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ABSTRACT

We include feedback in global hydrodynamic simulations in order to study the star formation properties, and gas
structure and dynamics, in models of galactic disks. In previous work we studied the growth of clouds and spiral
substructure due to gravitational instability.We extend thesemodels by implementing feedback in gravitationally bound
clouds; momentum (due to massive stars) is injected at a rate proportional to the star formation rate. This mechanical
energy disperses cloud gas back into the surrounding interstellar medium, truncating star formation in a given cloud
and raising the overall level of ambient turbulence. Propagating star formation can however occur as expanding shells
collide, enhancing the density and triggering new cloud and star formation. By controlling the momentum injection
per massive star and the specific star formation rate in dense gas, we find that the negative effects of high turbulence
outweigh the positive ones, and in net, feedback reduces the fraction of dense gas and, thus, the overall star formation
rate. The properties of the large clouds that form are not, however, very sensitive to feedback, with cutoff masses of a
fewmillionM�, similar to observations.We find a relationship between the star formation rate surface density and the
gas surface density with a power-law index �2 for our models with the largest dynamic range, consistent with
theoretical expectations for our model of disk flaring. We point out that the value of the ‘‘Kennicutt-Schmidt’’ index
found in numerical simulations (and likely in nature) depends on the thickness of the disk, and therefore, a self-
consistent determination must include turbulence and resolve the vertical structure. With our simple feedback
prescription (a single combined star formation event per cloud), we find that global spiral patterns are not sustained;
less correlated feedback and smaller scale turbulence appear to be necessary for spiral patterns to persist.

Subject headinggs: galaxies: ISM — ISM: clouds — ISM: kinematics and dynamics — stars: formation —
turbulence

Online material: color figures

1. INTRODUCTION

A crucial intermediary for the formation of stars in the inter-
stellar medium (ISM) is the gaseous cloud. Stars form deepwithin
giant molecular clouds (GMCs), and GMCs themselves may be
embedded in larger molecular and atomic structures, which are
referred to as giant molecular associations (GMAs) and super-
clouds (Vogel et al. 1988; Elmegreen & Elmegreen 1983). The
dispersal of cloud gas, resulting from the ionizing radiation from
newly born stars, stellar winds, and supernovae (SNe), limits the
lifetimes of GMCs and, therefore, determines their net star for-
mation efficiencies. SNe also play a significant role in main-
taining and/or determining the thermal phase balance of the ISM
(Cox& Smith 1974; McKee &Ostriker 1977; Norman& Ikeuchi
1989; de Avillez & Breitschwerdt 2004), and simple estimates
suggest that SNe may be the main source of turbulence, at least
in the diffuse ISM (e.g., Spitzer 1978;Mac Low&Klessen 2004).
Turbulence in both the diffuse and dense ISM is in turn considered
one of the primary mechanisms regulating star formation (e.g.,
Elmegreen& Scalo 2004; Ballesteros-Paredes et al. 2007;McKee
&Ostriker 2007). Since feedback from star formation is linked to
the formation, evolution, and destruction of GMCs, the overall
process may be self-regulating.

The formation and growth of clouds depend on the gravita-
tional stability of the diffuse gaseous environment. In disk gal-
axies, galactic rotation and thermal pressure, among other factors,
act to oppose the growth of self-gravitating perturbations. The

ToomreQ parameter indicates the susceptibility of axisymmetric
perturbations to grow in uniform thin disks; forQ < 1, the surface
density is sufficiently large for gas self-gravity to overwhelm the
restoring effects of Coriolis forces and pressure (Toomre 1964).
Nonlinear simulations have shown that for nonaxisymmetric per-
turbations and including the effects of disk thickness and stellar
gravity, the threshold isQ � 1:5 (Kim et al. 2002;Kim&Ostriker
2001, 2007; Li et al. 2005b). The observed drop-off in star forma-
tion activity traced byH� at large radii supports the idea that stars
preferentially form in gravitationally unstable regions with den-
sities above a critical value (Kennicutt 1989; Martin & Kennicutt
2001).3 In general, magnetic fields cannot prevent but only slow
the collapse of gas. In conjunction with other physical mecha-
nisms, magnetic fields may in fact enhance instability, as is the
case when the magnetorotational instability (Kim et al. 2003) is
present, or via the magneto-Jeans instability (Kim et al. 2002).
Star formationmust commence soon after the gas accumulates

to form massive clouds, because almost all GMCs contain stars
(Blitz et al. 2007). Ionizing radiation from newly formed stars
subsequently dissociates the molecules, and H ii region expan-
sion disperses the surrounding gas; some fraction of the gas may
remain molecular, but in unbound clouds. The massive O and
B stars reach the end of their lifetimes in�2Y20Myr, with those
over 8 M� ending as SNe. The cumulative effect of feedback
from all the contiguously forming stars contributes to the short
estimated GMC lifetimes of �20 Myr (e.g., Blitz et al. 2007).
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The feedback from star formation could potentially prevent the
formation of stars in nearby regions by driving turbulence and
dispersing gas, but it could potentially trigger collapse events as
well. Collisions between SN blast waves can result in sufficiently
large densities for gas to collapse and form stars. It is not yet
understood whether (or when) ‘‘positive’’ or ‘‘negative’’ feedback
effects dominate; exploring this issue is one of the goals of the
present work.

Despite the host of processes that impact the formation of
stars, observations have shown a clear correlation between the
star formation rate density �SFR and the gas surface density �,
with power-law forms (in actively star-forming regions)

�SFR / �1þp; ð1Þ

now known asKennicutt-Schmidt laws (Schmidt 1959; Kennicutt
1998b). Power-law indices with 1þ p � 1Y2 have been found,
depending on whether the total gas mass or just the molecular
gas mass is included in � (e.g., Bigiel et al. 2008; Wong &
Blitz 2002; Heyer et al. 2004; Schuster et al. 2007; Kennicutt
et al. 2007; Bouche et al. 2007). These relations have been iden-
tified for a wide range of disk galaxies at low and high redshifts.
Both global and local versions of the�SFR-� relations have been
explored. In the former, surface densities are globally averaged
within some outer radius; in the latter, averages are over radial
annuli or smaller regions. A second empirical law obtained by
Kennicutt is�SFR � 0:1�/torb, where torb is the local orbital time
of the gas.

Many theoretical studies have attempted to explain the observed
relations between the star formation rate and the gas surface
density. Simple analytic prescriptions can be obtained that de-
pend on the star formation efficiency per cloud free-fall time or
cloud lifetime and yield consistency with the ‘‘orbital time’’ em-
pirical relations (McKee & Ostriker 2007). Using global three-
dimensional numerical simulations including gas self-gravity,
a prescription for star formation, and feedback in the form of
thermal energy, Tasker & Bryan (2006) found power-law slopes
in�SFR / �1þp similar to observed values. Li et al. (2005a, 2006),
using smoothed particle hydrodynamics simulations, found both
slopes ( p � 0:6) and normalization similar to those in Kennicutt
(1998b; p � 0:4). Their simulations included gravity and sink
particles to track the collapsing gas, but did not treat feedback.
Recently, Robertson & Kravtsov (2008) performed simulations
that included molecular cooling and found that the power-law
indices obtained by fitting �SFR / �1þp are generally steeper if
all of the gas, rather than just molecular gas, is included; this is
consistent with recent observational results.

In this work we investigate how SN-driven feedback affects
subsequent star formation in gas disks, including star formation
rates. We model feedback with a direct momentum input, rather
than using a thermal energy input (when underresolved, the latter
approach suffers from overcooling and the resulting momentum
input is too low). Our work also differs from other recent simu-
lations in our approach to treating disk thickness effects; these
can be very important to determining the star formation rate, but
direct resolution requiring zones <5 pc in size can be prohibi-
tively expensive to implement in global disk models.

The evolution of large gas clouds is also relevant to studies of
spiral structure. In previous work (Shetty & Ostriker 2006, here-
after Paper I) we simulated global disks with an external spiral
potential and found that gravitational instability causes gas in
the spiral arms to collapse to form clouds with masses�107M�,
similar to masses of GMAs and H i superclouds. We found that

gas self-gravity is also crucial for the growth of spurs (or feathers),
which are interarm features that are connected to the spiral arm
clouds (see also Kim&Ostriker 2002). Observations have shown
that spurs are indeed ubiquitous in grand-design galaxies and are
likely connected with large clouds in the spiral arms (Elmegreen
1980; La Vigne et al. 2006). If grand-design spiral structure is
long lasting, as hypothesized by density wave theory (Lin & Shu
1964; Bertin & Lin 1996 and references therein), then feedback
mechanisms dispersing the spiral arm clouds must nevertheless
leave the global spiral pattern intact. One of the goals of this
work is to assess the effect of star formation feedback in massive
clouds on the global spiral morphology.

Conversely, the spiral arms also affect the initial formation of
clouds, therefore also impacting the star formation process. Ob-
servations show that most H� emission in grand-design galaxies
occurs downstream from the primary dust lanes. An explanation
for these observations is that gas is compressed as it flows through
the spiral potential minimum, leading to cloud formation; then at
some later time, stars form within these compressed gas clouds.
Consensus on the exact nature of spiral arm offsets has not yet
been reached, however, owing to both observational limitations
and diverse theoretical views on the star formation process. Fur-
ther, the relative importance of spiral arm triggering is still not
completely understood. Vogel et al. (1988) found that the star
formation efficiency (in molecular gas) in the spiral arms of the
grand-design galaxyM51 is only larger by a factor of a few com-
pared with interarm regions. Other observational studies com-
paring star formation rates in grand-design spiral galaxies and
those without strong spiral structure found similar results (see
Knapen et al. 1996; Kennicutt 1998a and references therein). As
a result, density waves may primarily gather gas in the spiral
arms (enhancing the ability to form GMCs), but may not sig-
nificantly affect the star formation efficiency within any given
molecular parcel. Without a large-scale density wave, a similar
fraction of gas might still collapse (per galactic orbit) to form
clouds via other mechanisms (including large-scale gravitational
instabilities), but not in a coherent fashion. Here, we explore the
differences in cloud formation properties in gaseous disks with
and without an external spiral driving mechanism.

In this work we are interested in the effect of feedback from
star formation in large clouds, such as GMCs and GMAs, on the
star formation rate, as well as on the overall dynamics and sub-
sequent cloud formation in galaxy disks. This work extends the
models presented in Paper I: numerical hydrodynamic simula-
tions of global disks with gas self-gravity. With the resolutions of
our models, massive GMAs do not fragment into smaller GMCs,
so significant energy input is required to unbind the gas in these
concentrations. If this energy is provided by star formation feed-
back, multiple massive stars would be needed to destroy the
GMAs. In this work we model feedback by considering the im-
pact on large clouds of single energetic events. In practice, this
could represent multiple correlated SNe; this can also be con-
sidered simply as an expedient but cleanly parameterizable feed-
backmodel at one extreme of the range of event correlation.4We
then study the resulting nature of the turbulent gaseous disk, as
well as the formation and evolution of the clouds that form in the
turbulent medium. In x 2 we describe our numerical simulation
approach, including model parameters and the feedback algo-
rithm. We then present and analyze our simulation results in x 3.
In x 4 we discuss our results in the context of other work and
summarize our conclusions.

4 In future work we intend to explore how the degree of feedback correlation
affects the results.
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2. MODELING METHOD

2.1. Basic Hydrodynamic Equations

To study the growth and destruction of clouds in a gaseous
disk, we simulate the evolution of the gaseous component by
integrating the equations of hydrodynamics. As in Paper I, we
include the gravitational potential of the gas. Our models are
two-dimensional, except that the vertical structure of the disk is
included in the calculation of self-gravity, embodied in a func-
tion f (z) (see below and the Appendix). The governing hydro-
dynamic equations, including self-gravity, are

@�

@t
þ: = (�v) ¼ 0; ð2Þ

@v

@t
þ v = :vþ 1

�
:� ¼ �:(�ext þ �)� v2c

R
; ð3Þ

92� ¼ 4�Gf (z)�: ð4Þ

Here, �, v, and � are the gas surface density, vertically aver-
aged velocity, and vertically integrated pressure, respectively, and
vc is the unperturbed circular orbital velocity. For simplicity, we
assume an isothermal equation of state, so that� ¼ c2

s
�, where cs

is the sound speed. The term � is the gaseous self-gravitational
potential. To grow gaseous spiral arms, we include an external
spiral potential �ext to model the perturbation produced by the
nonaxisymmetric stellar distribution, which is specified at time
t in the inertial frame by

�ext(R; �; t) ¼ �ext;0 cos ½m�� �0(R)� m�pt�; ð5Þ

wherem, �0(R), and�p are the number of arms, reference phase
angle, and spiral pattern speed, respectively. We only consider
models with a constant pitch angle i, so that

�0(r) ¼ � m

tan i
ln Rþ const: ð6Þ

2.2. Model Parameters

Similar to Paper I, the sound speed cs and rotational velocity vc
are constant in space and time, cs ¼ 7 kms�1 and vc ¼ 210 kms�1.
We adopt the code unit of length L0 ¼ 1 kpc. Using cs as the
code unit for velocity, the time unit t0 ¼ L0/cs ¼ 1:4 ; 108 yr,
which corresponds to one orbit torb ¼ 2�/�0 at a fiducial radius
R0 ¼ L0vc/2�cs ¼ 4:77 kpc. Our results will scale to other val-
ues of R0 and L0 with the same ratio, as well as tomodels with the
same ratio vc/cs ¼ 30.

In Paper I we explored different external spiral potential
strengths,

F � �ext;0m

v2c tan i
; ð7Þ

which is the ratio of the maximum radial perturbation force to
the radial force responsible for a constant rotational velocity vc.
We found that spurs form in disks with strong external potential
strengths. Since one of our objectives is to assess the evolution
of the spurs in disks including feedback, here we only simulate
disks with F ¼ 10%, for both two-arm and four-arm spiral gal-
axies (m ¼ 2 and 4). The corotation radius of 25L0 corresponds
to 25 kpc and a pattern speed of 8.4 km s�1 kpc�1, for spiral
models using our fiducial parameters.We also simulate disks with
no external spiral forcing.

In our computation of gas self-gravity, we include the effect of
the thickness of the disk via f (z), which also acts as softening.
We assume a Gaussian vertical gas distribution, with scale height
H / R, so the disk flares at larger radii (see Appendix). For a
given surface density, the effective midplane density is given by
�0 ¼ �/½H(2�)1/2�. As described in Paper I and Kim & Ostriker
(2007), including the effect of thickness provides an important
stabilizing effect on the disk. For most of our simulations, we use
H /R ¼ 0:01.
As in Paper I, the Toomre parameter Q0 � �0cs/(�G�0) and

the surface density �0 at R0 are related by

�0 ¼
2

ffiffiffi
2

p
c2s

GL0Q0

¼ 32

Q0

M� pc�2 cs

7 km s�1

� �2 L0

kpc

� ��1

: ð8Þ

For flat rotation curves, the epicyclic frequency � ¼
ffiffiffi
2

p
� ¼ffiffiffi

2
p

vc/R. Our models initially have� / R�1, so thatQ is constant
for the whole disk.

2.3. Numerical Methods

Since this work is an extension of previous work, we refer the
reader to Paper I for a description of the cylindrical-symmetry
version of the ZEUS code (Stone & Norman 1992a, 1992b) that
we use to carry out our simulations.We use a parallelized version
of the hydrodynamic code and gravitational potential solver,
allowing us to increase the number of zones in the grid relative to
the models of Paper I. For our standard grid we set the azimuthal
range to 0Y�/2 radians and the radial range to 4Y11 kpc. We
implement outflow and periodic boundary conditions in the ra-
dial and azimuthal directions, respectively. These models have
1024 radial and 1024 azimuthal zones. Since the radial grid
spacing is logarithmic, the resolution varies; the linear resolution
in each dimension (�R, R��) varies from �(4 pc, 6 pc) in the
innermost region to�(11 pc, 17 pc) at the outer boundary. These
high resolutions allow the Truelove criterion (Truelove et al.
1997) to be satisfied throughout the simulation as gas collapses to
form self-gravitating clumps.
In this work we use a different method to compute the grav-

itational potential from that in Paper I. Here, we use a method
derived from that described by Kalnajs (1971) in polar coordi-
nates (see also Binney & Tremaine 1987). This method employs
the convolution theorem for a disk decomposed into logarithmic
spiral arcs. We implement softening to account for the nonzero
thickness of the disk. We describe the method in detail in the
Appendix.
We note that for simulations with the standard grid and in-

cluding a spiral potential, the limit in azimuth requires that
m ¼ 4 (four arms). However, we also explore some models with
m ¼ 2 patterns, with the azimuthal range 0Y�, using twice as
many azimuthal zones as the standard grid so that the physical
resolutions of both simulations are equivalent.

2.4. Feedback: Event Description and Algorithm

Equations (2)Y (4) only describe the flow as gas responds to
self-gravity and to the external spiral perturbation, if one is
present. However, those equations do not describe any feedback
that would occur after a self-gravitating cloud forms and frag-
ments into smaller scale structures, ultimately forming stars with
a range of masses. In the real ISM of galaxies, clouds are dis-
persed by the combination of photoevaporation by UV radiation
from massive stars and the ‘‘mechanical’’ destruction by ex-
panding H ii regions and SNe.
We include in our simulations a very simple feedback pre-

scription by implementing ‘‘feedback events,’’ each representing
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momentum input from a number of SNe (or, alternatively, mul-
tiple overlapping expanding H ii regions). The specific SN rate,
RSN, averaged over all mass Mdense above a chosen threshold
density in a galaxy is

RSN ¼ Number of SNe

Mdense ; time
: ð9Þ

When this rate is applied to an individual dense cloud of mass
Mcl with a lifetime tcl, the average number of SNe in the cloud
will be

NSN ¼ RSNMcltcl: ð10Þ

If the total mass of stars of all masses formed per single SN is
MSN and the star formation efficiency over a cloud lifetime is
�SF, then

NSN ¼ �SF
Mcl

MSN

: ð11Þ

Equating expressions (10) and (11), the mean cloud lifetime is

tcl ¼
�SF

RSNMSN

: ð12Þ

In a given time interval �t, such as the time between successive
computations in the numerical evolution, the probability P that
a cloud (of mean lifetime tcl) is destroyed is �t/tcl. Thus,

P ¼ �t RSNMSN=�SF: ð13Þ

In our algorithm, clouds are defined as regionswith densities above
a chosen threshold. If a particular zone is a local density maxi-
mum, that zone is selected as the center of the feedback event.
For any such identified cloud, a star formation event is initiated
with a probability per time step given by equation (13). In each
cloud that is determined to undergo feedback, gas is evenly
spread out in a circular region with a prescribed bounding radius.
Gas in each zone in the circular region is assigned an outward
velocity (relative to the center) to expand the feedback ‘‘bubble.’’
A constant azimuthal velocity is also added such that total ga-
lactocentric angular momentum is conserved. The velocity pro-
file inside the bubble is proportional to the distance from the
bubble center. For most of our simulations, we choose the
radius of the feedback bubble to be 75 pc, which corresponds to
12Y23 pixels, depending on the radial location. In this way,
the initially collapsing cloud gas is forced back into the sur-
rounding ISM.

In our simulation we only consider the isothermal expansion
of the clouds, since we assume an isothermal equation of state.
Thus, we can only consider the net energy input at a stage when
expansion of the shell has become strongly radiative. Numerical
simulations show that for a single SN of energyESN � 1051 ergs,
the radial momentum during the radiative stage is Prad � (3Y5) ;
105 M� km s�1 (Chevalier 1974; Cioffi et al. 1988). During the
subsequent evolution of the bubble, the shell momentum Psh is
conserved and is equal to Prad. Wind-driven and pressure-driven
H ii region bubbles similarly are accelerated to reach a final
momentum Prad.

For a total number of massive stars formed given by equa-
tion (11) and assuming correlation in time, the total momentum
applied to the shell is

Psh ¼ NSNPrad ¼ �SF
Mcl

MSN

Prad: ð14Þ

The shell velocity Vsh is

Vsh ¼
Psh

Msh

¼ �SF
Mcl

Msh

Prad

MSN

: ð15Þ

Here,Msh is the sum of Mcl and any ambient gas in the (circular)
feedback region. Assuming MSN ¼ 100M� and �SF ¼ 0:05, for
Prad ¼ 3 ; 105 M� km s�1, Vsh ¼ 150 km s�1ð Þ(Mcl/Msh).

Given our feedback prescription, the two key parameters are
the probability per unit time for cloud destruction (eq. [13]) and
the momentum input in the feedback event (eq. [14]). For the
simulations presented here, we explore a range in the rate RSN

and in the momentum input per massive star, Prad. The spe-
cific SN rate is set either to RSN ¼ ½ 109 M�ð Þ 50 yrð Þ��1 ¼ 2 ;
10�11 M�1

� yr�1 (comparable to that in theMilkyWay) or 10 times
that rate (these models are denoted by RSN ¼ 1 or 10 in Table 1).
Since MSN/�SF in equation (13) appears as its inverse in equa-
tion (14), we fixMSN ¼ 100 M� for all simulations, motivated
by the initial mass function of Kroupa (2001), and explore
variations in �SF. Scaling to fiducial values, we then have

tcl ¼ 2:5 ; 107 yr
�SF
0:05

� � RSN

2 ; 10�11 M�1
� yr�1

� ��1

ð16Þ

for the typical lifetime of dense clouds. The momentum Prad is
set either to 3:4 ; 104 or 3:4 ; 105 M� km s�1, in order to allow
for a range in feedback energy and out-of-plane losses (venting
from the galaxy) that reduce Prad for a given energy input.

We note that for low values of Prad, the energy input will not
be sufficient to destroy a dense, bound cloud. In particular, a
cloud of surface density �cl will become unbound only if Vshk
(2G)1/2(��clMcl)

1/4. For�cl ¼ 200M� pc�2 andMcl ¼ 106 M�,
the minimum shell velocity is �15 km s�1. For our larger value
of Prad, this inequality is comfortably satisfied, but for the smaller
value it is not.We indeed find that for the low-Prad models, clouds
are not destroyed by feedback. For these models, then, the ratio
tcl � �SF/(RSNMSN) becomes the mean interval between (non-
destructive) feedback events in a given cloud.

Before any feedback, the spiral models are executed for some
time to allow gas to concentrate (due to self-gravity) and form
clouds in spiral arms. In simulations without spiral forcing,
condensations begin to grow due to an initial 0.1% density per-
turbation. As a result of shear, the first structures that form are

TABLE 1

Parameters for Standard
a
Models

Model Q0 m RSN
b �SF Prad (105 M� km s�1)

(1) (2) (3) (4) (5) (6)

Q1A..................... 1 0 1 0.025 0.34

Q1B..................... 1 0 1 0.05 0.34

Q1D..................... 1 0 10 0.05 3.4

Q1SA................... 1 4 1 0.025 0.34

Q1SB................... 1 4 1 0.05 0.34

Q1SC................... 1 4 1 0.05 3.4

Q1SD................... 1 4 10 0.05 3.4

Q1SE................... 1 4 10 0.05 0.34

Q2SA................... 2 4 1 0.025 0.34

Q2SB................... 2 4 1 0.05 0.34

Q2SC................... 2 4 1 0.05 3.4

Q2SD................... 2 4 10 0.05 3.4

a By standard we mean 1024 ; 1024 zones, R2½4; 11� kpc, and �2½0; �/2�
radians.

b This is in units of 2 ; 10�11 M�1
� yr�1, i.e., number ofSNeper 50yr per 109M�.
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large-scale flocculent spiral-like features, which we termed
‘‘sheared background features’’ in Paper I. Gas in these fea-
tures then collapses to form distinct clouds. Thus, we wait until
some threshold density is reached before feedback occurs. For
most models, the threshold density is �/�0 ¼ 10 (this sets the
threshold � at 320 M� pc�2 for Q0 ¼ 1, and 160 M� pc�2 for
Q0 ¼ 2). We hereafter refer to any contiguous structure in our
simulationwith a density above this chosen threshold as a ‘‘cloud,’’
regardless of whether the given structure hosts a feedback event
or not.

We note that with our feedback prescription, the star forma-
tion rate is given by the mass in dense gas (i.e., exceeding the
threshold surface density) times RSNMSN. This linear relation is
supported by the shallow slopes of �SFR versus�mol (as observed
in CO emission). In some other recent work (e.g., Li et al. 2005a,
2006; Tasker & Bryan 2006, 2008; Robertson & Kravtsov 2008),
the star formation rate is taken as equal to the mass (with density
above some threshold) divided by the free-fall time at that den-
sity, times some efficiency factor. Our prescription is therefore
equivalent to choosing a ratio of efficiency over free-fall time at
the surface density threshold of �A/tA ¼ RSNMSN ¼ (5 ; 107Y
5 ; 108 yr)�1. Since the mean internal density within real GMCs
(which have surface densities similar to our critical threshold) is
�100 cm�3, with corresponding free-fall time of 4 Myr, our
models would cover a range of star formation efficiencies per
free-fall time of �A � 1%Y10%.

3. SIMULATION RESULTS

We first present simulations with standard grid parameters,
without spiral structure. We then show the results of simulations
including spiral structure, as well as simulations pertaining to
different radial regions.

Table 1 shows the initial conditions of the standard set of
models we present, as well as the relevant parameters controlling
the feedback events. Column (1) lists each model. Column (2)
shows the initial Toomre Q parameter which is initially constant
for the whole disk. Column (3) indicates the number of arms, all
with F ¼ 10%. Column (4) gives the SN rate, which is required
for setting the probability that a feedback event occurs in a cloud
(see eq. [13]). Column (5) shows the assumed star formation

efficiency, and column (6) gives the adopted momentum input
per massive star. For these models H /R ¼ 0:01.

3.1. Disks without Spiral Structure

Figure 1 shows a snapshot of the model with Q0 ¼ 1, at time
t/torb ¼ 0:84, without an external spiral potential and before any
feedback. As discussed in x 2.4, trailing features grow due to the
self-gravity and shear in the disk (see Paper I for details). The
most dense structures grow as sheared, trailing features. It is
in these regions where the first SN will occur to disperse the
dense gas.
Figure 2 shows a snapshot of model Q1A, at time t/torb ¼

1:125. For model Q1A, the SN parameters are all at the low end
of the range. At the time of this snapshot, 105 feedback events
have occurred, in clouds which have meanMcl ¼ 1:2 ; 106 M�.
The main difference between Figures 2 and 1 is the shape of the
trailing features. The feedback events have caused the features to
become fragmented at some locations. However, dispersal of gas
due to feedback was not sufficient to prevent or reverse the in-
flow of gas into the high-density agglomerations. Either the SNe
do not occur rapidly enough or do not have enough momentum
to alter the basic morphology. Even increasing both the SN rate
by a factor of 10 and doubling the star formation efficiencymakes
little difference; the strong self-gravitational force from the trailing
features keeps much of the gas in those structures. Increasing the
SNmomentum (or equivalently the velocity) by up to a factor of
8 still does not significantly affect the outcome; much of the gas
is contained in the sheared structures at any given time.
It is only when Prad is increased to 3:4 ; 105 M� km s�1, along

with increasing RSN by a factor of 10 and �SF to 0.05, that we find
a significant difference compared to the case Q1A, as in model
Q1D shown in Figure 3. The velocity is sufficiently large to drive
gas away from the density maxima of the trailing structures. Fur-
ther, the rate is high enough that a large number of events occur
to significantly alter themorphology, in comparisonwith Figure 2.
Feedback events in this model are so frequent and energetic that
collisions between bubbles occur. In some instances, such colli-
sions create density enhancements that later result inmore collapse
and subsequent feedback along the bubble interface. At time
t/torb ¼ 1:125 (Fig. 3a), we can still make out the underlying loci

Fig. 1.—Density snapshots ofQ0 ¼ 1 nonspiral model before any feedback, at time t/torb ¼ 0:84. Gray scale is in units of log (�/�0). [See the electronic edition of the
Journal for a color version of this figure.]
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Fig. 2.—Density snapshots of model Q1A, at time t/torb ¼ 1:125. Gray scale is in units of log (�/�0). [See the electronic edition of the Journal for a color version of
this figure.]

Fig. 3.—Density snapshots of model Q1D, at time (a) t/torb ¼ 1:125 and (b) 1.375. Gray scale is in units of log (�/�0). [See the electronic edition of the Journal for a
color version of this figure.]



of the initial structures formed by gravitational instability and
shear, although 537 feedback events have occurred up to this
time. Yet, after an additional 26 Myr and 75 feedback events
(Fig. 3b), the dominant large-scale features do not have a single
pitch angle. Further, the locations of many of the bubbles are
clustered. Although gas is driven away from the initial structures
formed before feedback, at later times clouds form in clusters near
the initial density maxima and where feedback bubbles overlap.
Qualitatively, the features in the disk, consisting of filaments and
bubbles, are similar to the global models including feedback of
Wada & Norman (2001). We discuss the masses of the clouds in
both ‘‘nonspiral’’ and spiral models in x 3.2.

In disks withQ0 ¼ 2, sheared features will also grow, but need
more time to develop than in the Q0 ¼ 1 disks. Because of its
relative stability, after t/torb ¼ 2 only a few clouds have formed.
As a result, implementing feedback does not affect the majority
of the disk. To study the effect of feedback in Q0 ¼ 2 disks,
another mechanism is necessary to grow clouds everywhere in
the disk. We thus simulate Q0 ¼ 2 disks with an external spiral
potential and then implement feedback to destroy the spiral arm
clouds that grow.

3.2. Disks with Spiral Structure

In disks with spiral structure, the stellar spiral potential acts
as a source of perturbation; the compression of gas as it flows
through the potential eventually leads to the growth of self-
gravitating clouds. We explore the effect of feedback on the
morphology of the gaseous spiral arms and interarm spurs, as
well as any subsequent cloud formation.

Figures 4 and 5 show snapshots of models with m ¼ 4, for
Q0 ¼ 1 and 2, without any feedback. In the spiral models, the
growth of spiral arm clouds occurs sooner than the growth of
clouds formed by natural instabilities in a rotating self-gravitating
disk.5 Figures 4 and 5 show snapshots of models without any
feedback, although in the Q ¼ 1 snapshot (Fig. 4) the densities

have surpassed the threshold density �/�0 ¼ 10 chosen for
models with feedback. Note that while the Q ¼ 1 model (with
strong self-gravity) shows dense gas knots within the arm, the
Q ¼ 2model (with weaker self-gravity) shows spurlike features;
gas does not collapse as promptly.
For both models Q1SA and Q2SA, the SN momenta are in-

sufficient to offset the growth of clouds and spurs resulting from
the spiral potential. After a feedback event, the dispersed cloud
gas flows back toward the spiral arm. As a result, clouds continue
to grow over time. Further, the spurs also continue to grow in
density.Without feedback, self-gravitating spiral arm clouds cause
the surrounding gas to flow in with large velocities. Eventually,
the simulations have to be stopped because the Courant time is
too small. The time when the simulation ceases, depending partly
on our choice of the minimum acceptable Courant time, also
depends on which clouds are (randomly) selected for feedback;
clouds that have produced large inflow velocities would have to
be dispersed for the simulation to continue to evolve.
We again find that large SNmomenta are required to sufficiently

disperse clouds so that immediate recollapse does not occur. For
such models, the SN rate has an effect on the number of sub-
sequent clumps formed. Figure 6 shows a snapshot of models
Q1SC and Q1SD, �21 Myr after the first feedback events. At
this time, 53 feedback events have occurred in model Q1SC and
540 in model Q1SD. In model Q1SC, it is clear that most, if not
all, feedback events originated in the spiral arms. However, in
model Q1SD, many feedback events have occurred in interarm
regions. The spiral arms are not as identifiable, although at this
time the remnants of spurs are still identifiable. Further, model
Q1SD contains many more clumps than model Q1SC. The en-
hanced SN rate has caused the collision of more shell remnants,
which lead to the formation of self-gravitating clumps at the in-
terfaces. In both cases, feedback events have caused gas to be
dispersed from the arms, eventually removing any trace of the
underlying spiral potential, as can be seen in Figure 7.
Figure 8 shows the histogram of the masses of the cloudsMcl

that hosted feedback events6 in models Q1A, Q1D, Q1SA, and

Fig. 4.—Density snapshots ofQ0 ¼ 1 spiral model, without feedback, at t/torb ¼ 0:675. Gray scale is in units of log (�/�0). [See the electronic edition of the Journal
for a color version of this figure.]

5 In our models, the amplitude of the spiral perturbation is ‘‘turned on’’
gradually, reaching the maximum amplitude F at t/torb ¼ 1. Because of this
imposed ‘‘turn-on’’ time, the growth rate of GMCs in our models is not repre-
sentative of actual GMC formation timescales.

6 From eq. (11), feedback events in model Q1A and Q1D on average consist
of 300 and 350 SNe, respectively.
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Q1SD. In all cases, the maximum mass of the clouds is below
107M�, and the means andmedians for the distributions lie in the
range (0:5Y2:2) ; 106 M�. In model Q1A, most feedback events
have occurred in the large-scale sheared features that grow due to
gravitational instability. However, in model Q1D, some fraction
of the feedback events have occurred in regions of collidingflows.
The histogram suggests that clouds formed by colliding flows
have characteristically lower masses than those formed in the
large-scale sheared features. Similarly, in model Q1SA, most

feedback events have occurred in the spiral arms, since most
clouds form in the arms. On average, the clouds in model Q1SD
have lower masses, with many clouds formed due to colliding
flows initiated in earlier feedback events. For a power law in the
mass distribution, dN /d logM / M�� , the distribution in the
high-end masses for model Q1SD (below the cutoff at logM ¼
6:4) gives� � 0:6. This slope and the upper limit in cloudmasses
is similar to the range and the upper limit in the observed masses
of GMCs (see McKee & Ostriker 2007 and references therein).

Fig. 5.—Density snapshots ofQ0 ¼ 2 spiral model, without feedback, at t/torb ¼ 1:04. Gray scale is in units of log (�/�0). [See the electronic edition of the Journal for
a color version of this figure.]

Fig. 6.—Models Q1SC (left) and Q1SD (right) at t/torb ¼ 0:73. Gray scales are in units of log (�/�0). [See the electronic edition of the Journal for a color version of
this figure.]
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A histogram of the masses of all clouds at any given time, scaled
by a factor equal to the total duration divided by tcl , reproduces the
overall shape of the histogram of the masses of clouds with feed-
back. A detailed analysis of the cloud mass distribution is not ap-
propriate here, becausemany of the lowermass clouds are notwell
resolved and because highermass cloudswould be subject to turbu-
lent fragmentation that we cannot follow. Higher resolution simu-
lations are therefore required to obtain more complete cloud mass

distributions. Nevertheless, it is clear that the upper mass limits
for clouds in all models are similar to those in real spiral galaxies.

3.3. Star Formation Properties

3.3.1. Star Formation Rates and Turbulence

For comparison to observations, two quantities of interest are
the star formation rate SFR and the turbulent velocity vturb. In

Fig. 7.—Models Q1SC (left) andQ1SD (right) at t/torb ¼ 1:15. Gray scales are in units of log (�/�0). [See the electronic edition of the Journal for a color version of this figure.]

Fig. 8.—Cloud masses in models with strong (thick lines) and weak (thin lines) feedback. Left: Histogram of Mcl in models Q1D (thick histogram) and Q1A (thin
histogram), up until time t/torb ¼ 1:125 (see Figs. 2 and 3). The mean (median) Mcl for models Q1A and Q1D are 1:2 ; 106 (0:8 ; 106) and 0:7 ; 106 (0:5 ; 106) M�,
respectively. Right: Histogram of Mcl in models Q1SD (thick histogram) and Q1SA (thin histogram), up until time t/torb ¼ 0:73 (model Q1SD is shown in Fig. 6). The
mean (median) Mcl for models Q1SA and Q1SD are 2:2 ; 106 (1:9 ; 106) and 0:8 ; 106 (0:6 ; 106) M�, respectively.
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each simulation, we record each feedback event to determine the
SFR. For some chosen time bin �t, we compute

SFR ¼ �SF

P
Mcl

�t
; ð17Þ

where
P

Mcl is the total mass of all gas in clumps (i.e., above the
chosen threshold surface density) that have undergone feedback
events in the chosen time interval. (Recall that the mean lifetime
of clouds, or the mean interval between star formation events if
they are nondestructive, is given by eq. [12].)

We define the turbulent velocity as the rms sum of any non-
circular velocities, weighted by the corresponding mass,

vturb ¼
P

�vi; j
� �2

�i; jAi; jP
�i; jAi; j

" #1=2

; ð18Þ

where Ai; j is the area of each zone and only noncircular velocity
components are considered, �v ¼ v� vcf̂. Figure 9 shows the star
formation rate and turbulent velocity as a function of time, for
the Q0 ¼ 1 models without spiral structure. The time bin�t for
our SFR calculation is 3 Myr. In these models, the first feedback
events occur at time �125 Myr. However, for the first �25 Myr
after feedback begins, the SFR for allmodels is only a fewM� yr�1.
Only �25 Myr after the first feedback events does the SFR sub-
stantially increase, owing to ‘‘propagating’’ star formation. Fur-
ther, the Q1D model with large feedback momenta (Prad ¼ 3:4 ;
105 M� km s�1) and a large SN rate (RSN ¼ 10) has the SFR
increase to �10 M� yr�1. This occurs because with large ve-
locities and a high global rate, adjacent shells collide and more
clouds are formed in the interfaces, which may subsequently
undergo star formation.

The bottom panel of Figure 9 shows vturb, for all feedback
models without spiral structure, together with results from a sim-
ulation without any feedback. For the latter case, we just allow
self-gravity to grow clouds indefinitely. When we compute vturb
in the model without feedback considering only the low-density
gas, we obtain similar values. This suggests that, before any feed-
back, large-scale motions from disk self-gravity and shear are the
primary sources of turbulence (see Kim & Ostriker 2007). The
models with low feedback momentum continue the trend of vturb

established by the no-feedback case. In a few instances of en-
hanced feedback, there is a corresponding jump in vturb. The
enhanced SFR at later times for the model with large SN mo-
menta also increases levels of vturb.

Figures 10 and 11 show the SFR and vturb for the spiral models
withQ0 ¼ 1 and 2. Comparing Figures 10 (with spiral structure)
and 9 (without spiral structure), the star formation rate is con-
sistent to within a factor of 2, although slightly larger in some of
the spiral models. The general trends from the models without
spiral structure are reproduced in Figures 10 and 11. Earlier times
are shown in Figure 10, since the spiral arms cause gas to col-
lapse into clouds sooner. It is clear that only in models with large
SN shell velocities—and regardless of the input rate RSN—do
the turbulent velocities increase appreciably; otherwise, the tur-
bulent velocity (as we have defined it) is dominated by effects
from gas self-gravity.

It is interesting to compare results from pairs of models in
which one parameter is varied and the others are controlled.
Comparing models Q1SE and Q1SB, both have the same �SF ¼
0:05 and Prad ¼ 3:4 ; 104 M� km s�1, but the former has RSN

larger by a factor 10. The measured SFR in Q1SE is a factor�10
larger than that in Q1SB, consistent with the naive expectation
that SFR / RSN. However, when we compare Q1SDwith Q1SC,
which again differ in RSN by a factor 10, we find SFR ratios dif-
fering only by a factor�4. This same trend is also true formodels
Q2SD and Q2SC. The reason for this difference in dependence on

Fig. 9.—SFR (top) and vturb (bottom) for models with Q0 ¼ 1, without spiral
structure. The values in parentheses in the legend are the SN rate parameter RSN,
the star formation efficiency �SF, and SN momentum Prad (inM� km s�1) of each
model. The large open squares in the bottom panel are the turbulent velocities for
a simulation without any feedback.

Fig. 10.—Same as Fig. 9, but with spiral structure.

Fig. 11.—Same as Fig. 10, but for models with Q0 ¼ 2.
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RSN is that the E and B models have low Prad and low turbulence
levels, whereas the C and D models have higher Prad and turbu-
lence. Thus, stronger feedback causes the scaling of SFR to depart
from SFR / RSN. We note that since SFR ¼ RSNMSNMdense by
definition, the ratios of specific SFRs between any two models
differ by their ratios of RSNMdense/Mtot. Thus, if SFR increases
at a rate less than /RSN, it implies that increasing RSN decreases
the dense gas fraction Mdense/Mtot.

We can directly investigate the effect of turbulence by com-
paring the pair Q1SB and Q1SC, which have the same �SF ¼
0:05 and RSN, but momentum input parameters differing by a
factor 10. As noted above, this increases the turbulence level in
Q1SC compared to Q1SB by about 10 km s�1. It also reduces the
SFR in Q1SC compared to Q1SB, by a factor �2Y4. Similarly,
Q1SE has lower Prad than Q1SD and a substantially lower tur-
bulence level. For this pair, too, the SFR in the lower turbulence
model is higher by a factor �3Y5. As discussed in x 1, in prin-
ciple turbulence could both enhance star formation (by creating
more dense gas in compressions) and suppress star formation
(by destroying overdense structures with rarefactions and shear
flows). Examining the evolution of Q1SE indeed shows that
feedback events only slightly expand clouds, and collapse sub-
sequently resumes. On the other hand, clouds inmodel Q1SD are
completely destroyed after a single feedback event. Evidently, in
the models with strong feedback-driven turbulence, the rate of
new cloud formation from shell collisions does not compensate for
the truncation of star formation when a given cloud is destroyed.

The comparisons of Q1SB to Q1SC and Q1SE to Q1SD in-
dicate that in net, the increase of turbulence reduces star for-
mation.7 Since the specific SFR is proportional to the dense gas
fraction if RSN is held fixed, these results imply that the dense gas
mass fraction is lower when the turbulence level is higher.

We show the relationship between the mass-weighted turbu-
lent velocity and the surface density in Figure 12. Most feedback
events occur in high-density regions. In the higher density regions,
the difference in turbulent velocities (or the velocity dispersions) be-
tween models with Prad ¼ 3:4 ; 104 and 3:4 ; 105 M� km s�1 is
k7 km s�1. At lower density regions,where there have been fewer
feedback events, the dispersions of all models are comparable.

Figure 13 shows the turbulent power spectrum (power / v 2)
of model Q1D. The power is shown at constant wavenumbers kR
and k�. The slopes of the power spectra range from �2.5 to �3.
For models that evolve for significant amounts of time, such as
model Q1D, the power spectra are relatively independent of time.
These results are consistent with turbulence dominated by nu-
merous shocks, or Burgers turbulence. From Figure 13, the ampli-
tudes of turbulence evidently decrease at smaller scales.
The total turbulent amplitudes shown in Figures 9Y11 repre-

sent the velocity dispersion averaged over the whole disk. For
the purposes of assessing turbulent contributions to local disk
stability, however, only the level of turbulence within a Jeans
length�c2s /(G�) is relevant. Furthermore, local observations of
turbulence within theMilkyWay generally measure velocity dis-
persions on scales less than the disk thickness. Thus, it is useful
to estimate the turbulent amplitudes at smaller scales than the
whole disk. We do this by running a window (or ‘‘beam’’) of
1 kpc or 100 pc over the map and finding the dispersion of the
velocity within this window at locations separated by the window
size. When all zones within the window are weighted equally (as
is true for the velocity power spectrum), we find that the mean
velocity dispersions for model Q1D on scales of 1 kpc and 100 pc
are 18 and 6.5 km s�1, respectively.Whenweweight bymass, the
respective velocity dispersions are 31 and 10 km s�1. The larger
values obtained when weighting by mass are indicative of the
importance of dense expanding shells in driving the turbulence.
Since turbulence adds to the total momentum flux (the ram

pressure acts similarly to the thermal pressure), a common as-
sumption is that the sound speed cs can be replaced by

c2eA ¼ c2s þ �2
R ð19Þ

in the dispersion relations that characterize stability to axisym-
metric modes, where �R is the radial component of the velocity
dispersion. For models Q1SC and Q1SD, which have high Prad,
we find that the mean values of �R on kpc scales are 17 and
18 km s�1, respectively. For the corresponding models Q1SB
and Q1SE that have low Prad, on the other hand, the values of �R

on kpc scales are 10 and 8 km s�1, respectively. Thus, the values
of ceA exceed cs by a factor 1.6 for the low-turbulence models,
whereas this increases to a factor 2.7 for the high-turbulence
models. Our results discussed above indicate a decrease in the
star formation rate with increasing ceA; we discuss theoretical
ideas related to this finding in x 3.3.3 below.

3.3.2. Kennicutt-Schmidt Law

Figure 14 shows the local star formation rate per area as a
function of mean surface density. To obtain these points, simu-
lation data were binned in radius and time, with bins of widths
1 kpc and 18 Myr, respectively. Only models with a sufficient
number of points, which is dependent to some degree on the
number of feedback events, are shown. Best-fit lines to the data
points are also shown. The rates show considerable scatter, both
betweenmodels with different parameters as well as among points
from a given model. However, where a large dynamic range is
available, as is the case for the Q1D model and its extension to
smaller radii (see below), a power-law relation �SFR / �1þp is
quite clear.
The Q0 ¼ 1 models, both with and without a spiral pertur-

bation, and with different feedback parameters, generally give
slopes 1þ p � 1Y3. Most of the Q0 ¼ 1 models evolve for suf-
ficiently long times that gas in the first clouds that are formed is
allowed to be recycled into subsequently formed clouds several
times. The Q0 ¼ 2 models, on the other hand, give a variety of

Fig. 12.—Mass-weighted turbulent velocities vs. mean surface density of Q1S
models, averaged in annuli of widths 1 kpc, and in the time interval t/torb2
100; 116½ � Myr. Turbulent velocities are only shown from annuli and time in-
tervals within which feedback events have occurred.

7 We note that models Q2SB and Q2SC also show the same generic behavior,
but with a smaller difference in the turbulence level; the suppression of star
formation is also lesser.
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slopes, and the relationship between the star formation rate and
surface density is not as well correlated as in theQ0 ¼ 1 models.
For the Q0 ¼ 2 models, the number of feedback events is insuf-
ficient to affect much of the disk. As a result, some clouds con-
tinue to collapse, and the Courant condition would demand an
extremely small time step; at this point, we halt the simulation.
Since the stochastic feedback events do not result in developed
turbulence and a steady state is not approached in the Q0 ¼ 2
models, the SFR as computed is sensitive to model parameters
governing the feedback events.

For some of our models, we have also run simulations of the
inner regions of disks, with radial extent R2 0:8; 2:2½ � kpc. The
other parameters are the same as for the standardmodels. The only
difference here, besides the radial range, is the initial surface den-
sity. Since Q0 is constant and �0 / (Q0R)

�1, the initial surface
density at all radii is increased by a factor 5 compared to the
standard models with R2 4; 11½ � kpc.

Figure 15 shows the star formation rate as a function of surface
density for model Q1D together with the corresponding inner re-
gionmodel. The larger surface density does indeed lead to higher
star formation rates, with a slope 1þ p ¼ 2:2 that is similar to
the value 1þ p ¼ 2:4 of the standard model. We find similar
trends for other inner disk models in comparison with the cor-
responding standardmodels. For comparison, Figure 15 also shows
data from Kennicutt (1998b). Each point indicates the globally
averaged star formation rate for individual galaxies or their cen-
tral regions (for starbursts). Although there is less scatter in the
simulation points, the slope of the�SFR-� relation from the sim-
ulations (�2.3) is larger than the slope from observational data

(1þ p � 1:4). At the low-� end, the model results overlap with
the observed points.

3.3.3. Predicting Star Formation Times

The star formation (or gas depletion) time tSF for the whole
gaseous component of a galaxy is the time required for all the gas
to be converted to stars if the star formation proceeds as it has
been during a given interval �t,

tSF ¼ �t
Mtot

�SF
P

Mcl

; ð20Þ

whereMtot is the total mass in a given annulus. This quantity can
be measured in our simulations; the summation in equation (20)
is taken over all clouds in which a feedback event has occurred,
as in equation (17).

Observationally, if the SN rate per dense gas mass RSN is
known, the star formation (or gas depletion) time can also be
estimated based on the total amount of gas and the portion in
dense clouds as

t 0SF ¼ Mtot

MdenseMSNRSN

; ð21Þ

whereMdense is the total mass of gas above some chosen thresh-
old density. Since RSNMSN ¼ �SF/tcl from equation (12), the re-
sults of equations (20) and (21) should agree on average. With
our two parameter choices RSN ¼ 1 or 10 (in units 2 ; 10�11

M�1
� yr�1), this implies t 0SF ¼ (1 or 0:1)(Mtot/Mdense)5 ; 108 yr.

Fig. 13.—Turbulent power spectra of model Q1D. Power is shown at constant kR (left) and constant k� (right; each slice is along the minimum nonzero value of the
respective k). To obtain the dimensions of k� (k� ¼ mn�/R), we use the mean radius of the grid. Best fits for values between log (k) ¼ 0 and 1 give slopes of�2.9 (left)
and �2.4 (right).
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We note that if the star formation or gas depletion time
were computed only for dense gas (with local surface density
k200 M� pc�2), then for our prescription it would simply be
equal to a constant, t 0SF(dense) ¼ (MSNRSN)

�1 ¼ 5 ; 107 or 5 ;
108 yr for RSN ¼ 10 or 1, respectively.

Figure 16 shows the star formation time in different radial
annuli formodelQ1D, as a function of �. The actual times, shown
by the filled symbols, are computed using equation (20), after
binning the simulation data in radii of 1 kpc widths and in time
with t/torb ¼ 0:125 widths. The open symbols show the pre-
dicted times by applying equation (21) on the same binned data.
The predicted times agree well with the actual times. We find
similar agreement with all other models.8 We also tested the cor-
relation between tSF and torb and found no strong correlation.
This lack of correlation occurs because at later times the surface
density profile no longer resembles the initial R�1 profile.

What is expected, on theoretical grounds, for the value of the
star formation time? Consider the case in which gas cycles be-
tween diffuse (gravitationally unbound) and dense (gravitationally
bound) components. The diffuse component forms dense clouds
at a rateMdiA/tdiA, and the dense clouds are returned to the diffuse
component plus stars over a cloud lifetime at a rate Mdense/tcl.

HereMdiA andMdense are the total diffuse and dense gasmasses in
an annulus, with corresponding surface densities when averaged
over the area of �diA and �dense (the latter is not to be confused
with the surface density of an individual dense cloud, which is
much higher). Similarly, � is the surface density corresponding
to the total mass of all the gasMtot in an annulus. In equilibrium,
the rates into and out of the dense component are equal, so that
the star formation rate per unit area averaged over the annulus
is

�SFR ¼ �SF
�

tdiA þ tcl
¼ �SF

�diA

tdiA
¼ �SF

�dense

tcl

¼ RSNMSN�dense: ð22Þ

Including all the gas, the star formation timescale using the defi-
nition of equation (21) (and dropping the prime) is then

tSF ¼ tdiA þ tcl

�SF
¼ tdiA

�SF

Mtot

MdiA
¼ tcl

�SF

Mtot

Mdense

: ð23Þ

Since tcl/�SF ¼ (RSNMSN)
�1 ¼ 5 ; 107 or 5 ; 108 yr is held con-

stant within any given model, the star formation time for all gas
in an annulus is inversely proportional to the fraction of the gas
above the density threshold in that annulus. If most of the gas is
diffuse (as is true in our simulations), then tdiA 3 tcl and tSF �
tdiA/�SF; the star formation time is set by the typical time required
for diffuse gas to collect into bound clouds.
What characteristic values might be predicted for the cloud

formation timescale, tdiA? The shortest possible timescale would
be that associated with the fastest growing Jeans modes in a disk.
For a disk with semithickness H and sound speed cs, the ap-
proximate dispersion relation for in-plane modes is!2 ¼ k2c2s �
2�G�jkj/(1þ jkjH ) (Kim et al. 2002; Paper I). For the fastest
growing modes (which satisfy dj!2j/dk ¼ 0) and for H <
c2s /(�G�) (i.e., less than the thickness of an isothermal disk
bound only by its own gravity), the inverse of the growth rate is
0:3tJY0:5tJ, where tJ ¼ cs/(G�) is the thin-disk Jeans length di-
vided by cs. In reality, rotation, shear, and turbulence must all
affect the cloud growth timescale (see below), but the Jeans time
nevertheless provides a useful reference value.
Another reference value for a structure formation timescale

that is frequently used is the free-fall time, tA ¼ (3�/32G�)1/2. If
the surface density and volume density are related via � ¼
�H(2�)1/2 (as for a Gaussian density distribution), then tA ¼
(3

ffiffiffi
2

p
�3/2H /32G�)1/2. For our ‘‘thick-disk’’ Poisson solver,

H / R is adopted, so that tA / (R/�)1/2. Our initial profiles
follow R / ��1, so that in the initial conditions tA / ��1 / tJ.
In particular, for theQ ¼ 1 case, tA ¼ 0:3tJ everywhere initially.
Over time, however, the surface density is spatially rearranged,
so that the values of tJ and tA are no longer strictly proportional.
Figure 17 shows the relationships between the star formation

time and the reference values tJ and tA. While a clear correlation
is evident for both relations, we find that there is less scatter in the
tSF-tJ relation than in the tSF-tA relation. Further, many of the
data points are consistent with a linear relationship tSF ¼ 7tJ, as
indicated in the figure. If we compare to the prediction tSF ¼
tdiA/�SF and substitute the value �SF ¼ 0:05 used in model Q1D,
this yields tdiA ¼ 0:35tJ, which agrees with the simple estimate
described above based on self-gravitating instabilities in thick
disks. This result suggests that, provided the efficiencies of star
formation in GMCs are constant and the disk is dominated by
diffuse gas, the Jeans time in the diffuse gas controls the rate
of star formation. While this result is quite intriguing, a high

8 Most other models do not run for as long as the D models that have high
feedback rates, because some dense clumps continue to collapse without feed-
back, eventually causing the Courant condition to be violated.

Fig. 14.—Schmidt law for models in Table 1. Each point is obtained by
binning the simulation data in radii, with 1 kpc widths, and in time, with 18 Myr
widths. Only annuli and times with at least one feedback event are included. The
lines are the best fits to the points, with their slopes ranging from 1.8 to 3.8 (top),
from 1.1 to 3.0 (middle), and from �2.0 to 1.9 (bottom).
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dynamic range in a wider range of disk models is necessary to
further investigate this relationship.

We note that in the dispersion relation used to predict tdiA �
tJ ¼ cs/(G�), no account was made for turbulence. As discussed
in x 3.3.1, the simplest phenomenological modification of this
relation would simply be to substitute cs ! ceA (see eq. [19]).
The results presented in x 3.3.1 which compare SFRs for model
pairs with low and high Prad, and hence different ceA, are at least

semiquantitatively in support of this prescription for modifying
tJ. There, we found that an increase of ceA by a factor of �2 is
associated with a decrease in the SFR by a factor �3. However,
the current models are not sufficient for a definitive statement.
An important objective for future work is to test the relation
between tSF and the turbulence level using a more extensive set
of models; the velocity dispersion can be varied by tuning the
parameter Prad. A fundamental understanding of star formation

Fig. 15.—Left: Star formation rate vs. surface density for model Q1D (triangles; R2½4; 11� kpc), as well as the corresponding model of the inner region (crosses;
R2½0:8; 2:2� kpc). Best-fit lines for each model are also shown, with slopes of 2.4 for the 4Y11 kpc model and 2.2 for the 0.8Y2.2 kpc model. Right: Triangles and crosses
from the left panel are shown, along with globally averaged observational data from Kennicutt (1998b); circles show normal spirals, with best-fit slope of 1.3, and
diamonds show IR starburst sources, with best-fit slope of 1.4.

Fig. 16.—Star formation times from model Q1D, as a function of mean
surface density. Different symbols correspond to different time bins of width 18Myr.
Simulation data are also binned in radii withwidths of 1 kpc. Filled symbols show
actual depletion times (eq. [20]), and open symbols show predicted depletion times
(eq. [21]), for each annular and temporal bin.

Fig. 17.—Star formation times from model Q1D, as a function of Jeans time
(top) and free-fall time (bottom). Simulation data are binned as described in the
caption to Fig. 16, with the innermost and outermost annuli excluded. The dashed
lines, shown for comparison, have slopes of 1.
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in molecular-dominated regions of galaxies (where the thermal
velocity dispersion is dwarfed by the turbulent value) will depend
on such investigations.

Modeling truly three-dimensional disks, with the vertical di-
mension fully resolved, would allow for a more complete study
of the correlations between tSF and the two gravitational times,
tJ and tA. Depending on the regime, vertical hydrostatic equi-
librium (for an isothermal medium) may be in the limit domi-
nated by (1) the disk’s gaseous self-gravity, so that the effective
thickness of the ISM is �/(2�0) ¼ c2s /(�G�), or (2) the disk’s
stellar gravity, so that the effective thickness is �/(2�0) ¼
cs��/(2

ffiffiffi
�

p
G��) / (Q�/Q)c

2
s /(�G�). Here, �� and �� are the

stellar vertical velocity dispersion and surface density, respec-
tively, andQ� is the Toomre parameter for the stellar disk. Using
these two forms, if gas dominates the vertical gravity, then tA / tJ,
whereas if the stars dominate the vertical gravity, then tA /
tJ(Q�/Q)

1/2. If galaxies evolve such that Q�/Q is constant, then
tJ / tA in either case; it would then be empirically difficult to
establish whether tJ or tA is more fundamental for determining
the star formation time. With explicit three-dimensional models,
on the other hand, it will be possible to study the dependence of
tSF on tJ and tA separately, with Q�/Q a tunable parameter. This
represents a very interesting avenue for future research.

4. DISCUSSION AND SUMMARY

4.1. Kennicutt-Schmidt Law in Simulations

The prescription we adopt for star formation in this paper
implies a constant relation between the mass (or mean surface
density) of dense gas and the rate (or mean surface density) of
star formation, �SFR ¼ RSNMSN�dense. Using this prescription,
we then test how the star formation rate scales with the surface
density of all the gas. We find that our simulations are consistent
with scalings�SFR / �1þp for a range of power-law indices, but
with significant scatter. In part, both the range of indices and the
scatter in many of our models may arise from transient effects,
rather than describing the behavior in a fully developed star-
forming disk. Our simulations suggest thatmeasured star formation
properties are subject to transient effects; thus, for meaningful the-
oretical predictions it is necessary for systems to evolve well
beyond the initial state.

For our strong-feedback model that most closely reaches an
equilibrium between cloud formation and destruction and has a
large dynamic range of surface density, we find a fairly tight
relationship between �SFR and �, with 1þ p � 2 (see Fig. 15).
This implies the fraction of dense gas follows Mdense/Mtot ¼
�dense/� / �. If we interpret this in terms of cloud formation/
destruction equilibrium (cf. eq. [22]), with a constant mean cloud
lifetime given by equation (12), this implies a dense gas forma-
tion time /��1. As discussed in x 3.3.3, our quantitative re-
sults are generally consistent with a formation time for dense
gas / tJ or tA, which vary (exactly or approximately) /��1 in
our models.

In other recent numerical work, star formation prescriptions
�SFR / �/tA have been adopted, where either all of the gas or
just high-density gas is included in the right-hand side. This
would imply �SFR / �3/2(G=H )1/2 for the dependence on sur-
face density and disk thickness. For a disk in vertical hydrostatic
equilibrium with vertical velocity dispersion �z, the natural thick-
ness varies asH / �2

z /(G�), whichwould imply�SFR / �2G/�z.
Thus, a vertically resolved disk with a constant vertical velocity
dispersion would be expected to yield an index 1þ p ¼ 2. If the
disk thickness is determined not by hydrostatic equilibrium but
in some other way, however, the resulting star formation rate and

the index in the Kennicutt-Schmidt law would depend on the
numerical prescription (or physical process) that sets H. In our
models, we have a flared disk H / R and set � / R�1 in our
initial conditions, which accounts for the index 1þ p � 2 that we
obtain. If, on the other hand, the value of H were constant in a
given simulation (either by design for a two-dimensional simu-
lation or as a consequence of limited spatial resolution in a three-
dimensional simulation), then the result would be 1þ p � 1:5.
Thus, limited vertical resolution can potentially artificially reduce
the scaling index in the Kennicutt-Schmidt relation, as measured
from numerical simulations. A fully resolved vertical dimension
is therefore required if the star formation prescription is to be based
on a volume density. In practice, the resolution requirement can be
quite demanding if the disk is dominated by cold atomic ormolec-
ular gas, since c2

s
/(�G�)¼ 4 pc½T / 100 Kð Þ�½�/(10M� pc�2)��1

.
This also points to the necessity of incorporating turbulent pro-
cesses in three-dimensional models, since observed cold gas is in
fact dominated by turbulent rather than thermal pressure. If these
turbulent effects were not included, the disk thickness would be
unphysically small.

4.2. Model Limitations and Future Prospects

4.2.1. Spiral Structure

In spiral models, the external spiral potential is initially the
primary driver for enhancing the density, leading eventually to
the growth of clouds. In models that evolve for a significant
amount of time, soon after feedback and the dispersal of cloud
gas the global spiral pattern is disrupted and eventually vanishes.
With the simple feedback prescription that we have adopted, we
were unable to simulate a spiral galaxy in which the global spiral
pattern is maintained simultaneously as cloud gas is returned to
the ISM through feedback.
If the arms truly are long lasting, then either the spiral potential

is much stronger than in our models (F 310%) and/or the real
feedback events are not as disruptive of structure on kpc scales.
Very large F, however, does not appear consistent with obser-
vations of the old stellar disk (Rix & Rieke 1993). One possi-
bility is that realistic feedback is both gentler and less correlated
than the simple prescription of our current models, and as a con-
sequence, the spiral arm coherence would not be destroyed by
large-scale shells. Indeed, semianalytic models suggest that pho-
toionization may evaporate much of the mass in a typical GMC
before the pressure-driven expansion of H ii regions unbinds the
whole cloud (e.g., Krumholz et al. 2006). Those models do not
include SNe, however, which are unavoidable if a GMC survives
for more than one generation of OB stars. Still, SNe that are less
correlated in space and time than the extreme case we have con-
sidered would disperse cloud gas in smaller parcels. Less cor-
related energy inputs would produce shells with diameters less
than the spiral arm thickness and could more easily leave global
spiral structure intact. By studying how the resulting spiral
morphology varies with the correlation of feedback energy, it
will be possible to place limits on how correlated star formation
is in real galaxies.

4.2.2. Multiphase ISM

The models discussed in this paper use the simplest possible
prescription for gas thermodynamics, which is an isothermal
equation of state. Our adopted sound speed of cs ¼ 7 km s�1

corresponds to a temperature of T � 104 K, characteristic of the
warm phase of the ISM. We adopted this approach in order to
investigate, in a controlled fashion, various separate effects that
can contribute to the regulation of star formation.
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In parallel with our simplified ISM thermodynamics, our ap-
proach to modeling feedback from star formation is also reduced
to the most basic elements. In our models, we follow the ex-
pansion of clouds subsequent to correlated SN events. Of course,
in a real SN event, thermal energy is injected into the ISM, and it
is the expansion of a very hot and very diffuse bubble of gas that
drives the formation of a dense shell around it. The cooling time
in the high-density shell is short, so at late stages the isothermal
approximation is adequate. The cooling time of the hot interior
of each individual bubble, and of the hot phase of the ISM that
results frommerging SN remnants, is much longer. However, the
hot phase contains only a very small fraction of the total ISM
mass. From the point of view of most of the mass in the ISM, the
primary effect of a SN is to inject momentum. By adopting an
isothermal equation of state and treating feedback as providing
momentum inputs, this effect is captured in an approximate way.

A significant limitation of our models is that we do not treat
the cold (T � 100 K) atomic component of the ISM explicitly.
Because the level of turbulence in the atomic component is com-
parable to the thermal velocity dispersion of warm gas (Heiles &
Troland 2003), the effective pressure in the cold medium may be
comparable to the thermal pressure in the warm medium. The
dynamics associated with ‘‘turbulent pressure’’ may, however,
be quite different from those resulting frommicrophysical thermal
pressure. A very important direction for future work is to study
directly how large-scale gravitational instabilities and spiral struc-
ture develop in multiphase, turbulent, cloudy gas.

Another limitation of our models is that they are two-
dimensional (although the disk flares with radius). This constrains
feedback energy to be confined within the galaxy’s midplane and
does not allow for dynamically evolving disk thickness. In the
real ISM, correlated SNe may be important in driving the SN-
heated gas away from the midplane of the galaxy into the halo,
through so-called chimneys and superbubbles (Norman& Ikeuchi
1989). To explore the effect of this energy loss in an approximate
way, in our models we consider both a ‘‘standard’’ momentum
input per SN and a momentum input reduced by a factor of 10.
However, the cycling of gas through the galactic halo has other
consequences as well. After this gas is cooled in the halo, it falls
back onto the disk in the form of cloudlets (e.g., Joung & Mac
Low 2006). Even though recent simulations have shown that the
fraction of mass that is vertically driven is small (e.g., de Avillez
& Breitschwerdt 2004), the infalling clouds may still affect the
dynamics of the disk and may also act as another source of
turbulence.

In order to accurately model disks that account for the effects
of SN heating, chimneys, superbubbles, and the return of halo
gas onto the disk, a three-dimensional grid, as well as explicit
treatment of heating and cooling, are necessary. Three-dimensional
simulations will also allow us to test the sensitivity of the
Kennicutt-Schmidt slope to the disk thickness (which evolves in
response to star formation), as discussed in x 4.1. These direc-
tions are important avenues for future research.

4.3. Summary

In this paper we consider the formation of self-gravitating
structures in global models of spiral galaxies, focusing on the
effects of star formation feedback. Our numerical simulations
adopt a simple, isothermal treatment of the gas and follow the
flow in the disk by integrating the hydrodynamic equations on
a polar grid.We incorporate vertical disk thickness effects within
the solution of the Poisson equation, which assumes that the disk
flares as H / R. The feedback model treats the specific star
formation rate in gas above a given surface density threshold as

a constant, RSNMSN. Feedback is implemented by spatially re-
solved radial momentum injection subsequent to star formation
events; the momentum injection is proportional to the number of
stars formed. In order to explore the sensitivity of the resulting
model properties to the feedback parameters, we consider a range
of specific star formation rates, star formation efficiencies �SF,
and momentum injection per massive star Prad. We analyze the
ISM spatial distribution, star formation rates, and turbulent prop-
erties of our model disks in cases with and without an externally
imposed spiral gravitational perturbation.

Our main findings are as follows.
1. In models where Prad is comparable to the level expected

from a SN, clouds are destroyed by star formation events and the
mean turbulence level is high. In models where Prad is a factor of
10 lower, to represent inefficient feedback (e.g., if SN energy is
vented vertically rather than kept in the disk), the self-gravitating
structures that form are not destroyed by feedback, and the tur-
bulence levels are substantially lower. Turbulence levels are in-
sensitive to the star formation rate parameter RSN and the overall
star formation rate, however.

2. In models with strong feedback, expanding flows lead to
collisions of shells, which then lead to gravitational collapse of
overdense regions and further star formation events. In this sense,
our models are a concrete realization of the concept of self-
propagating star formation. We find, however, that the net effect
of feedback is to lower the rate of star formation. That is, when
we compare models with strong feedback (large Prad) and weak
feedback (small Prad), the former have lower resultant star for-
mation rates. Similarly, when we compare models (at large and
fixed Prad) that have high or low feedback event rates RSN, the
fraction of dense gas is lower when the event rate is higher. In
principle, turbulence can either enhance collapse and star forma-
tion (by inducing shell collisions) or suppress collapse and star
formation (by breaking up overdense regions). Our results show
that although both effects occur, the latter dominates: star for-
mation is in net suppressed by feedback.

3. For � � 10Y100 M� pc�2, the range in �SFR for our sim-
ulations is similar to the range observed in normal disks. The
slope of the Kennicutt-Schmidt scaling relation �SFR / �1þp

is steeper (1þ p � 2) in our simulations than the slopes found
from current observations at high (average) surface density. The
discrepancymay be due to our assumption that the disk thickness
varies with radius as H / R. Indeed, our numerical results are
consistent with the theoretical prediction that tSF / tJ or tA when
the gravitational times tJ and tA are calculated based on our
model prescription. We point out that shallower scalings of �SFR

with � would be expected if the vertical velocity dispersion
increases with�. This would increase the disk thickness at small
radii (where � is large) relative to what we have assumed and,
consequently, increase the gravitational times and reduce �SFR.

4. Motivated by our own results, we remark that in general,
the thickness of the gaseous disk in a galaxy (either observed or
simulated) is important for setting the index in the Kennicutt-
Schmidt relationship. Numerical simulations must resolve the
natural disk scale height (set by pressure and turbulence) if the
adopted prescription for star formation depends on the volume
density � of gas. A simulation that is vertically unresolved
(H ! const) while adopting �SF / �/tA(�), and hence �SF /
�/tA(�), will automatically yield an index 1þ p ¼ 1:5 in the
Kennicutt-Schmidt law since t�1

A / (�/H )0:5. Fundamental
understanding of Kennicutt-Schmidt laws requires a self-consistent
determination of the dependence of H on �.

5. For turbulence driven by expanding shells in overdense
regions, we find that the power spectra decrease with decreasing
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size consistent with the scalings for shock-dominated flows
(‘‘Burgers turbulence’’). While typical mass-weighted velocity
dispersions on kpc scales in our high-Prad models are 31 km s�1,
these decrease to 10 km s�1 on 100 pc scales. Radial and azi-
muthal components of the velocity dispersion in a given scale
are comparable.

6. For all of our models, themaximummasses of dense clouds
that form are several millionM�, consistent with observations of
the upper cutoff in GMC/GMAmass distributions in local group
galaxies. In models with strong turbulence, such that self-grav-
itating condensations can form in colliding flows, a wider range
of cloudmasses results, with a lower peak in the distribution (but
similar upper cutoff ). Higher resolution simulations will allow
for a more detailed analysis of the mass distributions.

7. Within the context of the feedback prescription and pa-
rameters for our current set of models, we find that global spiral
patterns are not maintained. For low Prad, insufficient momentum
is injected to overdense structures so that arm clouds continue
to collapse, eventually depleting the surrounding spiral arm gas.

For high Prad, large-scale expanding shells form and the global
spiral structure is destroyed as cloud gas is dispersed. We con-
clude that highly correlated star formation, which is the limit that
we adopt in the present models, is incompatible with long-lived
spiral structure. It will be interesting to determine, by comparing
spiral morphology with results from models adopting differing
feedback prescriptions, what constraints are placed on the spa-
tial and temporal correlation of star formation feedback in real
galaxies.
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the Astronomy Department at the University of Maryland. For
much of the data analysis and visualization, we havemade use of
NEMO software (Teuben 1995). We are also grateful to the
anonymous referee for helpful comments.

APPENDIX

In the Appendix of Paper I we described two methods to solve Poisson’s equation numerically on a polar grid; both methods employ
fast Fourier transforms (FFTs). One method sums the potential from concentric rings, as described by Miller (1976). The other method
employs a coordinate transformation from polar coordinates to a Cartesian-like coordinate system. The former method is exact, but
computationally expensive, and the latter is an approximation, but computationally efficient.

Here, we describe another FFT-based method that is exact and more efficient than the Miller (1976) method.9 The basic scheme is
described in Kalnajs (1971) and Binney & Tremaine (1987); we describe a modification of Kalnajs’s method that includes the effect of
nonzero disk thickness H, which also acts as softening.

The potential � at each position (R; �) on the disk, at z ¼ 0, is

�(R; �; z ¼ 0) ¼ �G

Z
dR 0

Z
d� 0

Z
dz 0

R 0f (z 0;R 0; � 0)�(R 0; � 0)

R 02 þ R2 � 2RR 0 cos (�� � 0)þ z 02½ �1=2
: ðA1Þ

Here, G is the usual gravitational constant, � is the total surface density, and the function f ¼ �(z 0;R 0; � 0)/�(R 0; � 0) describing the
vertical profile of the volume density must be normalized,

R1
�1 dz 0 f (z 0;R 0; � 0) ¼ 1. Substituting u 0 � ln R 0 and 	 0 ¼ z 0/

ffiffiffi
2

p
R 0 in

equation (A1), the potential reduces to

�(R; �; z ¼ 0) ¼ �Geu
Z

du 0
Z

d� 0
Z

d	 0 eu
0�ueu

0
f (	 0; u 0; � 0)�(u 0; � 0)

eu�u 0
cosh (u� u 0)� cos (�� � 0)½ � þ 	 02f g1=2

: ðA2Þ

If R 0�(z 0;R 0; � 0)/�(R 0; � 0) ¼ eu
0
f (	 0; u 0; � 0) � g(	 0) is a function of 	 0 only (see below), we can define

I(u 0 � u; � 0 � �) � eu
0�u

Z
d	 0

g(	 0)

eu�u 0
cosh (u� u 0)� cos (�� � 0)½ � þ 	 02f g1=2

: ðA3Þ

Using the definition of I in equation (A2), we obtain � as a two-dimensional convolution,

�(R; �; z ¼ 0) ¼ �Geu
Z

du 0
Z

d� 0 �(u 0; � 0)I(u 0 � u; � 0 � �): ðA4Þ

Applying the Fourier convolution theorem to equation (A4), the gravitational potential can be computed by taking the Fourier transform
of � to obtain �̂ and then taking the inverse Fourier transform of the product of �̂ and Î , where Î is the Fourier transform of I. In
hydrodynamic simulations, Î can be computed once at the beginning of the simulation run, so that only two FFTs need to be performed at
each time step, FFT(�) and FFT�1(�̂Î).

The function I, and therefore its convolution Î , depends on the normalized vertical distribution function g(	). For the specific case of a
Gaussian vertical density distribution (which holds if the vertical gravity is dominated by that of the stellar disk),

f (z;R) ¼ e�z 2=2H2(R)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�H2(R)

p : ðA5Þ

9 As in Paper I we again make use of the freely available FFTW software (Frigo & Johnson 2005).
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For a disk that flares as H(R) / R, we define H ¼ H(R)/R, so that

euf (	;R) ¼ e�(	=H)
2

ffiffiffiffiffiffi
2�

p
H

� g(	): ðA6Þ

Similarly, if the vertical density follows a sech2 distribution (true if the gaseous self-gravity dominates), then g(	) ¼ (2H)�1sech2(	
ffiffiffi
2

p
/H).

For our simulations, we adopt the Gaussian profile; this yields the following explicit expression for I,

I (u 0 � u; � 0 � �) � eu
0�uffiffiffiffiffiffi
2�

p
H

Z 1

�1
d	 0

e�(	
0=H)2

eu�u 0
cosh (u� u 0)� cos (�� � 0)½ � þ 	 02f g1=2

: ðA7Þ

Finally, we comment on the assumption H(R) / R which enables the three-dimensional gravitational integral to be written as a two-
dimensional convolution. If the stellar disk dominates gravity, then for an isothermal disk the vertical density distribution is Gaussian
withH /R ¼ csQ�(c�;z/c�;R)/2vc, so values of cs/vc,Q�, and c�;z/c�;R that are independent of radius imply constantH /R. Similarly, if gas is
the dominant component for vertical gravity, H ¼ c2s /�G�, so that H /R ¼ csQ/

ffiffiffi
2

p
vc. If both the Toomre Q parameter and cs/vc are

independent of R, then H /R ¼ const. For self-gravitating gaseous disks, if Q ¼ 1 and vc/cs ¼ 30, then H /R ¼ 0:02. Including stellar
gravity typically reduces H by a factor of �2 (e.g., Kim et al. 2002).

For the simulations described in this paper, we use H /R � H ¼ 0:01 in equation (A7). We have tested other values of H and find
that our results are not sensitive to the exact value. However, large changes significantly affect the rate of growth of self-gravitating
perturbations.

REFERENCES

Ballesteros-Paredes, J., Klessen, R. S., Mac Low, M.-M., & Vazquez-Semadeni,
E. 2007, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil
(Tucson: Univ. Arizona Press), 63

Bertin, G., & Lin, C. C. 1996, Spiral Structure in Galaxies: A Density Wave
Theory (Cambridge: MIT Press)

Bigiel, F., et al. 2008, AJ, submitted
Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton: Princeton
Univ. Press)

Blitz, L., Fukui, Y., Kawamura, A., Leroy, A., Mizuno, N., & Rosolowsky, E.
2007, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil
(Tucson: Univ. Arizona Press), 81

Boissier, S., et al. 2007, ApJS, 173, 524
Bouche, N., et al. 2007, ApJ, 671, 303
Chevalier, R. A. 1974, ApJ, 188, 501
Cioffi, D. F., McKee, C. F., & Bertschinger, E. 1988, ApJ, 334, 252
Cox, D. P., & Smith, B. W. 1974, ApJ, 189, L105
de Avillez, M. A., & Breitschwerdt, D. 2004, A&A, 425, 899
Elmegreen, B. G., & Elmegreen, D. M. 1983, MNRAS, 203, 31
Elmegreen, B. G., & Scalo, J. 2004, ARA&A, 42, 211
Elmegreen, D. M. 1980, ApJ, 242, 528
Ferguson, A. M. N., Wyse, R. F. G., Gallagher, J. S., & Hunter, D. A. 1998,
ApJ, 506, L19

Frigo, M., & Johnson, S. G. 2005, Proc. IEEE, 93, 216
Heiles, C., & Troland, T. H. 2003, ApJ, 586, 1067
Heyer, M. H., Corbelli, E., Schneider, S. E., & Young, J. S. 2004, ApJ, 602,
723

Joung, M. K. R., & Mac Low, M.-M. 2006, ApJ, 653, 1266
Kalnajs, A. J. 1971, ApJ, 166, 275
Kennicutt, R. C., Jr. 1989, ApJ, 344, 685
———. 1998a, ARA&A, 36, 189
———. 1998b, ApJ, 498, 541
Kennicutt, R. C., Jr., et al. 2007, ApJ, 671, 333
Kim, W.-T., & Ostriker, E. C. 2001, ApJ, 559, 70
———. 2002, ApJ, 570, 132
———. 2007, ApJ, 660, 1232
Kim, W.-T., Ostriker, E. C., & Stone, J. M. 2002, ApJ, 581, 1080
———. 2003, ApJ, 599, 1157

Knapen, J. H., Beckman, J. E., Cepa, J., & Nakai, N. 1996, A&A, 308, 27
Kroupa, P. 2001, MNRAS, 322, 231
Krumholz, M. R., Matzner, C. D., & McKee, C. F. 2006, ApJ, 653, 361
La Vigne, M. A., Vogel, S. N., & Ostriker, E. C. 2006, ApJ, 650, 818
Li, Y., Mac Low, M.-M., & Klessen, R. S. 2005a, ApJ, 620, L19
———. 2005b, ApJ, 626, 823
———. 2006, ApJ, 639, 879
Lin, C. C., & Shu, F. H. 1964, ApJ, 140, 646
Mac Low, M.-M., & Klessen, R. S. 2004, Rev. Mod. Phys., 76, 125
Martin, C. L., & Kennicutt, R. C., Jr. 2001, ApJ, 555, 301
McKee, C. F., & Ostriker, E. C. 2007, ARA&A, 45, 565
McKee, C. F., & Ostriker, J. P. 1977, ApJ, 218, 148
Miller, R. H. 1976, J. Comput. Phys., 21, 400
Norman, C. A., & Ikeuchi, S. 1989, ApJ, 345, 372
Rix, H.-W., & Rieke, M. J. 1993, ApJ, 418, 123
Robertson, B., & Kravtsov, A. 2008, ApJ, 680, 1083
Schmidt, M. 1959, ApJ, 129, 243
Schuster, K. F., Kramer, C., Hitschfeld, M., Garcia-Burillo, S., & Mookerjea, B.
2007, A&A, 461, 143

Shetty, R., & Ostriker, E. C. 2006, ApJ, 647, 997 (Paper I )
Spitzer, L. 1978, Physical Processes in the Interstellar Medium (New York:
Wiley-Interscience)

Stone, J. M., & Norman, M. L. 1992a, ApJS, 80, 753
———. 1992b, ApJS, 80, 791
Tasker, E. J., & Bryan, G. L. 2006, ApJ, 641, 878
———. 2008, ApJ, 673, 810
Teuben, P. 1995, in ASPConf. Ser. 77, Astronomical Data Analysis Software and
Systems IV, ed. R. A. Shaw, H. E. Payne, & J. J. E. Hayes (San Francisco:
ASP), 398

Thilker, D. A., et al. 2007, ApJS, 173, 572
Toomre, A. 1964, ApJ, 139, 1217
Truelove, J. K., Klein, R. I., McKee, C. F., Holliman, J. H., II, Howell, L. H., &
Greenough, J. A. 1997, ApJ, 489, L179

Vogel, S. N., Kulkarni, S. R., & Scoville, N. Z. 1988, Nature, 334, 402
Wada, K., & Norman, C. A. 2001, ApJ, 547, 172
Wong, T., & Blitz, L. 2002, ApJ, 569, 157

FEEDBACK IN DISK GALAXIES 995No. 2, 2008


