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ABSTRACT

Using numerical simulations of galactic disks that resolve scales from ∼ 1 to several hundred pc, we investigate
dynamical properties of the multiphase interstellar medium (ISM) in which turbulence is driven by feedback from
star formation. We focus on effects of H ii regions by implementing a recipe for intense heating confined within
dense, self-gravitating regions. Our models are two dimensional, representing radial-vertical slices through the disk,
and include sheared background rotation of the gas, vertical stratification, heating and cooling to yield temperatures
T ∼ 10 − 104 K, and conduction that resolves thermal instabilities on our numerical grid. Each simulation evolves
to reach a quasi-steady state, for which we analyze the time-averaged properties of the gas. In our suite of models,
three parameters (the gas surface density Σ, the stellar volume density ρ∗, and the local angular rotation rate Ω) are
separately controlled in order to explore environmental dependences. Among other statistical measures, we evaluate
turbulent amplitudes, virial ratios, Toomre Q parameters including turbulence, and the mass fractions at different
densities. We find that the dense gas (n > 100 cm−3) has turbulence levels similar to those observed in giant
molecular clouds and virial ratios ∼ 1–2. Our models show that the Toomre Q parameter in the dense gas evolves
to values near unity; this demonstrates self-regulation via turbulent feedback. We also test how the surface star
formation rate ΣSFR depends on Σ, ρ∗, and Ω. Under the assumption that the star formation rate (SFR) is proportional
to the amount of gas at densities above a threshold nth divided by the free-fall time at that threshold, we find that
ΣSFR ∝ Σ1+p with 1 + p ∼ 1.2–1.4 when nth = 102 or 103 cm−3, consistent with observed Kennicutt–Schmidt
relations. Estimates of SFRs based on large-scale properties (the orbital time, the Jeans time, or the free-fall time at
the mean density within a scale height), however, depart from rates computed using the measured amount of dense
gas, indicating that resolving the ISM structure in galactic disks is necessary to obtain accurate predictions of the
SFR.
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1. INTRODUCTION

The interstellar medium (ISM) is commonly envisioned as a
self-regulating system in statistical quasi-equilibrium. Multiple
components of gas with varying densities and temperatures
co-exist (Field et al. 1969; Cox & Smith 1974; McKee &
Ostriker 1977), animated by turbulence that pervades the whole
volume (Elmegreen & Scalo 2004). Different components of
gas play different roles in the ISM ecosystem, with the coldest
and densest portions responsible for star formation. Massive
stars, when they are born, energize the ISM through the H ii

regions and supernova blasts they create (Spitzer 1978, page
333); this energy input is important in replenishing continual
losses through turbulent dissipation. Ultraviolet (UV) radiation
from young massive stars is also crucial in heating the gas. The
rate of star formation is determined by the available supply
of dense gas, which in turn is regulated by the interplay
between dynamics and thermodynamics in the ISM, and is
affected by the galactic environment in which the ISM is
contained (Mac Low & Klessen 2004; McKee & Ostriker
2007). While this overall framework is generally accepted
and is supported by existing theory and observations, much
work remains on both fronts to quantify the dependence of
statistical properties on the global system parameters, and to
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establish when and how self-regulated quasi-steady states are
achieved.

Given the importance of time-dependent processes and in-
terdependences in the ISM, complex theoretical models are
needed in order to address even rather basic questions. For ex-
ample, what sets the relative proportions of the different gas
components? In an idealized classical picture such as that of
Field et al. (1969) for the atomic medium, given a pressure and
a mean density n̄, thermal equilibrium defines a density for each
of two stable phases, nwarm and ncold, and the ratio of cold-to-
warm gas is given by a simple algebraic relation: Mcold/Mwarm =
(n−1

warm − n̄−1)/(n̄−1 − n−1
cold). In the real ISM, however, which

is a time-dependent system, thermal equilibrium only holds to
the extent that the radiative times are short compared to dynam-
ical times for compressions and rarefactions. Furthermore, the
value of the mean density n̄ and pressure (averaged over large
scales) are not even known a priori for a given ISM surface
density, since the vertical distribution of gas is sensitive to its
dynamical state. This dynamical state itself depends on the (un-
known) dense gas fraction, since more dense gas produces more
feedback from star formation, and hence more turbulence that
inflates the disk vertically to reduce n̄ (and also produces local
variations in density and pressure through compressions and
rarefactions). Multidimensional effects (the ISM is not simply
stratified perpendicular to the galactic plane, but is composed of
filamentary clouds) and self-gravity additionally complicate the
situation.
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In recent years, a number of groups have begun developing
models of the turbulent, multiphase ISM using time-dependent
computational hydrodynamics simulations that include feed-
back from star formation (e.g., Korpi et al. 1999; de Avillez &
Breitschwerdt 2004, 2005, 2007; Mac Low et al. 2005; Joung
& Mac Low 2006; Dib et al. 2006), self-gravity of the gas (e.g.,
Wada & Norman 1999); Wada et al. 2002), and both of these ef-
fects (e.g., Wada & Norman 2001, 2007; Slyz et al. 2005; Tasker
& Bryan 2006, 2008; Robertson & Kravtsov 2008). The treat-
ment of feedback in these simulations is to inject thermal energy
in regions identified as sites of star formation; most models fo-
cus on the energy input from supernovae. In very large-scale
simulations that have minimum resolution of only 50–100 pc,
feedback implemented via thermal energy deposition is not in
practice very effective, because the input energy is easily ra-
diated away. With finer numerical resolution, feedback regions
expand adiabatically at first to make hot diffuse bubbles, driving
shocks that sweep up surrounding gas and ultimately generate
turbulence throughout the computational domain. A number of
different issues have been addressed by these recent simulations,
including investigating departures from thermal equilibrium in
density and temperature PDFs, measuring the relative veloc-
ity dispersions of various gas components, and testing whether
relationships between star formation and gas surface density
emerge that are similar to empirical Kennicutt–Schmidt laws.

Even before the advent of supernovae, massive stars photoion-
ize their surroundings, creating H ii regions within molecular
clouds that are highly overpressured and expand. H ii regions
may in fact be the most important dynamical agents affecting
the properties of dense gas in giant molecular clouds (GMCs),
since the original turbulence inherited from the diffuse ISM
is believed to dissipate within a flow crossing time over the
cloud (Stone et al. 1998; Mac Low et al. 1998), while GMCs
are thought to live for at least a few crossing times (Blitz et
al. 2007). Analytic and semianalytic treatments find that GMCs
with realistic sizes, masses, and star formation rates (SFRs) can
indeed be maintained by the energy input from H ii regions
for a few crossing times, ultimately being destroyed through
a combination of photoevaporation and kinetic energy inputs
that unbind the remaining mass (Whitworth 1979; Franco et al.
1994; Williams & McKee 1997; Matzner 2002; Krumholz et al.
2006). Recent three-dimensional numerical studies have begun
to address this process in detail (e.g., Mellema et al. 2006; Mac
Low et al. 2007; Krumholz et al. 2007), focusing on regions
within GMCs.

In the present work, we consider how the large-scale dynam-
ical state of the ISM is affected by star formation feedback in
the form of expanding H ii regions. Our main interests are in
exploring how the turbulence driven by H ii regions affects the
properties of dense gas (we measure statistics of density, tem-
perature, and velocity), in testing ideas of global self-regulation
by feedback (we evaluate Toomre Q parameters and virial ra-
tios), and in exploring how galactic environment systematically
affects the character of the ISM, including its ability to form
stars. Complete ISM models should, of course, include feed-
back from supernovae as well as those from H ii regions, and it
is our intention to do this in future work. However, we consider
it useful to adopt a sequential approach, independently testing
the effects of H ii region feedback to provide a baseline for
more comprehensive simulations. In addition to developing a
physical understanding of the ways in which feedback affects
the ISM, another goal of our work is to investigate the sensitiv-
ity of numerical results to prescriptions that are a necessary—

but not always fully tested—aspect of galactic-scale studies of
star formation. In particular, we examine how the choice of
density threshold in commonly adopted recipes for star forma-
tion affects the resulting dependence of the SFR on ISM surface
density.

Our approach to exploring the effects of galactic environment
is to conduct a large suite of local simulations that cover a
range of values for three basic parameters: the total surface
density of gas in the disk (Σ), the local midplane stellar density
(ρ∗), and the local rate of galactic rotation (Ω). The parameter
range covers a factor of 6 in gas surface density and galactic
angular rotation rate, and a factor of 30 in stellar density.
Our suite is divided into four series, each of which has one
independent parameter that is systematically varied. We also
include comparisons with hydrostatic models that are identical
in terms of their input parameters to the fully dynamic models,
but do not include feedback and hence are not turbulent. For this
first set of pilot studies, we have not implemented full radiative
transfer to evaluate the extent of H ii regions (we intend to do
so in the future), but instead introduce a simple prescription
in which the boundaries of H ii regions are determined by
the gravitational potential. Using this approach (rather than,
for example, adopting a single fixed outer radius) has the
advantage that the volume of the heated region expands as the
density surrounding the source drops. Since our treatment of
H ii regions does not attempt to be exact, we do not consider
our specific results for, e.g., velocity dispersions to be more
than approximate (although in fact we find similar values for
velocity dispersions in dense gas to those that are observed in
GMCs). Instead, we shall emphasize the general properties of
a multiphase ISM system in which turbulence is driven from
within the dense phase.

This paper is organized as follows. In Section 2, we describe
our numerical methods, and in particular the recipe for star
formation feedback. The control parameters for our disk models,
and the properties of each model series, are presented in Section
3. Section 4 gives an overview of evolution based on our
fiducial model. In Section 5, we present the statistical properties
of the gas in each model, and test environmental influences
by intercomparing the model series. The implications of our
results for star formation, both in real galaxies and in numerical
simulations, are analyzed in Section 6. We conclude with a
summary and discussion in Section 7.

2. NUMERICAL METHODS

2.1. Basic Equations

We study the evolution of rotating, self-gravitating, galactic
gas disks, including local heating and cooling terms. We solve
the hydrodynamic equations in a local Cartesian reference frame
whose center lies at a galactocentric radius R0 and orbits the
galaxy with a fixed angular velocity Ω0 = Ω(R0). In this
local frame, radial, azimuthal, and vertical coordinates are
represented by x ≡ R−R0, y ≡ R0(φ−Ω0t), and z, respectively,
and terms associated with coordinate curvature are neglected
(Goldreich & Lynden-Bell 1965b; Julian & Toomre 1966).
The local-frame equilibrium background velocity relative to the
center of the box at x = y = z = 0 is given by v0 = −qΩ0xŷ,
where

q = − d ln Ω
d ln R

∣∣∣∣
R0

(1)
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is the local dimensionless shear rate. In terms of q, the local
epicyclic frequency κ is given by

κ2 ≡ 1

R3

d

dR
(R4Ω2) = (4 − 2q)Ω2. (2)

We shall choose q = 1 for all models, representing a flat back-
ground rotation curve Vc = ΩR = const for the unperturbed
motion.

In addition to the tidal gravity and Coriolis terms from the
“shearing sheet” local formulation, we also include terms for
the vertical gravity of the stellar disk, gas self-gravity, radiative
heating and cooling, and thermal conduction. The resulting
equations (see e.g., Hawley et al. 1995; Piontek & Ostriker
2004) are

∂ρ

∂t
+ ∇ · (ρv) = 0, (3)

∂v

∂t
+ v · ∇v = − 1

ρ
∇P + 2qΩxx̂ − 2Ω × v − ∇Φ + g∗, (4)

∂e

∂t
+ ∇ · (ev) = −P∇ · v + n [Γ(t, x) − nΛ(T )] + K∇2T , (5)

where P = f nkBT and n = ρ/μ. With n being the number
of hydrogen nuclei per unit volume, f varies from 0.6 to 1.1
depending on whether the gas is predominantly molecular or
atomic; we simply adopt f = 1.1. We adopt μ = 1.4mp to
include the contribution of helium to the mass density. Here
e = P/(γ − 1) is the internal energy per unit volume (we
adopt γ = 5/3), K is the thermal conductivity, Φ is the self-
gravitational potential due to gas, and the vertical gravitational
force due to stellar disk is

g∗ = −4πGρ∗zẑ, (6)

where ρ∗ is the stellar density, and z is the vertical coordinate
relative to the midplane. In the above expressions and elsewhere
in the remainder of the text, we have dropped the “0” subscript
on Ω; κ also refers to the value evaluated at the center of the
domain. Computation of the gas self-gravity is discussed below.

In this paper, we present results of two-dimensional simula-
tions of the above set of equations. The two independent spatial
coordinates in our models are x and z; thus, we follow evolu-
tion in radial-vertical slices through a galactic disk. Although
the azimuthal (y) direction is not an independent spatial vari-
able for the current set of models, we do include azimuthal
velocities, and their variation with x and z. Inclusion of vy is
important, because angular momentum can strongly affect the
ability of self-gravitating perturbations to grow. Radial motions
that are required for gas to become concentrated are coupled
to azimuthal motions through the Coriolis force; perturbations
in the azimuthal velocity with respect to the mean background
shear correspondingly lead to radial motions via the Coriolis
force. Although our two-dimensional models do capture some
of the effects of galactic rotation (i.e., epicyclic oscillations),
they miss some of the effects associated with shear. In three
dimensions (or in the height-integrated R −φ plane), azimuthal
shear can make it more difficult for self-gravitating concen-
trations to grow. Of course, in three dimensions, self-gravity
also increases more rapidly as the density increases, which en-
hances the ability of dense concentrations to grow. Although it
will be important to revisit the present models with fully three-
dimensional simulations, we do not anticipate large changes

based on dimensionality. Previous three-dimensional simula-
tions of shearing, rotating disks have found similar (within a fac-
tor 2) nonlinear instability thresholds for self-gravitating cloud
formation to reduced-dimensional models (see e.g., Kim et al.
2002, 2003; Kim & Ostriker 2007, and references therein). Ther-
mal instability also develops similarly in the two-dimensional
and three-dimensional cases to create a cold cloud/warm in-
tercloud structure (e.g., Piontek & Ostriker 2004; Piontek &
Ostriker 2005).

2.2. Hydrodynamic Code and Boundary Conditions

The numerical solutions to the two-dimensional dynamical
equations are obtained using a temporally and spatially second-
order finite volume method which includes total variation
diminishing (TVD) Runge–Kutta integration in time (Shu &
Osher 1988), with a directionally unsplit flux update and
piecewise linear reconstruction with slope limiter (see, e.g.,
Hirsch 2007). We use Roe’s approximate Riemann solver with
an entropy fix (Roe 1981). The heating and cooling terms in the
energy equation are separated out in an operator-split fashion
and updated using implicit time integration (see Section 2.4),
because the cooling times are frequently much shorter than
other timescales. The code is parallelized using message passing
interface (MPI).

For the hydrodynamic update, the time step is set to Δt =
min(tHD, tcond, tcool, theat), where

tHD = CCFL min

(
1

cs+|vx |
Δx

+ cs+|vz|
Δz

)
all zones,

(7)

tcond = CK min

(
nkB(Δx)2

4K(γ − 1)

)
all zones,

(8)

tcool = CT min

(
kBT

(γ − 1)nΛ(T )

)
all zones,

(9)

theat = CT min

(
kBT

(γ − 1)Γ(x)

)
all zones,

(10)

and we adopt CCFL = 0.8, CK = 0.5, and CT = 50. Here,
cs = (γ kT /μ)1/2 is the sound speed in any zone. With a large
value of CT , the explicit hydrodynamic time step is not strongly
limited by the cooling time in dense gas. The adopted CT is
chosen such that the solution agrees with tests of individual
expanding “H ii regions” (for our feedback model) that have
CT ∼ 1 (equivalent to explicit cooling); if a much larger value
of CT is allowed, this expansion is not accurately reproduced.

At the x (radial) boundaries, we implement shearing-periodic
boundary conditions (Hawley et al. 1995), in which the az-
imuthal (angular) velocity term vy ≡ R0(φ̇−Ω0) = (R0/R)vφ−
Vc is incremented or decremented by ±LxΩ0 in mapping from
the right→left or left→right boundary, consistent with the equi-
librium velocity field. In the z-direction, we adopt periodic
boundary conditions for the hydrodynamic variables, such that
the total mass in the domain is conserved.2 The gravitational po-
tential solver applies open (i.e., vacuum) boundary conditions
in z, as we next discuss.

2 We have found that except for mass loss, the overall evolution is similar
when we apply outflow boundary conditions in the vertical direction. Adopting
periodic boundary conditions for hydrodynamic variables makes it possible to
maintain the gas surface density Σ at a constant value without devoting
significant computational resources to following the evolution of a tenuous
corona at large |z|.
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2.3. Poisson Solver

We have developed a new method for obtaining the gravita-
tional potential of a disk in Cartesian geometry using fast Fourier
transforms (FFTs). Since the discrete Fourier transformation al-
lows only periodic functions, a special approach is needed to
solve for a disk potential with vacuum boundary conditions
outside the simulation domain.

Let us consider a simple case, consisting of a uniform, isolated
gas sheet in the z = 0 plane which has density ρ(z) = σδ(z).
The corresponding gravitational potential Φ(z) = 2πGσ |z| is
obtained by solving the Poisson equation

∇2Φ = 4πGρ, (11)

with vacuum boundary conditions. If we have a finite domain
of size Lz and suppose that the gas sheet lies somewhere within
the domain, then we only would require values of the potential
at locations within ±Lz of the sheet. Thus, we may find the
potential within z = (−Lz,Lz) in terms of discrete Fourier
components as

Φ̂
 = 2πGσC
, (12)

C
 =
∫ Lz

−Lz

|z|e2πi
( z
2Lz

)
dz = −2(1 − e±iπ
)

(π

Lz

)2
. (13)

In Fourier space, the Poisson equation for one independent
variable is

− k2Φ̂k = 4πGρ̂k. (14)

Thus, in terms of discrete Fourier components with k
 =

(2π/2Lz), we have

Φ̂
 = −4πGρ̂


(π

Lz

)2
. (15)

Equating the right-hand sides of Equations (12) and (15)
and inserting the expression from Equation (13), this implies
ρ̂
 = σ (1 − e±iπ
) for the isolated sheet, so that the density in
real space is obtained by taking an inverse transform

ρ(z) = 1

2Nz

2Nz−1∑

=0

e
−2πi
 z

2Lz ρ̂
, (16)

= 1

2Nz

2Nz−1∑

=0

e
−2πi
 z

2Lz σ (1 − e±iπ
), (17)

= σ

2Nz

2Nz−1∑

=0

e
−2πi
 z

Lz − σ

2Nz

2Nz−1∑

=0

e
−2πi


z∓Lz
2Lz , (18)

= σδ(z) − σδ(z ∓ Lz). (19)

We see that the first term corresponds to the original density.
However, a second term has appeared as an image density with
the opposite sign from the real (physical) density, located a
domain length away. This means that to obtain the correct
solution for Φ on the original domain z = (−Lz/2, Lz/2), we
need to prepare twice as large a box in the vertical direction,
and implement the required image density within the augmented

domain, at a distance ±Lz from the physical slab. Thus, a density
slab at 0 � z � Lz/2 would require an image slab at zimage =
z − Lz in (−Lz,−Lz/2), and a density slab at −Lz/2 � z � 0
would require an image slab at zimage = z + Lz in (Lz/2, Lz).
Using a similar procedure, we have extended this idea to the
three-dimensional case with an arbitrary density distribution
ρ(x, y, z). The details are described in the Appendix. We note
that the numerical solution agrees with the solution obtained
via Green functions (Miyama et al. 1987), and is much faster to
compute because only FFTs (no direct sums) are needed.

2.4. Cooling Function

To allow for multiphase interstellar gas components, we must
solve a thermal energy equation that allows a wide range of
conditions. We use a cooling function for the diffuse ISM
derived by Koyama & Inutsuka (2002), which includes atomic
gas cooling for the warm and cold neutral medium (WNM,
CNM), as well as cold molecular-phase cooling (H2, CO, and
dust cooling). We include a constant volumetric heating rate to
represent photoelectric heating by diffuse far-ultraviolet (FUV).
This yields a standard (see Field et al. 1969; Wolfire et al.
1995) thermal equilibrium curve in which there is a maximum
density and pressure for the warm phase given by 1.0 cm−3 and
5.5 × 103kB cm−3 K, and a minimum density and pressure for
the cold phase given by 8.7 cm−3 and 1.75 × 103kB cm−3 K
(see Figure 3).

H ii regions in the real ISM include photoionization of
atoms and dissociation of molecules, and radiative cooling of
photoionized gas and warm molecular gas. These effects depend
on chemical fractions, as well as dust evaporation. For this
work, we are interested primarily in dynamics of the neutral
media, rather than the details of photoionized gas, including the
complexities of ionization front propagation at subparsec scales.
The main requirement for capturing the large-scale dynamical
effects of feedback is thus to incorporate photoheating of gas
in star-forming regions. The simple but expedient approach we
have chosen is to expose gas in targeted regions to enhanced
heating, while simply applying the same cooling function we
use for neutral gas. The enhanced heating we apply yields
thermal equilibrium for the “photoheated” gas at ≈ 10,000
K (see below), which is consistent with the temperatures that
would be attained if we had implemented realistic (but much
more computationally complex and expensive) photoprocesses.

Cooling and heating timescales often become much shorter
than the hydrodynamic time step (i.e., the flow or sound crossing
time of a grid zone), especially in H ii regions, which have a high
heating rate. For efficiency, we adopt implicit time integration
for the heating and cooling operators. In a given zone, the
integral from the (j ) to the (j +1) time step is formally expressed
as ∫ Tj+1

Tj

CvdT

Γj − nΛ(T )
= Δtj , (20)

where Cv = kB/(γ − 1) is the heat capacity per particle. This is
a nonlinear equation with respect to Tj+1, with Tj and Δtj treated
as parameters. For this integral, we adopt Simpson’s rule and
solve using the Newton–Raphson method.

2.5. Thermal Conduction

Thermal conduction determines the thickness of interfaces
between phases in the ISM, and proper incorporation of con-
duction is essential in numerical simulations of a multiphase
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medium which is subject to thermal instability (Piontek & Os-
triker 2004; Koyama & Inutsuka 2004; Kim et al. 2008). The
characteristic length scale set by conduction is the Field length,

λF = 2π

√
KT

n2Λ(T )
, (21)

(Field 1965; Begelman & McKee 1990), which corresponds to
the critical wavelength of thermal instability. For realistic values
of the conductivity at T � 104 K, K = 2.5 × 103

√
T erg cm−1

s−1 K−1 (Parker 1953), the Field length of 0.19 pc (at density
1 cm−3 and temperature 1000 K) is much smaller than the size
of interstellar clouds (∼ 1–10 pc), and we would need extremely
high spatial resolution to resolve it, and a correspondingly high
computational cost. Instead, we adopt an approach somewhat
analogous to the use of artificial viscosity (far exceeding the
true physical viscosity in magnitude) in resolving shocks on a
numerical grid. Namely, we adopt a sufficiently large numerical
conduction coefficient to resolve the Field length on our chosen
grid. We choose K such that for any simulation with resolution
Δx, the Field number NF ≡ λF/Δx is equal to 1.7 at density
and temperature typical of thermally unstable gas (we use
n = 1 cm−3, T = 1000 K). For example, the fiducial model
Q11 has Δx = 1.5 pc, and the artificial conductivity gives
λF = 2.57 pc for thermally unstable gas.

For low-density gas, given our typical values of K, the
thermal conduction term can become greater than cooling/
heating terms. In order to limit the conduction in these regions,
we adopt

K̃ = K

1 + ncrit/n
, (22)

with ncrit = 0.05 cm−3.

2.6. Stellar Feedback Activity

The primary focus of this work is to explore the dynamical
effects of strong, localized heating by OB stars in dense regions
of the ISM. Since this heating produces T ∼ 104 K gas that is
initially overpressured by a factor of ∼ 100 or more compared
to its surroundings, H ii regions expand rapidly. This process
is believed to be an important source of turbulence both within
self-gravitating GMCs and in the surrounding diffuse ISM. To
study this process, ideally one would implement (1) formation
of OB stars from dense gas, distributed throughout the spacetime
domain of the simulation; (2) radiative transfer of ionizing
photons from the OB stars through the surrounding gas, with
potentially multiple ionization sources throughout the domain;
and (3) detailed ionization and heating of the gas within H ii

regions.
In this first exploration, rather than attempting to model all of

these processes in an exact fashion, we instead adopt an idealized
approach, with the goal of gaining physical understanding.
First, we apply certain criteria to determine when and where
“star zones” on the grid will be turned on. Then, we apply
strong heating to the gas in the vicinity of each “star zone”
for the duration of its lifetime. All “star zones” have the same
lifetime, tms, which is set to 3.7 × 106 yr, the typical lifetime
of OB associations in clouds whose mass is 105M� (McKee &
Williams 1997). Within H ii regions, we assume a constant gas
heating rate, set via a control parameter GH II. Each “star zone”
is therefore essentially a control flag for whether or not strong

photoheating is locally applied near that zone (which does not
move). Rather than solving a radiative transfer problem, we
use a simple criterion based on the gravitational potential to
determine whether gas is subject to strong heating. Because our
goal is to identify gas localized around star-forming regions, it
is necessary to subtract the background gravitational potential
and retain just the potential component due to an individual
self-gravitating cloud.

The background potential is the potential averaged over
horizontal planes. In terms of Fourier components, the relative
gravitational potential Φ(1) = Φ − Φbackground is defined as

Φ(1)(x) =
∑
kz 
=0

Φ̂kf̂k exp(−ik · x). (23)

Here, f̂k is the Fourier component of a smoothing window
function

f (x) = 3

4πr3
0

1

1 + exp
[

10
Δx

(
√

x2 + z2 − r0)
] , (24)

where r0 is a smoothing length. This window function smoothes
the H ii region within a radius ≈ r0. Convolution of the
relative potential with a smoothing function (or, equivalently,
multiplication in Fourier space as above) is desirable so that any
heating that is applied is resolved on the grid. We have adopted
r0 = 3Δx as providing adequate resolution.

H ii photoheated regions are identified as regions where
the relative potential, Φ(1), falls below some specified level:
Φ(1) < ΦH II. We also employ the relative potential Φ(1) for
setting one of the criteria for turning on feedback: Φ(1) < ΦSF
and ρ > ρSF must both be met in a given zone for a “star zone”
to be created at that location. Thus, our recipe ensures that
feedback will only occur in dense and self-gravitating regions,
consistent with the fact that OB stars are observed to form only
under these conditions.

For the feedback prescription we have adopted, there are five
control parameters: ρSF, ΦSF, tms, ΦH II, and GH II. The detailed
estimation of these parameters is described in the remainder of
this section.

2.6.1. OB Star Formation Criterion

We choose a density threshold for star formation as

ρSF = 103 μ cm−3. (25)

This density is comparable to that of clumps of gas within
GMCs. The free fall time at this density, 1.4 Myr, is sufficiently
small compared to the orbital time that structures satisfying this
threshold evolve independently of the global environment. Note
that the local Jeans length

λJ =
(

πc2
s

GρSF

)1/2

= 4.1 pc
( cs

0.9 km s−1

)
(26)

must be resolved by a few zones in order to prevent fragmenta-
tion occurring as a consequence of numerical artifacts (Truelove
et al. 1997).

To obtain an estimate for the potential threshold for star
formation, we consider a cloud with uniform number density
n̄ and radius Rcl. For a spherical cloud, the radius is related to
the cloud mass using

Rcl =
(

3Mcl

4πρ̄

)1/3

= 19pc × n̄
−1/3
2 M

2/3
cl,5, (27)
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where the fiducial value of n̄2 ≡ n̄/(102 cm−3) is chosen using a
typical mean density within GMCs, and Mcl,5 ≡ Mcl/(105M�).

Since our grid is two dimensional, the control parameter ΦSF
must be based on a cylindrical regions of a given density. For a
cylinder of radius Rcl, the potential difference between the center
and a distance r (>Rcl) is Φ(0) = Φ(r) − 2πGρ̄R2

cl[ln(r/Rcl) +
1/2]. The logarithmic term corresponds to the potential differ-
ence between r and Rcl, and 1/2 is the contribution between the
cloud’s surface and its center. If the cloud is created out of all of
the mass originally within a disk of surface density Σ within a
range 2r ≡ Leqv of the cloud center, then πR2

clρ̄ = ΣLeqv, and a
fiducial distance for defining the effective zero of the potential
is

Leqv = πρ̄R2
cl

Σ
, (28)

= 393 pc × n̄2M
2/3
cl,5

(
Σ

10M� pc−2

)−1

. (29)

Here, the radius is expressed in terms of that of an equivalent
spherical cloud with a given mass. If we set the potential at
r = Leqv/2 to zero, then the potential at the center of the cloud
will be

Φ(0) = −ΦSF ≡ −2πGρ̄R2
cl

[
ln

(
Leqv

2Rcl

)
+

1

2

]
. (30)

For n̄ = 100 cm−3 and Rcl = 19 pc, the value of Φ(0) is
3.4 × 1011 cm2s−2 times an order-unity factor that varies only
logarithmically in the ratio of cloud surface density to mean
ISM surface density. We choose to adopt a potential threshold
for star formation ΦSF = 3.4 × 1011 cm2s−2 = (5.8 km s−1)2;
we have tested sensitivity to the value of ΦSF and found that
results are insensitive to the exact choice, except as described
below.

2.6.2. Definition of Photoheated Regions

First, consider an H ii region centered on the origin of a
uniform cloud with spherical cross-section. If we assume the
radius of the H ii region is RH II (< Rcl), then if the center
of the cloud has potential Φ(0), the potential at the ionization
front for a cylindrical cloud with uniform density is ΦH II =
Φ(0) + πGρ̄R2

H II
. (For a spherical cloud, the second term is

smaller by a factor of 2/3.) Taking the difference with Φ(Leqv/2)
in order to represent a relative potential, using Equation (30),
and substituting Φ(0) → −ΦSF (since the criterion for star
formation must be satisfied if feedback has turned on) this
implies that the relative potential at the location of the H ii

region would be

ΦH II = −ΦSF

⎡
⎣1 −

1
2

ln
(

Leqv

2Rcl

)
+ 1

2

(
RH II

Rcl

)2
⎤
⎦ . (31)

RH II is given, for example, by the Strömgren radius in a uniform
medium

RH II =
(

3S

4πn̄2α(2)

)1/3

= 2.97pcn̄−2/3
2 S

1/3
49 , (32)

where S is the number ionizing photons per unit time and
S49 ≡ S/(1049s−1), and α(2) = 3.09 × 10−13 cm3s−1 is the
case B hydrogen recombination coefficient at T = 8000 K

(Spitzer 1978, page 333). S49 is equal to unity for the ionizing
luminosity in a typical 105M� GMC (McKee & Williams 1997).
From Equation (31), when the density is comparable to the mean
density within a GMC, RH II/Rcl � 1, and the H ii region is
buried deep within the GMC at ||ΦH II| − ΦSF|/ΦSF � 1.

H ii regions are initially highly overpressured, however, and
will expand rapidly until breaking out of the surrounding GMC,
creating a blister H ii region. For the purposes of considering
the momentum input to the system, the RH II → Rcl limit is
most appropriate for defining the photoheated region. Thus, we
suppose that the H ii region has expanded, leaving a very low
density interior and a shell of radius RH II < Rcl in which most
of the mass has piled up. The potential in the interior of the shell
is then given by

ΦH II = −ΦSF

⎡
⎣1 −

R2
H II

R2
cl−R2

H II
ln

(
Rcl
RH II

)
ln

(
Leqv

2Rcl

)
+ 1

2

⎤
⎦ . (33)

When RH II → Rcl, this expression is, of course, the same as
if we had taken RH II/Rcl → 1 in Equation (31), that is, the
potential near the surface of the initially uniform cloud. For
convenience, we introduce a dimensionless parameter ε:

ΦH II ≡ −ΦSF(1 − ε), (34)

where ε = (1/2)[ln(Leqv

2Rcl
) + 1

2 ]−1 when RH II → Rcl. For the
fiducial parameter values discussed above, ε is equal to 0.18.
We therefore adopt ε = 0.2 as our “standard” value, although
we have tested how the results differ for much smaller values.

2.6.3. Heating Rate in H ii Regions

During the period that “star zones” are alive, UV photons
enhance the heating rate within H ii regions, defined as described
above. For the heating rate in any zone due to UV photons, we
adopt the on-the-spot approximation given by

Γ = 2.16 × 10−26GFUVerg cm−3s−1, (35)

GFUV =
{

GH II (Φ(1) < ΦH II),
G0 (otherwise), (36)

where G0 = 1.0 is the background FUV field in the Galaxy.
We choose GH II = 103 throughout this paper, although we

have also tested results with lower and higher GH II. In practice,
the exact value of GH II is not important, since the purpose of
this added heating is simply to increase the maximum density
at which a warm phase is present. From our Figure 3 (see also,
e.g., Figure 7 of Wolfire et al. 1995), a value of GH II = 103

boosts this to n ∼ 103 cm−3.

3. MODEL PARAMETERS

The models in this paper are characterized by three main
parameters: the total gas surface density Σ, the orbital angular
velocity Ω in the center of the domain, and the stellar density
at the midplane ρ∗. The first parameter defines the amount of
raw material available for distribution between the dense and
diffuse ISM phases, while the second two parameters define the
galactic environment in which the gas evolves in response to the
galactic tidal, rotational, and shear stresses. The effectiveness of
self-gravity in forming massive clouds depends on all of these
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parameters, as well as on the turbulent state that develops as a
consequence of star formation feedback.

The simulation domain we model is a radial-vertical slice
through a disk. For the vertical direction, we require a domain
Lz that encloses most of the mass of the ISM, which is confined
by a combination of stellar gravity and gas self-gravity. The
largest scale height (excluding the hot ISM, absent in these
models) is that of the WNM, and an upper limit is obtained
by neglecting self-gravity, which yields a Gaussian distribution
with scale height

Hw = cw√
4πGρ∗

= 95 pc
( cw

7 km s−1

)(
ρ∗

0.1M� pc−3

)−1/2

.(37)

Here, cw = (kTw/μ)1/2 is the thermal speed of the warm
medium, which typically has Tw = 8000–10,000 K. We require
Lz > 2Hw for our numerical models.

If the ISM consisted only of WNM, then with nw,0 = ρw,0/μ
the central volume density, the total surface density would be

Σw =
√

2πρw,0Hw

=1.6M� pc−2
( nw

0.2 cm−3

)( cw

7 km s−1

)( ρ∗
0.1M� pc−3

)−1/2

.

(38)

The maximum density for which the warm phase is possible
(when G0 = 1) is nw,max = Pw,max/(μc2

w) ≈ 1cm−3; this
implies a maximum possible total surface density of warm
gas Σw,max = (2Gρ∗)−1/2Pw,max/cw. In practice, the midplane
density of the warm medium is closer to the value 0.23 cm−3,
which represents the warm medium density that is in pressure
equilibrium with cold gas at Pc,min/kB = 1.75 × 103 cm−3 K.
We are interested in multiphase disks similar to those observed
in the Solar neighborhood and at smaller radii in normal spirals;
hence, we choose surface density of at least several M� pc−2

such that the pressure is high enough to permit a cold phase to
form, i.e., Σ > (2Gρ∗)−1/2Pc,min/cw.

The radial domain should be sufficient to capture the largest
scale gravitational instabilities which in a disk galaxy are limited
by angular momentum. The Toomre length (Toomre 1964) is
the maximum scale for axisymmetric modes in a thin, cold
disk

λT = 4π2GΣ
κ2

= 4π2GΣ
(4 − 2q)Ω2

, (39)

= 1.36kpc

(
Ω

25 km s−1kpc−1

)−2( Σ
10M�/ pc2

)
. (40)

We require Lx > λT for our numerical models, typically by a
factor of 1.3.

The parameters of our models are summarized in Table 1.
In order to cover the three-dimensional parameter space and
explore environmental dependences systematically, we consider
four series of models: Q, K, S, and R. For each Series, we hold
two quantities fixed and vary a third quantity, as follows.

1. Series Q: κ/Σ and
√

ρ∗/Σ are constant, while Σ varies;
2. Series K: κ and

√
ρ∗/Σ are constant, while Σ varies;

3. Series R: κ/Σ and ρ∗ are constant, while Σ varies;
4. Series S: Σ and ρ∗ are constant, while κ (and Ω) varies.

The value of the Toomre Q parameter for the gas component,
for a radial velocity dispersion σR , is defined as

Q ≡ κσR

πGΣ
(41)

= 1.82

(
Ω

25 km s−1kpc−1

)( σR

7 km s−1

)(
Σ

10M�pc−2

)−1

.

(42)
Since Toomre’s parameter is proportional to κ/Σ, Series Q and R
would have constant thermal Q = κcs/(πGΣ) for the gas if the
sound speed cs were constant (which is true for warm gas). The
Q and R series correspond to values of Q = 2.1(σR/7 km s−1).
Assuming a constant stellar velocity dispersion, Σ∗ ∝ √

ρ∗, so
the stellar Toomre parameter (Q∗ ∝ κ/Σ∗) would also have
the same value for all members of Series Q. As a fiducial
model, we choose Σ = 10.6M�/ pc2, Ω = 31.2 km s−1kpc−1,
and ρ∗ = 0.07M�/ pc3, similar to conditions in the Solar
neighborhood; this is denoted as the Q11 model in Table 1.

Relative to conditions similar to those in the Solar neighbor-
hood, we may think of the members of Series Q as representing
conditions ranging from slightly larger radii down to radii of a
few kpc, for a disk that has constant Q and Q∗, i.e., larger gas
and stellar densities at small radii. We may think of Series R
as models spanning a similar range of radii, except for a disk
that has stellar density (and the corresponding vertical gravity)
independent of radius, while the gas surface density increases
inward (such that the gas self-gravity can become dominant).
We may think of Series S as relocation of the Solar neighbor-
hood conditions of gas and stellar density to either further in
or further out in the galaxy’s potential well, where rotation and
shear are stronger or weaker, respectively. We may think of Se-
ries K as choosing a fixed location in the galactic potential well
(dominated by dark matter), and then varying the gas and stellar
surface densities in tandem.

To initialize our models, we set the density to a uniform
value (given by n̄ in Table 1) throughout the domain, and
set the pressure to P/kB = 4860 cm−3 K which is in the
thermally unstable regime. The value of the initial pressure in
fact does not matter, since the gas rapidly separates into WNM
and CNM due to thermal instability. We also impose on the initial
conditions isobaric density perturbations (with a flat spectrum
at wavenumbers smaller than kLz/2π = 32 and 10% total
amplitude). The results are also not sensitive to the amplitude
or power spectrum of the initial perturbation spectrum; this is
simply a convenience to seed the initial evolution into thermal
instability and then Jeans fragmentation of cold gas. In order to
reach a quasi-steady state with repeated feedback cycles, we run
our models for two orbital periods in Series Q, R, and K and up
to tfinal = 5.57 × 108 yr for Series S.

3.1. Hydrostatic Models

Because an important focus of this work is to assess the effects
of turbulence, it is important to ascertain how our dynamical
models differ from the situation in which there are no motions
other than background sheared rotation. For these comparison
models, we calculate the one-dimensional hydrostatic equilibria
in the vertical direction. These models include heating and
cooling, but no feedback from star formation. We consider two
series, HSP and HSC, which have stellar volume density ρ∗
either proportional (P) to the square of the gas surface density Σ
or constant (C), respectively. Note that Series HSP corresponds
to the dynamical Series Q and K, while Series HSC corresponds
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Table 1
Dynamical Model Parameters

Model Σa Ωb torb
c tfinal

d ρ∗ e Lz
f n̄ g K/K0

h Δz i ε j Resolution
Nx × Nz

QQQ8 · · · 7.50 22.1 2.79 5.57 0.035 410 0.525 0.1 1.07 0.2 1536 × 384

Q8 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. 0.4 2.13 0.2 768 × 192

Q8e0.02 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. 0.02

.

.

.

QQQ11 · · · 10.60 31.2 1.97 3.94 0.07 290 1.05 0.056 0.75 0.2 1536 × 384

Q11 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. 0.2 1.51 0.2 768 × 192

Q11e0.02 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. 0.02

.

.

.

QQQ15 · · · 15.00 44.12 1.39 2.79 0.14 205 2.1 0.025 0.53 0.2 1536 × 384

Q15 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. 0.1 1.07 0.2 768 × 192

Q15e0.02 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. 0.02

.

.

.

Q21 · · · 21.20 62.40 0.99 1.97 0.28 145 4.2 0.05 0.75 0.2
.
.
.

Q21e0.02 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. 0.02

.

.

.

Q42 · · · 42.40 124.80 0.49 0.99 1.12 72.5 16.8 0.0125 0.38 0.2
.
.
.

Q42e0.02 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. 0.02

.

.

.

KKKK8 · · · 7.50 44.12 1.39 2.79 0.035 410 0.525 0.056 0.80 0.2 2048 × 512

KKK11 · · · 10.60
.
.
.

.

.

.
.
.
. 0.07 290 1.05 0.05 0.75

.

.

. 1536 × 384

K21 · · · 21.20
.
.
.

.

.

.
.
.
. 0.28 145 4.2 0.05 0.75

.

.

. 768 × 192

K42 · · · 42.40
.
.
.

.

.

.
.
.
. 1.12 72.5 16.8 0.0125 0.38

.

.

.
.
.
.

RR8 · · · 7.50 22.1 2.79 5.57 0.14 205 1.05 0.056 0.79 0.2 1024 × 256

RR11 · · · 10.60 31.2 1.97 3.94
.
.
.

.

.

. 1.49
.
.
.

.

.

.
.
.
.

.

.

.

R21 · · · 21.20 62.40 0.99 1.97
.
.
.

.

.

. 2.98 0.1 1.07
.
.
. 768 × 192

R42 · · · 42.40 124.80 0.49 0.99
.
.
.

.

.

. 5.97
.
.
.

.

.

.
.
.
.

.

.

.

SS22 · · · 15.00 22.1 2.79 5.57 0.14 205 2.1 0.056 0.79 0.2 1024 × 256

SS31 · · ·
.
.
. 31.2 2.30

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

S44 · · ·
.
.
. 44.12 1.18

.

.

.
.
.
.

.

.

.
.
.
. 0.1 1.07

.

.

. 768 × 192

Notes.
a Gas surface density, in M� pc−2

b Orbital angular velocity, in kms−1kpc−1

c Orbital time, torb = 2π/Ω, in units 108 yr
d Duration of simulation, in units 108 yr
e Stellar density at midplane, in M� pc−3

f Vertical size of domain, in pc. Horizontal size is Lx = 4Lz.
g Average number density, n̄ = Σ/(μLz), in cm−3

h Thermal conduction in units of K0 = 6.91 × 107 erg cm−1 s−1 K−1

i Grid scale, in pc
j Control parameter for photoheating region (see Equation (34))

to the dynamical Series R. Details of these model parameters
are listed in Table 2. Uniform 1024 grids are used for all
hydrostatic models. Note that the hydrostatic models only allow
a one-dimensional vertical structure, and require higher spatial
resolution than the dynamic models, because the scale height in
the cold layer near the midplane becomes very small when there
is no feedback.

4. EVOLUTION OF THE FIDUCIAL MODEL

This section describes the overall evolution of the fiducial
model. After the initial thermal instability, the cold gas col-
lapses into the midplane, due to the vertical gravitational field.

The cold, high-density midplane gas then fragments rapidly,
due to self-gravity. The timescale for this fragmentation is char-
acterized by the Jeans time for a thin disk, tJ = cs/GΣ ≈
6Myr(cs/0.3 km s−1). The dense fragments collapse, with some
of them coagulating, until the feedback criteria are met, and heat-
ing is turned on to create local H ii regions. These H ii regions
expand, causing the dense gas to be swept outward, forming
shells that then break up into filaments. New overdense regions
continue to form, collapse, and be dispersed by feedback.

Figure 1 shows a snapshot from the fiducial model (Model
Q11) at a point after the system has reached a quasi-steady state
in terms of the statistical distributions of density, temperature,
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Figure 1. A snapshot of Model Q11, with Σ = 10.6M� pc−2: Upper panel shows temperature, and Lower panel shows density; both have logarithmic color scales
as shown. Contours in the lower panel are loci of constant Φ(1), the relative potential, with solid and dashed curves for Φ(1) > 0 and Φ(1) < 0, respectively. The
black asterisk at the potential minimum in the left part of the panel indicates the location of a “star zone” feedback center. The cold, dense gas is highly clumpy and
filamentary, and is concentrated toward the midplane by self- and external gravity.

(A color version of this figure is available in the online journal.)

Table 2
Hydrostatic Model Parameters

Model Σ ρ∗ Lz n̄ K/K0 Δz

HSP8 · · · 7.50 0.035 410 0.525 0.4 0.40
HSP11 · · · 10.60 0.07 290 1.05 0.2 0.28
HSP15 · · · 15.00 0.14 205 2.1 0.1 0.20
HSP21 · · · 21.20 0.28 145 4.2 0.05 0.14
HSP42 · · · 42.40 1.12 72.5 16.8 0.0125 0.070
HSC8 · · · 7.50 0.14 353 1.05 0.1 0.20

HSC11 · · · 10.60
.
.
.

.

.

. 1.48
.
.
.

.

.

.

HSC21 · · · 21.20
.
.
.

.

.

. 2.97
.
.
.

.

.

.

HSC42 · · · 42.40
.
.
.

.

.

. 5.93
.
.
.

.

.

.

Notes. All parameters and units are as in Table 1.

and velocity. The two panels show the temperature and density
throughout the domain. The contours in the lower panel denote
relative potential Φ(1): solid and dashed lines show positive and
negative values, respectively. At the time of this snapshot, there
are three large clouds consisting of collections of dense filaments
that create minima in the gravitational potential (dashed lines
in the lower panel). Most of the dense filaments and clumps in
the lower panel correspond to cold gas in the upper panel. In
the upper panel, the orange circle associated with the cloud near
x = 250 pc shows an active H ii region, in which the gas is both
warm and dense and hence is expanding rapidly. Expansion of
shells slows at later times (after the pressure drops to ambient
values and the enhanced heating turns off). Since most of the

time for any given shell is spent near the maximum expansion,
the widely expanded structure of the middle cloud is typical in
terms of the time-averaged state.

Figure 2 shows a snapshot of the density and temperature in
the same model Q11 at a time 38 Myr later. Overall, the structure
is qualitatively similar, although details change because the state
is highly dynamic. There are still three main collections of
filaments; the middle cloud has a large shell, while the left- and
right-side clouds have contracted onto the midplane and have
nearly reached the point at which new H ii regions will be born.

Three large “clouds” within the 1.16 kpc horizontal length of
the domain correspond to mean separations of 390 pc. One might
expect the number of cloud entities to be related to the properties
of star formation feedback, and for our adopted prescription to
the parameter ε, which effectively determines the maximum
volume of an H ii region: large ε corresponds to large H ii

regions, whereas small ε corresponds to H ii regions only in
the immediate vicinity of a potential minimum defined by a
high-density clump of gas. In a situation with multiple local
minima in the gravitational potential, if ε is large then a single
H ii region could engulf what would be multiple H ii regions
in the case of small ε. Expansion and shell collision of many
small H ii regions would produce more (but smaller) clouds
than expansion and collision of a few large H ii regions. In fact,
when we run the same model but set ε = 0.02, we find that
there are typically 4–5 clouds in the same domain. We conclude
that the number of large clouds is not very sensitive to ε, but
since this control parameter can only approximately model the
effects of real H ii regions, the current study cannot provide
an exact prediction for the size or mass of GMCs. We note
that the typical separation is, however, in the same range as the
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Figure 2. A later time (Δt= 38 Myr) snapshot of temperature (top) and density (bottom) from Model Q11, showing that individual structures have dynamically
evolved. See Figure 1 legend for details.

(A color version of this figure is available in the online journal.)

Figure 3. Phase diagram for Model Q11 snapshots shown in Figures 1 and 2. The gray scale shows the relative fraction of the total mass at each point in the phase
plane. The solid line denotes the thermal equilibrium curve at the background heating rate (GFUV = 1); the dashed curve shows thermal equilibrium in H ii regions
(GFUV = 103). The snapshot from Figure 1 is taken while an H ii region is very young, and there is considerable gas on the hot, high-density branch; there is very
little gas on the H ii region branch from the second snapshot. Overall, gas is preferentially—but not exclusively—found near the thermal equilibrium curves.

two-dimensional Jeans length at the typical velocity dispersion,
λJ,2D ≡ σ 2/(GΣ) = 340 pc(σ/4kms−1)2 for this model.

Figure 3 shows the phase diagram (ρ −P plane) for the same
snapshot in Figure 1 and 2. The gray scale is proportional to the
fraction of the total mass in the domain that is found at a given
point in the phase plane. We overlay the thermal equilibrium
curves for both the cases of “normal” heating (solid curve) and
the enhanced heating in H ii regions (dashed curve). Clearly,
most of the gas resides near thermal equilibrium, due to the
short cooling times compared to the longer hydrodynamical
times.

The range of properties of the gas can also be seen in Figure
4, which shows the probability distribution functions (PDFs) of
gas density. Solid and dashed lines show mass- and volume-
weighted probabilities, respectively. The volume PDF shows
that the volume is mainly occupied by warm and diffuse gas
(WNM) at densities of a few ×0.1 cm−3. In terms of the mass
PDF, there are two peaks: one corresponds to the WNM, and
the other to a cold component at density above 10 cm−3.

Figure 5 shows the time evolution of thermal, kinetic, and
potential energies averaged over the domain, for Model Q11. For
the potential energy, the background disk potential is subtracted
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Figure 4. Density distributions for Model Q11 snapshot shown in Figure 1.
Solid and dashed lines denote mass- and volume-weighted density PDFs. The
bimodal distribution of mass is characteristic of the modified two-phase warm/

cold medium that develops for a bistable cooling function with a range of
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out, i.e., we use Φ(1) (see Equation 23). There are many sharp
spikes in both thermal and kinetic energies, which correspond
to times when new H ii regions are born and then rapidly
expand. The number of spikes corresponds to the number of
stellar generations in the model; note that this number must be
proportional to the domain size. In the second rotational period
(i.e., 1 � t � 2 rotation), there are 18 generations per 1.16 kpc,
or six generations per massive cloud per rotation period (i.e., an
interval of 3.3 × 107 yr) if the mean number of clouds is 3 in
this fiducial model.

Other models show similar overall behavior in terms of the
evolution of a physical structure (consisting of clumps and
filaments that disperse and recollect), as well as the distribution
of mass in the phase plane. As environmental parameters
vary along a sequence, however, there are some characteristic
changes in the structure. The most notable difference is that
for high gaseous surface density cases, clouds are often more
physically concentrated (i.e., more compact and dense) because
of the higher stellar and gaseous gravity. For example, Figure
6 shows a snapshot from Model Q42, which has Σ and ρ∗ four
and 16 times larger, respectively, than the values in the fiducial
Model Q11. The three clouds that are seen in the figure are
more compact than in the lower ρ∗ case. For a given ΦSF and ε,
increasing the mass of a cloud implies that H ii region cannot
break out as easily.

5. PARAMETER DEPENDENCE OF STATISTICAL
PROPERTIES

All of our models show a turbulent, multiphase ISM with
several generations of feedback from photoheating. In this
section, we analyze how the statistical properties of those models
depend on the environmental parameters, both along a given
series and from one series to another. The statistical properties
that we study are based on averages of the fluid variables over
space and time. First, we describe how these averages are defined
in general, and then we turn to the particular statistics.

5.1. Space and Time Averaging Procedure

For a variable of A that is averaged over both space and time,
we use mass-weighted averages defined by

〈A(a)〉 ≡
∫
a
A dm

M(a)
, (43)

M(a) ≡
∫

a

dm, (44)

where the argument ‘a’ denotes a given phase or component of
the gas (such as WNM). The time averaging is then defined via

〈A(a)〉 ≡
∫ t2

t1

〈A(a)〉 dt
/

S, (45)

S ≡
∫ t2

t1

θ (M(a))dt, (46)

where the step function θ gives 1 if M(a) > 0 and θ = 0 other-
wise, so that only intervals in which the component is present are
included in the averaging. Note that S = t2−t1 if the component
‘a’ is present somewhere in the domain at every interval during
the simulation. Thus, we denote spatial and temporal averages
using angle brackets and overlines, respectively. To avoid the
initial transients at the beginning of the simulation, we adopt the
interval between t1 = tfinal/2 and t2 = tfinal for our time average.
For the purpose of averaging, our sampling rate is Δt = 0.1tms,
where tms = 3.7 × 106 yr is the adopted lifetime of “star zone”
flags that control photoheating feedback.

5.2. Mass Fractions

The models of this paper focus on dynamics rather than
chemistry, so rather than dividing the gas into distinct phases,
we simply bin it according to density. The neutral gas (i.e.,



No. 2, 2009 GAS PROPERTIES AND IMPLICATIONS FOR GALACTIC STAR FORMATION 1327

Figure 6. A snapshot of temperature (top) and density (bottom) in high surface density Model Q42. See Figure 1 legend for details.

(A color version of this figure is available in the online journal.)

the gas that is not within the limits defining H ii regions) is
separated into four bins. The first bin (n < 1 cm−3) corresponds
approximately to the WNM, with densities below the maximum
for which a warm phase is possible in thermal equilibrium.
The second bin (1 cm−3 < n � 100 cm−3) extends up to the
maximum density that is in pressure equilibrium with WNM gas,
and corresponds approximately to the CNM (phase diagrams
show that the thermally unstable regime is not highly populated
for our models; see e.g., Figures 3 and 4). The dense medium
(hereafter DM) is all the gas at n � 100 cm−3, which in thermal
equilibrium is above the maximum pressure for the warm phase
and therefore only exists in regions that are internally stratified
due to gravity. The DM gas corresponds approximately to the
molecular component of the ISM; we divide it into two bins:
DM2 (100 < n � 103) and DM3 (103 < n). Gas that is
within the limits defined for enhanced heating is labeled as
ionized gas (hereafter H ii). So that the mass fractions f (a) of
all components add to unity,

∑
a f (a) = 1, we use a slightly

different definition from that of Equation (45). The mass fraction
of each component a in (WNM, CNM, DM2, DM3, or H ii) is
defined as

f (a) =

∫ t2

t1

M(a)

Mtot
dt

t2 − t1
. (47)

Figure 7 shows the mass fraction of the various components
either as a function of surface density (Series Q, R, and K) or
angular velocity (Series S). For Series Q and R (which most
closely correspond to the radial variations found within normal
spiral galaxies), at low Σ the diffuse (WNM+CNM) components
dominate, while at high Σ the dense (gravitationally confined)
components (DM2+DM3) dominate. The behavior is somewhat
different in Series K, which is highly gravitationally unstable

and thus extremely active when Σ is large (since κ is constant),
leading to larger H ii and CNM mass fractions at high Σ. At low
Σ, the behavior in Series K is similar to that in Series Q and
R. For all series, the H ii mass fraction increases at higher Σ
or lower Ω, corresponding to lower Toomre Q (see Figure 11)
and hence higher rates of stellar feedback activity. The mass
fraction of the WNM component secularly declines with in-
creasing Σ in model series Q, K, and R. Even though the models
of Series S are most gravitationally unstable at low Ω, they re-
main dominated by diffuse gas (CNM) rather than dense gas,
because the total surface density is relatively modest for this
series (Σ = 15M� pc−2).

5.3. Surface Density

The simulation domain for our two-dimensional models
represents a radial-vertical (x–z) slice through a galactic disk,
such that if we viewed the corresponding galaxy face-on, the
surface density as a function of radius would be given by
Σ(x) = ∫

dzρ(x, z). The area-weighted mean surface density in
any model is equal to 〈Σ〉A ≡ ∫

dxdz ρ/Lx ; this is a conserved
quantity for any simulation, and is one of the basic model
parameters (see Column 2 of Table 1; in general, we omit the
angle brackets and “A” subscript). The value of the surface
density weighted by mass rather than area better represents the
“typical” surface density of clouds found in the disk. This is
defined as

Σcloud =
∫

Σ(x)2 dx∫
Σ(x) dx

. (48)

Figure 8 shows Σcloud as a function of Σ for all model series.
Interestingly, we find that Σcloud does not strongly depend on
parameters (either Σ or Ω) throughout the four model series.
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Figure 7. Mass fractions of gas components in all model series, as a function of surface density (Series Q, K, R) or angular velocity (Series S). Open symbols denote
neutral gas at densities in the primarily atomic regime; filled symbols denote neutral gas at densities in the primarily molecular regime; asterisks denote photoheated
gas corresponding to H ii regions.

The largest value of Σcloud is 300M� pc−2 and the smallest is
50M� pc−2, although for most cases the range is even smaller:
Σcloud = 70–150M� pc−2. This factor of 2 range for Σcloud
is significantly smaller than the factor of 6 range of mean
surface densities, Σ = 7.5–42M� pc−2. The range of Σcloud
is also similar to the typical observed surface densities of giant
molecular clouds (see discussion in Section 7).

This weak variation of Σcloud among the various series
suggests that it is star formation feedback rather than the
feedback-independent parameters that determines the typical
surface density of clouds. In particular, other tests we have
performed suggest that it is the gravitational potential threshold
for star formation ΦSF that most influences Σcloud. A model
in which ΦSF → 0 (with any ε) would have photoheating
events independent of the local ISM properties; the consequent
expansion of H ii regions would thoroughly mix gas so that
Σcloud → Σ. This is indeed what we find when we run models
with |ΦSF| a factor 10 below our adopted value. On the other
hand, larger values of |ΦSF| require more massive and compact
clouds in order to have star formation, which would raise Σcloud.

Tests with |ΦSF| a factor 10 above our adopted value indeed
result in larger Σcloud (although only by a factor of ∼ 2). The
dependence on ε is much weaker than the dependence on ΦSF;
reducing ε by a factor of 10 changes Σcloud by only tens of
percent, at our standard ΦSF.

The comparison between Series Q and Series R is also
interesting in this regard. The difference between these two
series is that the stellar density ρ∗ increases with Σ in Series Q,
while ρ∗ is constant throughout Series R. Based on the larger
Σcloud value for the largest Σ in Series Q compared to Series R,
when the stellar density is increased, the surface density required
in order to form clouds also increases.

5.4. Temperatures

Figure 9 shows the spacetime averages of temperature for the
components we have defined via density bins, 〈T (a)〉, where
the argument ‘a’ denotes WNM, CNM, DM2, DM3 and H ii.
Throughout the model series, the temperatures for the most
dense and most diffuse components are fairly constant; we find
T = 6000–7000 K for WNM, T = 20–40 K for DM2, and
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Figure 8. The mass-weighted surface density of gas (Σcloud; see Equation (48)) as a function of area-weighted surface density Σ. Values of Σcloud are similar to observed
GMC surface densities, and relatively independent of environmental conditions.

T = 10–20 K for DM3. For the CNM component (which in
fact includes thermally unstable gas when it exists), the range
is somewhat larger, T = 100–400 K, reflecting the larger range
of conditions for this gas. The gas which is subject to enhanced
heating has mean temperatures for most models of 4000–
8000 K.

The link between density and temperature in our models
implies that the components we have defined via density bins
also approximately correspond to natural ISM phases. This is
because much of the gas mass is close to thermal equilibrium
(see Figure 3), and we have chosen the bin edges so as to
match up to points in the phase plane with physical significance.
Temperature PDFs that we have constructed show a bimodal
distribution, as is expected based on the cooling function.

5.5. Turbulent Velocities

Expansion of H ii regions feeds kinetic energy into the ISM.
This kinetic energy is not imparted solely to expanding H ii

bubbles and shells surrounding them, but is shared throughout
the ISM as turbulence. Our models provide a first look at the
results of this form of turbulent driving. It is interesting to

examine how the turbulent amplitudes vary from one component
to another in a given model, and how the overall levels vary
between models with different feedback rates as a consequence
of different system parameters.

Figure 10 shows the turbulent velocity dispersions for all
series, defined for each component as

v(a) ≡
√

〈vx(a)2 + ṽy(a)2 + vz(a)2〉, (49)

where the argument ‘a’ denotes WNM, CNM, DM2, DM3 and
H ii, and ṽy = vy + Ωx in order to subtract out the velocity
of unperturbed (sheared) rotation about the galactic center. The
azimuthal velocities are excited by Coriolis forces so that the
relation for epicyclic motions

ṽy

vx

� κ

2Ω
= 1√

2
(50)

should apply (Binney & Tremaine 1987), and we have checked
that this is in fact satisfied. We note that the velocity dispersion
for each component is computed by summing over the whole
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Figure 9. Mean temperature in varying density ranges. Diffuse (WNM: open circles, CNM: open squares), dense (DM2: filled triangles, DM3: filled circles), and
photoheated (H ii: asterisks) components are defined as in Figure 7.

domain. Thus, the measured velocity dispersions are larger
than they would be within smaller scale clouds in the system.
However, we have found that there are not large contributions
to the velocity dispersion from velocity differences of widely
separated regions; this is because turbulence is driven by the
expanding H ii regions, such that the maximum correlation scale
is comparable to the effective thickness of the disk. For example,
if we divide the domain in Figure 1 horizontally into eight equal
parts, the mean velocity dispersion of all gas within these sub-
domains is ∼ 98% of that of the domain as a whole. Considering
just the dense gas, the velocity dispersion for subdomains is
∼ 75% of that in dense gas for the whole domain. For the
three large clouds seen in Figure 6, the mean internal velocity
dispersions are an order of magnitude larger than the dispersion
in mean velocities.

In general, the densest component (DM3) has the lowest
velocity dispersion, with the next-densest (DM2) the next-
lowest. The value of the velocity dispersions for the dense
components is highly supersonic, and is similar to (or slightly
below) those that are observed within real GMCs (see Section
7). The CNM component in our models typically has higher

turbulence levels than the WNM component, because the former
is in closer (spacetime) contact with energy sources. Because
turbulent motions in our models are driven by the pressure of
photoheated gas, P = ρc2

s ∼ ρv2, the turbulent velocities have
an upper limit of the sound speed in gas heated to 8000 K,
cH II ∼ 7 km s−1. Since the driving is intermittent, this upper
limit is not usually reached; mean values for the diffuse gas are
closer to ∼ 5 km s−1. The diffuse-gas velocity dispersions in our
models are lower by about 50% compared to observed levels,
indicating (consistent with expectations) that other turbulence
sources are important in the real diffuse ISM.

The model series Q and R, which have Σ ∝ Ω (and thus
effectively constant gaseous Toomre Q if the velocity dispersion
is constant), show velocity dispersions that are insensitive
to the value of Σ. Series K, on the other hand, has much
higher turbulence levels for large Σ. This is because, with
constant Ω (= κ/

√
2) the high-Σ models are quite susceptible

to gravitational instability (in terms of Q); this leads to very
active feedback which then raises the velocity dispersion. A
similar physical effect is seen in Series S: the velocity dispersion
is highest at low Ω, since these are the most gravitationally
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Figure 10. Mean turbulent velocity dispersion in each gas component. Turbulence levels are relatively independent of Σ in Series Q and R which have κ and Ω ∝ Σ,
but turbulence increases with Σ in Series K, which has κ and Ω constant for all models and is therefore highly unstable at large Σ. Turbulence levels decrease with
increasing Ω in Series S, because angular momentum stabilizes against gravitational collapse and subsequent feedback.

susceptible models among the series. We discuss measurements
of the effective Toomre Q values that account for turbulence in
the following subsection.

5.6. Effective Toomre Q Parameters

For a rotating disk that contains only thermal pressure, sus-
ceptibility to growth of self-gravitating perturbations depends
on the Toomre Q parameter, defined by setting σR equal to the
thermal sound speed in Equation (42). An infinitesimally thin
gas disk is unstable to axisymmetric perturbations if the value
of this thermal Q-parameter is < 1 (Toomre 1964). Nonaxisym-
metry, magnetic fields and the presence of active stars enhance
gravitational instability (Goldreich & Lynden-Bell 1965b; Jog
& Solomon 1984; Rafikov 2001; Kim & Ostriker 2001; Kim et
al. 2002, 2003; Kim & Ostriker 2007; Li et al. 2005) allowing
growth at higher Q, while nonzero disk thickness suppresses
gravitational instability (Goldreich & Lynden-Bell 1965a; Kim
et al. 2002; Kim & Ostriker 2007), lowering the critical Q value.

Allowing for all of these effects, threshold levels measured from
simulations are Q ≈ 1.5.

Turbulence at scales below the wavelength of gravitational
instability can also help to suppress the growth of large-scale
density perturbations by contributing to the effective pressure.
Since the original Toomre parameter is arrived at based on
effects of radial pressure gradients, only the radial component of
the velocity dispersion should be added to the thermal velocity
dispersion in defining an effective Q (see Equation (42)). It is
natural to expect galactic disks to self-regulate the values of the
effective Q: growth of self-gravitating instabilities subsequently
leads to star formation and energetic stellar feedback, which
drives turbulence, raises Q, and tends to suppress further GMC
formation. Indeed, the suggestion that galactic star formation
is self-regulated through turbulent feedback dates back to the
earliest work on large-scale instabilities in galactic gas disks
(Goldreich & Lynden-Bell 1965b), with Quirk (1972) making
the related suggestion that galaxies deplete their gas until
they reach marginal stability. The self-regulation processes are
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complex, but they have begun to be studied in recent numerical
simulations (e.g.,Wada et al. 2002; Tasker & Bryan 2008).

We use the results of our models to measure the values of the
effective Toomre parameter in the saturated state. We compare
four different measurements of Q in each model. The first is
closest to Toomre’s original definition for a gaseous medium
in that it is based on thermal velocity dispersion; since our
medium has components at differing temperatures, we use a
mass-weighted thermal velocity dispersion

QT (total) = κ

πGΣ

√
γ kB

μ
〈T 〉. (51)

The second measurement incorporates turbulence, again includ-
ing all gas and weighting by mass

Q(total) = κ

πGΣ

√
γ kB

μ
〈T 〉 + 〈v2

R〉. (52)

For the third and fourth measurements, we consider only the
dense gas for both the numerator and denominator:

QT (n > 100) = κ

πGΣ

√
γ kB

μ
〈T (n > 100)〉

f (n > 100)
. (53)

and

Q(n > 100) = κ

πGΣ

√
γ kB

μ
〈T (n > 100)〉 + 〈v2

R(n > 100)〉
f (n > 100)

.

(54)
Here, the mass fraction of dense gas f (n > 100) is given
in Equation (47). The turbulent velocities dominate the dense
gas when they are included, since the thermal sound speed is
< 0.5 km s−1 whereas turbulent velocities are several times
larger; see Figure 10. Note that κ and Σ are constant in time for
any simulation.

Figure 11 shows the measured value of these four quantities
QT (total), Q(total), QT (n > 100), and Q(n > 100), for
all of our models. In general, we find that the saturated-
state values when turbulence is included are near unity. The
only significantly larger values are for the low-Σ models in
Series K, which have large κ and hence the thermal value
QT (total) is large; when turbulence is included this is raised
even more. Since Series Q and R have κ/Σ constant, the value of
QT (total) is simply proportional to the mass-weighted thermal
velocity dispersion. The increased fraction of cold gas at high
Σ leads to a corresponding decrease in QT (total). Since the
thermal and turbulent velocity dispersions of the dense gas
are small compared to those of the diffuse components, the
dense components contribute to QT (total) and Q(total) mostly
by lowering the mass fraction of the diffuse components, in the
numerator. Because turbulent contributions are positive-definite,
Q(total) � QT (total).

The strongest evidence of self-regulation by feedback-driven
turbulence is seen in the saturated-state results for Q(n >
100). With the low values of the temperature in the dense
component, the thermal-only values for the dense gas are mostly
QT (n > 100) < 0.5. When turbulence is included, however,
the saturated-state value of Q(n > 100) is between 1 and
2 for almost all models. This is consistent with expectations
for marginal instability. We note in particular that velocity

dispersions in Series K (see Figure 10) vary strongly with Σ
(by a factor of ∼ 5), while Q(n > 100) varies weakly with
Σ (by a factor of < 2); feedback evidently self-adjusts in
these models so as to maintain a state of marginal gravitational
instability.

5.7. Virial Ratios

In a self-gravitating system that approaches a statistical
steady state, the Virial Theorem predicts that the specific
kinetic and gravitational energies E and W will be related
by 2E + W = 0; this is modified when magnetic terms are
present (Chandrasekhar & Fermi 1953; Mestel & Spitzer 1956;
McKee & Zweibel 1992). Classically, the Virial Theorem has
often been assumed to hold within individual GMCs in order
to obtain estimates of their masses, and indeed this yields
values that are consistent (within a factor ∼ 2) with other
measures of the mass (e.g., Solomon et al. 1987). If individual
GMCs are short-lived, however, they may not satisfy the Virial
Theorem because the moment of inertia tensor is changing
rapidly enough, and/or surface terms are large enough, to be
comparable to the kinetic and gravitational energy integrated
over the cloud volume (Ballesteros-Paredes et al. 1999; McKee
& Ostriker 2007; Dib et al. 2007). When averaged over an
ensemble of clouds, there will be (partial) cancellation of surface
and time-dependent terms, as they appear with opposite signs for
forming and dispersing clouds. An added complication is that
self-gravitating GMCs form out of diffuse gas, and when they
are destroyed (whether after a short or long time) they return to
diffuse gas; thus the different terms in the Virial Theorem may
be observed in different tracers depending on whether diffuse
gas is primarily atomic or molecular.

Here, we consider virial ratios

R ≡ 2E

|W | (55)

separately for each component of the gas in our models. The
term E includes both thermal and bulk kinetic energy, computed
via a spacetime average as

E = 1

2
〈v2

x + ṽ2
y + v2

z 〉 +
1

γ − 1
〈P/ρ〉, (56)

and for W only the perturbed gravitational potential is used in
computing the spacetime averaged value of the energy:

W = 1

2
〈Φ(1)〉. (57)

As for the other statistical properties we have considered,
we measure R separately for each component (separated into
density bins) of the system. Figure 12 shows the virial ratio of
each component, for all models in all series. Note that R < 2
and R > 2 imply gravitationally bound and unbound states,
respectively for any component. As we do not separate the
contributions to the potential from the different density ranges,
a given component may be bound within a potential well that
is created by more than one component. Strictly speaking, the
factor 1/2 in Equation (57) applies only for self-potentials.

As expected, the lowest density WNM component (n <
1 cm−3) has R very large (above 100), and the intermediate
density CNM component (1 cm−3 < n < 100 cm−3) also
is non-self-gravitating, with R in the range ∼ 5–10. The
H ii (photoheated) component generally has values of R ∼
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Figure 11. Values of the Toomre Q parameter. We separately compute Q in four different ways: including all gas and either using the thermal (subscript “T”) or
thermal+turbulent velocity dispersion to obtain QT (total) and Q(total), respectively; and including just the (cold) high-density gas to obtain (thermal) QT (n > 100)
and (thermal+turbulent) Q(n > 100). Feedback drives turbulence and regulates the thermal+turbulent Toomre parameter to reach levels near unity, especially for cold,
dense gas. See text for details.

10, similar to that of the CNM component. Although it has
very large thermal energy (much greater than the CNM), the
photoheated gas by definition resides within deep parts of the
gravitational potential well. The two dense components, DM2
(102 cm−3 < n < 103 cm−3) and DM3 (103 cm−3 < n), on
the other hand, are consistent with being marginally or strongly
gravitationally bound, with R � 2 and R � 1, respectively.
For the majority of models, the value of R for the densest
component, DM3, is quite near unity, indicating consistency
with virial equilibrium for the component as a whole. For a
few models, R is as low as 0.3 for the DM3 component; this
indicates that the dense gas is transient, with dense regions
being rapidly dispersed into lower density gas by the feedback
process. Overall, we find no significant differences in the trends
for R between different series or different models within any
series. There is a weak correlation between Q and R, with
lower Q (more unstable) models having slightly higher virial
ratios.

5.8. Vertically Averaged Density and Free-Fall Time

Although the ISM consists of many phases at different
densities, all of this gas resides within a common potential well
which tends to confine material near the galactic midplane. The
scale height of each phase depends on the support provided by
thermal and kinetic pressure (plus support by magnetic stresses
and cosmic rays, although these may be less significant). In
Koyama & Ostriker (2009) we consider in detail the vertical
distribution of gas within our models, and show that vertical
equilibrium is a good approximation for the system as a whole,
provided that appropriate accounting is made for the differing
velocity dispersions of different components. We also discuss
dependence of the mean scale height on model parameters.

For the purpose of assessing gravitational timescales of the
overall ISM system, it is useful to measure the density when
averaged over large scales (i.e., a volume at least comparable
to the scale height). To evaluate this volume average in our
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Figure 12. Virial ratio R ≡ 2E/|W | (see text), measured separately for each gas component. High density gas (n > 100 cm−3) is strongly gravitationally bound; low
density gas is not.

models, we first compute the vertical scale height, defined using
the following averaging:

Have =
√∑

all zones ρz2∑
all zones ρ

, (58)

where z is the vertical coordinate relative to the midplane. We
further average the values of Have over time. For a Gaussian
density profile, ρ(z) = ρ0 exp(−z2/2H 2), the midplane density
is related to the surface density and scale height by ρ0 =
Σ/(

√
2πH ), and the mass-weighted mean value of the average

density is given by ρ0/
√

2. We therefore define an average
density in our models as

ρave ≡ Σ
2
√

πHave
(59)

(see also Appendix in Koyama & Ostriker 2009).
Figure 13 shows the vertically averaged density for all models

in all series. In general, we find that the average density increases
with the total surface density of gas in the disk. A slightly
shallower increase of ρave with Σ is obtained in Series K

compared to Series Q, which can be attributed to the large
velocity dispersions in strongly unstable (small Q) disk models.
Series R also has a shallower slope than in Series Q, because
the stellar gravity does not increase at large Σ in the former. For
reference, we also plot in Figure 13 the values of the vertically
averaged density from our comparison hydrostatic model series.
The slope of Series HSC (lower left panel) is shallower than
that in Series HSP (top panels), again because the stellar density
does not increasingly compress the gas at large Σ in Series
HSC. The volume-averaged densities of the dynamic models
are lower than those of the hydrostatic models by up to an order
of magnitude; the difference increases at large surface density
where turbulence plays an increasingly important role (see also
Koyama & Ostriker 2009).

Using the mean density and the definition of the free-fall time,

tff(ρ) =
(

3π

32Gρ

)1/2

, (60)

we can calculate the free-fall time for the system as a whole,
tff(ρave). Since ρave increases with Σ in our models, tff(ρave) will
decrease with increasing Σ. Because star formation requires
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Figure 13. Vertically averaged density for all dynamic (open squares) and hydrostatic model series. Filled squares and circles denote hydrostatic series HSP and HSC,
respectively. Turbulence reduces the mean density (averaged over the disk scale height) relative to the hydrostatic case. Mean density increases with Σ more rapidly in
Series Q compared to Series R because the latter adopts the same stellar vertical gravity value for all models.

gas to become self-gravitating, a widespread notion is that the
star formation timescale, when averaged over large scales in
a galaxy, will be proportional to the large-scale average of tff ,
i.e., tff(ρave). Since star formation takes place within GMCs that
have much higher density than the mean value in the ISM, the
conditions that control star formation where it actually takes
place are not those of the large-scale ISM. Thus, implicit in the
notion that star formation times should be related to the large-
scale mean tff(ρave) is the idea that the formation of GMCs
(on timescales closer to tff(ρave)) is the principal means of
regulating star formation. If the star formation efficiency per
GMC is constant, then the GMC formation rate would control
the SFR. Alternatively, the SFR might be related to the large-
scale tff(ρave) if the densities within GMCs are proportional to
the large-scale mean densities of the ISM, 〈ρGMC〉 ∝ ρave.

Another important dynamical timescale in disk galaxies is
the orbital time, torb = 2π/Ω. Growth of large-scale self-
gravitating perturbations in disks in fact occurs at timescales
longer than tff(ρave) (provided pressure limits small-scale col-
lapse), and more comparable to torb = 2π/Ω. Observa-
tions (Kennicutt 1998b) show that empirically measured star

formation timescales in disk galaxies tend to be correlated with
the orbital time, with ∼ 10% of gas being converted to stars per
galactic orbit. It is useful to compare tff(ρave) with torb in our
models. Figure 14 shows the ratio of tff(ρave)/torb for all hydro-
dynamic and hydrostatic series. For the hydrodynamic series, the
typical ratio is 0.06 − 0.2; for the hydrostatic models, the densi-
ties are much higher at large Σ so that tff(ρave)/torb ∼ 0.02−0.2.
For Series Q and R, the ratio tff(ρave)/torb varies relatively
weakly with Σ, and lies in the range 0.1 − 0.2. The compar-
ison hydrostatic models for these series also show tff(ρave)/torb
varying only modestly with Σ. For these series, torb ∝ 1/Σ. Since
turbulent velocity dispersions do not depend strongly on Σ for
Series Q and R, ρave does not strongly depart from a scaling
∝ Σ2, yielding behavior similar to tff ∝ Σ ∝ torb. Interestingly,
the K series, which has constant torb, shows a smaller range of
ρave than the Q series. This is indicative of self-regulation: high
feedback activity in the highest Σ models of series K yield high
turbulent amplitudes, which lead to lower values of ρave. As a
consequence, the ratios of tff/torb are more modulated in the
hydrodynamic models for Series K than in the corresponding
hydrostatic series.
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Figure 14. Ratio of mean free-fall to orbital time. Open squares denote hydrodynamic models, and filled squares denote the hydrostatic series (HSP and HSC).

6. IMPLICATIONS FOR STAR FORMATION

In the present work, we do not explicitly follow star formation.
Nevertheless, it is interesting to explore the consequences of
our statistical results, within the context of recipes that are
commonly adopted for star formation in numerical models. We
compare estimates of the implied star formation timescale both
to observations and to various fiducial dynamical times.

6.1. SFRs and Timescales

A common practice in numerical simulations of galactic
evolution is to assume that the SFR per unit volume (in a
computational region) is proportional to the gas density per
unit volume divided by the free-fall time at that density. When
a minimum density threshold for star formation is imposed,
the total SFR (in mass of new stars per unit time) takes the
form

Ṁ∗ ≡ εff(ρth)M(ρ > ρth)

tff(ρth)
(61)

provided that the density PDF decreases above the threshold,
so that most of the star forming activity is in gas near ρth.
Here, the star formation efficiency per free-fall time, εff(ρth),

is an arbitrary constant parameter that is adopted, generally by
comparing to observations. In practice, the parameter εff(ρth)
in this sort of recipe enfolds many different effects that limit
star formation compared to the fastest possible rate. Within
GMCs, turbulence and magnetic fields limit the rate of core
formation and collapse, and feedback from star formation limits
GMC lifetimes; at larger scales, dynamical processes in the
diffuse ISM limit GMC formation. Depending on the value
of the threshold density, either more (low ρth) or fewer (high
ρth) processes are implicitly packaged in the single efficiency
parameter εff(ρth).

For a given SFR, the star formation timescale is defined by
dividing the total gas mass by the total SFR, Ṁ∗:

tSF ≡ Mtot

Ṁ∗
= Mtot

M(ρ > ρth)

tff(ρth)

εff(ρth)
, (62)

= 1

f (ρ > ρth)

tff(ρth)

εff(ρth)
≡ τSF

εff(ρth)
. (63)

The latter expression uses the mass fraction f as defined in
Equation (47); Mtot is the total gas mass. Because f and
εff are, by definition, less than 1, the star formation time
always exceeds the free-fall time at the threshold density.
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Figure 15. Scaled star formation time, τSF = tSF εff (ρth) ≡ tff (ρth)Σ/Σ(ρ > ρth), computed using two different density thresholds nth = ρth/μ. Results for dynamical
models are shown with open triangles and circles; results for hydrostatic models are shown with filled triangles. For Series Q and R (which are most similar to real
galaxies at varying radius), the two choices of threshold would yield consistent values of the star formation time tSF provided that the adopted efficiency decreases
slightly with density, εff (nth = 100) ∼ (1.5 − 2)εff (nth = 103).

Since the efficiency per free-fall time is arbitrary (from the
point of view of simulations), it is convenient to introduce
τSF ≡ εff(ρth)tSF such that τSF = tff(ρth)/f (ρ > ρth). This
scaled star formation time then depends only on the choice of
density threshold and the fraction of the total gas mass above this
threshold.

In numerical simulations, the density threshold for star
formation is an arbitrary parameter; what difference does the
choice of this value make to the resulting SFR? To address this
question, we first compare values of τSF using two different
thresholds, n = 102 cm3 and n = 103 cm3. Both threshold
values are large enough that the gas at these densities is in
gravitationally bound structures, based on the results shown
in Figure 12. Figure 15 shows the values of the scaled star
formation time, τSF, for all models. For our chosen density
thresholds, τSF is in the range 3 × 106–107 yr for all models.
The true star formation time, tSF, exceeds τSF by a factor of
ε−1

ff ; the value of εff(ρth) must then be quite small (< 0.01) for
tSF to be > 109 yr. Also, since τSF is larger for the threshold

choice n = 102 cm3 than n = 103 cm3, the value of εff(ρth)
would have to be smaller for the higher density threshold, in
order to yield the same value of tSF at a given Σ. Note, however,
that while the thresholds differ by a factor of 10, the values of
τSF (and hence required εff(ρth)) differ by less than a factor
2. This reflects the fact that f decreases with increasing n;
between n = 102 cm3 and n = 103 cm3, our results imply
a dependence f (> n) ∝ n−s with the range of s = 0.2–0.5.
Alternatively, we can think of our results requiring a choice
for εff(ρth) ∝ ρ−r

th with the range of r = 0–0.3 in order for
the SFR to be independent of the choice of threshold at high
densities.

Other aspects of the results shown in Figure 15 are also
interesting. First, it is evident that τSF depends only weakly
on both surface density (Series Q, K, R) and angular velocity
(Series S). For Series Q and S, τSF decreases with increasing
Σ. Interestingly, the hydrostatic models show a similar range of
τSF to the dynamic, turbulent models. The fact that τSF is not
strongly sensitive to environmental conditions (total available
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Figure 16. Scaled SFRs per unit area, ΣSFR/εff (ρth) ≡ Σ(ρ > ρth)/tff (ρth). Open triangles and circles are based on threshold density of nth = 102 cm−3 and
nth = 103 cm−3, respectively. Filled triangles show the results for hydrostatic models. The wedge-shape marks indicate reference slopes of 1.0 and 1.5. Series Q and
R show Kennicutt–Schmidt indices similar to observations. Efficiency parameters εff ∼ 0.001–0.01 for nth = 102–103 cm−3 would be required to match the observed
range of ΣSFR in this range of gas surface density Σ.

gas content, local shear rate, level of turbulence, etc.) may help
to explain why empirical SFRs show such a regular character in
observed galaxies, in spite of widely varying local conditions.
Conversely, the insensitivity of τSF to conditions within a model
has implications for evaluating theoretical results: successfully
reproducing levels of star formation similar to observations
is not a critical discriminant of how well a simulated galaxy
resembles a real system. Our hydrostatic models bear minimal
resemblance to real galaxies, yet for a choice of εff(ρth) ∼ 0.01
consistent with observed efficiencies in CO-emitting gas in
GMCs (which have densities in the range n = 102–103 cm3),
the resulting star formation times are ∼ 4 × 108–109 yr, similar
to the observed range of tSF for Σ comparable to the range in our
models.

To connect more directly to the way observed SFRs are
normally presented, in Figure 16 we show results for scaled
surface density of star formation as a function of surface density
of gas (Series Q, K, R) and angular velocity (Series S). The
scaled SFR per unit area is defined as ΣSFR/εff(ρth) = Σtot/τSF,

where the SFR is taken to follow

ΣSFR ≡ Σtot

tSF
= εff(ρth)Σtotf (ρ > ρth)

tff(ρth)
. (62)

As before, we compare results based on two different threshold
density choices, and also show the results from hydrostatic
models. Observations are typically fitted to power laws of the
form ΣSFR ∝ Σ1+p. For reference, we show slopes with 1+p = 1
and 1.5. For each model series and each value of ρth, we fit a
power-law index. We find 1 + p equal to 1.32, 1.43 (Series Q
for n = 102, 103 cm3), 0.94 (Series K for n = 102 cm3), and
1.24, 1.19 (Series R for n = 102, 103 cm3). For the hydrostatic
cases, the indices are 1.38 (Series HSP) and 1.39 (Series HSC)
at n = 102 cm3. As we shall discuss further in Section 7, these
results are similar to the observed ranges of power-law indices
that have been reported. We note that Series Q and R show
more regular behavior than Series K. This reflects the different
environmental parameters that are inputs to the models: in Series
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Figure 17. Ratio of scaled star formation time to orbital time, indicating that the ratio is not a constant independent of gas surface density Σ.

K, the epicyclic frequency is held constant, while in series Q
and R we adopt a scaling Ω ∝ Σ. For εff ∼ 0.001–0.01, both
the magnitude and scaling of the ΣSFR versus Σ results in Series
Q and R are similar to observations.

6.2. Comparison of Timescales

In Section 6.1, we investigated the relationship between the
mean large-scale surface density Σ and the star formation time
based on the amount of high-density gas (at n > 102 cm−3

within a zone). This gas may be considered immediately eligible
for star formation, since it is cold and found in self-gravitating
systems. As noted in Section 5.8, if formation of massive, cold,
gravitationally bound systems is the principal throttle for star
formation, then star formation times would also be expected to
vary with the timescales for GMC formation.

GMC formation is a complex process, and to date no simple
formula has been obtained for the formation rate. Instead, several
different “large-scale” dynamical times are commonly invoked
to obtain estimates of the GMC formation time. These include
the free-fall time at the large-scale mean density, tff(ρave), the
Jeans time based on the surface density and the gas velocity
dispersion, tJ, and the orbital time torb, which is generally related

to the epicyclic and shear times. It is interesting to explore how
our measurement of τSF compares to each of these times, as a
function of the independent parameter in each series.

We begin with the orbital time, torb = 2π/Ω. Figure 17
shows the ratio between τSF = εff(ρth)tSF (for the two different
density thresholds ρth) and the orbital time. In Series K, Σ
is the independent parameter, but torb is independent of Σ;
thus the ratio is simply a rescaled version of τSF shown in
Figure 15. In Series Q and R, the independent parameter is
Σ, and torb ∝ Σ−1, so τSF/torb ∝ τSFΣ. In Series S, torb is
the independent parameter. Although the variation with the
independent parameter is moderate in all the series, the ratio is
not constant, and for some series shows secular trends. Namely,
for Series Q and R, which showed a trend of decreasing τSF at
increasing Σ, τSF/torb increases at larger Σ. Thus, assuming that
the star formation time is ∝ torb would increasingly overestimate
the true SFR (presumed to depend on the amount of dense gas)
as Σ increases.

We next consider the Jeans time for a disk, tJ ≡ σ/(GΣ),
where σ is either the thermal or the total (radial) turbulent

velocity dispersion, cs or
√

c2
s + v2

R . We note that the ratio tJ/torb

is given by Q/(2
√

2), where the Toomre parameter Q is either
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Figure 18. Ratio of scaled star formation time to Jeans time; the Jeans time is evidently not a good predictor of the star formation timescale.

based on mean sound speed or the total velocity dispersion (see
Section 5.6). Figure 18 shows the ratio between τSF and the
Jeans time, using the total velocity dispersion. Again, strong
secular trends with Σ are evident; tJ is not a good predictor of
the star formation time.

Finally, in Figure 19 we show the ratio between τSF and
the free fall time at the vertically averaged large-scale mean
density (Section 5.8; see Figure 14). Although the values of this
ratio are closer to unity than τSF/torb and τSF/tJ, we still see
that τSF/tff(ρave) is not constant as a function of Σ. When we
compare Σ/tff(ρave) to the scaled SFRs based on high density
gas shown in Figure (16), we find a steeper rise with Σ, close to
∝ Σ2 in Series Q and R and slightly shallower in Series K.

If star formation is regulated by the collection of diffuse gas
into self-gravitating regions, then strictly speaking one would
expect specific SFRs to vary proportional to the fraction of
diffuse gas divided by the GMC formation time (estimated just
including the diffuse gas). The above comparisons between τSF
and timescale estimates based on mean large-scale properties
can be corrected to account for this, yielding the ratios τSF(1 −
fdense)/torb, τSF(1 − fdense)3/2/tff(ρave), and τSF(1 − fdense)2/tJ.
We find, however, that these ratios also are nonconstant in any

series, although the correction factor does tend to flatten out the
secular rise with increasing Σ in the comparison to the free-fall
time.

Taking all of our results together, we conclude that several
commonly used estimates for galactic star formation timescales
based on large-scale mean galactic properties may have only
limited utility for making detailed predictions of SFRs. That
is, the orbital time, the Jeans time, and the free-fall time
based on the vertically averaged density are not proportional
to the star formation time based on the amount of dense,
gravitationally bound gas that is present. Simulations with
insufficient resolution or limited physics may therefore not be
able to provide accurate predictions of SFRs, if they do not
capture processes at small enough scales to represent dense,
gravitationally bound structures.

7. SUMMARY AND DISCUSSION

We have developed a numerical hydrodynamic code to study
the life-cycle of multiphase, turbulent interstellar gas in disk
galaxies; our model includes gas self-gravity, the vertical gravity
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Figure 19. Ratio of scaled star formation time to free fall time at large-scale mean density averaged over a disk scale height, tff (ρave). An estimated star formation
timescale proportional to the free-fall time at the vertically averaged density (i.e., the “vertically unresolved” limit) would increasingly underpredict the true star
formation time at high Σ.

associated with a fixed stellar disk, radiative cooling and heating
in the temperature range of 10K � T � 10,000 K, sheared
rotation in the background galactic potential (we adopt a flat
galactic rotation curve), and a prescription for feedback in the
form of H ii regions that originate within massive, dense clouds.
Our simulation domains represent slices in the radial-vertical
plane of a galactic disk. We focus on scales large enough to
include vertical stratification (Lz up to 410 pc) and significant
shear of the disk angular velocity (Lx up to 1.6 kpc), but small
enough to resolve substructure within dense, self-gravitating
clouds that form (typical zone resolution is ∼ 1pc). Our models
are 2.5-dimensional, in the sense that all three components of the
velocity are time-dependent functions. For feedback to occur,
we impose thresholds on both the local volume density and on
the gravitational potential, so that H ii regions only occur within
massive clouds (consistent with observations). The expansion of
H ii regions drives turbulence in all the components of the gas.
We have performed a large suite of simulations, covering a factor
of 6 in gas surface density Σ. In order to explore the dependence
of ISM properties on galactic environment (in particular, the

stellar vertical gravity and the angular momentum content of the
gas), we have considered four different model series. In Series
Q, we vary Σ, stellar volume density ρ∗, and the disk rotation
rate Ω in tandem. In Series K, we vary Σ and ρ∗ together while
holding Ω fixed. In Series R, we vary Σ and Ω together while
holding ρ∗ fixed. Finally, in Series S the values of Σ and ρ∗ are
held constant while Ω is varied.

Our main conclusions, and their relation to other recent work,
are as follows.

1. Density, temperature, and pressure distributions
We find that in spite of time-dependent effects, the density and

temperature distributions of the gas retain bimodal profiles rem-
iniscent of the classical Field et al. (1969) two-phase model of
the ISM. Although large-amplitude turbulence heats and cools
via PdV work and entropy production in shocks, most of the gas
(by mass) remains near the curve in the pressure-density phase
plane that is defined by radiative equilibrium: n2Λ − nΓ = 0.
This is possible because the cooling time is generally shorter
than the turbulent dynamical times, for our models. If turbu-
lent compressions or expansions were more extreme in magni-
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tude and also rapid in time compared to radiative times, then
these adiabatic changes would lead to density-temperature pairs
that more strongly departed from thermal equilibrium (see e.g.,
Sánchez-Salcedo et al. 2002; Audit & Hennebelle 2005; Heitsch
et al. 2008 for a discussion of the dependence on various physi-
cal timescales involved). Audit & Hennebelle (2005), Piontek &
Ostriker (2005), and Piontek & Ostriker (2007) similarly found
that even with large-amplitude turbulence—and no direct heat-
ing of the gas—mass-weighted density and temperature PDFs
have two (broadened) peaks, although for very high amplitude
turbulence the trough tends to fill in (e.g., Hennebelle & Audit
2007). Kim et al. (2008) have emphasized the importance of
maintaining sufficient numerical resolution, as numerical dif-
fusion associated with flow across the grid broadens warm/
cold interfaces, populating the thermally unstable regime in the
phase diagram. We note that bimodal character is most eas-
ily seen in mass-weighted rather than volume-weighted PDFs,
although many of the results in the literature show only volume-
weighted PDFs. Our results on the bimodal thermal distribution
of gas are consistent with observations of atomic HI in the mid-
plane of the Milky Way (Heiles & Troland 2003), which at the
same time show interesting evidence of out-of-equilibrium gas,
particularly at high latitudes.

2. Turbulence
We find that appreciable turbulence can be excited in all

components of the gas. The values of the velocity dispersion
in dense gas (n > 102 cm−3) of ∼ 2–4 km s−1 are similar
to, though slightly lower than, those observed in Milky Way
and other local-group GMCs (e.g., Solomon et al. 1987; Sheth
et al. 2008; Bolatto et al. 2008; Heyer et al. 2008). For lower
density gas in our models, velocity dispersions are slightly
higher, but still lower by a factor of 2 compared to observed
velocity dispersions of ∼ 7–10 km s−1 of Solar-neighborhood
warm and cold HI seen in 21 cm emission and absorption (e.g.,
Heiles & Troland 2003; Mohan et al. 2004).

It is not surprising that the turbulence levels in our simulations
are only moderate, given that we have included only one of
the many sources of turbulence that is present in the ISM.
Turbulent driving in the ISM has been reviewed by e.g.,
Mac Low & Klessen (2004); Elmegreen & Scalo (2004).
Supernova are widely believed to be the most important source
of turbulence for diffuse gas, and this has been demonstrated
by numerical simulations (e.g., Korpi et al. 1999; de Avillez
& Breitschwerdt 2005). In the outer galaxy where SFRs are
low, driving by the magnetorotational instability may, however,
dominate (Sellwood & Balbus 1999; Piontek & Ostriker 2005,
2007). Spiral shocks are also effective in driving turbulence in
the warm ISM, especially at high latitudes (Kim et al. 2008).
The interaction between large-scale self-gravity, rotation, and
shear can drive near-sonic turbulence at large scales (Wada et al.
2002; Kim & Ostriker 2007), although the amplitude of this at
scales less than the disk scale height may be modest. It is not
known how effective these other mechanisms are for driving
turbulence within GMCs, however, which are very dense and
therefore present a small effective cross-section to the diffuse
ISM.

3. Feedback and the Toomre Q parameter
We have measured the Toomre parameter for each of our

models, considering both the entire medium and just the dense
gas, and comparing “thermal-only” with “turbulent+thermal”
values. For all models, we find that the “turbulent+thermal” Q-
value for dense gas is in the range 1–2, and is much greater

than the thermal-only value. A further interesting point is
that the turbulence level evidently adjusts with surface density
in order to reach a marginally stable state. In Series Q and
R, which have Ω/Σ = const., the velocity dispersions are
relatively independent of Σ, yielding marginally stable Q in
the cold, dense gas. In Series K, which has constant Ω and
therefore is highly unstable at large Σ in the absence of
turbulence, the velocity dispersions strongly increase with Σ,
as a consequence of much higher levels of feedback activity.
These higher velocity dispersions lift Q to near unity. Thus,
our simulations give direct evidence of feedback leading to a
self-regulated quasi-steady state. We note that Q values vary for
different components; Wada et al. (2002) similarly found a large
range of Q when measured in local patches within their disk
simulations.

Depending on what exactly is included in a model, the
threshold for gravitational instability in previous nonturbulent
simulations is measured to be at Q ∼ 1.5 (see McKee &
Ostriker 2007), which is similar to the values we find here when
turbulence is included in Q. In the actively star-forming regions
of galaxies, measured values of the Toomre parameter are not
constant, but show a limited range (Martin & Kennicutt 2001).
Evidence for star formation thresholds tied to Q are more mixed
(Martin & Kennicutt 2001; Boissier et al. 2003; Boissier et al.
2007), possibly because star formation in outer disks primarily
takes place in spiral arms (Ferguson et al. 1998; Thilker et al.
2007; Bush et al. 2008) which strongly compress the gas above
ambient densities.

4. The virial ratio
We measure the virial ratioR (Equation 55) for all our models,

separating into different density regimes. We find that dense gas
(n > 100 cm−3) generally has R between 1–2, whereas lower
density gas has large values of R. R does not vary strongly
with Σ in any of the series. In particular, we note that in spite
of the large range of velocity dispersions in the dense gas in
Series K at different Σ, R varies only weakly with Σ. This
indicates that feedback can effectively regulate the dynamics
within massive, dense clouds, independent of the larger scale
galactic environment. This is consistent with both older studies
based on 12CO observations (Solomon et al. 1987), and recent
studies based on 13CO observations (Heyer et al. 2008), both of
which find R near 1–2 for Milky Way GMCs. Although masses
based on CO are less certain in external galaxies, virial ratios
are also likely near unity for GMCs observed in the Local Group
(Bolatto et al. 2008)

5. Cloud surface densities
We estimate the surface density of typical clouds by measur-

ing the mass-weighted vertically integrated column of gas; we
define this as Σcloud. For the values of the feedback threshold that
we adopt, we find that Σcloud is in the range 70–150 M� pc−2

for most models. This is comparable to the typical GMC sur-
face densities that are observed in the Milky Way and in Local
Group galaxies (Solomon et al. 1987; Sheth et al. 2008; Bolatto
et al. 2008; Heyer et al. 2008). Whether observational selec-
tion effects or physical processes impose a limited range of
column densities for GMCs is an open question. For example,
magnetic fields may impose a minimum surface density for for-
mation of gravitationally bound structures in the ISM, at a value
Σ = B/(2π

√
G) = 30 M� pc2(B/10 μG) (McKee & Ostriker

2007). Here, we find that altering the volume heated in our
H ii region prescription does not appreciably change Σcloud, but
changing the gravitational potential threshold for star formation
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feedback does: when potential thresholds are low, Σcloud is also
low. Comparison of cloud properties with observations may turn
out to be a much more critical test of whether an ISM model is
realistic than some other measures, such as the SFR.

6. Dependence of ΣSFR on Σ
We obtain estimates of the dependence of surface SFR ΣSFR

on gas surface density Σ in our models by assuming that the
timescale for star formation is proportional to the free-fall time
in gas above some density threshold nth = ρth/μ. We compare
results for two different threshold densities, nth = 100 cm−3

and nth = 103 cm−3. For Series Q and R (which most resemble
real galaxies), we find (for either choice of threshold) relations
that are well-described by power laws: ΣSFR ∝ Σ1+p with
1 + p = 1.2–1.4. In Series K, a power law is a less-good fit; the
slope is also shallower (closer to unity).

These results are consistent with empirical Kennicutt–
Schmidt laws (Schmidt 1959, 1963; Kennicutt 1998a), which
show similar values of 1 + p when all the gas is included in
Σ (e.g., Kennicutt 1989, 1998b; Wong & Blitz 2002; Schuster
et al. 2007; Kennicutt et al. 2007). Recent work has suggested
that 1 + p is close to unity if just CO-emitting molecular gas is
included (Bigiel et al. 2008); this implies all CO-emitting gas
(most of which is at n = 102–103 cm−3) has the same SFR
independent of the galactic environment. Our prescription that
the SFR per unit mass of dense gas is constant is equivalent to
empirically finding 1 + p = 1 if only molecular gas is included.

It is encouraging that the results we find for Kennicutt–
Schmidt relations in our disk models with feedback are com-
patible with observations. We also find, however, that SFRs
predicted from hydrostatic models are in fact similar to those
predicted from the hydrodynamic models, with similar slopes
at large Σ. This is true even though the hydrostatic models are
not at all like real galaxies. Thus, one must be cautious in con-
sidering a numerical model successful if it yields reasonable
SFRs, since this can simply be a consequence of choosing rea-
sonable initial conditions in a simulation. Indeed, a number of
recent numerical studies have found results similar to observed
Kennicutt–Schmidt laws, regardless of the detailed physics that
they included in the models (e.g., Li et al. 2006; Tasker & Bryan
2006, 2008; Robertson & Kravtsov 2008). Schaye & Dalla Vec-
chia (2008) have also recently emphasized that reproducing
empirical star formation scaling laws is not by itself a critical
test of an ISM model.

7. Density-dependence of star formation efficiency
The star formation efficiency per free-fall time can be de-

fined locally as a function of threshold density by εff(ρth) =
tff(ρth)ΣSFR/Σ(ρ > ρth); corresponding global measures can
also be obtained. For a given true SFR, εff(ρth) ∝ τSF where the
scaled star formation time τSF is shown for two different thresh-
old densities in Figure 15. We find that τSF (or εff(ρth)) decreases
with increasing ρth. This is not a strong effect, however: it is less
than a factor 2 for an order of magnitude difference in ρth. In
Series Q and R, the ratio of efficiencies at different threshold
densities are also independent of Σ (although this is not true for
Series K).

Krumholz & Tan (2007) recently compiled a range of obser-
vations of εff (which they refer to as SFRff). They point out that
for threshold densities above ∼ 100 cm−3, the value of εff does
not vary strongly with density. They also find a smaller value
for gas traced by HCN than for gas traced by CO, which since
HCN has a higher critical density than CO is consistent with our
finding that εff decreases with increasing ρth.

Even though scaled star formation times at high density vary
together independent of Σ, the free-fall time at the vertically
averaged density is not proportional to τSF. Instead, we find
that τSF/tff(ρave) increases at increasing Σ. This implies that a
prescription for star formation based on the mean density within
one “average” scale height in a disk (or from a simulation
that does not resolve high-density gas) would increasingly
overestimate the SFR at high Σ. The same is true for the orbital
time and the Jeans time: an assumption that the SFR varies
∝ Σ/torb or ∝ Σ/tJ would increasingly overestimate ΣSFR at high
Σ compared to the value obtained from measuring the mass of
gas in dense, gravitationally bound regions. Thus, ISM models
must resolve self-gravitating structures at scales less than the
disk thickness in order to make accurate predictions of the SFR.
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of Astronomy, at the University of Maryland.

APPENDIX

CARTESIAN DISK POTENTIAL VIA FOURIER
TRANSFORMS

In this section, we provide details for our method of solving
Poisson’s equation in Cartesian disk geometry. We generalize
to the three-dimensional case. Thus, the solution is applicable
to problems in which periodic boundary conditions in the
horizontal (x-y) directions are assumed, and vacuum boundary
conditions are required in the vertical (z) direction. Following
Binney & Tremaine (1987, page 747) and Miyama et al. (1987),
the gravitational potential at the location (xa, xb, xc) on a regular
Cartesian grid with dimensions (Nx,Ny,Nz) for integer indices
(a, b, c) can be written as

Φ(xa, yb, zc) = − 4πG

NxNy

Nx−1∑
m=0

Ny−1∑
n=0

Nz−1∑
j=0

e

−2πi

(
am

Nx

+
bn

Ny

)

× ρ̂m,n(zj )Gm,n(zc, zj ). (A1)

Here Gm,n is the Green function of the Poisson equation for a
horizontal sheet sinusoidal source charge and is written as

Gm,n(z, z′) = Lz

Nz

⎧⎪⎨
⎪⎩

1

2km,n

exp(−km,n|z − z′|) (km,n 
= 0),

−1

2
|z − z′| (km,n = 0),

(A2)

where

km,n =
[(

2πm

Lx

)2

+

(
2πn

Ly

)2
]1/2

. (A3)

Note that up to a constant, the km,n = 0 solution is equal to
the limit of the general solution for km,n → 0. The coefficients
ρ̂m,n(zj ) are given by the discrete Fourier transforms of the
density in the horizontal plane z = zj , i.e.,

ρ̂m,n(zj ) =
Nx−1∑
a=0

Ny−1∑
b=0

e

2πi

(
am

Nx

+
bn

Ny

)
ρ(xa, yb, zj ). (A4)
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Since z − z′ in the Green function takes on values between
−Lz and Lz, we can apply Fourier transforms on the domain
(−Lz,Lz) to obtain

Gm,n(zc, zj ) = 1

2Nz

2Nz−1∑

=0

e
−2πi

(c − j )


2Nz Ĝm,n,
 (A5)

where

Ĝm,n,
 ≡
2Nz−1∑
p=0

e
2πi

(p − Nz)


2Nz Gm,n

(
z − z′ = (p − Nz)Lz

Nz

)

(A6)

Substitution of Equation (A2) and evaluation of the sum shows
that

Ĝm,n,
 = 1 − exp
(±i
π − km,nLz

)
k2
m,n +

(
π

Lz

)2 . (A7)

If we now substitute into the original expression for Φ, we obtain

Φ(xa, xb, xc)

= − 4πG

NxNy(2Nz)

Nx−1∑
m=0

Ny−1∑
n=0

2Nz−1∑

=0

e
−2πi

(
am
Nx

+ bn
Ny

+ c

2Nz

)

k2
m,n,


ρ̂corr
m,n,


(A8)

where

k2
m,n,
 =

(
2πm

Lx

)2

+

(
2πn

Ly

)2

+

(
2π


2Lz

)2

(A9)

and

ρ̂corr
m,n,
 ≡

2Nz−1∑
j=0

e
2πi

j


2Nz ρ̂corr
m,n(zj ). (A10)

Here,

ρ̂corr
m,n ≡

{
ρ̂m,n(zj ) for j = 0, Nz − 1
−ρ̂m,n(zj−Nz

)e−km,nLz for j = Nz, 2Nz − 1

(A11)

That is, in addition to using the horizontal Fourier components
of the original domain, we must define an image density in the
augmented domain, based on the ρ̂m,n values a distance Lz away.
After the corrected density is defined, a Fourier transform in z
is taken in the usual way.

The complete procedure for obtaining the gravitational po-
tential is therefore as follows: First compute two-dimensional
(x−y) Fourier components for each horizontal layer in z. Next
define ρ̂corr

m,n(zj ) and take the Fourier transform in z to obtain
ρ̂corr

m,n,
. Finally, multiply by the Poisson kernel −4πG/k2
m,n,
,

and take the three-dimensional inverse transform. We note that
even and odd terms in the sum on 
 may also be combined, such
that the forward and inverse transforms are both three dimen-
sional; the Poisson kernel then is adapted to incorporate terms
from the image charge.

Since we use FFTs (via the Package FFTW) for all transforms
the computational expense scales as O(N log N ), which is
superior to the Green function method using direct summation.
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