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ABSTRACT

A new code for astrophysical magnetohydrodynamics (MHDR)escribed. The code has been designed to be
easily extensible for use with static and adaptive meshegfent. It combines higher-order Godunov methods
with the constrained transport (CT) technique to enforeedivergence-free constraint on the magnetic field.
Discretization is based on cell-centered volume-averégesass, momentum, and energy, and face-centered
area-averages for the magnetic field. Novel features of ldp@rithm include (1) a consistent framework for
computing the time- and edge-averaged electric fields ugedTbto evolve the magnetic field from the time-
and area-averaged Godunov fluxes, (2) the extension to MHé&patial reconstruction schemes that involve a
dimensionally-split time advance, and (3) the extensioMtdD of two different dimensionally-unsplit inte-
gration methods. Implementation of the algorithm in bothr@ &ortran95 is detailed, including strategies for
parallelization using domain decomposition. Results feotast suite which includes problems in one-, two-, and
three-dimensions for both hydrodynamics and MHD are given,only to demonstrate the fidelity of the algo-
rithms, but also to enable comparisons to other methodssdtiee code is freely available for download on the
web.

Subject headingsydrodynamics, MHD, methods:numerical

1. INTRODUCTION large range in length scales with grid-based methods. Berge

Numerical methods are essential for the study of a very wide & Cole_lla (1_99_0)_have shown that in order to prevent spurious
reflections, it is important to enforce conservation at riméé

range of problems in astrophysical fluid dynamics. As sueh, t boundaries between fine and coarse meshes. Thus, operator-

development of more accurate and more capable algorithms, lit methods that d tsolve the d ial i .
along with a description of their implementation on modern split methods that do not solve the dynamical eéquationsim co

parallel computer systems, is important for progress irfietie servation form such as ZEUS are unsuitable for use with SMR

This paper describes a new code for astrophysical magnetohyor AMR. This has been our primary motivation for the devel-

: ~ opment of Athena.
gggr)/zg:/rgg;o(gﬂge?evgggetﬂ:;P;(:rr]lgr,sdeveloped through a col The numerical algorithms in Athena are based on

There are many numerical algorithms available for solving directionally-unsplit, higher-order Godunov methods, iabih

the equations of compressible MHD. One of the most success-"t only are ideal for use W'th both SMR a_nd AMR, but aiso
ful is based on operator splitting of the equations, withhleig are superior for s_hopk capturing anq evolving the contadt an
order upwind methods used for the advection terms, centered rotatlongl dlsgontlane; that are typical of astroplgbilows.
differencing for the remaining terms, and artificial visp$or ﬁ\]thena 'S,[hne(;thethhﬁ .f'rjt nor tr:jefonly MHE Z(;/?S_b?rsled on
shock capturing. This algorithm, as implemented in for exam ©165¢ MEods WhICh IS desighed Tor USe wi » OINErs In-

ple the ZEUS code (Stone & Norman 1992a; b; Clarke 1996; ilg'gg EEMBANN EB?ISgBaOiOOXI)V’Is\grg'l?r',?hsl(gggelu etl ?gi'
Hayes et al. 2006), has been used for many hundreds of appli- » S0mMDOst €t al. ), (T6 » Noo

cations in astrophysics. The key advantage of the methasl is i Keppens 2002), Nirvana_l (Ziegler 2005), RAMSES (Fromang
S T ; - etal. 2006), PLUTO (Mignone et al. 2007), and AstroBEAR
simplicity, making it easy to extend with more complex plogsi : i )
(for example, Stone & Norman 1992c; Turner & Stone 2001 (Cunningham et al. 2007). While the wealth of papers describ
De Villiers & I’-|awley 2003, Hayes & N(;rman 2003) " ing AMR MHD codes demonstrates the interest in and impor-
However. in the fifteer’1 years since the deveiopment of tance of these numerical methods, it also calls into questio

ZEUS, static and adaptive mesh refinement (SMR and AMR the need for another paper describing yet another code. How-

: h ever, it has been our experience that the precise detailseof t
respectively) have emerged as powerful techniques tovesol . : . .
P y) g P q algorithm can be important. The numerical methods in Athena
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differ, sometimes in small ways, and sometimes in substan-companion paper (Stone & Gardiner 2008, hereafter SG08).
tial ways, from those in other codes. Our goals in developing The primary goal of this paper is to provide a comprehensive
Athena have been to write an accurate, easy-to-use, adlaptab description of Athena that will serve as a reference for isthe
and maintainable code. Our hope is that the comprehensive deadopt, modify, and extend the code for their own research. As
scription provided in this paper will be useful to anyone who with ZEUS, the source code is freely available from the web,

adopts, modifies, or builds upon the code, as well as for sther
developing their own codes.

The development of Godunov methods for MHD has re-
quired substantial progress over the past decade. Most efth
fort has focused on two main areas: the multidimensionatint
gration algorithm, and the method by which the divergenee-f
constraint on the magnetic field is enforced. Different ompsi
have been explored in different combinations, includingam
strained directionally split integrators (Dai & Woodwareioy),
or directionally split and unsplit integrators that usenheita
Hodge projection to enforce the constraint (Zachary et@941
Ryu et al. 1995; Balsara 1998; Crockett et al. 2005), a non-
conservative formulation that allows propagation and damp
of errors in the constraint (Powell 1994; Falle et al. 1998yP
ell et al. 1999; Dedner et al. 2002), or some form of the con-
strained transport (CT) algorithm of Evans & Hawley (1988)
to enforce the constraint (Dai & Woodward 1998; Ryu et al.
1998; Balsara & Spicer 1999; Tath 2000, hereafter T2000; Pen
et al. 2003; Londrillo & Del Zanna 2004; Ziegler 2004; Fro-
mang et al. 2006; Mignone et al. 2007; Cunningham et al.
2007). T2000 provides a systematic comparison of many of
these techniques using an extensive test suite.

While the algorithms in Athena build upon this progressythe
also incorporate several innovations, including (1) theesion
of two different directionally unsplit integration algtirms to
MHD, including the corner transport upwind (CTU) method
of Colella (1990 — hereafter the CTU+CT algorithm), and a
simpler predictor-corrector method (see the appendix lleFa
1981) similar to the MUSCL-Hancock scheme described by
van Leer (2006; Toro 1999 — hereafter referred to as the VL+CT
algorithm), (2) the method by which the Godunov fluxes are
used to calculate the electric fields needed by CT, and (2x¢he
tension of the dimensionally-split spatial reconstrucgoheme
in the piecewise parabolic method (PPM) of Colella & Wood-
ward (1984, hereafter CW) to multidimensional MHD. The
mathematical foundations of these ingredients for intégna
in two dimensions (2D) is presented in detail in Gardiner &

Stone (2005, hereafter GS05), and for three dimensions (3D)

in Gardiner & Stone (2008, hereafter GS08). The focus of this
paper is on the implementation rather than the mathemdtics o
the methods.

The use of two distinct unsplit integration algorithms in
Athena, namely the CTU+CT and the VL+CT algorithms, al-

lows us to compare the advantages and disadvantages of botr]j

We find the CTU+CT algorithm is generally less diffusive and
more accurate than VL+CT. Thus, for simplicity sake, the de-
scription in this paper will be based on the CTU+CT algorithm

However, for some applications the VL+CT algorithm has def-
inite advantages. A complete description of the 3D VL+CT
algorithm implemented in Athena, including the resultsasts$

in comparison to the CTU+CT algorithm, is provided in a short

along with documentation and an extensive set of test pnuble
that are useful for any method. The organization of this pape
is as follows: 82 introduces the equations of motion solwed b
Athena, while 83 describes their finite-volume and finiteaar
discretizations. Sections 4-6 describe in detail the nigaker
algorithms in one, two, and three spatial dimensions respec
tively, including details such as the reconstruction atbaon,
Riemann solvers used to compute upwind fluxes, and the un-
split CTU+CT integrator used in multidimensions. In 87 the
implementation of the algorithms in both C and Fortran95 on
parallel computer systems is discussed. The results of a com
prehensive test suite composed of problems in 1D, 2D, and 3D
are given in 88. Finally, we summarize and discuss future ex-
tensions to the code in §9.

2. BASIC EQUATIONS

Athena implements algorithms which solve the equations of
ideal MHD, which can be written in conservative form as

%+V~[pv] =0, (1)

%+v- [pw-BB+P*] =0, 2

%_Itz+v. [(E+P*)vV-B(B-V)] =0, 3
oB _

E—VX(VXB)—O, (4)

whereP* is a diagonal tensor with componeits = P+B?/2
(with P the gas pressurel, is the total energy density

P 1 B2
E:—+_pvz+77

=12 ®)
andB? = B-B. The other symbols have their usual meaning.
These equations are written in units such that the magnetic p
meability u = 1.

An equation of state appropriate to an ideal gas,(y—1)e
(where~ is the ratio of specific heats, ards the internal en-
ergy density), has been assumed in writing equatlon 5. For a
barotropic equation of state = P(p) (for example,P = C?p,
whereC is the isothermal sound speed), both equafidns 3and 5
are dropped from the system. Of course, in this case total en-
ergy is not conserved. The algorithms implemented in Athena
can solve the equations of motion in four regimes: both hy-
rodynamics or MHD with either an ideal-gas or barotropic
equation of state. In each regime the system of equations to
be solved is different in number and form, however the same
general numerical techniques apply. Extension of the niamer
cal methods to a more complex, e.g. tabular, equation of stat
is possible.

It is useful to define vectors of the conserved and primitive
variablesU andW respectively, with components in Cartesian



coordinates (for adiabatic MHD)

; (6)

P
Vx
Vy
Vz
P
Bx
By
L ; L BZ .

whereM = pv is the momentum density. The conservation laws
can now be written in a compact form (in Cartesian coordijate
oU oOF 0G  OH
— t+—+—+— =
ot ox oy 0z
whereF, G, andH are vectors of fluxes in thg-, y-, and
z-directions respectively, with components

0, (@)

PVx
pV2+P+B2/2-B2
pV)(Vy - B)(By
pVxVz —ByB;
(E+P*)w—(B-V)By
0
Byvx —Byvy
82V)( - B)(VZ

(8)

Py
vayvx - sz B 2
pVy +P+B%/2-Bf

G= pVyVz —ByB;
(E+P )y —(B-V)By |’

BxVvy — Byvy
0

Bsz - Bsz i

9)

PVz
pVzVx — BBy
pVvy — BBy
pV2+P+B%/2-B2
(E+P*)v,=(B-V)B;,
Bsz - Bsz
Byv;— B,y
0

(10)

Extension to curvilinear coordinates requires adding imetr

scale factors to the definitions of the fluxes, or using a non-

conservative formulation that treats grid curvature asr@®u
terms, or a combination of these approaches.

3. DISCRETIZATION

Athena integrates the equations of motion on a regularethre
dimensional Cartesian grid. The continuous spatial coerteis
(x,y,2) are discretized intoN, Ny, N,) cells within a finite do-
main of size [4,Ly,L;) in each direction respectively. The
cell denoted by indices,(j,K) is centered at positioni( y;, z).

For simplicity we describe the algorithm with the assumptio
that the sizes of the grid cells in each directiom,= Ly/Ny,

dy = Ly/Ny, anddéz = L,/N, respectively, are uniform through-
out the domain; the numerical methods are easily extended to
non-uniform grids.

Time is discretized intdl non-uniform steps between the ini-
tial valuety and the final stopping time. Following the usual
convention, we use a superscript to denote the time level, so
t™1—t" = 5t". Hereafter we drop the superscript &nwith the
understanding that the time step may vary.

3.1. Mass, Momentum, and Energy: Finite-Volumes

Discretizations based on tlietegral, rather than thdiffer-
ential, form of equation§]l through 4 have numerous advan-
tages for flows that contain shocks and discontinuities ({LeV
eque 2002). Integration of equatidn 7 over the volume ofé gri
cell, and over a discrete interval of timegives, after applica-
tion of the divergence theorem,

ntl _n _ 6t Fn+1/2 —Fn+1/2
BRKT LK gy L2k Tis1/2)k
ot n+1/2 n+1/2
oy (Gi7i+1/2.,k_Gi,j—1/2,k)
Ot/ m1/2 n+1/2
T3z (Hi,j,kﬂ/z_Hi,j,k_l/g) (11)
where
Un 1 /Zk+1/z /Yj+1/2 /x{‘ﬂ/z U( n) v (12)
Lk T Sxdyoz X,Y,z,t") dx dy dz
S Y4 SV VR W

is a vector of volume-averaged variables, while

e L1/ [Yj+1)2
m12 1 / / / Fix
e N . Xi—1/2,Y, Z t) dy dz dt
i-1/2,j,k 6y525t i ST 1/2
(13)
™ Zaan X2
my2 _ 1 / '
i,j-1/2k ~ —6X§z§t/w /zk_l/z /h/z G(XYj-1/2,2 1) dx dz dt
(14)
™ Vi e
vz o 1 H t) dx dy dt
Lik-1/2 7 Sxsyst /tm /y . /X. y (X,Y, Z-1/2,t) dx dy
(15)

are vectors of the time- and area-averaged fluxes. We use the
convention here, and throughout this paper, that halfyerte
subscripts denote the edges of the computational cellsjgha

For hydrodynamics, or for a barotropic equation of state (or x-1/, is the location of the interface between the cells centered

for both), the appropriate components of the vectyrgv, and

atx-; andx. Thus, the fluxes are evaluated at (and are normal

their fluxes are dropped. While the last three components ofto) the faces of each grid cell (see figure 1). Note the half-

these vectors represents the induction equation in Cantesr
ordinates, the numerical algorithm actually used to evtihee
magnetic field is very different in comparison to that used fo
the other components, as described in the next section.

integer superscript on the fluxes denote a time averagesrrath
than representing the flux evaluated™st/2.

As has been pointed out by many previous authors, equations
[I7T througHIb are exact: to this point no approximation has
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been made. A numerical algorithm for MHD within the finite-

are the area-averaged components of the magnetic field cen-

volume approach requires accurate and stable approxinsatio tered on each of these faces, and

for the time- and area-averaged fluxes defined by equdfidns 13

througHI5b. In principle, one can approximate the fluxes to an
order of accuracy, although in practice most algorithmsere
stricted to second-order. A variety of authors are exptptire
use of higher than second-order accurate time- and spatial i
tegration (Londrillo & Del Zanna 2000), especially in theneo
text of WENO schemes (Balsara & Shu 2000; McKinney et al.
2007). Higher-order schemes improve the accuracy prignaril

in smooth flow, not in shocks or discontinuities, and are more

difficult to combine with AMR. Based on a set of 1D hydro-

dynamic test problems, Greenough & Rider (2003) conclude
that a second-order Godunov scheme provides more accurac
per computational cost than a fifth-order WENO scheme. Al-

though it is clear that higher-order schemes will have advan
tages for some applications, in Athena we shall restrict our
selves to second-order accuracy in both space and time.

3.2. Magnetic Field: Finite-Areas

The last three components of equatibnis 11 thrgugh 15 are th

finite-volume form of the induction equation, which could be

used to integrate the volume-averaged components of the mag
netic field. Instead, in Athena we use an integral form of the
induction equation that is based on area- rather than velume
averages. In GS05, we have argued that area-averaging is th

most natural representation of the integral form of the atidun

equation. This form conserves the magnetic flux through each

grid cell, and as a consequence automatically preserveat-the
vergence free constraint on the field (Evans & Hawley 1988).

Integration of equatiohl4 over the three orthogonal faces of

the cell located atic1/2, j,k), (i,j—1/2,k) and {, j,k-1/2)
respectively, gives

St
Bn+1 n i
oy

_ _ n+1/2 gn+1/2
%,i=1/2,j,k T Pxi-1/2,j.k (

zi-1/2,j+1/2k ~ ©zi-1/2, j—1/2.k)

Ot n+1/2 n+1/2
+ 5_2(5y,i—1/2, ike12 ~ Eyict )2 k-1/2116)

ot
1 _ n+1/2 _ ohtl/2
B;T j-1/2k = B;,i, j-1/2k F 5_)((5z,i+1/27 j-1/2k 5z7i—1/2, j—1/2,k)
ot n+1/2 n+1/2
- 5_2( X, j—l/2.k+l/2_5x.i. j—1/2,k—1/2§17)
ot
1 _ n+1/2 n+1/2
BQ,Jir,j,k—l/Z = Bg,i,j,k—l/z - 5(( y,i+1/2,j k-1/2 _gy.i—l/z,j,k—l/z)
ot 12 n+1/2
+ @(Q,i, iv1/2k-1/2 = Exi j-1/2k-1/418)
where
N 1 Ze1/2 Yje1/2 B ( n) dvd (19)
B i-1/2.ik — —/ / X Xi—1/27y727t y dz
X-1/2) 6y§z Ze-1/2 Y Yj-1/2
N 1 Za1/2 [ Xiv1/2 ( n) dx d (20)
By i =—/ X,Yj-1/2,z,1") dx dz
Vi.i=1/2k T 5x57 S By(X.Yj-1/
N 1 /Yj+1/2 /Xi+1/2 ( n) dxd (2 )
i ke = B Xayazk—l/Zat X ay 1
i, j,k=1/2 Z
zhik-t/ 6X5y Yi-12 J Xi-1/2

£m/2 1 e et
xi.j-1/2k-1/2 = m/tn /><i-1/z x(X%,Yj-1/2, Z-1/2,1) X
(22)
£/ _ 1 " Yj+1/25 ‘ O vt
vi-1/2,j k-1/2 = m/tn /le/z y(Xi-1/2, s Zc-1/2,t) dy
tn+1 Z (23)
+1/2
52:—11//22,1'—1/2*: 5—21& /tn /Zk » EXi-1/2,Yj-1/2,2,1) dz dt
(24)

?re the components of the electric figld= —v x B (the elec-
r

omotive force, or emf) averaged along the appropriate lin
element. Note this discretization requires a staggeret] that
is the area-averaged components of the magnetic field are lo-
cated at the faces (not the centers) of the cells. Figure wsho
the relative locations of the cell-centered volume-avedagari-
ables Ui k), the face-centered area-averaged components of
the magnetic field By;-1/2 j x, By, j-1/2k, Bzi,jk-1/2) the face-

€entered area-averaged fluxeBi—{, jk,Gi j-1/2k, Hi jk-1/2),

and the edge-centered line-averaged edifs;(1/2x-1/2, €tc.)..
There are many advantages to using a discretization of the
induction equation based on area- rather than volume-gesra
éGSOS). The most important is that the finite-volume repre-
entation, i.e. the cell-volume average, of the divergdnae

constraint constructed using the time-advanced field
n+1 _Rpntl
1l Bx.i+l/2,j,k Bx,i—l/z.j.k
Lk 0X
n+l
Byioi-1/2k

(V-B
B;I,lju/z,k -
oy
+ BQT ,1j,k+1/2 - BQT ,1j,k—1/2
0z
is kept zero by the discrete form of the induction equation,
equation$ 16 throudh 118, provided of course it was zetd at
(Evans & Hawley 1988). Equivalently, the CT algorithm con-
serves the magnetic flux through each grid cell. The most seri
ous disadvantage of using CT with face-centered fields tdttha
complicates the implementation of the algorithm, and therin
face to AMR drivers.

Of course, there are many possible discretizations of the
divergence-free constraint, and the CT algorithm basedcs f
centered fields described above preserves only one of them
(equatiori.2b). T2000 has described an extension to CT which
preserves the constraint formulated using several diffedis-
cretizations of the divergence operator based on cellecedt
fields. Itis difficult to assess, for a given integration altjon,
whether preserving one discretization is more importaahth
any other. We have argued (GS05; GS08) that the discretizati
based on face-centered fields is more consistent with thte fini
volume approach in that it conserves the magnetic flux within
each individual grid cell, equivalently it conserves théuvoe
integral of the density of magnetic monopoles at the level of
grid cells. In addition, in GS08 (see alsp] 88) we describe a

+

(25)
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simple test problem based on the advection of a field loop thatwhere the vectors of conserved variables and their fluxes are

is sensitive to whether the discretization of the divergefree [ p r PVy 1

constraint that is preserved is consistent with the nurakaie My pV2+P+B2/2-B2

gorithm used to update the induction equation. If not, ghowt My pVxVy = BxBy

of net magnetic flux will be observed. q=| M, |, f= PV — ByB, , (30)
In Athena, the primary description of the magnetic field E (E+P*)vy—(B-V)By

is taken to be the face-centered area-averages equétibns 19 By ByVx — Byvy

through[21. However, cell-centered values for the field are B, L By — By, ]

needed to construct the fluxes of momentum and energy (equa
tions[8 through 110). Here, we adopt the second-order aeturat
averages

Note these are identical to equatiéhs 6and 8 with the sixtin-co
ponent dropped. We introduce the notation that vectorstéeno
by lower-case letters are in one spatial dimension (andether
(26) fore contain 7 components for adiabatic MHD, rather thanr8 fo
the same vectors written in full 3D). It is important to remem
ber that the components of the 1D vectors defined in equation
1 will change depending on direction. For example, in the
Byi.jk = Q(By.,i.,j+l/27k+By,i,i—l/lk)’ (27) y—direction for ideal MHD, the order of the three components
are permuted (so the second to fourth components bedgme
1 M_, andMy respectively), and the sixth and seventh components
Bzijk = E(Bz,i, jk+1/2+ Bz jk-1/2)- (28) becomeB, andB, respectively.
The finite-volume discretization of equatibn] 29 proceeds as
Operationally, the face-centered fields am®lvedusing equa- described in §3.1, giving
tions[16 through 18, and at the end of each integration step th w1 _ o0 Ot (12 cne1j2
cell-centered fields areomputedusing equations 26 through G =a 5% (fi+1/2 fi—1/2) (31)
[28. As shown in GS05 (and discussed further in 85.3), the re-\\here
lationship between the face- and cell-centered comporants N Xis1/2 n
the field given above determines how their fluxes (the time- an a4 = 5(/ q(xt7) dx (32)
line-averaged emfs in equations| 22 throligh 24 and last three e
components of the time- and area-averaged fluxes in eqsation iS @ vector of volume-averaged variables, while
[I3 through Ib respectively) are computed from one another.

1
Byijk= > (Byi+1/2,jk + Bxi-1/2,j k)

tn-v»l

=5 [ e (33)
tn
4. ONE-DIMENSIONAL INTEGRATION ALGORITHM are the time-averaged fluxes at the interface located;as.

for integration of the equations of motion in 1D first, before ~ @reé computed using a Riemann solver (see Toro 1999 for an in-
troducing methods for multidimensions. However, for MHD, troduction to the subject). Figure 2 illustrates the predsse
this approach can be misleading. In 1D the divergence-free@lso LeVeque 2002). Starting from the 1D volume-averages
constraint reduces to the condition that the longitudimahe ~ Stored at cell-centery’ a spatial reconstruction scheme is used
ponent of the magnetic field be constant, the CT algorithm is {0 construct the conserved quantities to the left- and fight
not needed, and the discrete forms of the induction equationSides of the interfaceqy iy/> and qr;-1/> respectively. For
for the area- and volume-averaged fields are identical. As athe CTU+CT integrator, the reconstruction is performechin t
consequence, 1D algorithms for MHD are a simple extension Primitive variables, and includes a time-advance usingaa
of those for hydrodynamics. Moreover, 1D test problems for teristic variables, witfg ;-1 /> andqg;-1/2 computed from the
MHD will not reveal errors associated with the developménto e€sulting interpolants (this step will be described in deta
a non-solenoidal field. Any rigorous test suite for MHD must §4.2). Due to the slope-limiters used to keep the interpislan
be based on multidimensional problems. non-oscillatory, the left- and right-stateg i1> and grj-1/2
Nonetheless, we begin a description of the algorithms in Will not be equal, except in smooth flow. Thus, they define a
Athena with the 1D integrator as it allows us to introduce ba- Riemann problem, the solution to which is the time evolution
sic components, such as Riemann solvers and methods for spaRf the various waves, and the intermediate states that conne
tial reconstruction, required in multidimensions. We emgine ~ them, that propagate away from the interface. The solution t
that the integrators for 2D and 3D MHD, described in detail the Riemann problem, evaluated at the location of the iatexf
in §5 and §6 respectively, are substantially different amen €& be used to construct the time-averaged flux (detailseof th
complex than the 1D integrator introduced here. calculation of fluxes using Riemann solvers is given[in 84.3)

In 1D, the equations of adiabatic MHD can be written in . .
Cartesian coordinates as 4.1. Steps in the 1D Algorithm

The 1D algorithm outlined above can be summarized by the
oq of i
+== (29) following steps:

ot ox



Step 1.Fromgq]', the volume averages at time lewglcom- equations of motion in the primitive variables. Appendixa-c
pute the left- and right-statesg ;-1 andgg;j-1/> at every in- alogs the eigenvalues and left- and right-eigenvectoradda-
terface using one of the spatial reconstruction algoritoies batic and isothermal hydrodynamics and MHD in the primitive
scribed below in[&4]2. variables needed for this approach. For more complex phiysic

Step 2.Compute the time-averaged fluxes at every interface (e.g., relativistic MHD) this eigenvalue decompositionyniee
fi"jll//zz = F(0j-1/2, URi-1/2, Bxi-1/2) using one of the Riemann difficult. One advantage of the VL+CT integrator described i
solvers described in[(§2.3. Note the face-centered lonigitud SGO8 is that it does not require a characteristic evoluton i
nal component of the magnetic field is passed to the Riemannthe reconstruction step. This avoids the need for an eigesva
solver as a parameter. decomposition in the primitive variables, and therefois _ih—

Step 3.Update the cell-centered conserved variables and the!®grator may be a better choice for more complex physics. The

transverse components of the magnetic field using the finite-iNtérface state algorithm used in the VL+CT algorithm is de-

volume difference equation in 1D, equatfon 31. scribed more fully in SGO8.
Step 4. Increment the timet™?! =t"+4t. Compute a new _ . _ _
timestep that satisfies an estimate of the CFL stability ond 4.2.1. Piecewise constant (first-order) reconstruction
tion based on wavespeeds at cell centers The simplest possible reconstruction algorithm is to agsum
8t = Codx/ max(viit| +Cht (34) the primitive variables are piecewise constant within eeglh

(implying the conserved variables are also piecewise eoit)st

i n+l ; H
whereC, < 1isthe CFL numbeg- is the fast magnetosonic leading to the first-order method

fx,i
speed in thex—direction, evaluated using the updated quanti-
ties, and the maximum is taken over all grid cells. Note this qri-1/2 = di-1 (35)
is only an estimate of the CFL stability condition, since the

wavespeeds used in the Riemann solver can be different from_ o o 3
those computed from the cell-centered values. First-order reconstruction is far too diffusive for apptiions,

Step 5. Repeat steps 1-4 until the stopping criterion is however it is useful for testing, or in those circumstanchsmv
reached, i.et™?! > t; extra diffusion is in fact desired.

The entire 1D integration algorithm is summarized by the
flow chart shown in figure 3. 4.2.2. Piecewise linear (second-order) reconstruction

Ori-1/2 = Qi

A better approximation is to assume the primitive variables
4.2. MHD Interface States vary Iinearlyva\[/Jithin each cell (meaning thatpthe profile oéth

The first step in the 1D algorithm is to compute the left- and conserved variables within a cell may be steeper than jnear

right-statesq j-1/» andggj-1/> that define the Riemann prob-  This approximation leads to the second-order reconstrueti

lem at the interface located gt, . (Note that in our notation  gorithm used with the CTU+CT unsplit integrator that is give

the left-stateg, -1/, is actually on theight side of the cell cen- by the following steps:

ter atx-1, while the right-stater -1/, is on theleft side of the Step 1.Compute the eigenvalues and eigenvectors of the lin-

cell center ak;, see figure 2). The reconstruction is inherently earized equations in the primitive variables usimg the cell-

1D, and therefore is based on the vector of conserved vagabl centered primitive variables in 1D (which differs froid; de-

in 1D (equatioi30). This vector contains only the transvers fined in equatiofl6 only in that it lacks the longitudinal camp

components of the field: in 1D these are cell-centered quan-nent of the magnetic field). Explicit expressions for these a

tities. For reconstruction in multidimensions, the calhtered given in Appendix A.

averages of the face-centered transverse componentsfigithe Step 2.Compute the left-, right-, and centered-differences of

(for example, equatiorls R7 and]28 for reconstruction in the the primitive variablesy;

x—direction) would be used. When the longitudinal component

of the field is needed, the area-averaged value stored apthe a

propriate interface is adopted. The fact that the longitadi OWRi = Wis1 — Wi, (36)

component of the field does not need to be reconstructed from dWei = (Wix1 —Wi-1)/2

cell-centered values is a further advantage of the CT dlgari

based on staggered (face-centered) fields; it avoids the pro

lem of the longitudinal component being discontinuous at th

interface due to slope-limited reconstruction from celitees.
When the CTU+CT unsplit integrator is used in Athena, the

second- and third-order reconstruction algorithms dbsdrbe- dagi = L(wi) - owyj,

low include both spatial interpolation with slope-limigin the Sagi = L(Wi) - SWgj, (37)

characteristic variables, and a characteristic evolwdfdahe lin-

earized system in the primitive variables. We have foundehe

steps help to make the reconstruction less oscillatory. évew whereL(w;) is a matrix whose rows are the appropriate left-

they also require an eigenvalue decomposition of the linedr eigenvectors computed in Step 1.

OWLji = Wi —Wi-1,

(Note that in these equations the subscrpt®, andC refer to
locations relative to the cell-centensat)

Step 3.Project the left, right, and centered differences onto
the characteristic variables

daci = L(w;) - dwg;
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Step 4. Apply monotonicity constraints to the differences 4.2.3. Piecewise parabolic (third-order) reconstruction
in the characteristic variables, so that the charactenietion-
struction is total variation diminishing (TVD), e.g. seeMegjue
(2002).

0a" = SIGN(Fac;) min(2la i|, 2l6aril, |6aci)  (38)
Step 5.Project the monotonized difference in the character-
istic variables back onto the primitive variables
ow" = da™- R(wj) (39)
where R(w;) is a matrix whose columns are the appropriate
right-eigenvectors computed in Step 1.
Step 6.Compute the left- and right-interface values using the

Although the numerical algorithms in Athena are formally
only second-order accurate, we have found that using third-
order accurate spatial reconstruction can lower the augait
of the truncation error and increase the accuracy of thdisalu
Thus, we have implemented the PPM interface state algorithm
of CW in Athena. In BB, we provide a quantitative comparison
of both the second-order (PLM) and third-order (PPM) recon-
struction algorithms for smooth and discontinuous sohgim
1D, 2D and 3D.

monotonized difference in the primitive variables Ste‘l‘phse PPM reconstruction algorithm consists of the following

Wi ja1/2 = Wi+ [:—L —max()\i"",O)i} ow" (40) Steps 1 through.5These steps are identical to the first five
2 20X steps in the second-order algorithm, see §4.2.2.
WRi1/2 = Wi — [} —min()\?,O)i} Swm (41) Step 6.Use parabolic interpolation to compute values at the
' 2 20 left- and right-side of each cell center
whereAM and\? are the largest and smallest eigenvalues com- Wi = (Wi +Wi-g) /2= (oW +owily) /6
uted in Step 1 respectively, at the appropriate cell ceNiate ’ - ' >
g D e ot differen S Wi = Wiea +W)/2- (W, +OW)/6  (46)

these values are at different cell faces, withi.1/> (Wrj-1/2)

located to theight (left) of the cell center ax;. where in the above, the subscriptR) refers to the left (right)
Step 7. Perform the characteristic tracing, that is subtract side of cell center at;.

from the integral performed in step 6 that part of each wave  Step 7. Apply further monotonicity constraints to ensure

family that does not reach the interfacedty2, using (CW;  the values on the left- and right-side of cell center lie b
Colella 1990) neighboring cell-centered values (CW equation 1.10). &hes

WL js1/2 = Wiy 2+ 2‘%( Z (M= AL - sW R (42) can be written as a series of conditional statements:

N Ae>0 if (wri—wi)(wi—w;) <0
WRj-1/2 = WRj-1/2+ 25 (=AMLY - swWMR™  (43) WL =W,
A*<0 )

where the sums are taken only over those waves that propagate WRj = Wi
towards the interface (i.e., whose eigenvalue has the agpro '
ate sign), and.* andR are the rows and columns of the left- if 6(Wrj —WLi) (Wi — (WL +WR;)/2) > (Wrj —w;)?
and right-eigenmatrices respectively correspondinkfto ' ' ' '

When using approximate Riemann solvers that average over Wi = 3w — 2WR;
intermediate states (like the HLL family of solvers), it is@
necessary to include a correction for waves which propagate if 6(Wrj —WL i) (Wi — (WL +WRj)/2) < —(Wrj —W|_7i)2
away from the interface in order to make the algorithm higher
than first-order. This is because either the right-interfstate WRj = 3W; — 2WL

(if the wavespeed is positive) or the left-interface stét¢he
wave speed is negative) will not include the half-timestegp p
dictor evolution in the reconstruction, and will thus be tfirs
order. Since the numerical flux in the HLL solver is given by
a weighted average of the flux in the left-interface statethad
right-interface state for such waves, the flux itself willfivet- SWM=WRi—WLi,  Wej = 6(W; — (W +Wr;)/2) 47
rder. Specifically, an additional terdaw, ;> andAwgj-1/> is
added to each of equatidns 42 &ndl 43 respectively, where thes

These conditions are applied independently to each conmpone
of w.

Step 8. Compute the coefficients for the monotonized
parabolic interpolation function,

Step 9. Compute the left- and right-interface values using
monotonized parabolic interpolation (CW equation 1.12)

terms are st
o= a_y\Mypa sum) Ra . at 20t
AW jsaj2 = =5 AMJ((A, AL - sw) R (44) W22 = Wy - AT [Mim_ <1_ Amax@) Wm} (48)
ot
AWRj_1/p = ——— A =MLY sWwM R*  (45) . .
Ri-1/2 26X X]Z>0( i i i ) WR,i—l/Z =Wy +)\m|n%( [§W|m+ (1_)\mln§_§;) WG,i:| (49)

We emphasize these terms amtadded when the Roe or exact _
solvers are used. where A" = max@\M,0) and A™" = min(\°,0) respectively,

Step 8.Finally, convert the left- and right-states in the prim- and AM and \? are the largest and smallest eigenvalues com-
itive to the conserved variables, j-1/> andgg-1/2- puted in Step 1 respectively. Note these values are at éifer
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cell faces, withw ;1> (Wgj-1/2) located to theight (left) of
the cell center at;.

Step 10.Perform the characteristic tracing, that is subtract
from the integral performed in step 9 that part of each wave
family that does not reach the interfacediry2 (CW; Colella
1990), using

W iv1/2 = Wejsr/2 + Z [L* (A(OW" - Wg;) +Bwe,) | R* (50)
A*>0

WRi+1/2 = WRj+1/2+ Z [L* (C(6W" +We,) +Dws;) | R* (51)
Ae<0
where in the above
ot

17t
3| ox

ot 2
— M_ o MM _yaya
A== (\M-)") B } OMAM — \@\@)

C= ﬂ(/\o_)\a) D:E

6t200 ay o
26% 3|ox| AN A

simple solvers fail (such as strong rarefactions). Sinedah

ter generally occupy only a tiny fraction of the total numbér
interfaces over the whole grid, this strategy can be very cos
effective.

A wide variety of approximate Riemann solvers for MHD
are possible, including nonlinear solvers such as the HLX flu
(Harten et al. 1983), the HLLD flux (Miyoshi & Kusano 2005),
Toro’s FORCE flux (Toro 1999), Roe’s linear solver (Roe 1991)
extended to MHD (Cargo & Gallice 1997), as well as MHD
solvers based on other approximations (e.g, Dai & Woodward
1994; 1995; Zachary et al. 1994). A range of solvers is imple-
mented in Athena, including exact solvers in the simplesésa
(isothermal hydrodynamics). In the subsections below we de
scribe some of the most useful.

Finally, it is important to emphasize that Godunov methods
do notrequire expensive solvers based on complex character-
istic decompositions. Simple solvers based on the loca}l Lax
Friedrichs (LLF) or HLL fluxes that are typically adopted in

where the sums are taken only over those waves that propagatether methods can also be used. Generally, the reason fpr-ado

towards the interface (i.e., whose eigenvalue has the agpro
ate sign), and.* andR“ are the rows and columns of the left-
and right-eigenmatrices respectively correspondingfto

Once again, when using the HLL family of solvers, it is nec-
essary to add a correction for waves which propagate away fro
the interface (as was required in step 7 of the PLM integnatio
These terms are identical to those in equafiahs 44 and 48hwhi

are correct to second-order. Again, we emphasize thess term;armed the HLLE solver. The HLLE flux at the interf

are not added when the Roe or exact solvers are used.

Step 11 Finally, convert the left- and right-states in the prim-
itive to the conserved variableg, j-1/> andggj-1/2.

An important ingredient of the reconstruction algorithm is
the slope limiters used in steps 4 and 7. It is well-known that
these limiters clip extrema in the solutions. We have alquém
mented the limiters described in Colella & Sekora (2007¢eher
after CS), which are designed to prevent clipping of extrema
We find for some tests, the CS limiters significantly improve
the solution compared to the original PPM limiters used abov
For the test results shown 188 we will always indicate if the
CS limiters are used. The lesson, however, is that imprabiag
convergence rate of the reconstruction algorithm is noagéw
the best way to improve the overall accuracy of the solution.

4.3. Godunov Fluxes

The second step in the 1D algorithm is to compute time-

ing more complex and expensive Riemann solvers is that they
reduce dissipation, especially in the neighborhood ofatitie
nuities in the intermediate waves.

4.3.1. HLL Solvers

The simplest Riemann solver implemented in Athena uses
the HLL fluxes as described by Einfeldt et al. (1991), hesraft
age, 2
is defined as

b*f is1o—bfrj-12 b
Fls = I t/)+—b‘ 142 b+_b_(C]i = 0i-1)
wherefy j-1/> =f(q-1/2) andfrj-1/> =f(dr;j-1/2) are the fluxes
evaluated using the left- and right-states of the conseraeed
ables (using equatidn B0), and

(52)

(53)
(54)

Here \M and \° are the maximum and minimum eigenvalues
of Roe’s matrixA (see B4.3]2 and Appendix B)y; andvygr

are the velocity component normal to the interface in the lef
and right-states respectively, and andcg are the maximum
wavespeeds (the fast magnetosonic speed in MHD, or the sound
speed in hydrodynamics) computed from the left- and right-
states. The HLLE solver does not require a characteristic de

b* = max[max@M, v g+ cr), 0]

b~ = min[min(\% vy —c.),0]

averaged fluxes using a Riemann solver. Exact Riemann solver composition of the MHD equations; the eigenvalues of Roe’s

for MHD (e.g. Ryu & Jones 1995) are generally too expensive
for practical computations with current hardware. Morepve
since the full solution to the Riemann problem over all space
time is not required, but only the time-integral of the smint
along the linex=x-1 /> (which gives the flux through the inter-
face), approximate solvers which provide an accurate astim

matrix A are given by simple, explicit formulae (see Appendix
B). Note that if both\M < 0 andvkr +cr < O (or both\% > 0
andvy —c. > 0), the HLLE flux will befgj-1/> (or f_j-1/2), as
expected.

The HLLE solver approximates the solution to the Riemann
problem using a single constant intermediate state cordpute

of thefluxare all that is needed. In fact, it is not even necessary from a conservative average, bounded using an estimatedor t
to use the same solver to compute the flux at every interfacemaximum and minimum wavespeeds. Thus, for hydrodynam-

in the grid. Instead, simple solvers can be used in smooth re-

gions, while more robust (and expensive) solvers are adopte
only when needed, for example in highly nonlinear flow where

ics it neglects the contact wave, and for MHD it neglects the
Alfvén, slow magnetosonic, and contact waves. For thismeas
the HLLE is extremely diffusive for these waves (in fact, eve
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if vx =0, contact discontinuities are diffused with the method). what makes the system linear). Finding the exact solution to
Thus, in practice, the HLLE solver is of limited use for appli linear hyperbolic systems is less difficult because onlgatis
cations. However, a distinct advantage of the HLLE solver is tinuities (no rarefactions) are allowed.

that the intermediate state is positive-definite, that ésghes- Of course, the challenge in developing linearized solvers i
sure and density in the intermediate state can never beivegat finding the appropriate representation #{g). Roe (1981)
Thus, in 1D it can be used to construct a positive-definite in- proposed one particularly useful linearization, which baks-
tegration algorithm (Einfeldt et al 1991). This is in costra  sequently been extended to adiabatic MHD by Cargo & Gal-
to linearized solvers such as Roe’s method, in which the Rie-lice (1997). In this linearization, the Jacobian is evatdat
mann solver itself can produce negative densities andymess  using an average state defined in the primitive variahles

for one or more of the intermediate states. The HLLE flux is (p, V.P,B,B;) as follows

therefore an excellent alternative in the rare circumstahat P =/PLVPR
a more accurate solver fails. In multidimensions, howevse, o
of the HLLE flux at higher than first order does not necessarily Y = (VPLVL+/PRVR)/(v/PL +/PR)
guarantee the method is positive definite: this depends®n th H = (VuHL+ VorHR)/ (VL + V/PR) (56)
details of the multidimensional integrator being used. By = (v/prBy,L +/pLByR)/(\/PL +/PR)
For hydrodynamics, the HLL solver has been extended to in- B, = (v/pRBzL +/ALB2R)/(\/PL * v/PR)

clude the contact wave, resulting in a solution consistirtgvo
constant intermediate states bounded by shocks and segharat
by a contact discontinuity. The resulting method is ternted t
HLLC solver. A basic description of the method is given in
810.4 of Toro (1999) and will not be repeated here; although
it is important to note in Athena we choose the wavespeeds
following the suggestion in Batten et al. (1997). This cleoic
has the attractive property that the pressure in the inteiate
states computed from the Rankine-Hugoniot relations acros
the left and right shocks is the same. We find that for hydro-
dynamics, this implementation of the HLLC solver produces

whereH = (E+P*)/pis the enthalpy (used to compute the pres-
sure), and the subscrigtandR denote the left- and right-states
of each variable at the interface (computed using one ofahe r
construction schemes described[in §4.2). Explicit forngte
matrix A, and its eigenvalues and eigenvectors for isothermal
and adiabatic hydrodynamics and MHD are given in Appendix
B.

Given the eigenvalues® and left- and right-eigenmatrices
L(w andR( W respectively, whera = 1, M denotes th&/ char-
acteristics in the solution, the Roe fluxes are simply

results that are as, if not more, accurate than Roe’s metaed ( Roe _ i_l _ _ Al el ba

below), but at much lower computational cost. For 1D prob- -1/27 3 (fL"_l/2+fR="1/2+Za A%IR ) (57)
lems, it also is a positive definite method (although agais,is o ' o .

not guaranteed in multidimensions). Thus, the HLLC solser i where as beforg i-1/2 J(_qL";l/Z)’ fri-1/2 = H(R-1/2), and
highly recommended for adiabatic hydrodynamic simulation a*=L"- 0012 (58)
with Athena. 0i-1/2 = i-1/2 ~ARj-1/2 (59)

Recently, Miyoshi & Kusano (2005) have described an ex- gnd theL® andR® are the rows and columns of the left- and
tension of the HLL solver to MHD which includes the fast right-eigenmatrices correspondingX®.
magnetosonic, Alfvén, and contact waves. The resultingesol The primary advantage of Roe’s method is that it includes all
approximates the solution of the Riemann problem with four f the characteristics in the problem, and therefore isdés-
constant intermediate states. It reduces exactly to the®iLL gjye and more accurate than the HLLE solver for intermediate
solver when the longitudinal component of the magnetic field ywayes such as contact discontinuities. Moreover, Roe (1981
is zero, and is a positive definite method. The implementa- showed that it gives the flux exactly if the solution to thd ful
tion of the solver is detailed in Miyoshi & Kusano (2005), and nonjinear Riemann problem contains only an isolated discon
will not be repeated here. Tests using Athena indicate Higtt  tinyity. However, because it is based on a linearizatiorhef t
solver, termed HLLD, is typically as accurate as the MHD ex- \HD equations, for some values of the left- and right-states
tension of Roe’s method, although it is much faster. Thus, th Roe’s method will fail (Einfeldt et al. 1991); it will returneg-
HLLD solver is the best choice for many MHD applications  ative densities and/or pressures in one or more of the isterm
using Athena. diate states. In Athena, if this occurs we replace the caticur
, of the fluxes at that interface with the HLLE solver (which is a
4.3.2. Roe’s Method o -
positive-definite method) or some other more accurate ég.

The HLL fluxes are based on approximatesolution to the  exact) solver. Tests indicate this is only required verglsar
nonlinear equations of MHD. Instead, Riemann solvers can be

constructed fronexactsolutions to arapproximatglinearized) 5. TWO-DIMENSIONAL INTEGRATION ALGORITHM

form of the MHD equations, for example Probably the most popular method for constructing a 2D inte-
09 _ A(ﬁ)@ (55) gration algorithm from the 1D method described[ih §4 is based
ot ox’ on dimensional splitting (Strang 1968). Unfortunatelyndn-

The matrixA(q) is the Jacobiaff /dq evaluated at some appro-  sional splitting cannot be used for MHD if the equations are t
priate, constant mean stajdtreating this matrix as constantis be solved in the conservative form. This is because durinly ea
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one-dimensional update, only the transverse componettg of Step 4Evolve the left- and right-states at each interface
magnetic field evolve (e.g., from equatiod 30 it is clear Biat by 6t/2 using transverse flux gradients. For example, the
is non-evolutionary during an update in tkedirection). How- mass density, momentum density, energy densityBarad the

ever, the divergence-free constraint can only be maintaine  x-interface located at-; , are advanced using

all three components of the field evolve simultaneously.sThu 1/ st St

during the update in the-direction,B, must evolve. The terms qr,li_/l/zj = OLi-1/2 * 55 (gi*—]__,j+1/2 ‘gf-l,j_l/g) + E&,i—(,(ﬁz)

that describe this evolution cannot be written in conséreat ' 5ty st

form, leading to for example th& - B source term formula- w2 e ( Ok )+_ .

tions of Powell (1994) and Powell et al. (1999). However, ORi-v/2j = ORi-v/2] 20y /2= Gj2) TS (63)

there are significant advantages to maintaining the coateev  Since the components of 1D vectors on theandy-interfaces

form (T2000), thus in Athena we adopt dimensionally-urtspli differ, care must be taken to associate the components of the

integrators for MHD, either based on the CTU+CT method (de- left- and right-states with the appropriate componentshef t

scribed below), or the VL+CT method (SG08). The use of di- transverse fluxes (for example, the componentg ¢f; /, j with

rectionally unsplit integrators in multidimensions is afehe the components ogi*_lﬁjﬂ/z). The updates in equatiohs]62

most important components of the MHD algorithms in Athena. and[63 are directionally split (only the transverse flux grad
Even after adopting an unsplitintegration algorithm, cemb  ent is used) and are based on the conservative form, therefor

ing it with the CT method to enforce the divergence-free con- Vv . B source terms must be added to the momentum density,

straint presents challenges. In particular, the method Higtw energy, and3,. These are represented by the source term vec-

the corner-centered, line-averaged emfs are construobed f  tor s, the last term in both equations. For the left- and right-

the face-centered, area-averaged fluxes returned by the Riestates on thewinterface, the source term vector has compo-

mann solver is non-trivial. In GS05, we showed that simple nentss, = (0,sV,s5,0,s%) where

arithmetic averaging does not work for the unsplit integrat —Rr (R R )

adopted here. Instead, we developed several methods fer con i = B (Buivayzj ~ Bi-aya )/ 0%

structing the emfs from the Godunov fluxes, the version actu- Si.j = (BVa)i j(Byistj2j ~Byi-1/2,))/6X (64)
ally used in Athena is described ih 8b.3. The resulting metho 55.,?.,1' = vy (Bis/2 = Buia/2.j) /0%

reduces exactly to the 1D algorithm described[ih 84 for plane . 0 '
parallel, grid-aligned flow, and preserves the flux normahto ~ EXPressions similar to equatiohs]62 &nd 63 are used to up-

plane of the calculation. date they-interface states located gt ,, thatisqy ; j-1/» and
Ori j-1/2, for dt/2 using the flux gradient in the—direction.
: . ,J-1/ _
5.1. Steps in the 2D Algorithm Source terms analogous to those in equdfidn 64, but propor-

The 2D CTU+CT integration algorithm is based on the tionaltodBy/dy, also are necessary (see §4.1.2in GS05). The
method of Colella (1990), and is described in detail in GS05; in-plane components of the magnetic field are evolved using

below we provide an overview of the main steps. CT,

Step 1. Compute and store the left- and right-states at cell B™2 _pg '_ﬂ (5* _g ) (65)
interfaces inboth the x—direction @ j-1/2j,0ri+1/2,j) and the xi=1/2) T PXIY2) T 55y \Czin1/2)+/2 - Czi-1/2)-1/2
y—direction @ j-1/2,0r,j+1/2) Simultaneously, using any of /2 5t . i}
the 1D spatial reconstruction algorithms described inlg#2 Byii-1/2 = Byij-1/2+ 2% (5z,i+1/z, i-1/2 = Ezim1/2, j—1/2) (66)

all the interfaces over the entire grid. Since the 1D reconst
tion algorithms in Athena include a characteristic tracitep,
when applied in multidimensions the 1D reconstruction must
includeV - B source terms as described in §3.1 in GS05, and ', S
briefly in §52. Note that the components@f (and qg) are algorithm in step 7. The cell-centered velocities at thd-hal
different on thex— andy-interfaces. timestep needed to compLﬁé-“fl/ 2 come from a conservative
Step 2.Compute 1D fluxes of the conserved variables using finite-volume update of the initial mass and momentum dgnsit
any one of the Riemann solvers describedinl§4.3 at intesface Using the fluxes;, , ; andg,_; ,. The cell-centered compo-
in boththex— andy-directions simultaneously nents of the magnetic field at the half-timestep come from-ave
fii/2j = F(ALi-1/2.), GRi-1/2.j, Bxi-1/2,) (60) aging the fce centered fields at the half-timestep compyted
0 1-1/2 = F (L1 -1/2: Ori 12 By -1/2) (61) equation§ 65 ar[d 66 in step 4 to cell-centers.

where the appropriate longitudinal component of the magnet Step 6.Compu§e new fluxes at cell interches using the cor-
field has been passed to the Riemann solver as a parameter. rected left- and rlgh_t-sta_tes from step 4 using one of the Rie
Step 3.Using the algorithm of GS05, described [0 85.3, cal- Mann solvers described i 4.3, giving

using the emfs computed in step 3.
Step 5. Calculate a cell-centered reference electric field at

t™1/2, €142, which is needed as a reference state for the CT

culate the emf at cell cornes; , , ;_, , from the appropriate f?jll//zéj = ]:(qfﬁ/liz_j,qgfil_/lz/z_j,B:_’i'}ﬁz.j) (67)
components of the face-centered fluxes returned by the Rie- 12 ml2 2 B“;'l/z

mann solver in step 2, and tlzrecomponent of a cell center 95172 = F (AL 212, Ori 21720 By -1/2) (68)

reference electric fieldir_’j”_ calculated using the initial data at  Note the appropriate face-centered fields updated to tife hal

rnn

time leveln, i.e. & = =(vg; ;B ; =W jBXi j)- timestep computed in step 4 are passed as parameters to the
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Riemann solver. If needed, the H-correctionis used in tieig s Similar expressions are needed for the right-state valessch

to eliminate the carbuncle instability (see Appendix C). interface (GS05). In both cases the terms are added to ttme pri
Step 7. Apply the algorithm of B513 to calculate the CT elec- itive variables after the reconstruction, and before cdivg
tric fields 52;'_11//22.]._1/2 using the numerical fluxes from step 6 back to the conserved variables.

and the cell center reference electric field calculatedap 5t
Step 8. Update the solution from time levelto n+1, us-
ing the 2D version of the finite-volume difference discratian As discussed in[83, the CT update of the magnetic field re-
(equatioriIll) for the mass density, momentum density, gnerg quires the line-averaged emfs at cell corners, whereasitie R
density, and,, and the CT formulae (equations 16 17) for mann solver returns area-averaged electric fields at ceisfa
the in-plane components of the field andB. For example, figure 5 shows the relative positions of the luxe
Step 9.Compute the cell-centered components of the mag- returned by the Riemann solver, and the emfs needed by CT,
netic field from the updated face-centered values using-equa for the 2D grid cell with indicesi(j). In GS05, it was shown
tions[26 and 27. that the relationship between the two is determined by tee-av
Step 10.Increment the timet™! =t"+6t. Compute anew  aging formulae used to convert between the face-centeeed ar
timestep that satisfies an estimate of the CFL stability ttmmd averages of the magnetic field, and the cell-centered velume

5.3. Calculating the emfs

based on wavespeeds at cell centers averages. A variety of different algorithms were explored,
5 5 and the best compromise between accuracy and simplicity was
- ; X y found to be
6t =C,min , 69
(et o) © .

Eri-1/2,j-1/2 = 2 (Erim1y2,j *+Exic1j2 -1+ Exij-1/2+ Erim1j-1/2)
whereC, < 1 is the CFL numbeIC:”ﬂj andC™1. are the fast

- : el e : sy ( (o€ o€
magnetosonic speeds in tlke andy-directions respectively, 2 (_Z) _ (_2)
evaluated using the updated quantities, and the minimum is 8 ( Y )icajpjra N\ Jic1jaj-3a
taken over all grid cells. Note this is only an estimate of the
CFL stability condition, since the wavespeeds used in tlee Ri + ox (%) _ (%) (70)
mann solver can be different from those computed from the 8 ox i~1/4,j-1/2 ox i-3/4,j-1/2

cell-centered values.
Step 11. Repeat steps 1-10 until the stopping criterion is
reached, i.et™?! > t;

where the derivative of, on each grid cell face is computed by
selecting the “upwind” direction according to the contacidme,

e.g.
The entire 2D integration algorithm is summarized by the g
flow chart shown in figure 4. o (0&2/ 9y)i1 for vyj—1/2 >0
<6_1> _ ) 080y fOr Vij-1/2 < O
5.2. MHD Interface States in 2D Y /iy 3 ((%gyz)i_l+ (%ﬁz)i) otherwise

In step 1 of the 2D algorithm discussed above, source terms
must be added to the left- and right-states in the primitaé-v
ables that arise due to the characteristic tracing stepeimeh
construction algorithms (se€ 84.2). These terms are ramgess . ” )
for a proper accounting of all the evolutionary terms thanfo  f€lds (Godunov fluxes) and a cell center “reference” valye,
the characteristic tracing step in multidimensioal MHDe(se €9 e e
GS05 and GSO08 for a complete discussion of the origin of these <_Z) =2 (1'172'1‘1/2) ) (72)
terms). Since the reconstruction is performed in the prait dy i,j-1/4 oy
variables, the only terms required are for the transversgos where the cell center reference electric fi€ld ; is computed

nents of the magnetic field (in contrast to step 4 in the 2D al- 54 ¢ appropriate time level (eithrfor step 3 of the 2D algo-
gorithm above_, where the ghrectlonal splitting is perfodchom rithm, ort™/2 for step 7). To help clarify the above, figure 5
the equations in conservative form, and therefore souroeste diagrams the relative locations of the Godunov fluxes, aere
were needed foM, E, andB;). Thus, for the left-state at _the centered emf, cell-centered reference states, and thatiees
x-interface located &y, the change to the transverse fields ¢ e electric field. Further details are provided in GSQ%d(a
due to the source term is GS08 for the 3D case).

ot Note for the 3D CTU+CT algorithm, analogous expressions

OByi2) = op Wit (Bi-a/2i = Briya) to the above are required to convert theandy—-components

while for the left- and right-interface values at theinterface  ©f the electric field to the appropriate cell corners (seerégu
located aty;-12, the change to the transverse field due to the 1). These expressions follow directly from equations 71[EAd
source term is using a cyclic permutation of thefy, 2) and , j, k).

(where the subscrigthas been suppressed) with an analogous
expression for thed€,/9x). The derivatives of the electric field
in equation[(7l1) are computed using the face centered iglectr

ot
Byl jm1/2 = ﬁle.,i.,j—l (Byi,j-1/2 =By, j-3/2) 6. THREE-DIMENSIONAL INTEGRATION ALGORITHM
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The extension of the dimensionally unsplit CTU integrator
due to Colella (1990) used in Athena from 2D to 3D is in fact
quite complex. In particular, for stability with a CFL numbe

C, < 1 requires 12 Riemann solves per cell per timestep, and

multiple fractional timesteps are required to correct #fe bnd
right-states with transverse flux gradients in a genuinaljtim

dimensional fashion. This extension of CTU to 3D has been

described by Saltzman (1994) for hydrodynamics.

In GS08, we explored the use of the 12-solve CTU+CT al-

gorithm for MHD, as well as a simpler variant that uses only
6-solves per timestep, but formally is only stable for CFlomu

bersC, < 0.5. The tests presented in GS08 show that the 6-

in all three dimensions

fi12ix = FALi-1/2,j k ORi-1/2, k: Bxi-1/2. k)  (73)
9 j-1/2k = F (AL j-1/2k AR, j-1/2k Byi j-1/2) (74)
h' k12 = F (AL jk-1/2, AR k-1/2: Bz jk-1/2)-  (75)

using the appropriate longitudinal component of the magnet
field passed as a parameter to the Riemann solver.

Step 3. Apply the algorithm of B5I3 to calculate the CT
electric fields at cell-cornerssy; ., 5y 120 &yi_1/2 k172 @Nd
&ic1/2j-1/2 from the appropriate components of the face-
centered fluxes returned by the Riemann solver in step 2, and

solve algorithm is as accurate as the 12-solve method, and rea cell center reference electric field calculated using titeal

quires about the same computational cost. However, thé/@-so
algorithm is dramatically simpler to implement, and theref
is the primary 3D integrator used in Athena.

The 6-solve CTU+CT 3D algorithm is designed in such a
way that for grid aligned flows it reduces exactly to the 2D
CTU+CT algorithm described in(85, or the 1D algorithm de-

data at time leveh, i.e. &7\ = —(V';, x B ;). (Note the al-
gorithms for computing the— and y-components of the emf
are a straightforward extension of the algorithm to comphse
z-component described i §5.3, see GS08.)

Step 4.Update the face-centered magnetic fieldib§2 us-
ing the CT difference equations]16 throUgh 18, and the emfs

scribed in B4, depending on the symmetry of the problem. Per-computed in step 3.

haps even more importantly, in GS08 we introduced a testprob

Step 5.Evolve the left- and right-states at each interface by

lem to demonstrate the 3D CTU+CT algorithm preserves a dis- t/2 using transverse flux gradients. For example, the hydro-

crete representation of the divergence-free constraaitgre-
vents anomalous growth of magnetic flux for problems with
certain symmetries. The test involves advection of a cyiind
cal column of 2D field loops in th&-y plane, withB; = 0,
and a constant but fully 3D velocity field. In this case the
z-component of the induction equation reduces to

0B, By _
VZ(WJra_y)'O

08, _
ot

Clearly, the second term is proportional¥o- B. Thus, if the
discrete fornof the induction equation used to update the field
components in 3D is able to presemg= 0 exactly, then the
algorithm must preserve the appropriate discrete reptatsem

of V-B =0. We present results of this field loop test[in $8.4 in
2D, and §86 in 3D.

6.1. Steps in the 3D Algorithm

The 6-solve version of the dimensionally unsplit 3D
CTU+CT algorithm can be described by the following steps

(see GSO08 for details). It may also be useful to compare and
contrast the steps in the 3D algorithm with those in the 2D

method (EG.1).

Step 1. Compute and store the left- and right-states
at cell interfaces in thex-direction @ j-1/2,j,dRri-1/2,jk):
the y—direction Q;j-1/2k,dRri j-1/2k), and the z-direction
(L,i,j k-1/2,GRi,j k-1/2) SImultaneously, using any of the 1D spa-
tial reconstruction schemes described[in B4.2, for all theri
faces over the entire grid. This requires addWwigB source
terms to the primitive variables, as discussed in GS08 86

dynamic variables (mass, momentum and energy density) are
advanced using

1/2 ot o/, .
E:—é./z_,j_’k =0Qui-1/2,jk~ ﬁ/ (gi’j+1/27k _gi.,j—l/z,k)
202 (hi7i7'<+1/2 _hi.,j.,k—1/2) + 2 Si-Lik (76)
1/2 st o/, )
qg;‘/l/zi-k = ORi-1/2 )k~ 25y (gi+1,j+1/2.k ‘9i+1.j—1/2,k)
- ZT;Z (hi+1’j’k+1/2 - hi+11j%k_1/2) + ES“JK (77)

Once again, care must be taken to associate the components of
the vectors of interface states (ed.;-1/2,jx) with the appro-
priate components of the transverse fluxes (@Huyz,k and
h;ka_l/Z). Moreover, since these updates are directionally split,
V - B source terms must be added. These are represented by the
source term vectos,, the last term in both equations. For the
left- and right-states on the-interface, the source term vector
has components = (0,sV,s5,0,0) where

oB
ik = Bijk (8_XX>|J k

{_,j.,k = ‘(ByVy)i,j,kmiand(

i 0By 0B
_(Bsz)i,j,kmland<ﬂ7_ 6xx

8 05
i,jk
ay

9z’ ox
) . (78)
i,k
where the minmod function is defined as
minmod§.y) = { sgn@min(x;y) x>0 g,

otherwise.
The use of the minmod operator to limit the source terms ac-

Step 2.Compute 1D fluxes of the conserved variables using cording to the magnitude of the terms in the divergenc8 of
any one of the Riemann solvers describedin184.3 at intesface is discussed in GS08, it is needed because there arewow
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and the CT formulae (equatiohs] 16 throligh 18) to update the

in 2D. The transverse components of the magnetic field storedarea-averaged face-centered components of the magnlktic fie

at each of the interfaces is evolved using a combinationef th
emfs computed in step 3, aRd- B source terms. For example,
the right-state value of thg- and z-components of the mag-
netic field at thex-interface ak;-, » are evolved using

M2 ot
(By)R.i—l/z,j,k -

(By)R,i—l/ZyLk - 257 (gzi.j+l/2,k+l/2 - 5>:i,j+1/2.k—1/2)

st /. )
iy (5“%1"1/27“1/2 _€X7i,j—1/2.,k—1/2)
ot @ _8Bx)
ij.k

2 0z % (80)

(Vy)i_,j_,kminmod<

" ot
CHRATIE (Bri-1/2,jk* 2oy

Ri-1/2,jk (gzi.jﬂ/z,kﬂ/z - 5>:i,j—1/2,k+1/2)

st . *
2oy ( xi.j+1/2k-1/2 = Exi, j—1/27k_1/2)
TV d o~ 81
g (minmo (8y’ 8X>i,j~,k (81)

with similar expressions for the left-state values (butngsi
guantities at —1 on the right hand side of the above equations

as appropriate). The origin of these MHD source terms for the
transverse components of the magnetic field is discussed fur

ther in GS08. Theg- andzinterface states are advanced in an
equivalent manner by cyclic permutation afy,z) and {, j,k)
in the above expressions.

Step 6. Calculate a cell-centered electric fieldt&tY/2 by
using the fluxesﬁi*_l/zﬁjﬁk, gifj_l/z’k, andhi"7].7k_l/2 to compute the
cell-centered velocities at the half-timestep using a eorss

Step 10.Compute the cell-centered components of the mag-
netic field from the updated face-centered values using-equa
tions[26 through 28.

Step 11.Increment the timet™?! =t" +§t. Compute a new
timestep that satisfies an estimate of the CFL stability it
based on wavespeeds at cell centers

. 0X oy 0z
ot=Comin ,
( |an.lj.k| +C?I},j,k |V9Tl,k| +Cii

i fy.i.j.k7 |Vrz].1iL.lj.k| +C?Zil,j,k>
(85)

whereC, < 1/2is the CFL numbe€ft ., Civt: \, andCht
are the fast magnetosonic speeds inthe/—, andz-directions
respectively, evaluated using the updated quantities, thad
minimum is taken over all grid cells. Note this is only an esti
mate of the CFL stability condition, since the wavespeedsus
in the Riemann solver can be different from those computed
from the cell-centered values.

Step 12. Repeat steps 1-11 until the stopping criterion is
reached, i.et™! > t;.

The steps in the 3D integration algorithm are very similar
to those summarized by the flow chart in figure 4 for the 2D
algorithm.

6.2. MHD Interface States in 3D

As with the 2D integrator, source terms must be added to the
left- and right-states in the primitive variables calcathtising
the 1D spatial reconstruction schemes describef i 84n2eSi
the reconstruction is in the primitive variables, only thens-
verse components of the magnetic field require these terons. F
the right-state at the-interface located at-; ,, the change to

tive finite volume update for the momentum and density, and the transverse fields due to the source terms are

by averaging the face centered fields at the half-timestap co

puted in step 4. This is needed as a reference state for the CT

algorithm in step 8.

Step 7.Compute new fluxes at cell interfaces using the cor-
rected left- and right-states from step 5, and the interfaag-
netic fields at™/2 computed in step 4, using one of the Rie-
mann solvers described ih §4.3

n+1/2

n+l/2  _ n+1/2 n+1/2

fis2ik = FAL 2120 9Ri-1/2 k0 Beicz ) (82)
n+l/2  _ n+1/2 n+1/2 n+1/2

95172k = FOL; /210 ORi 21200 Byi j-1/20)  (83)
n+l/2  _ n+1/2 n+1/2 n+1/2

hiikcr2 = FOL ko120 R k120 Brijerj) - (84)

using the appropriate longitudinal component of the magnet

st . OB, OBy
(OBt = — (v )-.-.kmmmod<—,— ) (86)
YR R 02" 0x )
ot . oB, 0B,
(6BRi- .-.k=——(v)-,»,km|nmod(—,——) (87)
Z)Ri-1/2,] 2 z)i.j 6y X ik

Similar expressions are needed for the left-state valubdew
the equations for the left- and right-state values at yhe
andz-interfaces follow from cyclic permutation of th&, §,2).
These terms are added to the primitive variables after recon
struction, and before converting back to the conserved vari
ables.

7. IMPLEMENTATION

The implementation of the numerical algorithms described

field passed as a parameter to the Riemann solver. If neededy, the previous sections into a functioning computer code ca

the H-correction is used in this step to eliminate the caclin
instability (see Appendix C).
Step 8. Apply the algorithm of to calculate the CT elec-

tric fields Efﬁf 2 I2ke1/2" E;T_ll//zz 1 k1/2 @nd Ezr_ll//zz j-1/2x USiNg

the appropriate components of the numerical fluxes fromatep

and the cell center reference electric field calculatedap 6t
Step 9.Update the solution from time levelto n+1 using

the conservative finite volume update (equalioh 11) for the h

be complex, and warrants at least some discussion.

Athena was developed in C, but many applications scientists
prefer to work with Fortran. Hence, we have written two dif-
ferent versions of Athena: the original C code, and another i
Fortran95. These two versions provide the community with im
plementations of the Athena algorithm in the two most popula
languages used for scientific computing in astrophysicse Th
most important design criteria we have adopted for both ver-

drodynamic variables (mass, momentum and energy density)sions are
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. modularity,
. documentation,

3. strict adherence to ANSI standards,

4. simple control of physics and runtime options

We briefly discuss each of these below.

By far the most important design priority is modularity.
Thus, the Riemann solvers, 1D reconstruction algorithms; ¢
version from conserved to primitive variables, boundarg-co
ditions, data output, and the integrators themselves abzal
ken into individual functions, with a common interface sfiec
to each class. This makes adding everything from a new Rie-
mann solver to a new data output format simply a matter of
writing a new function which conforms to the appropriate in-
terface. Moreover, all problem-specific code is contaimed i
single file, with functionality provided that makes it easyadd
new boundary conditions or new source terms in the equations

Although writing documentation is never enjoyable, it ig-cr

ical if anyone other than the developer is to use the code. We
have found this to be true even amongst members of our own

research groups. The C version of Athena comes with an exten
sive User's Guidewhich describes installing, compiling, and
running the code, and Brogrammer’s Guidevhich explains
the grid, data structures, and program control and flow. Both
are included with the source code in the download from the
web. The Fortran95 version has its oWser's Guide Ample
comments are also embedded within the source files.

By adhering to ANSI standards, we ensure Athena can be
compiled and run on any machine with a C or Fortran95 com-
piler, as appropriate. To avoid reliance on external liesgwe

do not use special purpose output formats. The philosophy is

that data can always be converted into other format by post-
processing software if needed, or by writing a new user-ddfin
output routine. Athena is written to run either as a serialeco
on one CPU or in parallel using domain decomposition through
MPI calls. The only external libraries needed by Athena are f
parallelization with MPI (using any version of the MPICH or
OpenMPl libraries). As algorithms become more complex, the
use of external libraries for I/O may become unavoidable. Fo
example, the HDF5 library has proved to be useful in organiz-
ing the complex data structures associated with AMR grids.
The compile and runtime options in the C version of Athena
are documented in tHadser’s Guide Physics and algorithm op-
tions are set at compile time using a configure script geedrat
by theaut oconf toolkit. In the Fortran95 version, these op-
tions are determined by selecting which moduldd$&. A perl
build scriptbui | dat hena is included to simplify the choice
of problem module, physics, and parallel or serial versian.
separate user guide is provided for the Fortran code. Bateso
use a simple block-structured input file with runtime partene
values. The Fortran95 version useAMVELI ST and the the C
version uses a flexible format that emulalSVELI ST func-
tionality. Although there is nothing special about the sfec
way compiler and run options are set in Athena, the key point

is that simple and extensible mechanisms to control both are
provided.

Two final important aspects of code implementation are the
single processor performance, and parallelization onibliged
memory clusters. Aggressive optimization requires maani
static algorithms, and often comes at the cost of clarity and
adaptability in the code. Athena is intended to be a communit
code, and we plan that Athena will continue to be developed
and extended. Thus, optimization has been limited to thie bas
concepts guided by the rules of data locality and vectddnat
In the C version, for example, to optimize cache use we define
all variables within a cell as a data structure, and thenterga
arrays of this structure. This ensures values for each hlaria
associated with a given cell are contiguous in memory. Te pro
mote vectorization, as much computational work as is ptessib
is done on 1D pencils drawn from the grid (for example, the
spatial reconstruction step). The Fortran95 version igydesl
to take advantage of Fortran array syntax where possible. On
drawback of dimensionally unsplit algorithms is that thi-le
and right-states and fluxes must be computed and stored-for ev
ery interface over the entire 3D grid. This requires many 3D
arrays, which increases the memory footprint of the code and
reduces cache-performance. However, unsplit algorithmas a
essential for MHD.

Although Athena requires many more floating point opera-
tions per cell than algorithms such as ZEUS (as much as ten
times more), the primary bottleneck on modern processors is
generally accessing cache and interprocess communidation
parallel problems. Thus, the performance of Athena in campa
ison to ZEUS is not decreased in proportion to the amount of
work per cell in the two codes. One of the most useful mea-
sures of performance is the number of cells updated per cpu
second. This depends on many factors, including the alguorit
the size of the grid, and the processor speed. Table 1 lists th
performance of the C version of Athena on a 2.2 GHz Opteron
processor, compiled witgcc using an optimization level of
- O3 for various physics and algorithm options and using a 3D
128 grid. For comparison, a 3D version of ZEUS written in
F77 by one of us (Stone) and run on the same processor gives
404 x 10° cell-updates/sec for adiabatic MHD on a $28id.
Thus, while the algorithms in Athena typically requirexithe
work of those in ZEUS, the code is only four times slower when
using the HLLD fluxes.

Parallelization is achieved in Athena using domain decompo
sition with MPI calls to swap data in ghost cells at grid bound
aries. The number of ghost cells required depends on the type
of physics used and the order of the reconstruction. For exam
ple, MHD with third-order reconstruction requires four gho
cells at every boundary (more are required if the H-coroecti
is used, see Appendix C). By sequential exchange of boundary
conditions in thex—, y-, and z—directions, we avoid the need
for extra MPI calls to swap values across diagonal domains
at the corners of the grid. Two factors contribute to making
Athena very efficient on distributed memory clusters. Fifst
unsplit direct Eulerian update in Athena requires commamic
tion of ghost zones only once per timestep, greatly redutiag
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number of MPI calls compared to split methods. Second, theand Roe fluxes are nearly identical, and converge at second-
ratio of computational work to data communicated is large in order for each wave family. The errors for the HLLE solver
Athena due to the complexity of the algorithms. Figure 6lot are slightly larger, and converge at a slightly lower ratey B
the efficiency of the C version of Athena, defined as the speedplotting profiles of the waves, we find the errors are domihate
per processor in a parallel calculation normalized by theedp  primarily by diffusion error; with 16 or more grid points per

of a single processor calculation, on Red Storm, a Cray XT-3 wavelength the plots show almost no dispersion in any of the
at Sandia National Laboratory. Even up to 20,000 processorswaves. A number of very sensitive tests of the coding can be de
the efficiency of Athena remains above 85%, and is nearly flat signed. Firstly, the L errors should be identical (verydigit

indicating essentially perfect weak scaling. of accuracy) for left- and right-propagating waves. Sedégnd
convergence should continue until either the limits of mun
8. TESTS off error are reached, or nonlinear steeping becomes irmapbrt

(when Ly ~ A?). We have found that both double precision, and
very small initial amplitudes, are necessary to see comvarg
out to 1024 cells. This suggests that round-off error can-dom
inate truncation error in very high resolution simulatiovith
higher-order methods such as Athena.

Sod shocktubd.ong a standard test for hydrodynamic codes,
the Sod shocktube consists of two constant states sepénated
a discontinuity (a Riemann problem). Table 2 lists the vaine
the left- and right-states for this test. Figure 8 shows #seilts
for the density, pressure, velocity, aRdp (which is propor-
'tional to the specific internal energy density}@at 0.25 when
run on a grid of 100 cells in the doma#0.5 < x < 0.5 us-
ing third-order reconstruction, the HLLC Riemann solverla
an adiabatic index = 1.4. When configured for 1D hydrody-
namics, Athena reduces to a direct Eulerian PPM code (e.g. 84
of CW), thus we expect the results should be similar to those
published by e.g., Greenough & Rider (2003). As is typical of
a PPM code, Athena resolves the shock front and contact dis-
continuity with only 2-3 zones. Although we show this test fo
posterity, in our opinion the 1D Sod shocktube should nodéong
be considered a discriminating test of algorithms.

Two-interacting blast wavesintroduced as a test by WC,

. . . this problem consists of an initially constant dengigy= 1 in
8.1. One-Dimensional Hydrodynamics a stationary medium in a domain of sikg = 1 with reflect-

Linear wave convergenc@ne of the simplest, yet most dis-  ing boundary conditions, angl= 1.4. Forx < 0.1, the initial
criminating tests is to follow the propagation of linear resd ~ pressure is> = 1000, forx > 0.9 P = 100, whileP = 0.01 ev-
of each wave family in a periodic domain to measure the am- erywhere else. The solution is evolved to an arbitrary tirhe o

plitude of both diffusion and dispersion errors. Exact sige tr = 0.038, at which point the shocks and rarefactions gener-
functions of sound, contact, and shear waves are init@lize ated at the two discontinuities in the initial state havetliatted

a uniform medium withpo = 1, P = 3/5, and~y = 5/3. The multiple times in the domain. The test is quite sensitivehef t
wave amplitudeA = 107, and the wavelength is equal to the ability of the method to capture the interaction of shockgwi
size of the domair. = 1. For sound waves, the background contact discontinuities and rarefactions. Figure 9 shdves t
medium is initially at rest. (It is also useful to try a testihich solution computed with Athena using 400 grid points, third-
V0 = —Cs, wherec2 =P/ is the sound speed, so that the right- order reconstruction, the CS limiters, and the HLLC Riemann
propagating sound waves are standing waves.) For the ¢ontacsolver, with a reference solution computed using 9600 grid

and shear waves, the background medium has a constant velod®oints shown as a solid line. In addition, the solution can be
ity V0 = 1. The solution is then evolved for 1 crossing time, or compared to figure 2h of WC. Note that the contact discontinu-

Tests are an integral part of the code development process
used not only to find bugs in the implementation, but also to
measure the fidelity of the method in comparison to other-tech
nigues. In this section we present a selection of tests tkat w
have found useful in the development of Athena for both hy-
drodynamics and MHD in 1D, 2D and 3D. A more comprehen-
sive set of tests is published on the web. Many of the problems
are drawn from test suites of our own codes (Stone et al. 1992)
or from those published by other authors (Woodward & Colella
1984, hereafter WC; Ryu & Jones 1995, hereafter RJ; T2000
Liska & Wendroff 2003, hereafter LW). Although we begin by
showing 1D tests for hydrodynamics and MHD, our focus will
be on the multidimensional results that follow, since nuiti
mensinal tests are so critical for MHD.

In only a few of the tests do we show the results from more
than one Riemann solver. In general, we find the most accu-
rate (and often nearly identical) results are obtained wither
the Roe and HLLC solvers in hydrodynamics, or the Roe and
HLLD solver in MHD. Thus, we use these solvers interchange-
ably. If one solver fails on a particular test, it will be miemted
in the discussion.

until t; = 1. Figure 7 shows the norm of the krror vector for ity nearx = 0.6 is quite smeared out in the Athena solution, this
each wave, defined as seems to be a common property of direct Eulerian methods (see
1 figures 18 and 19 in Greenough & Rider 2003), the Lagrange-
oq = N Z lai—q°| (88) plus-remap version of PPM seems to capture this feature more
I

sharply (WC, LW).

Shu & Osher shocktubéntroduced by Shu & Osher (1989),
this test measures the ability of a scheme to capture the inte
action of shocks with smooth flow. The initial conditions are

whereq? is the initial solution, as a function of the numerical
resolution up to 1024 zones, using third-order recondtrnct
and the HLLE, HLLC, or Roe fluxes. The errors for the HLLC
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a strong shock, initially located at= -0.8, propagating into

this problem can be used as the basis for a number of very sen-

a background medium with a sinusoidally varying density in a sitive tests. For example, standing waves in each familybean

domain-1 < x < 1 with adiabatic indexy = 1.4. Table 2 lists
the initial conditions for this test. Figure 10 shows theuteat

initialized by settingvy o to the appropriate wave speed, the L
error should bédenticalfor left- and right-propagating waves,

t =0.47 computed with both 200 and 800 cells using third-order and convergence should continue until the limits of rouffd-o

reconstruction, the CS limiters, and the HLLC solver. Compa

ison of this plot with, e.g. figure 5 in Balsara & Shu (2000),

error or wave-steepening effects are reached.
Brio & Wu shocktube.An MHD analog to the Sod shock-

shows the Athena solution is similar to a 3rd-order WENO tube was introduced by Brio & Wu (1988), and has now be-
scheme. The use of the CS limiters significantly improves the come a standard test for MHD codes. Table 2 gives the val-

solution in comparison to the original PPM limiters, sincéw

ues of the primitive variables in the left- and right-stat&be

only 200 cells many of the extrema in the postshock gas are un-longitudinal component of the magnetic fieldBg= 0.75, and
resolved, and are clipped with the PPM limiters. We conclude is of course constant everywhere. The solution is computed
that low-order (less than 5th-order) WENO schemes are notwith v = 2. Figure 13 shows results computed with second-
more accurate than 2nd order Godunov methods like Athenaorder spatial reconstruction and the Roe fluxes, on a gri@0f 8
for this test. A more comprehensive comparison of Godunov zones at timé; = 0.08. A reference solution, computed using
and higher-order WENO schemes is provided by Greenough & 10* grid points, is shown as a solid line. Once again, shocks

Rider (2003). In particular they conclude for problems iavo
ing shocks and discontinuities, second-order Godunovsebe
are more accurate per fixed computational cost.

Einfeldt strong rarefaction testskEinfeldt et al. (1991) de-
scribed several test problems designed to reveal shonmgsmi
of various Riemann solvers for hydrodynamics. In partigula
the Roe solver will always fail on these tests, in the senae th
it will produce negative densities and pressures in therimee
diate states for the initial discontinuity in the first tinhegs. For

and contacts are captured in only 2-3 zones. Small osoitiati
are present in the velocity if third-order reconstructismsed,
indicating our TVD limiters could be improved. RecentlyyTo
rilhon (2003) has performed a careful study of the convergen
of finite-volume schemes for MHD Riemann problems similar
(but not identical) to the Brio & Wu shocktube. We have run
the regular, nearly coplanar problem defined in 84.2 of that p
per. The left- and right-states for this test are given inl&@ab
2, in additionBy = 1. The results, computed using third-order

this reason, when using the Roe solver in Athena we test thereconstruction and the Roe solver, are nearly identicdidsd

intermediate states, and if the density or pressure is ivegat
we replace the Roe flux with the HLLE flux fehat interface

shown in figure 7 of that paper, although the Athena solution
with 10* grid points is comparable to the solution with twice as

only. As an example, figure 11 shows the results for the density, many points in that paper. At lower resolution (800 grid pgjn

pressure, velocity, ang/p (which is proportional to the spe-
cific internal energy) for test 1-2-0-3 in Einfeldt et al. @19 at

t = 0.1, computed using 200 grid pointg,= 1.4, and second-
order spatial reconstruction (the initial left- and rigttiétes for
this test are given in Table 2). The profiles of density andpre

the Athena solution shows the compound wave structure which
appears in dissipative MHD (similar to figure 6 of Torrilhon
2003). As the numerical resolution is increased, the smhuti
converges to the the exact solution for ideal MHD, which does
not contain this structure. The fact that Athena shows more

sure are captured accurately. We find that the HLLE solver is rapid convergence to the exact solution for ideal MHD than th

only needed for one interface in the first timestep, theee#fie
Roe solver returns positive states. We have also run the-5-1-
testin Einfeldt et al. (1991); we find this test is less chadiag.

8.2. One-Dimensional MHD

Linear wave convergenceAs in hydrodynamics, the con-
vergence of errors in the propagation of linear amplitudeDVIH

waves is a sensitive test. For MHD waves, we use a uniform

medium withpo = 1, Py = 3/5,B = (1,v/2,1/2) andy = 5/3 in

a domain of sizé = 1. These choices give well separated wave

speedsC; = 2,Cax =1, andC; = 1/2 for the fast, Alfvén, and
slow magnetosonic speeds respectively. Exact eigenfunscti

for fast and slow magnetosonic, Alfvén, and contact waves fo
this background state are given in GS05. These are used to ini

tialize each wave family with amplitudé = 10°® and exactly

one wavelength in the domain. Figure 12 shows the norm of the
L, error vector for each wave family as a function of the numer-

ical resolution up to 1024 zones, using third-order requoiest

tion and the HLLE, HLLD, or Roe fluxes. The errors using the
HLLD or Roe fluxes are nearly identical, converge at second-
order, and are slightly lower than the HLLE fluxes. As before,

central scheme tested in Torrilhon (2003) is indicativeoafér
numerical dissipation.

RJ shocktube 2aRJ introduced a large number of MHD
shocktube problems as tests of a 1D algorithm they developed
Figure 14 shows the results for the problem shown in their fig-
ure 2a, which we refer to as the RJ2a test. Table 2 lists the
left- and right-states for this test, in additiBp= 2. The results
in figure 14 are computed using third-order reconstructiuth a
the Roe fluxes on a grid of 512 cells. This test is of particu-
lar interest because discontinuities in each MHD wave famil
are produced from the initial conditions, that is both lefitd
right-propagating fast and slow magnetosonic shocks, defd
right-propagating rotational discontinuities, and a echtdis-
continuity. The results in figure 14 show that Athena cagure
each of these discontinuities with 2-4 cells.

RJ shocktube 4dA second test introduced by RJ is shown in
their figure 4d, hereafter we refer to this problem as testiRJ4
The left- and right-states are given in table 2, wigh= 0.7.
The solution ats = 0.16 is shown in figure 15 computed with
third-order reconstruction and the HLLD fluxes. The problem
is interesting because it involves a switch-on slow rartéac
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and a slow shock. Although the HLLD solver does not include in LW: some codes produce it and others do not. However, we
the slow wave explicitly, figure 15 shows these features re a have found the jet is reliant on maintaining symmetry in the

captured well in the Athena solution using this solver. problem. In directionally-split algorithms, perfect syratry is
lost, and the collision of the jets in the lower left corneedo
8.3. Two-Dimensional Hydrodynamics not eject vortices along the diagonal. In dimensionallyplibs

algorithms such as the CTU method in Athena, the jet is gtearl

Double Mach reflection.Another classic test of hydrody- f d W lude the iet is th ¢ it and that it
namic algorithms introduced by WC, this problem follows the formed. VVe conclude tne jet IS the correct resull, and that |

oblique reflection of a Mach 10 shock in aif € 1.4). The in- is a sensitive test of symmetry. We consider @he preseivatio
teraction of the reflected and incident shocks producegl@ri of symmetry a further advantage of the unsplit integratsesiu

point, and between the resulting contact discontinuity ed n Athenf:, hov:c/?;]/erdt_he prlmaryf m0t|vat|(t)n fotr_thf/ll{_'lé)se e th
reflected shock a short jet is formed along the wall. The struc preservation otine divergence-iree constraint in f |

ture of this jet is very sensitive to the numerical diffusioh LW Rayleigh-Taylor instability testnother test introduced
contact waves. This test requires a time-dependent boyndar by LW in their 84.6 is the nonlinear evolution of a single mode

condition be applied along the top edge to follow the propa- of the sayleigh-Taylpr ilnstabiljty._ 'lfwodfluids, With dder::;:.
gation of the incident shock; this is easily achieved in Athe two and one respectively, are initialized at rest in a doneain

using function pointers. The problem is initialized follmgy size (xLy) = (1/3,1) with constant vertical gravitational ac-

the description in WC. Figure 16 shows contour plots of the so celeratior_g =0.1, and the heavier ﬂUi.d on top of the Iight.__The
lution att = 0.2 computed with both second- and third-order re- pressure is computed so that the fluids are in hydrostatie equ

construction, and at two different numerical resolutiofise H- lt'rt])r'w?’ }N'th th(_et SO_U;-](iS-ﬁZﬁeq ::'ql;al tobo?e n t?ﬁ I'tght fluid at
correction described in Appendix C is used for all the caleul € interface, withy =1.4. The interface between the two s per-

tions to reduce small amplitude noise in the postshock fldve T :urktJed W'.th a vg(;pcal vel()_;:|iyy = ?'Ols'n(?x)' R’Emtr;:n? this
low-resolution (260« 80) results (first and third panels) show estrequires agding gravitational Source terms o thetemsa

small but distinct changes in the jet between the recortstric of motion. In Athena, the source terms for a fixed gravitatlon
algorithms. The third-order reconstruction is slightlgdedif- pottle ntT|er1]I_are ?dde:d 'ntSl:ﬁh alwaytis to cc;nservi:]ottﬁl e{;fégy €
fusive. Comparison of the results with those in WC (their fig- actly, This extension to the algorithms, along wi e !
ure 4) demonstrate the differences between the Lagrangge-pl .Of self-g_ravny In a way that conserves total momentum dyact
remap version of PPM, and the direct Eulerian version imple- |s_d_esgr|bed_ in Gardiner & Stone (in prep_aratlon). W|t_hout €
mented in Athena. The results can also be compared with thosepl'c't viscosity, or surface_ tension at the mterface, the no
from ZEUS shown in figures 15 and 16 of Stone & Norman one correct solution to this pr(_)blem to which all C(_)des stoul
(1992a) converge. Instead, the resulting structure of the interfae-
LW irﬁplosion testLW have provided an extensive compar- tween the light and heavy fluids is sensitive to the numerical
ison of a wide variety of hydrodynamic codes using 1D and diffusion of the method, and to the numerical perturbations
2D problems (including some of the 1D problems presented in trOdl_Jped b_y the grid that seed secondary Kelvin-Helmhokz |
g§8.1). We have found the problem discussed in 8§4.7 in LW, stability. Figure 18 shows the results at titpe= 8.5 computed
hereafter the implosion test, to be one of the most infoneati ¥;"th Athenda usmg th]!rtzj(-)%ri%rc)spaltllal rlttacons'guctlon,lﬂld_gd_
It consists of initial states identical to the Sod shocktphsh- uxes, and a grid o cells. 1t can be compared di-

lem separated by a discontinuity inclined at 4%a 2D domain rectly to the results of other codes shown in figure 4.8 in LW.
of size (y.Ly) = (0.3,0.3) with reflecting boundary conditions The Athena solution shows more fine-scale structure tharyman

everywhere (a more precise description of the initial cbods other methods, b_Ut !ess than the _Lagr_ange-plus-remz_a_p PPM
and grid is given in LW). It produces a shock wave which ini- codes. Th.'s may indicate greater d|ﬁu3|on of contacts i-a d
tially propagates into the lower left corner, and a rarétact rect Eulerian PPM code like Athena}, or it may also indicate
which propagates in the opposite direction. Along the botto Fhe eff_e_ct 9f a contact steepener (which tends to seed more KH
and left-side walls, the initial evolution is nearly idegai to instability in multidimensions) in the other codes.

the double Mach reflection test described above. The jetgjalo . .
each wall produced in this interaction collide in the lowedt | 8.4. Two-Dimensional MHD

corner, and produce vortices which propagate outwardggalon  Circularly polarized Alfvén waves. Circularly polarized

the diagonal. In the meantime, a succession of reflectedkshoc Alfvén waves are an exact nonlinear solution to the equation
interact with the vortices and contact discontinuity, dirivthe of MHD. T2000 introduced the propagation of these waves as a
Richtmyer-Meshkov instability, and complex shock refleat sensitive test of dispersion properties of MHD algorithiAk.

and rarefactions (animations of the evolution, availalviete though such waves are subject to a parametric instabiligf (D
Athena web page, are useful for interpreting the evolution) Zanna et al. 2001), for the parameters adopted by T2000 no
Figure 17 shows contours of the density at two times (the sameinstability should be present. A complete description a$ th
two times shown in LW) for a solution computed using third- test, including the procedure for initializing the solutiat an
order reconstruction and the HLLC fluxes. The key result of oblique angle to the mesh, is presented in GS05. This test
the test is the production of the jet along the diagonal. \Wet  has proved extremely useful for developing Athena. Fig@e 1
this is the correct dynamics was left uncertain in the disicuns shows profiles of the waves after propagating 5 crossingstime
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as a function of resolution, computed using third-ordebrec
struction, the CS limiters, and the Roe fluxes, for both tinge

solid line for reference. This test does not seem to be extiyem
discriminating for MHD algorithms. (We consider linear veav

and standing waves. Dispersion error is seen to be importantconvergence (se€ §8.6), circularly polarized Alfvén waeesl

only at the lowest resolution, diffusion error generallyndo
inates (this is also true for the linear wave convergends tes
described in[&8]1 and &§8.2). Even with only 8 grid points per
wavelength, the wave profile is captured well with an ampli-
tude at least 0.8 of the original. With 16 or more grid points
per wavelength, the amplitude is better than 0.95 the aalgm
both cases. The CS limiter greatly improves the solutionwat |
resolution, as it prevents the clipping of extrema in the avav
profile. Figure 20 shows the norm of the kerror vector as

a function of resolution for traveling waves, after propéaua
one wavelength, for both second- and third-order recoastru

field loop advection to be more quantitative MHD tests.) The
most stringent comparison between methods is providedéy th
slices shown in figure 23. Finally, figure 24 plots contours of
the density, magnetic pressure, specific kinetic energgiten
and total pressurB* for an isothermal version of the Orszag-
Tang vortex test. Comparison to results shown previously by
Balsara (1998, see his figure 8) appear to show significant dif
ferences.

MHD Rotor. The test suite of Stone et al. (1992) contained
tests based on the propagation of nonlinear amplitude shear
Alfvén waves in 1D generated by rotating disks in axisymme-

tion. For comparison, the errors on both a 1D and 2D grid are try. Since analytic solutions are available for this proi|et

shown. In all cases, second-order convergence is evidéht, w
the 2D errors larger by a factor of about two.
Advection of a field loopThis test was introduced and dis-

was possible to provide quantitative measure of the errors i
ZEUS. (We have confirmed Athena reproduces these tests accu-
rately, with second-order convergence on the version ofetsie

cussed extensively in GS05; it consists of the advection of athat uses continuous initial conditions.) Following thgges-

circular field loop by a constant velocity inclined to thedyri
in a periodic 2D domain. For the CT algorithm, solving field
advection problems is non-trivial. This test demonstrétes
importance of constructing the line-averaged cornerereuqit

tion of Brackbill (1986), Balsara & Spicer (1999) introddce
a 2D version of this test consisting of a rotating disk lodate
in the plane of the computation, with an initial magneticdiel
perpendicular to the rotation axis. Strong rotational aligiz

emfs used by CT from the area-averaged face-centered elecnuities are generated in the field due to the shear at the sur-

tric fields returned by the Riemann solver using the techmiqu
outlined in §5.8 with the CTU integrator. Along with the airc
larly polarized Alfvén wave test described above, this best
been critical to the development of the algorithms. Figute 2
shows the magnetic field lines and contours of the out-afigla
component of the current densily= V x B after advection of

the loop twice around the domain. The current density is par-

ticularly sensitive to diffusion or oscillations in the fiel The

face of the disk, and shocks and rarefactions are produced by
the radial expansion of the disk due to unbalanced cenaifug
forces. We use the initial conditions as described by T2000.
We present results only for the problem labeled “Rotor Test #
1", as it involves higher initial velocities and is therefanore
difficult. No smoothing is used at the surface of the disk.- Fig
ure 25 shows contours of the density, pressure, Mach number,
and magnetic pressuretat= 0.15 on a grid of 400« 400 cells,

figure shows the CTU+CT algorithm in Athena preserves the computed using third-order reconstruction and the Roe $luxe
shape of the field loop extremely well. We have also checked Figure 26 plots slices of thg-component of the magnetic field

that if this test is performed with a uniformy # 0, the code
keepsB; = 0 to round-off error (provided it was zero to begin
with). As discussed at the beginning of secfibn 6, this corsfir
our formulation of CT preserves the appropriate discrétna
of the divergence-free constraint.

Orszag-Tang vortex.A 2D MHD test which has now be-
come a standard is the evolution of the vortex of Orszag &
Tang (1979). There is some confusion in the literature alséo t

taken along« = 0, and thex—-component of the magnetic field
taken alongy = 0. Of note is the near-perfect symmetry main-
tained in the solutions, with no oscillations. In partiqulzon-
tours of the Mach number remain concentric circles in the rar
efaction at the center all the way to the origin. Similarhet
slices show constant field strength within the central earef
tion, and sharp discontinuities.

Magnetic Rayleigh-Taylor instabilityTo show the effect of

time at which comparisons between solutions are made. Themagnetic fields on the nonlinear evolution of the 2D RT in-

results shown here are computed with constant initial diessi
and pressurey = 25/(36r) andP, = 5/(12r), in a periodic do-
main of size [,Ly) = (1,1), with an initial velocity ¢,v) =
(=sin(2ry), sin(2rx)), and a magnetic field computed from the
vector potentiakh; = (By/4w) cos(4rx) +(Bo/2m) cos(2ry), with

Bo = 1/v/4x. Figure 22 shows contour plots of the density, pres-
sure, magnetic pressure, and specific kinetic energy geasit
time t; = 1/2 computed on a grid of 192 192 cells, which
can be compared directly to the results in, e.g., T2000 ame ti
of t; = . Of particular note is the symmetry in the solutions.
Figure 23 shows horizontal slices of the pressung=20.3125
andy = 0.427 (shown by the horizontal lines in the upper right
panel of figure 22), with the solution on a F1grid shown as a

stability, and to demonstrate the use of AMR with Athena,
figure 27 shows the results of a single mode RT instability
computed with 5 levels of refinement. A base grid of 86
cells is used, giving an effective resolution on the finesd gr
of 256x 512. The parameters for this calculation are not iden-
tical to those used for the LW hydrodynamic RT test shown
in figure 16. In particular, for the MHD test we use a do-
main of size [, Ly) = (0.1,0.2) with g = 0.1, an adiabatic index
~=5/3, and densities in the light and heavy fluidspf 1 and

pn = 3 respectively. The magnetic field is initially uniform and
horizontal, with initial amplitudeBy compared to the critical
valueB; = [Lg(ph - p1)]Y2 = 0.14 which suppresses instability
of Bp/B; = 0.05. The figure shows the distribution of a passive
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contaminant advected with the flow at a final tippe 3 in order 200 cells. The inner boundary condition in each dimension is
to show mixing, as well as the grid levels used in the AMR cal- reflecting. At the outer boundary the density is evolved eatco
culation. For reference, the identical calculation bubhwiit the ing to the analytic solution for the preshock flow, the radi
magnetic field is shown as well. Note the suppression of sec-locity is held fixed at;, = -1, and the entropy is evolved identi-
ondary KH instabilities at the interface in the MHD case. An cally to the density, i.eP(Rg, t) = Po(1+t/Rg)**"), whereRg is
extensive discussion of the nonlinear evolution of the neéign  the spherical radius of the boundary. Figure 31 shows costou
RT instability is presented in Stone & Gardiner (2007a; 2007  of the density at =t; computed using second order reconstruc-
The use of an AMR grid is very efficient for this problem, since tion, the Roe flux, and the H-correction (see Appendix C) eNot
the refinement is predominantly required near the interface  the contours are smooth and spherical, with virtually nsaoi
Blast wave in a strongly magnetized mediuin. order to in the postshock gas. Also shown is a scatter plgi(of ver-
demonstrate the propagation of strong MHD shocks in multi- susr for every eighth grid cell in the computation. The solution
dimensions, we show the results of an MHD blast wave prob- has the correct density jump and shock speed. The smakscatt
lem. Many authors have performed similar versions of tlégte  behind the shock demonstrates that with the H-correcttom, t
we adopt the initial conditions used in Londrillo & Del Zanna shock remains sharp, smooth, and spherically symmetriar Ne
(2000). The results are shown at tilge= 0.2 in figure 28 using the origin, the small dip in the density is a signature of wall
a domain of sizel(y,Ly) = (1,3/2) with a grid of 200x 300 heating (Noh 1987). These plots can be compared to figure 4.7
cells, third-order reconstruction, and the HLLC (hydrodan in LW, who ran the same test but in 2D cylindrical symmetry.
HLLD (MHD) fluxes. The top row shows contour plots froma Only a few of the algorithms tested by LW were able to run the
hydrodynamic version of this test, while the lower row shows test at all. The 3D results shown in figure 31 are similar to the
the MHD results with an initial magnetic field inclined at*4® best result in LW (for PPM). Without the H-correction, Atleen
the grid 8 = (Bo/v/2,Bo/+/2) whereBy = 1. By using periodic  still runs this test but the shock develops strong pertizhat
boundary conditions, the flow becomes more complex as thealong the grid directions, similar to but somewhat strorigan
outgoing blast wave re-enters the grid on the opposite ait®,  those evident in the results for the VH-1 code shown in LW.
interacts with the contact discontinuity that bounds thacewv Finally, at low resolutions (less than Qthis test can cause
ated bubble at the center. Figure 29 shows the resylt=t for Athena to crash when the Roe solver is used, even with the H-
both the hydrodynamic and MHD problem. Note the CTU in- correction, unless the CFL number is reduced.
tegrator preserves perfect symmetry (most noticable ifithe
gers at the contact discontinuity generated by the Richtmye 8.6. Three-Dimensional MHD
Meshkov instability in the unmagnetized problem). Alsoenot
the magnetic field suppresses the R-M instability (Wheattey
al. 2005). Finally, figure 30 plots contours of the MHD blast
problem using an isothermal equation of state and Bgth 1
(top row) andBy = 10 (bottom row). The plasma= 2P/B? =2
for Bp = 1, andg = 0.02 for By = 10 in the external medium
initially. GS05 shows results for adiabatic MHD wiBy = 10.
This problem demonstrates the CTU+CT algorithm is robust
for low—3 flows.

Linear wave convergenci/e have argued that tests of MHD
codes must be multidimensional, yet the most quantitagisest
generally involve plane-wave (1D) solutions. Sensitivetmu
dimensional tests can be constructed by simply inclinirgy th
plane wave to the grid at an arbitrary angle. Here, we measure
the convergence rate of Athena for each MHD wave family in
3D by initializing a plane waves solution at an oblique angle
to a grid of size I(x,Ly,L;) = (3,3/2,3/2), using the same ini-
tial conditions as in the 1D test described[in 8.2 and a gitid w
resolution of 2l x N x N cells, withN =4,8,16,32,64 and 128.
The angle of the wavevector is chosen so that it does not lie

Noh’s strong shockAs a fully 3D hydrodynamical test, we  along the diagonal of a grid cell, that is there are no symiesetr
present results from the strong shock test described by Nohin the fluxes in any direction. Details of the initializatiohthis
(1987). This is a very difficult test. A unifornpg = 1), cold problem in 3D, which requires care to prevent grid noise glon
(P =0) medium converges in a spherically symmetric radial in- the wave front, are given in GS08. Figure 32 shows the norm of
flow v, = -1 onto the origin. This generates a very strong (for- the Ly error vector for each wave family using both second- and
mally, M = o) spherical shock wave which propagates away third-order reconstruction computed with the HLLD solees,
from the origin at constant velociys = 1/3. Due to the spher-  a function of resolution along,. For comparison, the errors
ical convergence, the preshock density increases evergwine  for this same problem in 1D are shown as a dashed line. Again,
time according too(r,t) = po(1+t/r)2. However, the density ~ we see second order convergence in all wave families. The am-
immediately upstream of the shock location is always 16s thu plitude of the errors in the fast wave are higher than the & ca
the postshock gas is uniform with= 64 fory =5/3. A similar by about a factor of two, but for all other waves the errors are
test is often run in planar (1D) and cylindrical (2D) symmyetr  comparable. The fact that the errors in 3D are not signifigant
however when run with a Cartesian grid the 3D test presentedlarger than those in 1D reflects the fidelity of the multidimen
here is probably the most difficult. In practice Athena catreo sional CTU+CT algorithm.
run with pressure identically zero, thus initially we Bgt 1076 Circularly polarized Alfvén wavesNe initialize a 1D plane
everywhere. The problem is run uritil= 2 in a domain of size ~ wave solution corresponding to the parameter values given b
(Lx,Ly,Lz) = (1,1,1) computed only in the positive octant with  T2000 on a grid of sizel{,Ly,L;) = (3,3/2,3/2), with the

8.5. Three-Dimensional Hydrodynamics
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wave front oblique to the grid, following the procedure give
in GS08. The technique for initializing the wave solution at
an oblique angle is similar to that used above for linear wave
Figure 33 plots profiles of the traveling wave at differerd-re
olutions using third-order reconstruction, the CS linsteand
the HLLD fluxes. Also shown are the norm of the krror
vector computed using both second- and third-order renast
tion. These results can be compared directly to the 2D iesult

a strongly magnetized medium. The initial conditions aenid
tical to those given in[§8l4, the only difference being that w
run the problem on a 3D grid of sizé&Ly,L;) = (1,1.5,1),
with 200x 300x 200 grid points. Figure 36 shows slices of the
density and magnetic pressure takeh=a0.2 computed using
the HLLD solver and third-order reconstruction. The prignar
difference in the solution compared to 2D is that the sizédef t
bubble grows more slowly in 3D, due to the increased adiabati

shown in Figure 19. Once again, the solution in 3D compares cooling in 3D diverging flow. The contours are all symmet-

extremely favorably with the 2D solution, for example the L
errors are nearly identical to the 2D errors for an adialestia-
tion of state.

Advection of a field loopOn a 3D grid, we have found there
are two challenging versions of this test that can be attedhpt
The first is the 3D analogue of the test describedin]&§8.4j¢hat
a cylindrically symmetric field loop witB, = 0, but with a con-
stant advection velocity along the grid diagonal so that O.

As discussed in[86, the numerical algorithm should maintain

B, =0, which can only be achieved if the code maintains the bal-

ance between the two nonzero terms inzheomponent of the
induction equation, that i&(0By/9x+9By/dy) = 0. In turn, for
constanty,, this requires the code to maintain the divergence-
free constraint properly. Since the 3D CTU+CT algorithm in

Athena has been designed to reduce exactly to the 2D version

for problems with symmetry iz, we obtain the identical re-
sults for the profile of the field loop in an-y slice in this test

as shown in figure 21. Moreover, we confirm that Athena main-
tainsB, = 0 to round-off. A second sensitive testis to incline the
field loop at an oblique angle to the grid, and advect it with a
velocity along a perpendicular diagonal (see GS08 for Egtai
The resulting current density after advecting the loop éwic
around the grid for both second- and third-order reconstmc

is shown in Figure 34 for a grid of sizé,(Ly,L;) =(1,1,1)
with 128° grid points, and the HLLD fluxes. In this case, the
component of the field along the axis of the cylinder should re
main zero. Although it is not possible to enforce this caaistr

to round-off error (as was the case when the axis of the field

loop is parallel to a grid direction), nonetheless we find tha
this component is zero to truncation error (see GS08).

MHD shocktube inclined to the gridTo demonstrate the
ability of the 3D algorithm to capture shocks and discontinu

ities that propagate at an oblique angle to the mesh, we have0
repeated the RJ2a test described[in188.2 on a 3D grid of sizey

(Lx,Ly,Lz) = (3/2,1/64,1/64), with the initial discontinuity
oblique to the grid, using a mesh of 768 x 8 grid points.
This gives an effective resolution along the direction afch
propagation which is equivalent to the 1D test. Initialgziihe
discontinuity so as to avoid introducing waves transvertbé
interface requires care: for more detail see GS08. Thetsgsul
at a time ofty = 1 for the HLLD fluxes and second-order recon-
struction, are shown in Figure 35. Note that in 3D, each of the
shocks, contact and rotational discontinuities have begn ¢
tured; there is excellent agreement between the profilesrsho
in figure 35 and the equivalent 1D profiles shown in Figure 14.
Blast wave in a strongly magnetized mediuks. a final 3D
test, we follow the growth of a strong, spherical blast wave i

ric and smooth, with no visible asymmetries introduced lgy th
grid.

9. SUMMARY

We have described Athena, a new code for astrophysical
MHD. The code implements algorithms based on higher-order
Godunov methods, with a finite-volume discretization toleso
volume-averages of the mass, momentum, and total energy den
sity, and a CT algorithm (finite-area) discretization to leeo
area-averages of the face-centered components of the tiagne
field. This combination conserves the total mass, momentum,
energy, and magnetic flux through the grid exactly. Such con-
servative algorithms are an essential ingredient of AMRmmet

The mathematical foundation of the 2D and 3D algorithms
in Athena are described more fully in GS05 and GSO08. In this
paper, we have focused on the detailed implementation of the
methods into a functioning computer code. Step-by-step de-
scriptions are provided of the multidimensional integrdto
MHD in 2D and 3D (based on the CTU algorithm of Colella
1990), the 1D reconstruction algorithms (based on an exten-
sion of the PPM algorithm of CW to multidimensional MHD),
and a variety of 1D Riemann solvers used to compute upwind
fluxes. We have emphasized the importance of using dimen-
sionally unsplit integrators for MHD, the advantages ohgsi
the staggered grid formulation of CT (which requires tech-
nigues for constructing edge-averaged, corner-centerdd e
from area-averaged face-centered electric fields retuimdioe
Riemann solver), and the need to test MHD codes with multi-
dimensional problems in order to reveal errors associatdd w
the divergence-free constraint.

An extensive series of test problems in 1D, 2D, and 3D for
oth hydrodynamics and MHD have been presented. These
ests, and others published on the web, should be usefuhto ot
ers developing and testing codes for astrophysical MHD. The
tests show Athena is second-order accurate in space and time
for smooth solutions in all MHD wave families, even in multi-
dimensions. We have shown that an advantage of directjonall
unsplit methods is that they preserve symmetries inhenghti
flow. The 2D CTU+CT method described here reduces identi-
cally to the 1D algorithm for plane-parallel grid-aligneavfis.
Similarly, the 3D CTU+CT method reduces exactly to either
the 2D or 1D methods for plane-parallel, grid-aligned floass,
cording to the appropriate symmetry. We have exploited such
symmetries to design a sensitive test of the appropriateiste
for maintaining the divergence-free constraint. A planeldfi
loop, advected in a fully 3D velocity field, must remain plana
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Since the evolution of the component of the field normal to the
plane of the loop is governed by a term proportionartd, the

Athena has moved beyond the developmental phase, and is
now being used for a variety of applications, including stud
loop will only remain planar if the divergence-free consttés ies of the MRI in the shearing box (Gardiner & Stone 2006),
satisfied exactly on the appropriate stencil. colliding winds in close binaries (Lemaster et al. 2007}, de

In addition to the CTU+CT integrator described in this pa- cay of hydrodynamical turbulence in the shearing box (Shen
per, an unsplit integrator based on the method described byet al. 2006), the magnetic Rayleigh-Taylor instability i
Falle (1981) and similar to the MUSCL-Hancock scheme de- & Gardiner 2007a; 2007b), shock interactions with mageetiz
scribed by van Leer (2006) has been implemented in Athena.clouds (Shin et al. 2007), and the decay of supersonic turbu-
The details of this VL+CT method, including tests in 3D and lence in magnetized molecular clouds (Lemaster & Stone, in
comparisons to the CTU+CT method described here, are givenpreparation).
in SGO08. The Athena code has been made publicly available, and can

The primary motivation for developing Athena has been the be downloaded from the web, along with extensive documenta-
need to adopt static and adaptive mesh refinement (SMR andion. Additional test problems beyond those presented &ere
AMR) to resolve flows over a wide range of length scales in also described on the web. We are confident that Athena will
various astrophysical applications of interest in our aesle become the workhorse for our own applications; it is hopat th
groups (such as magnetized accretion flows, and gravitdtion the description of the algorithms provided in this papewngl
collapse and fragmentation in dense phases of the ISM) # §8. with the public version of the code provided on the web, will
we have shown the results of tests of AMR calculations of be useful to others for solving many problems in astroplajsic
the Rayleigh-Taylor instability with Athena. Both SMR and fluid dynamics.

AMR add considerable complexity to the algorithms, reangri

special care to conserve mass, momentum, enargymag- We have benefited from discussions with many people dur-
netic flux at fine/coarse grid boundaries. The implementatio ing the development of Athena; in particular we would like to
of SMR and AMR with the CTU+CT integrator in Athena will  acknowledge Phil Colella, Charles Gammie, Mark Krumholz,
be given in a future communication. Nicole Lemaster, Eve Ostriker, and lan Parrish for their in-
Other extensions to Athena include adding gravitational put. Development of the Athena code was initially supported
source terms for both a static gravitational potential aglft s by the NSF ITR program. JS thanks the Royal Society for fi-
gravity (Gardiner & Stone, in preparation), the shearing bo nancial support through the Wolfson Research Merit scheme
(Gardiner & Stone 2006), anisotropic heat conduction (Par- during 2002-2003. Additional support was provided by the
rish & Stone 2005; 2007), and transfer of ionizing radiation DOE through DE-FG52-06NA26217. Simulations were per-

(Krumholz etal. 2007). Many more are either underway (curvi
linear coordinates, relativistic MHD, full transport ration
MHD), or planned for the future.

formed on the Teragrid cluster at NCSA, the IBM Blue Gene at
Princeton University, and on computational facilities popied
by NSF grant AST-0216105.
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TABLE 1
PERFORMANCE OF ATHENA IN 3D ON A 2.2 GHz OPTERON PROCESSOR

physics Roe solver HLLC solver HLLD solver
isothermal hydro 328 340 -
adiabatic hydro 224 242 -
isothermal MHD 108 - 124
adiabatic MHD 85.9 - 97.6

! measured in thousands of cell updates per cpu second.

TABLE 2
LEFT- AND RIGHT-STATES FOR1D RIEMANN PROBLEMS

Test oL VL Wi VoL P By By PR WrR WRrR VR Pr Byr B.r
Sod 1.0 0 0 0 1.0 - - 0.125 0 0 0 01 - -
Shu-Osher  3.857143 2.629369 O 0 10.3333 - - +02sin(5rx) 0 0 0 1 - -
Einfeldt-1203 1.0 -2.0 0 0 0.4 - - 1.0 20 0 0 04 - -
Brio & Wu 1.0 0 0 0 1.0 1.0 O 0.125 0 0 0 01 -1.0 0
Torrilhon 1.0 0 0 0 1.0 1.0 0 0.2 0 0 0 0.2 cos(3) sin(
RJ2a 1.08 1.2 0.01 0.5 0.95 36 2 1 0 0 0 1 4 2
RJ4d 1 0 0 0 1 0 0 0.3 0 0 1 02 1 0
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Fic. 1.— (eft) Centering of volume-averaged conserved variablemd area-averaged components of magnetic Betoh the grid. (ight) Centering of time-
and area-averaged components of the fluxdd,@nd the time- and line-averaged emfs on the grid.
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FiG. 2.— (left) An example of piecewise linear reconstruction of consemagthbles within each cell to compute the left- and rigltes that define a Riemann
problem at the cell interface. The slopes chosen within eatttare determined by limiters which depend on neighboceliycenter values (not shown) designed
to prevent the introduction of new extremaght) Schematic solution of an MHD Riemann problem in spacetitnesisting of six intermediate states bounded by
the maximum and minimum wavespeeds. The flux through thefaet is the time integral of the solution along the vertloed X = x;_1 >, in this case given by the
quantities in state. In MHD, some characteristics can be degenerate, meanighig number of intermediate states depends on the problem.
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FiIG. 3.— Flow chart for integration in 1D. The dashed box groupxfions that are part of the 1D integrator (described 1d)g4.
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FIG. 4.— Flow chart for integration in 2D. The dashed box groupwfions that are part of the 2D integrator (describdd il. S hese steps are schematic, with
many details omitted. The flow chart for the 3D integratorinisilr.
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Weak Scaling on Red Storm
X = (cells communicated / cells integrated)
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FiG. 6.— Weak scaling of the efficiency of Athena on a Cray XT-dngsgyrids with either 32 (blue lines), or 62 (red lines) cells per processor, and either
one (SN) or two (VN) processors per node. The quantityeasures the ratio of the number of cells communicated taduh&er updated per MPI process. The
efficiency remains flat well beyond 4@rocessors, indicating excellent weak scaling.
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and the HLLC fluxes.
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Fic. 14.— Density, pressure, total energy, all three companefwelocity, transverse components and rotation adigtetari (B, /By) of the magnetic field for
the MHD Riemann problem RJ2atat 0.2, computed with 512 grid points, third-order spatial restauction, and the Roe fluxes.
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Fic. 15.— Density, pressure, total energy, all three companefwelocity, transverse components and rotation adigtetari (B, /By) of the magnetic field for
the MHD Riemann problem RJ4dtat 0.16, computed with 512 grid points, third-order spatial restauction, and the HLLD fluxes.
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FiG. 16.— Contours of the density &= 0.2 for the double Mach reflection test. From top to bottom, thi@tions are computed with second order spatial
reconstruction at low and high resolution, and third orgetigl reconstruction at low and high resolution. Here, teaolution uses a grid of 26080 cells, and
high resolution uses a grid of 530160 cells. All solutions are computed with Roe fluxes and theoktection.
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FiG. 17.— Contours of the density &t 0.045 (eft) andt = 2.5 (right) for the implosion test of Liska & Wendroff. In each case, ®htours are shown using a
stepsize of 0.025, starting at a minimum value of 0.12% £0.045) and 0.35 (at= 2.5). The solution is computed using third order spatial retmttion and the
HLLC fluxes, on a grid of 40 400 cells.



39

.'I . . '.l'.
2ol 3
[ s S o
| —n - - —
[ | 4 |
1 A [} 1
] 0 I| i i
fi I b |
I-\. .-"-lllllll Iy L] Illll..:::."-\. -
—i! E L4 ._."l "-'. ' J
* b
.'I i
-.. .H.- -
—ib4 1
LLL L1 IIII IIIIIII L
N N N A N

FiG. 18.— Color imageléft) and contoursr{ght) of the density at = 8.5 in a single mode hydrodynamic Rayleigh-Taylor instapilit 2D. Only a single contour
is shown aip = 1.5 in order to trace the contact discontinuity between theyaad light fluids. Colors in the image correspond to densityes of 0.9 (purple) to
2.1 (red). The solution is computed using third order spegieonstruction and the HLLC fluxes on a grid of 20@00 cells.
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Fic. 19.— Profiles of the transverse component of the magnetit (igbelled B2) for both traveling left) and standingr{ght) circularly polarized Alfvén
waves, at a time equal to five wave periods, computed on a gitid2M x N cells, whereN = 64 (solid line), 32 (dotted), 16 (dashed line), 8 (dot-diésd), and 4
(dot-dot-dot-dashed line). Each solution is computedgitiird order spatial reconstruction and the Roe fluxes.
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FiG. 20.— Convergence of the norm of the &rror vector for traveling circularly polarized Alfvén wes, after propagating a distance equal to one wavelength,
using an isothermal equation of state. Points marked byrsguenote second order spatial reconstruction, triamtgieste third order spatial reconstruction. The
solid lines are solutions computed in 1D, the dotted linessautions computed in 2D. The dashed line shows the norimeokt error vector for a 2D solution
using second order spatial reconstruction computed withdéabatic equation of state. Also shown is a dashed line slathe -2 for comparison.
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F1G. 21.— Magnetic field linesléft) and contours of the-component of the current densityght) att = O (top row) and at = 2 after advection of the loop twice
around the grid (bottom row). The solution is computed usiagond order spatial reconstruction with the Roe fluxes ardao§256 x 128 cells.
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FIG. 22.— Contours of selected variabledsat 1/2 in the adiabatic Orszag-Tang vortex test, computed usgrglaf 192x 192 cells, third-order reconstruction,

and Roe fluxes. Thirty equally spaced contours between thémaim and maximum are used for each plot. The horizontak linghe panel showing pressure
correspond to the locations of the slices shown in figure 23.
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FiG. 23.— Horizontal slices of the pressuretat= 1/2 in the adiabatic Orszag-Tang vortex test takery at0.3125 (op) andy = 0.427 (potton). Squares
correspond to the solution on a 192192 grid, while the solid line is for a 522yrid.
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FiG. 24.— Contours of selected varlablesfat 1/2in the isothermal Orszag-Tang vortex test, computed La;g'rgj of 192« 192 cells, third-order reconstruction,
and Roe fluxes. Thirty equally spaced contours between thermaim and maximum are used for each plot.
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FiG. 25.— Contours of selected variablest@t 0.15 in the adiabatic rotor test, computed using a grid of 4@MO0 cells, third-order reconstruction, and Roe
fluxes. Thirty equally spaced contours between the minimadhraaximum are used for each plot. The horizontal and véfiress in the panel showing magnetic
pressure correspond to the locations of the slices showgunefi26.
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FiG. 26.— Horizontal slice oBy taken aty = 0 (top), and vertical slice 0By taken atx = O (botton) att; = 0.15 in the rotor test. The solid line is the same data as
the squares.
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FiG. 27.—(Left) Grayscale image of the concentration of a passively-addembntaminant at late time in the magnetic Rayleigh-Tayistability. (Right) Grid
blocks used to resolve the interface using AMR. The bottomsbows the same quantities, but for a calculation in whiehnfagnetic field strength is zero (i.e.,
hydrodynamics).
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FiG. 28.— Contours of selected variablessat 0.2 in the adiabatic blast wave test, computed using a grid @%2800 cells, third-order reconstruction, and either
HLLC (hydrodynamics, top row) or HLLD (MHD with initiaBg = 1, bottom row) fluxes. Thirty equally spaced contours betwihe minimum and maximum are
used for each plot.
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FiG. 29.— Contours of the density gt= 1 in the hydrodynamic (left) and MHD (right) adiabatic hléest. Fifty equally spaced contours between the minimum
and maximum are used for each plot.



51

DEMEITY SPECIFIC KINETIC EMERGY WACNETIC ENERCY

DENSITY SPECIFIC RINETIC ENERGY NACHETIC ENERGY

L 1 L 1 L 1

FiGc. 30.— Contours of selected variablesat 0.2 in the isothermal blast wave test, computed using a grid6£2300 cells, third-order reconstruction, and
HLLD fluxes. The top row corresponds to an initBj = 1, while the bottom row uses an initiBh = 10. Thirty equally spaced contours between the minimum and
maximum are used for each plot. Outgoing waves have alreadged and re-entered the domairt by0.2 in the strong field case, thus the contours in the ambient
medium are due to interaction of these waves rather thaiiatiris introduced by the algorithm.
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FiG. 31.—(Left.) Contours of the density in the spherical hydrodynamical obng shock test &t= 2. Thirty-one equally spaced contours betwpen4 and
64 are shown(Right.) Scatter plot of the density versus spherical radius=a2.
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FiG. 32.— Convergence in the norm of the &rror vector for fast, Alfvén, slow, and contact waves aft@pagating a distance of one wavelength at an oblique
angle across a 3D grid of sizé&l2x N x N.. Solutions are computed using the HLLD fluxes, and eitheorsa-order (solid line) or third-order (dashed line) salati
reconstruction. The dotted line shows the errors for seacwddr spatial reconstruction in 1D for reference.
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FiG. 33.— (Top) Profiles of the transverse component of the magnetic figltrédweling circularly polarized Alfvén waves, at a time adjto five wave periods,
computed on a grid with!? x N x N cells, whereN = 64 (solid line), 32 (dotted), 16 (dashed line), and 8 (dadtdline). Each solution is computed using third
order spatial reconstruction and the HLLD fluxeBoftom) Convergence of the norm of theg lerror vector for traveling circularly polarized Alfvén wes, after
propagating a distance equal to one wavelength, for secaiet-(solid line) and third-order (dashed line) spatiabrestruction.
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FiG. 34.— Current density in an inclined field loop being adveatng the diagonal of a 3D grid gt= 2 (after twice around the grid). The left panel shows the
solution for second-order reconstruction, the right farcttorder.

Fic. 35.— Slice through a 3D grid of selected variables for th@aRshocktube initialized with the interface oblique to thiel@tt = 0.2. This is a fully 3D
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SITY MAGNETIC ENERGY

JER

Fic. 36.— Contours of selected variablestat= 0.2 in a 2D slice in thex—y plane atz= 0 (through the center of the grid) in the 3D adiabatic blagvev
test, computed using a grid of 260300 200 cells, third-order reconstruction, and the HLLD flux&hirty equally spaced contours between the minimum and
maximum are used for each plot.
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APPENDIX
EIGENSYSTEMS IN THE PRIMITIVE VARIABLES

This appendix gives explicit forms for the eigenvalues aigeémvectors of the matriA resulting from linearizing the dynamical
equations a¥V; = A(W)W 4, whereW is a vector composed of the primitive variables in 1D. Thegeresystems are needed to
convert between the primitive and the characteristic ekin the reconstruction algorithms describedinlg4.2.

Adiabatic Hydrodynamics

For adiabatic hydrodynamic#/ = (p, vx, Wy, v, P), and the matrid is

%« p 0 0 0
0 w 0 0 1/p

A=| 0 0 vw 0 0 [, (A1)
0 0 0w O
0 pa2 0 0

wherea? = vP/p (ais the adiabatic sound speed). The five eigenvalues of thisxirmascending order are

A = (Vx—a, Vy, Vy, Vi, Vg +@). (A2)
The corresponding right-eigenvectors are the columnseofrthtrix
1 1 00 1
-a/p 0 0 0 a/p
R= 0O 010 0|, (A3)
0O 001 O
a 0 0 0 @
while the left-eigenvectors are the rows of the matrix
0 -p/(2a) 0 0 1/(2a9)
1 0 0 0 -1/a?
L=| 0 0 10 0 . (A4)
0 0 01 0
0 p/(2a) 0 0 1/(229)

Isothermal Hydrodynamics
For isothermal hydrodynamic®/ = (p, vy, Wy, V), and the matrid is

vw p 0 O
_ | Cp w 0 0
A1 700 0 w 0| (AS)
0 0 0 w
whereC is the isothermal sound speed. The four eigenvalues of thfgxrin ascending order are
A= (V= C, v, Wy, W +C). (AB)

The corresponding right-eigenvectors are the columnsefthtrix given in equation (A3), with the second column anith fibw
dropped. The left-eigenvectors are the rows of the matrix

1/2 -p/(2C) 0 O
_ 0 0 10
L=1 o o 01 (A7)
1/2 p/(2C) 0 O
Adiabatic Magnetohydrodynamics
For adiabatic MHDW = (p, Vy, i, V7, P, by, b,), whereb = B/v/4r, and the matriA is
[vw p 0 0 0 0 0 7
0 w 0 0 1p by/p byp
0 0 w O 0 -b/p 0
A= 0 O 0 w O 0 -by/p | . (A8)
0 pa2 0 0 v 0 0
0 b, -by O 0 Vi 0
L 0 bz 0 _bx O 0 Vx i
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wherea? = yP/p. The seven eigenvalues of this matrix in ascending order are
A = (W= Ct, Vx = Cax, Vx = Cs, Vx, Vx + Cs, Vi + Cax, Vi +Cs) (A9)
where the fast- and slow-magnetosonic wave speeds arelgjven

o= 3 ([a ] 4o+, (A10
(with C¢[C4] given by the+[—] sign). The Alfvén speeds are given by
CR = (b{+b{+b5)/p, CRe=b5/p. (A11)
The corresponding right-eigenvectors are the columnseofrthtrix
[ pag 0 pas 1 pas 0 pat
—Cff 0 _Css 0 Css 0 Cff
Qsﬁy _5z _Qf 5y 0 Qf 5y 5z _Qsﬁy
R= Qsﬁz ﬁy _Qfﬁz 0 Qfﬁz _ﬁy _Qsﬁz s (A12)
palos 0 palas 0 palas 0 palos
Asﬁy _518\/5 _Afﬁy 0 _Afﬁy _518\/5 Asﬁy
L Asﬁz 5ys\/ﬁ _Afﬁz 0 _Afﬁz ﬁys\/ﬁ Asﬁz |
whereS= signy), and
Ctt =Cray, Css=Csars, (A13)
Qf =CtatS Qs =CsasS, (A14)
Af = aas \/ﬁ, A= aas\/ﬁ, (A15)
2_2 C2-g2
2_a —Cg 2_ ~f
Ot C% _Csz ’ Qg C% —CSZ ’ (A16)
D B, = bz (A17)

BY \/m’ \/@

In the degenerate case whé&e=Cay = a, so thatC; =C;, then equation (A16) becomeas = 1 andas = 0. The left-eigenvectors are
the rows of the matrix

[0 —NiCrr NiQsBy NiQsfz Nrag/p  NiAsBy/p  NiAsB/p ]
0 0 —3./2 By/2 0 -3:5/(2/p)  ByS/(2y/p)
0 —NCss _NsQfﬁy -NsQ+ 3, Nsas/p _NsAfﬁy/P _NsAfﬁz/P
L=] 1 0 0 0 -1/a? 0 0 , (A18)
0 NsCss NsQfﬁy NsQ¢ 3, Nsas/p _NsAfﬁy/P _NsAfﬁz/P
0o 0 Bof2  =By)2 0 -BS/2yp) 5S/(2yp)
L O NiCsr -NfQsfy -NiQsf; Nras/p  NiAsBy/p  NiAsB/p |
where 1
Nf = Ns = E (Alg)
are normalization factors for the eigenvectors corresprgtth the fast- and slow-magnetosonic waves respectively.
Isothermal Magnetohydrodynamics
For isothermal MHDW = (p, i, Vy, Vz, by, b,), whereb = B/+/4r, and the matriA is
vww p O 0 0 0
C¥p ww 0O 0 by/p byp
_ 0 0 w 0 —bp 0
Al 0 0 0 w0 by | (A20)

0 b -b 0 % 0
0 b, 0 -b O Vi

The six eigenvalues of this matrix in ascending order are
A = (V= Ct, Vx = Cax, Vx = Cs, Vx + Cs, Vi + Cax, Vx + Cs), (A21)
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where the fast and slow-magnetosonic wave speeds are givequation (A10) (witha replaced by the isothermal sound spékd
here and throughout), and the Alfvén speeds are given bytieg@11). The corresponding right-eigenvectors are thlemns of
the matrix given in equation (A10), with the fifth row and fthucolumn dropped. The left-eigenvectors are the rows ofrtatrix

NiaiC?/p -NiCit  NiQsBy  NiQsB:  NiAsBy/p  NiAsB/p
0 0 —2/2 By/2  =B:5/(2\/p) ByS/(2y/p)
NSOKSCZ/P “NeCss  —NsQs ﬁy “NsQsB,  —NsAs ﬁy/P —NsAs 5z/p (A22)
NSaSCZ/ P NsCss NsQfﬁy NsQ+ 3z _NsAfﬁy/ P _NsAfﬁz/ p |’
0 0 Be/2 =By/2  =B3:S/(2\/p) BS/(2\/p)
NrasC?/p  NiCtt  -NiQsBy -NtQsBz  NiAsBy/p  NiAsB:/p
where

1
Nf = Ns = @ (A23)

are normalization factors for the eigenvectors correspmt the fast- and slow-magnetosonic waves respectively.

EIGENSYSTEMS IN THE CONSERVED VARIABLES

This appendix gives explicit forms for the eigenvalues aigeémvectors of the matriA resulting from linearizing the dynamical
equations a¥); = AU 4, whereU is a vector composed of the conserved variables. Thesessigfems are needed to construct the
fluxes of the conserved guantities using Roe’s method (s&&84

Adiabatic Hydrodynamics
For adiabatic hydrodynamicd,= (p, pvx, pVy, pV7, E), and the matrid is
0 1 0 0 0
VEHyVP2 (=3 Yy e
A= —ViVy Vy Vy 0 0 (B1)
—VxVz Vz 0 Vi 0

“WH +9' VW2 /2 —yV2+H =y =y v
where the enthalpyd = (E+P)/p, V> =v-v, andy’ = (y-1). The five eigenvalues of this matrix in ascending order are
A = (V= a, Vy, Vx, Vy, Vx + @), (B2)
wherea? = (y-1)(H -v?/2) =yP/p (ais the adiabatic sound speed). The corresponding rigletigartors are the columns of the
matrix

1 0 O 1 1
w—a 0 0 w Vg +a
R= Vy 1 0 v vy ) (B3)
Vo 0O 1 v V.

yA
H-wa v v, V?/2 H+wa

The left-eigenvectors are the rows of the matrix
Na(’Y/VZ/ 2+wa) -Na(y'w+a) —Nay'vy —Nay'vz  Nay/

—Vy 0 1 0 0
L= -V, 0 0 1 0 , (B4)
1-Nay'V2 7'y /@ W’Vy/a2 Vv, /a2 /a2

Na(’Y/VZ/ 2-v@) —Na(v'w—a) _Na’Y/Vy “Nav'v;  Nay/
whereN, = 1/(2a%). These are identical to those given by Roe (1981), excepse¢isond and third eigenvectors (corresponding to
the transport of shear motion) have been rescaled to avaidilsirities.

Isothermal Hydrodynamics

For isothermal hydrodynamids,= (p, pVx, pVy, pV7), and the matrix is
0 1 0 O
2402
vi+Cs 2% 0 O (B5)
_vaz VZ O Vx
whereC is the isothermal sound speed. The four eigenvalues of thfgxrin ascending order are
A= (VX_CaVXaVXaVX+C)' (86)

A=
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The corresponding right-eigenvectors are the columnsefrhtrix given in equation (B3) with the fifth row and fourthlwmn
dropped, ané replaced byC throughout. The left-eigenvectors are the rows of the matri

(1+w/C)/2 -1/(2C) 0 O

L= —Vy 0 10
-V, 0 0 1
(1-w/C)/2 1/(2C) 0 O

Adiabatic Magnetohydrodynamics

For adiabatic MHDU = (p, pvy, pVy, pVz, E, by, b;), whereb = B/+/4x, and the matriA is

wherev? =v-v, and

In these equations’ = (y -

0 1 0 0 0 0 0 T
_V>2< + 7/V2/2 =X =(y=3)w _VIVy -V, v _byY/ -bY’
—VyVy Vy Vy 0 0 —by 0
—VyVy Vy 0 Vy 0 0 —by
Asy Asy As3 Ass Wy Ase  Agy

(bevy —byw) /p by/p
(v, — szx)/ P bz/ P 0

—by/p 0 0 Vy 0
—by/p O 0 Vx

Asy = =VeH +7/ViV? / 2+ by (v + bywy + bpv) / p = X!
As2 ==YV +H=b%/p
Asz = ='Wy — by /p
Asa ==y —bxb,/p
Ase = —(bxvy +bywyY')
As7 = —(byV; + b Y')
X = [(byL ~byR)* + (b2 ~b,R)?] /(2(/PL+\/7R))

(B7)

(B8)

(B9)
(B10)
(B11)
(B12)
(B13)
(B14)
(B15)

(B16)

1), X' = (y=-2)X, Y = (y-2)Y, andH = (E+P+b?/2)/p. The factorsX andY are introduced by

the averaging scheme defined by equation (56); thus thexrvfagind its eigenvectors depend explicitly on our choice of the R
averaging scheme. The seven eigenvalues of this matrixcendig order are

A= (V= Crt, Vx = Cax, Vi = Cs, ViV + Cs, Vi + Cay, Vx + Cr)

where the fast and slow-magnetosonic wave speeds are given b

o= 3 ([0 [+ 3" -aecy,

(with C¢[C4] given by the+[-] sign), and

G =G+t

&=~ (H —V2/2—b2/p) =X’
Cax=b%/p bi?= (v = Y")(b5 +b2).

The corresponding right-eigenvectors are the columnseofrthtrix

af
Vit —Crs
Vyf + Qsﬁ;
sz +Qsﬁ;
Rs1
Asﬁ;/P
AsB; /p

0 Qs 1 Qs 0 of

0 Vis—Css Vx Vis+Css 0 Vit +Cis
—B2 Vys— Qs 5; Vy Vst Qs ﬁ;; Bz Vyt— Qsﬁ;
By st_ Qf 5; Vz st+ Qf 5; _By sz - Qsﬁ;

Rs2 Rs3 Rs4 Rss Rse Rs7
B:S/\p ABy/p O -ABy/p —BS/Vp ABS/p
BS/vp  “AiBi/p O =AiBy/p  AS/\Vp ABi/p

(B17)

(B18)

(B19)
(B20)

(B21)

where theCy+ 5, Qr s, Ar s, 01 s @andfy; are given by equation (A13) to (A17) (withreplaced byd), Vir s = Vias s (i = X,Y,2), and

Rs1=at (H =wCr) +Qs(Vy 5 +V23;) +Ad 372/ p,
Rs2 = (W3, — Vz08y) = —Ree,

(B22)
(B23)



60

Re3 = as (H' =WCs) = Qi (w3 +V20;) ~AibT 312/ p, (B24)
Rsa=V?/2+X'/y (B25)
Rss = as (H' +WCs) + Qi (W05 +V,6;) — Arb 372/ p, (B26)
Rs7= ot (H' +WCr ) = Qs(W B, +Va0;) + A 572/ p. (B27)
whereH’ =H -b?/p. In these equations
By =by/Ib1 ], B =by /[0 |, =82+, (B28)

The left-eigenvectors are the rows of the matrix

[ Lig Vie=Crr Ve + Qng,k Vi +QQ;  ar A5Q§ —arby  AQi-ath, ]
la O A2 B2 0 -BS/p2 BS/p/2
L31 _sz_ Css _Vys_ Qf Q; _st_ Qf Q; Qs _Af Q; - dsby _Af Q; - dsbz
L=| La 2y 2, 2, —' /a2 2by 2b, (B29)
L51 _\7xs+ CA:ss _\7ys+ Qf Q; _\723+ Qf Q; Qs _Af Q; - @sby _Af Q; - @sbz
Lo O B2 B2 0 -BS/p/2 BS/p/2
L Lzn Ve +Crr Wi =QsQ)  —Vor—QsQ;  a AQy —atby  AQ;-aib; |

where a symbol over the quantifydenotes normalization via=+/q/(2a?) or 4 = q/(2a%). In addition,

Q= 8;/67, Q =5;/67, (B30)
and R . R
Liz=as(V*—H")+Ce(Cs +vy) - Qs(WQj +V2Q;) =AsbL[/p, (B31)
Loi= (Vyﬁz_vzﬁy)/z =-Les (B32)
La = as(V? —H') +CsdCs+ Vi) + Qi (WQj +v2Q5) +At|bL| /p, (B33)
Lgr = 1-V2+2X’ (B34)
Lsy = as(v2 —H) + CodCs =) = Qe (WQ; +v2Q5) +As[b | /p, (B35)
L71 = ar (V= H') +Ct(Cr — W) + QW Q; +v2Q5) ~Adlb. |/, (B36)

Isothermal Magnetohydrodynamics
For isothermal MHDWU = (p, pvy, pVy, pVz, by, by), whereb = B/v/4r, and the matrid is

0 1 0 0 0 0
~2+C2+X 2% 0 0 bY by
A _vaz Vz 0 V)( 0 - bx ( B 3 7)
(b =byw)/p by/p —by/p 0 Vx 0
(bvz=bM)/p  bz/p 0 -b/p 0w

whereC is the isothermal sound speed, aX@ndY are given by equations (B15) and (B16). The six eigenvalfilsi® matrix in
ascending order are

A = (Vx—Ct, Vx = Cax, Vx = Cs, Vx + Cs, Vi + Cay, V¢ +Cy) (B38)
where the fast- and slow-magnetosonic wave speeds arelgjven
Cs= % ([62 +C3) 4/ [C+ 3’ —462%) (B839)
(with C¢[Cs] given by the+[-] sign), whereC? = C2+ X, and the Alfvén speeds are
Ci = Cax+b?/p, Cax=b/p, b? = Y (b +b3). (B40)

The corresponding right-eigenvectors are the columnseofithtrix given by equation (B21) with the fifth row and fourthiumn
dropped, ané replaced byC in the definitions given in equations (A15)-(A16). The lefgenvectors are the rows of the matrix

L1 < QQ QQ AQ AQ;
WBz=-veBy)/2 0 —(3/2  By/2  =B:S/p/2 ByS/p/2
L= Ls1 Css QrQy -QrQ;  -AiQ) -AiQ; (B41)
La1 GCs QrQy QiQ;  -ArQy -ArQ;

~(Whz=veBy)/2 0 Bi/2 —By/2 -B:S/p/2 B5yS\/p/2
Le1 Cri —QQ) -QQ  AQ AQ;
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whereCrt s, Q1 s, andAs s are given by equations (A13)-(A15) (witnreplaced byC), 5y, are given by equation (A17)Y), are
given by equation (B30), and

L11=Cr1(Cr +V) ~ Qs(WQ; +v2Q5) ~Ad|b, |/ p, (B42)
L1 = CooCs+ i) + Qs (WQj +V2Q;) +A¢|b |/, (B43)
Laz = Coo Cs = Vi) = Qs (WQj +V2Q7) +A¢|b |/, (B44)
Le1 = Cr1(Cr = Vi) + Qs(WyQ} +V,Q;) —Ad b7, |/ p. (B45)

In these equations, a symbol over the quargitlenotes normalization vig= q/(C?[1 +«?]) andq = q/(C[1 +a2)).

THE H-CORRECTION FIXING THE CARBUNCLE PROBLEM

For strong, planar shocks in multidimensions propagatimggea grid direction, higher-order Godunov methods carubgest to a
numerical instability (Quirk 1994) that grows into largeplitude perturbations of the shock front at the grid scal@sTcarbuncle"
instability can easily be demonstrated with a simple 2D: tasiniform high Mach number flow in thex-direction is initialized
everywhere in the domain, with inflow boundary conditiongto® right boundary, and reflecting everywhere else. If zimeene
perturbations in the density with small amplitude(p = 10%) are added, the reflected shock will develop the carbunstaliiity
as it propagates to the left across the grid. Radiative ngati the postshock gas can amplify the effect (Sutherlaadl &003).

The source of the instability is the use of 1D Riemann solt@compute fluxes in a multidimensional flow. When a planackho
is grid aligned, there is too little dissipation added toflbges in directions perpendicular to the shock front. Thsnsall amplitude
perturbations in the transverse direction grow, rathen theing damped. The solution is to identify grid-alignedctsoand add
extra dissipation to the transverse fluxes (e.g. Suthedtatl 2003). In Athena, we use one form of tiecorrection” technique
described in Sanders et al. (1998) to identify shocks andddlae appropriate dissipation.

The H-correction is most easily described when used in coatioin with the Roe fluxes. Consider the calculation of the &t
the interface located at€1/2, j) in 2D. When the H-correction is used the absolute value efeilgenvalues\*| in the Roe flux
formula (equation 37) are replaced witkf* |, where for each component

A% = max(A*], Gi-1/2,))- (C1)

Note themax is taken over each\*| independently in a pairwise fashion witf, j, rather than over allv eigenvalues at once.
Here,ij-1/2,; comes from a 2D average using a five-point stencil in the sbaie letter ‘H’, that is

Mi-1/2,j = MaXWi-1,j+1/2, Mi-1,j-1/25 Ti-1/2,] » h, j+1/25 T, j-1/2) (C2)

wheren;_y/2j = %|(Ui7j +Ctij) — (Ui-1,j —Ct,-1,j)|, Uij is the component of the velocity normal to the interface, @ng; is the fast
magnetosonic speed (for MHD) in the direction normal to titerface. This correction is only added to the final multieirsional
fluxes (computed in step 6 in 2D, and step 7 in 3D). It only bee®important in shocks, and for grid-aligned shocks it tesalthe
dissipation in the transverse directions being compaitaltleat added in the direction of shock propagation. In 3DHkeprrection
generalizes to a 9-point average (one ‘H’ in each orthogplaale). We find the HLL-type fluxes are less susceptible taénbuncle
instability, but are still affected by it in some circumstas. The H-correction can be added to HLL-type solvers byimgathe
appropriate modification to the wavespebtsandb™ defined in equatioris 53 ahd|54.

Use of the H-correction is only required for flows with stromgid-aligned shocks (for most applications with Athenésihot
needed). The results of the Noh strong shock test descnib&L.% show the H-correction is extremely effective at afiating the
carbuncle instability. In fact a variety of forms for the pestion were proposed by Sanders et al. (see their equatidrests using
planar shocks in 2D subject to the carbuncle instabilitywsdlittle difference between the formulations suggeste&anders et
al., thus we have chosen to adopt only the version describeeta
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