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ABSTRACT

We use numerical simulations of turbulent, multiphase, self-gravitating gas orbiting in the disks of model galaxies
to study the relationships among pressure, the vertical distribution of gas, and the relative proportions of dense and
diffuse gas. A common assumption is that the interstellar medium (ISM) is in vertical hydrostatic equilibrium. We
show that the disk height and mean midplane pressure in our multiphase, turbulent simulations are indeed consistent
with effective hydrostatic equilibrium, provided that the turbulent contribution to the vertical velocity dispersion
and the gas self-gravity are included. Although vertical hydrostatic equilibrium gives a good estimate for the mean
midplane pressure 〈P 〉midplane, this does not represent the pressure experienced by most of the ISM. Mass-weighted
mean pressures 〈P 〉ρ are typically an order of magnitude higher than 〈P 〉midplane because self-gravity concentrates
gas and increases the pressure in individual clouds without raising the ambient pressure. We also investigate the
ratio Rmol = MH2/MH I for our hydrodynamic simulations. Blitz & Rosolowsky showed that Rmol is proportional
to the estimated midplane pressure in a number of systems. We find that for model series in which the epicyclic
frequency κ and gas surface density Σ vary together as κ ∝ Σ, we recover the empirical relation. For other model
series in which κ and Σ are varied independently, the midplane pressure (or Σ) and Rmol are not well correlated. We
conclude that the molecular fraction—and hence the star formation rate—of a galactic disk inherently depends on
its rotational state, not just the local values of Σ and the stellar density ρ∗. The empirical result Rmol ∝ 〈P 〉midplane
implies that the three “environmental parameters” κ , Σ, and ρ∗ are interdependent in real galaxies, presumably as
a consequence of evolution: real galaxies tend toward states with Toomre Q parameter near unity. Finally, we note
that Rmol in static comparison models far exceeds both the values in our turbulent hydrodynamic simulations and
observed values of Rmol, when Σ > 10 M� pc−2, indicating that incorporation of turbulence is crucial to obtaining
a realistic molecular fraction in numerical models of the ISM.
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1. INTRODUCTION

All phases of the interstellar medium (ISM) are turbulent, and
this turbulence has many effects. In the astrophysical literature,
turbulence is often treated as yielding a simple addition to
the thermal pressure, Ptotal = ρ(c2

s + v2
turb), where v2

turb is
the dispersion in the (one-dimensional) turbulent velocity, and
c2
s = P/ρ = f kBT/μ for gas with a total number density

f n and mass density μn. This approach is often adopted when
analyzing the stratification of interstellar gas clouds and the
ISM as a whole, with the combined pressure gradients taken
to balance the gravitational force per unit volume such that
hydrostatic equilibrium is maintained by the total pressure. The
turbulent pressure is believed to be especially important in the
cold components of the ISM, for which observed linewidths far
exceed the values of cs inferred from excitation of atomic and
molecular lines.

Models of effective hydrostatic equilibrium in the vertical
direction, usually assuming that the turbulent and thermal
velocity dispersions are constants independent of height, are
often applied to observations of the large-scale Galactic ISM,
and to observations of the ISM in external galaxies (e.g.,
Lockman & Gehman 1991; Malhotra 1994, 1995; Combes
& Becquaert 1997; Olling & Merrifield 2000; Narayan &
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Jog 2002; Dalcanton et al. 2004; Blitz & Rosolowsky 2004,
2006; Kasparova & Zasov 2008). For example, Narayan & Jog
(2002) showed that the observed atomic and molecular disk
thicknesses in the Milky Way can be fit well by assuming
effective hydrostatic equilibrium, and accounting for both the
gas self-gravity and the external gravitational potential of stars
and dark matter. Blitz & Rosolowsky (2004, 2006, hereafter
BR06) used a simplified approach to hydrostatic equilibrium
in order to estimate the midplane gas pressure in a sample
of disk galaxies, adopting a single velocity dispersion for
the gas, treating the gravitational potential as dominated by
the stars, and assuming that the stellar disk’s scale height is
independent of radius. Kasparova & Zasov (2008) extended
the analysis of BR06 but instead of adopting a constant scale
height for the stellar disk, they assumed that the velocity
dispersion for the stars is consistent with a state of marginal
gravitational instability (with the Toomre parameter Q∗ = 1.5)
for the corresponding stellar surface density. They then assumed
hydrostatic equilibrium for all (gaseous and stellar) components
separately, and computed the self-consistent midplane pressure,
finding differences of order 30%–40% from the simplified BR06
approach. Although widely adopted, the effective hydrostatic
equilibrium model for the large-scale ISM has not, to our
knowledge, been explicitly verified using actual turbulent flows.
One of the goals of this work is to test this formulation
systematically, using the solutions of time-dependent numerical
hydrodynamic simulations of turbulent, multiphase gas.
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In addition to providing support against gravity, pressure
also affects the phase balance in the ISM. For a static sys-
tem at a given mean density n̄, changing the pressure al-
ters the proportions of mass divided between dense clouds
and diffuse intercloud medium; e.g., for cold and warm com-
ponents in pressure equilibrium, the mass ratio of cold to
warm gas is Mcold/Mwarm = [n̄/nwarm − 1]/[1 − n̄/ncold] =
[n̄kTwarm −P ]/[P − n̄kTcold]. The mean density itself, however,
depends on pressure through the condition of vertical hydro-
static equilibrium. Turbulent pressure, as it affects the response
to external and self-gravity, can be expected to change both the
mean density and the mass fractions of dense and diffuse gas.
Here, we investigate these effects quantitatively.

The fraction of ISM mass in dense gas is important from the
point of view of galactic evolution, since this component is the
immediate precursor to star formation. A recent observational
study of external disk galaxies by BR06 identified a linear rela-
tionship between the mean ratio of molecular-to-atomic mass,
Rmol, and an estimate for the total midplane pressure propor-
tional to

√
ρ∗Σ, where ρ∗ is the stellar volume density and

Σ is the total gaseous surface density. BR06 propose that the
molecular fractions in widely varying types of galaxies—and
hence their respective star formation efficiencies—are therefore
determined essentially by a single parameter: the midplane pres-
sure. To investigate this proposal, we use multiphase turbulence
simulations in which we independently vary the input galactic
“environmental” parameters. The observational study of BR06
focused on the dependence of Rmol on ρ∗ and Σ, but another
important—and independent—environmental parameter is the
angular rotation rate Ω (and the associated epicyclic frequency
κ2 = R−3d(Ω2R4)/dR). Using our data sets from turbulent
simulations, we compare the pressure estimate of BR06 to the
true value of the pressure, and also test how Rmol relates to the
mean pressure measured in two different ways.

We note that a number of recent numerical studies have
investigated the formation of ISM structures with internal
densities reaching those similar to giant molecular clouds
(GMCs). Some studies (e.g., Koyama & Inutsuka 2002; Heitsch
et al. 2005, 2006; Hennebelle & Audit 2007; Hennebelle
et al. 2007, 2008; Vázquez-Semadeni et al. 2007) have focused
on how this may occur as a consequence of the collision of
large-scale high-velocity flows that shock and cool, becoming
turbulent at the same time. Other studies have focused on the
ability of self-gravitating instabilities to induce converging flows
over sufficiently large scales that massive, high-column density
structures similar to observed GMCs are created (e.g., Kim &
Ostriker 2001, 2007; Li et al. 2005, 2006); these models include
the galactic shear and rotation that are important on these large
scales, and in some cases also include magnetic effects (e.g.,
Kim et al. 2002, 2003). As spiral arms are observed to be strongly
associated with high molecular fractions and star formation,
some studies have focused on the interaction between large-
scale spiral shocks and self-gravity in inducing GMC formation
(e.g., Kim & Ostriker 2002, 2006; Dobbs 2008). The details of
conversion from diffuse to dense gas by cooling downstream
from spiral shock fronts have also recently been studied in the
absence of self-gravity (e.g., Dobbs et al. 2008; Kim et al. 2008).
Taken together, these and other recent studies have shown that
significant quantities of dense gas form naturally as a result of
large-scale ISM dynamical processes. Of course, dense gas in
the ISM is also returned to the diffuse phases by the energetic
inputs from star formation. In the present work, by incorporating
feedback, we are able to evolve our models until a quasi-steady

state is reached. This enables an analysis of the correlations
among statistical properties of the system, in terms of their
influence on the fraction of dense gas when the system has
reach a quasi-steady state of cloud formation and destruction.

This paper is organized as follows: in Section 2 we briefly
summarize our numerical methods. The specification of model
parameters and the results of statistical analysis in comparison to
the vertical-equilibrium approximation are presented in Section
3. In Section 4, we discuss the molecular fraction and investigate
how it relates to the ISM pressure in our models. We summarize
our results and discuss implications for ISM structure and
evolution in Section 5.

2. NUMERICAL METHODS

The analysis in this paper is based on time-dependent numer-
ical hydrodynamic simulations of turbulent, multiphase, inter-
stellar gas. Details of our numerical methods are presented in a
companion paper (Koyama & Ostriker 2009, hereafter Paper I);
here, we briefly summarize the model properties and parameter-
izations. The models we use are two dimensional, representing
slices through the ISM in radial–vertical (R–z) planes. We in-
clude sheared galactic rotation, a radial gravitational force (the
centrifugal force and gravity balance in the unperturbed state,
which assumes a rotation curve Vc = const.), and Coriolis forces
in the equations of motion, as well as gaseous self-gravity and
vertical gravity representing the potential of the stellar disk. The
gas is treated as a single fluid in chemical equilibrium, and we
include (volumetric) radiative heating and cooling processes as
a function of density and temperature appropriate to the range
10 < T < 104 K. The thermal processes we incorporate in-
clude photoelectric heating from small grains and polycyclic
aromatic hydrocarbons, heating and ionization by cosmic rays
and X-rays, heating by H2 formation and destruction, atomic
line cooling from Hydrogen Lyα, C ii, O i, Fe ii, and Si ii,
rovibrational line cooling from H2 and CO, and atomic and
molecular collisions with grains. We adopt shearing-periodic
boundary conditions in the radial direction.

To drive turbulence, we also include a model of stellar
feedback: within “H ii regions” (which are defined by contours
of the perturbed gravitational potential surrounding regions
where the density has exceeded a specified threshold), the gas
heating rate is increased by a factor of 1000. As a consequence,
gas within these “H ii regions” heats to temperatures ∼ 104 K,
irrespective of density. The detailed recipe for the feedback
phenomenon is described in Paper I. Our aim is not to represent
star formation feedback in a fully realistic manner, but to drive
turbulence in a way similar to that which occurs within the
dense ISM. In this sense, our feedback prescription is similar
in spirit to simulations of GMCs in which turbulence is applied
via arbitrary forcing functions (e.g., Stone et al. 1998; Mac Low
1999; Klessen et al. 2000). Thus, our results should be taken as
demonstrating the physical importance of turbulence to setting
properties such as the vertical thickness of the disk, not as giving
quantitative predictions for what the value of the disk thickness,
etc., should be.

3. MODEL SERIES AND RESULTS

In our local disk models, three free parameters are needed to
characterize the “galactic environment”: the total surface density
of the gas Σ, the local epicyclic frequency κ , and the local stellar
density ρ∗. As we assume a flat rotation curve, κ = √

2Ω where
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Ω is the angular rotation rate at the center of our domain. The
stellar density is used in order to specify the vertical gravity
g∗ = −4πGρ∗zẑ.

Following Paper I, we study four series of models to explore
the parameter dependence of our results. For each series, we
hold two quantities fixed and vary a third quantity, as follows.

1. Series Q: κ/Σ and
√

ρ∗/Σ are constant while Σ varies;

2. Series K: κ and
√

ρ∗/Σ are constant while Σ varies;

3. Series R: κ/Σ and ρ∗ are constant while Σ varies;

4. Series S: Σ and ρ∗ are constant while κ (and Ω) varies.

Since Toomre’s parameter is proportional to κ/Σ, Series Q and
R would have constant gaseous Q = κcs/(πGΣ) if the sound
speed cs were constant. The Q and R Series correspond to
values of Q = 2.1(cs/7kms−1). Assuming a constant stellar
velocity dispersion, Σ∗ ∝ √

ρ∗, so that the stellar Toomre
parameter (hereafter Q∗) would also have the same value for
all members of Series Q. In all members of the R and S
Series and in the Σ = 15.0 M� pc−2 models of the Q and
K Series, we take ρ∗ = 0.14 M� pc−3. In the K Series, we
use κ = 62.4 kms−1kpc−1, while in the S Series we use
Σ = 15.0 M� pc−2.

This paper focuses on how turbulence affects the vertical
structure of the galactic ISM. An important aspect of our studies
is to understand how the results differ from the situation in which
turbulence is absent. Thus, as baselines for comparison, we have
two vertical nonturbulent model series: one in which the gas and
stellar surface densities are proportional (Series HSP), and one in
which the stellar surface density is constant (Series HSC). These
correspond to dynamical Series Q and K (for HSP) and Series
R (for HSC), respectively. These models are one dimensional in
the vertical (z) direction; each model represents the asymptotic
hydrostatic equilibrium state which develops in the absence of
any stellar feedback.

Figure 1 shows a snapshot of the gas pressure in a dynamical
model from Series Q, compared to the hydrostatic model from
Series HSP. The density and temperature are shown for the
same snapshot in Figure 1 of Paper I. In the dynamical model,
the pressure overall increases toward the midplane, but there are
significant variations associated with structure in the gas; for the
particular snapshot shown, there is also a high-pressure region
near the left of the figure, which is associated with a locally
heated star formation feedback region. The hydrostatic model
shows a secular increase in pressure toward the midplane.

3.1. Vertical Scale Height

We begin by examining the vertical velocity dispersion of gas
in all of the model series. Figure 2 shows space and time aver-
ages (weighted by mass) of both the thermal velocity dispersion
cs = (P/ρ)1/2 (circles) and the combined thermal + turbulent
velocity dispersion σz = √

c2
s + v2

z (triangles). The four panels
correspond to the Series Q, K, R, and S. In Series Q and R, the
mean thermal velocity dispersion decreases with increasing sur-
face density. The reason for this is that the mass fraction of cold,
dense gas increases with Σ in all of these models (see Paper I).
This is because gravity is lower, and gas is less compressed (both
vertically, and horizontally by self-gravity), at low Σ. In Series K,
on the other hand, the mean thermal speed has a local minimum
at intermediate Σ. Again, this can be understood in terms of the
mass fraction of warm gas, which is largest at low and high Σ (see
Paper I) in this series; at high Σ, the model is extremely active
in terms of feedback because (with constant κ) the disk is quite
unstable gravitationally. For all the series in which Σ is the vari-
able parameter (i.e., Q, K, and R), the turbulent part of the total
velocity dispersion increases with Σ; this is because the higher-
Σ models have higher feedback rates, and therefore increas-
ing (or flat) turbulence levels. For Series S (with constant Σ),
the turbulence decreases as Ω increases, as high κ stabilizes
the disk and prevents gravitational collapse and feedback (see
Figure 11 in Paper I). For all series, the (mass-weighted) tur-
bulent vertical velocity dispersion approaches or exceeds the
(mass-weighted) thermal velocity dispersion for some part of
parameter space, so that turbulent support of gas in the vertical
gravitational field is expected to be important.

Next, we measure (for all series) the vertical scale height,
using the following averaging:

Have =
√∑

allzones ρz2∑
allzones ρ

(1)

where z is the vertical coordinate relative to the midplane. We
further average the values of Have over time. In order to test
whether the velocity dispersion can be used to obtain an accurate
measure of the scale height, we also compute “estimated”
vertical scale heights defined as

Hest = 1√
2π

σ 2
z

GΣ +
[
(GΣ)2 + 2Gρ∗σ 2

z

]1/2

= σz√
4πGρ∗

1

A + [A2 + 1]1/2
(2)

Figure 1. Left: snapshot of gas pressure (logarithmic color scale) from Model Q11 simulation. For comparison, the right panel shows the pressure in the hydrostatic
model (HSP11) that has the same total gas surface density Σ and stellar density ρ∗ as Model Q11.

(A color version of this figure is available in the online journal.)
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Figure 2. Mean vertical velocity dispersion, weighted by mass. Both the thermal cs (circles) and the total (thermal + turbulent) σz =
√

c2
s + v2

z (triangles) dispersions

are shown for all series.

Hest =

⎧⎪⎨
⎪⎩

σz√
4πGρ∗

(Σ → 0)

σ 2
z√

8πGΣ
(ρ∗ → 0).

(3)

This formula (see the appendix for derivation) accounts for both
gas self-gravity and stellar gravity; the limiting forms are for
negligible gaseous and stellar gravity, respectively.

In Equation (2), A is a dimensionless factor that measures the
relative densities of the gaseous and stellar disks,

A ≡
√

GΣ2

2ρ∗σ 2
z

= Σ c∗,z

Σ∗ σz

√
π

. (4)

The latter expression treats the stellar disk as an isothermal self-
gravitating equilibrium, with H∗ = c2

∗,z/(πGΣ∗), and shows
that A ∼ Q∗/Q (assuming that vertical and radial velocity
dispersions are proportional). Equation (2) may be thought of
as an extension of the usual non-self-gravitating scale height
formula to account for the gravity of the gas. Since A > 0, the
correction factor depending on A is always less than 1. If the gas
disk is much more gravitationally unstable than the stellar disk
(A ∼ Q∗/Q � 1), the correction factor is large; otherwise, the
correction factor is of order unity.

Figure 3 shows the measured (Have) and “predicted” (Hest)
disk scale heights for all series of hydrodynamic models. For
Hest, we show results using for σz either the thermal velocity
dispersion (σz = cs ; subscript c) or the total velocity dispersion
(σ 2

z = c2
s + v2

z ; subscript c + vz). To show how turbulence
contributes to setting the disk thickness, Have is also shown
for the hydrostatic models. The difference between Have in
hydrostatic and hydrodynamic models can be quite large, up to
a factor of 10 in some cases. We note that Have of the hydrostatic
models (filled boxes) differs from Hest,c (open circles) because
the mass-weighted mean sound speed differs for hydrostatic and
hydrodynamic models.

Overall, Figure 3 shows that the estimate for scale height
Hest,c+vz

that includes turbulence traces the measured Have quite
well, for all the series. The difference between Hest,c and Hest,c+vz

increases with increasing Σ, with quite large differences for
some of the models in Series Q and R. This indicates that
high surface density disks are supported largely by turbulent
velocities, in these cases. To facilitate comparisons between
estimated and measured value of the scale height, in the lower
part of each panel we also show the ratios Hest,c/Have (circles)
and Hest,c+vz

/Have (triangles). At low values of Σ in Series Q,
K, and R, both estimates of H exceed the true measured value.
It is notable that where the turbulent contributions are large,
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Figure 3. Disk scale heights, for all hydrodynamic and hydrostatic models. Open boxes denote the directly measured scale height (see Equation 1) for all hydrodynamic
series. Filled boxes show the measured scale height for corresponding hydrostatic models (HSP for Series K and Q, HSC for Series R). Open circles and triangles
show the estimated scale heights (see Equation 2) using thermal and thermal plus turbulent velocity for σz, respectively. The bottom part of each panel shows the ratio
of estimated scale heights to direct measurements.

at high Σ in Series Q, K, and R, the estimated and measured
disk thicknesses are in quite good agreement (within ∼ 10%–
20%). Thus, we conclude that if measurements of the vertical
velocity dispersion together with the gaseous surface density
and stellar surface density can be made observationally, they
can be combined to yield an accurate estimate of the gas disk’s
thickness.

3.2. Gas Pressure

The gaseous pressure, like the scale height, is often diffi-
cult to measure directly. As a consequence, other proxies are
often used to obtain an estimate of the value of the pres-
sure, with an assumption that vertical equilibrium is satisfied.
Here, we test how well such pressure estimates agree with
the directly measured pressure, for our multiphase turbulent
models.

Figure 4 shows for all models in all hydrodynamic series
the average gas pressure. We consider two different ways of
averaging: weighting by mass 〈P 〉ρ (open box), and weighting
by volume 〈P 〉midplane (open circle). The value 〈P 〉ρ is interesting
because it characterizes the value of pressure experienced by the
average atom or molecule, whereas 〈P 〉midplane is interesting
because it represents the pressure in the diffuse (non-self-
gravitating) part of the ISM that is closest to star forming
regions.

The mass- and volume-weighted averages are defined by the
following:

〈P 〉ρ =
∫

Pdm∫
dm

, (5)

〈P 〉midplane =
∫ PNz

2
+ PNz

2 +1

2

dx

Lx

. (6)

For 〈P 〉ρ , all zones in the domain are included, while for
〈P 〉midplane, the subscripts Nz

2 and Nz

2 + 1 indicate that only zones
in the two horizontal planes closest to the midplane are included.
Time averaging is applied in all models after the above space
averaging. We also show the same pressure averages for the
hydrostatic series (filled box and filled circle). Interestingly,
in the hydrodynamic models 〈P 〉ρ always exceeds 〈P 〉midplane
by a large factor of ∼ 10. This indicates that self-gravity
is important in increasing the pressure above the “ambient”
value, for much of the gas. Pressures cannot exceed the ambient
midplane value without horizontal gradients, which are balanced
by the gravity within individual clouds (see Figure 1). In the
hydrostatic models, 〈P 〉ρ (filled boxes) is generally slightly
below 〈P 〉midplane (filled circles), because the pressure at the
midplane is the maximum within any system, and weighting by
mass includes lower-pressure gas which reduces the average.
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Figure 4. Gas pressure averages for all series. Open boxes show mass-weighted averages and open circles show the midplane pressure, for hydrodynamic models.
Filled boxes and filled circles show the same for hydrostatic models. The pressure estimate of BR06 is also indicated as a solid line.

(Note that for the hydrostatic models, there are no horizontal
gradients in any quantities; see Figure 1.) Except in the most
active disks, the mass-weighted averages for the hydrostatic
models are close to the midplane values for the hydrodynamic
models. In Figure 4 we also display the pressure estimate of
BR06 (solid line) defined as

PBR = Σv
√

2Gρ∗, (7)

where v = 8 km s−1 is adopted. This line falls between 〈P 〉ρ
and 〈P 〉midplane for all the hydrodynamic series.

For hydrostatic Series HSP (shown in the Series Q and K
panels), the slope of the midplane pressure is close to that
predicted by Equation (7), while being offset to lower P by a
factor of 2–3. The difference in slope is because the medium has
multiple phases, rather than a single phase at a given thermal
sound speed. The offset is because (1) much of the mass in
the hydrostatic models is at low temperatures, for which the
sound speed is well below 8 km s−1 and (2) Equation (7) does
not include the gaseous vertical gravity, which is comparable
to the stellar gravity when vertical velocity dispersion is low
and the disk is very thin (see below). These effects push P in
opposite directions, and hence partially compensate each other.
For hydrostatic series HSC (shown in the Series R panel), the
prediction of Equation (7) departs significantly from the slope of
the midplane pressure results, because in the HSC series (which

has ρ∗ constant) vertical gravity is strongly dominated by gas
rather than the stellar component at large Σ.

In Section 3.1, we defined an “average” vertical equilibrium
using the total surface density and the total vertical velocity dis-
persion, and showed that this could yield an accurate measure-
ment of the disk thickness. The same model (see the Appendix)
can be used to estimate a midplane “effective hydrostatic pres-
sure,” which we can compare to measured values. If H is the
scale height, then in equilibrium the mean midplane gas density
is ρ0 = Σ/(

√
2πH ). Using the total velocity dispersion, the

predicted total gas pressure at the midplane is then given by
P0,tot = σ 2

z ρ0, which using Equation (2) gives

P0,tot = σ 2
z Σ√

2πHest,c+vz

= Σ(GΣ +
[
(GΣ)2 + 2Gρ∗σ 2

z

]1/2
)

= Σσz

√
2Gρ∗(A +

√
A2 + 1). (8)

Equation (8) corresponds to an extension of the pressure
estimate formula of BR06 using the inverse of the A-dependent
correction factor that appears in the scale height estimate
(Equation 2). This correction factor is greater than 1.

Equation (8) gives an estimate of the total midplane pressure,
but the thermal pressure should represent only a fraction
〈c2

s 〉/〈c2
s + v2

z 〉 = 1 − 〈v2
z 〉/σ 2

z of P0,tot, where 〈v2
z 〉1/2 is the

mass-weighted rms turbulent velocity dispersion in the vertical
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Figure 5. Measured, fitted, and estimated gas pressures. Open boxes and circles are the same as in Figure 4. Solid and dashed lines are the corresponding fits to
Equation (10). Our vertical-equilibrium midplane thermal pressure estimate (Equation 9) is plotted as filled triangles.

direction. Thus, our estimate of the mean thermal pressure at
the midplane is

P0,th = 〈
c2
s

〉 Σ√
2πHest,c+vz

= Σ
〈
c2
s

〉
σz

√
2Gρ∗(A +

√
A2 + 1). (9)

In Figure 5, we compare the pressure estimate from Equation (9,
filled triangles) with the measurements of midplane pressure. At
large Σ, the agreement is quite good, while at low Σ the estimated
midplane pressures lie slightly above the measured values. This
behavior is similar to our results for estimated scale heights,
which were in best agreement with the measured Have at large
Σ (where the dense gas dominates the mass, and the velocity
dispersion is turbulence dominated).

For all the series in which Σ is the independent variable, we
have fit the measured gas pressure to the formula

P/kB = D

√
ρ∗

M� pc−3

(
Σ

M� pc−2

)
. (10)

For 〈P 〉ρ and 〈P 〉midplane, we find the respective coefficients are
Dρ = 1.3×104 K cm−3 and Dmidplane = 1.1×103 K cm−3. The
largest and smallest surface density models are excluded in the
fits. The results of the fits are displayed as solid and dashed lines,
respectively, in Figure 5. To compare with the BR06 formula,
we also fit 〈P 〉ρ and 〈P 〉midplane to P = CΣv

√
2Gρ∗ with v =

8 km s−1. We find Cρ = 3.6 and Cmidplane = 0.3; i.e., the BR06
formula for pressure yields values that are typically a factor of
∼ 3 larger than our measured midplane pressures, and a factor
of ∼ 4 below the mass-weighted mean values of pressure. As
noted above, the mass-weighted average pressures are about 10
times larger than the midplane pressures; this is evident in the
ratio of the fitting coefficients.

Finally, we note that for most models (except at low Σ), the
measured midplane pressure exceeds the maximum pressure of
the warm neutral medium, Pw,max/kB = 5.5 × 103 K cm−3 for
our adopted heating and cooling functions. Dense clouds that are
externally confined by the warm medium cannot have pressure
exceeding Pw,max unless they are internally stratified (implying
they are self-gravitating); thus, Pw,max is the largest the midplane
pressure could be in the absence of self-gravity. Equation (9)
can be solved for Σ in terms of the midplane value of P0,th. The
maximum surface density for an atomic-only disk without self-
gravitating clouds is then obtained by setting P0,th → Pw,max,
with the result Σ → (Pw,max/G)1/2σz/cs times a function of
A that varies between 0.3 and 0.6 for A = 0.1–1. Assuming
σz/cs ∼ √

2 and taking Pw,max/kB = 5.5 × 103 K cm−3,
the maximum surface density for a pure-atomic disk is ∼
10 M� pc−2; this is consistent with the saturation levels for H i

gas observed, e.g., by Wong & Blitz (2002). Since the measured
midplane pressure is a volume-weighted sum of the pressures
in different phases, a mean value exceeding Pw,max implies that
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Table 1
Processes and Parameters for H2 Formation/Dissociation

Parameter Value

Formation of H2 on dust grains Rf = 6 × 10−17(T/300)0.5S(T )cm3s−1 [1]
Sticking probability S(T ) = [1 + 0.04(T + Td )0.5 + 2 × 10−3T + 8 × 10−6T 2]−1 [1]
Photodissociation rate Rpump = 3.4 × 10−10G0β(τ ) exp(−2.5Av)s−1 [1]
Self-shielding function β(τ ) · · · [1]
Optical depth τ = 1.2 × 10−14f NHδv−1

d [1]
Cosmic-ray dissociation ζ

H2
CR = 2.29ζH

CR [2]

Turbulent line broadening δvd = 1 km s−1
(

NH/n
1 pc

)0.5
[3]

Visual attenuation Av ≡ NH/1.5 × 1021cm−2

References. [1] Tielens & Hollenbach (1985); [2] Hollenbach & McKee (1989); [3] Solomon et al. (1987).

self-gravitating dense clouds occupy a nonnegligible fraction
of the midplane volume, fV = (Mdense/Mdiffuse)(ρdiffuse/ρdense),
with 〈P 〉midplane = (Pdense −Pdiffuse)fV +Pdiffuse. In the following
section, we turn to a discussion of the relationship between the
dense-to-diffuse mass ratio and global parameters.

4. AN APPLICATION: MOLECULAR MASS/PRESSURE
RELATIONS

In this section, we explore relationships between the dense
gas fraction and “environmental” conditions, including the gas
pressure and the gas surface density. We are motivated by obser-
vations that show high molecular fractions in environments—
including spiral arms and galactic center regions—where both
the total gas surface density and stellar density are high. In
particular, BR06 found for a number of disk systems that the
mean ratio of molecular-to-atomic mass scales nearly linearly
with the pressure estimate PBR defined in Equation (7). Al-
though our turbulent, multiphase simulations show that PBR in
fact overestimates the pressure of the typical volume element
and underestimates the pressure of the typical mass element,
PBR nevertheless systematically increases in a similar way to
both 〈P 〉midplane and 〈P 〉ρ . Thus, it is interesting to test how the
dense-to-diffuse gas mass ratio depends on the true values of
pressure. In addition to empirical results suggesting a relation
between mass ratio and pressure, there are theoretical reasons
that the mass ratio should depend on the mean gaseous sur-
face density. For example, if atomic gas is converted to molec-
ular clouds through gravitational instabilities on a timescale
tform ∼ σH I/(GΣ), and molecular clouds are destroyed by star
formation on a timescale tdest, equating cloud formation and
destruction rates implies MH2/MH I = tdest/tform, which is pro-
portional to Σ if the H i velocity dispersion and cloud destruction
time are relatively constant. Thus, it is interesting to explore the
dependence of MH2/MH I on the surface density—which ap-
pears in both the effective hydrostatic pressure and the rate of
self-gravitating instabilities.

4.1. Molecular Gas

Although our numerical model does not directly include
formation/dissociation processes of H2, we can nevertheless
relate our results to observed gas phases in an approximate way,
using density as a proxy. Namely, we expect gravitationally
bound dense clouds at n > 100 cm−3 to consist primarily of
H2, whereas diffuse gas at lower densities consists primarily of
H i. We argue for this approximate identification based on the
formation/dissociation equilibrium condition for H2 molecules,
which includes photodissociation and cosmic ray dissociation,
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Figure 6. Phases in the density–column density plane. The solid line divides the
area into predominantly H i at low nH and NH, and predominantly H2 at high nH
and NH, adopting molecule formation and destruction processes as described in
the text. Shown as a dashed line is N = nLJ, where LJ is the Jeans length at n
for T = 10 K gas. The left- and right-hand sides of this line are gravitationally
unbound and bound, respectively. Dotted lines show the typical resolution limit
of the simulations Δx = 2 pc, and a maximum cloud scale of 100 pc.

and formation on dust grains:(
Rpump + ζ

H2
CR

)
nfmol = Rf n2(1 − fmol) (11)

(Tielens & Hollenbach 1985). Here, fmol ≡ 2n(H2)/n is the
molecular fraction, and 1 − fmol = n(H I)/n is the atomic frac-
tion. The FUV dissociation rate is limited by shielding, which
depends on the optical depth in H2 lines and the extinction. For-
mation on grains depends on the sticking probability. The details
of the terms involved are listed in Table 1. We adopt FUV field
strength G0 = 1.7, gas and dust temperature T = 10 K, and
cosmic-ray ionization rate of hydrogen atoms ζ H

CR = 1.8×10−17

s−1. For any total hydrogen column NH and volume density n,
we can solve to obtain fmol, the molecular fraction. Figure 6
shows, in the n–N plane, the boundary (solid line) between the
predominantly atomic and predominantly molecular regimes,
which we define by the locus of points for which fmol = 0.5.

At any density, we can also define the Jeans length LJ =
cs(π/Gρ)1/2, where c2

s = kBT/μ (we adopt T = 10 K). This
defines a corresponding total column of gas, NH = nLJ, that
could be expected to be gravitationally bound. The boundary
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between gravitationally unbound (low n and N) and bound (high
n and N) gas, based on this criterion, is shown in Figure 6 as
a dashed line with n ∝ N2. Note that if instead of LJ we had
chosen as a length scale the diameter D of sphere containing
mass equal to the Bonnor–Ebert (Bonnor 1956; Ebert 1957)
critical mass, MBE = 1.182c3

s /(G3ρ)1/2, then D = 0.74LJ.
This would shift the unbound/bound line in the log(N )–log(n)
plane to the left by log(0.74) = −0.13.

We note that the gravitational binding criterion discussed
above considers only support by thermal pressure. Turbulence
can lend further support against gravity, and this is particularly
important for molecular gas, which is quite cold. For example,
if we considered turbulence-supported clouds with velocity
dispersion following the observed linewidth–size relation of
Galactic GMCs (Solomon et al. 1987), then the column density
separating gravitationally bound from unbound regions would
have a constant value equal to half of the mean observed
GMC column, amounting to NH = 7.5 × 1021 cm−2. A higher
normalization for the linewidth–size relation (as occurs in
galactic center regions; see Oka et al. 2001) would further shift
the unbound/bound limit to larger N. Thus, moderate-density
molecular gas can, in principle, be gravitationally unbound
under conditions of sufficiently high turbulence (Elmegreen
1993). For our current simulations, however, turbulence levels
are not this high (see discussion below).

We have denoted three different regions in the log(N )–log(n)
plane according to their expected chemical and gravitational
properties. The crossing point of the two separation loci is at
n ≈ 125 cm−3 and NH ≈ 1.2 × 1021 cm−2 (Av ∼ 0.75 mag),
with the corresponding local Jeans length of LJ = 3.1 pc. This
size is, in fact, slightly larger than the typical resolution limit of
our simulations, Δx = 2 pc; we show this limit in Figure 6 as
a dotted line, with regions to the right resolved and those to the
left below the resolution limit. The resolution limit crosses the
H i/H2 separation curve at n = 180 cm−3. Because the resolution
limit falls at larger N than the bound/unbound separation nearly
everywhere in the molecular domain, all zones at a given density
that are resolved and molecular would also be gravitationally
bound. In practice, clouds do not exceed ∼ 100 pc in cross
section; we have marked this limit in the figure as a dotted line.

According to the limits shown in Figure 6, any resolved
regions in our simulations at n > 100 cm−3 would be molecular.
This is a conservative definition, since it omits some gas between
n ∼ 10 and 100 with NH > 1021 cm−2 that could be molecular.
However, gas at these densities could also be in the cold atomic
phase (which extends down to ncold,min = 8.6 cm−3 for the
cooling curve we adopt); we choose the stricter definition. We
note that when the virial ratio (∼ kinetic/gravitational energy;
see Paper I) is measured for gas in the range n = 1–100 cm−3

(most of which is at 10 cm−3 < n), the values are well above
unity—implying that gas parcels in this density range is mostly
found in non-self-gravitating regions with low surrounding
column densities, to the left of the unbound/bound curve. This
suggests that, in practice, very little high-column density gas
that would be molecular is missed when we set the minimum
threshold at 100 cm−3. From the point of view of dynamics,
this is because the density rises whenever any region becomes
gravitationally bound, so low-density regions at high column are
rapidly depopulated. We also note that the H2 formation time
in dense, cold regions is expected to be short (∼ 106 yr from
Glover & Mac Low 2007a, 2007b), because supersonic shocks
increase the density above ambient values and accelerate the
molecule-formation process, which occurs at a rate of nRf .

4.2. Molecular Mass–Pressure Relation

Following the discussion in the previous section, we adopt a
working definition of molecular gas as that at nH > 100cm−3.
Atomic gas therefore consists of the lower-density complement,
including both what would be observable as warm and as cold
H i in 21 cm emission. The mass ratio of molecular to atomic
hydrogen is then defined as

Rmol ≡ M(n > 100 cm−3)

M(n < 100 cm−3)
, (12)

where we apply space and time averages before taking the ratio.
Figure 7 shows Rmol as a function of PBR = Σv

√
2Gρ∗ for all

hydrodynamic and hydrostatic series (we use v = 8 kms−1 as in
BR06). We also show as a solid line the empirical fitting formula
from the observational study of BR06 (see their Equation 13):

Rmol =
[

PBR/kB

4.3 × 104 K cm−3

]0.92

. (13)

Interestingly, we find that our results for Rmol follow the
empirical result for some but not all series. In particular, the
models in Series Q and R—which have values of Ω that
scale with Σ in such a way as to keep the gaseous Toomre
parameter constant—are close to the BR06 fit. The models in
Series K, which have constant κ and therefore high (or low)
values of κ/Σ where PBR is low (or high, respectively), do
not follow the empirical result of BR06, but instead show a
ratio Rmol that is near unity independent of PBR. This has two
interesting implications. First, our models with Ω ∝ Σ have
similar behavior to real galaxies, indicating that real systems
evolve (by converting their gas to stars) in such a way as to
have the Toomre parameter fall within a limited range of values.
Second, because the K Series departs from the BR06 result,
our models suggest that the molecular fraction does not have a
one-to-one relationship to the effective pressure parameter PBR.
Comparing series Q and K which have the same Σ and ρ∗, Rmol
increases with increasing κ . For example, Figure 8 shows that
Rmol increases by a factor of 2.4 when Ω (and κ) increases by
a factor of 2

√
2, for the highest Σ (Σ = 42 M� pc−2) model.

For the Σ = 21 M� pc−2 model, the Rmol increase is 60%
for an Ω increase by a factor of

√
2, comparing the Q and

K series. Series S, which varies κ at a given value of Σ and
ρ∗, also shows departures from the empirical Rmol versus PBR
relation.

Given that molecular gas in our models is primarily found in
gravitationally bound systems, it in fact makes sense that the
molecular fraction should not have a one-to-one relationship
to the parameter PBR, since PBR does not include any effects
of galactic rotation. Galactic rotation and shear are crucial for
regulating the large-scale gravitational instabilities that create
GMCs in real galaxies as well as in our models, so we believe
that the molecular-to-atomic ratio must intrinsically be sensitive
to environmental factors that are not captured in PBR. Thus, if
observed galaxies do show a one-to-one relation between Rmol
and PBR, it implies that the environmental parameters κ , Σ, and
ρ∗ are not all independent in real systems.

In Figure 8, we show Rmol as a function of the surface density
for all of our model series. The behavior is similar to that
shown in Figure 7 because PBR depends monotonically on Σ
for all our series: PBR ∝ Σ2 for Series Q and K (which have
ρ∗ ∝ Σ2), while PBR ∝ Σ for Series R (which has ρ∗ = const.).
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Figure 7. Mean molecular-to-atomic mass ratio Rmol as a function of PBR (see Equation 7), shown as open boxes for all hydrodynamic models. Filled boxes show the
results from hydrostatic models. The solid line shows the empirical fit from BR06 (Equation 13).

From both Figures Figure 7 and 8, it is evident that the
hydrostatic models (filled boxes) generally have a much larger
molecular component than both the hydrodynamic models and
the empirical results, except at low gaseous surface density. This
indicates that turbulence is essential for determining the phase
balance between diffuse and dense gas in the ISM as a whole.
If the ISM were a static system, it would be overwhelmingly
molecular even at fairly moderate values of Σ and ρ∗. In real
galaxies, turbulence limits gaseous settling into the midplane
and the extreme self-compression that would otherwise ensue.

While we have argued that the molecular content of a galaxy
cannot (in general) be predicted solely from Σ and ρ∗ because
self-gravitating horizontal contraction is also responsive to
the local rotation and shear rates, it still is plausible that the
molecular fraction should reflect the true mean pressure in the
ISM. If molecular gas is collected in self-gravitating clouds,
then since their internal pressure is higher than ambient levels,
an increase in the molecular fraction should go hand-in-hand
with a higher mass-weighted mean pressure 〈P 〉ρ . At the same
time, ambient midplane pressures 〈P 〉midplane increase when
the total gas surface density increases, and (provided that κ
is low enough) larger Σ also renders the disk susceptible to
gravitational instabilities that would form dense, bound clouds
and increase the molecular fraction.

We explore these ideas by plotting in Figure 9 the molecular-
to-atomic ratio against our two measures of mean gas pressure,
〈P 〉ρ and 〈P 〉midplane. We also fit the combined results for all
series to single linear relations. These fits, overplotted in Figure 9
as solid and dotted lines, are Rmol = 〈P 〉ρ/[7.6×104 cm−3K kB]
and Rmol = 〈P 〉midplane/[6.7 × 103 cm−3 K kB]. For Series Q
and R, the fits using 〈P 〉ρ are quite good, and the fits using
〈P 〉midplane are also fairly good (Series Q and R also show better
agreement with empirical results than the other series). For
Series K, the fit using 〈P 〉ρ is reasonably close to the model
results, but the fit based on 〈P 〉midplane fails in a similar manner
to that shown in Figure 7 and discussed above. The basic reason
for this is that the midplane pressure, either directly measured
or estimated using Equation (9), increases with increasing Σ.
However, the molecular-to-atomic ratio for Series K does not
strongly and secularly increase with Σ due to the differences in
rotational effects in this constant-κ series compared to the other
series. At high values of Σ in Series K, the disk is extremely
gravitationally unstable overall, and as a consequence is more
active in producing feedback than other models at the same Σ.
As a consequence, a smaller fraction of the gas mass ends up
being in the dense phase than in Series Q and R. Overall, we
conclude that Rmol is indeed well correlated with the mass-
weighted mean pressure, 〈P 〉ρ , as (almost definitionally) is
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Figure 8. Molecular-to-atomic mass ratio Rmol vs. total gaseous surface density Σ. Open boxes show the results from hydrodynamic models, and filled boxes show the
hydrostatic model results (HSP for Series K and Q, HSC for Series R). The solid line indicates the empirical result from BR (Equation 13 using Equation 7).

expected. The measured mean midplane pressure, which is more
closely related to simple vertical-equilibrium pressure estimates,
is less well correlated with Rmol when environmental parameters
κ , ρ∗, and Σ are all independent.

5. SUMMARY AND DISCUSSION

We have used numerical simulations of turbulent, multiphase,
self-gravitating gas orbiting in the disks of model galaxies to
study the relationships among pressure, the vertical distribution
of gas, and the relative proportions of dense and diffuse gas.
In particular, we compare the results on vertical stratification
obtained from spacetime averages of fully dynamic—and often
turbulence dominated—systems with simple estimates based
on single-component effective hydrostatic equilibria. We also
investigate how vertical-equilibrium estimates for the pressure
compare with measured mean values of the pressure in our
models. Empirical studies by BR06 have identified a linear
relation between the molecular-to-atomic mass ratio Rmol and a
midplane ISM pressure estimate, PBR ∝ Σ√

ρ∗. We study the
origin and implications of this relation by testing the correlations
among Rmol, PBR, and the directly measured midplane and mean
pressures in our models.

Our chief conclusions, and their implications, are as follows.
1. The average disk scale height is well represented by esti-

mates that assume hydrostatic equilibrium and an effective total

pressure based on the total (thermal + turbulent) vertical veloc-
ity dispersion (see Figure 3 and Equation 2). Thus, provided
that gas surface densities, vertical velocity dispersions, and stel-
lar density can be measured, an accurate estimate for the disk
thickness can be obtained.

Hydrostatic equilibrium with an effective turbulent pressure is
commonly assumed in both Galactic and extragalactic observa-
tional studies (e.g., Lockman & Gehman 1991; Malhotra 1994,
1995; Combes & Becquaert 1997; Olling & Merrifield 2000;
Narayan & Jog 2002; Dalcanton et al. 2004; Blitz & Rosolowsky
2004, 2006; Kasparova & Zasov 2008), but to our knowledge
the relations that are generally adopted have not previously
been tested with direct numerical simulations. Our hydrody-
namic studies demonstrate that for determining the scale height
H, the effective hydrostatic equilibrium assumption is indeed
sufficient, even when turbulent support far exceeds thermal sup-
port (and provided that magnetic effects are subdominant; see
below). Thus, measured disk thicknesses in edge-on disk galax-
ies could, in principle, be used to determine the unobservable
vertical velocity dispersion, and measured line-of-sight velocity
dispersions in face-on galaxies could be used to determine the
unobservable disk thickness.

The basic reason the hydrostatic formula can be used to obtain
an accurate measure of H is that what is really being equated
is the total vertical momentum flux ρ(kBT/μ + v2

z ) averaged
over the midplane, and the total vertical weight of the ISM,
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Figure 9. Molecular-to-atomic mass ratio Rmol vs. measured mass-weighted mean pressure 〈P 〉ρ and midplane pressure 〈P 〉midplane for all hydrodynamic models.
Lines show linear fits (see text).

∫
dz ρ gz ∼ ρ4πG(ρ + ρ∗)H 2, averaged over the horizontal di-

rection. Provided that the time-averaged value of the momentum
per unit volume in the midplane does not change, momentum
conservation including gravitational source terms demands that
the difference between vertical momentum flux and vertical
weight must be zero, independent of details of the dynamics.
The formula H 2 ≈ σ 2

z /[4πG(ρ∗ + Σ/H
√

2π )] is therefore fun-
damentally an expression of momentum conservation.

2. Mass-weighted mean pressures 〈P 〉ρ in our hydrodynamic
models significantly differ from the mean midplane pressure
〈P 〉midplane, while these quantities are quite similar to each other
in our static comparison models. Typically, the hydrodynamic
models yield values of 〈P 〉ρ an order of magnitude larger than
〈P 〉midplane. The difference can be attributed to self-gravitating
condensation, which makes concentrated clouds with high inter-
nal pressure rather than a horizontally uniform gas distribution
with more moderate pressure.

Simple estimates of the pressure based on vertical hydro-
static equilibrium fall between mass-weighted and midplane
values, with the formula used by BR06 (see our Equation 7)
comparable to the geometric mean PBR ∼ √〈P 〉ρ〈P 〉midplane.
A single-component estimate for the midplane thermal pres-
sure that accounts for self-gravity and the mean thermal and
turbulent velocity dispersions (see Equation 9) follows the mea-

sured midplane pressure fairly closely, especially at high Σ.
Thus, if turbulent and thermal vertical velocity dispersions can
be measured directly (for face-on galaxies), a good estimate
of the midplane total or thermal pressure can be computed
via Equation (8) or (9). For an edge-on system in which the
scale height is measured, the midplane total or thermal pres-
sure can be estimated as Σ/(H

√
2π ) × 〈σ 2

z 〉 or 〈c2
s 〉. Mid-

plane pressure estimates based on large-scale observables that
assume hydrostatic equilibrium can be quite accurate, but this
depends on an accurate measure of the vertical velocity dis-
persion or vertical thickness. Even if the velocity dispersion is
not known, the relative midplane pressures of different regions
within a galaxy (or from one galaxy to another) can be obtained
using the hydrostatic formulae, provided the variation in the
(unknown) velocity dispersion within the observational sample
is small compared to the variation in the stellar volume and
gaseous surface densities. Midplane pressure estimates made
in this way should not, however, be treated as a proxy for the
pressure in the typical mass element, 〈P 〉ρ , which can be much
larger than the pressure in the typical volume element.

3. Based on calculations of molecular abundance as a function
of hydrogen volume density n and column density N combined
with the resolution and measured virial ratios in our simulations,
we adopt a working definition of gas at n � 100 cm−3 as
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“molecular” and n < 100 cm−3 as “atomic.” We then investigate
the ratio Rmol = MH2/MH I for all our models. We find that Series
Q and R, which have rotation rate Ω ∝ Σ, show correlations
between Rmol and PBR (or Rmol and Σ) that are similar to the
empirical result reported by BR06, Rmol ∝ PBR ∝ Σ√

ρ∗. On
the other hand, Series K and S, in which Σ and Ω do not vary
together, depart from the empirical relation Rmol ∝ PBR.

We conclude that (1) the molecule fraction inherently depends
on the rotational state of a galactic disk, not just on the local
values of the stellar volume and gaseous surface densities ρ∗
and Σ; and (2) the empirical relation Rmol ∝ PBR identified
by BR06 implies that the third “environmental parameter,” the
epicyclic frequency κ = √

2Ω (assuming a flat rotation curve),
is not independent of ρ∗ and Σ in real galaxies. This dependence
can be accomplished by evolution: for example, disk galaxies
may convert gas into stars until they reach a state in which the
Toomre parameter ∝ κ/Σ approaches a critical value.

4. We have tested the correlation between Rmol and the
measured pressures in our models, 〈P 〉midplane and 〈P 〉ρ , and
find a good correlation in all series only for the latter. The
correlation between 〈P 〉ρ and Rmol is potentially useful as a way
to estimate the typical internal pressure within gravitationally
bound regions when only the total molecular-to-atomic mass
is easily accessible, as for low-resolution observations. This
internal pressure is important in the small-scale aspects of star
formation such as determining the IMF (McKee & Ostriker
2007), as well as in molecular chemistry. The lack of correlation
between Rmol and 〈P 〉midplane in Series K implies that the
molecular content cannot, in general, be predicted solely from
Σ and ρ∗ (i.e., without knowledge of κ), as noted above. This
reflects the fact that the formation of self-gravitating clouds is
regulated not just by gravitational processes and pressure, but
also by angular momentum.

5. For our nonturbulent comparison models, we find that Rmol
far exceeds observed values. This indicates that turbulence is
essential to setting the observed phase balance in the ISM.
Recent theoretical investigations of the origin of Kennicutt–
Schmidt laws have focused on the dependence of star formation
rates on the molecular, rather than total, gas surface density
(e.g., Narayanan et al. 2008; Robertson & Kravtsov 2008). Since
turbulence is crucial in determining the abundance of dense gas,
in simulations that aim to compute this abundance realistically
it is necessary to incorporate the feedback effects that drive
turbulence, and to run on a fine enough mesh (or with sufficient
smoothed particle hydrodynamics particles) that the turbulence
is well resolved. While technically challenging in global disk
models, local models may offer a more immediate route to this
goal.
Caveats. The models analyzed in this paper are subject to a
number of limitations, which could potentially affect some of
our conclusions. The chief limitations of the simulations are
that (1) they are two dimensional, representing cuts in the R–z
plane, rather than three dimensional; (2) we have adopted a very
simple model to implement turbulent driving as a star formation
feedback effect from H ii regions, and we have not included
other drivers of turbulence such as supernovae, spiral shocks,
and shear instabilities; and (3) we have not included magnetic
fields (or cosmic rays). We intend to pursue these extensions in
future work.

Inclusion of magnetic fields and altered turbulent driving
would certainly affect the specific quantitative findings for Have,
〈P 〉midplane, 〈P 〉ρ , and Rmol in our models. We believe, how-
ever, that the results we have emphasized regarding physical

relationships are robust. In particular, with appropriate modi-
fications to include magnetic stresses, the time-averaged verti-
cal momentum flux through the midplane must still equal the
time-averaged vertical weight if the mean vertical momentum
is conserved. This can be used to predict the total midplane
pressure (including the magnetic pressure) and H given the
values of Σ, ρ∗, and the thermal, turbulent, and Alfvén ve-
locities. Thus, we anticipate that inclusion of magnetic fields
and alternate turbulence sources would not fundamentally alter
the conclusion that reasonable estimates of scale heights can
be made using observable quantities even in highly dynamic
systems.

Further, we expect that our conclusions regarding the pres-
ence or absence of correlations between Rmol and 〈P 〉ρ or
〈P 〉midplane would continue to hold in models that include ad-
ditional turbulence sources and magnetic fields, although the
details of correlations might change. Namely, angular momen-
tum inherently must be important in permitting or prevent-
ing formation of dense, self-gravitating clouds. Our present
models account for angular momentum effects, and show that
Rmol does not in general have a one-to-one relationship with
〈P 〉midplane or Σ√

ρ∗; we expect this result would carry over
into any model that incorporates sheared background rota-
tion of the galactic disk. Thus, if a one-to-one relationship
between Rmol and Σ√

ρ∗ indeed exists empirically, it implies
that Σ, ρ∗, and κ are not all independent quantities in real
galaxies.

The authors are grateful to the referee for a number of com-
ments that have helped improve our presentation. Numerical
computations used in this project were carried out on the OIT
High Performance Computing Cluster, and the CTC cluster
in the Department of Astronomy, at the University of Mary-
land. This work was supported by grant NNG05GG43G from
NASA; author H.K. was also supported in part by NSF grant
AST 0540450 to the LMA at UMD.

APPENDIX

VERTICAL EQUILIBRIUM WITH STELLAR AND GAS
GRAVITY

The vertical momentum equation, when averaged over a
horizontal plane, is given by

∂

∂t
〈ρvz〉 +

∂

∂z

〈
P + ρv2

z +
B · B

8π
− B2

z

4π

〉
= −

〈
ρ

∂Φ
∂z

〉
(A1)

(see e.g., Piontek & Ostriker 2007). Here, B is the magnetic field
and Φ is the total (stellar plus gaseous) gravitational potential.
In steady state 〈ρvz〉 is time independent, so if we neglect
magnetic fields and assume that ρ, v2

z , c2
s = P/ρ, and ∂Φ/∂z

are statistically independent quantities, we obtain

1

〈ρ〉
∂

∂z

[〈
c2
s + v2

z

〉〈ρ〉] = −∂〈Φ〉
∂z

. (A2)

The Poisson equation, also averaged over the horizontal plane
and assuming RΩ is independent of R, is

∂2〈Φ〉
∂z2

= 4πG(〈ρ〉 + ρ∗), (A3)

where ρ∗ is the background stellar density.
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If we now define σ 2
z = 〈c2

s + v2
z 〉 and assume that this total

velocity dispersion is independent of height z, we can combine
the vertical momentum equation with the Poisson equation to
obtain a second-order differential equation for the density profile
〈ρ〉 → ρ(z):

∂

∂z

(
σ 2

z

ρ(z)

∂ρ(z)

∂z

)
= −4πG (ρ∗ + ρ(z)) . (A4)

Henceforth, we assume that ρ∗ is uniform within the gas
disk, which is a good approximation provided that the stellar
scale height is significantly larger than the gaseous scale
height. Equation (A4) is the expression for effective hydrostatic
equilibrium in the vertical direction.

Introducing a variable f (z) = ln(ρ(z)/ρ∗) and a constant
h2 = σ 2

z /(4πGρ∗), we have

f ′′ = − 1

h2
(1 + ef ), (A5)

where the prime denotes a z derivative. This can be integrated
once as

(f ′)2

2
= − 1

h2
(f + ef ) + const. = 1

h2

(
f0 − f + ef0 − ef

)
, (A6)

where f0 = ln(ρ0/ρ∗) is the boundary condition at the mid-
plane where f ′ = 0. If we Taylor expand and retain only
the two lowest order terms, i.e., f (z) = f0 − f1z

2 so that
ρ/ρ0 = exp(−f1z

2), the governing ODE becomes an algebraic
equation:

(2f1z)2

2
= z2

h2

(
f1 +

ρ0

ρ∗
f1

)
= 4πG(ρ0 + ρ∗)

σ 2
z

f1z
2. (A7)

The coefficient f1 is

f1 = 1

2H 2
, H 2 = σ 2

z

4πG(ρ∗ + ρ0)
. (A8)

Therefore, the gas density and pressure are approximately given
by Gaussian profiles

ρ(z) = ρ0e
− z2

2H 2 , P (z) = P0e
− z2

2H 2 , (A9)

where P0 = σ 2
z ρ0. The midplane gas density ρ0 is determined

by requiring that the profile integrates to the (known) gas surface
density,

Σ =
∫ ∞

−∞
ρ(z) dz =

√
2πρ0H. (A10)

Substituting for ρ0 in Equation (A8), the scale height H must

satisfy

H 2 = σ 2
z

4πG(ρ∗ + Σ√
2πH

)
. (A11)

This yields a quadratic equation for H, with solution given by
Equation (2) of the text.
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