes, for instance, fluid dynamics [11], radiative transfer [12], molecular

and atomic line lists [13, 14], and high pressure equations of states [15, 16]. Finally, we wish to

study the diversity of worlds and habitability. By understanding what planetary conditions are

possible, we can establish a context in which we can understand our own.

For this purpose, the atmospheres of exoplanets have been the primary target of observation

beyond their bulk properties such as mass and radius. An atmosphere is the layer of gas that

shroud a planet, and, being the outermost part of the planetary environment, is the most amenable

to being observed via remote sensing [17, 18]. Atmospheric observations provide measurable

information on the planet’s climate and chemistry, which can in turn inform the characterization
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of e.g. the formation history [19], interior structure [20, 21], surfaces [22] and oceans [23], and

biological processes [24]

1.2 Observations of Transiting Exoplanet Atmospheres and Surfaces

1.2.1 Observing geometries and modes

Transiting exoplanets are exoplanets whose orbital inclination is aligned with our line of

sight such that they pass in front of and behind the host star. For these targets, the geometry

allows for a number of differential measurement techniques to separate the planetary atmosphere

from the stellar emission. One can observe the change in the observed flux at each wavelength

as the planet passes in front of or behind the star, called transmission and emission observations,

respectively.

1.2.1.1 Transmission spectroscopy

Transmission spectroscopy involves observing the starlight that passes through the planet’s

atmosphere during a transit. As the planet passes in front of its host star, it blocks the stellar flux

equal to the projected area of the planet relative to the star, producing a drop in flux, called transit

depth δλ = (Rp,λ/Rs)
2. In practice, the stellar disk is not uniformly bright, and the transit depth

is obtained via simultaneous modelling of the limb darkening and the transit in the light curve.

Information about the atmosphere is encoded in how this transit depth varies with wave-

length; the starlight blocked by the planet filters through the planet’s atmospheric layers, leaving

imprints in the form of absorption lines. These spectral lines correspond to specific wavelengths

where atmospheric gases absorb light; for instance, as water is opaque at 1.4 µm, the atmosphere
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Figure 1.2: Observations in transit and eclipse geometry. Figure taken from [3].

will appear larger than compared to, say 1.2 µm, outside the absorption band of water. If the

height at which the atmosphere is opaque can be described as n times the atmospheric scale

height H = kBT/µg, or the height over which atmospheric pressure changes by an e-fold, the

spectral feature size can be written as:

δλ =
(Rp + nH)2

R2
s

−
R2

p

R2
s

= 2nRpH/R2
s. (1.1)

Typically n is of order unity to ten.

It can be seen here that the spectral feature sizes will be larger for planets with: (a) larger

planetary radius; (b) hotter temperature; (c) low mean molecular weight; (d) low mass (or grav-

ity); and (e) small host star radius. Historically, this has naturally pushed characterization via

transmission observations towards hot Jupiters, with nominal values (for say, HD 209458 b) being

δ ∼ 1%, and δλ ∼ 0.1% [25, 26]. For Earth-like planets, with smaller radius, cooler temperature,

and higher mean molecular weight, both of these values could easily be 3 orders of magnitude
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Figure 1.3: The first JWST transmission spectrum of rocky planet, LHS 475, showing a “feature-
less” spectrum. Figure taken from Lustig-Yaeger et al. [4].

smaller. This also pushes observations towards planets around smaller stars, as smaller Rs in-

creases the spectral feature size. As such, despite the superior sensitivity of JWST, transmission

spectra of small, rocky planets have frequently been observed to be “featureless” spectra, where

the data is consistent with both a bare rock or a cloudy atmosphere (a flat line) or an atmospheric

spectrum with small scale height (Figure 1.3).

1.2.1.2 Emission spectroscopy

Emission observations, on the other hand, disentangle the light emitted or reflected by

the planet itself during secondary eclipses when the planet passes behind its star [25, 27]. Just

before the secondary eclipse, the observed light from the system comprises the flux from both

the host star and the emitted and reflected dayside of the planet. During the eclipse, the planet’s

emitted and reflected light is blocked, thus allowing for a differential measurement. At longer

wavelengths, where reflection contributes negligible flux, the thermal emission from the planet
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produces eclipse depth Fp/Fs:

Fp

Fs

=
R2

p

R2
s

Bλ(Tp,λ)

Bλ(Ts)
, (1.2)

where it is assumed that the planet and star emit as perfect blackbodies with the wavelength-

dependent flux Bλ(T ).

Here, the information about the atmosphere is encoded in how the eclipse depth varies

with wavelength. Due to the changing opacity with wavelength, the height of the photosphere

of the atmosphere, where optical depth is of order unity, varies with wavelength. As such, a

vertical temperature gradient in the atmosphere gives rise to spectral features. For a decreasing

temperature with altitude, one sees a cooler part of the atmosphere at wavelengths where a gas

absorbs, producing shallower eclipse depths at those wavelengths. For an increasing temperature

with altitude, called thermal inversion, one sees a hotter part of the atmosphere, producing deeper

eclipse depths [28, 29].

For transmission spectroscopy, the absolute depth is generally of less interest as planetary

radius can be found without the use of a spectral observation. On the other hand, for eclipse

observations, the absolute eclipse depth can be of interest as in can constrain the dayside heat

budget of the planet. This allows for the technique of measuring the thickness of the atmosphere

for rocky planets, as a thick atmosphere will cool the dayside via circulation, which I describe in

detail in Chaper 4 [2, 30, 31, 32, 33].
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1.3 Atmospheric Modelling

Exoplanetary atmospheres are always observed in an integrated sense, as opposed to solar

system planets where remote sensing can resolve the disk of the planet or in situ measurements

allow for stratified measurement in the local environment. As such, we must invoke fundamental

physics to carefully model the planetary atmosphere to disentangle the various information in the

observation. Additionally, a theoretical model spectrum is necessary to evaluate the feasibility of

an observation and assess what information can be gained from which set of observations [34].

Towards both of these purposes, broadly speaking, modelling codes come in two flavors: forward

models and retrieval models. I will illustrate the difference between the two by describing the

two codes used in this dissertation.

In this dissertation, I use two planetary modelling codes, HELIOS [35, 36, 37] and PLATON

[38, 39]. HELIOS is a self-consistent 1-D forward modelling code that iteratively solves for the

thermal structure of a planetary atmosphere in radiative-convective equilibrium with its chemi-

cal composition; the thermal structure can then be processed to produce the emergent planetary

emission spectra and hence an eclipse spectrum. The self-consistency is particularly important for

modeling emission spectra, as the vertical temperature gradients produce the emergent spectral

features.

On the other hand, PLATON is a retrieval code for transmission and eclipse observations,

and, as such, the forward model therein does not enforce self-consistency and makes simplifying

assumptions, such as a vertically fixed chemical abundances in the atmosphere. The simplify-

ing assumptions are necessary to run the model a large number (105−7) of times, embedded in a

parameter estimation scheme. As the transmission spectra are less sensitive to the vertical tem-
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perature gradients, I use PLATON for generating transmission spectrum. A full description of the

two codes can be found in the respective sources; I will outline the physics the two codes solve

for in this section and unpack the jargon in this section.

1.3.1 Physical structure of the atmosphere

Both models are 1-D models and treat the atmosphere as vertically stratified slabs. The

atmospheric modelling simultaneously solves for four variables that depend on each other: pres-

sure, temperature, chemical composition, and heat transport. A reasonable assumption is to as-

sume hydrostatic equilibrium, in which gravity is balanced by the pressure gradient:

dP

dz
= −ρ(z)

GMp

z2
, (1.3)

where the gravity varies with altitude while the enclosed mass is constant. This implicitly assumes

the atmosphere contributes negligible mass.

Additionally, the models assume ideal gas as the equation-of-state describing the pressure:

P (z) = n(z)kBT (z) =
ρ(z)kBT (z)

µ(z)mH

, (1.4)

where µ(z) describes the mean molecular weight (MMW).

Both HELIOS and PLATON allow for thermochemical equilibrium (or just chemical equi-

librium in common parlance), in which the composition of the atmosphere, given an elemental

composition, is determined entirely by the local pressure and temperature by minimizing the

Gibbs free energy [40, 41]. The so-called non-equilibrium effects, such as vertical mixing or

photochemistry, are not natively considered [42, 43]. However, most of the models in this disser-
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tation concern small planets, for which equilibrium chemistry is not expected. For these planets,

a common simplifying assumption is to assume a vertically fixed composition [44].

1.3.2 Radiative-Convective Equilibrium

As stated earlier, a key difference between the two codes is how T (z) is treated. On one

hand, PLATON, being a retrieval code, treats the thermal structure parametrically using analytical

functions (or assumes a simple isotherm) [45, 46] and therefore does not enforce any energy

balance, global or local. On the other hand, HELIOS iteratively solves for the thermal profile such

that local energy balance is satisfied at each layer. That is, the divergence of the net bolometric

flux is zero at every vertical layer, absent of any additional heating sources such as latent heat or

horizontal transport:

∂F−

∂z
=

∂(F↑ − F↓)

∂z
= ρ(z)cp

dT (z)

dt
= 0, (1.5)

at each vertical layer, where the arrows indicate upwelling and downwelling stream fluxes and cp

is the specific heat capacity. Equilibrium is reached by timestepping through changes in temper-

ature at each layer.

Once the radiative equilibrium has been reached, HELIOS then checks if each layer is stable

against convection, using the Schwarzschild criterion [36, 47]:

dT

dz
<

g

cp
, (1.6)

where the right hand term corresponds to the dry adiabatic lapse rate. Currently, the public version

HELIOS does not account for moist adiabats [48, 49] or convective overshoot [50]. HELIOS makes

9



convective adjustment to satisfy convective equilibrium in the layers with superadiabatic lapse

rate.

1.3.3 Bare rock planets

Here we define a number of temperatures, equilibrium temperature, surface temperature, and

brightness temperature as they apply to observations of bare rock planets. For a bare rock planet,

spectral flux at the surface, Fp,λ, is given by:

Fp,λ = Fp,λSW
+ Fp,λLW

= AλF↓,λ + (1− Aλ)πBλ(Tsurf), (1.7)

where the terms Fp,λSW
and Fp,λLW

are the shortwave reflection of the incident stellar flux F↓,λ

and the longwave outgoing planetary flux, respectively. Notice the emissivity term (1− Aλ).

Surface temperature

The maximally hot dayside temperature is found by setting Aλ = 0:

Tmax =

(
2

3

) 1
4
(
R∗

a

) 1
2

T∗eff , (1.8)

where the numerical factor of 2
3

accounts for the spherical geometry and arises due to integration

of cosines, and since Fp = F↓, the surface temperature becomes:

Tsurf =

(
1− A

SW

1− A
LW

) 1
4

Tmax (1.9)

and A
SW

> A
LW

cools the surface temperature.
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Equilibrium temperature

The blackbody flux at the equilibrium temperature matches only the longwave planetary

emission and not the bolometric (otherwise the albedo would just cancel out). This also implicitly

assumes that the reflected and emitted spectrum don’t overlap. Teq is found by:

Teq = (1− A
SW

)
1
4

(
1

4

) 1
4
(
R∗

a

) 1
2

T∗eff . (1.10)

The equilibrium temperature only depends on the Bond albedo A
SW

because by definition Teq

is the surface temperature when A
LW

= 0. For a realistic surface with A
LW

∼ 0, the surface

temperature is similar to the equilibrium temperature, but see Appendix B of [51] for how non-

unity emissivity affects estimating the Bond albedo A
SW

.

Brightness temperature

The brightness temperature, Tb,λ, is found by matching the blackbody at a given wave-

length:

Bλ(Tb,λ) = (1− Aλ)Bλ(Tsurf), (1.11)

for longwave emission. In general, even for a grey albedo Aλ = A, the brightness temperature

varies with wavelength and is not equal to the equilibrium temperature, unless of course A = 0.

In practice, this is a pretty minor effect [52].

If we go out to longer wavelengths, Tb,λ → (1 − A)Tmax for bare rock planets as we

approach the Rayleigh-Jeans limit, but for MIRI observations of cold rocky planets the limit may
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not always hold.

Additionally, filters are not infinitely narrow, so one has to actually integrate PλBλdλ over

the filter bandpass (weighted by the bandpass function Pλ) for a grid of temperatures to find the

brightness temperature.

1.3.4 Accounting for Redistribution in a 1D Model

As HELIOS is a vertical 1-D model, it does not directly model the effects of horizontal

atmospheric transport between the dayside and nightside. Instead, it employs a scaling developed

by Koll [53] to calculate the dayside energy budget, where the redistribution factor f for a tidally

locked (or slowly rotating) planet depends on the surface pressure Psurf , longwave optical depth

τLW, and equilbrium temperature Teq:

f =
2

3
− 5

12
×

τLW
(
Psurf

1 bar

)2/3 ( Teq

600K

)−4/3

k + τLW
(
Psurf

1 bar

)2/3 ( Teq

600K

)−4/3
, (1.12)

where k is a term that captures all planetary parameters other than the three variables and can be

assumed to be ≈ 2. The scaling follows the expectations that, in the uniform redistribution limit

for thick atmospheres, as Psurf , τLW → ∞, f → 1
4
, and, in the no redistribution limit for thin

atmospheres, as Psurf , τLW → 0, f → 2
3
.

In the current implementation of HELIOS, this scaling is employed by subtracting the ap-

proximated transported heat budget from the incident stellar flux to calculate the dayside energy

budget, and therefore does not consider the vertical dependence of the day-to-night heat flow.

Regardless, this scaling has been validated against global circulation models that consider full

three-dimensional flow to be able to successfully reproduce observations [32, 52].
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1.4 Atmospheric Retrieval and Bayesian Methods

Characterizing the atmosphere of an exoplanet from its observations constitutes an inverse

problem; instead of solving for the atmosphere and its observation from physical properties, one

aims to derive statistical constraints on the unknown physical properties from the given measure-

ments via a forward model tied to robust parameter estimation methods. This is done via running

a large number of forward models to simulate spectra in a multidimensional parameter search and

comparing them to the observed measurements, thereby finding the set of parameters and their

uncertainties [34, 46].

1.4.1 Non-Bayesian Methods

I will instead briefly describe non-Bayesian methods, and why one might use them as I do

in Chapter 4. When there is insufficient information in the data to constrain the model parame-

ters (either due to resolution or signal-to-noise), however, one typically has to resort to a simpler

approach such as grid-fitting, where one runs a suite of self-consistent models on a grid of pa-

rameters of interest to find solutions that best fit the data. In this scheme, compared to a retrieval,

one is making more physical assumptions about the atmosphere by imposing self-consistency

and, generally, the uncertainties on physical parameters is typically not retrieved. This approach

was popular, for instance, in characterizing exoplanet atmospheres from Spitzer observations and

was used to infer e.g. thermal inversions in hot Jupiters [28, 54, 55]. The observation of smaller

targets with JWST necessitates this approach once again.
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1.4.2 Bayesian Methods

Bayesian approaches to inference make use of Bayes’ theorem to estimate a set of param-

eters θ and to select for models. Given a model M and a set of observations y, Bayes’ theorem

states that:

Pr(θ|y,M) =
Pr(y|θ,M)Pr(θ|M)

Pr(y|M)
, (1.13)

from which we define the terms posterior probability P(θ), likelihood L(θ), prior probability

π(θ), and evidence Z , respectively, as:

P(θ) =
L(θ)π(θ)

Z
. (1.14)

Here, while the likelihood corresponds to the probability of the data given the model and the

parameter, the posterior probability corresponds to the probability distribution of the parameters

given the data and the model. The prior probability corresponds to the probability distribution of

the parameters given the model, before the data has been observed. The prior could be construed

as supplying additional information to shape the posterior that is based on the data.

The evidence is calculated via integrating the likelihood function over the prior space:

Z =

∫
L(θ)π(θ)dθ. (1.15)

For posterior estimation, the evidence is only a normalizing term, ensuring the posterior

sums to unity over the parameter space. The evidence can also be used for model selection prob-
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lems, where the relative probability of two different models given the data, or the odds ratio, can

be obtained via the evidence ratio. This is justified by:

Pr(M1|y)
Pr(M0|y)

=
Pr(y|M1)Pr(M1)

Pr(y|M1)Pr(M0)
=

Z1

Z0

, (1.16)

which makes the assumption that the prior relative probability of the models is unity.

Bayesian methods have become the standard in atmospheric retrievals, used to infer the

required model complexity, e.g. whether a gas species should be considered or not [46, 56, 57].

1.5 Formation and Evolution of Terrestrial Planet Atmospheres

While gas giant planets retain the primordial, H-dominated atmospheres from formation,

terrestrial planets are prone to losing their primordial atmospheres and forming secondary atmo-

spheres, the composition of which can reflect the various pathways to forming these atmospheres.

Volatiles can be trapped during early formation or be delivered by planetary embryos and

planetesimals during the late stages of planet formation [58]. Theses volatiles can then be out-

gassed from the interiors, forming secondary atmospheres [21, 59].

X-ray and ultraviolet (XUV) radiation from stars can drive atmospheric escape processes

that significantly influence the volatile content of terrestrial planets, potentially leading to com-

plete atmospheric loss in some cases [60, 61]. Nonetheless, substantial atmospheric escape can

be counterbalanced by vigorous outgassing from the interior or from magnetic shielding [62],

rendering it difficult to predict the atmospheric extent of terrestrial exoplanets.

As such, whether terrestrial exoplanets have atmospheres at all is still an open question,

especially those around M stars, whose cumulative XUV irradation is greater than around Sun-
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Figure 1.4: In the solar system, bodies with and without atmospheres are separated by the so-
called “Cosmic Shoreline”, or a line in the escape speed-insolation plane [5]. This figure shows
the Cosmic Shoreline but instead against cumulative XUV history, thought to be the driving
force behind atmospheric evaporation. The triangles correspond to planned (colored) and po-
tential (blank) targets observable with JWST and are scaled to the Transmission and Emission
Spectroscopy Metrics [6] The further a target is to the bottom right, the less likely it is to have an
atmosphere.

like stars, due to more of their bolometric flux coming from XUV and being longer-lived [63].

For instance, Figure 1.4 shows targets that can be observed with JWST in the escape speed-

XUV insolation plane. In the solar system, bodies with and without atmospheres are separated

by the so-called “Cosmic Shoreline”, or a line in the escape speed-insolation plane [5]. All of the

JWST targets are around M stars due to the favorable signal size, and it can be seen that, scaled

relative to the solar system, they are all on the side of the Comsic Shoreline that is unlikely to

have an atmosphere. The lack of a clear picture underscores the need for ongoing and expanded

observational studies.
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Chapter 2: Understanding the Effects of Systematics in Exoplanetary

Atmospheric Retrievals

2.1 Introduction

Inverse modelling the transmission spectra of exoplanets allows for extracting information

about various properties and processes in the atmosphere. This is commonly done by pairing a

forward model, which generates a spectrum from atmospheric parameters, and a parameter esti-

mation scheme, which samples the parameter space to compute the probability distribution of the

set of parameters. This method of analyzing observed spectra, called atmospheric retrieval, orig-

inally developed for remote sensing in Solar System bodies, [e.g. 64] has become a standard tool

in characterizing exoplanetary atmospheres and has allowed for measuring abundances of vari-

ous species and identifying atmospheric phenomena such as the presence of clouds and thermal

inversions [e.g. 65, 66, 67, 68, 69, 70, 71].

Recently, there has been a growing body of work that addresses the potential to be mis-

led by incomplete physics or simplifying assumptions used in retrievals, often invoked to speed

up the computation and make the retrieval feasible [e.g. 72, 73, 74, 75, 76, 77]. These studies

are especially germane in preparation for interpreting James Webb Space Telescope (JWST) ob-

servations, the precision of which will now render the finer details of the model consequential.
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Such details include 3-dimensional atmospheric structure, host star effects, aerosol models, and

disequilibrium chemistry. The general method used in the aforementioned works is to retrieve

on a synthetic spectrum generated by a more complex and complete forward model and then in-

spect the retrieval result to quantify what bias may be incurred, with the aim of making judicious

choices as to how and which model complexity and compromises should be introduced to the

retrieval’s forward model.

Adopting a similar approach, we focus on a separate but related issue in this work. A univer-

sal assumption made in atmospheric retrieval is that the reported errors in the observed spectrum

are Gaussian and independent. This assumption is encoded into the cost function one tries to

minimize during the parameter estimation, which is invariably a chi-squared statistic that does

not take the covariance between the residuals into account [65, 69, 78], While this assumption is

a reasonable starting point for analyzing observations, as data quality reaches unprecedented pre-

cision and as retrievals incorporate increasingly sophisticated forward models and more rigorous

statistical methods, it is necessary to understand the significance of the assumption of indepen-

dent errors.

As further motivation for this work, there have been observations that hint at the extent

to which errors may be correlated with wavelength. To pull one such example from the litera-

ture, we identify the observed spectrum of HD 97658b with the WFC3 instrument on Hubble

[7]. The retrieval on this dataset strongly favors either high-metallicity or cloudy atmospheres,

corresponding with a nearly featureless transmission spectrum (a flat line). However, none of the

forward models considered by Guo et al. [7] provide an excellent fit to the data. For example, we

show the best-fit PLATON [69] spectrum in Figure 2.1, which yields a reduced chi-squared of 2.5

(with 21 degrees-of-freedom) and is ruled out by the data at 4.9-σ. (We note that Guo et al. [7]
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can find models that provide a high-quality fit to their data by scaling their formal error bars by a

factor > 1 — a practice that we weigh in on later in this chapter and that we do not endorse.) As

can be seen in Figure 2.1, the best-fit spectrum produces residuals that are possibly correlated.

One rudimentary method of quantifying correlation is to count the number of zero-crossings,

which should follow a symmetric binomial distribution if the noise were independent. Addition-

ally, an unusual upward slope is seen in the residual in the redmost edge. A similar behavior was

seen in the observed spectrum of KELT-11b [see 79, Figure 20]. This could be attributed to either

complicated physics unaccounted for in the forward model or the presence of correlated noise in

the data.
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Figure 2.1: The observed WFC3 data of HD 97658b [7] and the best-fit PLATON spectrum in
full-resolution and binned (solid line). The residuals from the fit are also shown in the bottom
panel. The best-fit χ2 is 56, and reduced χ2

r = 2.5. An unusual upward trend in the residuals is
present in the long wavelength limit, and the residuals appear to be correlated with wavelength.

Potential sources of correlated noise are numerous and include faulty data reduction due to
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incorrect orbital parameters or incomplete subtraction of stellar contributions [80, 81]. Choices

made during the data reduction, such as the choice of a model to remove visit-long trends, can

potentially produce a wavelength-dependent correlated effect in the spectrum [see 7, Figure 7].

More fundamentally, the removal of instrumental systematics such as ramping or horizontal shifts

in Hubble data has intrinsic uncertainties and may potentially manifest themselves in wavelength-

dependent manners [82].

For space-based observation facilities, there are some reasons from observer experience

to suspect that correlated noise is more likely in the case of a very bright host star, for which

the instrumental systematics either behave differently or become more apparent due to lower

photon noise. In Stevenson and Fowler [83, Figure 9], it can be seen that no observations with

bright host stars of J-band magnitude ≤ 8.5 meet the ideal precision per orbit, instead maxing

out at ∼35 ppm. (Interestingly, our previously-discussed example case of HD 97658b fits into

this category, with a J-magnitude of 6.2.) This effect has been attributed to unaccounted for

wavelength-dependent systematics, that have no guaranteed way of being completely modelled

out. In the case of ground-based observations, the highly time-dependent telluric contamination

may also be a potential source of correlated systematics.

A separate, but related cause of wavelength-dependent correlation in data errors arises when

combining data from various instruments to gain a wider wavelength coverage. Each instrument

has its own instrumental systematics and data reduction pipeline, leading to distinct noise statis-

tics among datasets. More fundamentally, these observations are not simultaneous and are hence

subject to differing conditions with respect to stellar and planet variability. An insufficient num-

ber of observed transits may admit such variability in the data, even if the desired signal-to-noise

ratio is formally achieved. Some retrieval analyses have included ad hoc “offset” parameters,
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which vertically shift all measured transit depths from one dataset by a variable amount, to fit

for the discrepancies between datasets, but doing so can induce bias in the estimation of other

parameters [84].

Another issue arises in how outliers in the observed data are interpreted in a retrieval. After

fitting a spectrum to data, the presence of anomalous outliers in the residuals is certainly within

expectation of what can happen, and statistical methods such as bootstrapping, though rarely used

in retrieval studies, do offer objective criteria to exclude these outliers. However, the fact that we

rely on the best-fit spectrum to determine outliers raises the question if a statistically equivalent

datum could have been accommodated for as a detected feature if it happened to have occurred

at where we expect one. This problem is especially pertinent in the context of retrievals with

non-equilibrium models. It particularly affects resolution-limited observations and species with

single, narrow features, e.g. atomic lines such as Na or K for which only one or two data points

dictate the retrieved abundance.

Given the number of potential issues raised above, in the present work we aim to address

the question: how reliable are our atmospheric retrievals and what are best practices in the face

of these idiosyncratic data systematics? We perform atmospheric retrievals on simulated spectra,

while varying the noise properties, and conduct a detailed analysis of the retrieved parameters.

Such an analysis provides a statistical context in which one can assess the credibility of a retrieval

beyond a raw retrieved posterior. In what follows, in §2.2 we describe our planet parameters and

noise models used; in §2.3, we present our findings in how retrievals are affected; in §2.4, we test

whether correlation can be retrieved during retrieval; in §2.5, we discuss how we might be able to

better understand the sources of these systematics and implications for future telescopes; in §2.6

we summarize and conclude.
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2.2 Methods

2.2.1 Framework for Statistics of Retrievals

To study how non-Gaussian error can bias the retrieval results, we perform retrievals on

simulated data generated with and without correlation in the noise. Here, by using the same for-

ward model to create the synthetic spectrum and to retrieve on it, we remove model dependencies

as much as possible and are able to examine the bias due to noise in isolation. To obtain statistics

of retrievals, we use the following procedure (also shown schematically in Figure 2.2):

Figure 2.2: Schematic diagram of our method. We generate multiple (∼500) observational in-
stances of a given planetary scenario and noise model, and perform atmospheric retrieval on each
spectrum using PLATON.

1. Choose the input parameters of a planet, such as radius, temperature, metallicity.

2. Run the forward PLATON [69] model to produce the unpolluted spectrum of the atmo-

sphere.

3. Bin the full-resolution unpolluted spectrum to the chosen wavelength bins.
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4. Choose a noise model (independent or correlated) and noise parameters that simulate the

noise of a real observation.

5. Sample a noise realization of the binned spectrum using the noise model.

6. Perform retrieval analysis on the simulated data.

7. Repeat steps 5 and 6 a sufficient number of times such that the retrieved parameters can be

combined to generate reliable statistics.

We use PLATON [version 3.0; 69], an open-source retrieval tool, as the forward and retrieval

model for transmission spectra. PLATON has the advantage of being extremely fast for a retrieval

code (under 30 minutes per run), which is suitable for our application as we perform hundreds

of retrievals with randomly sampled noise realizations. We perform this process only on trans-

mission spectroscopy, as the geometry allows for assuming an isothermal atmosphere, greatly

reducing the number of free parameters in our model as well as the computation time per run.

We repeat the above procedure for five cases of observation: a clear hot Jupiter, a clear hot

Jupiter with offsets between datasets, a cloudy hot Jupiter, a clear hot Jupiter at higher (JWST-

like) precision, and a warm Neptune. In what follows, we describe the forward model parameters,

the noise model, and the retrieval setup. A summary of the input parameters and the assumed

priors for each set of retrievals is provided in Table 2.1.

2.2.2 Forward Model Parameters

To best imitate retrievals on actual observations, we choose input parameters and spectrum

bins similar to Hubble and Spitzer observations of the canonical hot Jupiter HD 209458b and
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exo-Neptune GJ436b which have reliable data and have been studied in the context of retrievals

[85, 86, 87, 88, 89, 90]. We adopt the measured mass, radius, and temperature of each planet, and

set the log-metallicity to 0.3 and carbon-to-oxygen ratio to the solar value of 0.53 [91].

We also choose to include clouds and hazes in our model. Such aerosols have been found

to be ubiquitous in exoplanetary atmospheres [e.g. 92, 93] and produce a spectral signature that

can be degenerate with other parameters [94, 95]. PLATON accounts for clouds and hazes using

a parametric model. The user can specify a grey cloud-top pressure, the atmosphere absorption

below which is truncated, and an amplitude and slope in the optical end of the spectrum to account

for a non-Rayleigh slope caused by Mie scattering. In summary, the aerosol opacity κaer is given

as:

P > Pcloud : κaer = ∞

P < Pcloud : κaer ∝ aλ−γ,

where a = 1 and γ = 4 corresponds to Rayleigh scattering from the gaseous atmosphere.

For our cloud-free simulations, we choose a low-altitude cloud-top pressure of 0.5 bar.

For our cloudy simulations, we choose 0.1 mbar such that clouds obscure roughly half of the

spectrum while preserving some molecular features. Similarly, we adopt a nearly-Rayleigh slope

of 4.3 and amplitude of 1, indicating no excess Rayleigh scattering from aerosol particles. We

stress that since we use the same forward model in the retrieval to isolate the effects of noise

from model systematics, the specific choices in parameters are not of great importance as long

as they can be correctly retrieved and as long as we select a set of forward models that span a

representative set of exoplanet atmospheres.
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We choose a wavelength range that spans observations from the Hubble Space Telescope

(HST) spectrographs most commonly used for exoplanet atmospheric investigations — specifi-

cally the Space Telescope Imaging Spectrograph (STIS) and Wide-Field Camera 3 (WFC3) — as

well as photometric observation from the Spitzer Space Telescope. In the STIS wavelength range

we follow the bins of Knutson et al. [87]; in the WFC3 wavelength we choose 33 equal sized bins

between 1.01 µm and 1.64 µm [96]; for Spitzer we include observations in the photometric bands

of the IRAC instrument at 3.6 µm and 4.5 µm. The resulting wavelength bins are comparable to

a complete panchromatic dataset from current space-based observations. The resulting simulated

spectra are shown in Figure 2.3 and Figure 2.4.
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Figure 2.3: Simulated unpolluted spectra of the hot Jupiter cases. Both full-resolution and binned
depths are plotted. The offset case is identical to the clear case in the WFC3 band. The main
effect of clouds is the truncation of the bottom-most depths compared to the clear case.
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Figure 2.4: Same as Figure 2.3, but for the warm Neptune case.
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Table 2.1: Summary of Equilibrium Chemistry Retrievals and the Input Parameters and Priors
Used for the Hot Jupiter cases

Parameter Clear HJ Clear HJ with Offset

Name Truth Value Prior Truth Value Prior

Mp Planetary mass (MJ ) 0.73 15% 0.73 15%

Rp Planetary radius (RJ ) 1.42 15% 1.42 15%

T Temperature (K) 1130 [300, 1500] 1130 [300, 1500]

C/O Carbon-to-oxygen ratio 0.53 [0.2, 2.0] 0.53 [0.2, 2.0]

log a Log-scattering factor 0 [-0.3, 0.3] 0 [-0.3, 0.3]

γ Scattering slope 4.3 [2.0, 5.5] 4.3 [2.0, 5.5]

log Z Log-metallicity 0.3 [-1, 3] 0.3 [-1, 3]

log Pcloud Cloud-top pressure (log(Pa)) 4.7 [2.5, 6.5] 4.7 [2.5, 6.5]

Offset 1 STIS offset (ppm) ... ... -100 [-300, 300]

Offset 2 Spitzer offset (ppm) ... ... 150 [-300, 300]

Error multiple ... Unity [0.5, 2.0] Unity [0.5, 2.0]

Other parameters

Rs Stellar radius (R⊙) 1.19 1.19

Ts Stellar temperature (K) 6090 6090

Data error (ppm) 75 75

# of runs 440 660

Parameter Cloudy HJ Clear HJ, High-precision

Name Truth Value Prior Truth Value Prior

Mp Planetary mass (MJ ) 0.73 15% 0.73 15%

Rp Planetary radius (RJ ) 1.42 15% 1.42 15%

T Temperature (K) 1130 [300, 1500] 1130 [300, 1500]

C/O Carbon-to-oxygen ratio 0.53 [0.2, 2.0] 0.53 [0.2, 2.0]

log a Log-scattering factor 0 [-3.0, 3.0] 0 [-0.3, 0.3]

γ Scattering slope 4.3 [2.0, 5.5] 4.3 [2.0, 5.5]

log Z Log-metallicity 0.3 [-1, 3] 0.3 [-1, 3]

log Pcloud Cloud-top pressure (log(Pa)) 3.0 [0.0, 6.5] 4.7 [2.5, 6.5]

Offset 1 ... ... ... ... ...

Offset 2 ... ... ... ... ...

Error multiple Unity [0.5, 2.0] Unity [0.5, 2.0]

Other parameters

Rs Stellar radius (R⊙) 1.19 1.19

Ts Stellar temperature (K) 6090 6090

Data error (ppm) 75 10

# of runs 660 400
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Table 2.2: Summary of Equilibrium Chemistry Retrievals and the Input Parameters and Priors
Used for the Warm Neptune Case

Parameter Warm Neptune

Name Truth Value Prior

Mp Planetary mass (MJ ) 0.0736 15%

Rp Planetary radius (RJ ) 0.395 15%

T Temperature (K) 700 [300, 1500]

C/O Carbon-to-oxygen ratio 0.53 [0.2, 2.0]

log a Log-scattering factor 0 [-2, 2]

γ Scattering slope 4.3 [2.0, 5.5]

log Z Log-metallicity 0.3 [-1, 3]

log Pcloud Cloud-top pressure (log(Pa)) 5.0 [2.5, 6.5]

Offset 1 ... ... ...

Offset 2 ... ... ...

Error multiple Unity [0.5, 2.0]

Other parameters

Rs Stellar radius (R⊙) 0.683

Ts Stellar temperature (K) 4780

Data error (ppm) 75

# of runs 400

2.2.3 Noise Model

To simulate observed data, we sample multiple noise instances centered around the unpol-

luted spectrum, treating the simulated unpolluted spectra as a multivariate Gaussian distribution

with the unpolluted depths as the mean and the reported error at each bin as the width. In addi-

tion, we adopt a non-diagonal covariance matrix with an exponential kernel to simulate correlated

noise, such that the matrix element that correlates wavelength bin at λi and λj is given by:

Kij = ϵijσiσj exp

(
−|λi − λj|

l

)
, (2.1)

where σi is the reported error at wavelength λi, and ϵij is 1 for pair of points from the same

dataset and 0 otherwise. We choose the scaling factor l to be the distance to the neighboring

bin. We select this covariance matrix in particular because it allows for the best-fit spectrum to
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the WFC3 observations of HD 97658b in Guo et al. [7] to yield a reduced chi-squared of ∼ 1,

as opposed to 2.5 when the errors are construed to be independent and Gaussian. We choose

a random noise error of 75 ppm for all instruments, which represents a moderate quality data

for STIS and WFC3 but is better than average for typical Spitzer observation [93, 97]. We also

assume a uniform transmission across the wavelength range of each Spitzer filter in both the

forward and retrieval models. In practice, we find that the two broadband Spitzer points provide

little constraint on the retrieved parameters, and using the same error for all instruments does

not give undue importance to the Spitzer points. For the high-precision hot Jupiter case, we use

10 ppm errors to match the best of current data quality [79].

We show a few randomly selected noise realizations in Figure 2.5 for the Gaussian and

correlated noise models. It is discernible from the bottom row of panels that the correlated noise

has slightly redder residuals compared to the Gaussian noise; that is, there are less zero crossings

as neighboring points are correlated. We also stress that overall this is a rather subtle effect;

without knowing the unpolluted depths a priori to produce the residuals, from the spectrum alone

it is hardly obvious that there is a distinction between the two.

Additionally, to examine the effects of including the offset between datasets as a retrieved

parameter, we create spectra with and without a fixed offset between datasets. Namely, we add

a vertical offset of −100 ppm to the STIS points and +150 ppm to Spitzer points, holding the

WFC3 points constant. The specific amount of offset is a somewhat arbitrary choice. The relevant

heuristic is that the offset should be exactly retrieved in the absence of degeneracy.
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Figure 2.5: Comparison of Gaussian (left column) and correlated (right column) noise models
for the clear hot Jupiter case. In the top row of panels, 5 randomly selected spectrum realizations
are plotted in color and the unpolluted spectrum is plotted in black. The disconnection in lines
indicate discrete instruments. The Spitzer data are shown separately in the inset plot. The assumed
75-ppm error bar is shown for scale. In the bottom row of panels, the residuals relative to the
unpolluted spectrum are shown. The effect of wavelength-correlation is discernible in the slightly
redder noise (i.e. the residuals appear subtly sparser due to less zero-crossings as neighboring
residuals are more likely to have the same sign) in the bottom right panel, but would not be
discernible in the top right panel without prior knowledge of the ground-truth spectrum.
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2.2.4 Retrieval Setup

Using PLATON, setting up the retrieval involves choosing the priors and the statistical sam-

pling method to be used. We choose the priors to be comparable to a real retrieval analysis.

PLATON accepts either a Gaussian prior or a uniform prior in a user-specified interval. We set

Gaussian priors for planet radius and mass, as these are often constrained via other methods such

as radial velocity and transit measurements prior to observing the transmission spectrum. The

Gaussian prior is centered around the input value and with a standard error of 15%. This preci-

sion is comparable to or slightly overestimates the typical uncertainty in measurement of mass

via the RV method and provides sufficient tolerance for the retrieved value to deviate from the

input value, if necessary. For the instrumental offsets, to ensure that the prior is broad enough,

we choose a uniform prior offset to be 2- and 3-folds of the offsets. For all other parameters we

opt for uniform priors that are as wide and uninformative as possible and adopt the full parameter

range supported.

For now, we only choose to do retrievals with equilibrium chemistry, where the composition

of the atmosphere at a given temperature and pressure is dictated by the the global elemental

abundances set by metallicity and carbon-to-oxygen ratio. While disequilibrium chemistry is

indeed expected for planets below Teq ≤ 1200K, most of its effects take place below the altitude

that typically probed by transmission spectroscopy and have no easily discernible effect on the

spectrum at the data precision of current instruments. The actual discrepancy in the relevant

pressure range (∼ 1 mbar) is smaller than the uncertainties we can current obtain [e.g. 98, 99,

100].

PLATON supports either Markov chain Monte Carlo (MCMC) [101] or nested sampling
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methods for the posterior estimation [102]. We note that, while both are statistically robust and

widely used, we observe a minor discrepancy in the resulting posteriors between the two methods,

in which the posteriors estimated by MCMC tend to be slightly broader than those by nested

sampling. This does not pose a major issue for this work inasmuch as we are concerned with

biases due to data idiosyncrasies, and we consistently use one algorithm across our analyses.

Nevertheless, we draw attention to this point as it requires extra scrutiny when comparing retrieval

results. We choose nested sampling as it is known to perform better in estimating multi-modal or

oddly-shaped distributions.

2.3 Results

In this section we first present the overall effects of correlated systematics on our retrievals,

using the clear hot Jupiter case as a baseline. We then examine which parameters in particular are

affected. We finally show how the results for the baseline case also extend to the other retrieval

cases, and point out additional effects that arise.

2.3.1 Overfitting Due to Correlated Noise

Here we present the effects of correlation in data on the retrieval overall. To do this, we

must reduce a retrieval result into a simpler metric. In retrievals on actual data this is commonly

done by using the reduced chi-squared between the observed data and the best-fit or median

spectrum. Here, as we begin from a known simulated ground truth, we can also compare the

retrieved posterior directly to the input values to measure the accuracy of retrieval by using a

probability integral transform (PIT), which is the cumulative distribution function evaluated at the
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Figure 2.6: Two-dimensional distribution comparing retrievals with Gaussian noise (black) and
correlated noise (blue). The three parameters shown are: the chi-squared between the unpolluted
spectrum and the observation instance (True χ2); the reduced chi-squared between the best-fit
spectrum and the observation instance (Fit χ2

r); and the PIT values for the retrieved posterior. The
correlated noise allows for overfitting the spectrum, while simultaneously degrading the accuracy
of the retrieval. We remind the reader that this corner plot is not showing a single retrieved
posterior result, but a composite of multiple posteriors.

input value. To do this, in each retrieved posterior distribution, we draw an iso-likelihood contour

of the input parameters and sum the relative weights contained within, producing a confidence

interval between 0 (the input was the most likely sample) and 1 (the least likely). The distribution

of PIT values should follow a uniform U(0, 1) were the retrievals accurate.

Our main finding is that, on average, correlation in the data allows for overfitting the spec-

trum, thereby weakening the overall accuracy of the retrieval. In other words, the best-fit spectrum

is more likely to achieve a reduced chi-squared lower than unity in the presence of correlated

noise, whilst simultaneously the retrieved posterior distribution rules out the input with higher

significance.

In Figure 2.6, we present the comparison between Gaussian and correlated noise for the

clear hot Jupiter case. For both retrievals with Gaussian (black) and correlated noise (blue), we

show the distributions of: χ2 between the unpolluted spectrum and the data instances; the reduced
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chi-squared between the best-fit spectrum and the data instances; and the PIT values showing the

accuracy of retrieval, as described above. A few observations can be made:

• The fit χ2
r , or the goodness-of-fit of the retrieval, on synthetic data is on average skewed to

better than unity in the presence of correlated noise. In other words, it is more likely that

the retrieval will overfit the data with forward models.

• The accuracy of the retrieval, shown as the PIT value, on the other hand, is worse in the

presence of correlated noise. We also show the cumulative distribution in Figure 2.7 to

demonstrate the worsening of the accuracy. The K-S statistic between the two cases is

0.19.

• For the normal noise case, even in the absence of the correlated noise, the retrieval accuracy

is close to but slightly worse than the expected uniform distribution. This minor discrepancy

is likely due to the fact that the retrieved posterior distribution is already non-Gaussian for

a few parameters (discussed in Subsection 2.3.2), as well as to degeneracy between certain

parameters.

• While the goodness-of-fit is on average better in the presence of correlated noise, it is not

the case that the distributions of fit χ2
r are so discrepant that one can deduce the presence

of correlated noise from the goodness-of-fit alone. That is, a given overfit spectrum can

plausibly be construed as either a consequence of correlated noise or as an unlucky instance

of Gaussian noise that happens to lie at the tail of the χ2
r distribution. As such, we stress

that the effect of correlated noise is manifest statistically, and no individual value of χ2
r ,

good or bad, is uniquely diagnostic of correlated noise in a single retrieval instance.
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2.3.2 Which Parameters are Affected?

Given that the correlated noise degrades the overall accuracy of retrievals, it is necessary to

then look at which parameters are affected. We do this by marginalizing the posterior distribution

over each parameter, as is typically done in retrieval analyses. The effect on each marginalized

distribution can be twofold — the mean can be biased, the estimated error can be affected, or

both. Either a shift in mean away from the input parameter or an underestimation of the error can

worsen the accuracy of retrieval. As such, we examine the retrieved mean and the retrieved error

separately for each parameter.

The distribution of retrieved means is shown in Figure 2.8. For the case in which noise is

independent (black), the retrieved means form clean normal distributions around the input values

(red) for most parameters, as expected from the central limit theorem. The two exceptions are

C/O ratio and the cloudtop pressure. This is most likely due to the fact that the retrieved distribu-

tions for these parameters are not Gaussian in the first place. For cloudtop pressure, the retrieved

distribution is at best a flat distribution with a lower bound, ruling out a cloudy atmosphere as per

the clear atmosphere in the input used. For C/O ratio, we suspect that the distribution is skewed

due to the increasing influence the parameter has over its range. That is, as one sweeps through

C/O ratio, the spectrum changes more rapidly over the range above the solar value of 0.53, and

thus the means are naturally skewed to values lower than the solar value where there is a greater

density of near-consistent solutions.

The presence of correlated noise has a few interesting effects on the retrieved means. First

off, the error multiple parameter is biased to less than unity. This intuitively follows from the

global result that correlated noise allows for overfitting the spectrum, tricking the error multi-
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ple parameter to believe that the error bars are overestimated. This means that the error multiple

parameter is more likely to behave pathologically in a situation where one may expect it to be

useful, such as if the reported error bars truly were underestimated due to unknown and unac-

counted systematics. The retrieval instead selects a less-than-unity value of the error multiple,

incorrectly implying that the data precision is better than initially reported. This is possible if the

domain of input parameters and the forward model can still reproduce the spectrum polluted with

systematics.

In the correlated noise case, the retrieved means generally show a wider distribution to

varying degrees for each parameter. Specifically, the radius, mass, and temperature are the most

affected, while the effect is the least pronounced for metallicity and cloudtop pressure. This result

may be explained by considering the wavelength-scale the former three parameters have on the

spectrum. Mass and temperature affect the scale height of the atmosphere, which affects the

overall vertical extent of the transmission spectrum. Radius affects the baseline transit depth as

well as the scale height. These are “global” parameters in the sense the transit depths in all bins

are affected together. As such, a wavelength-dependent correlation can bias these parameters. On

the other hand, metallicity, while it also affects the scale height (via the mean molecular weight),

directly controls the individual transit depths. This has a more local effect in that it changes the

actual shape of the spectrum.

The distribution of retrieved errors is shown in Figure 2.9. The effect of correlated noise is

clearly visible for all parameters in that the retrieved error bars show a tendency to be underesti-

mated. For instance, the retrieved error on log-metallicity is on average underestimated by ∼ 0.2

dex. While this disparity is smaller still than typical constraints, it is worth bearing in mind as

this is a statistical effect; the spread over the retrieved error is by itself broad enough that the
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Figure 2.8: The distribution of retrieved means per each parameter, for independent noise (black)
and for correlated noise (blue), for the baseline hot Jupiter case. The input values used to generate
the spectrum are shown in red.

actual effect of a given instance can be much larger than this value. Additionally, when JWST al-

lows for precise measurement of metallicity, this level of uncertainty may not be negligible when

one considers analyzing archival data simultaneously. The same consideration applies to other

parameters. As such, in this context we suggest that the retrieved constraints for parameters, in

the face of the potential for correlated noise, are best understood as lower limits.

2.3.3 Extensions to Other Planet Parameters

In this section, we present our results for planet scenarios other than the baseline clear hot

Jupiter case to understand the sensitivities of our results to various system and dataset parameters.

We show histograms of the retrieved mean and retrieved standard error for each parameter in

Appendix for the remaining planetary scenarios (the hot Jupiter with offsets, cloudy hot Jupiter,
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Figure 2.9: The distribution of retrieved standard errors per each parameter, for independent noise
(black) and for correlated noise (blue), for the baseline hot Jupiter case.

high precision hot Jupiter, and warm Neptune). We generally find that the main results stated

so far hold true for all cases: correlated noise causes both overfitting in χ2
r and worsening of

the accuracy-of-retrieval (i.e. larger PIT values). This point is summarized in Figure 2.10, in

which we show the medians of the χ2
r and PIT value distributions for each planet realization, i.e.

distilling down the results of Figure 2.6 and the like to values quantifying the peak and the spread.

To further quantify this point, we perform a Kolmogorov-Smirnov (K-S) test for the goodness-

of-fit and the accuracy-of-retrieval metrics to measure the discrepancy between the results of

Gaussian and correlated noise. In Table 2.3, we show the K-S statistics, D, for the fit χ2
r and PIT

value representing the accuracy-of-retrieval. We find that the clear hot Jupiter happens to be the

best-case for the smallest discrepancy of accuracy-of-retrieval between Gaussian and correlated

noise, and that other cases generally result in further discrepancy between results with Gaussian

39



and correlated noise.
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Figure 2.10: Summary of the goodness-of-fit and retrieval accuracy for the five planetary cases;
black is for Gaussian noise, and blue is for correlated noise. The filled symbols mark the peak in
both distributions, and the error bars denote the 1-σ spread. Values of χ2

r closer to unity imply
a better fit. Similarly, lower PIT values correspond to a more accurate retrieval result. This plot
shows the information in bottom middle panel of Figure 2.6 for all five cases. For the clear hot
Jupiter with offset, the retrieval accuracy is measured as the error in an 11-parameter Gaussian
distribution; the rest are quantified in 9 parameters. The correlated retrievals clearly have distinct
distributions of goodness-of-fit and accuracy of retrieval, but have enough overlap such that one
cannot discern whether a single retrieval instance has correlated noise.

2.3.3.1 Bias in Non-Rayleigh Scattering Slope

In the retrievals of the hot Jupiter with instrumental offsets and the warm Neptune, we

find that the retrieved haze properties also show the potential to be biased. Correlated noise can

bias the scattering slope, γ, away from the Rayleigh value of 4, misleading the retrieval to infer
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Case χ2
r PIT value

G-C U-G U-C G-C

Clear hot Jupiter 0.28 0.19 0.60 0.47

Clear hot Jupiter w/offset 0.36 0.19 0.67 0.58

Cloudy hot Jupiter 0.27 0.12 0.54 0.48

Clear hot Jupiter, high precision 0.28 0.04 0.48 0.47

Warm Neptune 0.35 0.16 0.58 0.52

Table 2.3: K-S Statistic of χ2
r and PIT Values. The K-S statistic, D, measures the maximum ver-

tical discrepancy between the cumulative distributions (see Figure 7), of the goodness of fit, and
the retrieval accuracy for each planet scenario. The first column shows the two-sample D between
the distributions of fit χ2

r for the Gaussian and correlated noise. The next two columns contain
the D between the expected uniform distribution and the PIT value distributions from retrievals
with Gaussian and correlated noise, respectively. The final column shows the D between the two
distributions. In all cases, the discrepancy is due to overfitting and worsening of retrievals.

the presence of aerosols. This bias makes intuitive sense as, if a handful of points in the optical

wavelengths align due to correlated noise, those points can mimic the behavior of non-Rayleigh

slope [103]. As such, we caution that a spurious detection of haze can be possible in interpreting

data in which the presence of correlated noise is either expected or suspected.

We suspect that this bias happens more readily for the warm Neptune case compared to the

hot Jupiter retrievals because the overall signal is smaller while the data error used to scramble

the spectrum was held constant at 75 ppm, resulting in a larger relative error. The warm Neptune

spectra consequently have greater potential for large (apparent) optical slopes to manifest.

2.3.3.2 Retrieving Offsets

We ran a set of retrievals that includes non-zero “offset” parameters between datasets from

different instruments. We find that, while the presence of correlated noise does cause underes-

timation of the uncertainty in the offset in an identical manner to other parameters, it does not
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worsen the retrieval of the means. The offsets are accurately retrieved in both Gaussian and cor-

related noise retrievals and do not pose any obvious degeneracies.

This is somewhat surprising as, in our formulation of correlated noise, offsets can be re-

garded as correlated noise with high correlation and long wavelength-order. For instance, in Fig-

ure 2.5, the data instances with correlated noise in the Spitzer band mimics the presence of an

offset.

It should be obvious that the influence of offset data points will strongly depend on the

specific wavelength those points occupy, as well as the offset magnitude and sign. As such, we

present here only one possible manifestation of how real data could behave. For instance, we

have only considered offsets between datasets disjointed in wavelength, but, say, merging data

from ground-based and space-based observations can produce offset data with overlapping wave-

length coverage. Hou Yip et al. [84] found that if there is overlapping data with non-zero offsets

and if free retrievals are used, such offsets can be degenerate with the estimated abundances if

equilibrium chemistry is not assumed.

2.3.3.3 Effects of Clouds

The main effect of adding gray clouds to the model, from the point of view of the retrieval,

is washing out information contained in the spectrum that originates from the high-pressure por-

tion of the atmosphere. In Figure 2.3, roughly half of the Hubble points are covered by clouds, no

longer constraining, say, a baseline radius or metallicity. We find that the broad effect of underes-

timating uncertainty and biasing means due to correlated noise still holds for cloudy hot Jupiter

retrievals.
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For the retrieved cloud-top pressure parameter, the main effect is a bias in the retrieved

mean. Specifically, the presence of correlated noise disrupts the distribution of retrieved means

of cloud-top pressure by extending the tail in the high-pressure direction. In other words, the spec-

trum is more likely to be understood as having a clear atmosphere. Upon examining the spectra

for the retrievals that populate this tail, we find that the correlated noise happens to manifest as

a number of data points dipping under the opaque cloud-top where the atmosphere is normally

optically thick, thereby mimicking the behavior of a clear atmosphere.

2.3.3.4 Effects of Higher Precision

We find that in the hot Jupiter retrieval with high-precision (10 ppm) data, the broad con-

clusions again still hold. Correlated noise leads to an underestimation of retrieved uncertainty for

all parameters. Compared to other cases however, correlated noise does not shift the retrieved

means as much, which is to be expected since every noise instance only has a minor deviation

from the unpolluted spectrum (specifically a factor of 7.5× smaller than in our baseline case),

even with correlation.

Comparing the high-precision case to the baseline case with 75 ppm errors, we find that,

naturally, both the estimated means are retrieved closer to the input values and the retrieved pa-

rameter uncertainties are concurrently smaller. Interestingly, the uncertainties shrink more than

the means approach the input values; consequently, in the high-precision case, the retrieval more

readily rules out the input. This is shown in Figure 2.11, in which the retrieved means are nor-

malized by their retrieved uncertainty to show the number of standard errors the input value is

retrieved within for each parameter. The high-precision case (dashed line) actually has more re-
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Figure 2.11: Distributions of each parameter, normalized by the retrieved uncertainty, for the hot
Jupiter retrievals. A value of 0 indicates that the retrieved mean coincides with the input value.
The dashed lines show the high-precision (10 ppm) case, and the solid line shows the baseline
(75 ppm) case. Only the Gaussian noise retrievals are shown here, but the correlated noise case
displays similar behavior.

trievals further from the input value when normalized. We find an identical trend for the retrievals

with correlated noise.

Additionally, we find the PIT value distribution for retrievals with Gaussian noise much

more successfully follows the ideally expected uniform distribution, with a K-S statistic of D =

0.04 (see Table 2.3 and Figure 2.12). Given that the accuracy-of-retrieval for all other cases (with

75 ppm error bars instead) are at least somewhat discrepant from the expected distribution even

for the Gaussian noise retrievals, this result suggests that, even for hot Jupiters, 75 ppm error bars

are too large to assume a priori that the retrieved posterior will follow a multivariate Gaussian.

This has implications for parameter estimation methods that need this assumption of Gaussian

posterior, such as optimal estimation or some of recent machine learning-based retrievals [65,
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Figure 2.12: Same as Figure 2.7, but for the high-precision case. The smaller data error results
in a better agreement between the ideal uniform distribution and the retrieval accuracy in the
Gaussian noise retrievals.

104]. These methods require that the data uncertainty is small enough such that the forward

model behaves linearly over the parameter uncertainties. Retrievals using these methods must be

trusted only when the data has exceptional SNR.

2.4 Can We Tell if Systematics are Present?

In the motivating example spectrum of HD 97658b in Section 2.1, the presence of corre-

lated noise was suspected based on the fact that no forward model can produce a satisfactory

fit under the assumption of randomly scattered residuals. If we are to presume that the retrieval

is indeed correct, and the residuals evidence correlated noise contaminating a genuine feature-

less spectrum, then we should also consider how prevalent unnoticed correlated noise can be in

the observed data of other planets. The natural question then is to ask whether there is a more
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robust and comprehensive way of distinguishing correlated noise within the framework of a re-

trieval. Especially, given that correlated noise can give rise to overfitting, it is of special interest

whether correlated noise can be distinguished from merely overestimated errorbars. A natural

way to achieve this is to modify the likelihood function such that it can reward or penalize when

residuals are correlated.

To test this, we implement a parameterized covariance matrix and let the retrieval estimate

the hyperparameter that measures the correlation strength. We use a nearest-neighbor correlated

noise model as in Sivia and Skilling [105], where the correlation strength is parameterized by ϵ,

such that the covariance matrix element between points at i and j is given by:

Kij = σiσjϵ
|i−j| (2.2)

This differs slightly from the correlated noise model used in Section 2.2 in that this model does

not depend on the wavelength difference between two points but depends instead on the differ-

ence in indices. The two implementations would be identical if the wavelength grid was regularly

spaced, with the exponential base giving correlation strength ϵ = e−1 ∼ 0.37. While exten-

sion to accommodate wavelength-dependent correlation is certainly possible, as a first test this

simplification provides a reasonable starting point for exploring whether correlated noise can be

retrieved.

This simplification allows for writing the likelihood function as:

lnL = −1

2

[
(N − 1) ln (1− ϵ2) +

N∑
i=1

ln 2πσ2
i +

Q

1− ϵ2

]
, (2.3)

46



in which Q is the modified chi-squared-like term related to the error-scaled residuals Ri by:

Q = (1 + ϵ2)
N∑
i=1

R2
i − ϵ2(R2

1 +R2
N)− 2ϵ

N−1∑
i=1

RiRi+1. (2.4)

We perform a small grid of retrievals to study when the correlated noise can be distin-

guished from overestimated errorbars and correctly retrieved. The input parameters for the planet

remain the same as Case 1 in Section 2.2, while we vary the noise properties. Our grid consists

of three values of error multiple – η =0.8, 1, 1.25, three values of correlation strength – ϵ =0,

0.25, 0.5, and two wavelength grids modeling HST WFC3 and JWST NIRSPEC prism grids.

Our NIRSPEC grid consists of 133 linearly spaced points between 0.6 and 5 microns. From a

few initial tests we find that the varying the absolute size of the error bar does not change the

results, and hence we keep them fixed at 75 ppm. For each combination of noise parameters, we

run three retrievals: one in which both error multiple and correlation strength were included as

retrieved parameters, and two in which either was removed. We set a uniform prior between 0

and 1 for the correlation strength, as we do not expect an anti-correlation between neighboring

points.

We show the marginalized posterior distribution for correlation strength in Figures 2.13 and

2.14 for the WFC3 and NIRSPEC grids, respectively. From the posterior distributions it is clear

that the correlation strength can be adequately retrieved, and the posterior width is dependent on

the number of points in the data, as expected. It can also be seen that underestimated error bars

when unaccounted for can be mistaken for the presence of correlated noise, and vice versa, as

demonstrated in the previous section. The main difference between the two instruments from the

point of view of the retrieval is simply the number of points.
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Figure 2.13: Histograms showing marginalized posterior distribution for the correlation strength
parameter for a hot Jupiter on a WFC3-like wavelength grid. The relevant input values for error
multiple and correlation strength for each run is shown in legend. Two posteriors are shown for
each: one where only correlation strength was retrieved (blue) and one where both error multiple
and correlation strength were retrieved (orange). The corresponding marginalized posteriors for
the error multiple are not shown. We note that our original model in Section 2.2 roughly corre-
sponds to ϵ ∼0.37 (see text).
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Figure 2.14: Same as Fig 2.13, but for NIRSPEC-like wavelength grid. The horizontal scale has
been kept the same as Fig 2.13 and reflects the full width of the uniform prior used.

Additionally, we calculate the Bayes factor among retrievals to determine whether the in-

clusion of each parameter is warranted. The results for WFC3- and JWST-like data is shown in

Figure 2.15 and 2.16. The case in which both parameters were included is used as the baseline,

and the log-ratio (in base 10) of Bayesian evidence is shown for each case in the grid. A pos-

itive value indicates that the model better fits the data while spanning a smaller prior volume,

indicating that the parameter should be removed.

For WFC3-like data (Figure 2.15), the inclusion of correlation strength is supported with

strong evidence only in the strong correlation (ϵ = 0.5) cases and is otherwise not easily ruled out

either way. Interesetingly, the inclusion of error multiple is disfavored with substantial or stronger

evidence not only when the errorbars are correct, but also even in the case of underestimated

errorbars. This shows that, for WFC3-like data, the error multiple parameter is not warranted in

general.
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Figure 2.15: Bayes factors B10 of retrieval models that exclude error multiple (top) or correlation
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smaller prior volume and hence supports the removal of the parameter. The interpretation of the
strength of evidence is shown in the colorbar. The Bayes factors are calculated as the difference
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Figure 2.16: Same as Fig 2.15, but for NIRSPEC-like spectrum.
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For NIRSPEC-like data (Figure 2.16), the inclusion of the correlation strength can be more

robustly judged. Its inclusion is supported with strong to decisive evidence when correlation is

present. Conversely, its removal is supported with substantial to strong evidence when it is not

present. This indicates that, for JWST-like data, there is the possibility that we can character-

ize the correlation during the retrieval. The inclusion of the error multiple can be more robustly

judged as well. Its removal is supported when the errorbars are correct, and its inclusion is fa-

vored when the errorbars are overestimated. However, when the errorbars are underestimated, its

inclusion is supported with substantial evidence only when there is no correlation. This behavior

matches with the results from the previous section that correlation can be mistaken for under-

estimated error bars. This shows that the error multiple is generally not effective at indicating

accommodating underestimated errorbars.

The above results show that while it is difficult to conclusively infer the presence of cor-

related noise with HST data, it is certainly within possibility that its presence and strength can

be measured with JWST data. A few caveats must be made. Our preliminary test presented here

treats the data over the entire NIRSPEC wavelength range as sharing correlation, hence providing

an abundant number of points for the correlation strength to be measured; in reality, if its discrete

grisms are used, any correlation of instrumental origin will be per each wavelength range. Ad-

ditionally, as we will discuss in Section 2.5.1, missing physics in the model acts as a source of

systematics, which we do not consider here. Furthermore, we used the same noise model to gen-

erate the observation instance as well as to retrieve its parameter. While doing so is obviously a

gross simplification, especially considering that numerous sources of correlated noise can operate

simultaneously, this provides a reasonable starting point towards using a more complex likelihood

function to fit for correlated noise. Additionally, adding hyperparameters to a retrieval further di-
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lutes the noise budget, broadening the retrieved uncertainties of other parameters. Ascertaining

what degeneracy this incurs on the estimation of other parameters is left for future work.

2.5 Discussion

2.5.1 Model Limitations

A major compounding issue is that, when retrieving on real data, model assumptions and

unknowns contribute to and act as systematic errors in addition to the data systematics them-

selves. In short, bad data are degenerate with bad models. In our study we generated the synthetic

observations using the identical forward model as that used in the retrieval in order to minimize

any model-dependent effects and to isolate the effects of data systematics. In interpreting real

data, the fact that our forward models are a simplified incomplete representation of complex at-

mospheric phenomena will act as a source of systematic error that will remain pervasive, even if

the observed data were perfect and free from their own systematics. We therefore remain open to

the possibility that the observed examples of potential systematic noise in the data are in fact due

to unaccounted for obscure physics.

For the same reasons discussed above, this will adversely affect high SNR observations in

particular, in which the fine (and the not-so-fine) details of the model become discernible. There

has recently been a growing body of work that studies the biases incurred by model assump-

tions and parameterization. To list a few examples for demonstration, MacDonald et al. [106]

performed 1-D retrievals on 3-D synthetic spectra to show that the retrieval biases the limb tem-

perature to few hundred Kelvins cooler than the actual day-night mean temperature. Lacy and

Burrows [76] extended this study to cloudy atmospheres, finding that the presence of aerosols
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exacerbate the biases induced by 3-D effects when not accounted for. Changeat et al. [74] found

that using a vertically constant chemical abundance profiles may no longer be sufficient to fully

capture signatures of disequilibrium processes in the spectrum. Perhaps most inconspicuously,

Barstow et al. [75] compared and performed cross-retrieval between retrieval codes developed

by three groups and found that JWST-quality data is now sensitive to rather rudimentary model

unknowns such as the line lists used to generate the opacities and the precision of fundamental

constants used.

In our framing of describing biases, these considerations generally result in shifts in the esti-

mated means of retrieved parameters. Incorporating our conclusion that correlated noise generally

leads to underestimated error of retrieved parameters means that biases due to model limitation

now strike with a stronger statistical significance. Furthermore, the wavelength-dependent effect

of both missing physics and systematics now leave possibility for degenerate interpretations.

2.5.2 Instrumental Systematics

To better understand the significance of our results, it would be useful to consider the differ-

ent sources of how systematics can arise and evaluate their prevalence especially in the context

of future space missions such as JWST. While other sources of systematics are possible, such

as starspots [80, 81], inaccurate orbital parameters, or time-dependent telluric contamination in

ground-based observations, the key source of systematics that we will discuss here is instrumen-

tal. However, we remind the reader that our formulation of correlated noise can be generalized to

any effect that results in wavelength-dependent correlation.

While instrumental systematics are expected to be ubiquitous to some extent, the exact
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magnitude of their effect in generating wavelength-correlated noise has not been fully understood.

Yet a handful of observations exist that hint at the existence of such systematics. Colón et al. [79]

argued that, with current facilities, these systematics are visible at the highest level of precision

(∼15 ppm), inferred from an unusual behavior of residuals in the H2O band. In the spectrum of

HD 97658b in Guo et al. [7], our motivating example in §2.1, we inferred from the inability to fit

the data as well as no obvious physics being missing that there must be some systematics present,

even at a lower precision (∼25 ppm). These examples indicate that some wavelength-correlated

noise must be present, unless there is unaccounted for physics in the retrieval model.

There is some reason to surmise that these systematics are more prevalent (or, at least,

more noticeable) in the case of bright host stars. A brighter host star allows for a better SNR and

higher precision and thereby naturally makes the presence of these systematics more conspicuous

compared to a lower SNR data. Additionally, even at the same data quality, a brighter host star

requires fewer stacking of observations; for a dimmer host star, by contrast, the number of stack-

ing required to achieve the same SNR naturally averages out any non-repeatable correlated noise.

Finally, as alluded to in §2.1, given that instrumental systematics can also behave differently with

bright sources, it is not out of question that there is a separate effect at play here beyond SNR

which may persist through multiple observations in a repeatable fashion.

Comparing the WFC3 spectra of GJ 1214b [92] and of HD 97658b [7] illustrates this point.

While both planets are comparable sub-Neptunes with featureless spectra and have a similar

level of precision, the spectrum of the latter displays an unusual upward trend in transit depth in

the redder end and other wavelength-correlated residuals throughout the WFC3 bandpass. The

relevant difference here may be the host star brightness (9.8 versus 6.2 in J-band magnitude,

respectively). The spectrum of GJ 1214b is the combination of stacking 15 transits, whereas that
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of HD 97658b has 4. Further, the spectrum of HD 97685b presented in Knutson et al. [107],

which only had the first 2 visits, shows the most obvious possible example of correlated noise

due to systematics.

These types of systematics may be even more pernicious for future high SNR observations

from JWST for a few reasons. First, as the noise floor is lower, correlated noise will be relatively

more prominent even if it actually manifests at weaker levels. Then one can no longer reliably

assume that the observed noise is strictly photon-dominated. This requires an additional step of

modeling out now wavelength-dependent systematics during the data reduction, which is neces-

sarily (although perhaps not practically) incomplete. Secondly, the high SNR per transit means

that stacking will be unnecessary for most targets. As such, non-repeating systematics do not

get averaged out. Thirdly, we have demonstrated that higher precision leads to biases of stronger

significance. This is true even in the absence of systematics in the sense that a retrieval will be

more sensitive to the observational instance. Fourthly, we can predict that our understanding of

the characteristics of JWST instruments and their appropriate data reduction tools will be only

partially correct, at least during the initial few cycles of JWST before practical experience accu-

mulates. Finally, as planets around bright host stars allow for achieving high SNR, they will make

attractive targets for JWST observation. However, if the above intuition that bright host stars can

exacerbate instrumental systematics is true, it adds another dimension to consider when selecting

targets for observation, in addition to the SNR.

Given that this is the case, it would be worthwhile to put the above heuristic that bright

stars bring about correlated noise to a more formal test. This can be accomplished with JWST if

the correlation strength can actually be measured, and by marginalizing over the magnitude of

the host star to obtain a trend. While this would not comprise a main scientific objective of any
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program, correlation strength is a parameter we can try to measure for all observations, so this is

a test we can perform at no extra cost in observation time.

2.5.3 Data Outliers and Free Retrieval

PLATON originally supports equilibrium chemistry retrievals only. Using this method the

molecular abundance of each species at a given temperature and pressure is set by the metal-

licity and carbon-to-oxygen ratio. A popular alternative method to constrain chemistry is to use

“free” retrievals, in which the abundances of each species are allowed to vary independently.

This accounts for any non-equilibrium chemistry effects in the atmosphere, brought on by ver-

tical mixing or photochemical interactions. To establish how wavelength-dependent systematics

or outliers can bias certain species, we implement free retrievals in PLATON and perform some

basic tests in addition to the suite of retrievals already presented that used equilibrium chemistry

models.

PLATON already natively supports inputting custom chemical profiles to its forward models,

but only accepts equilibrium chemistry parameters during retrievals. We extend its capability by

allowing it to accept custom chemical abundances during retrievals as well. As such, all other

details regarding how the spectrum is calculated during the retrieval remain exactly the same as

the original implementation in PLATON. We assume that each species has a vertically fixed mixing

ratio. This is a reasonable approximation over the pressure range probed by transit spectroscopy at

present data quality, and most current 1-D free retrieval codes parameterize the composition using

this assumption [73]. JWST-quality data may merit a more complex prescription, such as a 2-part

vertical abundance profile [74], but for now we do not consider these possibilities. Additionally,
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for these tests we remove the simulated Spitzer data points from our synthetic spectra to limit the

wavelength range, thereby reducing the choice of necessary species to be included. We assume a

H/He-dominated background atmosphere. We include H2O, Na, K, TiO, and VO as they are the

primary detectable species in the remaining wavelength and temperature range; we are mostly

interested in how differently species with broad absorption features (e.g. H2O) versus species

with narrow ones (e.g. Na) can be biased.

We show a free retrieval on two observational instances of the same baseline hot Jupiter

as described in Section 2.2, where we did not add correlated noise or any instrumental offsets.

Figure 2.17 shows the two random input data realizations and the best fit spectra, and Figure 2.18

shows the retrieved posteriors.

The point of interest here is how the retrieved abundances compare for species with broad

spectral features (H2O, 1− 2 µm) and with a narrow feature (Na, 0.58 µm). As one may expect,

for both of the two random spectra, the retrieved posterior distribution for water shows a tighter

constraint than for Na, which is dictated almost entirely by one data point. Consequently, between

the two posteriors as well, the retrieved distributions for Na show little overlap, ruling out each

other by ≥ 2σ. These are simply two randomly drawn samples, but it demonstrates the point that

measurements of water abundance or metallicity are more robust compared to that of say Na or

K abundances, because of the impact the former parameters have across a broader wavelength

range.

57



0.4 0.6 0.8 1.0 1.2 1.4 1.6
Wavelength/ m

0.0152

0.0154

0.0156

0.0158

0.0160

0.0162

0.0164

Tr
an

sit
 d

ep
th

Ground truth
Best-fit 0
Best-fit 1
Observation 0
Observation 1

Figure 2.17: Two observation instances (blue and orange) of the ground-truth spectrum (black)
for our baseline hot Jupiter case detailed in Table 2.1. The best-fit spectrum for each observation
are also shown.
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2.6 Summary and Future Work

Atmospheric retrieval provides a robust framework to interface theory and observations

and is a key tool to furthering our understanding of exoplanets. One major outstanding issue is

disentangling the effects of systematic biases that may be in operation, and in response there is

a growing body of work in the literature that investigates the consequences of biases that arise

from forward model assumptions.

This chapter instead presents an assessment of biases that arise from systematic noise in

data, while remaining agnostic as to the source of such systematics. We stress that, although our

implementation of correlated noise (using Gaussian process) is just one mathematical option, the

general results remain robust. We find that the presence of correlated noise can mislead us in

various ways. We are more likely on average to obtain better goodness-of-fit, but obtain worse

retrieval accuracy overall. This is due to both the parameter mean being biased and the retrieved

error being underestimated. Specifically, we observe that correlated noise can bias the retrieved

aerosol properties, mimicking non-Rayleigh slopes or misrepresenting the location of a cloud

deck. Additionally, we find that offsets between datasets can be correctly retrieved and are not

degenerate with retrieved chemistry when equilibrium chemistry is assumed, so long as the for-

ward model is an accurate depiction of the atmosphere. We also find that while correlated noise

cannot be characterized during retrieval for HST data, there is potential (and perhaps necessity)

for JWST data, even though our tests reflect optimistic conditions. Additionally, we validate the

intuition that retrievals are sensitive to individual noise instances, and, especially in the context

of free retrievals, that statistical outliers can have significant effects on the retrieved chemistry,

especially in the phase space the retrieved uncertainties do not scale linearly with the data error.
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Chapter 3: On the Composition Parameterization Problem for High MMW

Atmospheric Retrievals

3.1 Introduction

Atmospheric spectra have been the primary target of observations in the effort to char-

acterize exoplanets from ground- and space-based observatories. The spectrum of an exoplanet

atmosphere encodes significant information about its properties, such as composition and thermal

structure, which in turn reveal the processes within, e.g., photochemistry, dynamics, and surfaces.

An observed spectrum is then decoded by using inverse modelling (called atmospheric retrievals),

which finds a distribution of solutions that match the observed data by repeatedly running forward

models that simulate physical processes in the atmosphere. Atmospheric retrievals and Bayesian

statistics have become a standard tool in characterizing exoplanet atmospheres, and there is an

ever growing body of work dedicated to understanding their limitations and potential pitfalls [e.g.

1, 45, 46, 56, 108, 109, 110].

As the endeavor to characterize exoplanets continues in the era of James Webb Space Tele-

scope (JWST), the parameter space of observable planets will expand to smaller, cooler, and

rockier worlds. From a theory point of view, the atmospheres of these planets are expected to

be more diverse in composition relative to the giant planets observed so far, reflecting various
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formation histories that are possible [111]. Most importantly, the primordial atmospheres of hot

Jupiters can be safely assumed a priori to be dominated with H and He while the rest of the

constituents are all assumed to exist in trace amounts, and therefore all spectroscopically active

species, such as H2O and CO2, can also be assumed to be in trace amounts. In terrestrial planet

atmospheres, however, the bulk constituent gas is not known a priori and multiple major com-

ponents (say, ≳ 10%) can exist simultaneously, regardless of whether they are spectroscopically

active or not, such that there may not be one gas to designate as the “dominant” gas at all.

The a priori H-rich assumption for hot Jupiters is encoded into the parameterization of

Bayesian priors used by most atmospheric retrieval codes [1, 46, 108, 110]. The assumption is

captured by setting the abundances of the spectroscopically active species as the free parameters

against a background atmosphere. The abundance of the “filler” gas–usually a mixture of H, H2,

and He–is not a free parameter and is inferred from the constraint that the composition must

sum to unity. The abundances of the active species are typically parameterized in ranges of trace

amounts and over multiple orders of magnitudes, warranting the appropriate use of a log scale

for abundance constraints. The prior is set to be uniform over a range of log-abundances, with

the minimum log-abundance typically set to reflect detectibility of a particular gas species from

its spectral features given the data uncertainty. The upper limit is set such that the gas cannot be a

major component of the atmosphere [110]; otherwise there is a joint prior on the free parameters

set by the implicit constraint that the sum of the mixing ratios cannot exceed unity. We will refer

to this parameterization method throughout current work as the “trace and filler” (TF) method,

and will describe in more detail in §3.2.1.1.

The expected dissimilarity of high-mean molecular weight (MMW) atmospheres to those

of hot Jupiters pose a challenge to this parameterization being effective if the a priori H-rich as-
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sumption is no longer valid. Benneke and Seager [56] (BS12 hereafter in this work) discussed this

problem in detail. BS12 recognized that using the trace-filler method to set the priors for abun-

dances of gases lead to an asymmetric prior between the trace and filler gases and argued against

its usage when the dominant species is not known a priori. As an alternative, BS12 suggested a

reparameterization based on the centered log-ratio (CLR) transformation of the abundance space

such that the prior is symmetric between all gases. They suggested that via this reparameteri-

zation, the retrieval no longer makes a strong assumption about the atmosphere and is therefore

applicable to retrievals of both H-rich and non H-rich atmospheres. The authors argue that this is a

true uninformed or “ignorance” prior. By testing the retrieval on simulated spectra of super-Earth

GJ 1214 b with H2O-rich, N2-dominated and H-dominated atmospheres, they showed that the us-

ing the reparameterization correctly retrieves the compositions under ideal observation scenarios.

In a follow-up work, Benneke and Seager [112] then demonstrated that Bayesian models using

this new parameterization allow for correctly inferring the chemical makeup of the atmosphere

and hence distinguishing between cloudy H-rich atmospheres and high-MMW atmospheres.

Barstow et al. [108] compared three retrieval codes developed by different groups and found

that it is for cloudy or high-MMW super-Earth atmospheres where the retrieval codes begin to

disagree, whereas retrievals for hot Jupiters or clear H-rich super-Earths resulted in only minor

discrepancies. As the simulated spectra for these atmospheres showed good agreement among

the codes when used as forward models, the parameterization of composition during retrieval was

identified as the main source of disagreements in the high-MMW case, which in turn also affects

retrieved distributions of other parameters such as temperature via degeneracy. The latter effect

was especially apparent when simulated data had a high signal-to-noise (30ppm at R=100 for

an Ariel-like wavelength range), as the estimated uncertainties shrink around different estimated
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means.

Welbanks and Madhusudhan [110] brought attention back to the framework presented in

BS12 and performed comparisons between retrievals using the trace-filler parameterization and

the BS12 reparameterization, for the transmission spectra of hot Jupiter HD 209458 b, mini-

Neptune K2-18b, and TRAPPIST-1 e. They found that given sufficient signal-to-noise, the CLR

method can be used to infer the abundance of O2.

Importantly, the choice of parameterization may affect any tests involving Bayesian evi-

dences, or the likelihood function averaged over the prior space. The implicit prior set by the

parameterization choice weighs the different parts of the parameter space differently, and hence

if–only by coincidence–the prior already favors where the likelihood function is the greatest and

disfavors where it is low, the retrieval will estimate a higher Bayesian evidence. As it is very

typical to employ Bayesian evidence testing to, e.g., identify which species are justified in being

included or to estimate the evidence of a rocky planet hosting an atmosphere, a precise under-

standing of how the parameterization choice affects evidence will be useful.

In this work, we extend the comparison between parameterization choices to a more di-

verse set of compositions of terrestrial planets, as previous works in the literature have focused

on the end-member cases of composition. We do so by performing self-retrievals on simulated

transmission spectra of atmospheres of plausible compositions observed by JWST. Retrieval on

simulated data allows for comparing the retrieved results directly to the ground truth and quan-

tifying their accuracy. Furthermore, performing the retrievals on simulated data bypasses biases

due to model assumptions (e.g. lack of 3D effects) that can arise when retrieving on real data

[108, 113, 114, 115, 116]. By doing so we aim to ascertain what is the appropriate parameteriza-

tion of chemistry when retrieving on atmospheres whose mean molecular weight is not known a
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priori, and investigate what constraints are realistically possible with greater number of transits.

In the current work, we limit our analysis to retrievals on transmission (rather than emission)

spectra to avoid degeneracies with retrieval of thermal profiles and focus on chemistry only, and

also because JWST Cycle 1 programs included a number of observed small planets in transmis-

sion [e.g. 117, 118, 119, 120]

This chapter is structured as follows. We describe the various parameterization choices

considered and the forward model atmospheric composition in §3.2. We present the comparison

results for each case in §3.3. We discuss what an ignorance prior is in the context of retrievals in

§3.4. We summarize our conclusions in §3.5 and discuss related problems in retrievals.

3.2 Methods

We perform self-retrievals on simulated spectra, as used to test retrieval schemes in e.g.

[109, 110]. To both generate the spectrum and to retrieve from it, we use a modified version

of the publicly available code PLATON, adapted to perform non-equilibrium chemistry (“free”)

retrievals using various parameterizations that we describe below. Natively, PLATON already sup-

ports forward models with custom abundance profiles but is not configured to do so during re-

trievals. We allow the vertically fixed abundances of each species to be set during a retrieval

according to the retrieved parameter [1]. Additionally, we allow for setting and retrieving on the

mean molecular weight profile separately from the chemistry in the forward and retrieval models,

and comment on the reasoning for this choice, below.

In this section, we describe the retrieval methods and forward model parameter choices.

First, we describe the different parameterization methods. Then, we present the cases of terrestrial
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atmospheres we perform comparisons on.

3.2.1 Parameterization methods

The variety of parameterization methods arise due to the simplicial nature of atmospheric

composition. That is, for N species, there are N − 1 degrees-of-freedom, as the sum of composi-

tion must be unity. The parameterization methods therefore differ in how N−1 numbers sampled

from a standard uniform distribution are mapped to N composition values that sum to unity. We

use four different parameterization methods:

1. Using N2 as a single filler gas (SF)

2. Using H2 and N2 as two filler gases (DF)

3. Centered log-ratio (CLR)

4. Mixing ratios with no filler gas but µ as an independent parameter

In this subsection, we describe each parameterization method and what choices need to

be made when using each method. We look at the prior set on the composition and on mean

molecular weight.

3.2.1.1 Trace and filler methods

The most commonly used parameterization for composition in retrieval codes is the trace

and filler (TF) method. In the TF method, the N − 1 parameters correspond directly to the (log-)

mixing ratios of N − 1 “trace” species. Here and throughout the work, we use the term “trace

species” without necessarily implying that they are in negligible amount (which we will refer to
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as “trace amount”), but rather that they are tracked directly by the parameterization rather than

inferred implicitly. To satisfy the unity sum requirement, the TF method assumes the identity of

a filler gas and backfills the remainder from unity. This assumption also sets an implicit common

prior that the sum of the trace species cannot exceed unity, shown as a minor downturn in the

prior close to unity when viewed in log space (Figure 3.1. We implement this common prior by

rejecting samples when the sum of trace species exceed unity. We note that DYNESTY automati-

cally excludes these samples when calculating evidence. We choose the background gas to be N2.

In principle, any gas can be the filler gas, but it is typical and prudent to use a spectroscopically

inactive species, as abundances of a spectroscopically active species can be measured directly.

The trace species are typically sampled in log-abundance, such that the parameter spans

multiple orders of magnitude of mixing ratios. We compare two variations for the TF method,

one in which all trace species are sampled from log-uniform distributions, and another in which

a linear uniform distribution is used for H2. We call the latter variation a two-filler method, as

the H2 and N2 now have the same priors. As the change in H2 affects the spectrum primarily via

changing the MMW, it should ideally be in linear scale. Additionally, setting one trace species in

linear abundance changes the implicit prior for the filler (N2 in this case) such that it now also

resembles a uniform distribution between 0 and 1, with a slight tapering off near unity due to the

sum of the log trace species.

A choice needs to made regarding the minimum and maximum abundance to be retrieved,

i.e. the cutoff for the uniform prior. The minimum value is often chosen empirically as the value

above which a change in the mixing ratio has an effect on the spectrum above the noise floor, typ-

ically ∼ 10−12 [45, 46, 108]. For hot Jupiter atmospheres, the upper limit has been set lower than

unity in some retrieval analyses [46, 110] to ensure that the atmosphere is dominated by the filler
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Figure 3.1: The marginalized priors probability distributions for different trace-filler parameter-
izations, shown in log scale (left) and in linear scale (right). Solid lines and dashed lines corre-
spond to log and linear species, respectively; the filled histogram correspond to the filler species.
The DF method “corrects” the prior of the filler such that it more resembles a uniform distribu-
tion, with a slight taper around unity due to the sum of log trace species.

(H/He), and this is a justified choice as trace species are indeed expected to be in trace amounts.

For terrestrial planets, however, an upper limit set lower than unity may rule out plausible bulk

composition of the atmosphere (such as 100% CO2), and hence we use unity for all upper limits.

Additionally, the rejection sampling used to satisfy the common prior incurs an efficiency

of 98% for a single-filler gas, 86% for two-filler gas, and 42% for three-fillers when N = 6. We

find that this adds to the computation time only during the early steps of the retrieval before it has

converged somewhat, after which the overall efficiency of the sampling algorithm is generally

lower. We discuss the effects of rejection sampling on the Bayesian evidence in §3.5.

3.2.1.2 Centered log-ratio transform (CLR) method

The centered log-ratio transform (CLR) method, widely used for compositional data [121],

was first introduced to Bayesian atmospheric retrievals in BS12 and has been implemented in

recent codes [109, 110]. The CLR method parameterizes the abundances as the log-ratio to the
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geometric mean.

ξi ∼ U(l, h)

xi =
eξi∑
i e

ξi
,

where ξi is the log-ratio of the abundances to the geometric mean and is sampled from a

uniform distribution between the interval [l, h], where the limits are set to a minimum abundance.

The sampled values of ξi is then reparameterized to the actual mixing ratios xi via the centered

log-ratio transform.

By employing the reparameterization, the CLR method bypasses some foibles of the TF

method. Firstly, it ensures that the prior is symmetric between trace species and background

species, as no species is designated (or assumed) to be a filler. This may not necessarily be the ap-

propriately uninformative choice, given that the ideally uninformative prior of a species depends

on how the change in its abundance modulates the spectrum, as discussed in §3.4. Secondly, it

removes the choice between log and linear parameterization. Instead, the resulting prior is one

that, viewed in log space, maintains a gentle slope over the range ≲ 10−2 and ramps up closer

to unity (see Figure 3.2, in blue). The prior of the log-sample of the CLR method thus resembles

the trace prior of the TF method over the range [ l
2
,−2] and the filler prior over the range [−2, 0].

Viewed in linear space, the prior is bimodal and strongly favors values close to either zero or

unity.

The CLR method requires a choice in the cutoff range for the uniform prior from which the

reparameterized values ξi are sampled. Choosing to ensure that the resulting minimum abundance
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in the marginalized prior corresponds to a specific value (∼ 10−12 in both BS12 and Welbanks

and Madhusudhan [110]) sets both cutoff values for the uniform prior.

3.2.1.3 Inclusion of mean molecular weight (MMW) as an independent param-

eter

We also include a method in which no gas is used to backfill the composition, but we

additionally retrieve on MMW as an independent parameter. In our model we assume that the

MMW is fixed vertically. By separating MMW from the abundances, the change in abundance of

a spectroscopically active species has a monotonic effect on the strength of its features, as it now

affects the spectrum via opacity only. We choose the prior on the MMW to be uniform over [2, 44],

where the limits correspond to MMW of H2- and CO2-dominated atmospheres, respectively.
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3.2.1.4 Comparison of the priors on MMW
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Figure 3.3: The implicit prior on mean molecular weight set by the different methods of parame-
terizing the compostion. The peaks corresponds to specific gases, and the different methods vary
on what gases are allowed to be major components. For the independent MMW retrieval, we set
a uniform prior.

The prior on the mean molecular weight progated from the prior on the composition is

shown in Figure 3.3. The figure demonstrates the awkward tension between priors in composition

and prior in mean molecular weight. The various peaks in the prior on MMW in turn set a peaked

prior on the scale height. If one were to think analogously to the prior on temperature, the primary

effect of which is also controlling the scale height, only the uniform prior on MMW may be

considered an uninformative prior.
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3.2.2 Model atmospheres

To compare the different parameterization methods, we run retrievals on simulated spectra

of GJ 1132 b. From analyses of Hubble observations, GJ 1132 b has shown to be lacking a clear,

primordial atmosphere, indicating the potential for a thick, secondary atmosphere of high mean

molecular weight, although a cloudy atmosphere or an airless body are also plausible explana-

tions for a spectrum that is featureless over the observed range. Controversially, other analysis

have indicated that the planet may have a H/He-rich atmosphere [122]. Recently, JWST NIR-

SPEC observations have conclusively shown either a high mean molecular weight or a featureless

spectrum [123].

We simulate four plausible compositions of the atmosphere of GJ 1132 b corresponding

to: an (1) atmosphere evenly split between CO2-O2 dominated atmosphere, in which one spectro-

scopically active species is a major component; an (2) atmosphere evenly split betwen H2O-CO2-

O2, in which two spectroscopically active species are major components; an (3) an N2-dominated

atmosphere, in which all spectroscopically active species exist only in trace amounts; an (4)

Earth-like atmosphere, in which two spectroscopically inactive species are major components.

These compositions are all plausible for the atmospheres of rocky planets [21]. We note that in

all of our parameterizations, we treat the O2 as a spectroscopically active species throughout, as

O2 has a spectral feature at 0.76 micron, albeit weak and narrow; the expectation is that it will act

like a spectroscopically inactive species at lower S/N, and an active one at higher S/N. We use

the stellar parameters from Berta-Thompson et al. [124]. We show the forward model parameters

and the composition used in Table 3.1.

We also repeat all of our models with clouds, which can mask the bottom of the atmosphere
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Case H2O CO2 CH4 O2 H2 N2 MMW (amu)

CO2-O2 0 50% 0 50% 0 0 38.00
H2-CO2-O2 33.3% 33.3% 0 33.3% 0% 0 31.34

N2-rich 100 ppm 100 ppm 100 ppm 0% 0% 99.97% 28.01
Earth-like 1% 100ppm 0 20.99% 0 78% 28.75

Mp Rp Tp Clouds R* T*

1.659 ME 1.160 RE 580 K 10 mbar 0.207 R⊙ 3270 K

Table 3.1: Table summarizing the four cases of compositions and the forward model parame-
ters used to generate the unpolluted spectrum. The mean molecular weight is calculated self-
consistently from the abundances. We run two sets of each models, with and without clouds.

(and the spectrum), thereby prohibiting the estimation of the scale height and hence the MMW of

the atmosphere. Clouds are implemented in PLATON is such that they are wavelength-independent

and have a sharp cutoff in opacity at the assigned cloudtop pressure. Notionally a grey planetary

surface would also have the same effect on a transmission spectrum, in which case the cloudtop

pressure parameter can be understood as a surface pressure [56]. We choose the cloudtop pressure

for these models to be at 10 mbar, resulting in obscuring roughly half of the spectral features for

each case.

We use the forward model of PLATON to generate the unpolluted true spectrum, and then

use PANDEXO [125] to generate the simulated noise and bin to the desired resolution. We retrieve

on both the unpolluted spectrum and 20 instances of polluted spectra with a Gaussian scatter

around the simulated data. The polluted spectra are necessary to ascertain more realistic ranges

of Bayesian evidences. We simulate observations for NIRISS and NIRSpec. To compare the pa-

rameterization methods at different signal-to-noise levels, we simulate 2, 5, and 10 transits for

both instruments. We run the retrievals on the data binned to R=100 using a model resolution of

R=10,000, using a nested sampler of DYNESTY with 300 live points. The retrieval includes plan-
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Figure 3.4: The forward model spectra corresponding to the 4 cases used. Spectra of clear and
cloudy atmospheres are shown with solid and dashed lines, respectively. The simulated data error
from 2 transit observations with NIRISS and NIRSpec is shown around a median featureless
spectrum. The NIRSpec uncertainty is typically 40 ppm at R = 100; in other words, all 8 spectra
are appreciably “flat lines”.

etary radius, an (isothermal) temperature, and cloudtop pressure as free parameters in addition to

the parameters for composition. To ensure that we are using sufficient live points, we ran multi-

ple identical retrievals with this setup and found that both the posterior distribution and estimated

evidences are repeatable.
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3.3 Results

Here we present and compare the retrieval results for each parameterization – SF, DF, and

CLR, with and without µ as a retrieved parameter. We choose Ntransits = 2 and comment on the

degree to which the prior implementation impacts the retrieved parameters. In the following sub-

section, we investigate how our results change in the higher signal-to-noise regime by simulating

data resulting from Ntransits = 5 and 10 stacked transits. In general, at low signal-to-noise, there is

the risk that a data set will fail to constrain certain parameters. The resulting posterior distribution

will then mimic the shape of the prior. If the prior itself does not have a broadly flat distribution,

then it may appear that the parameter has been constrained, when in fact it has not. As such, we

will examine the marginalized posteriors by comparing them to the marginalized priors in Figures

3.1 and 3.2.

3.3.1 Comparison of parameterization methods at low S/N

Here we look at the benchmark case of comparing the different parameterizations, and

examine the higher precision and cloudy cases in the following subsections. We first present the

retrievals on the unpolluted spectrum in Figure 3.5.

It is also of interest to test if one could obtain constraints on not merely log-abunances but

on the abundance in linear scale (e.g., “is the atmosphere 10% or 50% CO2?”). For this reason,

we show the retrieved posteriors for the spectroscopically active species also in linear abundances

in Figure 3.6.

74



De
ns

ity

CO
2-O

2

CLR
MMW
NF
DF

De
ns

ity

H 2
O-

CO
2-O

2

CLR
MMW
NF
DF

De
ns

ity

N 2
-ri

ch

CLR
MMW
NF
DF

9 6 3 0
log[H2O]

De
ns

ity

9 6 3 0
log[CO2]

9 6 3 0
log[CH4]

9 6 3 0
log[O2]

9 6 3 0
log[H2]

9 6 3 0
log[N2]

0 10 20 30 40
MMW

Ea
rth

-li
ke

CLR
MMW
NF
DF

Figure 3.5: Comparison of the posteriors for the 4 cases using 4 parameterizations, for 2 transits
each of NIRISS and NIRSPEC of GJ 1132 b. The vertical bars represent the ground truth values.
The posterior for the MMW is inferred if not explicitly retreived.

N2-rich and Earth-like atmosphere We find notable disagreement between the parameteri-

zation methods for N2-rich atmosphere, where all spectroscopically active species are in trace

amounts. Here, the CLR method, rather than inferring that there is N2 in the atmosphere, incor-

rectly retrieves a CO2-dominated atmosphere with a major amount of CH4 abundance to consti-

tute the same MMW (third row, second and third columns). Because N2 lacks a spectral signature,

the CLR method favors constituting the the high MMW with a mixture of CO2 and CH4, the pres-

ence of which can be inferred from its features. As the spectral features saturate past mixing ratios

of ∼ 1%, it is free to increase the abundance of CO2 such that the atmosphere is dominated by

CO2. Similarly, for the Earth-like atmosphere the CLR method finds an atmosphere that is either

dominated by H2O and O2.

On the other hand, both the N2-filler and two-filler methods retrieve posteriors that peak
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Figure 3.6: Same as Figure 3.5, but now showing linear abundance (from 0 to 1) to show the
retrieved major component of the atmosphere.

at the true value for the spectroscopically active species. One difference between the two is that,

while both methods correctly infer that the atmosphere is N2-dominated, the N2-filler method

correctly retrieves N2 abundance merely due to the formulation of the prior, whereas the two-

filler method correctly retrieves the N2 abundance based on actually distinguishing between a H2-

and N2-rich atmosphere. This is best seen in linear scale abundances, shown in Figure 3.6, where

the major component gas can be identified. Here H2 abundance, retrieved as a free parameter in

linear scale, acts as a proxy for MMW. The posterior for H2 and N2 are broader for the two-filler

method.

Our retrieval result for the N2-dominated is in disagreement with the retrieval analysis done

in BS12, which employed the CLR method on the simulated spectrum of super-Earth GJ 1214 b

with N2-dominated atmosphere and found good constraints on all species, with 10 transits. We
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identify two sources of disagreement, both relating to S/N. Firstly, the overall S/N is much lower

in our test, including for the infrared absorbers. The simulated spectrum of GJ 1214 b in BS12

has a much larger transit depth with a median depth of ∼ 13800 ppm and with a spectrum that

spans roughly ∼ 500 ppm, whereas the simulated spectrum of GJ 1132 b in the current work has

a median depth of ∼ 2700 ppm and a span of roughly 100 ppm. Secondly, the S/N is specifically

far worse in the short wavelength range in our simulated NIRISS observation, compared to the

uncertainties used in BS12. The worse S/N in the optical wavelength range obscures the Rayleigh

slope that provides the most information about the MMW of the planet.

CO2-O2 and H2-CO2-O2 atmospheres. We find that in the unpolluted case, even with 2 tran-

sits, each method correctly identifies the presence of spectroscopically active gases, CO2 and

H2O (top two rows of Figure 3.5), but not the spectroscopically inactive gas, O2. Here, the main

difference is in the retrieved uncertainty and the retrieved mean molecular weight due to whether

O2 has been rejected or not. For the H2-CO2-O2 case in the second row of Figure 3.5, the CLR

method finds a narrower uncertainty on H2O and CO2 abundance. It can be seen, in the retrieved

MMW in the top rightmost panel, that the CLR method finds an atmosphere dominated by CO2.

This likely arises from the fact that O2 is not detectable at this signal-to-noise and the CLR

method instead substitutes the O2 for CO2 without changing the spectrum. This tendency for the

CLR method to prefer spectroscopically active gases has also been seen in e.g. Piette et al. [126].

Both of these atmospheres have MMW higher than N2, but we see discrepant behaviors in

the N2-filler method between the CO2-O2 case and the H2-CO2-O2 case. N2-filler method (green

line) pushes the retrieved log-abundance of CO2 to 0 and rejects a N2-dominated atmosphere

such that the MMW is no longer peaked at the N2 value, as seen in the retrieved N2 abundance in
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Figure 3.6. For the H2-CO2-O2 case, on the other hand, the MMW is closer to that of N2, and the

N2-filler method instead finds an N2-dominated atmosphere.

In both of these cases, the free-MMW and the H2/N2-filler parameterization methods find

weak or incorrect constraints on the MMW. This is due to the fact that for both of these methods,

the prior in CO2 and H2O abundances are biased towards trace amounts; hence the parameteriza-

tions favor low MMW (i.e. large scale height) solutions, as can be seen in Figure 3.6.

For these cases, we also ran a quick set of models that used broadened priors, resulting

in prior log-abundance ranges of [−24, 0] for both CLR and the filler-based methods. We find

that the resulting posteriors do not differ in an appreciable way and reflect the prior when the

likelihood function does not have a strong peak.

3.3.2 Comparison at higher precision

We repeat the above analysis with 5 and 10 transits instead of 2. The general expectation

is that higher precision will lessen the importance of the prior, as the likelihood function is more

sharply peaked, and hence will lead to better agreement between parameterizations. The resulting

posteriors are shown in Figure 3.7 and Figure 3.8.

At 5 transits, the spectroscopically active species in trace amounts are well constrained.

For the N2-rich atmosphere, the CO2 abundance is tightly constrained enough such that the N2

abundance is retrieved by all methods. In the CO2-O2 atmosphere, the aforementioned bias in

which the CLR overestimates the abundance of CO2 is still present.

This effect still persists at 10 transits, showing the difficulty of spectrally constraining the

abundance of O2. We also find that, even at this high S/N, the log abundance of O2 is not re-
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Figure 3.7: Same as Figure 3.5, but now includes posteriors for 5 and 10 transits each of NIRSPEC
and NIRISS. The posteriors are now shown in a box plot style as the median with their first and
third quartiles, with the full range omitted. We note that the posteriors may not resemble Gaussian
distributions and show quartiles rather than the 1-sigma uncertainties.
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Figure 3.8: Same as Figure 3.7, but now in linear scale (from 0 to 1). The posteriors are now
shown in a box plot style as the median with their first and third quartiles, with the full range
omitted. We note that the posteriors may not resemble Gaussian distributions and show quartiles
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Figure 3.9: Same as Figure 3.5, but now shows posteriors from atmospheres with opaque cloud-
decks. The posteriors are now shown in a box plot style as the median with their quantiles, with
the full range omitted. We note that the posteriors may not resemble Gaussian distributions.

trieved by any of the methods. This may either be due to insufficient S/N or too much binning in

wavelength resolution.

3.3.3 Atmospheres with aerosols

We repeat the above analysis with grey cloud deck present in the forward model atmo-

sphere, placed such that it obscures roughly half of the spectral features. The resulting posteriors

are shown in Figure 3.9.

In our retrieval simulations with grey clouds, we find that the general effect is, as expected,

to increase the retrieved uncertainties of the abundances of spectroscopically active species. Nev-

ertheless, the retrieved uncertainty on the MMW is not strongly affected, even when included

as an independent parameter. The fact that the scale height–and hence the MMW–can be mea-
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sured is reassuring. We do not deem necessary an extensive test with varying cloudtop pressure,

but nevertheless we expect that the more the spectrum is obscured will naturally lead to broader

uncertainties on the MMW, and ultimately to a posterior that simply resembles the prior.

3.3.4 Comparison of Bayesian Evidences

Here we compare the Bayesian evidences of each parameterization method for each case.

As the Bayesian evidence for an unpolluted specrum likely represents an unrealistic best case

scenario, we iterate over 20 noise instances and show the Bayesian evidences in Figure 3.10. We

find that, in general, there is no parameterization method is systematically favored. This suggests

that most of the evidence is contained in the likelihood peak, and the prior volume away from the

peak does not contribute significantly to the evidence.

Of more interest is the change in Bayesian evidence depending on whether a gas is in-

cluded or not. We perform retrievals without CO2 for each of the noise instances, to quantify the

difference in Bayesian evidences in Figure 3.11. While we find no clear pattern, we find that the

choice in the parameterization method basically adds random scatter to the ∆logZ to an amount

comparable to the scatter due to the injected noise. The maximum discrepancy between parame-

terization methods given a noise instance is 8.8, 9.4 and 21.7 for 2, 5, and 10 visits, respectively.

3.4 What is an Uninformative Prior?

It is worth contemplating what, in general, our priors are when performing retrievals so

that it informs our decisions from an a priori standpoint. The ultimate aim here is to seek out the

truly uninformed–if theoretical–prior because we typically do not have prior knowledge of the
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Figure 3.10: Violin plot comparing the Bayesian evidence (logZ) for retrievals for 20 noise
instances. The connected lines indicate each noise instance. A higher logZ indicates that the
prior set by the parameterization weighs the peak likelihood higher. The values shown here have
typical uncertainties of 0.3. No one parameterization method outperforms others across the board,
as most of the evidence is contained in the likelihood peak.

atmospheric composition of a terrestrial exoplanet. This discussion extends to other parameters,

such as choosing how the thermal profile is parameterized or how the 3D-ness of the atmosphere

is parameterized, but we will focus on atmospheric composition in this work [113, 127, 128], as

atmosphere composition is typically the first-order scientific question to be answered, especially

for rocky planets [e.g. 4, 129].

In the absence of a previous observation, we want to adopt a prior that is either as unin-

formative as possible or reflects some broad intuition about the planet that is motivated by the

current understanding of similar planets. An example of the former (ignorance prior) is using a

uniform prior that is as wide as possible (wherein the limits are often set by physics or the limita-

83



CLR
MMW
N2-fil

H2/N2-fil

Clear, 2 visits Clear, 5 visits

CO
2-O

2

Clear, 10 visits

CLR
MMW
N2-fil

H2/N2-fil H 2
O-

CO
2-O

2

CLR
MMW
N2-fil

H2/N2-fil

N 2
-ri

ch

40 30 20 10 0
log

CLR
MMW
N2-fil

H2/N2-fil

80 60 40 20 0
log

150 100 50 0
log

Ea
rth

-li
ke

Figure 3.11: Violin plot comparing the changes in Bayesian evidence (∆ logZ) with and without
CO2 for retrievals for 20 noise instances. The connected lines indicate each noise instance. A
smaller ∆ logZ indicates that the inclusion of CO2 is favored. The values shown here have typical
uncertainties of 0.4.

tions of the retrieval code). Here, the parameterization sets the prior; for example, when retrieving

on a parameter such as the temperature, the choice remains whether to use a uniform prior, log-

uniform, uniform for inverse temperature, or yet another reparameterization. An example of the

latter (intuition prior) is the choice of background gas when parameterizing the chemistry of hot

Jupiters, atmospheres of which one can reasonably expect are dominated by H and He. When

there is a well-founded previous measurement for a parameter, such as for radius or mass of the

planet, Gaussian priors are also a popular choice.

The way to achieve a generically objective, uninformative prior is the Jeffreys prior, which

is defined to the prior that is invariant under a change of parameterization. This is achieved by
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constructing the prior from the likelihood function. For a parameter vector θ⃗, the prior density

p(θ⃗) is given by:

p(θ⃗) ∝
√

detI(θ⃗), (3.1)

where I(θ⃗) is the Fisher information matrix, or the expected curvature of the likelihood function

evaluated for a parameter vector. Generally, deriving the Jeffreys prior is not an analytically

tractable problem, and extension to multiple parameters is not straightforward. Regardless, we

invoke the Jeffreys prior to build intuition into what we deem to be an objectively uninformative

prior.

The underlying intuition here is that, if we wish to not bias the sampler as it estimates the

posterior by supplying an informative prior, we must set the prior such that the prior density is

higher for the parameter space volume that is easier to find evidence against and lower for the

volume that is harder to find evidence against. Otherwise the posterior will generically favor the

parameter space volume that is harder to find evidence against. As such, the Jeffreys prior is

proportional to the expected curvature of the likelihood function, which measures the sensitivity

of the spectrum to the change in a parameter.

Applied to the exoplanetary atmospheric retrievals, we can treat the forward model as the

change of coordinates from parameter space to spectrum space and the retrieval as an estimation

of the mean of a multivariate normal distribution with a fixed standard deviation from which

the observation data is sampled, as assumed in the likelihood function. The Jeffreys prior for

estimating the mean of a multivariate normal distribution is a uniform distribution across the real

space. This implies that, in the context of atmospheric retrievals, the maximally uninformative
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Figure 3.12: The density distributions of spectra sampled from each parameterization. Each panel
shows 3000 random instances of compositions drawn from the prior for a GJ 1132 b-like planet.
In the distribution for CLR (bottom right), the three visually apparent modes correspond to H2O-,
CO2-, and CH4-dominated atmospheres.
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prior for a set of parameters is one that produces a uniform distribution of spectra in the spectrum

space, at the very least once marginalized in each dimension. Notionally, this also corresponds

to the ignorance prior on a spectrum before it is observed – the spectrum can be anything, and

thus a uniform distribution over the entire spectrum space is appropriate. Of course, one could

argue the last point is somewhat subjective; we know, for instance, that a transmission spectrum

will not look like an emission spectrum. However, we argue that this still qualifies as an informed

prior, even if it may be completely justified. Seen this way, an uninformative prior is ultimately

reduced to what is physically or semantically allowed. The sum of mixing ratios cannot but be

unity; a transit depth cannot be negative.

In Figure 3.12, we show distributions of transmission spectra of a planet the atmospheric

abundances of which were sampled using each parameterization, with the same bulk properties.

A few observations can be made. Firstly, it is visible that the CLR method is more likely to sample

H2O-, CH4-, and CO2-dominated atmospheres, as represented by the 3 thicker lines. The upturn

near unity linear abundance space seen in Figure 3.2 constitutes the mode where the atmosphere

is dominated by one species, which may be spectroscopically active. This mode is not existent in

the trace-based methods (Figure 3.1), where we designate the filler gas(es) to be spectroscopically

inactive. The resulting distribution of spectra therefore does not have the modes dominated by a

spectroscopically active gas.

Secondly, the overall extent of the distribution, in terms of absolute transit depth, is set by

the atmospheres with low-MMW, high-scale height, and thus large-features. As such, the two-

filler and CLR methods have a greater extent than SF, as H2 can be a major species in two-filler

and CLR but not single-filler. Moreover, comparing the the two-filler method to the CLR method,

the former has a higher density of spectrum of low-MMW atmospheres, as H2 is continuously
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Figure 3.13: CO2 feature strength as a function of the CO2 mixing ratio for a different mixtures
of background gas. The feature strength is obtained by the ratio of the transit depth at 4.38 µm (in
band) and 1.39 µm (out of band). To show the effects of changing opacity and mean molecular
weight (MMW), the solid lines correspond to atmospheres in which MMW is calculated self-
consistently from the mixing ratios, while the dashed lines correspond to atmospheres for which
MMW was fixed to that calculated from the background gas, even at higher mixing ratios of CO2.
The small black vertical bar represents the uncertainty on the features strength obtained from the
uncertainties on the transit depth for the simulated observations as described in 3.2.2.
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varied from 0 to 1 in the former, whereas has H2 has 1 in 6 chance to be the dominant gas in the

latter.

Thirdly, the main effect of including MMW is that it vertically smears out the distribution

of spectra, as the scale height is now freely varied. This effect is already present in the two-filler,

whose scale height varies somewhat linearly according to the sampled H2 abundance.

In practice, the Jeffreys prior is impossible to implement exactly due to complexity of

the forward model, such as degeneracies or, for composition, simplicial structure. It does imply,

however, that the uninformative prior for a parameter depends on its effect on the spectrum.

Specifically, it can inform the critical choice such as whether the prior for the abundance of a

species should resemble a log-uniform or uniform prior. In Figure 3.13, we show the feature

strength of a spectrum (the difference between the depths in/out of a CO2 feature) as a function

of log-abundance of CO2. This feature strength is used as proxy for how the spectrum is changing

overall. A mixture of varying proportion of N2 and H2 is used as the filler gas. The feature strength

increases under log[CO2] ≲ −2 as the opacity increases, and decreases over log[H2O] ≳ −2 as

the change in CO2 abundance influences the MMW.

Given that the Jeffreys prior is proportional to the rate of change of a parameter, a log-

uniform prior should be used for species that dominantly affect the spectrum via opacity, whereas

a linearly uniform prior should be used for species that dominantly affect the spectrum via mean

molecular weight. Additionally, when using a log-uniform prior, the minimum abundance should

be set where there is little change in the spectrum with the change in parameter compared to the

data uncertainty [46].

89



3.5 Summary and Future Work

In this section, we summarize the concluions from the current study.

We have demonstrated, when retrieving on the spectra of atmospheres of high mean molec-

ular weight, the parameterization of the abundances can have consequential effects, as the bulk

of the atmosphere is not known. This is most apparent when viewed in both log and linear abun-

dance. The most prominent effect is that the symmetric method prefers to inflate the abundance

of a spectroscopically active gas for which there is evidence in the spectrum to constitute the

bulk of the atmosphere, rather than invoking the appropriate abundance of the spectroscopically

inactive species. This is made possible because the atmospheric spectrum is not sensitive to the

change in the abundance of the spectroscopically active gas near unity.

Unsurprisingly, the choice in parameterization method is the most relevant when retriev-

ing low S/N data. At high S/N with 10 transits for GJ 1132 b, each parameterization correctly

estimates the log-abundances of spectroscopically active species in all cases.

In the current work, we have treated O2 as a spectroscopically active species, as it has a

small feature near 0.76 micron. We find that, again unsurprisingly, this feature cannot be used to

constrain the O2 abundance.

We find that when using Bayesian evidence to establish whether a species should be in-

cluded, the choice in the parameterization adds, effectively, a random scatter to the ∆ logZ . We

stress that Bayesian evidence cannot be used to infer a correct parameterization.

We have also shown that, in the context of atmospheric retrievals, the Jeffreys prior cor-

responds to one that, when sampled from, produces the most uniform distribution of spectra.

Amongst the priors compared in this work, the two-filler method most closely corresponds to the
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Jeffreys prior. However, it is also not a given that it will produce the most correct posteriors in

all cases, and we argue that there is no straightforward abundance parameterization that perfectly

corresponds to the ideal Jeffreys prior for transmission spectroscopy.

Therefore, we argue that when applying atmospheric retrievals to terrestrial planets, the is-

sue of priors remains a fundamental problem alongside complications of astrophysical origin. As

such, we recommend that when performing retrievals, one test various parameterization methods

to test the robustness of the inferences. We leave for future work to test whether techniques such

as importance sampling [130, 131] can be applied here to swap out priors, post-inference.
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Chapter 4: Constraining the Thickness of TRAPPIST-1 b’s Atmosphere

from its JWST Secondary Eclipse Observation at 15 micron

4.1 Introduction

We have now entered the era of JWST, and with it comes the potential to perform the

first meaningful characterization of terrestrial (i.e., rocky) exoplanets. Among the possible rocky

planet targets for JWST, those in the TRAPPIST-1 system are some of the most promising for

atmospheric characterization due to their very favorable planet-to-star size ratios [132]. The sys-

tem is also of extreme interest because it hosts multiple terrestrial planets, including several that

reside in or near the habitable zone [133]. Recently, Greene et al. [2] measured the thermal emis-

sion from the innermost planet, TRAPPIST-1 b, and found that its 15-µm brightness temperature

is consistent with the planet being a bare rock, devoid of any atmosphere at all.

Thermal emission measurements of presumed tidally-locked planets, such as those pro-

duced by Greene et al. [2] for TRAPPIST-1 b, are a productive avenue for confirming whether

rocky exoplanets possess atmospheres [31, 32]. By measuring the planet’s dayside temperature

via secondary eclipse observations, one can constrain the presence and thickness of the atmo-

sphere in the following sense: atmospheres serve to lower the dayside emission temperature below

what would be expected for a bare (and dark) rocky surface. Even moderately thick atmospheres
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transport considerable heat away from a tidally-locked planet’s dayside [53]. Reflective aerosols,

another signpost of a planet possessing an atmosphere, also serve to lower the dayside temper-

ature by reflecting incoming stellar radiation back to space [31]. The maximal dayside effective

temperature, corresponding to no atmosphere and a zero-albedo surface is:

Tmax = T∗

√
R∗

d

(
2

3

)1/4

(4.1)

where T∗ and R∗ are the stellar effective temperature and radius, and d is the planet-star separa-

tion. For TRAPPIST-1 b, Tmax = 508±6 K, whereas the 15 µm brightness temperature reported

by Greene et al. is 503+26
−27 K, fully consistent with the no-atmosphere scenario.

From a theoretical standpoint, it is unclear whether terrestrial planets orbiting M-dwarfs

should be expected to possess atmospheres. There are studies that go both ways. Atmospheric

loss processes should be efficient for planets orbiting active M-dwarf host stars, but some planets

may be able to retain their atmospheres or renew them via outgassing following a decline in

stellar activity with age [e.g. 5, 134, 135].

Observationally, to-date there are no studies that definitively confirm the presence of an

atmosphere on a rocky exoplanet. Flat transmission spectra are the norm [e.g. 136, 137, 138, 139,

140, 141], and the few studies that have claimed detections of atmospheric spectral features for

terrestrial exoplanets have been called into question or have ambiguous interpretation [e.g. 122,

142, 143]. Thermal emission measurements of the planets LHS 3844b [144] and GJ 1252b [145]

have found dayside temperatures that are consistent with the no-atmosphere limit, the former

by way of a full-orbit phase curve. It stands to reason that less irradiated planets should be less

susceptible to atmospheric loss, but TRAPPIST-1 b is the coldest planet yet to be subjected to the
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thermal emission test for possessing an atmosphere, yielding the same result of no apparent sign

of a gaseous envelope.

In this Letter we quantify the range of atmospheres and surfaces that are consistent with the

Greene et al. [2] measurement of TRAPPIST-1 b’s secondary eclipse depth at 15 µm. We show

in what follows that thick atmospheres can be definitively ruled out by this single data point.

Given the range of scenarios that we still find to be consistent with the data, we also predict the

degree to which further observations, including planned measurements at 12.8 µm, will be able

to distinguish among the remaining plausible atmospheres and surfaces.

4.2 Methods

In this section, we describe our model and parameter choices. To calculate the eclipse spec-

trum of different surfaces and atmospheres, we use HELIOS, an open-source 1D radiative transfer

code that computes the thermal profile of a planetary atmosphere in radiative-convective equilib-

rium [35, 36, 37]. Most of our approach closely follows Whittaker et al. [51], which performed a

similar analysis for the Spitzer observation of LHS 3844 b, and we refer the readers to that work

for more details of the modelling.

One key detail worth mentioning here is that we calculate the heat redistribution factor (f )

self-consistently with the radiative transfer using the analytical approximation in Koll [53, equa-

tion 10]. In the approximation, f depends on the equilibrium temperature, the surface pressure,

and the longwave optical depth at the surface; HELIOS has the ability to iterate to a value of f

that satisfies global energy balance. We note a caveat that this method subtracts the approximated

transported heat from the incident stellar flux to calculate the dayside energy budget, but does not
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consider the vertical dependence of the day-to-night heat flow; hence the redistribution could be

construed to happen either uniformly or at the top of the atmosphere in our models.

We model a range of surface pressures that is broad enough span full redistribution (f =

1/4) to no redistribution (f = 2/3), resulting in a surface pressure grid of 10−4 bars to 102 bars,

spaced at 1 dex. For the composition of the atmospheres, in addition to a 100% CO2 atmosphere,

we choose to vary the abundance of trace CO2, at 1 ppm, 100 ppm, and 1%, against background

gases of N2, O2, and H2O. Moreover, we also consider atmospheres containing a range of other

trace gases plausible in secondary atmospheres [51, 134, 146], which may not necessarily absorb

at 15 µm but may be detected via observations at other wavelengths. For this purpose, we adopt

the same trace abundance grids (i.e. 1 ppm, 100 ppm, 1%) for CO, CH4, H2O, and SO2, against

a background gas of N2 for the former two and O2 for the latter. SO2 is unique in that it has

broad infrared absorption features just outside the 15-µm bandpass, which produce interesting

implications for observations at 15 µm; we discuss this further in Section 4.3. For all models, we

assume an intrinsic temperature of Tint = 0K.

For all of the atmosphere models, we adopt a surface albedo of 0 (i.e. a true blackbody),

to produce the maximum limit on the atmospheric pressure consistent with the observation; any

value of non-zero albedo will dilute the energy budget and decrease the eclipse depth, thereby

making a model at a given atmospheric pressure even less consistent with the observation.

Given that TRAPPIST-1 b’s dayside temperature is consistent with the no-atmosphere limit,

we also explore a number of bare surface models that have no atmospheres at all. Here the eclipse

spectrum instead arises due to the wavelength-dependent albedo spectrum of the surfaces. We

consider six surfaces that are plausible, given the level of irradiation received by TRAPPIST-1 b:

basaltic, ultramafic, feldspathic, metal-rich, Fe-oxidized, and granitoid [31, 147]. We also run a
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number of grey albedo surfaces at A = 0.2, 0.4, 0.6, 0.8, 0.95.

We adopt the stellar and planetary parameters as obtained in Agol et al. [148]. We use

the SPHINX stellar model spectrum grid [149] interpolated to TRAPPIST-1 parameters assuming

solar composition to calculate the thermal profile and the eclipse depth of the planet. SPHINX

models are expected to better model the stellar spectra at such low temperature ranges than the

typical PHOENIX models, using updated line lists [149]. Indeed, we find that the SPHINX model

reproduces the observed stellar flux at 15 µm better than the PHOENIX model [to within 7%

versus 13%; see Methods of 2]

After obtaining the eclipse spectra, we calculate the binned depth at the photometric band

of F1500W; we integrate the planetary flux weighted by the bandpass function, then integrate

the stellar flux weighted by the same function, and then obtain the ratio of the two. We perform

the same calculation for F1280W to make predictions for upcoming observations. The F1280W

bandpass lies outside the CO2 absorption feature, and the difference between the two bandpasses

serves as a metric to constrain either atmospheric pressure, CO2 abundance, or both [30].

We calculate the brightness temperature (Tb) in the F1500W filter by determining the tem-

perature of the blackbody whose eclipse depth (obtained via identical weighting and integrating

as for the planetary flux) matches the observed eclipse depth. We note that this calculation dif-

fers slightly from the procedure followed by Greene et al. [2], who found the temperature of the

blackbody whose per-frequency flux evaluated at the “effective” filter wavelength matched the

observed per-frequency planetary flux. Our calculation leads to a best-fit brightness temperature

of Tb = 505 ± 27K, rather than the Tb = 503+26
−27K reported in Greene et al. [2]. Given the

uncertainty, this minor discrepancy will not impact our analysis.
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Figure 4.1: The eclipse spectra of various models run in this study. We show: a suite of atmo-
spheric models that are 1-σ consistent with the observation (top left); bare surface models, which
are all consistent with the observation (top right); 100 % CO2 atmosphere models at various
surface pressures (bottom left); and models with surface pressures of 0.1 bar, varying the com-
positions (bottom right). The compositions denote that the first species is the dominant species,
with the second species in indicated trace amounts. The binned depths at F1500W and F1280W
are shown as markers, as well as each bandpass function weighted by the stellar spectrum. We
also show, in dashed lines, the eclipse depths resulting from blackbodies at 508 K (blue) and 400
K (red), corresponding to no redistribution (f = 2/3) and full redistribution (f = 1/4), respec-
tively. On the upper right panel, dashed lines indicate grey albedo surface models. The features
in the blackbody eclipse spectrum arise due to spectral features in the stellar spectrum.
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Figure 4.2: The binned eclipse depths and their brightness temperature in the F1500W band for
all of the atmospheric models run, varying the pressure of the atmosphere at the surface. Models
atmospheres that do and do not include CO2 are shown in the left and the right panel, respectively.
The measured eclipse depth from Greene et al. [2] is shown as the solid black line, and its 1-σ
(grey) and 3-σ (red) uncertainties are are also shown, as well as the corresponding brightness
temperatures. The compositions denote that the first species is the dominant species, with the
second species in indicated trace amounts. Atmospheres with ≥100 ppm CO2 are consistent with
the measurement at 1σ only if the atmospheric pressure is less than 0.1 bar.

4.3 Results

4.3.1 Atmospheric Thickness and Surface Composition

Our results support the general conclusion from Greene et al. [2] that TRAPPIST-1 b does

not possess a thick atmosphere. We will present the maximum atmospheric thickness consistent

with the observed eclipse depth of 861 ± 99 ppm for each set of model composition and also

highlight interesting behaviors from a theoretical perspective. We show the eclipse spectra for

selected atmospheric and surface models in Figure 4.1 and the binned eclipse depths for all of

the atmospheric models in Figure 4.2, varying the composition and the surface pressure. The

accompanying temperature-pressure (T-P) profiles for each of the atmosphere models are shown
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Figure 4.3: The temperature-pressure (T-P) profiles of the model atmospheres in radiative-
convective equilibrium. Models atmospheres that do and do not include CO2 are shown in the
left and the right panel, respectively, similarly to Figure 4.2. The optically thick region of the
T-P profiles below the photosphere (τ = 2/3) at λ = 14.79 µm are shown with thick lines. The
markers indicate the surface pressure of each model atmosphere. The compositions denote that
the first species is the dominant species, with the second species in indicated trace amounts. The
N2 and O2-dominated atmospheres completely overlap in the left panel. It can be seen that while
near-infrared absorbers such as H2O can cause thermal inversions, they occur at regions where
the atmosphere is optically thin and hence will not result in emission features in the spectra. For
most of the models that do not contain CO2, the atmosphere is optically thin in the F1500W
bandpass down to the surface.

in Figure 4.3.

4.3.1.1 Atmospheres with CO2

We posit that TRAPPIST-1 b should realistically have at least moderate amounts of CO2 if

it does possess an atmosphere. This statement is in line with theoretical studies of the atmosphere

of TRAPPIST-1 b and in general of rocky exoplanets receiving a comparable degree of irradiation

[134, 150, 151]. CO2 is robustly expected to be present in non-hydrogen-dominated atmospheres

[e.g., as indicated for TRAPPIST-1 b from its transmission spectrum; 152], and the gas is robust

against various escape processes, although photodissociation can deplete its abundance.
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Pure CO2 atmospheres are 1-σ consistent with the eclipse measurement for surface pres-

sures up to 0.4 mbar and 3-σ consistent up to 3 mbar (Figure 4.2), indicating that even a Mars-like

thin atmosphere (Psurf = 6.5 mbar) composed entirely of CO2 is unambiguously ruled out. To

first order, the secondary eclipse depth depends on the partial pressure of CO2, so the atmosphere

may be thicker if the CO2 abundance (i.e. its mixing ratio) is smaller. N2 or O2-dominated atmo-

spheres with ≥100 ppm of CO2 are 1-σ consistent at 0.04 bar at most, and 1 bar atmospheres are

ruled out by more than 3σ.

The presence of H2O has a non-trivial effect on the eclipse spectrum as it both increases

the absorption and changes the thermal structure. For instance, at a surface pressure of 0.1 bar,

H2O-dominated atmospheres with 1 ppm or 100 ppm CO2 have deeper eclipse depths than the

corresponding O2 or N2-dominated atmospheres, while the one with 1% CO2 has a shallower

depth than atmospheres with the other background gases. Additionally, the lower atmosphere

becomes much hotter for the thicker H2O-dominated atmospheres due to greenhouse heating

being more effective than the cooling of day-night redistribution.

H2O is also interesting in that it can generate thermal inversions in planets orbiting M

stars [36]. Thermal inversions are interesting in the context of the Greene et al. [2] secondary

eclipse measurement because they have the potential to reverse absorption features into emission,

opening a possibility that the high observed 15-µm brightness temperature could be due to a CO2

emission feature originating from from a thick(er) atmosphere. For TRAPPIST-1 b, we indeed

find that H2O causes thermal inversions (Figure 4.3), but they occur in the upper atmosphere

well above the IR photosphere and thus do not significantly impact the shape of the 15-µm CO2

feature, which uniformly appears in absorption in all of the models we have produced. We have

also experimented with different mixtures of O2, H2O, and CO2 (not shown), but find that no
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combination leads to emission features. In fact, in Figure 4.4, one can see that the brightness

temperature at 15 micron is lower than that at 12.8 micron for every model, indicating CO2

absorption, rather than emission, is being observed.

4.3.1.2 Atmospheres with no CO2

While less plausible chemically, atmospheres that do not contain any CO2 at all remain

consistent with the secondary eclipse measurement to higher surface pressures. Atmospheres that

have CO or CH4 as the trace gas are 1-σ consistent to 1 bar for all trace abundances, except

the 1% CH4 model which has a shallower depth that is 2-σ consistent. In Figure 4.3, it can be

seen in the right panel that all of these atmospheres except the 1% CH4 102 bar model remain

optically thin in the 15 µm bandpass down to the surface, and the change in eclipse depth with

surface pressure is due to the cooling effect of redistribution. Atmospheres with trace H2O behave

similarly except that the 1% H2O atmospheres becomes optically thick at atmospheric pressures

around 0.1 bar, and the eclipse depth is already > 3-σ inconsistent for a surface pressure of 1 bar.

Atmospheres with trace SO2 behave somewhat differently since SO2 has a broad absorption

feature at wavelengths just redward of the 15-µm bandpass. For moderate SO2 abundances (e.g.

the pink line for the 100 ppm 0.1 bar atmosphere in the top left panel of Figure 4.1), the strong

absorption at ∼18–20 µm pushes more flux into the 15-µm bandpass, leading to increased plan-

etary emission over the wavelength range of the Greene et al. [2] secondary eclipse observation.

The emission from a transparent spectral window is therefore a plausible mechanism for increas-

ing the secondary eclipse depth in a single bandpass, but it comes at the cost of sharply reduced

fluxes at other wavelengths; this effect can therefore be diagnosed with additional spectroscopic
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Figure 4.4: A color-color-like diagram of predicted binned eclipse depths in the F1280W band
(horizontal axis) and the binned F1500W eclipse depths for all of the model atmospheres, along
with their brightness temperatures (Tb) in each band. Models atmospheres that do and do not
include CO2 are shown in the left and the right panel, respectively. The measured eclipse depth
from Greene et al. [2] is shown as the solid black line, and its 1-σ (grey) and 3-σ (red) uncer-
tainties are are also shown. The vertical axis is identical to Figure 4.2, but is zoomed to focus
on models consistent with the F1500W observation, alongside the expected F1280W uncertainty
(∼ 100 ppm) shown as an errorbar. The binned eclipse depths for a blackbody over a range of
temperatures is shown as a multi-colored line. The temperature of the blackbody can be read
off from the Tb in either axes, by definition. The corresponding Tb and bond albedo (A) at each
confidence interval is also shown. All models that include CO2 (in the left panel) lie on the right
side of the blackbody line, indicating a higher Tb in the F1280W than in F1500W due to the CO2

absorption at 15 micron. The compositions denote that the first species is the dominant species,
with the second species in indicated trace amounts. As one follows each composition line, atmo-
spheric pressure starts at 10−4 bar close to the observed F1500W measurement and increases in
1-dex intervals as in Figure 4.2 with generally decreasing 15-µm eclipse depths. We do not show
the bare surface depths in this figure, but they lie close to the blackbody line and deviate less than
25 ppm in either bandpass.

observations. For higher SO2 abundances however, the absorption feature is strong enough to

affect the 15-µm bandpass, and it therefore has the opposite effect of reducing the eclipse depth

in the F1500W filter (Figure 4.1, pink line in bottom right panel). This indicates that the nature

of the absorber needs to be very finely tuned to match the Greene et al. [2] measurement.
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4.3.1.3 Bare surfaces

If TRAPPIST-1 b truly has no atmosphere whatsoever, we find that the F1500W measure-

ment is consistent with a bare rock planet with a basaltic, Fe-oxidized, or metal-rich surface to

within 1σ, while granitoid and feldspathic surfaces are ruled out at more than 3σ (Figure 4.1, top

right panel). The latter two materials have high albedos around 1 µm where the luminosity of

the TRAPPIST-1 host star is greatest [31, 147], thus reducing the energy received by the planet

and lowering the temperature at which it radiates. The fact that we can rule out some surface

compositions demonstrates the utility of secondary eclipse spectroscopy for constraining the sur-

face properties of rocky exoplanets. However, Mansfield et al. [31] point out that granitoid and

feldspathic surfaces (the ones that we rule out here) are also among those that are implausible

for hot rocky planets like TRAPPIST-1 b, as they either require liquid water to form or they are

unlikely to be able to form on larger planets [153]. Among grey surfaces, we find that the best-fit

surface albedo is 0.02± 0.11.

4.3.2 Prospects for Future Observations

Given the various atmospheres and surfaces that remain consistent with the Greene et al.

[2] 15 µm secondary eclipse measurement, we investigate here the possibility that additional

observations could help to further constrain the properties of TRAPPIST-1 b. In particular, five

secondary eclipses are slated to be observed with MIRI F1280W filter centered on 12.8 µm to

provide a second spectroscopic data point for TRAPPIST-1 b’s thermal emission. In Figure 4.4

we show the eclipse depths from our models binned to the F1280W bandpass against the the

binned eclipse depth in the F1500W bandpass.
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The F1280W is intended to observe the eclipse depth out of the CO2 band such that the

difference between the two provides a constraint on the atmospheric pressure and possibly com-

position, but the very high eclipse depth of F1500W alone already provides a firm constraint on

the brightness temperature and hence the atmospheric pressure. Assuming an observation uncer-

tainty comparable to that of F1500W (99 ppm), the F1280W secondary eclipse is unlikely to help

further distinguish between, for example, a very thin 10−4 bar 100% CO2 atmosphere, a 1 bar O2-

dominated 1 ppm CO2 atmosphere, a 1 bar N2-dominated atmosphere with 100 ppm CH4 as they

all fall roughly within a span of 100 ppm. Therefore, we conclude that the F1280W observation

will be most useful for validating the high brightness temperature of TRAPPIST-1 b as observed

by F1500W.

Indeed, in Figure 4.1, most 1-σ consistent spectra follow the f = 2/3 blackbody spec-

trum (blue dashed line) closely down to 10 µm, and only at shorter wavelengths do spectroscopic

absorption features appear. However, due to the small eclipse depth at these wavelengths, spec-

troscopy using MIRI LRS with nominal uncertainty of (say) 30 ppm at a spectral resolution of

R = 10 will be able to distinguish only between end-member cases at best rather than tightly

constraining the composition and the surface pressure. Namely, if the planet has H2O, CH4, or

SO2, absorption features between 5–10 µm, MIRI LRS could be used to distinguish between an

airless blackbody and a thin atmosphere.

As for distinguishing among bare rock surfaces, the additional F1280W observation is un-

likely to be helpful for this purpose as the binned eclipse depths of consistent surfaces are very

similar (Figure 4.1). The surfaces are generally difficult to distinguish across all wavelengths that

MIRI can observe in.
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4.4 Discussion and Summary

We have shown that, based on the Greene et al. [2] secondary eclipse observation at 15

µm, TRAPPIST-1 b does not appear to host a thick atmosphere. Formally, our models rule out

atmospheres with at least 100 ppm CO2 thicker than 0.3 bars at 3σ. For a 100% CO2 atmosphere

(i.e., a Mars or Venus-like composition), the atmosphere must be less than 3 mbar thick at 3σ

confidence to be consistent with the measured eclipse depth at 15 µm. We argue that TRAPPIST-

1 b is unlikely to host an atmosphere devoid of CO2, and therefore atmospheres thicker than ∼0.1

bar are ruled out. Various types of geophysically plausible rocky surfaces are all consistent with

the Greene et al. [2] measurement, and the eclipse observation rules out less plausible granitoid

and feldspathic surfaces. The best-fit grey surface albedo is 0.02± 0.11.

The 1-σ consistent atmospheres and surfaces that we identify in this Letter will be difficult

to distinguish with upcoming JWST observations except perhaps the very end-member scenarios.

The predicted eclipse depths for the F1280W filter are close enough to each other to be within the

uncertainty of the observation. MIRI LRS may be able to distinguish between a bare rock and a

0.1 bar H2O-dominated atmosphere by measuring the eclipse spectrum from 5-10 µm, but there

are many degenerate scenarios in between. Finally, the planned NIRISS SOSS observation of

TRAPPIST-1 b via complementary measurements in transmission [154, Cycle 1 GO 2589] also

aims to distinguish between a bare rock and a thin atmosphere. In the case of a clear atmosphere,

transmission spectroscopy can generally provide a signal that is easier to interpret than that of

thermal emission, since H2O and CO2 features should be detectable. Transmission spectroscopy

is also more agnostic to the thermal structure of the atmosphere and could therefore provide a

less ambiguous constraint on the composition. On the other hand, transmission spectroscopy of

105



small, rocky planets is challenging as the high mean molecular weight of secondary atmospheres

and aerosols (if present) render the transmission spectrum closer to a flat spectrum, which is

indistinguishable from a bare rock planet [155, 156, 157]. Additionally, host stellar effects also

leave an imprint on the transmission spectrum, leading to spectral contamination that can be

difficult to disentangle from bona fide atmospheric features [143, 158, 159].

We have neglected the radiative effects of clouds in our work. The clear atmosphere T-P

profiles in Figure 4.3 do cross condensation curves such that water or sulfur clouds can form

[150, 160]. However, clouds of appreciable column density will have higher albedos than rocky

surfaces [31, Fig. 6] and are inconsistent with the observation, given such a low inferred albedo

(even with the uncertainties taken into account). Additionally, climate modelling suggests that

aerosols are unlikely to form in TRAPPIST-1 b [150]. As such, we find the scenario that the

planet hosts an atmosphere with a reflecting cloud to be inconsistent with the Greene et al. [2]

secondary eclipse measurement.

The F1500W observations of TRAPPIST-1 b demonstrate the utility of secondary eclipse

observations for determining whether rocky planets possess atmospheres and for constraining

their surface composition. Secondary eclipse observations will soon also be applied to other rocky

planets around M dwarfs, with observation planned for more targets such as TRAPPIST-1 c [161,

Cycle 1 GO 2304], Gl 486 b [162, Cycle 1 GO 1743], GJ 1132 b [163, Cycle 1 GTO], and

LHS 3844 b [164, Cycle 1 GO 1846]. The latter three use MIRI LRS rather than F1500W;

an identical analysis to the current work can be performed by binning the entire 8–12 µm LRS

spectrum to create a single broad photometric bandpass [see e.g. §3 of 32], and the additional

spectral information can be used to further constrain the composition of the atmosphere or the

surface [51]. A larger sample of rocky planet targets observed in secondary eclipse will also help
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to answer population-level questions of whether rocky planets around M dwarfs can really host

atmospheres and identify the ideal parameter space for establishing regimes in which they can.
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Chapter 5: Conclusions and Future Work

5.1 Conclusions

In this thesis, I demonstrate challenges and pathways in characterizing terrestrial planets

with JWST . Characterizing terrestrial planets from their transmission spectra will be challeng-

ing, and using Bayesian approaches are inhibited. Instead, by focusing on studying eclipse ob-

servations of terrestrial planets at the population level, we may gain insight into their physical

processes and formation histories.

As shown in Chapter 2, correlated systematics in transmission spectra, independent of

whether their sources are instrumental or astrophysical in nature, can inhibit accurate charac-

terization of the planet’s atmospheres by mimicking aerosols or masking bona fide atmospheric

features. For high signal-to-noise targets, this poses less of a problem, but for small planets, in-

strumental systematics or stellar contamination can be consequential. Notably, while Chapter 2

focused primarily on how correlated noise can impact retrievals for HST and Spitzer observa-

tions, recent JWST transmission observations of sub-Neptunes and terrestrial planets in e.g. May

et al. [123], Moran et al. [143], Lim et al. [165], Wallack et al. [166] clearly show either stellar

contamination or instrumental systematics.

As shown in Chapter 3, the problem of Bayesian priors and parameterization due to un-

known mean molecular weight remains a challenge to applying robust retrieval techniques on
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the atmospheric composition and inferring detection of molecules. This problem posits a funda-

mental challenge that can only be overcome by broader wavelength coverage and stacking more

transits, making transmission spectroscopy an expensive approach to characterizing terrestrial

planet atmospheres, especially if it is unknown a priori whether they have atmospheres at all.

Instead, using eclipse observations to constrain the dayside temperature can be used as

an effective and efficient way to probe whether a terrestrial planet has an atmosphere or not, as

shown in Chapter 4. Due to the narrow wavelength coverage and low signal-to-noise, it remains

difficult to perform detailed characterization of their atmosphere or surfaces. This calls for a more

population-level approach.

5.2 Future Work

Solving the supposed problem of rocky planets around M stars is an achievable goal within

the lifetime of JWST , but it will require both a judicious planning of future observations, as well

as better modelling of formation and evolution and physical processes to help understand the

observations.

We need a framework for a judicious planning of targets, that will maximize the population-

level information and will also take into account what observations are already available. Figure

5.1 shows the trend in the normalized brightness temperatures of all rocky planets observed in

emission so far, as a function of their irradiation temperatures. The analytical models are fit to the

data to show that there is a statistically significant drop in the brightness temperature at irradiation

temperatures cooler than 800 K.

The population-level trend here is stitched together from a decade of observations, span-
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Figure 5.1: Observed trend in normalized brightness temperatures of rocky planets observed so
far, as a function of their irradiation temperature.

ning different instruments and wavelength ranges, with the targets chosen primarily based on their

signal size. Recent studies such as Batalha et al. [167] show that the set of targets chosen exclu-

sively for the highest signal-to-noise may not be the best set of targets given a science goal. For

instance, choosing targets based on some observation metric tends to bias the samples selection–

this is somewhat obvious in our current context, as this will choose for the targets with the hottest

equilibrium temperature and coolest stellar temperatures that produce the largest eclipse depths,

when spanning both of these parameters is very much the science of interest.

There is also a seemingly conflicting consideration here: we also need to ensure that our

results are not merely at the population level. As a rather crude illustration, observing 10 rocky

planets with null results that each indicate 50 % chance of having an atmosphere is equivalent to

1 in 1000 chance that they are all bare rocks, but this is an unsatisfying conclusion as to whether
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we have found an atmosphere around a rocky planet or not. Therefore, to ensure that we have a

number of individually robust conclusions, we need to follow up on the most promising targets.

Considerations for both breadth (to obtain the best population-level result) and depth (to ensure

some strong individual results) calls for a dynamic approach in observation planning.

Relatedly, population-level simulations are typically done assuming an absence of previous

observations. In practice, we are always adding to a set of observations that already exist. As such,

population-level simulations should be flexible enough to incorporate the current observations

and choose future observations conditioned on what we have. Bayesian approaches would be

particularly useful here.

Moreover, targets in multi-planet systems should be prioritized. Whether a planet has re-

tained its atmosphere depends the most strongly on its XUV irradiation history, which in turn

depends on the pre-main sequence evolution of the host star and its subsequent spin-down history

[168, 169]. This information can at best only be loosely inferred from the current rotation rate

and high-energy emission. This critical unknown incurs a scatter in the population-level trend.

However, since both planets in one system share the same birth environment, current instella-

tion is a direct indicator of its XUV irradiation history; constraining how much atmosphere they

have allows for isolating the effect of instellation and provides an up-close look at the Cosmic

Shoreline.

On the modelling front as well, there are a few planned improvements to be made to HE-

LIOS, aimed towards identifying potential degeneracies. Most relevant to rocky planet observa-

tions, nearly all forward models in the field use the same set of surface albedo spectra generated

in Hu et al. [147], with some recent work incorporating space weathering in the context of exo-

planets [170]. The single scatter albedo spectra are generated using the Hapke model [171] and
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assumes a specific mineral composition and grain size for each crust. Incorporating a more di-

verse set of surfaces, as well as considering effects of darkening and brightening space weathering

processes are necessary for better understanding observations of potential bare rock planets.
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Appendix A: Regarding the Study of Correlated Noise

A.1 Retrieval Histograms for Various Planet Realizations
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Figure A.1: Same as Figure 2.8, but for the hot Jupiter case including offsets. This figure now
includes panels for both instrumental offsets in addition to the original set of retrieved parameters.
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Figure A.2: Same as Figure 2.9, but for the hot Jupiter case including offsets. This figure now
includes panels for both instrumental offsets in addition to the original set of retrieved parameters.
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Figure A.3: Same as Figure 2.8, but for the cloudy hot Jupiter case.
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Figure A.4: Same as Figure 2.9, but for the cloudy hot Jupiter case.
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Figure A.5: Same as Figure 2.8, but for the high-precision hot Jupiter case.
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Figure A.6: Same as Figure 2.9, but for the high-precision hot Jupiter case.
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Figure A.7: Same as Figure 2.8, but for the warm Neptune case.
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Figure A.8: Same as Figure 2.9, but for the warm Neptune case.
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Appendix B: Facilities & Software used in this Thesis

B.1 Facilities

The modelling in Chapter 2 & 3 was performed in part on the Yorp and Astra clusters

administered by the Center for Theory and Computation, part of the Department of Astronomy

at the University of Maryland.

B.2 Software

1. astropy [172, 173, 174]

2. dynesty [175]

3. emcee [176]

4. helios [35, 36, 37]

5. matplotlib [177]

6. nestle [102]

7. numpy [178]

8. platon [38, 39]

9. pandexo [125]
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10. scipy [179]
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Schaefer, Patrick Tamburo, Daniel D. B. Koll, Xintong Lyu, Lorena Acuña, Eric Agol,
Aishwarya R. Iyer, Renyu Hu, Andrew P. Lincowski, Victoria S. Meadows, Franck Selsis,
Emeline Bolmont, Avi M. Mandell, and Gabrielle Suissa. No thick carbon dioxide atmo-
sphere on the rocky exoplanet TRAPPIST-1 c. Nature, 620(7975):746–749, August 2023.
doi: 10.1038/s41586-023-06232-z.

[34] Nikku Madhusudhan. Exoplanetary Atmospheres: Key Insights, Chal-
lenges, and Prospects. ARA&A, 57:617–663, August 2019. doi: 10.1146/
annurev-astro-081817-051846.

[35] Matej Malik, Luc Grosheintz, João M. Mendonça, Simon L. Grimm, Baptiste Lavie,
Daniel Kitzmann, Shang-Min Tsai, Adam Burrows, Laura Kreidberg, Megan Bedell, Ja-
cob L. Bean, Kevin B. Stevenson, and Kevin Heng. HELIOS: An Open-source, GPU-
accelerated Radiative Transfer Code for Self-consistent Exoplanetary Atmospheres. AJ,
153(2):56, February 2017. doi: 10.3847/1538-3881/153/2/56.

[36] Matej Malik, Eliza M. R. Kempton, Daniel D. B. Koll, Megan Mansfield, Jacob L. Bean,
and Edwin Kite. Analyzing Atmospheric Temperature Profiles and Spectra of M Dwarf
Rocky Planets. ApJ, 886(2):142, December 2019. doi: 10.3847/1538-4357/ab4a05.

[37] Matej Malik, Daniel Kitzmann, João M. Mendonça, Simon L. Grimm, Gabriel-Dominique
Marleau, Esther F. Linder, Shang-Min Tsai, and Kevin Heng. Self-luminous and Irradiated
Exoplanetary Atmospheres Explored with HELIOS. AJ, 157(5):170, May 2019. doi:
10.3847/1538-3881/ab1084.

123



[38] Michael Zhang, Yayaati Chachan, Eliza M. R. Kempton, and Heather A. Knutson. For-
ward Modeling and Retrievals with PLATON, a Fast Open-source Tool. PASP, 131(997):
034501, March 2019. doi: 10.1088/1538-3873/aaf5ad.

[39] Michael Zhang, Yayaati Chachan, Eliza M. R. Kempton, Heather A. Knutson, and Wen-
jun (Happy) Chang. PLATON II: New Capabilities and a Comprehensive Retrieval on HD
189733b Transit and Eclipse Data. ApJ, 899(1):27, August 2020. doi: 10.3847/1538-4357/
aba1e6.

[40] Joachim W. Stock, Daniel Kitzmann, A. Beate C. Patzer, and Erwin Sedlmayr. FastChem:
A computer program for efficient complex chemical equilibrium calculations in the neu-
tral/ionized gas phase with applications to stellar and planetary atmospheres. MNRAS, 479
(1):865–874, September 2018. doi: 10.1093/mnras/sty1531.

[41] P. Woitke, Ch. Helling, G. H. Hunter, J. D. Millard, G. E. Turner, M. Worters, J. Blecic,
and J. W. Stock. Equilibrium chemistry down to 100 K. Impact of silicates and phyllosil-
icates on the carbon to oxygen ratio. A&A, 614:A1, June 2018. doi: 10.1051/0004-6361/
201732193.

[42] Sarah D. Blumenthal, Avi M. Mandell, Eric Hébrard, Natasha E. Batalha, Patricio E. Cu-
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Donald, E. M. May, Yamila Miguel, Karan Molaverdikhani, Julianne I. Moses, Catri-
ona Anne Murray, Molly Nehring, Nikolay K. Nikolov, D. J. M. Petit dit de la Roche,
Michael Radica, Pierre-Alexis Roy, Keivan G. Stassun, Jake Taylor, William C. Waalkes,
Patcharapol Wachiraphan, Luis Welbanks, Peter J. Wheatley, Keshav Aggarwal, Mu-
nazza K. Alam, Agnibha Banerjee, Joanna K. Barstow, Jasmina Blecic, S. L. Casewell,
Quentin Changeat, K. L. Chubb, Knicole D. Colón, Louis-Philippe Coulombe, Tansu
Daylan, Miguel de Val-Borro, Leen Decin, Leonardo A. Dos Santos, Laura Flagg, Kevin

132
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Lisa Kaltenegger, Jason F. Rowe, Néstor Espinoza, Lisa Dang, and Antoine Darveau-
Bernier. Atmospheric Reconnaissance of TRAPPIST-1 b with JWST/NIRISS: Evidence
for Strong Stellar Contamination in the Transmission Spectra. ApJL, 955(1):L22, Septem-
ber 2023. doi: 10.3847/2041-8213/acf7c4.

[166] Nicole L. Wallack, Natasha E. Batalha, Lili Alderson, Nicholas Scarsdale, Jea I. Adams
Redai, Artyom Aguichine, Munazza K. Alam, Peter Gao, Angie Wolfgang, Natalie M.
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