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ABSTRACT

Planets embedded in optically thick passive accretion disks are expected to produce perturbations in the density
and temperature structure of the disk.We calculate the magnitudes of these perturbations for a range of planet masses
and distances. The model predicts the formation of a shadow at the position of the planet paired with a brightening just
beyond the shadow.We improve on previous work on the subject by self-consistently calculating the temperature and
density structures under the assumption of hydrostatic equilibrium and taking the full three-dimensional shape of the
disk into account rather than assuming a plane-parallel disk. While the excursion in temperatures is less than in pre-
vious models, the spatial size of the perturbation is larger. We demonstrate that a self-consistent calculation of the
density and temperature structure of the disk has a large effect on the disk model. In addition, the temperature struc-
ture in the disk is highly sensitive to the angle of incidence of stellar irradiation at the surface, so accurately cal-
culating the shape of the disk surface is crucial for modeling the thermal structure of the disk.
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1. INTRODUCTION

Giant planets forming by core accretion need to have cores of
10Y20 M� to be massive enough to accrete a gaseous envelope
(Hubickyj et al. 2005). This predicts that sizeable planet embryos
form before circumstellar gas disks dissipate. These disks are typ-
ically modeled as passive accretion disks, optically thick and gas
dominated. Their temperature structure is strongly dependent on
heating from stellar irradiation (Chiang &Goldreich 1997; Calvet
et al. 1991; D’Alessio et al. 1998, 1999a, 2001). In particular, the
disk temperatures depend strongly on the angle of incidence of
the stellar irradiation on the disk surface.

While a substantial amount of work on numerical hydrody-
namic simulations of planets embedded in disks has been carried
out, calculating the radiative transfer of stellar irradiation in con-
junction with these simulations is prohibitively difficult. Simula-
tions by Bate et al. (2003) illustrate the effect of hydrodynamics
on the disk structure around a small embedded planet but use an
isothermal equation of state. The effects of MHD turbulence have
been studied byPapaloizou et al. (2004) andOishi et al. (2007) but
again, assuming a simple and unrealistic equation of state. Klahr
& Kley (2006) and Paardekooper &Mellema (2006, 2008) have
made an effort to include radiative transfer, as well as hydrody-
namics, in their calculations, but do not include the effects of
stellar irradiaton on their models.

The work presented in this paper does not include hydrody-
namics, but rather focuses on the effects of stellar irradiation,which
is a particularly important source of heating in the photospheres
of disks. Since it is the photospheres of optically thick disks that
are observed, the effects of stellar irradiation at the surface of disks
are an important consideration in predicting observations of pro-
toplanetary disks. A limitation of the hydrodynamic simulations
described above is that in order to adequately model the densest
regions of the gas they are necessarily limited in spatial range above
the midplane. The photosphere and surface of a disk are often sev-
eral scale heights above the midplane. The models presented here

are complementary to detailed hydrodynamic simulations for
this reason.

We are particularly interested in determining if the growing
cores of giant planets produce effects that are observable. If these
effects are observed, they would affirm the core accretion model
as the paradigm for giant planet formation. While a fully formed
Jupiter-mass planet would produce a larger feature in a disk, it
would reveal little about how it formed.

Previous work on small planets embedded in optically thick
gas disks indicates that sub-Jovian mass planet cores can perturb
the disk enough to alter the temperature structure of the disk in
the immediate vicinity of the planet, with consequences for fur-
ther evolution of the planet (Jang-Condell & Sasselov 2003, 2004,
2005). In Jang-Condell & Sasselov (2003, 2004, hereafter Papers I
and II, respectively), the planet is predicted to gravitationally
compress the disk in the vertical direction, creating a shadow paired
with a bright spot, leading to temperature variations. However,
thosemodels were limited by being plane parallel, despite the sizes
of the simulation boxes used. In addition, while the density per-
turbationswere calculated under hydrostatic equilibrium, theywere
not calculated self-consistently with the temperature perturbations.

In this paper, we improve on the model presented in Papers I
and II by iteratively calculating the density and temperature struc-
ture of the disk for self-consistency and eliminating the assump-
tion of a locally plane-parallel model. The paper is organized as
follows: in x 2 we describe the basic model and the improvements
that we havemade, in x 3 we elaborate in detail on themethod that
we use for modeling radiative transfer, in x 4 we describe our
results for different planet masses and distances, in x 5we discuss
our results in comparison to previous models, and in x 6 we pre-
sent our conclusions.

2. MODEL CALCULATION

We adopt the formalism developed in Jang-Condell & Sasselov
(2003, 2004) for calculating the effects on temperature of shad-
owing and brightening of stellar illumination at the disk’s surface.
These methods are based on those of Calvet et al. (1991) and
D’Alessio et al. (1998, 1999a) in a one-dimensional (1D) plane-
parallel disk.
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The improvements made on the previous model include itera-
tively calculating the temperature and density structure of the
disk for self-consistency. The new model is not plane parallel as
the previous models were. It accounts for the variation of disk
structure with radius and the curvature of the disk in azimuth.

Each iteration proceeds as follows. Starting with the density
structure of the disk, we calculate the temperature of the disk in
radiative equilibrium with viscous heating and stellar irradiation
as heating sources. We adapt methods developed in Papers I and
II to calculate radiative transfer on the surface of a perturbed disk.
Then, given the new temperature structure, we recalculate the
density structure assuming vertical hydrostatic equlibrium.

Each of these steps is described in detail below. The initial con-
ditions, which assume azimuthal symmetry, are calculated itera-
tively until they reach stability. The computationally intensive
nature of the calculations prohibits large numbers of iterations
when a planet is added, so relatively few iterations are carried out
for the planet in the disk.

2.1. Model Parameters

We use rotating cyclindrical coordinates (r; �; z) throughout,
with the star at the origin, the planet at (a; 0; 0), and the z-axis
aligned with the orbital angular momentum vector. We adopt pa-
rameters for the stellar mass, radius, and effective temperature of
M� ¼ 1 M�, R� ¼ 2:6 R�, and T� ¼ 4280 K, corresponding to
an age of 1 Myr (Siess et al. 2000). The mass accretion rate is
Ṁ ¼ 10�8 M� yr�1, and the viscosity parameter is �v ¼ 0:01,
which are typical of T Tauri type stars.

The simulation box is centered on the planet at (a; 0; 0). The size
of the box is scaled relative to theHill radius, rHill ¼ a(mp /3M�)

1=3.
The box spans from rmin ¼ a� 12:5rHill to rmax ¼ aþ12:5rHill
in r and from�min ¼ �12:5rHill /a to�max ¼ 12:5rHill /a in�. The
height of the box is set to zmax � 2zs, where zs is the height of the
unperturbed disk surface at r ¼ a. We assume symmtery across
the midplane, so zmin ¼ 0. The box is decomposed onto a grid of
100 ; 100 ; 100 points equally spaced in r, �, and z, with the grid
slice at � ¼ �min used as a placeholder for structure of the unper-
turbed disk.

We use the opacities from D’Alessio et al. (2001), using a dust
model with parameters amax ¼ 1 mm, T ¼ 300 K, and p ¼ 3:5,
assuming that the dust opacities are constant throughout the disk.
The values for the opacities (in cm2 g�1) are as follows: the
Rosseland mean opacity is �R ¼ 1:91, the Planck mean opacity
integrated over the disk spectrum (300 K) is �P ¼ 0:992, and the
Planckmean opacities integrated over the stellar spectrum (4000K)
are ��

P ¼ 1:31 for absorption alone and��
P ¼ 5:86 for absorption

plus scattering. The absorption fraction is then �abs ¼ ��
P /�

�
P,

while the scattered fraction is � ¼ 1� �abs. The Rosseland mean
opacity is used to calculate the photosphere of the disk, and ��

P is
used to calculate the surface of the disk.

2.2. Heating Sources

The basic calculation for radiative heating is described in detail
in Jang-Condell & Sasselov (2003). Here we summarize those
methods. The twomain heating sources are from viscous heating
(�v) and stellar irradiation (�r), offset by radiative cooling,

� ¼ ��R�BT
4; ð1Þ

where � is density, �B is the Stefan-Boltzmann constant, and T is
the local temperature of the gas. Under equilibrium conditions,

�v þ �r ¼ �: ð2Þ

If Tv and Tr give the equilibrium temperature for solely viscous
heating or stellar irradiation, respectively, then it follows that the
equilibrium temperature given both sources of heating is

Teq ¼ (T 4
v þ T 4

r )
1=4: ð3Þ

2.2.1. Viscous Heating

We assume that viscous flux is generated at the midplane and
transported radiatively in a gray atmosphere so that

Tv ¼
3Fv;ph

8�B

�d þ
2

3

� �� �1=4
; ð4Þ

where �d is the optical depth perpendicular to the disk using the
Rosseland mean opacity, �R: �d ¼

R1
z

�R� dz0. The viscous flux
emitted at the photosphere Fv;ph at a distance r for a star of mass
M? and radius R? accreting at a rate Ṁa is (Pringle 1981)

Fv;ph ¼
3GM? Ṁa

4�r 3
1� R?

r

� �1=2
" #

: ð5Þ

Viscous heating above the surface is assumed to be negligible.

2.2.2. Stellar Irradiation

The amount of heating from stellar irradiation is calculated us-
ingmethods developed in Papers I and II for a plane-parallel disk
and adapted for a fully three-dimensional (3D) system. The full
details of this calculation are rather lengthy, so this has been set
out in x 3.

2.2.3. Differential Rotation

The gas moves in streamlines past the planet at approximately
the Keplerian rate, resulting in the shearing out of the hot and cold
spots asmaterial moves into and out of shadows and brightenings.
The calculation is done in steady state, meaning that the gas is
treated as a steady flow so that temperatures as a function of spa-
tial position are constant even though the gas itself is in motion.
Given the bulk velocity along a particular streamline, the move-
ment of the gas fromone grid cell to the next is equivalent to a time
step equal to the length of the grid cell divided by the velocity.
The equilibrium temperature calculated in equation (2) repre-

sents the total amount of heating due to disk viscosity and stellar
irradiation. We assume that the specific heat per unit surface area
of the disk is k�/m̄, where k is the Boltzmann constant and m̄ is
the mean molecular weight of the gas, which we assume to be
primarilymolecular hydrogen. Thenwe can approximate the rate
at which a parcel of gas radiatively heats or cools as

k�

m

@T

@t
¼ �B(T

4
eq � T 4): ð6Þ

If Teq < T , the parcel of gas cools; if Teq > T , the parcel of gas
heats.

2.3. Density Profile

To calculate the density profile for the disk, we assume hydro-
static equilibrium,

1

�

dP

dz
¼�gz; ð7Þ
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where � is the density, P is the pressure, and gz is the z-component
of gravity. We assume the ideal gas law, P ¼ �kT/m̄. In the ab-
sence of the planet, the sole contribution to the gravity is the star:

gz ¼
GM� z

(r 2 þ z2) 3=2
: ð8Þ

We use this equation to calculate the initial conditions. When a
planet is added, the gravity has an additional contribution from
the planet, so equation (8) becomes

gz ¼
GM� z

(r 2 þ z2) 3=2
þ GMpz

(r 2 þ r 2p � 2rrp cos �þ z2) 3=2
: ð9Þ

Given a vertical temperature profile, we calculate the density
profile by integrating equation (7) from the top of the simulation
box down the midplane. For the perturbed disk, we require con-
servation of the total surface density. In a standard viscous accre-
tion disk, the surface density of the disk and temperature of the
disk are coupled. Thus, for the initial disk we normalize the total
integrated surface density

� ¼ 2

Z 1

0

� dz0; ð10Þ

with the surface density given by a steadily accreting viscous disk

�¼ Ṁ

3�	v
1� R?

r

� �1=2
" #

; ð11Þ

where 	v is the viscosity of the disk (Pringle 1981). We adopt a
standard Shakura-Sunyaev viscosity (Shakura & Sunyaev 1973)
with 	v ¼ �vc0H , where �v is a dimensionless parameter, c0 is
the sound speed at themidplane, andH is the thermal scale height,
given byH ¼ c0 /�K, where�K is the Keplerian angular velocity.

3. 3D RADIATIVE TRANSFER
OF STELLAR IRRADIATION

In this section, we describe the details of radiative transfer of
stellar irradiation on the surface of a disk perturbed by a planet.
These methods are based on the work of Calvet et al. (1991) and
D’Alessio et al. (1998), which calculated the vertical temperature
structure of a locally plane-parallel disk model without perturba-
tions. In Papers I and II, we developed a method for using their
solutions to calculate radiative transfer on a perturbed locally
plane-parallel disk. Here we extend the formalism to a fully three-
dimensional disk.

For a plane-parallelmedium, the optical depth at disk-temperature
frequencies perpendicular to the surface (�d) is related to the line-
of-sight optical depth to stellar radiation (�s) as �s ¼��

P�d /(�R
),
where 
 is the angle of incidence of the stellar radiation at the
surface. As shown in Paper II, Tr for a locally plane-parallel disk
is given by

B(�s)¼
�BT

4
r

�
¼ �absFirr


4�
c1þ c2e

��s þ c3e
��
�s

� �
; ð12Þ

where 
 is the cosine of the angle of incidence of stellar irradia-
tion at the surface of the disk, � � (3�abs)

1=2, and the stellar flux
incident at the surface is

Firr ¼
�BT

4
� R

2
�

(r 2s þ z2s )
; ð13Þ

where (rs; �s; zs) are the coordinates at the surface. The remain-
ing coefficients are

c1¼
6þ 9
�R=�

�
P

� 2
� 6(1� �R=�

�
P) 3� � 2ð Þ

� 2(3þ 2� )(1þ �
)
; ð14Þ

c2 ¼
��
P


�P

� 3
�R

��
P

� �
(1� 3
2)

(1� � 2
2)
; ð15Þ

c3 ¼
���

P

�P

� 3�R

��
P�

� �
(2þ 3
)(3� � 2)

�(3þ 2� )(1� � 2
2)
: ð16Þ

We adapt these equations to a three-dimensional disk by dividing
the surface into grid elements by ri and �j and numerically inte-
grating the contributions from each surface element.

3.1. Flux Contributions

For a surface element �A located at S, the contribution to the
flux at point P ¼ (r; �; z) in the disk is proportional to B(� PS

s ) as
given in equation (12), with the optical depth calculated as

� PS
s ¼ 2

3
þ 	




Z S

P

��
P� dl; ð17Þ

where the integral is carried out along the line segment PS, and 	
is the cosine of the angle betweenPS and the surface element. The
geometry of the optical depth calculation is illustrated in Figure 1,
where � PS

s is labeled as �s and �0 ¼
R S

P
��
P� dl. The 2

3 term on
the left-hand side of equation (17) accounts for the optical depth
from the star to the surface. The second term on the left-hand
side of the equation is what �s would be between P and the
infinite plane represented by the surface element. Defining d�
to be the solid angle subtended by the surface element, then
the total heating from stellar irradiation at P in the limit as
d� ! 0 is

Btot(P)¼
1

�

Z
B(� PS

s ; 
)	 d�: ð18Þ

For a plane-parallel disk this equation reverts to equation (12).
To calculate this numerically over an assemblage offinite surface
elements, we assume that B(� PS

s ; 
) stays fairly constant over a
given surface element, and equation (18) becomes

Btot(P)�
1

�

X
8S

B(� PS
s ; 
)

Z
S

	 d�: ð19Þ

The expression for
R
S
	 d� integrated over an arbitrary triangle

with respect to P can be determined analytically as follows. We

Fig. 1.—Angles used in calculating optical depths.
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define s1, s2, and s3 to be the vectors that point from P to the
vertices of the triangle, as shown in Figure 1. Let n̂ be the unit
normal to the triangle and ij be the angle between the vectors si
and sj. ThenZ

S

	 d� ¼ n̂ =

�
12

sin 12
(s1 < s2)þ

23
sin 23

(s2 < s3)

þ 31
sin 31

(s3 < s1)

�
: ð20Þ

3.2. Surface Decomposition

We define the surface of the disk to be where the optical depth
to stellar irradiation integrated along the line of sight is �s ¼ 2

3
.

The optical depth at a given point P ¼ (r; �; z) in the disk is

�s(r; �; z)¼ �in þ
Z
‘

��
P� dl; ð21Þ

integrating along the line segment ‘, which extends from the
point toward the star, ending at the inner boundary of the box, at
(rmin; �; zin), where zin ¼ zrmin /r. The optical depth at the inner
edge of the simulation box, �in, is assumed to be

�in¼
1

2
��
P�(rmin; �; zin)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 2minþ z2in

q
: ð22Þ

The density increases monotonically toward the midplane, so for
every coordinate pair (ri; �j) the height of the surface hi; j can be
uniquely determined. The surface is defined by the set of points
si; j ¼ (ri; �j; hi; j).

The set of neighboring points, si; j; siþ1; j; siþ1; jþ1, and si; jþ1,
define a surface element over which radiative transfer from stellar
irradiation is calculated. The midpoint of this set of four points is

sm ¼
"

ri þ riþ1

2

� 	
cos

�jþ1� �j

2

� �
;
�j þ �jþ1

2
;

hi; j þ hiþ1; j þ hiþ1; jþ1 þ hi; jþ1

4

#
:

For the unperturbed disk, hi; j is independent of j, and si; j; siþ1; j;
siþ1; jþ1, and si; jþ1 are coplanar. If n̂ is the normal to the plane
through these four points, then the cosine of the angle of inci-
dence is


¼ ŝm = n̂þ 4R�

3� smj j
; ð23Þ

where the second term on the right side of the equation is the
minimum allowed value of 
, resulting from the finite size of the
star. Note that in Papers I and II, we neglected to include this term
in calculating 
, which resulted in more marked shadowing in
the disk.

For the perturbed disk, the points si; j; siþ1; j; siþ1; jþ1, and si; jþ1

are not necessarily coplanar. In this case we subdivide the surface
element into four triangles defined by the midpoint and two ad-
jacent points, i.e., (si; j; siþ1; j; sm), (siþ1; j; siþ1; jþ1; sm), (siþ1; jþ1;
si; jþ1; sm), and (si; jþ1si; j; sm), with normal vectors n̂1; n̂2; n̂3, and
n̂4, respectively. The angles of incidence are calculated as 
i ¼
ŝm = n̂i þ 4R� /(3� smj j), and the contributions to radiative heating
are summed over each triangle individually, with Firr calculated
at sm for all of them.

In order to avoid a discontinuity of temperature above the sur-
face of the disk, the temperature above the surface is taken to be
B(�s; 
), where 
 is now the angle of incidence to the surface of
constant �s:


¼ r = :�s
rj j :�sj j

: ð24Þ

Surface elements outside the simulation box are assumed to
follow the same structure as the initial conditions, i.e., unperturbed
by a planet. Regions with j�j � �max are approximated as ‘‘strips’’
extending from �max to �/2 and��max to��/2. The surfaces in-
terior to rmin and exterior to rmax are approximated as power laws
(h / r a) and integrated over as a series of infinite-length strips
extending in the �-direction.

3.3. Initial Conditions

Since we will be calculating the perturbed disk iteratively to
take into account feedback between temperature and density per-
turbations, the initial disk itself must be stable to iterative feedback.
We calculate the initial conditions for a slice in the middle of a box
twice the size in �-space. That is, the slice is at � ¼ 0 in a box
ranging from �2�max to 2�max, with twice the number of grid
points in �, and the same range of r and z. Outside the range of �,
the surface of the disk is approximated as strips from 2�max to
�/2. Outside the range of r, the surface is approximated as strips
with infinite length in the �-direction, with the height z varying
as a power law in r, fitted to the eight points at the ends of the box.
The unperturbed (i.e., without planet) structure of the disk is

calculated iteratively as described above, but since azimuthal sym-
metry is assumed, this computation is significantly shorter than the
computation of the perturbed disk structure. Thus, we iterate until
the rms change in disk height is less than 10�6, typically less than
about 200 iterations.
We examine planets at a ¼ 1, 2, 4, and 8 AU with masses of

10, 20, and 50M�. The sizes and positions of the simulation boxes
for each of these parameters are indicated in Figure 2. The limits
of the simulation boxes in the r-direction are indicated by straight
vertical lines: dotted, dashed, and solid for 10, 20, and 50 M�
planets, respectively. The boxes span from rmin ¼ a� 12:5rHill
to rmax ¼ aþ 12:5rHill in r and from 0 to zmax � 2zs, where zs is
the height of the unperturbed disk surface at r ¼ a.
The left set of plots in Figure 2 show the density contours of

the initial conditions for each set of planet parameters, dotted,
dashed, and solid curves for 10, 20, and 50 M� planets, respec-
tively. The lower plot is a blow-up of the gray-outlined box in the
upper plot. The density contours show a good amount of overlap
over the range of parameter space.
The right set of plots in Figure 2 is similar to the left set, except

that it shows temperature rather than density. The temperature con-
tours do not overlap as well as the density contours, particularly
at larger radii. At the planets’ positions, the temperature contours
converge fairly well, but tend to diverge at the boundaries of the
simulations. This results from the sensitivity of the temperature
structure to the density structure of the disk. At small distances,
the temperatures are dominated by viscous heating, so the shape
of the surface is less relevant. However, viscous heating drops off
more rapidly than stellar irradiation heating, so at large distances,
slight deviations in the calculation of the surface can lead to changes
of several degrees in the vertical temperature structure of the disk.
The discrepancies in temperature may be overcome by increasing
the size of the simulation box. However, this leads to a corre-
sponding increase in the computation time. Since the difference
in temperatures tends to be on the order of just a few degrees and
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since we are interested in the changes in disk structure due to the
influence of a planet in the disk, at this time we will adopt the
initial conditions as presented here.

4. RESULTS

The planet is instantaneously inserted into the initial conditions,
and the resulting density and temperature perturbations are cal-
culated. The density and temperature are then iteratively recal-
culated under the assumption of hydrostatic equilibrium for
10 iterations. Because the planet is instantaneously inserted into
the disk and hydrostatic equilibrium is assumed, there is no time-
scale associated with each iteration. Rather, the goal is to iterate
until steady state is achieved.When evolution is discussed in this
paper in the context of our disk-planet models, we refer to the
changes in disk structure over successive iterations rather than a
time sequence.

4.1. Self-Consistency: Effect of Iteration

The iterative calculation was implemented to achieve self-
consistency between the temperature and density profiles of the
disk under hydrostatic equilibrium. This self-consistency proves
to be important to determining the structure of the disk. As an ex-
ample,we examine the case of a 20M� planet at 4AU. In Figure 3
we show the evolution of the surface perturbation (left) and cor-

responding evolution of the temperature in the photosphere of
the disk (right). The sequence of plots goes from left to right, top
to bottom. The gray shaded circle shows the projected size of the
Hill sphere, looking down on the disk along the z-axis.

Contours in the left panel show the fractional deviation of the
surface at the given iteration number from the initial conditions,
spaced at intervals of 0.002. Contours in the right panel show
temperatures in the photosphere of the disk, where the photosphere
is defined to be where the optical depth using the Rosseland mean
opacity integrated along the z-axis from z ! 1 toward z ¼ 0
equals 2

3
. Although the perturbation is quite subtle, less than 2%,

the change in the temperature at the photosphere is dramatic by
comparison, on the order of 10% or more.

With successive iterations the perturbation to the surface grows
in area and deepens. This is seen in both the surface contours and
photospheric temperatures. This is because the region in shadow
cools and compresses, deepening the shadow further still. Beyond
the shadow, where the disk rises above the shadow, material heats
and expands, causing this material to rise still further. The growth
of the perturbation is limited both because of the differential rota-
tion of diskmaterial and because of the intrinsic radial temperature
variation of the disk. The differential rotation of the disk means
that material more radially distant from the planet moves past the
planet faster, so it has less time to heat or cool as it passes by the

Fig. 2.—Initial density (left) and temperature (right) profiles for the planet masses and distances studied in this paper. The lower set of plots are blow-ups of the area
delimited by gray lines. Positions of planets at 1 (red ), 2 (magenta), 4 (blue), and 8 (green) AU are indicated by arrows along the r-axis. The density and temperature
contours are indicated by dotted, dashed, and solid curves for 10, 20, and 50M� planets, respectively. [See the electronic edition of the Journal for a color version of this
figure.]
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Fig. 3.—Evolution of the surface (left) and photosphere temperature (right) for a 20 M� planet at 4 AU. The iteration number is indicated at the lower right in each
individual plot.Left: Deviation of the surface from the initial conditions displayed as contours, in units of AU. The gray circle is a Hill radius in size, centered at the planet’s
location. Right: Contour plots of temperatures in the photosphere, in kelvins.



planet. The intrinsic temperature structure of the disk means
that inward (outward) of the planet, the disk is hotter (cooler), lim-
iting the growth of the shadow (brightened region) in that direc-
tion. Iterations 8Y10 show very little difference between each
other, indicating that the density and temperatures have reached
self-consistency.

Figure 4 shows another view of the effect of iteration on the
temperature structure of the disk. Here we plot the temperature
cross section of the disk at � ¼ 0, the location of the planet. The
size of the Hill sphere is represented by the gray ellipse (the r-
and z-axes are not scaled to each other). The surface layers are
relatively unaffected by the changing density structure, largely be-
cause this region is optically thin, and the dependence of tempera-
ture on angle of incidence is small. Themidplane layer is relatively
unaffected as well. This is due to several effects: viscous heating
is greatest at the midplane; the angular sizes of the shadowed/
brightened regions are small; and the disk is optically thick. The in-
termediate layers change in temperature structure quite a bit. The
development of a cooled region directly above the planet and the
heated region outward from the planet are quite clearly evident.

Meanwhile, the density structure changes only subtly. In Fig-
ure 5, we plot the density contours for the � ¼ 0 slice of the sim-
ulation box after 1 (dotted lines) and 10 (solid lines) iterations.
Over the 10 iterations, the density contours do change, but not as
dramatically as the temperature perturbations. This emphasizes the
importance of the detailed density structure to the calculation of
radiative transfer in the disk.

4.2. Variations with Planet Mass and Distance

We investigate the changes to the disk temperature structure as
planet mass and distance vary. We examine planets with masses
of 10, 20, and 50M� at 1, 2, 4, and 8 AU. Figure 6 summarizes
the changes in photosphere temperatures for this suite of planet
parameters. The contours in each of these plots indicate the abso-
lute temperatures, while the gray scale reflects the fractional tem-
perature variation from the initial conditions, dark for cooling
and lighter for heating. In general, the cooled region is centered
at the planet’s position, while the heated region is outside the
planet’s orbit. The asymmetry in the perturbations is a result of in-
cluding the differential rotation of the disk and a finite timescale
for cooling/heating as a parcel of gas passes through a shadow/
brightening. The sizes of the perturbations roughly scale with both
planet mass and distance.

In Figures 7Y10 we show radial cross sections of the temper-
ature structure at ( from left to right) 1 Hill radius downstream
from the planet, at the planet position, and 1 Hill radius upstream
of the planet, for the planet parameters examined in this study. The
solid lines show the temperature contours, while the gray scale
shows the amount of deviation from the initial conditions. Figures 7,
8, 9, and 10 show planets at 1, 2, 4, and 8 AU, respectively. For
reference, the locations of the photospheres are indicated as black
dotted lines. Also shown are the surface of the disk (white dot-
dashed line) and thermal scale height (black dashed line). Both
the photosphere and surface are multiple scale heights above the
disk, except just above the Hill sphere. Temperature perturbations
tend to be greatest in the upper layers of the disk, between the
photosphere and the surface. Again, this is because of viscous
heating at the midplane, as well as optical depth effects.

5. DISCUSSION

5.1. Comparison to Previous Models

We now compare our results to those of Papers I and II. The
results presented there were for planets around a star of 0.5M�,

while those presented here are for a 1M� star. In order to make a
fair comparison, we have recomputed the model presented in
Papers I and II for the stellar parameters used in this paper. We
will henceforth refer to this set of models as the J-CS model.

In Figure 11we compare the results from this paper to J-CS for
the case of a 20M� planet at 4 AU from its host star. The top plot
shows the radial temperature cross section through the planet’s

Fig. 4.—Evolution of temperatures in a cross section of the disk at� ¼ 0 for a
20M� planet at 4 AU. The Hill radius and position of the planet are indicated by
the gray half ellipse. The temperatures are indicated by contours, with the itera-
tion number indicated at the lower right in each individual plot.
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position for J-CS, and the bottom shows the same cross section
for the new model. In the J-CS model, the disk is treated as lo-
cally plane parallel, whereas in the new model it is not. This is
reflected in the shape of the temperature structures of the two
models. Another difference is that the surface was calculated as
the contour of constant density in J-CS. This contour is shown as
a red dot-dashed line. When this contour is shadowed, the surface
is instead taken to be the line of sight to the star, indicated by the
solid red line. In contrast, the newmodel calculates the surface to
be where the optical depth to the star using the Planck mean ex-
tinction, ��

P, is
2
3
.

In J-CS, the temperature perturbations are more dramatic than
in the newmodel. This can also be seen in Figure 12, which shows
the temperatures in the photosphere compared side by side. The
plots show temperature contours and fractional temperature varia-
tions,with the oldermodel represented on the left. The right plot in
this figure is the same as the one in Figure 6. The spatial sizes and
color scalings are the same between the two plots. It is evident
from both Figures 11 and 12 that the temperature perturbations
are much greater in J-CS. The reason for this is primarily the way
in which the surface was calculated. As noted in Paper I, the disk
temperature structure is quite sensitive to 
, the cosine of the
angle of incidence of stellar irradiation at the surface. In otherwords,
the slope of the surface determines the amount of heating from
stellar irradiation. Small deviations at the surface can lead to large
temperature perturbations at the photosphere of the disk.

In the JC-Smodel,
 ! 0 in the shadowed region, whichmeans
that zero flux was propagated from shadowed surface elements
to disk material below them.When the density contour rose back
above the shadow, the transition from shadow to the illuminated
region was quite sharp, with relatively large values of 
 yielding
large amounts of heating. In the new model, since the surface is
calculated by integrating the optical depth along lines of sight to
the star, the transitions are smoother and values of 
 do not vary
as greatly. Also, as shown in equation (23), we set a minimum

value for 
 based on the finite size of the star, so shadowing can-
not result in as significant cooling as seen in J-CS. Yet another
effect is the radial variation in stellar flux, which was not taken
into account in the plane-parallel J-CS model. The disk is hotter /
cooler closer to/farther from the star, which offsets some of the
effects of shadowing/illumination. Although the J-CS model was
not iterative while the newmodel is, the changes in the calculation
of the surface and 
 are sufficient to diminish the temperature
perturbations near the planet.
Another difference between J-CS and this work is the locations

of the heated and cooled regions. In J-CS, these regions are nearly
symmetric with respect to the planet position. The sizes and shapes
of the heated and cooled regions are similar, with the cooled region
inward of the planet and the heated region outward of it. In the
current work the cooled region is centered on the planet’s posi-
tion, with the heated region outward of the planet.

5.2. Magnitude of Temperature Variations

In Paper II we found a correlation between the maximum and
minimum photosphere temperature variations and the Hill radius
of the planet. We now perform the same analysis on the new
model.
In Figure 13, we plot the maximum and minimum fractional

temperature variations in the photospheres versus the ratio of the
Hill radius to thermal scale height of the disk (rHill /h). Points
above/below�T /T ¼ 0 represent maxima/minima. The symbols
denote at what distance the planet is: triangles for 1 AU, diamonds
for 2 AU, squares for 4 AU, and asterisks for 8 AU. The results
for J-CS are plotted connected by dashed lines.As noted in Paper II,
the maxima and minima lie nearly on the same curves. The upturn
in minimum temperatures at smaller distances is due to the rise in
viscous heating closer to the star, which sets the absolute temper-
ature minimum.
The points connected by dotted lines in Figure 13 are temper-

ature maxima/minima in the photospheres after one iteration,
i.e., without recalculating the density given the new temperature
structure. These points similarly lie on nearly the same curves,
except showing amuch smaller temperature perturbation than JC-S.
The reasons for the smaller temperature variation were detailed
in x 5.1.
The effect of including iterations can be seen by comparison to

the points connected by solid lines in Figure 13. In all cases, the
fractional temperature variations increase. However, the amount
of change is not consistent with planet mass or distance. At 1 AU
(triangles), the change in temperature minima is nearly negligi-
ble. This can be explained by viscous heating, which halts the
growth of the cooled, shadowed region. The temperature maxima
do increase, but not as much as at larger distances. This is because
the growth of the brightened region is coupled to the growth of
the shadowed region: as the shadowed region grows, more disk
material behind the shadow is exposed and illuminated. Since
shadow growth is limited at 1 AU, so is the growth of the bright-
ened region. Going from 2 to 4 to 8AU, viscous heating ceases to
be important. The temperature maxima all lie close to the same
curve at those distances, and the temperatureminima at 4 and 8AU
lie nearly on the same curve in Figure 13.
For larger planets, those whose Hill radii approach the disk

thermal scale height, the amount of heating in the current model
approaches that seen in J-CS. However, the temperature minima
never drop that low. This can be attributed to the minimum value
of 
 that has been adopted for the new model. There is such an
upper limit that has been imposed, however, hence the greater
heating.

Fig. 5.—Evolution of densities in a cross section of the disk at� ¼ 0 for a 20M�
planet at 4 AU. The Hill radius and position of the planet are indicated by the gray
half ellipse. The density varies subtly with successive iterations, so only density
contours after the first iteration (dotted lines) and 10th iteration (solid lines) are
shown.

JANG-CONDELL804



Fig. 6.—Temperatures in the photospheres of disk models with planets after 10 iterations. From top to bottom: planets at 1, 2, 4, and 8 AU. From left to right: planets
withmass 10, 20, and 50M�. The region above the Hill sphere is blacked out. Solid contours indicate temperatures in kelvins. The shading shows the fractional deviation in
temperature from the initial disk model, so that black is �T /T ¼ �0:2 and white is �T /T ¼ þ0:2.



Fig. 7.—Temperature cross sections of the disk in the vicinity of a planet at 1 AU from a 1M� star at the indicated azimuthal angles, corresponding to ( from left to
right) 1rHill downstream of the planet, at the planet position, and 1rHill upstream of the planet. The location and size of the Hill sphere are indicated by the white hashed
area. From top to bottom, planet masses are 10, 20, and 50M�. The contours show absolute temperatures while the color scale shows the fractional temperature difference
from the initial disk model, with a range of �T /T 2½�0:2;þ0:2	.
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Fig. 8.—Same as Fig. 7, but for planets at 2 AU.
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Fig. 9.—Same as Fig. 7, but for planets at 4 AU.
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Fig. 10.—Same as Fig. 7, but for planets at 8 AU.
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Fig. 11.—Thermal structure of the disk in the vicinity of a 20M� planet at 4 AU from a 1M� star, as calculated for J-CS (top) and this paper (bottom). The temperatures
are scaled to the same colors, and the r- and z-axis have the same scaling. The hashed semicircle shows the size and location of the Hill sphere. The photosphere is indicated
bywhite dotted lines, and the thermal scale height is indicated by black dashed lines. In the top plot the red dot-dashed line shows the isodensity contour equal to the density
at the disk surface. Regions below the solid red line in the top plot are considered to be in shadow. In the bottom plot the red dot-dashed line is the surface as calculated from
line-of-sight optical depth to the star.

Fig. 12.—Temperature perturbations in the disk’s photosphere above an embedded planet, as calculated in the J-CSmodel (left) and using themethods presented in this
paper (right). Figures are scaled to the same spatial size, and colors represent fractional deviation from the unperturbed disk temperature. Contours show temperatures.
Since the J-CS calculation assumed a plane-parallel disk, the temperature contours trace the color variations. In the calculation presented in this paper, the temperatures are
dominated by the radial variation of the unperturbed disk.



5.3. Sizes of Thermally Perturbed Regions

Although the variation in temperature appears to be less in the
present model than that seen in J-CS, Figures 11 and 12 suggest
that the spatial scale of the perturbations might be larger. To check
this, we calculate the areas of the photosphere that are heated or
cooled above or below a certain threshold. We call these regions
hot or cold ‘‘spots.’’ Note that this is different from the definition
of a ‘‘spot’’ in Paper II, which considered regions heated above
or below 170K, in the context of ice formation and the snow line.
Here we consider the deviation in temperature from the unper-
turbed value, rather than above or below a fixed threshold. A sep-
arate paper addressing the effect of these temperature perturbations
on the snow line is presented by Jang-Condell et al. (2008).

We define the area of a spot to be the area of the photosphere
that is heated or cooled to at least half the maximum temperature
deviation, excluding the area just above the Hill sphere. These
spot areas are plotted as filled triangles (hot) or squares (cold) in
Figure 14 connected by dashed lines, black for the current models,
gray for J-CS. The temperature deviations for the 10M� planet at
8 AU are so small that the area of a cold spot is not well defined.
The spot masses are generally larger for our results than for the
JC-S models. The sizes of cold spots tend to grow faster with in-
creasing planet mass than the sizes of hot spots.

Let us also consider temperature perturbations above or below
a threshold of 10%. The area of these spots versus the area of a
circle with radius rHill is plotted as open triangles (hot) or squares
(cold) in Figure 14 connected by dotted lines, black for the current
models, gray for J-CS. Lines connected to points below the edge
of the graph indicate lack of a spot. Note that at 1 AU, there are
no hot spots above a 10% temperature deviation, consistent with
Figure 13. The J-CSmodels produce hot and cold spots for planet
parameters. At all distances, 10M� planets are too small to create
either hot or cold spots at the 10% level in the newmodels. Where
cold spots do exist, they are generally larger than those produced
in J-CS. However, the hot spots are generally smaller.

While the temperature deviations predicted from the current
models are not as great as those predicted in J-CS, they are larger
in spatial extent. This may have consequences for the observ-
ability of this phenomenon. This topic will be addressed in a com-
panion paper.

6. CONCLUSION

This paper presents amodel for calculating the density and tem-
perature perturbations imposed on a protoplanetary disk by an
embeddedprotoplanet. Thebasic radiative transfermodel is adopted
from Papers I and II, but a number of improvements have been
made on that work such as density-temperature self-consistency
and eliminating the assumption of a plane-parallel system.

We have shown that self-consistently calculating the temper-
ature and density significantly increases the effect of planet per-
turbations bymeans of postive feedback, where shadowed regions
cool and contract and brightened regions heat and expand. This
demonstrates the importance of self-consistencywhen calculating
disk structure with radiative transfer. While it has already been
acknowledged that stellar irradiation heating is important in setting
overall disk structure (e.g., Chiang&Goldreich 1997; D’Alessio
et al. 1998, 1999b; Dullemond&Dominik 2004), this work shows
that it is important for considering local perturbations on the disk.

Another important result of this paper is that the temperature
structure of the disk is extremely sensitive to the angle of inci-
dence of stellar irradiation at the surface. The precise determina-
tion of the surface of the disk is critical to accurately calculating
the temperature structure of the disk. In previous work we had
assumed that the surface of constant density was a sufficiently

Fig. 13.—Maximum andminimum fractional temperature variation in the pho-
tosphere vs. rHill /h. Symbols indicate planet distance as follows: triangles at 1 AU,
diamonds at 2 AU, squares at 4 AU, and asterisks at 8 AU. Dashed lines show
the J-CSmodel. Dotted lines show the current model, after only one iteration. Solid
lines show the current model after 10 iterations. [See the electronic edition of the
Journal for a color version of this figure.]

Fig. 14.—Areas of heated /cooled regions in the photosphere in current model
(black) compared to results of previous model (gray). Horizontal axis is the area
of a circle with radius of rhill. Planets with 10, 20, and 50M� at 1, 2, 4, and 8 AU
are shown. The distances for each set of planets are indicated by the long-dashed
boxes. Heated and cooled regions are represented by triangles and squares, respec-
tively. Filled symbols connected by dashed lines show the areas heated /cooled
beyond half the maximum temperature deviation in the photosphere. Open sym-
bols connected by dotted lines show the areas that are heated /cooled beyond 10%
above or below the unperturbed temperature. The diagonal solid lines show a
linear slope. [See the electronic edition of the Journal for a color version of this
figure.]

PLANET SHADOWS IN PROTOPLANETARY DISKS. I. 811



good approximatation for the surface, but in this work we show
that that overestimated the temperature perturbation to the disk.

We have omitted some important physics in this calculation.
We do not include heating from accretion onto the planet.We con-
sider the embedded planet to act simply as a gravitational point
mass, and focus only on the vertical component of gravity. We do
not account for nonlinearities such as spiral densitywaves.All these
effects are more adequately addressed using a three-dimensional
hydrodynamic simulation of a planet embedded in a disk of gas.
However, since simulations of this sort focus on the bulk flow of
gas at themidplane, they typically have insufficient resolution above
the midplane to accurately calculate the surface of the disk (e.g.,

Bate et al. 2003; Papaloizou et al. 2004; Klahr & Kley 2006;
Oishi et al. 2007). Calculation of radiative transfer, even without
iterating for self-consistency, is very computationally intensive.
To do this iteratively and coupled with three-dimensional hydro-
dynamics is challenging but is the next logical step to improving
the accuracy of our results.

This work was supported by the NASAAstrobiology Institute
under cooperative agreementNNA04CC09A. Thanks also go to an
anonymous referee for helpful suggestions for improving this paper.
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D’Alessio, P., Cantó, J., Calvet, N., & Lizano, S. 1998, ApJ, 500, 411
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